
Coding Rules for FORTE∗

Alois Zoitl, alil@users.sf.net Rene Smodic, smodic@acin.tuwien.ac.at

May 18, 2010

Contents

1 Comments 1
1.1 File Headers . 2
1.2 Keywords . 2

2 Datatypes 2

3 Naming of Identifiers 3
3.1 Variables . 3
3.2 Prefixes . 3
3.3 Constants . 4

4 Classes 4
4.1 Class Structure . 4
4.2 Functions/Methods . 4
4.3 Parameters . 5

5 Code Formatting 5
5.1 Indentation . 5
5.2 Blocks . 5
5.3 if-Statements . 5
5.4 Eclipse . 5

6 Exceptions for IEC 61499 Elements 5
6.1 Naming of IEC 61499 Objects . 5

7 Performance and Size Considerations 6
7.1 Function Inlining . 6
7.2 Local Static Variables . 6

A Examples 6
A.1 File Header . 6
A.2 Indention and Blocks . 7

1 Comments

A sufficient amount of comments has to be written. There are never too many comments, whereas
invalid comments are worse than none — thus invalid comments have to be removed from the
source code. Comments have to be written in English.

∗Framework for Distributed Industrial Automation and Control—Run-Time Environment

1

Comments for class, function, . . . definitions have to follow the conventions of Doxy-
gen to allow the automated generation of documentation for the sourcecode.

For documenting the implementation it is allowed to indicate Single-line comments with //

ahead of the command or in the same line right after the command. All other comments have
to be located ahead of the command or block. Generally comments have to be tagged with // to
allow the temporarily commenting out of code with /*...*/. Comments have to be meaningful,
to describe to program and to be up to date.

1.1 File Headers

Every source-file must contain a file header as follows:

/∗∗∗
∗ C o p y r i g h t (c) 2007 4DIAC − c o n s o r t i u m .
∗ A l l r i g h t s r e s e r v e d . Th i s program and t h e accompanying m a t e r i a l s
∗ a r e made a v a i l a b l e under t h e t e rms o f t h e E c l i p s e P u b l i c L i c e n s e v1 . 0
∗ which a c c o m p a n i e s t h i s d i s t r i b u t i o n , and i s a v a i l a b l e a t
∗ h t t p : / / www. e c l i p s e . o rg / l e g a l / e p l−v10 . html
∗∗∗

An example for the file header used in an full header file is given in Appendix A.1 of this docu-
ment.

1.2 Keywords

The following Keywords should be used in the source code to mark special comments:

• TODO: For comments about possible or needed extensions

• FIXME: To be used for comments about potential (or known) bugs

2 Datatypes

For the FORTE-development we distinguish between three main kinds of data types:

1. Standard C++ data types:

These data types should be used in all places where no special demands on the used data
type are required. Especially for standard integers the int or unsigned int should be
considered, as these are on most machines the fastest and often also smaller assembler code
is produced.

2. IEC 61131-3 data types:

FORTE provides a set of classes resembling the data types defined in IEC 61131-3. These
classes can be found in the src/core/datatypes directory. The class names are the IEC
61131-3 data type name prefixed with CIEC_. They are used for the FB interfaces and for
internal variables of Basic FBs. There they are also used for the transition conditions and the
algorithms. When using these data types one should be aware about the overhead involved
in them.

3. Data types of given size:

Table 1 contains the definitions of important standard data types. This is done to ensure a
machine independent definition of the bit-width of the standard data types. For FORTE-
development these definitions are in the file: src/arch/datatypes.h

2

Table 1: Size constrained data types for FORTE-development
defined data type bit-width / description
TForteByte 8 bit unsigned
TForteWord 16 bit unsigned
TForteDWord 32 bit unsigned
TForteInt8 8 bit signed
TForteInt16 16 bit signed
TForteInt32 32 bit signed
TForteUInt8 8 bit unsigned
TForteUInt16 16 bit unsigned
TForteUInt32 32 bit unsigned
TForteFloat single precission IEEE float (32 bit)
TForteDFloat double precission IEEE float (64 bit)

3 Naming of Identifiers

Every identifier has to be named in English. The first character of an identifier must not contain
underscores (there are some compiler directives which start with underscores and this could lead
to conflicts). Mixed case letters (i.e. camel-case) have to be used and the appropriate prefixes have
to be inserted where necessary.

