
Oracle Berkeley DB

Getting Started with
the

SQL APIs

12c Release 1
Library Version 12.1.6.0

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
https://forums.oracle.com/forums/forum.jspa?forumID=271

Published 3/4/2015

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
https://forums.oracle.com/forums/forum.jspa?forumID=271

3/4/2015 Getting Started with the BDB SQL APIs Page iii

Table of Contents
Preface .. vi

Conventions Used in this Book .. vi
For More Information ... vi

Contact Us .. vii
1. Berkeley DB SQL: The Absolute Basics .. 1

BDB SQL Is Nearly Identical to SQLite ... 1
Getting and Installing BDB SQL .. 1

On Windows Systems ... 1
On Unix ... 1
The BDB SQL ADO.NET Interface ... 2

Prerequisites For Building The ADO.NET Package 2
Building BDB SQL ADO.NET Interface For Windows 2
Building BDB SQL ADO.NET Interface For Windows Mobile 3

Accessing BDB SQL Databases ... 3
The Journal Directory ... 4
Unsupported PRAGMAs .. 4
Changed PRAGMAs ... 4

PRAGMA auto_vacuum .. 4
PRAGMA incremental_vacuum ... 5
PRAGMA journal_size_limit .. 5

Added PRAGMAs .. 5
PRAGMA bdbsql_error_file ... 5
PRAGMA bdbsql_lock_tablesize ... 6
PRAGMA bdbsql_shared_resources .. 6
PRAGMA bdbsql_single_process ... 6
PRAGMA bdbsql_system_memory ... 6
PRAGMA bdbsql_vacuum_fillpercent ... 7
PRAGMA bdbsql_vacuum_pages ... 7
PRAGMA large_record_opt ... 7
PRAGMA multiversion ... 7
PRAGMA snapshot_isolation .. 8
PRAGMA trickle .. 8
PRAGMA txn_bulk ... 8
Replication PRAGMAs ... 8

Miscellaneous Differences .. 9
Berkeley DB Concepts ... 10
Encryption ... 11

Berkeley DB encryption ... 11
SQLite Encryption Extension ... 11

Using Sequences .. 11
create_sequence ... 12
nextval ... 13
currval ... 13
drop_sequence ... 13

Differences for Users of other SQL Engines .. 13
2. Locking Notes .. 14

3/4/2015 Getting Started with the BDB SQL APIs Page iv

Internal Database Usage .. 14
Lock Handling ... 15

SQLite Lock Usage ... 15
Lock Usage with the BDB SQL Interface ... 16

3. Berkeley DB Features ... 18
Using Bulk Loading ... 18
Using Multiversion Concurrency Control .. 18
Selecting the Page Size ... 19

4. Using Replication with the SQL API .. 20
Replication Overview .. 20

Replication Masters .. 20
Elections ... 21
Durability Guarantees ... 21
Permanent Message Handling .. 21
Two-Site Replication Groups ... 22

Replication PRAGMAs .. 22
PRAGMA replication ... 22
PRAGMA replication_ack_policy ... 23
PRAGMA replication_ack_timeout ... 24
PRAGMA replication_get_master .. 24
PRAGMA replication_initial_master ... 24
PRAGMA replication_local_site .. 24
PRAGMA replication_num_sites .. 25
PRAGMA replication_perm_failed ... 25
PRAGMA replication_priority ... 25
PRAGMA replication_remote_site ... 25
PRAGMA replication_remove_site ... 26
PRAGMA replication_site_status ... 26
PRAGMA replication_verbose_output ... 26
PRAGMA replication_verbose_file ... 26

Displaying Replication Statistics ... 26
Replication Usage Examples .. 27

Example 1: Distributed Read at 3 Sites .. 27
Example 2: 2-Site Failover ... 28

5. Administrating Berkeley DB SQL Databases ... 31
Backing Up Berkeley DB SQL Databases .. 31

Backing Up Replicated Berkeley DB SQL Databases 31
Syncing with Oracle Databases .. 31

Syncing on Unix Platforms ... 32
Syncing on Windows Platforms .. 32
Syncing on Windows Mobile Platforms ... 32

Data Migration .. 33
Migration Using the Shells .. 33

Catastrophic Recovery ... 33
Database Statistics ... 34
Verify Database Structure .. 34

A. Using the BFILE Extension ... 35
Supported Platforms and Languages .. 35
BFILE SQL Objects and Functions .. 35

3/4/2015 Getting Started with the BDB SQL APIs Page v

BFILE_CREATE_DIRECTORY .. 36
BFILE_REPLACE_DIRECTORY .. 36
BFILE_DROP_DIRECTORY .. 36
BFILE_NAME ... 36
BFILE_FULLPATH .. 36
BFILE_OPEN ... 36
BFILE_READ ... 36
BFILE_CLOSE .. 36
BFILE_SIZE ... 37

BFILE C/C++ Objects and Functions ... 37
sqlite3_column_bfile .. 37
sqlite3_bfile_open ... 38
sqlite3_bfile_close ... 38
sqlite3_bfile_is_open .. 38
sqlite3_bfile_read .. 39
sqlite3_bfile_file_exists ... 39
sqlite3_bfile_size .. 40
sqlite3_bfile_final .. 40

3/4/2015 Getting Started with the BDB SQL APIs Page vi

Preface
Welcome to the Berkeley DB SQL interface. This manual describes how to configure and
use the SQL interface to Berkeley DB 12c Release 1. This manual also describes common
administrative tasks, such as backup and restore, database dump and load, and data migration
when using the BDB SQL interface.

This manual is intended for anyone who wants to use the BDB SQL interface. Because usage of
the BDB SQL interface is very nearly identical to SQLite, prior knowledge of SQLite is assumed
by this manual. No prior knowledge of Berkeley DB is necessary, but it is helpful.

To learn about SQLite, see the official SQLite website at: http://www.sqlite.org

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Keywords or literal text that you are expected to type is presented in a monospaced font.
For example: "Use the DB_HOME environment variable to identify the location of your
environment directory."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples and literal text that you might type are displayed in a monospaced font on
a shaded background. For example:

/* File: gettingstarted_common.h */
typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */

 char *db_home_dir; /* Directory containing the database files */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when using
the Berkeley DB SQL interface:

• Berkeley DB Installation and Build Guide

• Berkeley DB Programmer's Reference Guide

http://www.sqlite.org/
http://docs.oracle.com/cd/E17076_02/html/installation/BDB_Installation.pdf
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf

3/4/2015 Getting Started with the BDB SQL APIs Page vii

• Berkeley DB Getting Started with Replicated Applications

To download the latest documentation along with white papers and other collateral, visit
http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle downloads, visit http://www.oracle.com/technetwork/
database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: https://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: https://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://docs.oracle.com/cd/E17076_02/html/gsg_db_rep/C/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
https://forums.oracle.com/forums/forum.jspa?forumID=271
https://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

3/4/2015 Getting Started with the BDB SQL APIs Page 1

Chapter 1. Berkeley DB SQL: The Absolute Basics
Welcome to the Berkeley DB SQL interface. If you are a SQLite user who is using the BDB
SQL interface for reasons other than performance enhancements, this chapter tells you the
minimum things you need to know about the interface. You should simply read this chapter
and then skip the rest of this book.

If, however, you are using the BDB SQL interface for performance reasons, then you need
to read this chapter, plus most of the rest of the chapters in this book (although you can
probably skip most of Administrating Berkeley DB SQL Databases (page 31), unless you want
to administer your database "the Berkeley DB way").

Also, if you are an existing Berkeley DB user who is interested in the BDB SQL interface, read
this chapter plus the rest of this book.

BDB SQL Is Nearly Identical to SQLite

Your interaction with the BDB SQL interface is almost identical to SQLite. You use the same
APIs, the same command shell environment, the same SQL statements, and the same PRAGMAs
to work with the database created by the BDB SQL interface as you would if you were using
SQLite.

To learn how to use SQLite, see the official SQLite Documentation Page.

That said, there are a few small differences between the two interfaces. These are described
in the remainder of this chapter.

Getting and Installing BDB SQL

The BDB SQL interface comes as a part of the Oracle Berkeley DB download. This can be
downloaded from the Oracle Berkeley DB download page.

On Windows Systems

The BDB SQL interface is automatically built and installed whenever you build or install
Berkeley DB for a Windows system. The BDB SQL interface dlls and the command line
interpreter have names that differ from a standard SQLite distribution as follows:

• dbsql.exe

This is the command line shell. It operates identically to the SQLite sqlite3.exe shell.

• libdb_sql60.dll

This is the library that provides the BDB SQL interface. It is the equivalent of the SQLite
sqlite3.dll library.

On Unix

In order to build the BDB SQL interface, you download and build Berkeley DB, configuring it
so that the BDB SQL interface is also built. Be aware that it is not built by default. Instead,

http://www.sqlite.org/docs.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 2

you need to tell the Berkeley DB configure script to also build the BDB SQL interface. For
instructions on building the BDB SQL interface, see Building the DB SQL Interface in the
Berkeley DB Installation and Build Guide.

The library and application names used when building the BDB SQL interface are different
than those used by SQLite. If you want library and command shell names that are consistent
with the names used by SQLite, configure the BDB SQL interface build using the compatibility
(--enable-sql_compat) option.

Warning

The compatibility option can break other applications on your platform that rely on
standard SQLite. This is especially true of Mac OS X, which uses standard SQLite for a
number of default applications.

Use the compatibility option only if you know exactly what you are doing.

Unless you built the BDB SQL interface with the compatibility option, libraries and a command
line shell are built with the following names:

• dbsql

This is the command line shell. It operates identically to the SQLite sqlite3 shell.

• libdb_sql

This is the library that provides the BDB SQL interface. It is the equivalent of the SQLite
libsqlite3 library.

The BDB SQL ADO.NET Interface

Download the ADO.NET package from the Oracle Berkeley DB download page.

Prerequisites For Building The ADO.NET Package

• To build the Linq package, you will need to install Microsoft .NET Framework 3.5 SP1.

• To build SQLite.Designer, you will need to install the Microsoft Visual Studio SDK.

• To build on Windows Mobile you will need to install the Microsoft Windows Mobile 6.5.3
Developer Tool Kit (DTK).

