
WEKA Manual

for Version 3-8-0

Remco R. Bouckaert

Eibe Frank

Mark Hall

Richard Kirkby

Peter Reutemann

Alex Seewald

David Scuse

April 14, 2016

c©2002-2015

University of Waikato, Hamilton, New Zealand
Alex Seewald (original Commnd-line primer)
David Scuse (original Experimenter tutorial)

This manual is licensed under the GNU General Public License
version 3. More information about this license can be found at
http://www.gnu.org/licenses/gpl-3.0-standalone.html

http://www.gnu.org/licenses/gpl-3.0-standalone.html

Contents

I The Command-line 5

1 A command-line primer 7
1.1 Introduction . 7
1.2 Basic concepts . 8

1.2.1 Dataset . 8
1.2.2 Classifier . 10
1.2.3 weka.filters . 11
1.2.4 weka.classifiers . 13

1.3 Examples . 17
1.4 Additional packages and the package manager 18

1.4.1 Package management . 19
1.4.2 Running installed learning algorithms 20

II The Graphical User Interface 23

2 Launching WEKA 25

3 Package Manager 29
3.1 Main window . 29
3.2 Installing and removing packages 30

3.2.1 Unoffical packages . 31
3.3 Using a http proxy . 31
3.4 Using an alternative central package meta data repository 31
3.5 Package manager property file . 32

4 Simple CLI 33
4.1 Commands . 33
4.2 Invocation . 34
4.3 Command redirection . 34
4.4 Command completion . 35

5 Explorer 37
5.1 The user interface . 37

5.1.1 Section Tabs . 37
5.1.2 Status Box . 37
5.1.3 Log Button . 38
5.1.4 WEKA Status Icon . 38

3

4 CONTENTS

5.1.5 Graphical output . 38
5.2 Preprocessing . 39

5.2.1 Loading Data . 39
5.2.2 The Current Relation . 39
5.2.3 Working With Attributes 40
5.2.4 Working With Filters . 41

5.3 Classification . 43
5.3.1 Selecting a Classifier . 43
5.3.2 Test Options . 43
5.3.3 The Class Attribute . 44
5.3.4 Training a Classifier . 45
5.3.5 The Classifier Output Text 45
5.3.6 The Result List . 45

5.4 Clustering . 47
5.4.1 Selecting a Clusterer . 47
5.4.2 Cluster Modes . 47
5.4.3 Ignoring Attributes . 47
5.4.4 Working with Filters . 48
5.4.5 Learning Clusters . 48

5.5 Associating . 49
5.5.1 Setting Up . 49
5.5.2 Learning Associations . 49

5.6 Selecting Attributes . 50
5.6.1 Searching and Evaluating 50
5.6.2 Options . 50
5.6.3 Performing Selection . 50

5.7 Visualizing . 52
5.7.1 The scatter plot matrix 52
5.7.2 Selecting an individual 2D scatter plot 52
5.7.3 Selecting Instances . 53

6 Experimenter 55
6.1 Introduction . 55
6.2 Standard Experiments . 56

6.2.1 Simple . 56
6.2.1.1 New experiment 56
6.2.1.2 Results destination 56
6.2.1.3 Experiment type 58
6.2.1.4 Datasets . 60
6.2.1.5 Iteration control 61
6.2.1.6 Algorithms . 61
6.2.1.7 Saving the setup 63
6.2.1.8 Running an Experiment 64

6.2.2 Advanced . 65
6.2.2.1 Defining an Experiment 65
6.2.2.2 Running an Experiment 68
6.2.2.3 Changing the Experiment Parameters 70
6.2.2.4 Other Result Producers 77

6.3 Cluster Experiments . 83
6.4 Remote Experiments . 86

CONTENTS 5

6.4.1 Preparation . 86
6.4.2 Database Server Setup . 86
6.4.3 Remote Engine Setup . 87
6.4.4 Configuring the Experimenter 88
6.4.5 Multi-core support . 89
6.4.6 Troubleshooting . 89

6.5 Analysing Results . 91
6.5.1 Setup . 91
6.5.2 Saving the Results . 94
6.5.3 Changing the Baseline Scheme 94
6.5.4 Statistical Significance . 95
6.5.5 Summary Test . 95
6.5.6 Ranking Test . 96

7 KnowledgeFlow 97
7.1 Introduction . 97
7.2 Features . 99
7.3 Flow Steps . 100

7.3.1 DataSources . 100
7.3.2 DataSinks . 100
7.3.3 DataGenerators . 100
7.3.4 Filters . 100
7.3.5 Classifiers . 100
7.3.6 Clusterers . 100
7.3.7 Attribute selection . 100
7.3.8 Evaluation . 100
7.3.9 Visualization . 101
7.3.10 Flow . 102
7.3.11 Tools . 102

7.4 Examples . 104
7.4.1 Cross-validated J48 . 104
7.4.2 Plotting multiple ROC curves 106
7.4.3 Processing data incrementally 109

7.5 Plugins . 111
7.5.1 Flow components . 111
7.5.2 Perspectives . 111

8 Workbench 113
8.1 Introduction . 113

9 ArffViewer 115
9.1 Menus . 116
9.2 Editing . 118

10 Bayesian Network Classifiers 121
10.1 Introduction . 121
10.2 Local score based structure learning 125

10.2.1 Local score metrics . 125
10.2.2 Search algorithms . 126

10.3 Conditional independence test based structure learning 129

6 CONTENTS

10.4 Global score metric based structure learning 131

10.5 Fixed structure ’learning’ . 132

10.6 Distribution learning . 132

10.7 Running from the command line 134

10.8 Inspecting Bayesian networks . 144

10.9 Bayes Network GUI . 147

10.10Bayesian nets in the experimenter 159

10.11Adding your own Bayesian network learners 159

10.12FAQ . 161

10.13Future development . 162

III Data 165

11 ARFF 167

11.1 Overview . 167

11.2 Examples . 168

11.2.1 The ARFF Header Section 168

11.2.2 The ARFF Data Section 170

11.3 Sparse ARFF files . 171

11.4 Instance weights in ARFF files 172

12 XRFF 173

12.1 File extensions . 173

12.2 Comparison . 173

12.2.1 ARFF . 173

12.2.2 XRFF . 174

12.3 Sparse format . 175

12.4 Compression . 176

12.5 Useful features . 176

12.5.1 Class attribute specification 176

12.5.2 Attribute weights . 176

12.5.3 Instance weights . 177

13 Converters 179

13.1 Introduction . 179

13.2 Usage . 180

13.2.1 File converters . 180

13.2.2 Database converters . 180

14 Stemmers 183

14.1 Introduction . 183

14.2 Snowball stemmers . 183

14.3 Using stemmers . 184

14.3.1 Commandline . 184

14.3.2 StringToWordVector . 184

14.4 Adding new stemmers . 184

CONTENTS 7

15 Databases 185
15.1 Configuration files . 185
15.2 Setup . 186
15.3 Missing Datatypes . 187
15.4 Stored Procedures . 188
15.5 Troubleshooting . 189

16 Windows databases 191

IV Appendix 195

17 Research 197
17.1 Citing Weka . 197
17.2 Paper references . 197

18 Using the API 201
18.1 Option handling . 202
18.2 Loading data . 204

18.2.1 Loading data from files 204
18.2.2 Loading data from databases 205

18.3 Creating datasets in memory . 208
18.3.1 Defining the format . 208
18.3.2 Adding data . 209

18.4 Generating artificial data . 211
18.4.1 Generate ARFF file . 211
18.4.2 Generate Instances . 211

18.5 Randomizing data . 212
18.6 Filtering . 213

18.6.1 Batch filtering . 214
18.6.2 Filtering on-the-fly . 215

18.7 Classification . 216
18.7.1 Building a classifier . 216
18.7.2 Evaluating a classifier . 218
18.7.3 Classifying instances . 221

18.8 Clustering . 223
18.8.1 Building a clusterer . 223
18.8.2 Evaluating a clusterer . 225
18.8.3 Clustering instances . 227

18.9 Selecting attributes . 228
18.9.1 Using the meta-classifier 229
18.9.2 Using the filter . 230
18.9.3 Using the API directly . 231

18.10Saving data . 232
18.10.1Saving data to files . 232
18.10.2Saving data to databases 232

18.11Visualization . 234
18.11.1ROC curves . 234
18.11.2Graphs . 235

18.11.2.1 Tree . 235

8 CONTENTS

18.11.2.2 BayesNet . 236

18.12Serialization . 237

19 Extending WEKA 239

19.1 Writing a new Classifier . 240

19.1.1 Choosing the base class 240

19.1.2 Additional interfaces . 241

19.1.3 Packages . 241

19.1.4 Implementation . 242

19.1.4.1 Methods . 242

19.1.4.2 Guidelines . 246

19.2 Writing a new Filter . 252

19.2.1 Default approach . 252

19.2.1.1 Implementation 252

19.2.1.2 Examples . 255

19.2.2 Simple approach . 259

19.2.2.1 SimpleBatchFilter 259

19.2.2.2 SimpleStreamFilter 261

19.2.2.3 Internals . 263

19.2.3 Capabilities . 263

19.2.4 Packages . 263

19.2.5 Revisions . 263

19.2.6 Testing . 264

19.2.6.1 Option handling 264

19.2.6.2 GenericObjectEditor 264

19.2.6.3 Source code . 264

19.2.6.4 Unit tests . 264

19.3 Writing other algorithms . 265

19.3.1 Clusterers . 265

19.3.2 Attribute selection . 267

19.3.3 Associators . 269

19.4 Extending the Explorer . 271

19.4.1 Adding tabs . 271

19.4.1.1 Requirements . 271

19.4.1.2 Examples . 271

19.4.2 Adding visualization plugins 279

19.4.2.1 Introduction . 279

19.4.2.2 Predictions . 279

19.4.2.3 Errors . 282

19.4.2.4 Graphs . 284

19.4.2.5 Trees . 285

19.5 Extending the Knowledge Flow 287

19.5.1 Creating a simple batch processing Step 287

19.5.2 Creating a simple streaming Step 293

19.5.3 Features of StepManager 296

19.5.4 PairedDataHelper . 296

CONTENTS 9

20 Weka Packages 299
20.1 Where does Weka store packages and other configuration stuff? . 299
20.2 Anatomy of a package . 300

20.2.1 The description file . 300
20.2.2 Additional configuration files 304

20.3 Contributing a package . 305
20.4 Creating a mirror of the package meta data repository 305

21 Technical documentation 309
21.1 ANT . 309

21.1.1 Basics . 309
21.1.2 Weka and ANT . 309

21.2 CLASSPATH . 310
21.2.1 Setting the CLASSPATH 310
21.2.2 RunWeka.bat . 311
21.2.3 java -jar . 312

21.3 Subversion . 312
21.3.1 General . 312
21.3.2 Source code . 312
21.3.3 JUnit . 313
21.3.4 Specific version . 313
21.3.5 Clients . 313

21.4 GenericObjectEditor . 314
21.4.1 Introduction . 314
21.4.2 File Structure . 315
21.4.3 Exclusion . 316
21.4.4 Class Discovery . 316
21.4.5 Multiple Class Hierarchies 317
21.4.6 Capabilities . 318

21.5 Properties . 319
21.5.1 Precedence . 319
21.5.2 Examples . 319

21.6 XML . 320
21.6.1 Command Line . 320
21.6.2 Serialization of Experiments 323
21.6.3 Serialization of Classifiers 324
21.6.4 Bayesian Networks . 325
21.6.5 XRFF files . 325

22 Other resources 327
22.1 Mailing list . 327
22.2 Troubleshooting . 327

22.2.1 Weka download problems 327
22.2.2 OutOfMemoryException 327

22.2.2.1 Windows . 328
22.2.3 Mac OSX . 328
22.2.4 StackOverflowError . 328
22.2.5 just-in-time (JIT) compiler 329
22.2.6 CSV file conversion . 329
22.2.7 ARFF file doesn’t load . 329

10 CONTENTS

22.2.8 Spaces in labels of ARFF files 329
22.2.9 CLASSPATH problems 329
22.2.10 Instance ID . 330

22.2.10.1 Adding the ID 330
22.2.10.2 Removing the ID 330

22.2.11Visualization . 331
22.2.12Memory consumption and Garbage collector 331
22.2.13GUIChooser starts but not Experimenter or Explorer . . 331
22.2.14KnowledgeFlow toolbars are empty 332
22.2.15Links . 332

Bibliography 334

Part I

The Command-line

11

Chapter 1

A command-line primer

1.1 Introduction

While for initial experiments the included graphical user interface is quite suf-
ficient, for in-depth usage the command line interface is recommended, because
it offers some functionality which is not available via the GUI - and uses far
less memory. Should you get Out of Memory errors, increase the maximum
heap size for your java engine, usually via -Xmx1024M or -Xmx1024m for 1GB -
the default setting of 16 to 64MB is usually too small. If you get errors that
classes are not found, check your CLASSPATH: does it include weka.jar? You
can explicitly set CLASSPATH via the -cp command line option as well.

We will begin by describing basic concepts and ideas. Then, we will describe
the weka.filters package, which is used to transform input data, e.g. for
preprocessing, transformation, feature generation and so on.

Then we will focus on the machine learning algorithms themselves. These
are called Classifiers in WEKA. We will restrict ourselves to common settings
for all classifiers and shortly note representatives for all main approaches in
machine learning.

Afterwards, practical examples are given.
Finally, in the doc directory of WEKA you find a documentation of all java

classes within WEKA. Prepare to use it since this overview is not intended to
be complete. If you want to know exactly what is going on, take a look at the
mostly well-documented source code, which can be found in weka-src.jar and
can be extracted via the jar utility from the Java Development Kit (or any
archive program that can handle ZIP files).

13

14 CHAPTER 1. A COMMAND-LINE PRIMER

1.2 Basic concepts

1.2.1 Dataset

A set of data items, the dataset, is a very basic concept of machine learning. A
dataset is roughly equivalent to a two-dimensional spreadsheet or database table.
In WEKA, it is implemented by the weka.core.Instances class. A dataset is
a collection of examples, each one of class weka.core.Instance. Each Instance
consists of a number of attributes, any of which can be nominal (= one of a
predefined list of values), numeric (= a real or integer number) or a string (= an
arbitrary long list of characters, enclosed in ”double quotes”). Additional types
are date and relational, which are not covered here but in the ARFF chapter.
The external representation of an Instances class is an ARFF file, which consists
of a header describing the attribute types and the data as comma-separated list.
Here is a short, commented example. A complete description of the ARFF file
format can be found here.

% This is a toy example, the UCI weather dataset.
% Any relation to real weather is purely coincidental.

Comment lines at the beginning
of the dataset should give an in-
dication of its source, context
and meaning.

@relation golfWeatherMichigan_1988/02/10_14days

Here we state the internal name
of the dataset. Try to be as com-
prehensive as possible.

@attribute outlook {sunny, overcast, rainy}

@attribute windy {TRUE, FALSE}

Here we define two nominal at-
tributes, outlook and windy. The
former has three values: sunny,
overcast and rainy; the latter
two: TRUE and FALSE. Nom-
inal values with special charac-
ters, commas or spaces are en-
closed in ’single quotes’.

@attribute temperature real
@attribute humidity real

These lines define two numeric
attributes. Instead of real, inte-
ger or numeric can also be used.
While double floating point val-
ues are stored internally, only
seven decimal digits are usually
processed.