3.1 Variables

Variables have to be named self explanatory. The names have to be provided with the appropriate
prefixes and they have to start with an uppercase letter. In case of combining prefixes, the use
of ranges, arrays, pointer, enumerations, or structures is at first, followed by basic data types
or object prefixes. The only exception are loop variables (thereby the use of i, j, k is allowed).
Only one variable declaration per line is allowed. Pointer operators at the declaration have to be
located in front of the variable (not after the type identifier). If possible initializations have to be
done directly at the declaration.

Global non constant variables are prohibited!

3.2 Prefixes

The following prefixes have to be applied to identifiers:

Type Definitions Scope
S for structures
C for class
I for interface
E for enum
T for types (e.g. typedef in C++)

m for member variables of classes
cm for a constant member
s for static variables
pa for function parameters
sm static member
scm static constant member
cg for a global constant

Optionally also more detailed type information can be given with the variable name:

3

Variable Types Basic Data Types
a for arrays
p for pointers
r for references
en for enumerations
st for structures

c for characters
b for booleans
n for integers
f for all floating point numbers

Objects
o for meaningless objects
lst for list objects
v for vector objects
s for string objects

If these optional type prefixes are used an has to be inserted between scope prefix and the
optional type prefix in order to increase readability.

Examples

class CFunctionBlock;

int nNumber;

int *pnNumber = &nNumber;

char cKey;

bool g_bIsInitialized;

float m_fPi = 3.1415;

int anNumbers[10];

3.3 Constants

With C++ it is prohibited to declare constants with the #define statement (const has to be used
instead). A prefix cm, scm, or cg, depending on the cope of the constant should be used. Never
ever use “magic numbers” (e.g. if (x == 3){...}). Instead use constants.

4 Classes

In addition to the type–prefix the class identifiers have to start with a capital letter.

4.1 Class Structure

The declaration of the class content has to be done in the following order:

1. Public

2. Protected

3. Private

4.2 Functions/Methods

Function– and method–identifiers have to start with a lower case letter. Functions with a return
value of a Boolean type should have a name which points to the result (relate the name to the
more likely result) and the name should start with the prefix ”is“. Set and get methods have to
start with the appropriate prefix. Methods which are not modifying the state of the object have
to be declared as a const method (keyword const).

4

4.3 Parameters

Parameters which are keeping their value within a method have to be declared as const parame-
ters.

5 Code Formatting

5.1 Indentation

The tabulator width has to be set to 2. Instead of tabulator characters spaces have to inserted
(usually there is an option for this in the IDE called: “replace tabs”). A new block has to be
started at the same line as its initial statement. An example is given in the appendix A.2 of this
document.

5.2 Blocks

The left parenthesis of a block has to be in the same line as the construct. The right parenthesis
has to be in an own line.

Single-line if statemtens are not allowed. Parenthesis have to be used for all if, else, else if, for,
while statments even when they contain only a single statement.

An example how to format blocks is given in the appendix A.2 of this document.

5.3 if-Statements

Within if-statements you should consider the following rules:

• Put constants in if-expression on the left side. If you are missing on = or a ! in a comparison
it will result in a compile error (e.g., if(if(cgMaxElements == mElements){).

• Put spaces around your operators (e.g., if(0 < i){)

• If you have several expressions in an if put parenthesis around each of them in order to
avoid ambiguous interpretation of the compiler (e.g., if((0 < i) && (5 > i)){).