• To build on Windows Mobile you will need to use Visual Studio 2008.

Building BDB SQL ADO.NET Interface For Windows

• The package contains Visual Studio solution files:

• SQLite.NET.2008.sln and SQLite.NET.2010.sln

For use by with Visual Studio 2008 or 2010. Note that these solution files do not build
support for Linq or SQLite Designer.

../installation/build_unix.html#build_unix_sqlinter
../api_reference/C/dbsql.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 3

• SQLite.NET.2008.MSBuild.sln and SQLite.NET.2010.MSBuild.sln

For use with MSBuild (Microsoft Build Engine). These can also be used with Visual Studio.
These solutions exclude SQLite Designer and CompactFramework. By default, these do not
build support for Linq.

• Change the current platform target to ReleaseNativeOnly choose either Win32 or x64
depending on your target platform.

• Build the solution.

Building BDB SQL ADO.NET Interface For Windows Mobile

Building BDB SQL ADO.NET for Windows Mobile requires Windows Mobile 6.5.3 Professional
DTK. Typical requirements for installing this toolkit are:

• Visual Studio 2005 SP1 or Later

• ActiveSync 4.5

• .NET CompactFramework 2.0 SP1

• Windows Mobile 6 SDK

To build BDB SQL ADO.NET for Windows Mobile, do the following:

• Open the SQLite.NET.2008.WinCE.sln solution file in Visual Studio 2008.

• Select Load Project Normally

• Change the current platform to ReleaseNativeOnly.

• Select Configuration Manager->new, then type or select the platform Windows Mobile
6.5.3 Professional DTK (ARMV4I). Choose to copy settings from Pocket PC 2003
(ARMV4I)

• Build the solution.

Accessing BDB SQL Databases

BDB SQL databases can be accessed using a number of different drivers, applications and APIs.
Only some of these are supported by all major platforms, as identified in the following table.

 UNIX/POSIX Windows Windows
Mobile/CE

Android iOS

DBSQL Library x x x x x

DBSQL Shell x x x x x

ODBC x x

JDBC x x

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 4

 UNIX/POSIX Windows Windows
Mobile/CE

Android iOS

ADO.NET x x

The Journal Directory

When you create a database using the BDB SQL interface, a directory is created alongside of
it. This directory has the same name as your database file, but with a -journal suffix.

That is, if you create a database called "mydb" then the BDB SQL interface also creates a
directory alongside of the "mydb" file called "mydb-journal".

This directory contains files that are very important for the proper functioning of the BDB SQL
interface. Do not delete this directory or any of its files unless you know what you are doing.

In Berkeley DB terms, the journal directory contains the environment files that are required to
provide access to databases across multiple processes.

Unsupported PRAGMAs

The following PRAGMAs are not supported by the BDB SQL interface.

PRAGMA journal_mode
PRAGMA legacy_file_format

Also, PRAGMA fullfsync is always on for the BDB SQL interface. (This is an issue only for Mac OS
X platforms.)

Changed PRAGMAs

The following PRAGMAs are available in the BDB SQL interface, but they behave differently in
some way from standard SQLite.

PRAGMA auto_vacuum

The syntax for this PRAGMA is:

PRAGMA auto_vacuum
PRAGMA auto_vacuum = 0 | NONE | 1 | FULL | 2 | INCREMENTAL

Standard SQLite does not allow you to enable or disable auto-vacuum after a table has been
created. Berkeley DB, however, allows you to change this at any time.

In the previous syntax, 0 and NONE both turn off auto vacuuming.

1 or FULL causes full vacuuming to occur. That is, the BDB SQL interface will vacuum the
entire database at each commit using a very low fill percentage (1%) in order to return
emptied pages to the file system. Because Berkeley DB allows you to call this PRAGMA at any
time, it is recommended that you do not turn on FULL vacuuming because doing so can result
in a great deal of overhead to your transaction commits.

http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_legacy_file_format
http://www.sqlite.org/pragma.html#pragma_fullfsync

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 5

If 2 or INCREMENTAL is used, then incremental vacuuming is enabled. The amount of
vacuuming that is performed for incremental vacuum is controlled using the following
PRAGMAs:

PRAGMA bdbsql_vacuum_fillpercent (page 7)
PRAGMA bdbsql_vacuum_pages (page 7)

Note that you can call PRAGMA incremental_vacuum (page 5) to perform an incremental
vacuum operation on demand.

When performing vacuum operations, Berkeley DB defragments and repacks individual
database pages, while SQLite only truncates the freelist pages from the database file.

For more information on auto vacuum, see PRAGMA auto_vacuum in the SQLite
documentation.

PRAGMA incremental_vacuum

Performs incremental vacuum operations on demand. You can cause incremental vacuum
operations to be performed automatically using PRAGMA auto_vacuum (page 4).

Note that for SQLite, this PRAGMA is used to specify the maximum number of pages to be
freed during vacuuming. For Berkeley DB, you use PRAGMA bdbsql_vacuum_pages instead.

PRAGMA journal_size_limit

For standard SQLite, this pragma identifies the maximum size that the journal file is allowed
to be.

Berkeley DB uses multiple journal files, Berkeley DB journal files are different to a SQLite
journal file in that they contain information about multiple transactions, rather than a single
transaction (similar to the SQLite WAL journal file). Over the course of the database's lifetime,
Berkeley DB will probably create multiple journal files. A new journal file is created when
the current journal file has reached the maximum size configured using the journal_size_limit
pragma.

Note that a BDB SQL interface journal file is referred to as a log file in the Berkeley DB
documentation.

Added PRAGMAs

The following PRAGMAs are added in the Berkeley DB SQL interface.

PRAGMA bdbsql_error_file

PRAGMA bdbsql_error_file [filename]

Redirects internal Berkeley DB error messages to the named file. If a relative path is specified
to [filename], then the path is interpreted as being relative to the current working
directory.

http://www.sqlite.org/pragma.html#pragma_auto_vacuum

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 6

If this PRAGMA is issued with no filename, then the current target for Berkeley DB error
output is returned. By default, error messages are sent to STDERR.

This PRAGMA can be issued at any time; initial database access does not have to occur before
this PRAGMA can be used.

PRAGMA bdbsql_lock_tablesize
PRAGMA bdbsql_lock_tablesize [= N]

Sets or reports the number of buckets in the Berkeley DB environment's lock object hash
table.

This pragma must be called prior to opening/creating the database environment.

For more details, see get_lk_tablesize and set_lk_tablesize.

PRAGMA bdbsql_shared_resources
PRAGMA bdbsql_shared_resources [= N]

Sets or reports the maximum amount of memory (bytes) to be used by shared structures in the
main environment region.

This pragma must be called prior to opening/creating the database environment.

For more details, see get_memory_max and set_memory_max.

PRAGMA bdbsql_single_process
PRAGMA bdbsql_single_process = boolean

To create a private environment rather than a shared environment, enable this pragma. The
cache and other region files will be created in memory rather than using file backed shared
memory.

In Berkeley DB SQL the default behavior is to allow a database to be opened and operated
on by multiple processes simultaneously. When this pragma is enabled, accessing the same
database from multiple processes simultaneously can lead to data corruption. Either option
supports accessing a database using a single process multi-threaded application.

By default omit sharing is disabled. This pragma must be called prior to opening/creating the
database environment. Because the setting is not persistent, you may need to invoke it before
every database open, or define compile option BDBSQL_OMIT_SHARING instead.

For more information, see Shared memory region. Note that this pragma causes the
DB_PRIVATE flag to be specified in the DB_ENV->open() method.

PRAGMA bdbsql_system_memory
PRAGMA bdbsql_system_memory [base segment ID]

Queries or sets a flag that causes the database's shared resources to be created in system
shared memory. By default the database's shared resources are created in file-backed shared
memory.

../api_reference/C/envget_lk_tablesize.html
../api_reference/C/envset_lk_tablesize.html
../api_reference/C/envget_memory_max.html
../api_reference/C/envset_memory_max.html
../programmer_reference/env_region.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 7

If a [base segment ID] is specified, the shared resources will be created using X/Open
style shared memory interfaces. The [base segment ID] will be used as the starting ID for
shared resources used by the database. Use different [base segment ID] values for different
databases. It is possible for multi-process applications to use a single database by specifying
the same [base segment ID] to this PRAGMA. Each connection needs to set this PRAGMA.

This PRAGMA may be used to set a [base segment ID] only before the first table is created in
the database.

PRAGMA bdbsql_vacuum_fillpercent

PRAGMA bdbsql_vacuum_fillpercent [= N]

Sets or reports the page full threshold. Any page in the database that is at or below this
percentage full is considered for vacuuming when PRAGMA incremental_vacuum is enabled.
The value is specified as a percentage between 1 and 100. By default, pages 85% full and
below are considered for vacuuming.

PRAGMA bdbsql_vacuum_pages

PRAGMA bdbsql_vacuum_pages [= N]

Sets or reports the maximum number of pages to be returned to the file system from the free
page list when incremental vacuuming is enabled. By default, up to 128 pages are removed
from the free list.

Page vacuuming is controlled using PRAGMA auto_vacuum (page 4).

PRAGMA large_record_opt

PRAGMA large_record_opt [= number bytes]

Enables optimized storage of large records. Any record larger than the given number of bytes
will be stored in a new format that improves read and write performance for large records.

This pragma must be called before any data is added to the database, otherwise it will be
ignored.

This optimization is incompatible with encryption, and SQLITE_ReadUncommitted.

This optimization stores large records in a folder called __db_bl in the journal folder. So if the
database is manually moved to a new location, the folder with the large records most also be
moved. The Online Backup Function will automatically backup up these records with the rest
of the database.

PRAGMA multiversion

PRAGMA multiversion

Controls whether Multiversion Concurrency Control (MVCC) is on or off. You can not use this
PRAGMA at any time during your application's runtime after your database tables have been
accessed.

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 8

For more information on MVCC and snapshot isolation, see Using Multiversion Concurrency
Control (page 18)

PRAGMA snapshot_isolation
PRAGMA snapshot_isolation

Controls whether snapshot isolation is turned on. This PRAGMA can be used at any time during
your application's runtime after Multiversion Concurrency Control (MVCC) has been turned on.