@attribute play {yes, no}

The last attribute is the default
target or class variable used for
prediction. In our case it is a
nominal attribute with two val-
ues, making this a binary classi-
fication problem.

1.2. BASIC CONCEPTS 15

@data
sunny,FALSE,85,85,no

sunny,TRUE,80,90,no
overcast,FALSE,83,86,yes
rainy,FALSE,70,96,yes

rainy,FALSE,68,80,yes

The rest of the dataset consists
of the token @data, followed by
comma-separated values for the
attributes – one line per exam-
ple. In our case there are five ex-
amples.

In our example, we have not mentioned the attribute type string, which
defines ”double quoted” string attributes for text mining. In recent WEKA
versions, date/time attribute types are also supported.

By default, the last attribute is considered the class/target variable, i.e. the
attribute which should be predicted as a function of all other attributes. If this
is not the case, specify the target variable via -c. The attribute numbers are
one-based indices, i.e. -c 1 specifies the first attribute.

Some basic statistics and validation of given ARFF files can be obtained via
the main() routine of weka.core.Instances:

java weka.core.Instances data/soybean.arff

weka.core offers some other useful routines, e.g. converters.C45Loader and
converters.CSVLoader, which can be used to import C45 datasets and comma/tab-
separated datasets respectively, e.g.:

java weka.core.converters.CSVLoader data.csv > data.arff

java weka.core.converters.C45Loader c45_filestem > data.arff

16 CHAPTER 1. A COMMAND-LINE PRIMER

1.2.2 Classifier

Any learning algorithm inWEKA is derived from the abstract weka.classifiers.AbstractClassifier
class. This, in turn, implements weka.classifiers.Classifier. Surprisingly
little is needed for a basic classifier: a routine which generates a classifier model
from a training dataset (= buildClassifier) and another routine which eval-
uates the generated model on an unseen test dataset (= classifyInstance), or
generates a probability distribution for all classes (= distributionForInstance).

A classifier model is an arbitrary complex mapping from all-but-one dataset
attributes to the class attribute. The specific form and creation of this map-
ping, or model, differs from classifier to classifier. For example, ZeroR’s (=
weka.classifiers.rules.ZeroR) model just consists of a single value: the
most common class, or the median of all numeric values in case of predicting a
numeric value (= regression learning). ZeroR is a trivial classifier, but it gives a
lower bound on the performance of a given dataset which should be significantly
improved by more complex classifiers. As such it is a reasonable test on how
well the class can be predicted without considering the other attributes.

Later, we will explain how to interpret the output from classifiers in detail –
for now just focus on the Correctly Classified Instances in the section Stratified
cross-validation and notice how it improves from ZeroR to J48:

java weka.classifiers.rules.ZeroR -t weather.arff
java weka.classifiers.trees.J48 -t weather.arff

There are various approaches to determine the performance of classifiers. The
performance can most simply be measured by counting the proportion of cor-
rectly predicted examples in an unseen test dataset. This value is the accuracy,
which is also 1-ErrorRate. Both terms are used in literature.

The simplest case is using a training set and a test set which are mutually
independent. This is referred to as hold-out estimate. To estimate variance in
these performance estimates, hold-out estimates may be computed by repeatedly
resampling the same dataset – i.e. randomly reordering it and then splitting it
into training and test sets with a specific proportion of the examples, collecting
all estimates on test data and computing average and standard deviation of
accuracy.

A more elaborate method is cross-validation. Here, a number of folds n is
specified. The dataset is randomly reordered and then split into n folds of equal
size. In each iteration, one fold is used for testing and the other n-1 folds are
used for training the classifier. The test results are collected and averaged over
all folds. This gives the cross-validation estimate of the accuracy. The folds can
be purely random or slightly modified to create the same class distributions in
each fold as in the complete dataset. In the latter case the cross-validation is
called stratified. Leave-one-out (= loo) cross-validation signifies that n is equal
to the number of examples. Out of necessity, loo cv has to be non-stratified,
i.e. the class distributions in the test set are not related to those in the training
data. Therefore loo cv tends to give less reliable results. However it is still
quite useful in dealing with small datasets since it utilizes the greatest amount
of training data from the dataset.

1.2. BASIC CONCEPTS 17

1.2.3 weka.filters

The weka.filters package is concerned with classes that transform datasets –
by removing or adding attributes, resampling the dataset, removing examples
and so on. This package offers useful support for data preprocessing, which is
an important step in machine learning.

All filters offer the options -i for specifying the input dataset, and -o for
specifying the output dataset. If any of these parameters is not given, standard
input and/or standard output will be read from/written to. Other parameters
are specific to each filter and can be found out via -h, as with any other class.
The weka.filters package is organized into supervised and unsupervised

filtering, both of which are again subdivided into instance and attribute filtering.
We will discuss each of the four subsections separately.

weka.filters.supervised

Classes below weka.filters.supervised in the class hierarchy are for super-
vised filtering, i.e., taking advantage of the class information. A class must be
assigned via -c, for WEKA default behaviour use -c last.

weka.filters.supervised.attribute

Discretize is used to discretize numeric attributes into nominal ones, based
on the class information, via Fayyad & Irani’s MDL method, or optionally
with Kononeko’s MDL method. At least some learning schemes or classifiers
can only process nominal data, e.g. weka.classifiers.rules.Prism; in some
cases discretization may also reduce learning time.

java weka.filters.supervised.attribute.Discretize -i data/iris.arff \

-o iris-nom.arff -c last
java weka.filters.supervised.attribute.Discretize -i data/cpu.arff \

-o cpu-classvendor-nom.arff -c first

NominalToBinary encodes all nominal attributes into binary (two-valued) at-
tributes, which can be used to transform the dataset into a purely numeric
representation, e.g. for visualization via multi-dimensional scaling.

java weka.filters.supervised.attribute.NominalToBinary \
-i data/contact-lenses.arff -o contact-lenses-bin.arff -c last

Keep in mind that most classifiers in WEKA utilize transformation filters in-
ternally, e.g. Logistic and SMO, so you will usually not have to use these filters
explicity. However, if you plan to run a lot of experiments, pre-applying the
filters yourself may improve runtime performance.

weka.filters.supervised.instance

Resample creates a stratified subsample of the given dataset. This means that
overall class distributions are approximately retained within the sample. A bias
towards uniform class distribution can be specified via -B.

java weka.filters.supervised.instance.Resample -i data/soybean.arff \
-o soybean-5%.arff -c last -Z 5

java weka.filters.supervised.instance.Resample -i data/soybean.arff \
-o soybean-uniform-5%.arff -c last -Z 5 -B 1

18 CHAPTER 1. A COMMAND-LINE PRIMER

StratifiedRemoveFolds creates stratified cross-validation folds of the given
dataset. This means that by default the class distributions are approximately
retained within each fold. The following example splits soybean.arff into strat-
ified training and test datasets, the latter consisting of 25% (= 1/4) of the
data.

java weka.filters.supervised.instance.StratifiedRemoveFolds \

-i data/soybean.arff -o soybean-train.arff \
-c last -N 4 -F 1 -V

java weka.filters.supervised.instance.StratifiedRemoveFolds \

-i data/soybean.arff -o soybean-test.arff \
-c last -N 4 -F 1

weka.filters.unsupervised

Classes below weka.filters.unsupervised in the class hierarchy are for unsu-
pervised filtering, e.g. the non-stratified version of Resample. A class attribute
should not be assigned here.

weka.filters.unsupervised.attribute

StringToWordVector transforms string attributes into word vectors, i.e. creat-
ing one attribute for each word which either encodes presence or word count (=
-C) within the string. -W can be used to set an approximate limit on the number
of words. When a class is assigned, the limit applies to each class separately.
This filter is useful for text mining.
Obfuscate renames the dataset name, all attribute names and nominal attribute
values. This is intended for exchanging sensitive datasets without giving away
restricted information.
Remove is intended for explicit deletion of attributes from a dataset, e.g. for
removing attributes of the iris dataset:

java weka.filters.unsupervised.attribute.Remove -R 1-2 \
-i data/iris.arff -o iris-simplified.arff

java weka.filters.unsupervised.attribute.Remove -V -R 3-last \
-i data/iris.arff -o iris-simplified.arff

weka.filters.unsupervised.instance

Resample creates a non-stratified subsample of the given dataset, i.e. random
sampling without regard to the class information. Otherwise it is equivalent to
its supervised variant.

java weka.filters.unsupervised.instance.Resample -i data/soybean.arff \
-o soybean-5%.arff -Z 5

RemoveFoldscreates cross-validation folds of the given dataset. The class distri-
butions are not retained. The following example splits soybean.arff into training
and test datasets, the latter consisting of 25% (= 1/4) of the data.

java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff \
-o soybean-train.arff -c last -N 4 -F 1 -V

java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff \

-o soybean-test.arff -c last -N 4 -F 1

RemoveWithValues filters instances according to the value of an attribute.

java weka.filters.unsupervised.instance.RemoveWithValues -i data/soybean.arff \

-o soybean-without_herbicide_injury.arff -V -C last -L 19

1.2. BASIC CONCEPTS 19

1.2.4 weka.classifiers

Classifiers are at the core of WEKA. There are a lot of common options for
classifiers, most of which are related to evaluation purposes. We will focus on
the most important ones. All others including classifier-specific parameters can
be found via -h, as usual.

-t specifies the training file (ARFF format)

-T
specifies the test file in (ARFF format). If this parameter is miss-
ing, a crossvalidation will be performed (default: ten-fold cv)

-x
This parameter determines the number of folds for the cross-
validation. A cv will only be performed if -T is missing.

-c As we already know from the weka.filters section, this parameter
sets the class variable with a one-based index.

-d

The model after training can be saved via this parameter. Each
classifier has a different binary format for the model, so it can
only be read back by the exact same classifier on a compatible
dataset. Only the model on the training set is saved, not the
multiple models generated via cross-validation.

-l
Loads a previously saved model, usually for testing on new, pre-
viously unseen data. In that case, a compatible test file should be
specified, i.e. the same attributes in the same order.

-p #
If a test file is specified, this parameter shows you the predictions
and one attribute (0 for none) for all test instances.

-i

A more detailed performance description via precision, recall,
true- and false positive rate is additionally output with this pa-
rameter. All these values can also be computed from the confusion
matrix.

-o

This parameter switches the human-readable output of the model
description off. In case of support vector machines or NaiveBayes,
this makes some sense unless you want to parse and visualize a
lot of information.

We now give a short list of selected classifiers in WEKA. Other classifiers below
weka.classifiers may also be used. This is more easy to see in the Explorer GUI.

• trees.J48 A clone of the C4.5 decision tree learner

• bayes.NaiveBayes A Naive Bayesian learner. -K switches on kernel den-
sity estimation for numerical attributes which often improves performance.

• meta.ClassificationViaRegression-W functions.LinearRegression

Multi-response linear regression.

• functions.Logistic Logistic Regression.

20 CHAPTER 1. A COMMAND-LINE PRIMER

• functions.SMO Support Vector Machine (linear, polynomial and RBF ker-
nel) with Sequential Minimal Optimization Algorithm due to [4]. Defaults
to SVM with linear kernel, -E 5 -C 10 gives an SVM with polynomial
kernel of degree 5 and lambda of 10.

• lazy.KStar Instance-Based learner. -E sets the blend entropy automati-
cally, which is usually preferable.

• lazy.IBk Instance-Based learner with fixed neighborhood. -K sets the
number of neighbors to use. IB1 is equivalent to IBk -K 1

• rules.JRip A clone of the RIPPER rule learner.

Based on a simple example, we will now explain the output of a typical
classifier, weka.classifiers.trees.J48. Consider the following call from the
command line, or start the WEKA explorer and train J48 on weather.arff :

java weka.classifiers.trees.J48 -t data/weather.arff -i

J48 pruned tree

outlook = sunny

| humidity <= 75: yes (2.0)
| humidity > 75: no (3.0)

outlook = overcast: yes (4.0)
outlook = rainy

| windy = TRUE: no (2.0)
| windy = FALSE: yes (3.0)

Number of Leaves : 5

Size of the tree : 8

The first part, unless you specify
-o, is a human-readable form of
the training set model. In this
case, it is a decision tree. out-
look is at the root of the tree
and determines the first decision.
In case it is overcast, we’ll al-
ways play golf. The numbers in
(parentheses) at the end of each
leaf tell us the number of exam-
ples in this leaf. If one or more
leaves were not pure (= all of the
same class), the number of mis-
classified examples would also be
given, after a /slash/

Time taken to build model: 0.05 seconds
Time taken to test model on training data: 0 seconds

As you can see, a decision tree
learns quite fast and is evalu-
ated even faster. E.g. for a lazy
learner, testing would take far
longer than training.

1.2. BASIC CONCEPTS 21

== Error on training data ===

Correctly Classified Instance 14 100 %
Incorrectly Classified Instances 0 0 %

Kappa statistic 1
Mean absolute error 0

Root mean squared error 0
Relative absolute error 0 %
Root relative squared error 0 %

Total Number of Instances 14

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
1 0 1 1 1 yes
1 0 1 1 1 no

=== Confusion Matrix ===

a b <-- classified as
9 0 | a = yes

0 5 | b = no

This is quite boring: our clas-
sifier is perfect, at least on the
training data – all instances were
classified correctly and all errors
are zero. As is usually the case,
the training set accuracy is too
optimistic. The detailed accu-
racy by class, which is output via
-i, and the confusion matrix is
similarily trivial.

=== Stratified cross-validation ===

Correctly Classified Instances 9 64.2857 %
Incorrectly Classified Instances 5 35.7143 %

Kappa statistic 0.186
Mean absolute error 0.2857

Root mean squared error 0.4818
Relative absolute error 60 %
Root relative squared error 97.6586 %

Total Number of Instances 14

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
0.778 0.6 0.7 0.778 0.737 yes

0.4 0.222 0.5 0.4 0.444 no

=== Confusion Matrix ===

a b <-- classified as
7 2 | a = yes

3 2 | b = no

The stratified cv paints a more
realistic picture. The accuracy is
around 64%. The kappa statis-
tic measures the agreement of
prediction with the true class –
1.0 signifies complete agreement.
The following error values are
not very meaningful for classifi-
cation tasks, however for regres-
sion tasks e.g. the root of the
mean squared error per exam-
ple would be a reasonable cri-
terion. We will discuss the re-
lation between confusion matrix
and other measures in the text.

The confusion matrix is more commonly named contingency table. In our
case we have two classes, and therefore a 2x2 confusion matrix, the matrix
could be arbitrarily large. The number of correctly classified instances is the
sum of diagonals in the matrix; all others are incorrectly classified (class ”a”
gets misclassified as ”b” exactly twice, and class ”b” gets misclassified as ”a”
three times).

The True Positive (TP) rate is the proportion of examples which were clas-
sified as class x, among all examples which truly have class x, i.e. how much
part of the class was captured. It is equivalent to Recall. In the confusion ma-
trix, this is the diagonal element divided by the sum over the relevant row, i.e.
7/(7+2)=0.778 for class yes and 2/(3+2)=0.4 for class no in our example.

The False Positive (FP) rate is the proportion of examples which were classi-
fied as class x, but belong to a different class, among all examples which are not
of class x. In the matrix, this is the column sum of class x minus the diagonal
element, divided by the rows sums of all other classes; i.e. 3/5=0.6 for class yes
and 2/9=0.222 for class no.

