
DSDP5 User Guide — Software for Semidefinite

Programming

Steven J. Benson
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL U.S.A.

http://www.mcs.anl.gov/~benson

Yinyu Ye
Department of Management Science and Engineering

Stanford University
Stanford, CA U.S.A

http://www.stanford.edu/~yyye

Technical Report ANL/MCS-TM-277

September 21, 2005

Abstract

DSDP implements the dual-scaling algorithm for semidefinite programming. The source code if this
interior-point solver, written entirely in ANSI C, is freely available. The solver can be used as a subroutine
library, as a function within the MATLAB environment, or as an executable that reads and writes to files.
Initiated in 1997, DSDP has developed into an efficient and robust general purpose solver for semidefinite
programming. Although the solver is written with semidefinite programming in mind, it can also be used
for linear programming and other constraint cones.

The features of DSDP include:

• a robust algorithm with a convergence proof and polynomially bounded complexity under mild
assumptions on the data,

• primal and dual solutions,

• feasible solutions when they exist or approximate certificates of infeasibity,

• initial points that can be feasible or infeasible,

• relatively low memory requirements for an interior-point method,

• sparse and low-rank data structures,

• extensibility that allows applications to customize the solver and improve its performance,

• a subroutine library that enables it to be linked to larger applications,

• scalable performance for large problems on parallel architectures, and

• a well documented interface and examples of its use.

The package has been used in many applications and tested for efficiency, robustness, and ease of use.
We welcome and encourage further use under the terms of the license included in the distribution.

i

CONTENTS ii

Contents

1 Notation 1

2 Dual-Scaling Algorithm 2

3 Feasible Points, Infeasible Points, and Standard Form 4

4 Iteration Monitor 5

5 DSDP Subroutine Library 6
5.1 Creating the Solver . 6
5.2 Semidefinite Cone . 6
5.3 LP Cone . 10
5.4 Applying the Solver . 12
5.5 Convergence Criteria . 12
5.6 Detecting Infeasibility . 13
5.7 Solutions and Statistics . 13
5.8 Improving Performance . 14
5.9 Iteration Monitor . 15

6 PDSDP 16

Bibliography 19

Index 19

1 NOTATION 1

1 Notation

The DSDP package implements a dual-scaling algorithm to find solutions (Xj , yi, Sj) to linear and semidefinite
optimization problems of the form

(P) inf
p∑

j=1

〈Cj , Xj〉 subject to
p∑

j=1

〈Ai,j , Xj〉 = bi, i = 1, . . . ,m, Xj ∈ Kj ,

(D) sup
m∑

i=1

bi yi subject to
m∑

i=1

Ai,jyi + Sj = Cj , j = 1, . . . , p, Sj ∈ Kj .

In this formulation, bi and yi are real scalars.

For semidefinite programming, the data Ai,j and Cj are symmetric matrices of dimension nj (Snj), and
the cone Kj is the set of symmetric positive semidefinite matrices of the same dimension. The inner product
〈C,X〉 := C•X :=

∑
k,l Ck,lXk,l, and the symbol � (�) means the matrix is positive (semi)definite. In linear

programming, Ai and C are vectors of real scalars, K is the nonnegative orthant, and the inner product
〈C,X〉 is the usual vector inner product.

More generally, users specify Cj , Ai,j from an inner-product space Vj that intersects a cone Kj . Using
the notation summarized in Table 1, let the symbol A denote the linear map A : V → Rm defined by
(AX)i = 〈Ai, X〉; its adjoint A∗ : Rm → V is defined by A∗y =

∑m
i=1 yiAi. Equivalent expressions for (P)

and (D) can be written

(P) inf 〈C,X〉 subject to AX = b, X ∈ K,
(D) sup bT y subject to A∗y + S = C, S ∈ K.

Formulation (P) will be referred to as the primal problem, and formulation (D) will be referred to as the
dual problem. Variables that satisfy the linear equations are called feasible, whereas the others are called
infeasible. The interior of the cone will be denoted by K̂, and the interior feasible sets of (P) and (D) will
be denoted by F0(P) and F0(D), respectively.

Table 1: Basic terms and notation for linear (LP), semidefinite (SDP), and conic programming.
Term LP SDP Conic Notation

Dimension n n
∑
nj n

Data Space (3 C,Ai) Rn Sn V1 ⊕ . . .⊕ Vp V
Cone x, s ≥ 0 X,S � 0 X,S ∈ K1 ⊕ . . .⊕Kp X,S ∈ K
Interior of Cone x, s > 0 X,S � 0 X,S ∈ K̂1 ⊕ . . .⊕ K̂p X,S ∈ K̂
Inner Product cTx C •X

∑
〈Cj , Xj〉 〈C,X〉

Norm ‖x‖2 ‖X‖F
(∑
‖Xj‖2

)1/2 ‖X‖
Product [x1s1 . . . xnsn]T XS X1S1 ⊕ . . .⊕XpSp XS
Identity Element [1 . . . 1]T I I1 ⊕ . . .⊕ Ip I
Inverse [1/s1 . . . 1/sn]T S−1 S−1

1 ⊕ . . .⊕ S−1
p S−1

Dual Barrier
∑

ln sj ln detS
∑

ln detSj ln detS

2 DUAL-SCALING ALGORITHM 2

2 Dual-Scaling Algorithm

This section summarizes the dual-scaling algorithm for solving (P) and (D). For simplicity, parts of this
discussion assume that the cone is a single semidefinite block, but an extension of the algorithm to multiple
blocks and other cones is relatively simple. This discussion also assumes that the Ais are linearly independent,
there exists X ∈ F0(P), and a starting point (y, S) ∈ F0(D) is known. The next section discusses how DSDP

generalizes the algorithm to relax these assumptions.

It is well known that under these assumptions, both (P) and (D) have optimal solutions X∗ and (y∗, S∗),
which are characterized by the equivalent conditions that the duality gap 〈X∗, S∗〉 is zero and the product
X∗S∗ is zero. Moreover, for every ν > 0, there exists a unique primal-dual feasible solution (Xν , yν , Sν)
satisfies the perturbed optimality equation XνSν = νI. The set of all solutions C ≡ {(Xν , yν , Sν) : ν > 0} is
known as the central path, and C serves as the basis for path-following algorithms that solve (P) and (D).
These algorithms construct a sequence {(X, y, S)} ⊂ F0(P)×F0(D) in a neighborhood of the central path
such that the duality gap 〈X,S〉 goes to zero. A scaled measure of the duality gap that proves useful in the
presentation and analysis of path-following algorithms is µ(X,S) = 〈X,S〉/n for all (X,S) ∈ K ×K. Note
that for all (X,S) ∈ K̂ × K̂, we have µ(X,S) > 0 unless XS = 0. Moreover, µ(Xν , Sν) = ν for all points
(Xν , yν , Sν) on the central path.