For more information on MVCC and snapshot isolation, see Using Multiversion Concurrency
Control (page 18)

PRAGMA trickle
PRAGMA trickle [percent]

Ensures that at least the specified percentage of pages in the shared cache are clean. This can
cause pages that have been modified to be flushed to disk.

The trickle functionality enables an application to ensure that a page is available for reading
new information into the shared cache without waiting for a write operation to complete.

PRAGMA txn_bulk
PRAGMA TXN_BULK

Enables transactional bulk loading optimization. For more information, see Using Bulk
Loading (page 18).

Replication PRAGMAs

Fourteen PRAGMAs were added to manage and control replication. They are described in Using
Replication with the SQL API (page 20):

Note

If you are using these replication PRAGMAs and you want to perform a backup, there
is an additional backup step for the pragma file. See Backing Up Berkeley DB SQL
Databases (page 31) for more information.

• PRAGMA replication (page 22)

• PRAGMA replication_ack_policy (page 23)

• PRAGMA replication_ack_timeout (page 24)

• PRAGMA replication_get_master (page 24)

• PRAGMA replication_initial_master (page 24)

• PRAGMA replication_local_site (page 24)

• PRAGMA replication_num_sites (page 25)

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 9

• PRAGMA replication_perm_failed (page 25)

• PRAGMA replication_priority (page 25)

• PRAGMA replication_remote_site (page 25)

• PRAGMA replication_remove_site (page 26)

• PRAGMA replication_site_status (page 26)

• PRAGMA replication_verbose_output (page 26)

• PRAGMA replication_verbose_file (page 26)

Miscellaneous Differences

The following miscellaneous differences also exist between the BDB SQL interface and SQLite:

• The BDB SQL interface does not support the IMMEDIATE keyword (BEGIN IMMEDIATE
behaves just like BEGIN).

• When an exclusive transaction is active, it will block any new transactions from beginning
(they will be blocked during their first operation until the exclusive transactions commits
or aborts). Non-exclusive transactions that are active when the exclusive transaction begins
will not be able to execute any more operations without being blocked until the exclusive
transactions finishes.

• Enabling MVCC mostly disables exclusive transactions. Exclusive transactions can still be
used, but they will run concurrently with regular transactions, even ones that write to the
database. The only advantage of exclusive transactions in this case is that two exclusive
transactions will be forced to run in serial, and that if an exclusive transaction and non-
exclusive transaction experience deadlock, then the non-exclusive transaction will always
be the transaction forced to release its locks.

For more information on MVCC and snapshot isolation, see Using Multiversion Concurrency
Control (page 18)

• There are differences in how the two products work in a concurrent application that will
cause the BDB SQL interface to deadlock where SQLite would result in a different error. This
is because the products use different locking paradigms. See Locking Notes (page 14) for
more information.

• The BDB SQL does not call the busy callback when a session attempts to operate the same
database page that another session has locked. It blocks instead. This means that the
functions sqlite3_busy_handler and sqlite3_busy_timeout are not effective in BDB
SQL.

• The BDB SQL does not support two phase commit across databases. Attaching to multiple
databases can lead to inconsistency after recovery and undetected deadlocks when
accessing multiple databases from concurrent transactions in different order. Hence,
applications must ensure that they access databases in the same order in any transaction

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 10

that spans multiple databases. Else, a deadlock can occur that causes threads to block, and
the deadlock will not be detected by Berkeley DB.

• In BDB SQL, when two sessions accessing the same database perform conflicting operations
on the same page, one session will be blocked until the conflicting operations are resolved.
For example,

Session 1:

dbsql> insert into a values (4);
dbsql> begin;
dbsql> insert into a values (5);

Session 2:

dbsql> select * from a;

What happens here is that Session 2 is blocked until Session 1 commits the transaction.

Session 1:

dbsql> commit;

Session 2:

dbsql> select * from a;
4
5

Under such situations in SQLite, operations poll instead of blocking, and a callback is used
to determine whether to continue polling.

• By default, you always only have a single database file when you use BDB SQL interface
SQL, just as you do when you use SQLite. However, you can configure BDB SQL interface
at compile time to create one BDB SQL interface database file for each SQL table that you
create. How to perform this configuration is described in the Berkeley DB Installation and
Build Guide.

Berkeley DB Concepts

If you are a SQLite user who is migrating to the BDB SQL interface, then there are a few
Berkeley DB-specific concepts you might want to know about.

• Environments. The directory that is created alongside your database file, and which ends
with the "-journal" suffix, is actually a Berkeley DB environment directory.

• The Locking Subsystem

The Berkeley DB library implements locking in a different way to SQLite. SQLite implements
locking at a database level - any operation will take a lock on the entire database. Berkeley
DB implements a scheme called page level locking. The database divides data into relatively
small blocks. Each block corresponds to a page in database terms. Each block can contain
multiple pieces of user information. Berkeley DB takes locks on individual pages. This allows

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 11

for greater concurrency in applications, but means that applications are more likely to
encounter deadlocks.

See: Locking Notes (page 14) for more information.

• The Journal Subsystem

The BDB SQL interface implements write ahead logging (WAL), it stores journal files
differently to the SQLite WAL implementation. BDB SQL interface rolls over journal files
when they get to a certain size (default 10MB). It is possible for the to be multiple journal
files active at one time with BDB SQL interface.

Encryption

The Berkeley DB SQL API supports both the native Berkeley DB encryption, as well as the
SQLite encryption extension.

Berkeley DB encryption

Berkeley DB supports encryption using the Rijndael/AES algorithm. It is configured to use a
128-bit key. Berkeley DB uses a 16-byte initialization vector generated using the Mersenne
Twister. All encrypted information is additionally checksummed using the SHA1 Secure Hash
Algorithm, using a 160-bit message digest. For more information on BDB encryption, see the
Berkeley DB Programmer's Reference Guide.

SQLite Encryption Extension

The Berkeley DB SQL interface supports the SQLite Encryption Extension (SEE) to ensure
security of your data. The supported encryption algorithm is AES-128 in CBC mode.

To learn how to use the SQLite Encryption Extension (SEE), see the official SQLite
Documentation Page.

Note

The Berkeley DB SQL interface does not support the sqlite3_rekey method.

Using Sequences

You can use sequences with the SQL API. Sequences provide for an arbitrary number of
increasing or decreasing integers that persist across database accesses. Use sequences if you
need to create unique values in a highly efficient and persistent way.

To create and access a sequence, you must use SQL functionality that is unique to the BDB
SQL interface; no corresponding functionality exists in SQLite. The sequence functionality is
implemented using SQLite function plugins, as such it is necessary to use the 'select' keyword
as a prefix to all sequence APIs.

The SQL API sequence support is a partial implementation of the sequence API defined in the
SQL 2003 specification.

../programmer_reference/env_encrypt.html
../programmer_reference/env_encrypt.html
http://www.hwaci.com/sw/sqlite/see.html
http://www.hwaci.com/sw/sqlite/see.html

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 12

The following sections describe the BDB SQL interface sequence API.

create_sequence

Creates a new sequence. A name is required, all other parameters are optional. For example:
SELECT create_sequence("my_sequence", "start", 100, "incr", 10,
 "maxvalue", 300);

This creates a sequence called my_sequence starting at 100 and incrementing by 10 until it
reaches 300.
SELECT create_sequence("my_decr_sequence", "incr", -100,
 "minvalue", -10000);

This creates a sequence call my_decr_sequence starting at 0 and decreasing by 100 until it
reaches -10000.

Parameters are:

• name

Required parameter that provides the name of the sequence. It is an error to create a
sequence with another name that is currently in use within the database.

• start

The starting value for the sequence. If this parameter is not provided then 0 is used.

• minvalue

The lowest value generated by the sequence. If this parameter is not provided and a
decrementing sequence is created, then INT64_MIN is used.

• maxvalue

The largest value generated by the sequence. If this parameter is not provided and an
incrementing sequence is created, then INT64_MAX is used.

• incr

The amount the sequence is incremented for each get operation. This value can be positive
or negative. If this parameter is not provided, then 1 is used.

• cache

Causes each handle to keep a cache of sequence values. So long as there are values
available in the cache, retrieving the next value is cheap and does not lead to contention
between handles.

Sequences with caches cannot be created or dropped within an explicit transaction.

Operations on caching sequences are not transactionally protected. That is, a rollback will
not result in a value being returned to the sequence.

Library Version 12.1.6.0 Berkeley DB SQL: The Absolute Basics

3/4/2015 Getting Started with the BDB SQL APIs Page 13

Sequences with caches do not support the currval function.

The parameter following the cache parameter must be an integer value specifying the size
of the cache.

nextval

Retrieves the next value from the named sequence. For example:

SELECT nextval("my_sequence");

currval

Retrieves the last value that was returned from the named sequence. For example:

SELECT currval("my_sequence");

drop_sequence

Removes the sequence. For example:

SELECT drop_sequence("my_sequence");

Differences for Users of other SQL Engines

If you are used to a SQL implementation from other SQL engine (such as Oracle's RDBMS),
the SQL used by the BDB SQL interface (which is the same as used by SQLite) may hold some
surprises for you.

Some things in particular to take note of:

• Datatyping is weaker in SQLite than it is with standard SQL. For example, SQLite does not
enforce the length of a VARCHAR. While standard SQL will truncate a VARCHAR that is too
long, you could (for example) declare a VARCHAR(10) then put 500 characters in it without
any truncation, ever.

SQLite datatyping is described in detail on the Datatypes in SQLite Version 3 page.

• Do not use autocommit with SQLite. Instead, use begin exclusive and then commit.

• How NULLs are handled in SQLite may be different from what you are used to. See NULL
Handling in SQLite Versus Other Database Engines for details.

• There are some features of SQL that SQLite does not support. For more information, see
SQL Features That SQLite Does Not Implement.

http://sqlite.org/datatype3.html
http://www.sqlite.org/nulls.html
http://www.sqlite.org/nulls.html
http://www.sqlite.org/omitted.html
http://www.sqlite.org/omitted.html

3/4/2015 Getting Started with the BDB SQL APIs Page 14

Chapter 2. Locking Notes
There are some important performance differences between the BDB SQL interface and
SQLite, especially in a concurrent environment. This chapter gives you enough information
about how the BDB SQL interface uses its database, as opposed to how SQLite uses its
database, in order for you to understand the difference between the two interfaces. It then
gives you some advice on how to best approach working with the BDB SQL interface in a multi-
threaded environment.