The Precision is the proportion of the examples which truly have class x

22 CHAPTER 1. A COMMAND-LINE PRIMER

among all those which were classified as class x. In the matrix, this is the
diagonal element divided by the sum over the relevant column, i.e. 7/(7+3)=0.7
for class yes and 2/(2+2)=0.5 for class no.

The F-Measure is simply 2*Precision*Recall/(Precision+Recall), a combined
measure for precision and recall.

These measures are useful for comparing classifiers. However, if more de-
tailed information about the classifier’s predictions are necessary, -p # out-
puts just the predictions for each test instance, along with a range of one-
based attribute ids (0 for none). Let’s look at the following example. We
shall assume soybean-train.arff and soybean-test.arff have been constructed via
weka.filters.supervised.instance.StratifiedRemoveFolds as in a previous example.

java weka.classifiers.bayes.NaiveBayes -K -t soybean-train.arff \

-T soybean-test.arff -p 0

0 diaporthe-stem-canker 0.9999672587892333 diaporthe-stem-canker

1 diaporthe-stem-canker 0.9999992614503429 diaporthe-stem-canker
2 diaporthe-stem-canker 0.999998948559035 diaporthe-stem-canker

3 diaporthe-stem-canker 0.9999998441238833 diaporthe-stem-canker
4 diaporthe-stem-canker 0.9999989997681132 diaporthe-stem-canker
5 rhizoctonia-root-rot 0.9999999395928124 rhizoctonia-root-rot

6 rhizoctonia-root-rot 0.999998912860593 rhizoctonia-root-rot
7 rhizoctonia-root-rot 0.9999994386283236 rhizoctonia-root-rot

...

The values in each line are sep-
arated by a single space. The
fields are the zero-based test in-
stance id, followed by the pre-
dicted class value, the confi-
dence for the prediction (esti-
mated probability of predicted
class), and the true class. All
these are correctly classified, so
let’s look at a few erroneous ones.

32 phyllosticta-leaf-spot 0.7789710144361445 brown-spot

...
39 alternarialeaf-spot 0.6403333824349896 brown-spot
...

44 phyllosticta-leaf-spot 0.893568420641914 brown-spot
...

46 alternarialeaf-spot 0.5788190397739439 brown-spot
...
73 brown-spot 0.4943768155314637 alternarialeaf-spot

...

In each of these cases, a misclas-
sification occurred, mostly be-
tween classes alternarialeaf-spot
and brown-spot. The confidences
seem to be lower than for correct
classification, so for a real-life ap-
plication it may make sense to
output don’t know below a cer-
tain threshold. WEKA also out-
puts a trailing newline.

If we had chosen a range of attributes via -p, e.g. -p first-last, the
mentioned attributes would have been output afterwards as comma-separated
values, in (parentheses). However, the zero-based instance id in the first column
offers a safer way to determine the test instances.

If we had saved the output of -p in soybean-test.preds, the following call
would compute the number of correctly classified instances:

cat soybean-test.preds | awk ’$2==$4&&$0!=""’ | wc -l

Dividing by the number of instances in the test set, i.e. wc -l < soybean-test.preds

minus one (= trailing newline), we get the training set accuracy.

1.3. EXAMPLES 23

1.3 Examples

Usually, if you evaluate a classifier for a longer experiment, you will do something
like this (for csh):

java -Xmx1024m weka.classifiers.trees.J48 -t data.arff -i -k \
-d J48-data.model >&! J48-data.out &

The -Xmx1024m parameter for maximum heap size ensures your task will get
enough memory. There is no overhead involved, it just leaves more room for the
heap to grow. -i and -k gives you some additional information, which may be
useful, e.g. precision and recall for all classes. In case your model performs well,
it makes sense to save it via -d - you can always delete it later! The implicit
cross-validation gives a more reasonable estimate of the expected accuracy on
unseen data than the training set accuracy. The output both of standard error
and output should be redirected, so you get both errors and the normal output
of your classifier. The last & starts the task in the background. Keep an eye
on your task via top and if you notice the hard disk works hard all the time
(for linux), this probably means your task needs too much memory and will not
finish in time for the exam. In that case, switch to a faster classifier or use filters,
e.g. for Resample to reduce the size of your dataset or StratifiedRemoveFolds
to create training and test sets - for most classifiers, training takes more time
than testing.

So, now you have run a lot of experiments – which classifier is best? Try

cat *.out | grep -A 3 "Stratified" | grep "^Correctly"

...this should give you all cross-validated accuracies. If the cross-validated ac-
curacy is roughly the same as the training set accuracy, this indicates that your
classifiers is presumably not overfitting the training set.

Now you have found the best classifier. To apply it on a new dataset, use
e.g.

java weka.classifiers.trees.J48 -l J48-data.model -T new-data.arff

You will have to use the same classifier to load the model, but you need not
set any options. Just add the new test file via -T. If you want, -p first-last

will output all test instances with classifications and confidence, followed by all
attribute values, so you can look at each error separately.

The following more complex csh script creates datasets for learning curves,
i.e. creating a 75% training set and 25% test set from a given dataset, then
successively reducing the test set by factor 1.2 (83%), until it is also 25% in
size. All this is repeated thirty times, with different random reorderings (-S)
and the results are written to different directories. The Experimenter GUI in
WEKA can be used to design and run similar experiments.

#!/bin/csh
foreach f ($*)

set run=1

while ($run <= 30)
mkdir $run >&! /dev/null

java weka.filters.supervised.instance.StratifiedRemoveFolds -N 4 -F 1 -S $run -c last -i ../$f -o $run/t_$f
java weka.filters.supervised.instance.StratifiedRemoveFolds -N 4 -F 1 -S $run -V -c last -i ../$f -o $run/t0$f
foreach nr (0 1 2 3 4 5)

set nrp1=$nr
@ nrp1++

24 CHAPTER 1. A COMMAND-LINE PRIMER

java weka.filters.supervised.instance.Resample -S 0 -Z 83 -c last -i run/tnr$f -o run/tnrp1$f
end

echo Run $run of $f done.
@ run++

end
end

If meta classifiers are used, i.e. classifiers whose options include classi-
fier specifications - for example, StackingC or ClassificationViaRegression,
care must be taken not to mix the parameters. E.g.:

java weka.classifiers.meta.ClassificationViaRegression \
-W weka.classifiers.functions.LinearRegression -S 1 \

-t data/iris.arff -x 2

gives us an illegal options exception for -S 1. This parameter is meant for
LinearRegression, not for ClassificationViaRegression, but WEKA does
not know this by itself. One way to clarify this situation is to enclose the
classifier specification, including all parameters, in ”double” quotes, like this:

java weka.classifiers.meta.ClassificationViaRegression \
-W "weka.classifiers.functions.LinearRegression -S 1" \

-t data/iris.arff -x 2

However this does not always work, depending on how the option handling was
implemented in the top-level classifier. While for Stacking this approach would
work quite well, for ClassificationViaRegression it does not. We get the
dubious error message that the class weka.classifiers.functions.LinearRegression
-S 1 cannot be found. Fortunately, there is another approach: All parameters
given after -- are processed by the first sub-classifier; another -- lets us specify
parameters for the second sub-classifier and so on.

java weka.classifiers.meta.ClassificationViaRegression \
-W weka.classifiers.functions.LinearRegression \

-t data/iris.arff -x 2 -- -S 1

In some cases, both approaches have to be mixed, for example:

java weka.classifiers.meta.Stacking -B "weka.classifiers.lazy.IBk -K 10" \

-M "weka.classifiers.meta.ClassificationViaRegression -W weka.classifiers.functions.LinearRegression -- -S 1" \
-t data/iris.arff -x 2

Notice that while ClassificationViaRegression honors the -- parameter,
Stacking itself does not. Sadly the option handling for sub-classifier specifi-
cations is not yet completely unified within WEKA, but hopefully one or the
other approach mentioned here will work.

1.4 Additional packages and the package man-
ager

Up until now we’ve used the term package to refer to a Java’s concept of orga-
nizing classes. In addition, Weka has the concept of a package as a bundle of
additional functionality, separate from that supplied in the main weka.jar file.
A package consists of various jar files, documentation, meta data, and possibly
source code (see “Weka Packages” in the Appendix for more information on the
structure of packages for Weka). There are a number of packages available for

1.4. ADDITIONAL PACKAGES AND THE PACKAGE MANAGER 25

Weka that add learning schemes or extend the functionality of the core system
in some fashion. Many are provided by the Weka team and others are from
third parties.

Weka includes a facility for the management of packages and a mechanism
to load them dynamically at runtime. There is both a command-line and GUI
package manager; we describe the command-line version here and the GUI ver-
sion in the next Chapter.

1.4.1 Package management

Assuming that the weka.jar file is in the classpath, the package manager can
be accessed by typing:

java weka.core.WekaPackageManager

Supplying no options will print the usage information:

Usage: weka.core.PackageManager [option]
Options:

-list-packages <all | installed | available>
-package-info <repository | installed | archive> packageName

-install-package <packageName | packageZip | URL> [version]
-uninstall-package <packageName>
-refresh-cache

Information (meta data) about packages is stored on a web server hosted on
Sourceforge. The first time the package manager is run, for a new installation of
Weka, there will be a short delay while the system downloads and stores a cache
of the meta data from the server. Maintaining a cache speeds up the process
of browsing the package information. From time to time you should update the
local cache of package meta data in order to get the latest information on pack-
ages from the server. This can be achieved by supplying the -refresh-cache

option.
The -list-packages option will, as the name suggests, print information

(version numbers and short descritions) about various packages. The option
must be followed by one of three keywords:

• all will print information on all packages that the system knows about

• installed will print information on all packages that are installed locally

• available will print information on all packages that are not installed

The following shows an example of listing all packages installed locally:

java weka.core.PackageManager -list-packages installed

Installed Repository Package

========= ========== =======
1.0.0 1.0.0 DTNB: Class for building and using a decision table/naive bayes hybrid classifier.
1.0.0 1.0.0 massiveOnlineAnalysis: MOA (Massive On-line Analysis).

1.0.0 1.0.0 multiInstanceFilters: A collection of filters for manipulating multi-instance data.
1.0.0 1.0.0 naiveBayesTree: Class for generating a decision tree with naive Bayes classifiers at the leaves.

1.0.0 1.0.0 scatterPlot3D: A visualization component for displaying a 3D scatter plot of the data using Java 3D.

The -package-info command lists information about a package given its
name. The command is followed by one of three keywords and then the name
of a package:

26 CHAPTER 1. A COMMAND-LINE PRIMER

• repository will print info from the repository for the named package

• installed will print info on the installed version of the named package

• archive will print info for a package stored in a zip archive. In this case,
the “archive” keyword must be followed by the path to an package zip
archive file rather than just the name of a package

The following shows an example of listing information for the “isotonicRe-
gression” package from the server:

java weka.core.WekaPackageManager -package-info repository isotonicRegression

Description:Learns an isotonic regression model. Picks the attribute that results
in the lowest squared error. Missing values are not allowed. Can only deal with

numeric attributes. Considers the monotonically increasing case as well as the
monotonically decreasing case.

Version:1.0.0

PackageURL:http://60.234.159.233/~mhall/wekaLite/isotonicRegression/isotonicRegression1.0.0.zip
Author:Eibe Frank

PackageName:isotonicRegression
Title:Learns an isotonic regression model.

Date:2009-09-10
URL:http://weka.sourceforge.net/doc.dev/weka/classifiers/IsotonicRegression.html

Category:Regression

Depends:weka (>=3.7.1)
License:GPL 2.0

Maintainer:Weka team <wekalist@list.scms.waikato.ac.nz>

The -install-package command allows a package to be installed from one
of three locations:

• specifying a name of a package will install the package using the infor-
mation in the package description meta data stored on the server. If no
version number is given, then the latest available version of the package is
installed.

• providing a path to a zip file will attempt to unpack and install the archive
as a Weka package

• providing a URL (beginning with http://) to a package zip file on the web
will download and attempt to install the zip file as a Weka package

The uninstall-package command will uninstall the named package. Of
course, the named package has to be installed for this command to have any
effect!

1.4.2 Running installed learning algorithms

Running learning algorithms that come with the main weka distribution (i.e.
are contained in the weka.jar file) was covered earlier in this chapter. But
what about algorithms from packages that you’ve installed using the package
manager? We don’t want to have to add a ton of jar files to our classpath every
time we wan’t to run a particular algorithm. Fortunately, we don’t have to.
Weka has a mechanism to load installed packages dynamically at run time. We
can run a named algorithm by using the Run command:

java weka.Run

If no arguments are supplied, then Run outputs the following usage informa-
tion:

1.4. ADDITIONAL PACKAGES AND THE PACKAGE MANAGER 27

Usage:
weka.Run [-no-scan] [-no-load] <scheme name [scheme options]>

The Run command supports sub-string matching, so you can run a classifier
(such as J48) like so:

java weka.Run J48

When there are multiple matches on a supplied scheme name you will be
presented with a list. For example:

java weka.Run NaiveBayes

Select a scheme to run, or <return> to exit:
1) weka.classifiers.bayes.ComplementNaiveBayes

2) weka.classifiers.bayes.NaiveBayes
3) weka.classifiers.bayes.NaiveBayesMultinomial

4) weka.classifiers.bayes.NaiveBayesMultinomialUpdateable
5) weka.classifiers.bayes.NaiveBayesSimple
6) weka.classifiers.bayes.NaiveBayesUpdateable

Enter a number >

You can turn off the scanning of packages and sub-string matching by pro-
viding the -no-scan option. This is useful when using the Run command in a
script. In this case, you need to specify the fully qualified name of the algorithm
to use. E.g.

java weka.Run -no-scan weka.classifiers.bayes.NaiveBayes

To reduce startup time you can also turn off the dynamic loading of installed
packages by specifying the -no-load option. In this case, you will need to
explicitly include any packaged algorithms in your classpath if you plan to use
them. E.g.

java -classpath ./weka.jar:$HOME/wekafiles/packages/DTNB/DTNB.jar rweka.Run -no-load -no-scan weka.classifiers.rules.DTNB

28 CHAPTER 1. A COMMAND-LINE PRIMER

Part II

The Graphical User
Interface

29

Chapter 2

Launching WEKA

The Weka GUI Chooser (class weka.gui.GUIChooser) provides a starting point
for launching Weka’s main GUI applications and supporting tools. If one prefers
a MDI (“multiple document interface”) appearance, then this is provided by an
alternative launcher called “Main” (class weka.gui.Main).

The GUI Chooser consists of four buttons—one for each of the four major
Weka applications—and four menus.

The buttons can be used to start the following applications:

• Explorer An environment for exploring data with WEKA (the rest of
this documentation deals with this application in more detail).

• Experimenter An environment for performing experiments and conduct-
ing statistical tests between learning schemes.

• KnowledgeFlow This environment supports essentially the same func-
tions as the Explorer but with a drag-and-drop interface. One advantage
is that it supports incremental learning.

• Workbench An all-in-one application that combines all the others within
user-selectable “perspectives”.

• SimpleCLI Provides a simple command-line interface that allows direct
execution of WEKA commands for operating systems that do not provide
their own command line interface.

The menu consists of four sections:

31

32 CHAPTER 2. LAUNCHING WEKA

1. Program

• LogWindow Opens a log window that captures all that is printed
to stdout or stderr. Useful for environments like MS Windows, where
WEKA is normally not started from a terminal.

• Exit Closes WEKA.

2. Tools Other useful applications.

• Package manager A graphical interface to Weka’s package man-
agement system.

• ArffViewer An MDI application for viewing ARFF files in spread-
sheet format.