5.4 Eclipse

For users of the IDE Eclipse with the CDT plugin we provide a style file that correctly for-
mats your code to this rules. The file can be found in FORTE’s main directory and is called
fortestyle.xml. This file can be imported into your FORTE project under the Menu Projec-
t/Properties and there in the tree element C/C++ General/Code Style. With the FORTE style file
you can simple correctly format your file by pressing <ctrl>+<shift>+f.

6 Exceptions for IEC 61499 Elements

6.1 Naming of IEC 61499 Objects

All identifiers corresponding to IEC 61499 objecets (ressources) should be named as defined in
the IEC 61499 Standard. So they are execepted from the rules in sections 3 to 6. This has two
advantages:

• No parsing/substitution of names in the code files is needed

• It helps to differentiate between ”runtime-code” and ”user-code”

5

7 Performance and Size Considerations

7.1 Function Inlining

Our experience showed that functions shorter than 4 to 3 line should be inlined. This nearly
always reduces the size of FORTE and therefore should increase its performance. However your
mileage may vary. So please use it wisely and make tests and measurements

7.2 Local Static Variables

Local static variables can be rather helpful for implementing certain features. However be warned
that they may have side effects. First of all modern C++ compilers will add code from libsupc++.a

which will protect them against multi threaded access. Depending on other features you use
from the standard C++ library this can result in several kilobytes of binary image size increase.
The compiler flag -fno-threadsafe-statics can help here. But be warned that you may run in
trouble with this flag.

Currently FORTE is using just one local static variable, namely in the singleton pattern. For
these it is safe to use the -fno-threadsafe-statics flag. And because of other optimizations
done to remove the standard lib parts this will significantly reduce your image size.

Summarizing this short excursus better think twice before using a local static variable. FORTE
will try to avoid them and future version will very likely not use them any more and so should
you.

A Examples

A.1 File Header

/∗∗∗
∗ C o p y r i g h t (c) 2007 4DIAC − c o n s o r t i u m .
∗ A l l r i g h t s r e s e r v e d . Th i s program and t h e accompanying m a t e r i a l s
∗ a r e made a v a i l a b l e under t h e t e rms o f t h e E c l i p s e P u b l i c L i c e n s e v1 . 0
∗ which a c c o m p a n i e s t h i s d i s t r i b u t i o n , and i s a v a i l a b l e a t
∗ h t t p : / / www. e c l i p s e . o rg / l e g a l / e p l−v10 . html
∗∗∗

i f n d e f FILENAME H
d e f i n e FILENAME H

/ / ! s h o r t c l a s s d e s c r i p t i o n
/∗ ! l ong c l a s s d e s c r i p t i o n
∗ /

c l a s s CFooSpace {
public :

/ / ! s h o r t d e s c r i p t i o n
i n t foo (void) ; /∗!< l ong d e s c r i p t i o n

∗ /
protected :

/ / ! s h o r t d e s c r i p t i o n
void bar (void) ; /∗!> l ong d e s c r i p t i o n

∗ /
private :

/ / ! s h o r t member var d e s c r i p t i o n
i n t m nIsBar ; /∗!> l ong d e s c r i p t i o n

∗ /
} ;

endif

6

A.2 Indention and Blocks

i n t CFooSpace : : foo (void){
i f (m nIsBar){

bar () ;
return 1 ;

}
e lse {

megaBar () ;
}

i f (! m nIsBar){
notBar () ;

}

return 0 ;
}

7

	Comments
	File Headers
	Keywords

	Datatypes
	Naming of Identifiers
	Variables
	Prefixes
	Constants

	Classes
	Class Structure
	Functions/Methods
	Parameters

	Code Formatting
	Indentation
	Blocks
	if-Statements
	Eclipse

	Exceptions for IEC 61499 Elements
	Naming of IEC 61499 Objects

	Performance and Size Considerations
	Function Inlining
	Local Static Variables

	Examples
	File Header
	Indention and Blocks