The dual-scaling algorithm applies Newton’s method to AX = b, A∗y + S = C, and X = νS−1 to
generate

A(X + ∆X) = b, (1)
A∗(∆y) + ∆S = 0, (2)

νS−1∆SS−1 + ∆X = νS−1 −X. (3)

Equations (1)-(3) will be referred to as the Newton equations; their Schur complement is

ν

 〈A1, S
−1A1S

−1〉 · · · 〈A1, S
−1AmS

−1〉
...

. . .
...

〈Am, S
−1A1S

−1〉 · · · 〈Am, S
−1AmS

−1〉

 ∆y = b− νAS−1. (4)

The left-hand side of this linear system is positive definite when S ∈ K̂. In this manuscript, it will sometimes
be referred to as M . DSDP computes ∆′y := M−1b and ∆′′y := M−1AS−1. For any ν,

∆νy :=
1
ν

∆′y −∆′′y

solves (4). We use the subscript to emphasize that ν can be chosen after computing ∆′y and ∆′′y and that
the value chosen for the primal step may be different from the value chosen for the dual step.

Using ∆νy and (3), we get
X(ν) := ν

(
S−1 + S−1(A∗∆νy)S−1

)
, (5)

which satisfies AX(ν) = b. Because X(ν) ∈ K̂ if and only if

C −A∗(y −∆νy) ∈ K̂, (6)

DSDP applies a Cholesky factorization on (6) to test the condition. If X(ν) ∈ K̂, a new upper bound

z̄ := 〈C,X(ν)〉 = bT y + 〈X(ν), S〉 = bT y + ν
(
∆νy

TAS−1 + n
)

(7)

can be obtained without explicitly computing X(ν). The dual-scaling algorithm does not require X(ν) to
compute the step direction defined by (4), so DSDP does not compute it unless specifically requested. This
feature characterizes the algorithm and its performance.

2 DUAL-SCALING ALGORITHM 3

Either (y, S) or X reduces the the dual potential function

ψ(y) := ρ log(z̄ − bT y)− ln detS (8)

enough at each iteration to achieve linear convergence.

1: Setup data structures and factor Ai.
2: Choose y such that S ← C −A∗y ∈ K̂.
3: Choose an upper bound z̄ and a barrier parameter ν.
4: for k ← 0, . . . , kmax do
5: Monitor solution and check for convergence.
6: Compute M and AS−1.
7: Solve M∆′y = b, M∆′′y = AS−1.
8: if C −A∗(y −∆νy) ∈ K̂ then
9: z̄ ← bT y + ν

(
∆νy

TAS−1 + n
)
.

10: y ← y, ∆y ← ∆νy, µ← ν.
11: end if
12: Select ν.
13: Find αd to reduce ψ, and set y ← y + αd∆νy, S ← C −A∗y.
14: for kk = 1, . . . , kkmax do
15: Compute AS−1.
16: Solve M∆cy = AS−1.
17: Select ν.
18: Find αc to reduce φν , and set y ← y + αc∆c

νy, S ← C −A∗y.
19: end for
20: end for
21: Optional: Compute X using y, ∆y, µ.

3 FEASIBLE POINTS, INFEASIBLE POINTS, AND STANDARD FORM 4

3 Feasible Points, Infeasible Points, and Standard Form

The convergence of the algorithm assumes that both (P) and (D) have an interior feasible region and the
current solutions are elements of the interior. To satisfy these assumptions, DSDP bounds the variables y
such that l ≤ y ≤ u where l, u ∈ Rm. By default, li = −107 and ui = 107 for each i from 1 through
m. Furthermore, DSDP bounds the trace of X by a penalty parameter Γ whose default value is Γ = 1010.
Including these bounds and their associated Lagrange variables xl ∈ Rm, xu ∈ Rm, and r, DSDP solves
following pair of problems:

(PP) minimize 〈C,X〉 + uTxu − lTxl

subject to AX + xu − xl = b,
〈I,X〉 ≤ Γ,
X ∈ K, xu ≥ 0, xl ≥ 0.

(DD) maximize bT y − Γr
subject to C −A∗y + Ir = S ∈ K,

l ≤ y ≤ u, r ≥ 0.

The reformulations (PP) and (DD) are bounded and feasible, so the optimal objective values to this pair of
problems are equal. Furthermore, (PP) and (DD) can be expressed in the form of (P) and (D).

Unless the user provides a feasible point y, DSDP uses the y values provided by the application (usually
all zeros) and increases r until C −A∗y + Ir ∈ K̂. Large values of r improve robustness, but smaller values
often improve performance. In addition to bounding X, the parameter Γ penalizes infeasiblity in (D) and
forces r toward zero. The nonnegative variable r increases the dimension m by one and adds an inequality
to the original problem. The M matrix treats r separately by storing the corresponding row/column as a
separate vector and applying the Sherman-Morrison-Woodbury formula. Unlike other inequalities, DSDP

allows r to reach the boundary of the cone. Once r = 0, it is fixed and effectively removed from the problem.

The bounds on y add 2m inequality constraints to the original problem; and, with a single exception,
DSDP treats them the same as the constraints on the original model. The lone difference between these
bounds and the other constraints is that DSDP explicitly computes the corresponding Lagrangian variables
xl and xu at each iteration to quantify the infeasibility in (P). The bounds l and u penalize infeasiblity in (P),
force xl and xu toward zero, and prevent numerical difficulties created by variables with large magnitude.

The solution to (PP) and (DD) is a solution to (P) and (D) when the optimal objective values of (P) and
(D) exist and are equal, and the bounds are sufficiently large. DSDP identifies unboundedness or infeasibility
in (P) and (D) through examination of the solutions to (PP) and (DD). Given parameters εP and εD,

• if r ≤ εr, ‖AX − b‖∞/〈I,X〉 > εP , and bT y > 0, it characterizes (D) as unbounded and (P) as
infeasible;

• if r > εr and ‖AX − b‖∞/〈I,X〉 ≤ εP , it characterizes (D) as infeasible and (P) as unbounded.

Normalizing unbounded solutions will provide an approximate certificate of infeasibility. Larger bounds may
improve the quality of the certificate of infeasibility and permit additional feasible solutions, but they may
also create numerical difficulties in the solver.

4 ITERATION MONITOR 5

4 Iteration Monitor

The progress of the DSDP solver can be monitored by using standard output printed to the screen. The data
below shows an example of this output.

Iter PP Objective DD Objective PInfeas DInfeas Nu StepLength Pnrm

0 1.00000000e+02 -1.13743137e+05 2.2e+00 3.8e+02 1.1e+05 0.00 0.00 0.00

1 1.36503342e+06 -6.65779055e+04 5.1e+00 2.2e+02 1.1e+04 1.00 0.33 4.06

2 1.36631922e+05 -6.21604409e+03 5.4e+00 1.9e+01 4.5e+02 1.00 1.00 7.85

3 5.45799174e+03 -3.18292092e+03 1.5e-03 9.1e+00 7.5e+01 1.00 1.00 17.63

4 1.02930559e+03 -5.39166166e+02 1.1e-05 5.3e-01 2.7e+01 1.00 1.00 7.58

5 4.30074471e+02 -3.02460061e+01 3.3e-09 0.0e+00 5.6e+00 1.00 1.00 11.36

...