• SqlViewer Represents an SQL worksheet, for querying databases
via JDBC.

• Bayes net editor An application for editing, visualizing and learn-
ing Bayes nets.

3. Visualization Ways of visualizing data with WEKA.

• Plot For plotting a 2D plot of a dataset.

• ROC Displays a previously saved ROC curve.

• TreeVisualizer For displaying directed graphs, e.g., a decision tree.

• GraphVisualizer Visualizes XML BIF or DOT format graphs, e.g.,
for Bayesian networks.

• BoundaryVisualizer Allows the visualization of classifier decision
boundaries in two dimensions.

4. Help Online resources for WEKA can be found here.

• Weka homepage Opens a browser window with WEKA’s home-
page.

• HOWTOs, code snippets, etc. The general WekaWiki [2], con-
taining lots of examples and HOWTOs around the development and
use of WEKA.

33

• Weka on SourceforgeWEKA’s project homepage on Sourceforge.net.

• SystemInfo Lists some internals about the Java/WEKA environ-
ment, e.g., the CLASSPATH.

To make it easy for the user to add new functionality to the menu with-
out having to modify the code of WEKA itself, the GUI now offers a plugin
mechanism for such add-ons. Due to the inherent dynamic class discovery, plu-
gins only need to implement the weka.gui.MainMenuExtension interface and
WEKA notified of the package they reside in to be displayed in the menu un-
der “Extensions” (this extra menu appears automatically as soon as extensions
are discovered). More details can be found in the Wiki article “Extensions for
Weka’s main GUI” [6].

If you launch WEKA from a terminal window, some text begins scrolling
in the terminal. Ignore this text unless something goes wrong, in which case it
can help in tracking down the cause (the LogWindow from the Program menu
displays that information as well).

This User Manual focuses on using the Explorer but does not explain the
individual data preprocessing tools and learning algorithms in WEKA. For more
information on the various filters and learning methods in WEKA, see the book
Data Mining [1].

34 CHAPTER 2. LAUNCHING WEKA

Chapter 3

Package Manager

The Package Manager provides a graphical interface to Weka’s package manage-
ment system. All the functionality available in the command line client to the
package management system covered in the previous Chapter is available in the
GUI version, along with the ability to install and uninstall multiple packages in
one hit.

3.1 Main window

The package manager’s window is split horizontally into two parts: at the
top is a list of packages and at the bottom is a mini browser that can be used
to display information on the currently selected package.

The package list shows the name of a package, its category, the currently
installed version (if installed), the latest version available via the repository and
whether the package has been loaded or not. This list may be sorted by either
package name or category by clicking on the appropriate column header. A
second click on the same header reverses the sort order. Three radio buttons
in the upper left of the window can be used to filter what is displayed in the

35

36 CHAPTER 3. PACKAGE MANAGER

list. All packages (default), all available packages (i.e. those not yet installed)
or only installed packages can be displayed.

If multiple versions of a package are available, they can be accessed by click-
ing on an entry in the “Repository version” column:

3.2 Installing and removing packages

At the very top of the window are three buttons. On the left-hand side is a
button that can be used to refresh the cached copy of the package repository
meta data. The first time that the package manager (GUI or command line) is
used there will be a short delay as the initial cache is established. Each time
the package manager is used it will check with the central repository to see if
new packages or updates to existing packages are available. If there are updates
available, the user will see a yellow triangular warning icon appear beside the
“home” icon under the list of packages. Mousing over this icon will popup a
tooltip showing what updates are available. In order to access those updates
the user must manually refresh the repository cache by pressing the “Refresh
repository cache” button. Following this, the new/updated packages can be
installed as normal.

The two buttons at the top right are used to install and remove packages
repspectively. Multiple packages may be installed/removed by using a shift-
left-click combination to select a range and/or by using a command-left-click
combination to add to the selection. Underneath the install and uninstall but-
tons is a checkbox that can be enabled to ignore any dependencies required by
selected packages and any conflicts that may occur. Installing packages while
this checkbox is selected will not install required dependencies.

Some packages may have additional information on how to complete the
installation or special instructions that gets displayed when the package is in-
stalled:

3.3. USING A HTTP PROXY 37

Usually it is not necessary to restartWeka after packages have been installed—
the changes should be available immediately. An exception is when upgrading
a package that is already installed. If in doubt, restart Weka.

3.2.1 Unoffical packages

The package list shows those packages that have their meta data stored in Weka’s
central meta data repository. These packages are “official” Weka packages and
the Weka team as verified that they appear to provide what is advertised (and
do not contain malicious code or malware).

It is also possible to install an “unofficial” package that has not gone through
the process of become official. Unofficial packages might be provided, for exam-
ple, by researchers who want to make experimental algorithms quickly available
to the community for feedback. Unofficial packages can be installed by clicking
the “File/url” button on the top-right of the package manager window. This
will bring up an “Unnoficial package install” dialog where the user can browse
their file system for a package zip file or directly enter an URL to the package
zip file. Note that no dependency checking is done for unofficial packages.

3.3 Using a http proxy

Both the GUI and command line package managers can operate via a http
proxy. To do so, start Weka from the command line and supply property values
for the proxy host and port:

java -Dhttp.proxyHost=some.proxy.somewhere.net -Dhttp.proxyPort=port weka.gui.GUIChooser

If your proxy requires authentication, then two more (non-standard) prop-
erties can be supplied:

-Dhttp.proxyUser=some_user_name -Dhttp.proxyPassword=some_password

3.4 Using an alternative central package meta

data repository

By default, both the command-line and GUI package managers use the central
package meta data repository hosted on Sourceforge. In the unlikely event
that this site is unavailable for one reason or another, it is possible to point
the package management system at an alternative repository. This mechanism
allows a temporary backup of the official repostory to be accessed, local mirrors
to be established and alternative repositories to be set up for use etc.

An alternative repository can be specified by setting a Java property:

weka.core.wekaPackageRepositoryURL=http://some.mirror.somewhere

This can either be set when starting Weka from the command line with
the -D flag, or it can be placed into a file called “PackageRepository.props” in
$WEKA_HOME/props. The default value of WEKA_HOME is user.home/wekafiles,
where user.home is the user’s home directory. More information on how and
where Weka stores configuration information is given in the Appendix (Chapter
19).

38 CHAPTER 3. PACKAGE MANAGER

3.5 Package manager property file

As mentioned in the previous section, an alternative package meta data reposi-
tory can be specified by placing an entry in the PackageRepository.props file in
$WEKA_HOME/props. From Weka 3.7.8 (and snapshot builds after 24 September
2012), the package manager also looks for properties placed in $WEKA_HOME/props/PackageManager.props
The current set of properties that can be set are:

weka.core.wekaPackageRepositoryURL=http://some.mirror.somewhere

weka.packageManager.offline=[true | false]
weka.packageManager.loadPackages=[true | false]

weka.pluginManager.disable=com.funky.FunkyExplorerPluginTab

The default for offline mode (if unspecified) is “false” and for loadPackages is
“true”. The weka.pluginManager.disable property can be used to specify a
comma-separated list of fully qualified class names to “disable” in the GUI. This
can be used to make problematic components unavailable in the GUI without
having to prevent the entire package that contains them from being loaded. E.g.
“funkyPackage” might provide several classifiers and a special Explorer plugin
tab for visualization. Suppose, for example, that the plugin Explorer tab has
issues with certain data sets and causes annoying exceptions to be generated (or
perhaps in the worst cases crashes the Explorer!). In this case we might want
to use the classifiers provided by the package and just disable the Explorer
plugin. Listing the fully qualified name of the Explorer plugin as a member of
the comma-separated list associated with the weka.pluginManager.disable

property will achieve this.

Chapter 4

Simple CLI

The Simple CLI provides full access to all Weka classes, i.e., classifiers, filters,
clusterers, etc., but without the hassle of the CLASSPATH (it facilitates the
one, with which Weka was started).

It offers a simple Weka shell with separated commandline and output.

4.1 Commands

The following commands are available in the Simple CLI:

• java <classname> [<args>]

invokes a java class with the given arguments (if any)

• break

stops the current thread, e.g., a running classifier, in a friendly manner

39

40 CHAPTER 4. SIMPLE CLI

• kill

stops the current thread in an unfriendly fashion

• cls

clears the output area

• capabilities <classname> [<args>]
lists the capabilities of the specified class, e.g., for a classifier with its
options:

capabilities weka.classifiers.meta.Bagging -W weka.classifiers.trees.Id3

• exit

exits the Simple CLI

• help [<command>]

provides an overview of the available commands if without a command
name as argument, otherwise more help on the specified command

4.2 Invocation

In order to invoke a Weka class, one has only to prefix the class with ”java”.
This command tells the Simple CLI to load a class and execute it with any given
parameters. E.g., the J48 classifier can be invoked on the iris dataset with the
following command:

java weka.classifiers.trees.J48 -t c:/temp/iris.arff

This results in the following output:

4.3 Command redirection

Starting with this version of Weka one can perform a basic redirection:

java weka.classifiers.trees.J48 -t test.arff > j48.txt

Note: the > must be preceded and followed by a space, otherwise it is not
recognized as redirection, but part of another parameter.

4.4. COMMAND COMPLETION 41

4.4 Command completion

Commands starting with java support completion for classnames and filenames
via Tab (Alt+BackSpace deletes parts of the command again). In case that
there are several matches, Weka lists all possible matches.

• package name completion

java weka.cl<Tab>

results in the following output of possible matches of package names:

Possible matches:

weka.classifiers

weka.clusterers

• classname completion

java weka.classifiers.meta.A<Tab>

lists the following classes

Possible matches:

weka.classifiers.meta.AdaBoostM1

weka.classifiers.meta.AdditiveRegression

weka.classifiers.meta.AttributeSelectedClassifier

• filename completion
In order for Weka to determine whether a the string under the cursor
is a classname or a filename, filenames need to be absolute (Unix/Linx:
/some/path/file; Windows: C:\Some\Path\file) or relative and starting
with a dot (Unix/Linux: ./some/other/path/file;Windows: .\Some\Other\Path\file).

42 CHAPTER 4. SIMPLE CLI

Chapter 5

Explorer

5.1 The user interface

5.1.1 Section Tabs

At the very top of the window, just below the title bar, is a row of tabs. When
the Explorer is first started only the first tab is active; the others are greyed
out. This is because it is necessary to open (and potentially pre-process) a data
set before starting to explore the data.

The tabs are as follows:

1. Preprocess. Choose and modify the data being acted on.

2. Classify. Train and test learning schemes that classify or perform regres-
sion.

3. Cluster. Learn clusters for the data.

4. Associate. Learn association rules for the data.

5. Select attributes. Select the most relevant attributes in the data.

6. Visualize. View an interactive 2D plot of the data.

Once the tabs are active, clicking on them flicks between different screens, on
which the respective actions can be performed. The bottom area of the window
(including the status box, the log button, and the Weka bird) stays visible
regardless of which section you are in.

The Explorer can be easily extended with custom tabs. The Wiki article
“Adding tabs in the Explorer” [7] explains this in detail.

5.1.2 Status Box

The status box appears at the very bottom of the window. It displays messages
that keep you informed about what’s going on. For example, if the Explorer is
busy loading a file, the status box will say that.

TIP—right-clicking the mouse anywhere inside the status box brings up a
little menu. The menu gives two options:

43

44 CHAPTER 5. EXPLORER

1. Memory information. Display in the log box the amount of memory
available to WEKA.

2. Run garbage collector. Force the Java garbage collector to search for
memory that is no longer needed and free it up, allowing more memory
for new tasks. Note that the garbage collector is constantly running as a
background task anyway.

5.1.3 Log Button

Clicking on this button brings up a separate window containing a scrollable text
field. Each line of text is stamped with the time it was entered into the log. As
you perform actions in WEKA, the log keeps a record of what has happened.
For people using the command line or the SimpleCLI, the log now also contains
the full setup strings for classification, clustering, attribute selection, etc., so
that it is possible to copy/paste them elsewhere. Options for dataset(s) and, if
applicable, the class attribute still have to be provided by the user (e.g., -t for
classifiers or -i and -o for filters).

5.1.4 WEKA Status Icon

To the right of the status box is the WEKA status icon. When no processes are
running, the bird sits down and takes a nap. The number beside the × symbol
gives the number of concurrent processes running. When the system is idle it is
zero, but it increases as the number of processes increases. When any process
is started, the bird gets up and starts moving around. If it’s standing but stops
moving for a long time, it’s sick: something has gone wrong! In that case you
should restart the WEKA Explorer.

5.1.5 Graphical output

Most graphical displays in WEKA, e.g., the GraphVisualizer or the TreeVisu-
alizer, support saving the output to a file. A dialog for saving the output can
be brought up with Alt+Shift+left-click. Supported formats are currently Win-
dows Bitmap, JPEG, PNG and EPS (encapsulated Postscript). The dialog also
allows you to specify the dimensions of the generated image.

5.2. PREPROCESSING 45

5.2 Preprocessing

5.2.1 Loading Data

The first four buttons at the top of the preprocess section enable you to load
data into WEKA:

1. Open file.... Brings up a dialog box allowing you to browse for the data
file on the local file system.

2. Open URL.... Asks for a Uniform Resource Locator address for where
the data is stored.

3. Open DB.... Reads data from a database. (Note that to make this work
you might have to edit the file in weka/experiment/DatabaseUtils.props.)

4. Generate.... Enables you to generate artificial data from a variety of
DataGenerators.

Using the Open file... button you can read files in a variety of formats:
WEKA’s ARFF format, CSV format, C4.5 format, or serialized Instances for-
mat. ARFF files typically have a .arff extension, CSV files a .csv extension,
C4.5 files a .data and .names extension, and serialized Instances objects a .bsi
extension.

NB: This list of formats can be extended by adding custom file converters
to the weka.core.converters package.

5.2.2 The Current Relation

Once some data has been loaded, the Preprocess panel shows a variety of in-
formation. The Current relation box (the “current relation” is the currently
loaded data, which can be interpreted as a single relational table in database
terminology) has three entries:

46 CHAPTER 5. EXPLORER

1. Relation. The name of the relation, as given in the file it was loaded
from. Filters (described below) modify the name of a relation.

2. Instances. The number of instances (data points/records) in the data.

3. Attributes. The number of attributes (features) in the data.

5.2.3 Working With Attributes

Below the Current relation box is a box titled Attributes. There are four
buttons, and beneath them is a list of the attributes in the current relation.
The list has three columns:

1. No.. A number that identifies the attribute in the order they are specified
in the data file.

2. Selection tick boxes. These allow you select which attributes are present
in the relation.

3. Name. The name of the attribute, as it was declared in the data file.

When you click on different rows in the list of attributes, the fields change
in the box to the right titled Selected attribute. This box displays the char-
acteristics of the currently highlighted attribute in the list:

1. Name. The name of the attribute, the same as that given in the attribute
list.

2. Type. The type of attribute, most commonly Nominal or Numeric.

3. Missing. The number (and percentage) of instances in the data for which
this attribute is missing (unspecified).

4. Distinct. The number of different values that the data contains for this
attribute.

5. Unique. The number (and percentage) of instances in the data having a
value for this attribute that no other instances have.