If you are an existing user of SQLite, and you care about improving your application
performance when using the BDB SQL interface in a concurrent situation, you should read
this chapter. Existing users of Berkeley DB may also find some interesting information in this
chapter, although it is mostly geared towards SQLite users.

Internal Database Usage

The BDB SQL interface and SQLite do different things when it comes to locking data in their
databases. In order to provide ACID transactions, both products must prevent concurrent
access during write operations. Further, both products prevent concurrent access by obtaining
software level locks that allow only the current holder of the lock to perform write access to
the locked data.

The difference between the two is that when SQLite requires a lock (such as when a
transaction is underway), it locks the entire database and all tables. (This is known as
database level locking.) The BDB SQL interface, on the other hand, only locks the portion
of the table being operated on within the current transactional context (this is known as
page level locking). In most situations, this allows applications using the BDB SQL interface
to operate concurrently and so have better read/write throughput than applications using
SQLite. This is because there is less lock contention.

By default, one Berkeley DB logical database is created within the single database file
for every SQL table that you create. Within each such logical database, each table row is
represented as a Berkeley DB key/data pair.

This is important because the BDB SQL interface uses Berkeley DB's Transaction Data Store
product. This means that Berkeley DB does not have to lock an entire database (all the tables
within a database file) when it acquires a lock. Instead, it locks a single Berkeley DB database
page (which usually contains a small sub-set of rows within a single table).

The size of database pages will differ from platform to platform (you can also manually
configure this), but usually a database page can hold multiple key/data pairs; that is, multiple
rows from a SQL table. Exactly how many table rows fit on a database page depends on the
size of your page and the size of your table rows.

If you have an exceptionally small table, it is possible for the entire table to fit on a single
database page. In this case, Berkeley DB is in essence forced to serialize access to the entire
table when it requires a lock for it.

Note, however, that the case of a single table fitting on a single database page is very rare,
and it in fact represents the abnormal case. Normally tables span multiple pages and so

Library Version 12.1.6.0 Locking Notes

3/4/2015 Getting Started with the BDB SQL APIs Page 15

Berkeley DB will lock only portions of your tables. This locking behavior is automatic and
transparent to your application.

Lock Handling

There is a difference in how applications written for the BDB SQL interface handle deadlocks
as opposed to how deadlocks are handled for SQLite applications. For the SQLite developer,
the following information is a necessary review in order to understand how the BDB SQL
interface behaves differently.

From a usage point of view, the BDB SQL interface behaves in the same way as SQLite in
shared cache mode. The implications of this are explained below.

SQLite Lock Usage

As mentioned previously in this chapter, SQLite locks the entire database while performing a
transaction. It also has a locking model that is different from the BDB SQL interface, one that
supports multiple readers, but only a single writer. In SQLite, transactions can start as follows:

• BEGIN

Begins the transaction, locking the entire database for reading. Use this if you only want to
read from the database.

• BEGIN IMMEDIATE

Begins the transaction, acquiring a "modify" lock. This is also known as a RESERVED lock.
Use this if you are modifying the database (that is, performing INSERT, UPDATE, or DELETE).
RESERVED locks and read locks can co-exist.

• BEGIN EXCLUSIVE

Begins the transaction, acquiring a write lock. Transactions begun this way will be written
to the disk upon commit. No other lock can co-exist with an exclusive lock.

The last two statements are a kind of a contract. If you can get them to complete (that is, not
return SQLITE_LOCKED), then you can start modifying the database (that is, change data in
the in-memory cache), and you will eventually be able to commit (write) your modifications to
the database.

In order to avoid deadlocks in SQLite, programmers who want to modify a SQLite database
start the transaction with BEGIN IMMEDIATE. If the transaction cannot acquire the necessary
locks, it will fail, returning SQLITE_BUSY. At that point, the transaction falls back to an
unlocked state whereby it holds no locks against the database. This means that any existing
transactions in a RESERVED state can safely wait for the necessary EXCLUSIVE lock in order to
finally write their modifications from the in-memory cache to the on-disk database.

The important point here is that so long as the programmer uses these locks correctly, he can
assume that he can proceed with his work without encountering a deadlock. (Assuming that all
database readers and writers are also using these locks correctly.)

Library Version 12.1.6.0 Locking Notes

3/4/2015 Getting Started with the BDB SQL APIs Page 16

Lock Usage with the BDB SQL Interface

When you use the BDB SQL interface, you can begin your transaction with BEGIN or BEGIN
EXCLUSIVE.

Note that the IMMEDIATE keyword is ignored in the BDB SQL interface (BEGIN IMMEDIATE
behaves like BEGIN).

When you begin your transaction with BEGIN, Berkeley DB decides what kind of a lock you
need based on what you are doing to the database. If you perform an action that is read-only,
it acquires a read lock. If you perform a write action, it acquires a write lock.

Also, the BDB SQL interface supports multiple readers and multiple writers. This means that
multiple transactions can acquire locks as long as they are not trying to modify the same page.
For example:

Session 1:

dbsql> create table a(x int);
dbsql> begin;
dbsql> insert into a values (1);
dbsql> commit;

Session 2:

dbsql> create table b(x int);
dbsql> begin;
dbsql> insert into b values (1);
dbsql> commit;

Because these two sessions are operating on different pages in the Berkeley DB cache, this
example will work. If you tried this with SQLite, you could not start the second transaction
until the first had completed.

However, if you do this using the BDB SQL interface:

Session 1:

dbsql> begin;
dbsql> insert into a values (2);

Session 2:

dbsql> begin;
dbsql> insert into a values (2);

The second session blocks until the first session commits the transaction. Again, this
is because both sessions are operating on the same database page(s). However, if you
simultaneously attempt to write pages in reverse order, you can deadlock. For example:

Session 1:

dbsql> begin;

Library Version 12.1.6.0 Locking Notes

3/4/2015 Getting Started with the BDB SQL APIs Page 17

dbsql> insert into a values (3);
dbsql> insert into b values (3);

Session 2:

dbsql> begin;
dbsql> insert into b values (3);
dbsql> insert into a values (3);
Error: database table is locked

What happens here is that Session 1 is blocked waiting for a lock on table b, while Session 2 is
blocked waiting for a lock on table a. The application can make no forward progress, and so it
is deadlocked.

When such a deadlock is detected one session loses the lock it got when executing its last
statement, and that statement is automatically rolled back. The rest of the statements in the
session will still be valid, and you can continue to execute statements in that session. The
session that does not lose its lock to deadlock detection will continue to execute as if nothing
happened.

Assume Session 2 was sacrificed to deadlock detection, no value would be inserted into a and
an error will be returned. But the insertion of value 3 into b would still be valid. Session 1
would continue to wait while inserting into table b until Session 2 either commits or aborts,
thus freeing the lock it has on table b.

When you begin your transaction with BEGIN EXCLUSIVE, the session is never aborted due to
deadlock or lock contention with another transaction. Non-exclusive transactions are allowed
to execute concurrently with the exclusive transaction, but the non-exclusive transactions
will have their locks released if deadlock with the exclusive transaction occurs. If two or more
exclusive transactions are running at the same time, they will be forced to execute in serial.

If Session 1 was using an exclusive transaction, then Session 2 would lose its locks when
deadlock is detected between the two. If both Session 1 and Session 2 start an exclusive
transaction, then the last one to start the exclusive transaction would be blocked after
executing BEGIN EXCLUSIVE until the first one is committed or aborted.

3/4/2015 Getting Started with the BDB SQL APIs Page 18

Chapter 3. Berkeley DB Features
When using the Berkeley DB SQL API, there are features that you can manage using PRAGMAs
that are unique to Berkeley DB. This chapter discusses these features.

Using Bulk Loading

Bulk loading is an I/O optimization feature that is useful when loading large amounts of data
to the database inside of a single transaction. The bulk load optimization avoids writing some
log records to the journal file. This can provide significant performance benefits when loading
a large number of new rows into a database.

When you use bulk load, nested transactions are disabled. This means that you cannot
undo any single operation. Instead, if you want to undo a given operation, you must undo
everything performed within the transaction.

It is not possible to use the bulk load functionality when replication is enabled.

To enable bulk loading, use:

PRAGMA TXN_BULK = 0 | 1;

Default value is 0, which means the PRAGMA is turned off and so bulk loading is not in use. 1
means bulk loading is in use.

Using Multiversion Concurrency Control

Multiversion Concurrency Control (MVCC) enables snapshot isolation. Snapshot isolation means
that whenever a transaction would take a read lock on a page, it makes a copy of the page
instead, and then performs its operations on that copied page. This frees other writers from
blocking due to a read locks held by other transactions.

You should use snapshot isolation whenever you have a lot of read-only transactions operating
at the same time that read-write transactions. In this case, snapshot isolation will improve
transaction throughput, albeit at the cost of greater resource usage.

MVCC is described in more detail in Snapshot Isolation.

To use MVCC, you must enable it before you access any database tables. Once MVCC is
enabled, you can turn snapshot isolation on and off at anytime during the life of your
application.

To turn MVCC on, use:

PRAGMA multiversion = on | off;

This PRAGMA must be enabled before you access any database tables during your application
runtime, or an error is returned. Turning MVCC on automatically enables snapshot isolation. By
default MVCC is turned off.

Once MVCC is enabled, you can turn snapshot isolation on and off using:

../programmer_reference/transapp_read.html#snapshot_isolation

Library Version 12.1.6.0 Berkeley DB Features

3/4/2015 Getting Started with the BDB SQL APIs Page 19

PRAGMA snapshot_isolation = on | off;

This PRAGMA can be used at any time during the life of your application after MVCC has been
turned on. If you attempt to enable or disable snapshot isolation before MVCC is enabled, an
error is returned.

Selecting the Page Size

When using the BDB SQL interface, you configure your database page size in exactly the same
way as you do when using SQLite. That is, use PRAGMA page_size to report and set the page
size. This PRAGMA must be called before you create your first SQLite table. See the PRAGMA
page_size documentation for more information.