11 8.99999824e+00 8.99999617e+00 1.1e-16 0.0e+00 1.7e-08 1.00 1.00 7.03

12 8.99999668e+00 8.99999629e+00 2.9e-19 0.0e+00 3.4e-09 1.00 1.00 14.19

The program will print a variety of statistics for each problem to the screen.
Iter the iteration number.

PP Objective the upper bound z̄ and objective value in (PP).

DD Objective the objective value in (DD).

PInfeas the primal infeasiblity in (P) is ‖xu − xl‖∞.

DInfeas the dual infeasibility in (D) is the variable r.

Nu the barrier parameter ν.

StepLength the multiple of the step-directions in (P) and (D).

Pnrm the proximity to the central path: ‖∇ψ‖M−1 .

5 DSDP SUBROUTINE LIBRARY 6

5 DSDP Subroutine Library

DSDP can also be used within a C application through a set of subroutines. There are several examples
of applications that use the DSDP application program interface. Within the DSDPROOT/examples/
directory, the file dsdp.c is a mex function that reads data from the MATLAB environment, passes the data
to the DSDP solver, and returns the solution. The file readsdpa.c reads data from a file for data in SDPA

format, passes the data to the solver, and prints the solution. The files maxcut.c and theta.c read a graph,
formulate a semidefinite relaxation to a combinatorial problem, and pass the data to a DSDP solver. The
subroutines used in these examples are described in this chapter.

Each of these applications includes the header file DSDPROOT/include/dsdp5.h and links to the
library DSDPROOT/lib/libdsdp.a. All DSDP subroutines also return an int that represents an error
code. A return value of zero indicates success, whereas a nonzero return value indicates that an error has
occurred. The documentation of DSDP subroutines in this chapter will not show the return integer, but we
highly recommend that applications check for errors after each subroutine.

5.1 Creating the Solver

To use DSDP through subroutine, the solver object must first be created with the command

DSDPCreate(int m, DSDP *newsolver);

The first argument in this subroutine is the number of variables in the problem. The second argument should
be the address of a DSDP variable. This subroutine will allocate memory for the solver and set the address
of the DSDP variable to a new solver object. A difference in typeset distinguishes the DSDP package from the
DSDP solver object.

The objective function associated with these variables should be specified using the subroutine

DSDPSetDObjective(DSDP dsdp, int i, double bi);

The first argument is the solver, and the second and third arguments specify a variable number and the
objective value bi associated with it. The variables are numbered 1 through m, where m is the number of
variables specified in DSDPCreate. The objective associated with each variable must be specified individually.
The default value is zero.

The next step is to provide the conic structure and data in the problem. These subroutines will be
described in the next sections.

5.2 Semidefinite Cone

To specify an application with a cone of semidefinite constraints, the subroutine

DSDPCreateSDPCone(DSDP dsdp,int nblocks,SDPCone *newsdpcone);

can be used to create a new object that describes a semidefinite cone with 1 or more blocks. The first
argument is an existing semidefinite solver, the second argument is the number of blocks in this cone, and
the final argument is an address of a SDPCone variable. This subroutine will allocate structures needed to
specify the constraints and point the variable to this structure. Multiple cones can be created for the same
solver, but it is usually more efficient to group all blocks into the same conic structure.

All subroutines that pass data to the semidefinite cone use this SDPCone variable in the first argument.
The second argument often refers to a specific block. The blocks will be labeled from 0 to nblocks-1.
The subroutine SDPConeSetBlockSize(SDPCone sdpcone, int blockj, int n) can be used to specify

5 DSDP SUBROUTINE LIBRARY 7

the dimension of each block and the subroutine SDPConeSetSparsity(SDPCone sdpcone, int blockj,
int nnzmat) can be used to specify the number of nonzero matrices Ai,j in each block. These subroutines
are optional, but using them can improve error checking on the data matrices and perform a more efficient
allocation of memory.

The data matrices can be specified by any of the following commands. The choice of data structures is
up to the user, and the performance of the problem depends upon this choice of data structures. In each of
these subroutines, the first four arguments are a pointer to the SDPCone object, the block number, and the
number of variable associated with it, and the number of rows and columns in the matrix. The blocks must
be numbered consecutively, beginning with the number 0. The y variables are numbered consecutively from
1 to m. The objective matrices in (P) are specified as constraint number 0. The data that is passed to the
SDPCone object will be used in the solver, but not modified. The user is responsible for freeing the arrays of
data it passes to DSDP after solving the problem.

The square symmetric data matrices Ai,j and Cj can be represented with a single array of numbers. DSDP

supports the symmetric packed storage format. In symmetric packaged storage format, the elements of a
matrix with n rows and columns are ordered as follows:

[a1,1 a2,1 a2,2 a3,1 a3,2 a3,3 . . . an,n]. (9)

In this array ak,l is the element in row k and column l of the matrix. The length of this array is n(n+ 1)/2,
which is the number of distinct elements on or below the diagonal. Several routines described below have
an array of this length in its list of arguments. In this storage format, the element in row i and column j,
where i ≥ j, is in element i(i− 1)/2 + j − 1 of the array.

This array can be passed to the solver using the subroutine

SDPConeSetADenseVecMat(SDPCone sdpcone,int blockj, int vari,
int n, double alpha, double val[], int nnz);

The first argument point to a semidefinite cone object, the second argument specifies the block number j,
and the third argument specifies the variable i associated with it. Variables 1, . . . ,m correspond to matrices
A1,j , . . . , Am,j whereas variable 0 corresponds to Cj . The fourth argument is the dimension (number of rows
or columns) of the matrix, n. The sixth argument is the array, and seventh argument is the length of the
array. The data array will be multiplied by the scalar in the fifth argument. The application is responsible
for allocating this array of data and eventually freeing it. DSDP will directly access this array in the course
of the solving the problem, so it should not be freed until the solver is finished.