Below these statistics is a list showing more information about the values stored
in this attribute, which differ depending on its type. If the attribute is nominal,
the list consists of each possible value for the attribute along with the number
of instances that have that value. If the attribute is numeric, the list gives
four statistics describing the distribution of values in the data—the minimum,
maximum, mean and standard deviation. And below these statistics there is a
coloured histogram, colour-coded according to the attribute chosen as the Class
using the box above the histogram. (This box will bring up a drop-down list
of available selections when clicked.) Note that only nominal Class attributes
will result in a colour-coding. Finally, after pressing the Visualize All button,
histograms for all the attributes in the data are shown in a separate window.

Returning to the attribute list, to begin with all the tick boxes are unticked.
They can be toggled on/off by clicking on them individually. The four buttons
above can also be used to change the selection:

5.2. PREPROCESSING 47

1. All. All boxes are ticked.

2. None. All boxes are cleared (unticked).

3. Invert. Boxes that are ticked become unticked and vice versa.

4. Pattern. Enables the user to select attributes based on a Perl 5 Regular
Expression. E.g., .* id selects all attributes which name ends with id.

Once the desired attributes have been selected, they can be removed by
clicking the Remove button below the list of attributes. Note that this can be
undone by clicking the Undo button, which is located next to the Edit button
in the top-right corner of the Preprocess panel.

5.2.4 Working With Filters

The preprocess section allows filters to be defined that transform the data
in various ways. The Filter box is used to set up the filters that are required.
At the left of the Filter box is a Choose button. By clicking this button it is
possible to select one of the filters in WEKA. Once a filter has been selected, its
name and options are shown in the field next to the Choose button. Clicking on
this box with the left mouse button brings up a GenericObjectEditor dialog box.
A click with the right mouse button (or Alt+Shift+left click) brings up a menu
where you can choose, either to display the properties in a GenericObjectEditor
dialog box, or to copy the current setup string to the clipboard.

The GenericObjectEditor Dialog Box

The GenericObjectEditor dialog box lets you configure a filter. The same kind
of dialog box is used to configure other objects, such as classifiers and clusterers
(see below). The fields in the window reflect the available options.

Right-clicking (or Alt+Shift+Left-Click) on such a field will bring up a popup
menu, listing the following options:

48 CHAPTER 5. EXPLORER

1. Show properties... has the same effect as left-clicking on the field, i.e.,
a dialog appears allowing you to alter the settings.

2. Copy configuration to clipboard copies the currently displayed con-
figuration string to the system’s clipboard and therefore can be used any-
where else in WEKA or in the console. This is rather handy if you have
to setup complicated, nested schemes.

3. Enter configuration... is the “receiving” end for configurations that
got copied to the clipboard earlier on. In this dialog you can enter a
classname followed by options (if the class supports these). This also
allows you to transfer a filter setting from the Preprocess panel to a
FilteredClassifier used in the Classify panel.

Left-Clicking on any of these gives an opportunity to alter the filters settings.
For example, the setting may take a text string, in which case you type the
string into the text field provided. Or it may give a drop-down box listing
several states to choose from. Or it may do something else, depending on the
information required. Information on the options is provided in a tool tip if you
let the mouse pointer hover of the corresponding field. More information on the
filter and its options can be obtained by clicking on the More button in the
About panel at the top of the GenericObjectEditor window.

Some objects display a brief description of what they do in an About box,
along with a More button. Clicking on the More button brings up a window
describing what the different options do. Others have an additional button,
Capabilities, which lists the types of attributes and classes the object can handle.

At the bottom of the GenericObjectEditor dialog are four buttons. The first
two, Open... and Save... allow object configurations to be stored for future
use. The Cancel button backs out without remembering any changes that have
been made. Once you are happy with the object and settings you have chosen,
click OK to return to the main Explorer window.

Applying Filters

Once you have selected and configured a filter, you can apply it to the data by
pressing theApply button at the right end of the Filter panel in the Preprocess
panel. The Preprocess panel will then show the transformed data. The change
can be undone by pressing the Undo button. You can also use the Edit...
button to modify your data manually in a dataset editor. Finally, the Save...
button at the top right of the Preprocess panel saves the current version of the
relation in file formats that can represent the relation, allowing it to be kept for
future use.

Note: Some of the filters behave differently depending on whether a class at-
tribute has been set or not (using the box above the histogram, which will
bring up a drop-down list of possible selections when clicked). In particular, the
“supervised filters” require a class attribute to be set, and some of the “unsu-
pervised attribute filters” will skip the class attribute if one is set. Note that it
is also possible to set Class to None, in which case no class is set.

5.3. CLASSIFICATION 49

5.3 Classification

5.3.1 Selecting a Classifier

At the top of the classify section is the Classifier box. This box has a text field
that gives the name of the currently selected classifier, and its options. Clicking
on the text box with the left mouse button brings up a GenericObjectEditor
dialog box, just the same as for filters, that you can use to configure the options
of the current classifier. With a right click (or Alt+Shift+left click) you can
once again copy the setup string to the clipboard or display the properties in a
GenericObjectEditor dialog box. The Choose button allows you to choose one
of the classifiers that are available in WEKA.

5.3.2 Test Options

The result of applying the chosen classifier will be tested according to the options
that are set by clicking in the Test options box. There are four test modes:

1. Use training set. The classifier is evaluated on how well it predicts the
class of the instances it was trained on.

2. Supplied test set. The classifier is evaluated on how well it predicts the
class of a set of instances loaded from a file. Clicking the Set... button
brings up a dialog allowing you to choose the file to test on.

3. Cross-validation. The classifier is evaluated by cross-validation, using
the number of folds that are entered in the Folds text field.

4. Percentage split. The classifier is evaluated on how well it predicts a
certain percentage of the data which is held out for testing. The amount
of data held out depends on the value entered in the % field.

Note: No matter which evaluation method is used, the model that is output is
always the one build from all the training data. Further testing options can be
set by clicking on the More options... button:

50 CHAPTER 5. EXPLORER

1. Output model. The classification model on the full training set is output
so that it can be viewed, visualized, etc. This option is selected by default.

2. Output per-class stats. The precision/recall and true/false statistics
for each class are output. This option is also selected by default.

3. Output entropy evaluation measures. Entropy evaluation measures
are included in the output. This option is not selected by default.

4. Output confusion matrix. The confusion matrix of the classifier’s pre-
dictions is included in the output. This option is selected by default.

5. Store predictions for visualization. The classifier’s predictions are
remembered so that they can be visualized. This option is selected by
default.

6. Output predictions. The predictions on the evaluation data are output.
Note that in the case of a cross-validation the instance numbers do not
correspond to the location in the data!

7. Output additional attributes. If additional attributes need to be out-
put alongside the predictions, e.g., an ID attribute for tracking misclassi-
fications, then the index of this attribute can be specified here. The usual
Weka ranges are supported,“first” and “last” are therefore valid indices as
well (example: “first-3,6,8,12-last”).

8. Cost-sensitive evaluation. The errors is evaluated with respect to a
cost matrix. The Set... button allows you to specify the cost matrix
used.

9. Random seed for xval / % Split. This specifies the random seed used
when randomizing the data before it is divided up for evaluation purposes.

10. Preserve order for % Split. This suppresses the randomization of the
data before splitting into train and test set.

11. Output source code. If the classifier can output the built model as Java
source code, you can specify the class name here. The code will be printed
in the “Classifier output” area.

5.3.3 The Class Attribute

The classifiers in WEKA are designed to be trained to predict a single ‘class’
attribute, which is the target for prediction. Some classifiers can only learn
nominal classes; others can only learn numeric classes (regression problems);
still others can learn both.

By default, the class is taken to be the last attribute in the data. If you want
to train a classifier to predict a different attribute, click on the box below the
Test options box to bring up a drop-down list of attributes to choose from.

5.3. CLASSIFICATION 51

5.3.4 Training a Classifier

Once the classifier, test options and class have all been set, the learning process
is started by clicking on the Start button. While the classifier is busy being
trained, the little bird moves around. You can stop the training process at any
time by clicking on the Stop button.

When training is complete, several things happen. The Classifier output
area to the right of the display is filled with text describing the results of training
and testing. A new entry appears in the Result list box. We look at the result
list below; but first we investigate the text that has been output.

5.3.5 The Classifier Output Text

The text in the Classifier output area has scroll bars allowing you to browse
the results. Clicking with the left mouse button into the text area, while holding
Alt and Shift, brings up a dialog that enables you to save the displayed output
in a variety of formats (currently, BMP, EPS, JPEG and PNG). Of course, you
can also resize the Explorer window to get a larger display area. The output is
split into several sections:

1. Run information. A list of information giving the learning scheme op-
tions, relation name, instances, attributes and test mode that were in-
volved in the process.

2. Classifier model (full training set). A textual representation of the
classification model that was produced on the full training data.

3. The results of the chosen test mode are broken down thus:

4. Summary. A list of statistics summarizing how accurately the classifier
was able to predict the true class of the instances under the chosen test
mode.

5. Detailed Accuracy By Class. A more detailed per-class break down
of the classifier’s prediction accuracy.

6. Confusion Matrix. Shows how many instances have been assigned to
each class. Elements show the number of test examples whose actual class
is the row and whose predicted class is the column.

7. Source code (optional). This section lists the Java source code if one
chose “Output source code” in the “More options” dialog.

5.3.6 The Result List

After training several classifiers, the result list will contain several entries. Left-
clicking the entries flicks back and forth between the various results that have
been generated. Pressing Delete removes a selected entry from the results.
Right-clicking an entry invokes a menu containing these items:

1. View in main window. Shows the output in the main window (just like
left-clicking the entry).

52 CHAPTER 5. EXPLORER

2. View in separate window. Opens a new independent window for view-
ing the results.

3. Save result buffer. Brings up a dialog allowing you to save a text file
containing the textual output.

4. Load model. Loads a pre-trained model object from a binary file.

5. Save model. Saves a model object to a binary file. Objects are saved in
Java ‘serialized object’ form.

6. Re-evaluate model on current test set. Takes the model that has
been built and tests its performance on the data set that has been specified
with the Set.. button under the Supplied test set option.

7. Visualize classifier errors. Brings up a visualization window that plots
the results of classification. Correctly classified instances are represented
by crosses, whereas incorrectly classified ones show up as squares.

8. Visualize tree orVisualize graph. Brings up a graphical representation
of the structure of the classifier model, if possible (i.e. for decision trees
or Bayesian networks). The graph visualization option only appears if a
Bayesian network classifier has been built. In the tree visualizer, you can
bring up a menu by right-clicking a blank area, pan around by dragging
the mouse, and see the training instances at each node by clicking on it.
CTRL-clicking zooms the view out, while SHIFT-dragging a box zooms
the view in. The graph visualizer should be self-explanatory.

9. Visualize margin curve. Generates a plot illustrating the prediction
margin. The margin is defined as the difference between the probability
predicted for the actual class and the highest probability predicted for
the other classes. For example, boosting algorithms may achieve better
performance on test data by increasing the margins on the training data.

10. Visualize threshold curve. Generates a plot illustrating the trade-offs
in prediction that are obtained by varying the threshold value between
classes. For example, with the default threshold value of 0.5, the pre-
dicted probability of ‘positive’ must be greater than 0.5 for the instance
to be predicted as ‘positive’. The plot can be used to visualize the pre-
cision/recall trade-off, for ROC curve analysis (true positive rate vs false
positive rate), and for other types of curves.

11. Visualize cost curve. Generates a plot that gives an explicit represen-
tation of the expected cost, as described by [5].

12. Plugins. This menu item only appears if there are visualization plugins
available (by default: none). More about these plugins can be found in
the WekaWiki article “Explorer visualization plugins” [8].

Options are greyed out if they do not apply to the specific set of results.

5.4. CLUSTERING 53

5.4 Clustering

5.4.1 Selecting a Clusterer

By now you will be familiar with the process of selecting and configuring objects.
Clicking on the clustering scheme listed in the Clusterer box at the top of the
window brings up a GenericObjectEditor dialog with which to choose a new
clustering scheme.

5.4.2 Cluster Modes

The Cluster mode box is used to choose what to cluster and how to evaluate
the results. The first three options are the same as for classification: Use train-
ing set, Supplied test set and Percentage split (Section 5.3.1)—except that
now the data is assigned to clusters instead of trying to predict a specific class.
The fourth mode, Classes to clusters evaluation, compares how well the
chosen clusters match up with a pre-assigned class in the data. The drop-down
box below this option selects the class, just as in the Classify panel.

An additional option in the Cluster mode box, the Store clusters for
visualization tick box, determines whether or not it will be possible to visualize
the clusters once training is complete. When dealing with datasets that are so
large that memory becomes a problem it may be helpful to disable this option.

5.4.3 Ignoring Attributes

Often, some attributes in the data should be ignored when clustering. The
Ignore attributes button brings up a small window that allows you to select
which attributes are ignored. Clicking on an attribute in the window highlights
it, holding down the SHIFT key selects a range of consecutive attributes, and
holding down CTRL toggles individual attributes on and off. To cancel the
selection, back out with the Cancel button. To activate it, click the Select
button. The next time clustering is invoked, the selected attributes are ignored.

54 CHAPTER 5. EXPLORER

5.4.4 Working with Filters

The FilteredClusterer meta-clusterer offers the user the possibility to apply
filters directly before the clusterer is learned. This approach eliminates the
manual application of a filter in the Preprocess panel, since the data gets
processed on the fly. Useful if one needs to try out different filter setups.

5.4.5 Learning Clusters

The Cluster section, like the Classify section, has Start/Stop buttons, a
result text area and a result list. These all behave just like their classifica-
tion counterparts. Right-clicking an entry in the result list brings up a similar
menu, except that it shows only two visualization options: Visualize cluster
assignments and Visualize tree. The latter is grayed out when it is not
applicable.

5.5. ASSOCIATING 55

5.5 Associating

5.5.1 Setting Up

This panel contains schemes for learning association rules, and the learners are
chosen and configured in the same way as the clusterers, filters, and classifiers
in the other panels.

5.5.2 Learning Associations

Once appropriate parameters for the association rule learner bave been set, click
the Start button. When complete, right-clicking on an entry in the result list
allows the results to be viewed or saved.

56 CHAPTER 5. EXPLORER

5.6 Selecting Attributes

5.6.1 Searching and Evaluating

Attribute selection involves searching through all possible combinations of at-
tributes in the data to find which subset of attributes works best for prediction.
To do this, two objects must be set up: an attribute evaluator and a search
method. The evaluator determines what method is used to assign a worth to
each subset of attributes. The search method determines what style of search
is performed.

5.6.2 Options

The Attribute Selection Mode box has two options:

1. Use full training set. The worth of the attribute subset is determined
using the full set of training data.

2. Cross-validation. The worth of the attribute subset is determined by a
process of cross-validation. The Fold and Seed fields set the number of
folds to use and the random seed used when shuffling the data.

As with Classify (Section 5.3.1), there is a drop-down box that can be used to
specify which attribute to treat as the class.

5.6.3 Performing Selection

Clicking Start starts running the attribute selection process. When it is fin-
ished, the results are output into the result area, and an entry is added to
the result list. Right-clicking on the result list gives several options. The first
three, (View in main window, View in separate window and Save result
buffer), are the same as for the classify panel. It is also possible to Visualize

5.6. SELECTING ATTRIBUTES 57

reduced data, or if you have used an attribute transformer such as Principal-
Components, Visualize transformed data. The reduced/transformed data
can be saved to a file with the Save reduced data... or Save transformed
data... option.

In case one wants to reduce/transform a training and a test at the same time
and not use the AttributeSelectedClassifier from the classifier panel, it is best
to use the AttributeSelection filter (a supervised attribute filter) in batch mode
(’-b’) from the command line or in the SimpleCLI. The batch mode allows one
to specify an additional input and output file pair (options -r and -s), that is
processed with the filter setup that was determined based on the training data
(specified by options -i and -o).