When you use PRAGMA cache_size to size your in-memory cache, you provide the cache size
in terms of a number of pages. Therefore, your database page size influences how large your
cache is, and so determines how much of your database will fit into memory.

The size of your pages can also affect how efficient your application is at performing disk
I/O. It will also determine just how fine-grained the fine-grained locking actually is. This is
because Berkeley DB locks database pages when it acquires a lock.

Note that the default value for your page size is probably correct for the physical hardware
that you are using. In almost all situations, the default page size value will give your
application the best possible I/O performance. For this reason, tuning the page size should
rarely, if ever, be attempted.

That said, when using the BDB SQL interface, the page size affects how much of your tables
are locked when read and/or write locks are acquired. (See Internal Database Usage (page 14)
for more information.) Increasing your page size will typically improve the bandwidth you get
accessing the disk, but it also may increase contention if too many key data pairs are on the
same page. Decreasing your page size frequently improves concurrency, but may increase the
number of locks you need to acquire and may decrease your disk bandwidth.

When changing your page size, make sure the value you select is a power of 2 that is greater
than 512 and less than or equal to 64KB. (Note that the standard SQLite MAX_PAGE_SIZE limit
is not examined for this upper bound.)

Beyond that, there are some additional things that you need to consider when selecting your
page size. For a thorough treatment of selecting your page size, see the section on Selecting a
page size in the Berkeley DB Programmer's Reference Guide.

http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_page_size
../programmer_reference/general_am_conf.html#am_conf_pagesize
../programmer_reference/general_am_conf.html#am_conf_pagesize

3/4/2015 Getting Started with the BDB SQL APIs Page 20

Chapter 4. Using Replication with the SQL API
The Berkeley DB SQL interface allows you to use Berkeley DB's replication feature. You
configure and start replication using PRAGMAs that are specific to the task.

This chapter provides a high-level introduction of Berkeley DB replication. It then shows how
to configure and use replication with the SQL API.

For a more detailed description of Berkeley DB replication, see:

• Berkeley DB Getting Started with Replicated Applications

• Berkeley DB Programmer's Reference Guide

Replication Overview

Berkeley DB's replication feature allows you to automatically distribute your database
write operations to one or more read-only replicas. For this reason, BDB's replication
implementation is said to be a single master, multiple replica replication strategy.

A single replication master and all of its replicas are referred to as a replication group. Each
replication group can have one and only one master site.

When discussing Berkeley DB replication, we sometimes refer to replication sites. This is
because most production applications place each of their replication participants on separate
physical machines. In fact, each replication participant must be assigned a hostname/port pair
that is unique within the replication group.

Note that under the hood, the unit of replication is the environment. That is, data is
replicated from one Berkeley DB environment to one or more other Berkeley DB environments.
However, when used with the BDB SQL interface, you can think of this as replicating between
Berkeley DB databases, because the BDB SQL interface results in a single database file for
each environment.

Replication Masters

Every replication group has one and only one master. The master site is where you perform
write operations. These operations are then automatically replicated to the other sites in the
replication group. Because the other replica sites in the replication group are read-only, it is
an error for you to attempt to perform write operatons on them.

The replication master is usually automatically selected by the replication group using
elections. Replication elections simply determine which replication site has the most up-to-
date copy of the data, and so is in the best position to serve as the master site.

Note that when you initially start up your BDB SQL replicated application, you must explicitly
designate a specific site as the master. Over time, the master site can move from one
environment to the next. For example, if the master site is shut down, becomes unavailable,
or a network partition causes it to lose contact with the rest of the replication group, then the

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 21

replication group will elect a new master if it can successfully hold an election. When the old
master comes back online, it rejoins the replication group as a read-only replica site.

Also, if you are enabling replication for an existing database, then that database must be
designated as the master. Doing this is required; otherwise the entire contents of the existing
database might be deleted during the replication startup process.

Elections

A replication group selects the master site by holding an election. In simplistic terms, each
participant in the replication group votes on who it believes has the most up-to-date version
of the data that the replication group is managing. The site that receives the most number of
votes becomes the master site, and all data write activity must occur there.

In order to hold an election, the replication group must have a quorum. In order to achieve
a quorum, a simple majority of the sites must be available to select the master. That is, n/2
+ 1 sites must be available, where n is the total number of replication group participants.
By requiring a simple majority, the replication group avoids the possibility of simultaneously
running with two master sites due to a network partition.

If a replication group cannot select a master, then it can only be used in read-only mode.

Durability Guarantees

Durability is a term that means data modifications have met some pre-defined set of
guarantees that the modifications will remain persistent across application run times. Usually,
this means that there is some assurance that the data modification has been written to stable
storage (that is, written to a hard drive).

For replicated BDB SQL applications, the durability guarantee is enhanced because data
modifications are also replicated to those environments that are participating in the
replication group. This ensures higher data durability than non-replicated applications by
placing data in multiple environments that usually reside on separate physical machines.

Permanent Message Handling

Permanent messages are created by replication masters as a part of a transactional commit
operation. When a replica receives a message that is marked as permanent, it knows that
the message affects transactional integrity. Receipt of a permanent message means that the
replica must send a message acknowledgment back to the master server because the master
might be waiting for the acknowledgment before it considers the transaction commit to be
complete.

Whether the master is actually waiting for message acknowledgement depends on the
acknowledgement policy in effect for the replication group. Policies can range from NONE (the
master will not wait for any acknowledgements before completing the transaction) to ALL (the
master will wait for acknowledgements from all replicas before completing the transaction).

Acknowledgements are only sent back to the master once the replica has completed applying
the message to its local environment. Therefore, the stronger your acknowledgement policy,

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 22

the stronger you durability guarantee. On the other hand, the stronger your acknowledgement
policy, the slower your application's write throughput will be.

In addition to setting an acknowledgement policy, you can also set an acknowledgment
timeout. This time limit is set in microseconds and it represents the length of time the
master will wait to satisfy its acknowledgement policy for each transaction commit. If this
timeout value is not met, the transaction is still committed locally to the master, but is
not yet considered durable across the replication group. Your code should take whatever
actions are appropriate for that transaction. If enough other sites are available to meet the
acknowledgement policy, the transaction will become durable after more time has passed.

You set acknowledgement policies and acknowledgement timeouts using PRAGMAs. See
PRAGMA replication_ack_policy (page 23) and PRAGMA replication_ack_timeout (page
24). In addition, you can examine how frequently your transactions do not
achieve durability within the acknowledgement timeout by using PRAGMA
replication_perm_failed (page 25).

Two-Site Replication Groups

In a replication group that consists of exactly two sites, both sites must be available in order
to achieve a quorum. Without a quorum, a new master site cannot be elected. This means
that if the master site is unable to participate in the replication group, then the remaining
read-only replica cannot become the master site.

In other words, if you have a group that consists of exactly two sites, if you lose your master
site then the replication group must exist in read-only mode until the master site becomes
available again.

Replication PRAGMAs

To control replication when using the Berkeley DB SQL interface, you use the following
PRAGMAs. For an example of how to use these, see Replication Usage Examples (page 27).

PRAGMA replication
PRAGMA replication=ON|OFF

Enables the local environment to participate in replication. You only need to specify this
PRAGMA once to turn on replication; all future uses of the database will automatically enable
replication.

Before invoking this PRAGMA for a brand new database (one that has never been
opened), you must invoke the replication_local_site PRAGMA and then either the
replication_initial_master or the replication_remote_site PRAGMA. These actions
define the way this site fits into the replication group.

If you are enabling replication for an existing database, it must become the initial master for
a new replication group. You must invoke the replication_local_site PRAGMA followed by
the replication_initial_master PRAGMA before enabling replication.

If you use this PRAGMA to turn off replication, then replication is completely disabled for
the environment. In order to enable replication again, you follow the procedure used to

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 23

enable replication on an existing database; that is, invoke the replication_local_site
PRAGMA followed by the replication_initial_master PRAGMA, followed by PRAGMA
replication=ON.

PRAGMA replication_ack_policy
PRAGMA replication_ack_policy=all|all_available|none|one|quorum

Sets the replication group's acknowledgement policy. If no policy is specified, then this
PRAGMA returns the current acknowledgement policy. This PRAGMA may be called at any time
during the life of the application.

Acknowledgement policies are used to describe how permanent messages will be handled.
A message is considered to be permanent if the master site has received enough responses
(acknowledgements) from its replicas. Once the master is satisfied that a message is
permanent, it considers the transaction that generated the message to be complete.
Therefore, the acknowledgement policy you set affects your application's write throughput, as
well as the durability strength of your transactions.

Message acknowledgements must be returned within a set timeout period. See PRAGMA
replication_ack_timeout (page 24) for information on how to manage this timeout. Also,
PRAGMA replication_perm_failed (page 25) provides useful diagnostic information that you
can use to fine-tune your acknowledgement policy.

See Permanent Message Handling (page 21) for more information on message
acknowledgements.

Possible permanent acknowledgement policies are:

• all

All sites belonging to the replication group must acknowledge the message before the
generating transaction is considered to be complete. This provides the strongest possible
durability guarantee, but also the slowest possible write throughput.

Note that if any site is shutdown or otherwise cannot be reached due to networking errors,
this acknowledgement policy will prevent your application from considering any transactions
durable.

• all_available

All currently connected sites must acknowledge the message.

• none

The master will not wait for any message acknowledgements before completing the
transaction. This results in the fastest possible write throughput, but also the weakest
durability guarantee.

• one

At least one site must acknowledge the message before the transaction is considered to be
complete.

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 24

• quorum

The master waits until it has received acknowledgements from the minimum number of
electable sites sufficient to ensure the record change is durable in the event of an election.
This is the default acknowledgement policy.

PRAGMA replication_ack_timeout
PRAGMA replication_ack_timeout=<timeout in microseconds>

Sets the replication site's acknowledgement timeout value. If the acknowledgement
policy cannot be met within this timeout period, then the encompassing transaction is not
considered to be complete. This PRAGMA may be called at any time during the life of the
application. The default is 1 second (1000000).

If no timeout is provided, then this PRAGMA returns the replication site's current message
acknowledgement timeout value.

For information on specifying acknowledgement policies, see PRAGMA
replication_ack_policy (page 23). Also, PRAGMA replication_perm_failed (page 25)
provides useful diagnostic information that you can use to fine-tune your acknowledgement
timeouts.