A matrix can be passed to the solver in sparse format using the subroutine

SDPConeSetASparseVecMat(SDPCone sdpcone,int blockj, int vari, int n,
double alpha, int ishift
const int ind[], const double val[], int nnz);

In this subroutine, the first five arguments are the same as in the subroutine for dense matrices. The seventh
and eighth arguments are an array an integers and an array of double precision variables. The final argument
states the length of these two arrays, which should equal the number of nonzeros in the lower triangular part
of the matrix. The array of integers specifies which elements of the array (9) are included in the array of
doubles. For example, the matrix

Ai,j =

 3 2 0
2 0 6
0 6 0

 (10)

could be inserted into the cone using one of several ways. If the first element in the val array is a1,1, the
first element in the ind array should be 0. If the second element in the val array is a3,2, then the second
element in ind array should be 4. When the ordering of elements begins with 0, as just shown, the fifth
argument ishift in the subroutine should be set to 0. In general, the argument ishift specifies the index
assigned to a1,1. Although the relative ordering of the elements will not change, the indices assigned to them
will range from ishift to ishift + n(n + 1)/2 − 1. Many applications, for instance, prefer to index the

5 DSDP SUBROUTINE LIBRARY 8

array from 1 to n(n+ 1)/2, setting the index argument to 1. The matrix (10) can be set in the block j and
variable i of the semidefinite cone using one of the routines

SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,0,ind1,val1,3);
SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,1,ind2,val2,3);
SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,3,ind3,val3,4);
SDPConeSetASparseVecMat(sdpcone,j,i,3,0.5,0,ind4,val4,3);

where
ind1 = [0 1 4] val1 = [3 2 6]
ind2 = [1 2 5] val2 = [3 2 6]
ind3 = [7 3 5 4] val3 = [6 3 0 2].
ind4 = [0 1 4] val4 = [6 4 12]

As these examples suggest, there are many other ways to represent the sparse matrix. The nonzeros in the
matrix do not have to be ordered, but ordering them may improve the efficiency of the solver. DSDP assumes
that all matrices Ai,j and Cj that are not explicitly defined and passed to the SDPCone structure will equal the
zero matrix. Furthermore, there exist routines SDPConeAddASparseVecMat and SDPConeAddADenseVecMat
that can be used to write a constraint matrix as a sum of multiple matrices. The arguments to these function
match those of the corresponding SDPConeSetASparseVecMat routines.

To check whether the matrix passed into the cone matches the one intended, the subroutine

SDPConeViewDataMatrix(SDPCone sdpcone,int blockj, int vari)

can be used to print out the the matrix to the screen. The output prints the row and column numbers,
indexed from 0 to n − 1, of each nonzero element in the matrix. The subroutine SDPConeView(SDPCone
sdpcone,int blockj) can be used to view all of the matrices in a block.

After the DSDP solver has been applied to the data and the solution matrix Xj have been computed (See
DSDPComputeX), the matrix can be accessed using the command

SDPConeGetXArray(SDPCone sdpcone, int blockj, double *xmat[], int *nn);

The third argument is the address of a pointer that will be set to the array containing the solution. The
integer whose address is passed in the fourth argument will be set to the length of this array, n(n+1)/2, for
the packed symmetric storage format. Since the X solutions are usually fully dense, no sparse representation
is provided. These arrays were allocated by the SDPCone object during DSDPSetup and the memory will be
freed by the DSDP solver object when it is destroyed. The array used to store Xj could be overwritten by
other operations on the SDPCone object. The command,

SDPConeComputeX(SDPCone sdpcone, int blockj, int n, double xmat[], int nn);

recomputes the matrix Xj and places it into the array specified in the fourth argument. The length of this
array is the fifth argument and the dimension of the block in the third argument. The vectors y and ∆y
needed to compute the matrices Xj are stored internally in SDPCone object. The subroutine

SDPConeViewX(SDPCone sdpcone, int blockj, int n, double xmat[], int nn);

can be used to print this matrix to standard output.

The dimension of each block can be found using the routine

SDPConeGetBlockSize(SDPCone sdpcone, int blockj, int *n);

where the second arguments is the block number and the third arguments are the address of a variable.

The inner product of the matrix Xj with the Cj , Ai,j , and Ij can be computed using the routine

int SDPConeAddADotX(SDPCone sdpcone,int blockj, double alpha, double xmat[], int nn,
double adotx[], int mp2);

The second argument specifies which block to use, and the third argument is a scalar that will be multiplied
by the inner products. The fourth argument is the array containing Xj , and the fifth argument is th length

5 DSDP SUBROUTINE LIBRARY 9

of the array. The sixth argument is an array of length m+ 2 and the seventh argument should equal m+ 2
where m is the number of variables in y. This routine will add alpha times 〈Cj , Xj〉 to the initial element of
the array, alpha times 〈Ai,j , Xj〉 to element i of the array, and alpha times 〈Ij , Xj〉 to last element of the
array.

The matrix S in (D) can be computed and copied into an array using the command

SDPConeComputeS(SDPCone sdpcone, int blockj, double c, double y[], int m, double r,
int n, double smat[], int nn);

The second argument specifies which block to use, the fourth argument is an array containing the variables
y. The second argument is the multiple of the matrix C to be added, and the sixth argument is the multiple
of the identity matrix to be added. The sixth argument is the dimension of the block, and the seventh
argument is an array whose length is given in the eighth argument.

Special support for combinatorial applications also exists. In particular, the subroutines

SDPConeComputeXV(SDPCone sdpcone, int blockj, int *dpsdefinite);
SDPConeXVMultiply(SDPCone sdpcone, int blockj, double v1[], double v2[], int n);
SDPConeAddXVAV(SDPCone sdpcone, int blockj, double v[], int n, double vav[], int mp2);

support the used of randomized algorithms for combinatorial optimization. The first routine computes a
matrix Vj such that X = VjV

T
j . The second routine computes the matrix-vector product w = Vjv where

w and v are vectors of dimension equal to the dimension of the block. The third routine computes the
vector-matrix-vector product vTAi,jv for C, A1,j , . . . , Am,j , and the identity matrix. The length of the array
in the fifth argument is m + 2 and should be set in the final argument. In these applications, use of the
routine DSDPConeComputeX may not be necessary if the full matrix is not required.

The memory required for the Xj matrix can be significant for large problems. If the application has an
array of double precision variables of length n(n+ 1)/2 available for use by the solver, the subroutine

SDPConeSetXArray(SDPCone sdpcone,int blockj, int n, double xmat[], int nn);

can be used to pass it to the cone. The second argument specifies the block number whose solution will be
placed into the array xmat. The third argument is the dimension of the block. The dimension specified in
the fifth argument nn refers to the length of the array. The DSDP solver will use this array as a buffer for its
computations and store the solution X in this array at its termination. The application is responsible for
freeing this array after the solution has been found.

DSDP also supports the symmetric full storage format. In symmetric full storage format, an n × n
matrix is stored in an array of n2 elements in row major order. That is, the elements of a matrix with n
rows and columns are ordered

[a1,1 0 . . . 0 a2,1 a2,2 0 . . . 0 . . . an,1 . . . , an,n]. (11)

The length of this array is n×n. Early versions of DSDP5 used the packed format exclusively, but this format
has been added because its more convenient for some applications. The routines

SDPConeSetStorageFormat(SDPCone sdpcone,int blockj, char UPLQ);
SDPConeGetStorageFormat(SDPCone sdpcone, int blockj, char *UPLQ);

set and get the storage format for a block. The second argument specifies the block number and the third
argument should be ’P’ for packed storage format and ’U’ for full storage format. The default value is ’P’.
These storage formats correspond the LAPACK storage formats for the upper half matrices in column major
ordering. All of the above commands apply to the symmetric full storage format. One difference in their use,
however, is that the size of the arrays in the arguments should be n× n instead of n× (n+ 1)/2. Using the
symmetric full storage format, if the first element in the val array is a1,1, the first element in the ind array
should be 0. If the second element in the val array is a3,2, then the second element in ind array should be
8. The matrix (10) can be set in the block j and variable i of the semidefinite cone using one of the routines

SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,0,ind1,val1,3);

5 DSDP SUBROUTINE LIBRARY 10

where
ind1 = [0 3 7] val1 = [3 2 6] .