Here is an example for a Unix/Linux bash:

java weka.filters.supervised.attribute.AttributeSelection \

-E "weka.attributeSelection.CfsSubsetEval " \

-S "weka.attributeSelection.BestFirst -D 1 -N 5" \

-b \

-i <input1.arff> \

-o <output1.arff> \

-r <input2.arff> \

-s <output2.arff>

Notes:

• The “backslashes” at the end of each line tell the bash that the command
is not finished yet. Using the SimpleCLI one has to use this command in
one line without the backslashes.

• It is assumed that WEKA is available in the CLASSPATH, otherwise one
has to use the -classpath option.

• The full filter setup is output in the log, as well as the setup for running
regular attribute selection.

58 CHAPTER 5. EXPLORER

5.7 Visualizing

WEKA’s visualization section allows you to visualize 2D plots of the current
relation.

5.7.1 The scatter plot matrix

When you select the Visualize panel, it shows a scatter plot matrix for all
the attributes, colour coded according to the currently selected class. It is
possible to change the size of each individual 2D plot and the point size, and to
randomly jitter the data (to uncover obscured points). It also possible to change
the attribute used to colour the plots, to select only a subset of attributes for
inclusion in the scatter plot matrix, and to sub sample the data. Note that
changes will only come into effect once the Update button has been pressed.

5.7.2 Selecting an individual 2D scatter plot

When you click on a cell in the scatter plot matrix, this will bring up a separate
window with a visualization of the scatter plot you selected. (We described
above how to visualize particular results in a separate window—for example,
classifier errors—the same visualization controls are used here.)

Data points are plotted in the main area of the window. At the top are two
drop-down list buttons for selecting the axes to plot. The one on the left shows
which attribute is used for the x-axis; the one on the right shows which is used
for the y-axis.

Beneath the x-axis selector is a drop-down list for choosing the colour scheme.
This allows you to colour the points based on the attribute selected. Below the
plot area, a legend describes what values the colours correspond to. If the values
are discrete, you can modify the colour used for each one by clicking on them
and making an appropriate selection in the window that pops up.

To the right of the plot area is a series of horizontal strips. Each strip
represents an attribute, and the dots within it show the distribution of values

5.7. VISUALIZING 59

of the attribute. These values are randomly scattered vertically to help you see
concentrations of points. You can choose what axes are used in the main graph
by clicking on these strips. Left-clicking an attribute strip changes the x-axis
to that attribute, whereas right-clicking changes the y-axis. The ‘X’ and ‘Y’
written beside the strips shows what the current axes are (‘B’ is used for ‘both
X and Y’).

Above the attribute strips is a slider labelled Jitter, which is a random
displacement given to all points in the plot. Dragging it to the right increases the
amount of jitter, which is useful for spotting concentrations of points. Without
jitter, a million instances at the same point would look no different to just a
single lonely instance.

5.7.3 Selecting Instances

There may be situations where it is helpful to select a subset of the data us-
ing the visualization tool. (A special case of this is the UserClassifier in the
Classify panel, which lets you build your own classifier by interactively selecting
instances.)

Below the y-axis selector button is a drop-down list button for choosing a
selection method. A group of data points can be selected in four ways:

1. Select Instance. Clicking on an individual data point brings up a window
listing its attributes. If more than one point appears at the same location,
more than one set of attributes is shown.

2. Rectangle. You can create a rectangle, by dragging, that selects the
points inside it.

3. Polygon. You can build a free-form polygon that selects the points inside
it. Left-click to add vertices to the polygon, right-click to complete it. The
polygon will always be closed off by connecting the first point to the last.

4. Polyline. You can build a polyline that distinguishes the points on one
side from those on the other. Left-click to add vertices to the polyline,
right-click to finish. The resulting shape is open (as opposed to a polygon,
which is always closed).

Once an area of the plot has been selected using Rectangle, Polygon or
Polyline, it turns grey. At this point, clicking the Submit button removes all
instances from the plot except those within the grey selection area. Clicking on
the Clear button erases the selected area without affecting the graph.

Once any points have been removed from the graph, the Submit button
changes to a Reset button. This button undoes all previous removals and
returns you to the original graph with all points included. Finally, clicking the
Save button allows you to save the currently visible instances to a new ARFF
file.

60 CHAPTER 5. EXPLORER

Chapter 6

Experimenter

6.1 Introduction

The Weka Experiment Environment enables the user to create, run, modify,
and analyse experiments in a more convenient manner than is possible when
processing the schemes individually. For example, the user can create an exper-
iment that runs several schemes against a series of datasets and then analyse
the results to determine if one of the schemes is (statistically) better than the
other schemes.

The Experiment Environment can be run from the command line using the
Simple CLI. For example, the following commands could be typed into the CLI
to run the OneR scheme on the Iris dataset using a basic train and test process.
(Note that the commands would be typed on one line into the CLI.)

java weka.experiment.Experiment -r -T data/iris.arff

-D weka.experiment.InstancesResultListener

-P weka.experiment.RandomSplitResultProducer --

-W weka.experiment.ClassifierSplitEvaluator --

-W weka.classifiers.rules.OneR

While commands can be typed directly into the CLI, this technique is not
particularly convenient and the experiments are not easy to modify.

The Experimenter comes in two flavours, either with a simple interface that
provides most of the functionality one needs for experiments, or with an interface
with full access to the Experimenter’s capabilities. You can choose between
those two with the Experiment Configuration Mode radio buttons:

• Simple

• Advanced

Both setups allow you to setup standard experiments, that are run locally on
a single machine, or remote experiments, which are distributed between several
hosts. The distribution of experiments cuts down the time the experiments will
take until completion, but on the other hand the setup takes more time.

The next section covers the standard experiments (both, simple and ad-
vanced), followed by the remote experiments and finally the analysing of the
results.

61

62 CHAPTER 6. EXPERIMENTER

6.2 Standard Experiments

6.2.1 Simple

6.2.1.1 New experiment

After clicking New default parameters for an Experiment are defined.

6.2.1.2 Results destination

By default, an ARFF file is the destination for the results output. But you can
choose between

• ARFF file

• CSV file

• JDBC database

ARFF file and JDBC database are discussed in detail in the following sec-
tions. CSV is similar to ARFF, but it can be used to be loaded in an external
spreadsheet application.

ARFF file

If the file name is left empty a temporary file will be created in the TEMP
directory of the system. If one wants to specify an explicit results file, click on
Browse and choose a filename, e.g., Experiment1.arff.

6.2. STANDARD EXPERIMENTS 63

Click on Save and the name will appear in the edit field next to ARFF file.

The advantage of ARFF or CSV files is that they can be created without
any additional classes besides the ones from Weka. The drawback is the lack
of the ability to resume an experiment that was interrupted, e.g., due to an
error or the addition of dataset or algorithms. Especially with time-consuming
experiments, this behavior can be annoying.

JDBC database

With JDBC it is easy to store the results in a database. The necessary jar
archives have to be in the CLASSPATH to make the JDBC functionality of a
particular database available.

After changing ARFF file to JDBC database click on User... to specify
JDBC URL and user credentials for accessing the database.

64 CHAPTER 6. EXPERIMENTER

After supplying the necessary data and clicking on OK, the URL in the main
window will be updated.

Note: at this point, the database connection is not tested; this is done when
the experiment is started.

The advantage of a JDBC database is the possibility to resume an in-
terrupted or extended experiment. Instead of re-running all the other algo-
rithm/dataset combinations again, only the missing ones are computed.

6.2.1.3 Experiment type

The user can choose between the following three different types

• Cross-validation (default)
performs stratified cross-validation with the given number of folds

• Train/Test Percentage Split (data randomized)
splits a dataset according to the given percentage into a train and a test file
(one cannot specify explicit training and test files in the Experimenter),
after the order of the data has been randomized and stratified

6.2. STANDARD EXPERIMENTS 65

• Train/Test Percentage Split (order preserved)
because it is impossible to specify an explicit train/test files pair, one can
abuse this type to un-merge previously merged train and test file into the
two original files (one only needs to find out the correct percentage)

Additionally, one can choose between Classification and Regression, depend-
ing on the datasets and classifiers one uses. For decision trees like J48 (Weka’s
implementation of Quinlan’s C4.5 [10]) and the iris dataset, Classification is
necessary, for a numeric classifier like M5P, on the other hand, Regression. Clas-
sification is selected by default.

Note: if the percentage splits are used, one has to make sure that the cor-
rected paired T-Tester still produces sensible results with the given ratio [9].

66 CHAPTER 6. EXPERIMENTER

6.2.1.4 Datasets

One can add dataset files either with an absolute path or with a relative one.
The latter makes it often easier to run experiments on different machines, hence
one should check Use relative paths, before clicking on Add new....

In this example, open the data directory and choose the iris.arff dataset.

After clicking Open the file will be displayed in the datasets list. If one
selects a directory and hits Open, then all ARFF files will be added recursively.
Files can be deleted from the list by selecting them and then clicking on Delete
selected.

ARFF files are not the only format one can load, but all files that can be
converted with Weka’s “core converters”. The following formats are currently
supported:

• ARFF (+ compressed)

• C4.5

• CSV

• libsvm

• binary serialized instances

• XRFF (+ compressed)

6.2. STANDARD EXPERIMENTS 67

By default, the class attribute is assumed to be the last attribute. But if a
data format contains information about the class attribute, like XRFF or C4.5,
this attribute will be used instead.

6.2.1.5 Iteration control

• Number of repetitions
In order to get statistically meaningful results, the default number of it-
erations is 10. In case of 10-fold cross-validation this means 100 calls of
one classifier with training data and tested against test data.

• Data sets first/Algorithms first
As soon as one has more than one dataset and algorithm, it can be useful
to switch from datasets being iterated over first to algorithms. This is
the case if one stores the results in a database and wants to complete the
results for all the datasets for one algorithm as early as possible.

6.2.1.6 Algorithms

New algorithms can be added via the Add new... button. Opening this dialog
for the first time, ZeroR is presented, otherwise the one that was selected last.

With the Choose button one can open the GenericObjectEditor and choose
another classifier.

68 CHAPTER 6. EXPERIMENTER

The Filter... button enables one to highlight classifiers that can handle
certain attribute and class types. With the Remove filter button all the selected
capabilities will get cleared and the highlighting removed again.

Additional algorithms can be added again with the Add new... button, e.g.,
the J48 decision tree.

After setting the classifier parameters, one clicks on OK to add it to the list
of algorithms.

6.2. STANDARD EXPERIMENTS 69

With the Load options... and Save options... buttons one can load and save
the setup of a selected classifier from and to XML. This is especially useful
for highly configured classifiers (e.g., nested meta-classifiers), where the manual
setup takes quite some time, and which are used often.

One can also paste classifier settings here by right-clicking (or Alt-Shift-left-
clicking) and selecting the appropriate menu point from the popup menu, to
either add a new classifier or replace the selected one with a new setup. This is
rather useful for transferring a classifier setup from the Weka Explorer over to
the Experimenter without having to setup the classifier from scratch.

6.2.1.7 Saving the setup

For future re-use, one can save the current setup of the experiment to a file by
clicking on Save... at the top of the window.

By default, the format of the experiment files is the binary format that Java
serialization offers. The drawback of this format is the possible incompatibility
between different versions of Weka. A more robust alternative to the binary
format is the XML format.

Previously saved experiments can be loaded again via the Open... button.

70 CHAPTER 6. EXPERIMENTER

6.2.1.8 Running an Experiment

To run the current experiment, click the Run tab at the top of the Experiment
Environment window. The current experiment performs 10 runs of 10-fold strat-
ified cross-validation on the Iris dataset using the ZeroR and J48 scheme.

Click Start to run the experiment.

If the experiment was defined correctly, the 3 messages shown above will
be displayed in the Log panel. The results of the experiment are saved to the
dataset Experiment1.arff.

6.2. STANDARD EXPERIMENTS 71

6.2.2 Advanced

6.2.2.1 Defining an Experiment

When the Experimenter is started in Advanced mode, the Setup tab is displayed.
Click New to initialize an experiment. This causes default parameters to be
defined for the experiment.

To define the dataset to be processed by a scheme, first select Use relative
paths in the Datasets panel of the Setup tab and then click on Add new... to
open a dialog window.

Double click on the data folder to view the available datasets or navigate to
an alternate location. Select iris.arff and click Open to select the Iris dataset.

72 CHAPTER 6. EXPERIMENTER

The dataset name is now displayed in the Datasets panel of the Setup tab.

Saving the Results of the Experiment

To identify a dataset to which the results are to be sent, click on the Instances-
ResultListener entry in the Destination panel. The output file parameter is near
the bottom of the window, beside the text outputFile. Click on this parameter
to display a file selection window.

6.2. STANDARD EXPERIMENTS 73

Type the name of the output file and click Select. The file name is displayed
in the outputFile panel. Click on OK to close the window.

The dataset name is displayed in the Destination panel of the Setup tab.

Saving the Experiment Definition

The experiment definition can be saved at any time. Select Save... at the top
of the Setup tab. Type the dataset name with the extension exp (or select the
dataset name if the experiment definition dataset already exists) for binary files
or choose Experiment configuration files (*.xml) from the file types combobox
(the XML files are robust with respect to version changes).

74 CHAPTER 6. EXPERIMENTER

The experiment can be restored by selecting Open in the Setup tab and then
selecting Experiment1.exp in the dialog window.

6.2.2.2 Running an Experiment

To run the current experiment, click the Run tab at the top of the Experiment
Environment window. The current experiment performs 10 randomized train
and test runs on the Iris dataset, using 66% of the patterns for training and
34% for testing, and using the ZeroR scheme.

Click Start to run the experiment.

6.2. STANDARD EXPERIMENTS 75

If the experiment was defined correctly, the 3 messages shown above will
be displayed in the Log panel. The results of the experiment are saved to the
dataset Experiment1.arff. The first few lines in this dataset are shown below.

@relation InstanceResultListener

@attribute Key_Dataset {iris}

@attribute Key_Run {1,2,3,4,5,6,7,8,9,10}

@attribute Key_Scheme {weka.classifiers.rules.ZeroR,weka.classifiers.trees.J48}

@attribute Key_Scheme_options {,’-C 0.25 -M 2’}

@attribute Key_Scheme_version_ID {48055541465867954,-217733168393644444}

@attribute Date_time numeric

@attribute Number_of_training_instances numeric

@attribute Number_of_testing_instances numeric

@attribute Number_correct numeric

@attribute Number_incorrect numeric

@attribute Number_unclassified numeric

@attribute Percent_correct numeric

@attribute Percent_incorrect numeric

@attribute Percent_unclassified numeric

@attribute Kappa_statistic numeric

@attribute Mean_absolute_error numeric

@attribute Root_mean_squared_error numeric

@attribute Relative_absolute_error numeric

@attribute Root_relative_squared_error numeric

@attribute SF_prior_entropy numeric

@attribute SF_scheme_entropy numeric

@attribute SF_entropy_gain numeric

@attribute SF_mean_prior_entropy numeric

@attribute SF_mean_scheme_entropy numeric

@attribute SF_mean_entropy_gain numeric

@attribute KB_information numeric

76 CHAPTER 6. EXPERIMENTER

@attribute KB_mean_information numeric

@attribute KB_relative_information numeric

@attribute True_positive_rate numeric

@attribute Num_true_positives numeric

@attribute False_positive_rate numeric

@attribute Num_false_positives numeric

@attribute True_negative_rate numeric

@attribute Num_true_negatives numeric

@attribute False_negative_rate numeric

@attribute Num_false_negatives numeric

@attribute IR_precision numeric

@attribute IR_recall numeric

@attribute F_measure numeric

@attribute Area_under_ROC numeric

@attribute Time_training numeric

@attribute Time_testing numeric

@attribute Summary {’Number of leaves: 3\nSize of the tree: 5\n’,

’Number of leaves: 5\nSize of the tree: 9\n’,

’Number of leaves: 4\nSize of the tree: 7\n’}

@attribute measureTreeSize numeric

@attribute measureNumLeaves numeric

@attribute measureNumRules numeric

@data

iris,1,weka.classifiers.rules.ZeroR,,48055541465867954,20051221.033,99,51,

17,34,0,33.333333,66.666667,0,0,0.444444,0.471405,100,100,80.833088,80.833088,

0,1.584963,1.584963,0,0,0,0,1,17,1,34,0,0,0,0,0.333333,1,0.5,0.5,0,0,?,?,?,?