PRAGMA replication_get_master
PRAGMA replication_get_master

Returns a host/port pair representing the current master. If replication has not yet started, or
if the master is currently not known (such as during an election), NULL is returned.

PRAGMA replication_initial_master
PRAGMA replication_initial_master=ON|OFF

Causes the local environment to start up as a master site. This PRAGMA must be used once and
only once in the replicated lifetime of a BDB SQL environment.

This PRAGMA is usually invoked for the first site in a new replication group before the
replication PRAGMA is invoked and before BDB SQL initially creates the underlying BDB
environment for a SQL database. Starting replication on the initial master site establishes the
new replication group so that other sites can join it.

However, you must call this PRAGMA when enabling replication for a database that already
exists. Doing so causes the existing database to become the replication master for a new
replication group.

Note that subsequent election activity can cause other sites in the replication group to
become master. Do not assume that the initial master site will remain master indefinitely, or
that it will rejoin the replication group as master after a shutdown.

PRAGMA replication_local_site
PRAGMA replication_local_site="hostname:port"

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 25

Sets the local site information for replication.

PRAGMA replication_num_sites

PRAGMA replication_num_sites

Returns the number of sites in the replication group, or 0 if replication has not yet started.
Any input provided to this PRAGMA is ignored.

PRAGMA replication_perm_failed

PRAGMA replication_perm_failed

Returns the number of times that a permanent message has failed the replication group's
acknowledgement policy since the last time this PRAGMA was called. Zero is returned if
replication has not yet started.

Every time a permanent message has failed acknowledgement, a transaction was not
considered durable and the master waited the full acknowldgement timeout period
before returning from its commit. If you are seeing a high number of permanent message
acknowledgement failures, then that might represent a significant reduction in your
application's write-throughput.

To fix the problem, begin by examining your replicas to make sure they are operating
correctly, as well as your network to make sure its performance is what you expect. If all looks
well, then you should either reduce your acknowledgement policy (and accept a lessened
durability guarantee) or increase your acknowledgement timeout period (which might reduce
your write-throughput).

To manage your acknowledgement policies, see PRAGMA replication_ack_policy (page 23).
To manage your acknowledgement timeout policy, see PRAGMA replication_ack_timeout (page
24).

PRAGMA replication_priority

PRAGMA replication_priority=<non-0 positive integer>

Sets the site's election priority. When holding elections, if more than one site has the most
up-to-date copy of the data then the site with the highest priority will become master. This
PRAGMA may be called at any time during the life of the application. The default is 100.

If no priority is provided, then this PRAGMA returns the site's current priority.

PRAGMA replication_remote_site

PRAGMA replication_remote_site="hostname:port"

Sets information about a remote helper site in the replication group.

This PRAGMA is needed when a site first joins an existing replication group to specify a site
that is already in the replication group. It must be invoked before the replication PRAGMA
is invoked. This PRAGMA is not needed on the initial master site or when restarting a site

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 26

that is already a member of the replication group. However, supplying this PRAGMA in those
situations does no harm.

Note that the information provided to this PRAGMA can be superseded by normal replication
activity over the course of the environment's lifetime.

PRAGMA replication_remove_site
PRAGMA replication_remove_site="hostname:port"

Removes the specified site from the replication group. Use this PRAGMA if you truly want to
remove the site permanently from the group. It is not desirable to call this PRAGMA if a site
has been temporarily shut down or disconnected from the rest of the replication group.

Removing a site from the replication group means that the site is no longer counted towards
the total number of sites belonging to the group. This is important when the replication group
requires knowledge about whether a quorum has been reached (such as when, for example,
elections are held).

PRAGMA replication_site_status
PRAGMA replication_site_status

Returns whether the local site is the MASTER, CLIENT, or UNKNOWN.

UNKNOWN is returned if replication has not yet started. CLIENT is another term for replica.

PRAGMA replication_verbose_output
PRAGMA replication_verbose_output=ON|OFF

If set to TRUE, additional logging information specifically related to replication is created.

PRAGMA replication_verbose_file
PRAGMA replication_verbose_file="filename"

Indicates that verbose replication output should be sent to the specified file, as opposed to
STDOUT.

Displaying Replication Statistics

You can display a brief summary of replication statistics using .stat :rep:. This command
displays the most basic information about replication status, as well as some information that
is useful for troubleshooting.

dbsql> .stat :rep:
Replication summary statistics
Environment configured as a replication client
Startup complete
1/50232 Maximum permanent LSN
2 Number of environments in the replication group
0 Number of failed message sends

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 27

0 Number of messages ignored due to pending recovery
0 Number of log records currently queued

In the above output:

• Environment configured as a replication client

Identifies the current role of the site within the replication group. In this example, the
current site is not the master site. Replication client is another term for replica.

• Startup complete

Indicates that this replica site has completed its synchronization with the master site.
Replica synchronization can take some time if there are many master transactions with
which it needs to catch up.

• Maximum permanent LSN

Identifies the most recent log record that is durably replicated on a master or acknowledged
by a replica. You can compare a replica's maximum permanent LSN to the master's maximum
permanent LSN to determine if the replica is caught up with the master.

• Number of failed message sends

If this number is increasing, it could be an indication of network or communications
problems between sites in the replication group.

• Number of messages ignored due to pending recovery

If this number is increasing, this site is ignoring messages because it is starting up or
recovering and may need some time to catch up with the rest of the replication group.

• Number of log records currently queued

If this number is increasing, it means that connections to other sites may be unavailable or
congested and that there may be delays in durably replicating master transactions.

Replication Usage Examples

In this section we provide two examples of using replication with BDB SQL. The first example
shows a typical startup process. The second demonstrates master site failover.

Example 1: Distributed Read at 3 Sites

This example shows how a typical replication group startup sequence is performed. It initially
populates the master, then starts two replicas so that read operations can be distributed.
Then it shows what happens when an attempt is made to write to a replica.

Site 1:

Start initial master.
univ.db does not yet exist.

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 28

dbsql univ.db
 pragma replication_local_site="site1:7000";
 pragma replication_initial_master=ON;
 pragma replication=ON;

 # Create and populate university and country tables.
 .read university.sql

Site 2:

Start first replica.
univ.db does not yet exist.
dbsql univ.db
 pragma replication_local_site="site2:7001";
 pragma replication_remote_site="site1:7000";
 pragma replication=ON;

Site 3:

Start second replica.
univ.db does not yet exist.
dbsql univ.db
 pragma replication_local_site="site3:7002";
 pragma replication_remote_site="site1:7000";
 pragma replication=ON;

Site 1:

 # Perform some writes and reads on master.
 insert into country values ("Greenland","gl", 0, 0, 0, 2);
 insert into university values (26, "University College London",
 "ucl.edu", "uk", "Europe", 18, 39, 47, 30);
 select * from country where abbr = "gl";
 update country set top_1000 = 1 where abbr = "gl";

Site 2:

 # Perform some reads on first replica.
 select * from university where region = "Europe";
 select count(*) from country where top_100 > 0;

 # Attempt to write on first replica.
 insert into country values ("Antarctica","an", 0, 0, 0, 0);
 .../univ.db: DBcursor->put: attempt to modify a read-only database
 Error: attempt to write to a readonly database

Example 2: 2-Site Failover

This example demonstrates failover of the master from one site to another. It shows how a
failed site can rejoin the replication group, and it shows that there is a window of time during
which write operations cannot be performed for the replication group. Finally, it shows how to
check the master's location.

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 29

Site 1:

Start initial master.
quote.db does not yet exist.
dbsql quote.db
 pragma replication_local_site="site1:7000";
 pragma replication_initial_master=ON;
 pragma replication=ON;

 # Create stock quote application table.
 create table stock_quote (company_name text(40), price real);

Site 2:

Start replica.
quote.db does not yet exist.
dbsql quote.db
 pragma replication_local_site="site2:7001";
 pragma replication_remote_site="site1:7000";
 pragma replication=ON;

Site 1:

 # Perform some writes on master.
 insert into stock_quote values ("General Electric", 20.25);
 insert into stock_quote values ("Nabisco", 24.75);
 insert into stock_quote values ("United Healthcare", 31.00);
 update stock_quote set price=25.25 where company_name = "Nabisco";

Site 2:

 # Perform some reads on replica.
 select * from stock_quote where price < 30.00;
 select price from stock_quote where
 company_name = "General Electric";

Site 1:

 # Stop the initial master.
 .exit

Site 2:

 ##########
 ### Now the remaining site does not accept write operations until
 ### the other site rejoins the replication group.
 ##########
 insert into stock_quote values ("Prudential", 17.25);
 .../quote.db: DBcursor->put: attempt to modify a read-only database
 Error: attempt to write to a readonly database

Site 1:

Restart site, will rejoin replication group.

Library Version 12.1.6.0 Using Replication with the SQL API

3/4/2015 Getting Started with the BDB SQL APIs Page 30

dbsql quote.db
 # The earlier replication=ON causes replication to be
 # automatically started. This site may or may not become master
 # after rejoining replication group. Check status of site's
 # startup and determine whether it is a master or a replica.
 .stat :rep:
 Replication summary statistics
 Environment configured as a replication master
 1/49056 Maximum permanent LSN
 2 Number of environments in the replication group
 0 Number of failed message sends
 0 Number of messages ignored due to pending recovery
 0 Number of log records currently queued

 # Assuming this site became master, perform some writes.
 # If this site is not the master, these writes will not
 # succeed and must be performed at the other site.
 insert into stock_quote values ("Raytheon", 9.25);
 insert into stock_quote values ("Cadbury", 7.75);

Site 2:

 # Read operations can be performed on master or replica
 # site.
 select * from stock_quote where price < 21.00;

3/4/2015 Getting Started with the BDB SQL APIs Page 31

Chapter 5. Administrating Berkeley DB SQL
Databases

This chapter provides administrative procedures that are unique to the Berkeley DB SQL
interface.

Backing Up Berkeley DB SQL Databases

You can use the standard SQLite .dump command to backup the data managed by the BDB SQL
interface.