5.3 LP Cone

To specify an application with a cone of linear scalar inequalities, the subroutine

DSDPCreateLPCone(DSDP dsdp, LPCone *newlpcone);

can be used to create a new object that describes a cone with 1 or more linear scalar inequalities. The first
argument is an existing DSDP solver and the second argument is the address of an LPCone variable. This
subroutine will allocate structures needed to specify the constraints and point the variable to this structure.
Multiple cones for these inequalities can be created for the same DSDP solver, but it is usually more efficient
to group all inequalities of this type into the same structure. All subroutines that pass data to the LP cone
use this LPCone variable in the first argument.

A list of n linear inequalities in (D) are passed to the object in sparse column format. The vector
c ∈ Rn should be considered an additional column of the data. (In the formulation (P), the data A and c is
represented in sparse row format.)

Pass the data to the LPCone using the subroutine:

LPConeSetData(LPCone lpcone, int n,
const int nnzin[], const int row[], const double aval[]);

In this case, the integer array nnzin has length m + 2, begins with 0, and nnzin[i + 1]− nnzin[i] equals
the number of nonzeros in column i (i = 0, . . .m) (or row i of A). The length of the second and third array
equals the number of nonzeros in A and c. The arrays contain the nonzeros and the associated row numbers
of each element (or column numbers in A). The first column contains the elements of c, the second column
contains the elements corresponding to y1, and the last column contains elements corresponding to ym.

For example, consider the following problem in the form of (D):

Maximize y1 + y2
Subject to 4y1 + 2y2 ≤ 6

3y1 + 7y2 ≤ 10
−y2 ≤ 12

In this example, there three inequalities, so the dimension of the x vector would be 3 and n = 3. The input
arrays would be as follows:

nnzin =
[

0 3 5 7
]

row =
[

0 1 2 0 1 0 1 2
]

aval =
[

6.0 10.0 12.0 4.0 3.0 2.0 7.0 −1.0
]

An example of the use of this subroutine can be seen in the DSDPROOT/examples/readsdpa.c.

If its more convenient to specify the vector c in the last column, consider using the subroutine:

LPConeSetData2(LPCone lpcone,int n, const int ik[],const int cols[],const double vals[]);

This input is also sparse column input, but the c column comes last In this form the input arrays would be
as follows:

nnzin =
[

0 2 5 7
]

row =
[

0 1 0 1 2 0 1 2
]

aval =
[

4.0 3.0 2.0 7.0 −1.0 6.0 10.0 12.0
]

This subroutine is used in the DSDP Matlab mex function, which can be used as an example.

The subroutines

5 DSDP SUBROUTINE LIBRARY 11

LPConeView(LPCone lpcone);
LPConeView2(LPCone lpcone);

can be used to view the data that has been set and verify the correctness of the data. Multiple LPCone
structures can be used, but for efficiency purposes, it is often better to include all linear inequalities in a
single cone.

The variables s in (D) and x in (P) can be found using the subroutines

LPConeGetXArray(LPCone lpcone,double *xout[], int *n);
LPConeGetSArray(LPCone lpcone,double *sout[], int *n);

In these subroutines, the second argument sets a pointer to an an array of doubles containing the variables
and the integer in the third argument will be set to the length of this array. These array were allocated by
the LPCone object and the memory will be freed with the DSDP solver object is destroyed. Alternatively, the
application can give the LPCone an array in which to put the solution x of (P). This array should be passed
to the cone using the following subroutine

LPConeSetXVec(LPCone lpcone,double xout[], int n);

At completion of the DSDP solver, the solution x will be copied into this array xout, which must have length
n. The slack variables s may be scaled. To get the unscaled vector, pass an array of appropriate length into
the object using LPConeGetSArray2(LPCone lpcone, double s[], int n). This subroutine will copy the
slack variables into the array.

A special type of semidefinite and LP cone contains only simple bounds on the variables y. Corresponding
to lower and upper bounds on the y variables are surplus and slack variables in (P) with a cost. The subroutine

DSDPCreateBCone(DSDP dsdp, BCone *bcone);

will create this cone from an existing DSDP solver and point the BCone variable to the object. The bounds
on the variables can be set using the subroutines:

BConeSetLowerBound(BCone bcone, int vari, double yi);
BConeSetUpperBound(BCone bcone, int vari, double yi);

The first argument is the conic object, the second argument identifies a variable from 1 to m, and the third
argument is the bound. Here m is the total number of variables in the vector y. For applications using the
formulation (P), the subroutines

BConeSetPSurplusVariable(BCone bcone, int vari);
BConeSetPSlackVariable(BCone bcone, int vari);

may be more convenient way to represent an inequality in (P). These commands are equivalent to setting a
lower or upper bound on a variable yi to zero. To improve the memory allocation process the application
may want to use the subroutines BConeAllocateBounds(BCone bcone, int nbounds); to tell the object
how many bounds will be specified. This subroutine is optional, but is may improve the efficiency of the
memory allocation. The subroutine BConeSetXArray(BCone, double xout[], int n) will set an array
in the cone where the cone will copy the variables x. To view the bounds, the application may use the
subroutine BConeView(BCone bcone); To retrieve the dual variables x corresponding to these constraints,
use the subroutine BConeCopyX(BCone bcone, double xl[], double xu[], int m); The second and
third arguments of this routine are an array of length m, the fourth argument. This routine will set the
values of this array to the value of the corresponding variable. When no bound is present, the variable will
equal zero.

In some applications it may be useful to fix a variable to a number. Instead of modeling this constraint
as a pair of linear inequalities, fixed variables can be passed directly to the solver using the subroutine

DSDPSetFixedVariables(DSDP dsdp, double vars[], double vals[], double x[],int n);

In this subroutine, the array of variables in the second argument is set to the values in the array of the third
argument. The fourth argument is an optional array in which the solver will put the sensitivities to these
fixed variables. The final argument is the length of the arrays. Note, the values in the second argument are

5 DSDP SUBROUTINE LIBRARY 12

integer numbers from 1 to m represented in double precision. Again, the integers should be one of 1, . . . ,m.
Alternatively, a single variable can be set to a value using the subroutine DSDPFixVariable(DSDP dsdp,
int vari, double val).