6.2.2.3 Changing the Experiment Parameters

Changing the Classifier

The parameters of an experiment can be changed by clicking on the Result
generator panel.

The RandomSplitResultProducer performs repeated train/test runs. The
number of instances (expressed as a percentage) used for training is given in the

6.2. STANDARD EXPERIMENTS 77

trainPercent box. (The number of runs is specified in the Runs panel in the
Setup tab.)

A small help file can be displayed by clicking More in the About panel.

Click on the splitEvaluator entry to display the SplitEvaluator properties.

Click on the classifier entry (ZeroR) to display the scheme properties.

This scheme has no modifiable properties (besides debug mode on/off) but
most other schemes do have properties that can be modified by the user. The
Capabilities button opens a small dialog listing all the attribute and class types
this classifier can handle. Click on the Choose button to select a different
scheme. The window below shows the parameters available for the J48 decision-
tree scheme. If desired, modify the parameters and then click OK to close the
window.

78 CHAPTER 6. EXPERIMENTER

The name of the new scheme is displayed in the Result generator panel.

Adding Additional Schemes

Additional schemes can be added in the Generator properties panel. To begin,
change the drop-down list entry from Disabled to Enabled in the Generator
properties panel.

6.2. STANDARD EXPERIMENTS 79

Click Select property and expand splitEvaluator so that the classifier entry
is visible in the property list; click Select.

The scheme name is displayed in the Generator properties panel.

80 CHAPTER 6. EXPERIMENTER

To add another scheme, click on the Choose button to display the Generic-
ObjectEditor window.

The Filter... button enables one to highlight classifiers that can handle
certain attribute and class types. With the Remove filter button all the selected
capabilities will get cleared and the highlighting removed again.

To change to a decision-tree scheme, select J48 (in subgroup trees).

6.2. STANDARD EXPERIMENTS 81

The new scheme is added to the Generator properties panel. Click Add to
add the new scheme.

Now when the experiment is run, results are generated for both schemes.

To add additional schemes, repeat this process. To remove a scheme, select
the scheme by clicking on it and then click Delete.

Adding Additional Datasets

The scheme(s) may be run on any number of datasets at a time. Additional
datasets are added by clicking Add new... in the Datasets panel. Datasets are
deleted from the experiment by selecting the dataset and then clicking Delete
Selected.

82 CHAPTER 6. EXPERIMENTER

Raw Output

The raw output generated by a scheme during an experiment can be saved to
a file and then examined at a later time. Open the ResultProducer window by
clicking on the Result generator panel in the Setup tab.

Click on rawOutput and select the True entry from the drop-down list. By
default, the output is sent to the zip file splitEvaluatorOut.zip. The output file
can be changed by clicking on the outputFile panel in the window. Now when
the experiment is run, the result of each processing run is archived, as shown
below.

The contents of the first run are:

ClassifierSplitEvaluator: weka.classifiers.trees.J48 -C 0.25 -M 2(version

-217733168393644444)Classifier model:

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (33.0)

petalwidth > 0.6

| petalwidth <= 1.5: Iris-versicolor (31.0/1.0)

| petalwidth > 1.5: Iris-virginica (35.0/3.0)

Number of Leaves : 3

Size of the tree : 5

6.2. STANDARD EXPERIMENTS 83

Correctly Classified Instances 47 92.1569 %

Incorrectly Classified Instances 4 7.8431 %

Kappa statistic 0.8824

Mean absolute error 0.0723

Root mean squared error 0.2191

Relative absolute error 16.2754 %

Root relative squared error 46.4676 %

Total Number of Instances 51

measureTreeSize : 5.0

measureNumLeaves : 3.0

measureNumRules : 3.0

6.2.2.4 Other Result Producers

Cross-Validation Result Producer

To change from random train and test experiments to cross-validation exper-
iments, click on the Result generator entry. At the top of the window, click
on the drop-down list and select CrossValidationResultProducer. The window
now contains parameters specific to cross-validation such as the number of par-
titions/folds. The experiment performs 10-fold cross-validation instead of train
and test in the given example.

The Result generator panel now indicates that cross-validation will be per-
formed. Click on More to generate a brief description of the CrossValidation-
ResultProducer.

84 CHAPTER 6. EXPERIMENTER

As with the RandomSplitResultProducer, multiple schemes can be run during
cross-validation by adding them to the Generator properties panel.

The number of runs is set to 1 in the Setup tab in this example, so that only
one run of cross-validation for each scheme and dataset is executed.

When this experiment is analysed, the following results are generated. Note
that there are 30 (1 run times 10 folds times 3 schemes) result lines processed.

Averaging Result Producer

An alternative to the CrossValidationResultProducer is the AveragingResultPro-
ducer. This result producer takes the average of a set of runs (which are typ-
ically cross-validation runs). This result producer is identified by clicking the
Result generator panel and then choosing the AveragingResultProducer from
the GenericObjectEditor.

6.2. STANDARD EXPERIMENTS 85

The associated help file is shown below.

Clicking the resultProducer panel brings up the following window.

As with the other ResultProducers, additional schemes can be defined. When
the AveragingResultProducer is used, the classifier property is located deeper in
the Generator properties hierarchy.

86 CHAPTER 6. EXPERIMENTER

In this experiment, the ZeroR, OneR, and J48 schemes are run 10 times with
10-fold cross-validation. Each set of 10 cross-validation folds is then averaged,
producing one result line for each run (instead of one result line for each fold as
in the previous example using the CrossValidationResultProducer) for a total of
30 result lines. If the raw output is saved, all 300 results are sent to the archive.

6.2. STANDARD EXPERIMENTS 87

Explicit Test-Set Result Producer

One of the Experimenter’s biggest drawbacks in the past was the inability to
supply test sets. Even though repeated runs with explicit test sets don’t make
that much sense (apart from randomizing the training data, to test the robust-
ness of the classifier), it offers the possibility to compare different classifiers and
classifier setups side-by-side; a feature that the Explorer lacks.

This result producer can be used by clicking the Result generator panel and
then choosing the ExplicitTestSetResultProducer from the GenericObjectEditor.

The associated help file is shown below.

88 CHAPTER 6. EXPERIMENTER

The experiment setup using explicit test sets requires a bit more care than
the others. The reason for this is, that the result producer has no information
about the file the data originates from. In order to identify the correct test set,
this result producer utilizes the relation name of the training file. Here is how
the file name gets constructed under a Unix-based operating system (Linux,
Mac OSX), based on the result producer’s setup and the current training set’s
relation name:

testsetDir "/" testsetPrefix + relation-name + testsetSuffix

With the testsetDir property set to /home/johndoe/datasets/test, an empty
testsetPrefix, anneal as relation-name and the default testsetSuffix, i.e.,
test.arff, the following file name for the test set gets created:

/home/johndoe/datasets/test/anneal_test.arff

NB: The result producer is platform-aware and uses backslashes instead of
forward slashes on MS Windows-based operating systems.

Of course, the relation name might not always be as simple as in the above
example. Especially not, when the dataset has been pre-processed with various
filters before being used in the Experimenter. The ExplicitTestSetResultPro-
ducer allows one to remove unwanted strings from relation name using regular
expressions. In case of removing the WEKA filter setups that got appended
to the relation name during pre-processing, one can simply use -weka.* as the
value for relationFind and leave relationReplace empty.

Using this setup, the following relation name:

anneal-weka.filters.unsupervised.instance.RemovePercentage-P66.0

will be turned into this:

anneal

As long as one takes care and uses sensible relation names, the ExplicitTest-
SetResultProducer can be used to compare different classifiers and setups on
train/test set pairs, using the full functionality of the Experimenter.

6.3. CLUSTER EXPERIMENTS 89

6.3 Cluster Experiments

Using the advanced mode of the Experimenter you can now run experiments on
clustering algorithms as well as classifiers (Note: this is a new feature available
with Weka 3.5.8). The main evaluation metric for this type of experiment is
the log likelihood of the clusters found by each clusterer. Here is an example of
setting up a cross-validation experiment using clusterers.

Choose CrossValidationResultProducer from the Result generator panel.

90 CHAPTER 6. EXPERIMENTER

Next, choose DensityBasedClustererSplitEvaluator as the split evaluator to use.

If you click on DensityBasedClustererSplitEvaluator you will see its options.

Note that there is an option for removing the class column from the data. In
the Experimenter, the class column is set to be the last column by default. Turn
this off if you want to keep this column in the data.

Once DensityBasedClustererSplitEvaluator has been selected, you will notice
that the Generator properties have become disabled. Enable them again and
expand splitEvaluator. Select the clusterer node.

Now you will see that EM becomes the default clusterer and gets added to the
list of schemes. You can now add/delete other clusterers.
IMPORTANT: in order to any clusterer that does not produce density esti-
mates (i.e. most other clusterers in Weka), they will have to wrapped in the
MakeDensityBasedClusterer.

6.3. CLUSTER EXPERIMENTS 91

Once and experiment has been run, you can analyze results in the Analyse panel.
In the Comparison field you will need to scroll down and select ”Log likelihood”.

92 CHAPTER 6. EXPERIMENTER

6.4 Remote Experiments

Remote experiments enable you to distribute the computing load across multiple
computers. In the following we will discuss the setup and operation for HSQLDB
[12] and MySQL [13].

6.4.1 Preparation

To run a remote experiment you will need:

• A database server.

• A number of computers to run remote engines on.

• To edit the remote engine policy file included in the Weka distribution to
allow Java class and dataset loading from your home directory.

• An invocation of the Experimenter on a machine somewhere (any will do).

For the following examples, we assume a user called johndoe with this setup:

• Access to a set of computers running a flavour of Unix (pathnames need
to be changed for Windows).

• The home directory is located at /home/johndoe.

• Weka is found in /home/johndoe/weka.

• Additional jar archives, i.e., JDBC drivers, are stored in /home/johndoe/jars.

• The directory for the datasets is /home/johndoe/datasets.

Note: The example policy file remote.policy.example is using this setup
(available in weka/experiment1).

6.4.2 Database Server Setup

• HSQLDB

– Download the JDBC driver for HSQLDB, extract the hsqldb.jar

and place it in the directory /home/johndoe/jars.

– To set up the database server, choose or create a directory to run the
database server from, and start the server with:

java -classpath /home/johndoe/jars/hsqldb.jar \

org.hsqldb.Server \

-database.0 experiment -dbname.0 experiment

Note: This will start up a database with the alias “experiment”
(-dbname.0 <alias>) and create a properties and a log file at the
current location prefixed with “experiment” (-database.0 <file>).

1Weka’s source code can be found in the weka-src.jar archive or obtained from Subversion
[11].

6.4. REMOTE EXPERIMENTS 93

• MySQL

We won’t go into the details of setting up a MySQL server, but this is
rather straightforward and includes the following steps:

– Download a suitable version of MySQL for your server machine.

– Install and start the MySQL server.

– Create a database - for our example we will use experiment as
database name.

– Download the appropriate JDBC driver, extract the JDBC jar and
place it as mysql.jar in /home/johndoe/jars.

6.4.3 Remote Engine Setup

• First, set up a directory for scripts and policy files:

/home/johndoe/remote_engine

• Unzip the remoteExperimentServer.jar (from the Weka distribution; or
build it from the sources2 with ant remotejar) into a temporary direc-
tory.

• Next, copy remoteEngine.jar and remote.policy.example to the
/home/johndoe/remote engine directory.

• Create a script, called /home/johndoe/remote engine/startRemoteEngine,
with the following content (don’t forget to make it executable with chmod

a+x startRemoteEngine when you are on Linux/Unix):

– HSQLDB

java -Xmx256m \

-classpath /home/johndoe/jars/hsqldb.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar

-Djava.security.policy=remote.policy \

weka.experiment.RemoteEngine &

– MySQL

java -Xmx256m \

-classpath /home/johndoe/jars/mysql.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar

-Djava.security.policy=remote.policy \

weka.experiment.RemoteEngine &

• Now we will start the remote engines that run the experiments on the
remote computers (note that the same version of Java must be used for
the Experimenter and remote engines):

– Rename the remote.policy.example file to remote.policy.

– For each machine you want to run a remote engine on:

∗ ssh to the machine.

2Weka’s source code can be found in the weka-src.jar archive or obtained from Subversion
[11].

94 CHAPTER 6. EXPERIMENTER

∗ cd to /home/johndoe/remote engine.

∗ Run /home/johndoe/startRemoteEngine (to enable the remote
engines to use more memory, modify the -Xmx option in the
startRemoteEngine script) .

6.4.4 Configuring the Experimenter

Now we will run the Experimenter:

• HSQLDB

– Copy the DatabaseUtils.props.hsql file from weka/experiment in the
weka.jar archive to the /home/johndoe/remote engine directory
and rename it to DatabaseUtils.props.

– Edit this file and change the ”jdbcURL=jdbc:hsqldb:hsql://server name/database name”
entry to include the name of the machine that is running your database
server (e.g., jdbcURL=jdbc:hsqldb:hsql://dodo.company.com/experiment).

– Now start the Experimenter (inside this directory):

java \

-cp /home/johndoe/jars/hsqldb.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar \

-Djava.rmi.server.codebase=file:/home/johndoe/weka/weka.jar \

weka.gui.experiment.Experimenter

• MySQL

– Copy the DatabaseUtils.props.mysql file from weka/experiment in
the weka.jar archive to the /home/johndoe/remote engine direc-
tory and rename it to DatabaseUtils.props.

– Edit this file and change the ”jdbcURL=jdbc:mysql://server name:3306/database name”
entry to include the name of the machine that is running your database
server and the name of the database the result will be stored in (e.g.,
jdbcURL=jdbc:mysql://dodo.company.com:3306/experiment).

– Now start the Experimenter (inside this directory):

java \

-cp /home/johndoe/jars/mysql.jar:remoteEngine.jar:/home/johndoe/weka/weka.jar \

-Djava.rmi.server.codebase=file:/home/johndoe/weka/weka.jar \

weka.gui.experiment.Experimenter

Note: the database name experiment can still be modified in the Exper-
imenter, this is just the default setup.

Now we will configure the experiment:

• First of all select the Advanced mode in the Setup tab

• Now choose the DatabaseResultListener in the Destination panel. Config-
ure this result producer:

– HSQLDB
Supply the value sa for the username and leave the password empty.