The BDB SQL interface supports the standard SQLite Online Backup API. However, there
is a small difference between the two interfaces. In the BDB SQL interface, the value
returned by the sqlite3_backup_remaining method and the number of pages passed to
the sqlite3_backup_step method, are estimates of the number of pages to be copied
and not exact values. To be certain that the backup process is complete, check if the
sqlite3_backup_step method has returned SQLITE_DONE. To learn how to use SQLite Online
Backup API, see the official SQLite Documentation Page.

If you are using replication, you will also need to copy the file that contains the replication
pragma information in order to have a full backup. To do that copy the file named pragma
from the database journal directory.

Backing Up Replicated Berkeley DB SQL Databases

When BDB SQL interface databases are replicated the process for backing up a regular
database should be followed. The user must then copy some additional files for the backup to
be complete.

The additional files can be found in the journal directory of the source database, and should
be copied into the journal directory of the backup copy. The journal directory is automatically
created when a Berkeley DB SQL interface database is created. The journal directory is
created in the same directory as the database file, it has the name of the database file with a
-journal appendix.

The files that need to be copied into the backup journal directory are:

• __db.rep.egen

• __db.rep.gen

• __db.rep.init

• __db.rep.system

Syncing with Oracle Databases

Oracle's SQLite Mobile Client product allows you to synchronize a SQLite database with a back-
end Oracle database. Because the BDB SQL interface is a drop-in replacement for SQLite, this
means you can synchronize a Berkeley DB database with an Oracle back-end as well.

http://www.sqlite.org/backup.html

Library Version 12.1.6.0 Administrating Berkeley DB SQL Databases

3/4/2015 Getting Started with the BDB SQL APIs Page 32

Note
Berkeley DB SQL databases are not compatible with SQLite databases. In order for
sync to work, you must remove any currently existing SQLite databases.

Syncing on Unix Platforms

For Unix platforms, the easiest way to use Oracle's SQLite Mobile Client is to build the BDB SQL
interface with the compatibility option. That is, specify both --enable-sql and --enable-
sql-compat when you configure your Berkeley DB installation. This causes libraries with the
exact same name as the SQLite libraries to be created when you build Berkeley DB.

Having done that, you must then change your platform's library search path so that it finds
the Berkeley DB libraries before any installed SQLite libraries. On many (but not all) Unix
platforms, you do this by modifying the LD_LIBRARY_PATH environment variable. See your
operating system documentation for information on how to change your search path for
dynamically linked libraries.

Once you have properly configured and built your Berkeley DB installation, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client
in exactly the same way as you would if you were using standard SQLite libraries and
databases with it. See the Oracle Database Mobile Server documentation. documentation for
information on using SQLite Mobile Client.

For information on building the BDB SQL interface, see the Configuring the SQL Interface
section in the Berkeley DB Installation and Build Guide.

Syncing on Windows Platforms

For Windows platforms, you use Oracle's SQLite Mobile Client by building the BDB SQL
interface in the same way as you normally do. See the Building Berkeley DB for Windows
chapter in the Berkeley DB Installation and Build Guide for more information.

Once you have built the product, rename the Berkeley DB SQL dlls so that they are named
identically to the standard SQLite dlls (sqlite3.dll). Install the renamed Berkeley DB SQL dll
along with the main Berkeley DB dll (libdb5x.dll) in the same directory as the SQLite dlls. See
the Building the SQL API section for details.

Finally, configure your Windows PATH environment variable so that it finds your Berkeley DB
dlls before it finds any standard SQLite dlls that might be installed on your system.

Once you have built your Berkeley DB installation and renamed your dlls, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Mobile Server documentation for information on using
SQLite Mobile Client.

Syncing on Windows Mobile Platforms

For Windows Mobile platforms, you use Oracle's SQLite Mobile Client by building the BDB SQL
interface in the same way as you normally do. See the Building Berkeley DB for Windows
Mobile chapter in the Berkeley DB Installation and Build Guide for more information.

http://docs.oracle.com/cd/E35865_01/index.htm
../installation/build_unix_sql.html
../installation/build_win.html
../installation/build_win_sql.html
http://docs.oracle.com/cd/E35865_01/index.htm
../installation/build_wince.html
../installation/build_wince.html

Library Version 12.1.6.0 Administrating Berkeley DB SQL Databases

3/4/2015 Getting Started with the BDB SQL APIs Page 33

Once you have built the product, rename the Berkeley DB SQL dll to sqlite3.dll. Then, copy
the dll to the \Windows path on the phone. Note that you only need the new sqlite3.dll;
you do not need any of the other Berkeley DB dlls.

Once you have built your Berkeley DB installation and renamed your dlls, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Mobile Server documentation for information on using
SQLite Mobile Client.

Data Migration

If you have a database created by SQLite, you can migrate it to a Berkeley DB database for use
with the BDB SQL interface. For production applications, you should do this only when your
application is shutdown.

All data and schema supported by SQLite can be migrated to a Berkeley DB database.

Migration Using the Shells

To migrate your data from SQLite to a Berkeley DB database:

1. Make sure your application is shutdown.

2. Open the SQLite database within the sqlite3 shell.

3. Execute the .output command to specify the location where you want to dump data.

4. Dump the database using the SQLite .dump command.

5. Close the sqlite3 shell and open the Berkeley DB dbsql shell.

6. Load the dumped data using the .read command.

Note that you can migrate in the reverse direction as well. Dump the Berkeley DB database by
calling .dump from within the Berkeley DB dbsql shell, and load it into SQLite by .read from
within SQLite's sqlite3 shell.

Catastrophic Recovery

Catastrophic recovery is used when normal recovery is unable to repair a corrupted database.
A detailed description of the recovery utility is described at db_recover . This section
describes how to use the utility with a SQL database.

The first step in running recovery is to add a DB_CONFIG file to the journal directory. In the
file, add the following line:
add_data_dir ..

Then execute the following command in the journal directory db_recover -c.

http://docs.oracle.com/cd/E35865_01/index.htm
../api_reference/C/dbsql.html
../api_reference/C/dbsql.html
../api_reference/C/db_recover.html
../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.0 Administrating Berkeley DB SQL Databases

3/4/2015 Getting Started with the BDB SQL APIs Page 34

Database Statistics

The statistics utility can be used to print out information on tables in a database. A detailed
description of the statistics utility is described at db_stat . This section describes how to use
the utility with a SQL database.

The first step in getting statistics on a table is to find the internal name for the table. The
internal table name is table#####, where the number is the rootpage number, which can be
retrieved using the following SQL statement:
SELECT rootpage FROM sqlite_master WHERE name='[table name]'; For example, if
the root page is 10, the internal table name will be table00010.

In order to run the db_stat utility, first add a DB_CONFIG file to the journal directory. In the
file, add the following line:
add_data_dir ..

Then execute the following command in the directory with the database: db_stat -d [file
name] -h [journal directory] -s [internal table name]. That command will print out
information on the table.

Verify Database Structure

Verification is used to confirm that a database structure is correct, and has not been
corrupted by a crash or other failure. A detailed description of the verify utility is described at
db_verify . This section describes how to use the utility with a SQL database.

The first step in running verify is to add a DB_CONFIG file to the journal directory. In the file,
add the following line:
add_data_dir ..

Then execute the following command in the database directory db_verify -h [journal
directory] [database file]. The command will either print out a message reporting success, or
will list any error found in the database.

../api_reference/C/db_stat.html
../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../api_reference/C/db_verify.html
../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

3/4/2015 Getting Started with the BDB SQL APIs Page 35

Appendix A. Using the BFILE
Extension

The BFILE data type allows the BDB SQL interface to access binary files that are stored in the
file system outside of the database. The binary file can be queried in exactly the same way
as any other data type stored in the database, but Berkeley DB is able to save space in the
database file by not embedding a large amount of binary data in it. This also helps overall
database performance.

Internally, a BFILE column or attribute stores a BFILE locater, which serves as a pointer to
the binary file. The locater maintains the directory alias and the filename. You can change
the path of BFILE without affecting the base table by using the BFILENAME function. BFILE
is somewhat like the BLOB data type, but it does not participate in transactions and it is not
recoverable. Instead, the underlying operating system is expected to provide file integrity and
durability.

The remainder of this section describes the various objects and functions that the BFILE
extension makes available to you. In addition, complete examples of using these extensions
are available with your Berkeley DB distribution. They are placed in the following location:

<db-dist>/lang/sql/sqlite/ext/bfile/examples

Supported Platforms and Languages

The BFILE extension is currently only supported for *nix platforms.

The BFILE extension it is not available in your library by default. Instead, you must enable
the extension when you compile Berkeley DB. See the Berkeley DB Installation and Build
Guide for information on how to enable this extension when you build Berkeley DB. Once
you have enabled the extension, applications will also need to load the BFILE library file:
libbfile_ext.so.

By default, the BFILE extension provides support for additional SQL statements. With some
extra configuration at Berkeley DB compile time, you can also obtain support for extensions to
the SQLite C/C++ interface. Both the SQL extensions and the extensions to the SQLite C/C++
interface are described in the following sections.

BFILE SQL Objects and Functions

When the BFILE extension is enabled, you can create a DIRECTORY object. These objects are
required before you can store a pointer to a file in a BFILE column.

DIRECTORY objects are stored in a special table called BFILE_DIRECTORY. This table is
automatically created for you when it is needed. You should not manually create this table.

You manage DIRECTORY objects using the following SQL functions:

BFILE_CREATE_DIRECTORY (page 36)

Library Version 12.1.6.0 Using the BFILE Extension

3/4/2015 Getting Started with the BDB SQL APIs Page 36

BFILE_REPLACE_DIRECTORY (page 36)
BFILE_DROP_DIRECTORY (page 36)

The following sections describe the SQL functions that you can use when the BFILE extension is
enabled.

BFILE_CREATE_DIRECTORY
BFILE_CREATE_DIRECTORY(directory, path)

Creates a DIRECTORY object as a path. The specified path must not already exist, or
Directory already exists is returned.

BFILE_REPLACE_DIRECTORY
BFILE_REPLACE_DIRECTORY(directory, path)

Replaces the named DIRECTORY object using the specified path. If the object does not exist,
Directory does not exist is returned.

BFILE_DROP_DIRECTORY
BFILE_DROP_DIRECTORY(directory)

Drops the named DIRECTORY object. If the object does not exist, Directory does not
exist is returned.