5.4 Applying the Solver

After setting the data associated with the constraint cones, DSDP must allocate internal data structures and
factor the data in the subroutine

DSDPSetup(DSDP dsdp);

This subroutine identifies factors the data, creates a Schur complement matrix with the appropriate sparsity,
and allocates additional resources for the solver. This subroutine should be called after setting the data but
before solving the problem. Furthermore, it should be called only once for each DSDP solver. On very large
problems, insufficient memory on the computer may be encountered in this subroutine, so the error code
should be checked. The subroutine

DSDPSetStandardMonitor(DSDP dsdp, int k);

will tell the solver to print the objective values and other information at each k iteration to standard
output. The subroutine DSDPLogInfoAllow(int,0); will print even more information if the first argument
is positive.

The subroutine

DSDPSolve(DSDP dsdp);

attempts to solve the problem. This subroutine can be called more than once. For instance, the user may
try solving the problem using different initial points.

After solving the problem, the subroutine

DSDPComputeX(DSDP dsdp);

can be called to compute the variables X in (P). These computations are not performed within the solver
because these variables are not needed to compute the step direction.

Each solver created should be destroyed with the command

DSDPDestroy(DSDP dsdp);

This subroutine frees the work arrays and data structures allocated by the solver.

5.5 Convergence Criteria

Convergence of the DSDP solver may be defined using several options. The precision of the solution can be
set by using the subroutine

DSDPSetGapTolerance(DSDP dsdp, double rgaptol);

The solver will terminate if there is a sufficiently feasible solution such that the difference between the
objective values in (DD) and (PP), divided by the sum of their absolute values, is less than the prescribed
number. A tolerance of 0.001 provides roughly three digits of accuracy, whereas a tolerance of 1.0e-5
provides roughly five digits of accuracy. The subroutine

DSDPSetMaxIts(DSDP dsdp, int maxits);

specifies the maximum number of iterations. The subroutine DSDPSetDualBound(DSDP, double) specifies
an upper bound on the objective value in (D). The algorithm will terminate when it finds a point when the
variable r in (DD) is less than the prescribed tolerance and the objective value in (DD) is greater than this
number.

5 DSDP SUBROUTINE LIBRARY 13

5.6 Detecting Infeasibility

Infeasibility in either (P) or (D) can be determined using the subroutine

DSDPGetSolutionType(DSDP dsdp, DSDPSolutionType *pdfeasible);

This command sets the second argument to an enumerated type. There are four types for DSDPSolutionType:

• The type DSDP PDFEASIBLE means that both (D) and (P) have feasible solutions and their objective
values are bounded.

• The type DSDP UNBOUNDED means that (D) is unbounded and (P) is infeasible. This type applies when
the variable r ≤ εr and ‖AX − b‖∞/trace(X) > εP . In this case, at least one variable yi will be
near its bound. The subroutine DSDPSetYBounds can adjust these bounds if the user thinks that they
are not big enough to permit feasibility. Large bounds may create numerical difficulties in the solver,
but they may also permit feasible solutions and improve the quality of the certificate of infeasibility.
Normalizing the vector y will provide an approximate certificate of infeasibility for (P).

• The type DSDP INFEASIBLE means that (D) is infeasible and (P) is unbounded. This type applies when
the variable r > εr and ‖AX − b‖∞/trace(X) ≤ εP . In this case, the trace of the variables X in (P)
will be near the bound Γ. The subroutines DSDPSetPenaltyParameter can adjust Γ if the user thinks
that it is too small, A larger parameter may create numerical difficulties in the solver, but it may also
improve the quality of the certificate of infeasibility. Normalizing these variables so that to have a
trace of 1.0 will provide an approximate certificate of infeasibility.

• The type DSDP PDUNKNOWN means DSDP was unable to determine feasibility in either solution. This
type applies when the initial point for (DD) was infeasible or if the bounds on y appear to be too small
to permit a feasible solution.

The tolerance εr can be set using the subroutine DSDPSetRTolerance(DSDP, double). The tolerance εP can
be set using the subroutine DSDPSetPTolerance(DSDP, double). The subroutines DSDPGetRTolerance(
DSDP, double*) and DSDPGetPTolerance(DSDP,double*) can be used to get the current tolerances.

5.7 Solutions and Statistics

The objective values in (PP) and (DD) can be retrieved using the commands

DSDPGetPPObjective(DSDP dsdp, double *pobj);
DSDPGetDDObjective(DSDP dsdp, double *dobj);

The second argument in these routines is the address of a double precision variable.

The solution vector y can be viewed by using the command

DSDPGetY(DSDP dsdp, double y[], int m);

The user passes an array of size m where m is the number of variables in the problem. This subroutine will
copy the solution into this array.

The success of DSDP can be interpreted with the command

DSDPStopReason(DSDP dsdp, DSDPTerminationReason *reason);

This command sets the second argument to an enumerated type. The various reasons for termination are
listed below.

DSDP CONVERGED The solutions to (PP) and (DD) satisfy the convergence criteria.

5 DSDP SUBROUTINE LIBRARY 14

DSDP MAX IT The solver applied the maximum number of iterations without
finding solution.

DSDP INFEASIBLE START The initial point in (DD) was infeasible.

DSDP INDEFINITE SCHUR Numerical issues created an indefinite Schur matrix that pre-
vented the further progress.

DSDP SMALL STEPS Small step sizes prevented further progress.

DSDP NUMERICAL ERROR Numerical issues prevented further progress.

The subroutines

DSDPGetBarrierParameter(DSDP dsdp, double *mu);
DSDPGetR(DSDP dsdp, double *r);
DSDPGetStepLengths(DSDP dsdp, double *pstep, double *dstep);
DSDPGetPnorm(DSDP dsdp, double *pnorm);

provide more information about the current solution. The subroutines obtain the barrier parameter, the
variable r in (DD), the step lengths in (PP) and (DD), and a distance to the central path at the current
iteration.

A history of information about the convergence of the solver can be obtained with the commands

DSDPGetGapHistory(DSDP dsdp, double gaphistory[], int history);
DSDPGetRHistory(DSDP dsdp, double rhistory[], int history);

retrieve the history of the duality gap and the variable r in (DD) for up to 100 iterations. The user passes
an array of double precision variables and the length of this array. The subroutine

DSDPGetTraceX(DSDP dsdp, double *tracex);

gets the trace of the solution X in (P). Recall that the penalty parameter must exceed this quantity in order
to return a feasible solution from an infeasible starting point. The subroutine

DSDPEventLogSummary(void)

will print out a summary of time spent in each cone and many of the primary computational subroutines.

5.8 Improving Performance

The performance of the DSDP may be significantly improved with the proper selection of bounds, parameters
and initial point.

The application may specify an initial vector y to (D), a multiple of the identity matrix to make the
initial matrix S positive definite, and an initial barrier parameter. The subroutine DSDPSetY0(DSDP dsdp,
int vari, double yi0) can specify the initial value of the variable yi. Like the objective function in
(D), the variables are labeled from 1 to m. By default the initial values of y equal 0. Since convergence of
the algorithm depends on the proximity of the point to the central path, initial points can be difficult to
determine. Nonetheless, the subroutine

DSDPSetR0(DSDP dsdp, double r0)

will set the initial value of r in (DD). If r0 < 0, a default value will of r0 will be chosen. If S0 is not positive
definite, the solver will terminate will an appropriate termination flag. The default value is usually very
large (1e10), but smaller values can significantly improve performance.

The subroutine DSDPSetPotentialParameter(DSDP dsdp, double rho) sets the potential parameter
ρ. This parameter must be greater than 1. The default value is 4.0, but larger values such as 5 or 10
can significantly improve performance. Feasibility in (D) is enforced by means of a penalty parameter. By
default it is set to 10e8, but other values can affect the convergence of the algorithm. This parameter can

5 DSDP SUBROUTINE LIBRARY 15

be set using DSDPSetPenaltyParameter(DSDP dsdp, double Gamma), where Gamma is the large positive
penalty parameter Γ. This parameter must exceed the trace of the solution X in order to return a feasi-
ble solution from an infeasible starting point. The subroutine DSDPUsePenalty(DSDP dsdp,int yesorno)
is used to modify the algorithm. By default, the value is 0. A positive value means that the variable r
in (DD) should be kept positive, treated like other inequalities, and penalized with the parameter Gamma.
The subroutine DSDPSetZBar(DSDP dsdp, double zbar) sets an initial upper bound on the objective value
at the solution. This value corresponds to the objective value of any feasible point of (PP). The subrou-
tine DSDPSetBarrierParameter(DSDP dsdp, double mu0) sets the initial barrier parameter. The default
heuristic is very robust, but performance can get generally be improved by providing a smaller value.

DSDP applies the same Schur complement matrix for multiple linear systems. This feature often reduces
the number of iterations and improves robustness. The cost of each iteration increases, especially when the
dimension of the semidefinite blocks is of similar dimension or larger than the number of variables y. The
subroutine

DSDPReuseMatrix(DSDP dsdp, int reuse);

can set a maximum on the number of times the Schur complement matrix is reused. The default value is
4, although the Matlab mex function and SDPA file reader set this parameter between 0 and 15 depending
upon the size of the semidefinite blocks and the number of variables y. Applications whose semidefinite
blocks are small relative the the number of variables y should probably use larger values while applications
whose semidefinite blocks have size equal to or greater than the number of variables should probably set this
parameter to zero.

The convergence of the dual-scaling algorithm assumes the existence of a strict interior in both (P) and
(D). The use of a penalty parameter can add an interior to (D). An interior to (P) can be created by bounding
the variables y. Default bounds of -1e7 and 1e7 have been set, but applications may change these bounds
using the subroutine

DSDPSetYBounds(DSDP dsdp, double minbound, double maxbound);

The second argument should be a negative number that is a lower bound of each variable yi and the third
argument is an upper bound of each variable. These bounds should not be tight. If one of the variables
nearly equals the bound at the solution, the solver will return a termination code saying (D) is unbounded.
To remove these bounds, set both the lower and upper bound to zero.

5.9 Iteration Monitor

A standard monitor that prints out the objective value and other relevant information at the current iterate
can be set using the command

DSDPSetStandardMonitor(DSDP dsdp, int k);

A user can write a customized subroutine of the form

int (*monitor)(DSDP dsdp,void* ctx);

This subroutine will be called from the DSDP solver each iteration. It is useful for writing a specialized
convergence criteria or monitoring the progress of the solver. The objective value and other information can
be retrieved from the solver using the commands in the section 5.7. To set this subroutine, use the command

DSDPSetMonitor(DSDP dsdp, int (*monitor)(DSDP,void*), void* ctx);

In this subroutine, the first argument is the solver, the second argument is the monitoring subroutine, and
the third argument will be passed as the second argument in the monitoring subroutine. Examples of two
monitors can be found in DSDPROOT/src/solver/dsdpconverge.c. The first monitor prints the solver
statistics at each iteration and the second monitor determines the convergence of the solver. A monitor can
also be used to print the time, duality gap, potential function at each iteration. Monitors have also been
used to stop the solver after a specified time limit and change the parameters in the solver.

6 PDSDP 16

6 PDSDP

The DSDP package can also be run in parallel using multiple processors. In the parallel version, the Schur
complement matrix is computed and solved in parallel. The parallel Cholesky factorization in PDSDP is
performed using ScaLAPACK. The parallel Cholesky factorization in ScaLAPACK uses a two-dimensional
block cyclic structure to distribute the data. The blocking parameter in ScaLAPACK determines how many
rows and columns are in each block. Larger block sizes can be faster and reduce the overhead of passing
messages, but smaller block sizes balance the work among the processors more equitably. PDSDP used a
blocking parameter of 32 after experimenting with several choices. Since ScaLAPACK uses a dense matrix
structure, this version is not appropriate when the Schur complement matrix is sparse.

The following steps should be used to run an application in parallel using PDSDP.

1. Install DSDP. Edit DSDPROOT/make.include to set the appropriate compiler flags.

2. Install ScaLAPACK. This package contains parallel linear solvers and is freely available to the public.

3. Go to the directory DSDPROOT/src/pdsdp/scalapack/ and edit Makefile to identify the location
of the DSDP and ScaLAPACK libraries.

4. Compile the PDSDP file pdsdpscalapack.c, which implements the additional operations. Then compile
the executable readsdpa.c, which will read an SDPA file.

A PDSDP executable can be used much like serial version of DSDP that reads SDPA files. Given a SDPA
file such as truss1.dat-s, the command

mpirun -np 2 dsdp5 truss1.dat-s -log_summary

will solve the problem using two processors. Additional processors may also be used. This implementation
is best suited for very large problems.

Use of PDSDP as a subroutine library is also very similar to the use of the serial version of the solver.
The application must create the solver and conic object on each processor and provide each processor with
a copy of the data matrices, objective vector, and options. At the end of the algorithm, each solver has a
copy of the solution. The routines to set the data and retrieve the solution are the same.

The few differences between the serial and parallel version are listed below.

1. All PDSDP programs must include the header file:

#include pdsdp5scalapack.h

2. Parallel applications should link to the DSDP library, the ScaLAPACK library, and the compiled source
code in dsdpscalapack.c. Linking to the BLAS and LAPACK libraries are usually included while linking
to ScaLAPACK.

3. The application should initialize and finalize MPI.

4. After creating the DSDP solver object, the application should call

int PDSDPUseSCALAPACKLinearSolver(DSDP dsdp);

5. The monitor should be set on only one processor. For example:

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
if (rank==0){ info = DSDPSetStandardMonitor(dsdp); }

6 PDSDP 17

An example of the usage is provided in DSDPROOT/pdsdp/ScaLAPACK/readsdpa.c. Scalability of
medium and large-scale problems has been achieved on up to 64 processors. The corrector direction does
not scale well, so consider reducing the number of these steps for large groups of processors. See [1] for more
details.

Source code that uses the parallel conjugate gradient method in PETSc to solve the linear systems is
also included in the distribution.

6 PDSDP 18

A Brief History

DSDP began as a specialized solver for combinatorial optimization problems. Over the years, improvements
in efficiency and design have enabled its use in many applications. Below is a brief history of DSDP.