BFILE_NAME
BFILE_NAME(directory, filename)

Returns the BFILE locator.

BFILE_FULLPATH
BFILE_FULLPATH(column)

Returns the full path.

BFILE_OPEN
BFILE_OPEN(column)

Extracts the directory and file names from the BFILE locator, and then opens that file. On
success, a BFILE handle is returned. Otherwise, 0 is returned.

BFILE_READ
BFILE_READ(BFILE handle, amt, offset)

Reads at most amt data from the BFILE handle, starting at offset. On success, Data is
returned. Otherwise, 0 is returned to indicate that no more valid data is available.

BFILE_CLOSE
BFILE_CLOSE(BFILE handle)

Library Version 12.1.6.0 Using the BFILE Extension

3/4/2015 Getting Started with the BDB SQL APIs Page 37

Closes the BFILE handle.

BFILE_SIZE
BFILE_SIZE(column)

Returns the size of the BFILE. On success, the size is returned. Otherwise, -1 is returned.

BFILE C/C++ Objects and Functions

The BFILE extension can optionally make available to you some additional C language data
types and functions for use with the SQLite C/C++ interface. These are available to you only if
you take the proper steps when you compile Berkeley DB. See the Berkeley DB Installation and
Build Guide for more information.

Once enabled, the BFILE C extension makes the following new structure available to you:

typedef struct sqlite3_bfile sqlite3_bfile;

This structure serves as the BFILE handle when you are using the BFILE extension along with
the SQLite C/C++ interface.

In addition to the new structure, you can also use the following new C functions:

sqlite3_column_bfile
int
sqlite3_column_bfile(sqlite3_stmt *pStmt, int iCol,
 sqlite3_bfile **ppBfile);

Returns a result set from a query against a column of type BFILE.

On success, SQLITE_OK is returned and the new BFILE handle is written to ppBfile. Otherwise,
SQLITE_ERROR is returned.

Parameters are:

• pStmt

Pointer to the prepared statement that the function is evaluating. The statement is created
using sqlite3_prepare_v2() or one of its variants.

If this statement does not point to a valid row, the result is undefined.

• iCol

Index of the column for which information should be returned. The left-most column of the
result set is index 0. Use sqlite3_column_count() to discover the number of columns in
the result set.

If the column index is out of range, the result is undefined.

• ppBfile

Library Version 12.1.6.0 Using the BFILE Extension

3/4/2015 Getting Started with the BDB SQL APIs Page 38

The BFILE handle that you are using for the query. This pointer is valid only until
sqlite3_step(), sqlite3_reset() or sqlite3_finalize() have been called.

The memory space used to hold this handle is freed by sqlite3_bfile_final (page 40) Do
not pass these pointers to sqlite3_free().

This function can be called successfully only if all of the following conditions are true. If any
of the following are not true, the result is undefined:

• The most recent call to sqlite3_step() has returned SQLITE_ROW.

• Neither sqlite3_reset() nor sqlite3_finalize() have been called since the last time
sqlite3_step() was called.

• sqlite3_step(), sqlite3_reset() or sqlite3_finalize() have not been called from a
different thread while this routine is pending.

sqlite3_bfile_open

int
sqlite3_bfile_open(sqlite3_bfile *pBfile);

Opens a file for incremental read.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

To avoid a resource leak, every opened BFILE handle should eventually be closed with the
sqlite3_bfile_close (page 38) function. Note that pBfile is always initialized such that it is
always safe to invoke sqlite_bfile_close() against it, regardless of the success or failure
of this function.

sqlite3_bfile_close

int
sqlite3_bfile_close(sqlite3_bfile *pBfile);

Closes an open BFILE handle. The BFILE is closed unconditionally. Even if this function returns
an error, the BFILE is still closed.

Calling this routine with a null pointer (such as would be returned by failed call to
sqlite3_column_bfile()) is a harmless non-operation.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

sqlite3_bfile_is_open

int
sqlite3_bfile_is_open(sqlite3_bfile *pBfile, int *open);

Checks whether a BFILE handle is open. The open parameter is set to 1 if the file is open,
otherwise it is 0.

Library Version 12.1.6.0 Using the BFILE Extension

3/4/2015 Getting Started with the BDB SQL APIs Page 39

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

sqlite3_bfile_read

int
sqlite3_bfile_read(sqlite3_bfile *pBfile, void *oBuff, int nSize,
 int iOffset, int *nRead);

This function is used to read data from an opened BFILE handle into a caller-supplied buffer.

On success, SQLITE_OK is returned, the data that has been read is written to the output
buffer, oBuff, and the amount of data written to the buffer is recorded in nRead. Otherwise,
SQLITE_ERROR is returned.

Parameters are:

• pBfile

The BFILE handle from which the data is read.

This function only works on a BFILE handle which has been created by a prior
successful call to sqlite3_bfile_open (page 38) and which has not been closed by
sqlite3_bfile_close (page 38). Passing any other pointer in to this function results in
undefined and probably undesirable behavior.

• oBuff

The buffer used to contain the data that is read from pBfile. It must be at least nSize bytes
in size.

• nSize

The amount of data, in bytes, to read from the BFILE.

• iOffset

The offset from the beginning of the file where the read operation is to begin.

• nRead

Contains the amount of data, in bytes, actually written to buffer oBuff once the read
operation is completed.

Note

The size of the BFILE can be determined using the sqlite3_bfile_size (page 40)
function.

sqlite3_bfile_file_exists

int
sqlite3_bfile_file_exists(sqlite3_bfile *pBfile, int *exist);

Library Version 12.1.6.0 Using the BFILE Extension

3/4/2015 Getting Started with the BDB SQL APIs Page 40

Checks whether a BFILE exists. The exists parameter is set to 1 if the file is exists, otherwise
it is 0.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

sqlite3_bfile_size

int
sqlite3_bfile_size(sqlite3_bfile *pBfile, off_t *size);

Returns the size of the BFILE, in bytes.

On success, SQLITE_OK is returned, and size is set to the size of the BFILE, in bytes.
Otherwise, SQLITE_ERROR is returned.

This function only works on a BFILE handle which has been created by a prior successful call to
sqlite3_column_bfile (page 37) and which has not been finalized by sqlite3_bfile_final (page
40). Passing any other pointer in to this function results in undefined and probably
undesirable behavior.

sqlite3_bfile_final

int
sqlite3_bfile_final(sqlite3_bfile *pBfile);

Frees a BFILE handle.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

	Getting Started with the Oracle Berkeley DB SQL APIs
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Berkeley DB SQL: The Absolute Basics
	BDB SQL Is Nearly Identical to SQLite
	Getting and Installing BDB SQL
	On Windows Systems
	On Unix
	The BDB SQL ADO.NET Interface
	Prerequisites For Building The ADO.NET Package
	Building BDB SQL ADO.NET Interface For Windows
	Building BDB SQL ADO.NET Interface For Windows Mobile

	Accessing BDB SQL Databases
	The Journal Directory
	Unsupported PRAGMAs
	Changed PRAGMAs
	PRAGMA auto_vacuum
	PRAGMA incremental_vacuum
	PRAGMA journal_size_limit

	Added PRAGMAs
	PRAGMA bdbsql_error_file
	PRAGMA bdbsql_lock_tablesize
	PRAGMA bdbsql_shared_resources
	PRAGMA bdbsql_single_process
	PRAGMA bdbsql_system_memory
	PRAGMA bdbsql_vacuum_fillpercent
	PRAGMA bdbsql_vacuum_pages
	PRAGMA large_record_opt
	PRAGMA multiversion
	PRAGMA snapshot_isolation
	PRAGMA trickle
	PRAGMA txn_bulk
	Replication PRAGMAs

	Miscellaneous Differences
	Berkeley DB Concepts
	Encryption
	Berkeley DB encryption
	SQLite Encryption Extension

	Using Sequences
	create_sequence
	nextval
	currval
	drop_sequence

	Differences for Users of other SQL Engines

	Chapter 2. Locking Notes
	Internal Database Usage
	Lock Handling
	SQLite Lock Usage
	Lock Usage with the BDB SQL Interface

	Chapter 3. Berkeley DB Features
	Using Bulk Loading
	Using Multiversion Concurrency Control
	Selecting the Page Size

	Chapter 4. Using Replication with the SQL API
	Replication Overview
	Replication Masters
	Elections
	Durability Guarantees
	Permanent Message Handling
	Two-Site Replication Groups

	Replication PRAGMAs
	PRAGMA replication
	PRAGMA replication_ack_policy
	PRAGMA replication_ack_timeout
	PRAGMA replication_get_master
	PRAGMA replication_initial_master
	PRAGMA replication_local_site
	PRAGMA replication_num_sites
	PRAGMA replication_perm_failed
	PRAGMA replication_priority
	PRAGMA replication_remote_site
	PRAGMA replication_remove_site
	PRAGMA replication_site_status
	PRAGMA replication_verbose_output
	PRAGMA replication_verbose_file

	Displaying Replication Statistics
	Replication Usage Examples
	Example 1: Distributed Read at 3 Sites
	Example 2: 2-Site Failover

	Chapter 5. Administrating Berkeley DB SQL Databases
	Backing Up Berkeley DB SQL Databases
	Backing Up Replicated Berkeley DB SQL Databases

	Syncing with Oracle Databases
	Syncing on Unix Platforms
	Syncing on Windows Platforms
	Syncing on Windows Mobile Platforms

	Data Migration
	Migration Using the Shells

	Catastrophic Recovery
	Database Statistics
	Verify Database Structure

	Appendix A. Using the BFILE Extension
	Supported Platforms and Languages
	BFILE SQL Objects and Functions
	BFILE_CREATE_DIRECTORY
	BFILE_REPLACE_DIRECTORY
	BFILE_DROP_DIRECTORY
	BFILE_NAME
	BFILE_FULLPATH
	BFILE_OPEN
	BFILE_READ
	BFILE_CLOSE
	BFILE_SIZE

	BFILE C/C++ Objects and Functions
	sqlite3_column_bfile
	sqlite3_bfile_open
	sqlite3_bfile_close
	sqlite3_bfile_is_open
	sqlite3_bfile_read
	sqlite3_bfile_file_exists
	sqlite3_bfile_size
	sqlite3_bfile_final