1997 At the University of Iowa the authors release the initial version of DSDP. It solved the semidefinite
relaxations of the maximum cut, minimum bisection, s-t cut, and bound constrained quadratic problems
[6].

1999 DSDP version 2 increased functionality to address semidefinite cones with rank-one constraint matrices
and LP constraints [5]. It was used specifically for combinatorial problems such as graph coloring,
stable sets [2], and satisfiability problems.

2000 DSDP version 3 was a preliminary implementation of a general purpose SDP solver that addressed
applications from the Seventh DIMACS Implementation Challenge on Semidefinite and Related Opti-
mization Problems [7]. It ran in serial and parallel [1].

2002 DSDP version 4 added new sparse data structures to improve efficiency and precision. A Lanczos based
line search and efficient iterative solver were added. It solved all problems in the SDPLIB collection
that includes examples from control theory, truss topology design, and relaxations of combinatorial
problems [3].

2004 DSDP version 5 [4] features a new efficient interface for semidefinite constraints, a corrector direction,
and extensibility to structured applications in conic programming. Existence of the central path was
ensured by bounding the variables. New applications from computational chemistry, global optimiza-
tion, and sensor network location motivated the improvements in efficiency in robustness.

Acknowledgments

We thank Xiong Zhang and Cris Choi for their help in developing this code. Xiong Zhang, in particular, was
fundamental to the initial version of DSDP. We also thank Hans Mittelmann[8] for his efforts in testing and
benchmarking the different versions of the code. Finally, we thank Johan Löfberg, Stefan Ratschan, and all
of the users who have commented on previous releases and suggested improvements to the software. Their
contributions have made DSDP a more reliable, robust, and efficient package.

This work was supported by the Mathematical, Information, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

REFERENCES 19

References

[1] S. J. Benson. Parallel computing on semidefinite programs. Technical Report ANL/MCS-P939-0302,
Mathematics and Computer Science Division, Argonne National Laboratory, March 2003.

[2] S. J. Benson and Y. Ye. Approximating maximum stable set and minimum graph coloring problems with
the positive semidefinite relaxation. In Applications and Algorithms of Complementarity, volume 50 of
Applied Optimization, pages 1–18. Kluwer Academic Publishers, 2000.

[3] S. J. Benson and Y. Ye. DSDP3: Dual-scaling algorithm for general positive semidefinite programming.
Technical Report ANL/MCS-P851-1000, Mathematics and Computer Science Division, Argonne National
Laboratory, February 2001.

[4] S. J. Benson and Y. Ye. DSDP5: Software for semidefinite programming. Technical Report ANL/MCS-
P1289-0905, Mathematics and Computer Science Division, Argonne National Laboratory, September
2005. Submitted to ACM Transactions of Mathematical Software.

[5] S. J. Benson, Y. Ye, and X. Zhang. Mixed linear and semidefinite programming for combinatorial and
quadratic optimization. Optimization Methods and Software, 11:515–544, 1999.

[6] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial
optimization. SIAM Journal on Optimization, 10(2):443–461, 2000.

[7] DIMACS. The Seventh DIMACS Implementation Challenge: 1999-2000. http://dimacs.rutgers.edu/
Challenges/Seventh/, 1999.

[8] Hans D. Mittelmann. Benchmarks for optimization software, 2005. ftp://plato.la.asu.edu/pub/
{sdplib.txt,sparse_sdp.txt,dimacs.txt}.

Index

barrier, 5, 14, 15
BCone, 11
BConeAllocateBounds(), 11
BConeCopyX(), 11
BConeSetLowerBound(), 11
BConeSetUpperBound(), 11
BConeView(), 11
block structure, 6
bounds, 4, 15

certificate, 4, 13
combinatorial problems, 9
convergence, 12–15

DSDP, 6
DSDPComputeX(), 12
DSDPCreate(), 6
DSDPCreateBCone(), 11
DSDPCreateLPCone(), 10
DSDPCreateSDPCone(), 6
DSDPDestroy(), 12
DSDPEventLogSummary(), 14
DSDPFixVariable(), 11
DSDPGetBarrierParameter(), 14
DSDPGetDDObjective(), 13
DSDPGetGapHistory(), 14
DSDPGetPnorm(), 14
DSDPGetPPObjective(), 13
DSDPGetR(), 14
DSDPGetRHistory(), 14
DSDPGetSolutionType(), 13
DSDPGetStepLengths(), 14
DSDPGetTraceX(), 14
DSDPGetY(), 13
DSDPReuseMatrix(), 15
DSDPSetBarrierParameter(), 15
DSDPSetDObjective(), 6
DSDPSetDualBound(), 12
DSDPSetGapTolerance(), 12
DSDPSetMaxIts(), 12
DSDPSetMonitor(), 15
DSDPSetPenaltyParameter(), 13, 15
DSDPSetPotentialParameter(), 14
DSDPSetPTolerance(), 13
DSDPSetR0(), 14
DSDPSetRTolerance(), 13
DSDPSetStandardMonitor(), 12, 15
DSDPSetup(), 12
DSDPSetY0(), 14
DSDPSetYBounds(), 13, 15
DSDPSetZBar, 15

DSDPSolutionType, 13
DSDPSolve(), 12
DSDPStopReason(), 13
DSDPTerminationReason, 13, 14
DSDPUsePenalty(), 15

error check, 6, 13

graph problems, 18

header files, 6

infeasible, 5, 13, 14
iteration, 5, 12, 15

LPCone, 10
LPConeGetSArray(), 11
LPConeGetXArray(), 11
LPConeSetData(), 10
LPConeSetXVec(), 11
LPConeView(), 11

maxcut, 6
monitor, 15
MPI, 16

objective function, 6
objective value, 5, 13

parallel, 16
PDSDP, 16
penalty parameter, 4, 14, 15
pnorm, 5, 14
potential, 14
potential function, 3
print, 5, 15

rho, 14

ScaLAPACK, 16
SDPA format, 6, 16
SDPCone, 6
SDPConeAddASparseVecMat(), 8
SDPConeAddXVAV, 9
SDPConeComputeS(), 8, 9
SDPConeComputeX(), 8
SDPConeGetBlockSize(), 8
SDPConeGetFormat(), 9
SDPConeGetXArray(), 8
SDPConeSetADenseVecMat(), 7
SDPConeSetASparseVecMat(), 7, 8, 10
SDPConeSetBlockSize(), 6
SDPConeSetSparsity(), 7

20

INDEX 21

SDPConeSetStorageFormat(), 9
SDPConeSetXArray(), 9
SDPConeView(), 8
SDPConeViewDataMatrix(), 8
SDPConeViewX(), 8
SDPConeXVMultiply, 9
slack variable, 11
sparse data, 7, 8, 10
step length, 5, 14
surplus variable, 11
symmetric full storage format, 9
symmetric packed storage format, 7

time, 14
trace, 14

INDEX 22

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (”Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