6.4. REMOTE EXPERIMENTS 95

– MySQL
Provide the username and password that you need for connecting to
the database.

• From the Result generator panel choose either the CrossValidationResult-
Producer or the RandomSplitResultProducer (these are the most com-
monly used ones) and then configure the remaining experiment details
(e.g., datasets and classifiers).

• Now enable the Distribute Experiment panel by checking the tick box.

• Click on the Hosts button and enter the names of the machines that you
started remote engines on (<Enter> adds the host to the list).

• You can choose to distribute by run or dataset.

• Save your experiment configuration.

• Now start your experiment as you would do normally.

• Check your results in the Analyse tab by clicking either the Database or
Experiment buttons.

6.4.5 Multi-core support

If you want to utilize all the cores on a multi-core machine, then you can do
so with Weka version later than 3.5.7. All you have to do, is define the port
alongside the hostname in the Experimenter (format: hostname:port) and then
start the RemoteEngine with the -p option, specifying the port to listen on.

6.4.6 Troubleshooting

• If you get an error at the start of an experiment that looks a bit like this:

01:13:19: RemoteExperiment (//blabla.company.com/RemoteEngine)

(sub)experiment (datataset vineyard.arff) failed :

java.sql.SQLException: Table already exists: EXPERIMENT INDEX

in statement [CREATE TABLE Experiment index (Experiment type

LONGVARCHAR, Experiment setup LONGVARCHAR, Result table INT)]

01:13:19: dataset :vineyard.arff RemoteExperiment

(//blabla.company.com/RemoteEngine) (sub)experiment (datataset

vineyard.arff) failed : java.sql.SQLException: Table already

exists: EXPERIMENT INDEX in statement [CREATE TABLE

Experiment index (Experiment type LONGVARCHAR, Experiment setup

LONGVARCHAR, Result table INT)]. Scheduling for execution on

another host.

then do not panic - this happens because multiple remote machines are
trying to create the same table and are temporarily locked out - this will
resolve itself so just leave your experiment running - in fact, it is a sign
that the experiment is working!

96 CHAPTER 6. EXPERIMENTER

• If you serialized an experiment and then modify your DatabaseUtils.props
file due to an error (e.g., a missing type-mapping), the Experimenter will
use the DatabaseUtils.props you had at the time you serialized the ex-
periment. Keep in mind that the serialization process also serializes the
DatabaseUtils class and therefore stored your props-file! This is another
reason for storing your experiments as XML and not in the properietary
binary format the Java serialization produces.

• Using a corrupt or incomplete DatabaseUtils.props file can cause peculiar
interface errors, for example disabling the use of the ”User” button along-
side the database URL. If in doubt copy a clean DatabaseUtils.props from
Subversion [11].

• If you get NullPointerException at java.util.Hashtable.get() in
the Remote Engine do not be alarmed. This will have no effect on the
results of your experiment.

6.5. ANALYSING RESULTS 97

6.5 Analysing Results

6.5.1 Setup

Weka includes an experiment analyser that can be used to analyse the results
of experiments (in this example, the results were sent to an InstancesResultLis-
tener). The experiment shown below uses 3 schemes, ZeroR, OneR, and J48, to
classify the Iris data in an experiment using 10 train and test runs, with 66%
of the data used for training and 34% used for testing.

After the experiment setup is complete, run the experiment. Then, to anal-
yse the results, select the Analyse tab at the top of the Experiment Environment
window.

Click on Experiment to analyse the results of the current experiment.

98 CHAPTER 6. EXPERIMENTER

The number of result lines available (Got 30 results) is shown in the Source
panel. This experiment consisted of 10 runs, for 3 schemes, for 1 dataset, for a
total of 30 result lines. Results can also be loaded from an earlier experiment file
by clicking File and loading the appropriate .arff results file. Similarly, results
sent to a database (using the DatabaseResultListener) can be loaded from the
database.

Select the Percent correct attribute from the Comparison field and click
Perform test to generate a comparison of the 3 schemes.

The schemes used in the experiment are shown in the columns and the
datasets used are shown in the rows.

The percentage correct for each of the 3 schemes is shown in each dataset
row: 33.33% for ZeroR, 94.31% for OneR, and 94.90% for J48. The annotation
v or * indicates that a specific result is statistically better (v) or worse (*)
than the baseline scheme (in this case, ZeroR) at the significance level specified
(currently 0.05). The results of both OneR and J48 are statistically better than
the baseline established by ZeroR. At the bottom of each column after the first
column is a count (xx/ yy/ zz) of the number of times that the scheme was
better than (xx), the same as (yy), or worse than (zz), the baseline scheme on
the datasets used in the experiment. In this example, there was only one dataset
and OneR was better than ZeroR once and never equivalent to or worse than
ZeroR (1/0/0); J48 was also better than ZeroR on the dataset.

The standard deviation of the attribute being evaluated can be generated
by selecting the Show std. deviations check box and hitting Perform test again.
The value (10) at the beginning of the iris row represents the number of esti-
mates that are used to calculate the standard deviation (the number of runs in
this case).

6.5. ANALYSING RESULTS 99

Selecting Number correct as the comparison field and clicking Perform test
generates the average number correct (out of 50 test patterns - 33% of 150
patterns in the Iris dataset).

Clicking on the button for the Output format leads to a dialog that lets
you choose the precision for the mean and the std. deviations, as well as the
format of the output. Checking the Show Average checkbox adds an additional
line to the output listing the average of each column. With the Remove filter
classnames checkbox one can remove the filter name and options from processed
datasets (filter names in Weka can be quite lengthy).

The following formats are supported:

• CSV

• GNUPlot

• HTML

100 CHAPTER 6. EXPERIMENTER

• LaTeX

• Plain text (default)

• Significance only

To give one more control, the “Advanced setup” allows one to bring up all
the options that a result matrix offers. This includes the options described
above, plus options like the width of the row names, or whether to enumerate
the columns and rows.

6.5.2 Saving the Results

The information displayed in the Test output panel is controlled by the currently-
selected entry in the Result list panel. Clicking on an entry causes the results
corresponding to that entry to be displayed.

The results shown in the Test output panel can be saved to a file by clicking
Save output. Only one set of results can be saved at a time but Weka permits
the user to save all results to the same file by saving them one at a time and
using the Append option instead of the Overwrite option for the second and
subsequent saves.

6.5.3 Changing the Baseline Scheme

The baseline scheme can be changed by clicking Select base... and then selecting
the desired scheme. Selecting the OneR scheme causes the other schemes to be
compared individually with the OneR scheme.

6.5. ANALYSING RESULTS 101

If the test is performed on the Percent correct field with OneR as the base
scheme, the system indicates that there is no statistical difference between the
results for OneR and J48. There is however a statistically significant difference
between OneR and ZeroR.

6.5.4 Statistical Significance

The term statistical significance used in the previous section refers to the re-
sult of a pair-wise comparison of schemes using either a standard T-Test or the
corrected resampled T-Test [9]. The latter test is the default, because the stan-
dard T-Test can generate too many significant differences due to dependencies
in the estimates (in particular when anything other than one run of an x-fold
cross-validation is used). For more information on the T-Test, consult the Weka
book [1] or an introductory statistics text. As the significance level is decreased,
the confidence in the conclusion increases.

In the current experiment, there is not a statistically significant difference
between the OneR and J48 schemes.

6.5.5 Summary Test

Selecting Summary from Test base and performing a test causes the following
information to be generated.

102 CHAPTER 6. EXPERIMENTER

In this experiment, the first row (- 1 1) indicates that column b (OneR) is
better than row a (ZeroR) and that column c (J48) is also better than row a.
The number in brackets represents the number of significant wins for the column
with regard to the row. A 0 means that the scheme in the corresponding column
did not score a single (significant) win with regard to the scheme in the row.

6.5.6 Ranking Test

Selecting Ranking from Test base causes the following information to be gener-
ated.

The ranking test ranks the schemes according to the total number of sig-
nificant wins (>) and losses (<) against the other schemes. The first column
(> − <) is the difference between the number of wins and the number of losses.
This difference is used to generate the ranking.

Chapter 7

KnowledgeFlow

7.1 Introduction

The KnowledgeFlow provides an alternative to the Explorer as a graphical front
end to WEKA’s core algorithms. Weka 3.8.0 and 3.9.0 contain a new implemen-
tation of the KnowledgeFlow - this new implementation is more efficient, has a
simpler API than the old version, and now lives in the weka.knowledgeflow and
weka.gui.knowledgeflow packages. The old Knowledge Flow implementation
is still available in the weka.gui.beans package.

The KnowledgeFlow presents a data-flow inspired interface to WEKA. The
user can select WEKA steps from a palette, place them on a layout canvas
and connect them together in order to form a knowledge flow for processing
and analyzing data. At present, all of WEKA’s classifiers, filters, clusterers,
associators, loaders and savers are available in the KnowledgeFlow along with
some extra tools.

103

104 CHAPTER 7. KNOWLEDGEFLOW

The KnowledgeFlow can handle data either incrementally or in batches (the
Explorer handles batch data only). Of course learning from data incremen-
tally requires a classifier that can be updated on an instance by instance basis.
Currently in WEKA there are ten classifiers that can handle data incrementally:

• AODE

• IB1

• IBk

• KStar

• NaiveBayesMultinomialUpdateable

• NaiveBayesUpdateable

• NNge

• Winnow

• SGD

• SPegasos

A further two classifiers are meta classifiers:

• RacedIncrementalLogitBoost - that can use of any regression base learner
to learn from discrete class data incrementally.

• LWL - locally weighted learning.

Furthermore, other incremental streaming classifiers from the MOA project
are accessible through the “massiveOnlineAnalysis” package (available for in-
stallation via the package manager).

7.2. FEATURES 105

7.2 Features

The KnowledgeFlow offers the following features:

• intuitive data flow style layout

• process data in batches or incrementally

• launch multiple start points in parallel

• launch multiple start points sequentially in a user-defined order

• fully multi-threaded - each step in a flow executes in its own thread (except
for those processing streaming data)

• single threaded execution for streaming flows

• chain filters together

• view models produced by classifiers for each fold in a cross validation

• visualize performance of incremental classifiers during processing (scrolling
plots of classification accuracy, RMS error, predictions etc.)

• plugin “perspectives” that add major new functionality (e.g. 3D data
visualization, time series forecasting environment etc.)

106 CHAPTER 7. KNOWLEDGEFLOW

7.3 Flow Steps

Steps available in the KnowledgeFlow:

7.3.1 DataSources

All of WEKA’s loaders are available.

7.3.2 DataSinks

All of WEKA’s savers are available. Along with the following KnowledgeFlow-
specific ones:

• TextSaver - save text carried by a text connection out to a file.

• ImageSaver - save the image data carried by an image connection out to
a file in either PNG or GIF format.

• SerializedModelSaver - save the classifier or clusterer encapsulated in a
batchClassifier, incrementalClassifier or batchClusterer connection out to
a file.

7.3.3 DataGenerators

All of WEKA’s data generators are available.

7.3.4 Filters

All of WEKA’s filters are available.

7.3.5 Classifiers

All of WEKA’s classifiers are available.

7.3.6 Clusterers

All of WEKA’s clusterers are available.

7.3.7 Attribute selection

All of WEKA’s attribute and subset evaluators are available, along with all of
the search methods.

7.3.8 Evaluation

• TrainingSetMaker - make a data set into a training set.

• TestSetMaker - make a data set into a test set.

• CrossValidationFoldMaker - split any data set, training set or test set into
folds.

7.3. FLOW STEPS 107

• TrainTestSplitMaker - split any data set, training set or test set into a
training set and a test set.

• InstanceStreamToBatchMaker - collects the instances in an incoming in-
stance stream and outputs them as a batch set of Instances.

• ClassAssigner - assign a column to be the class for any data set, training
set or test set.

• ClassValuePicker - choose a class value to be considered as the “posi-
tive” class. This is useful when generating data for ROC style curves (see
ModelPerformanceChart below and example 7.4.2).

• ClassifierPerformanceEvaluator - evaluate the performance of batch trained/tested
classifiers.

• IncrementalClassifierEvaluator - evaluate the performance of incremen-
tally trained classifiers.

• ClustererPerformanceEvaluator - evaluate the performance of batch trained/tested
clusterers.

• PredictionAppender - append classifier predictions to a test set. For dis-
crete class problems, can either append predicted class labels or probabil-
ity distributions.

7.3.9 Visualization

• DataVisualizer - a step that can pop up a panel for visualizing data in a
single large 2D scatter plot.

• ScatterPlotMatrix - a step that can pop up a panel containing a matrix of
small scatter plots (clicking on a small plot pops up a large scatter plot).

• AttributeSummarizer - a step that can pop up a panel containing a matrix
of histogram plots - one for each of the attributes in the input data.

• ModelPerformanceChart - a step that can pop up a panel for visualizing
threshold (i.e. ROC style) curves.

• CostBenefitAnalysis - a step that can popup a graphical tool for exploring
cost/benefit tradeoffs by interactively selecting different population sizes
from a ranked list of prospects or by varying the threshold on the predicted
probability of the positive class. It displays both a cumulative gains chart
and a cost/benefit plot.

• TextViewer - a step for showing textual data. Can show data sets, classi-
fication performance statistics etc.

• GraphViewer - a step that can pop up a panel for visualizing tree based
models.

• StripChart - a step that can pop up a panel that displays a scrolling plot of
data (used for viewing the online performance of incremental classifiers).

108 CHAPTER 7. KNOWLEDGEFLOW

• ImageViewer - a step that can popup a visualization for static image data.

• BoundaryPlotter - a step that accepts a dataSet, along with one or more
info connections from classifiers or clusterers to execute, and generates
prediction boundary plots. The resulting plots can be viewed in a popup
visualization.

7.3.10 Flow

• SetVariables - set the values of variables used in the flow. This is useful for
testing flows that use variables before they are executed in an environment
where the variables will have meaningful values. This step does not need
to be connected to any others - just place one on the layout.

• MakeResourceIntensive - a step that alters which executor service is used
to execute the step immediately downstream. By default, most steps exe-
cute in the main executor service. However, there is a secondary executor
service, using a limited number of threads, available for executing high
resource (cpu/memory) tasks and steps. The Classifier step executes in
the high resource executor by default because it could potentially process
many cross-validation folds - this way it won’t starve other steps of CPU
or memory resources. The MakeResourceIntensive can be used to force a
step to use a particular executor service.

• Block - a step that blocks incoming connections until a specified step in
the flow has finished executing.

• Appender - appends incoming batches or streams of data into one batch/stream.
All inputs must be of the same type (i.e. all batch or all stream). An
amalgamated output is created that is a combination of all the incoming
attributes.

• FlowByExpression - a step that splits incoming instances (or instance
streams) according to the evaluation of a logical expression. The expres-
sion can test the values of one or more incoming attributes. The test
can involve constants or comparing the value of one attribute’s values to
another.

• InstanceStreamToBatchMaker - converts an incoming instance stream to
a batch (i.e. accepts an instance connection and outputs a dataSet con-
nection).

• Join - a step that performs an inner join on two incoming dataSet or
instance stream connections. Important: assumes that both inputs are
sorted in ascending order of the key fields. A Sorter step can be used to
sort data before it is input to Join.

7.3.11 Tools

• Sorter - a step that sorts incoming instances in ascending or descending
order according to the values of user-specified attributes. Instances can
be sorted according to multiple attributes (defined in order). Handles

7.3. FLOW STEPS 109

datasets larger than can be fit into main memory via instance connections
and specifying the in-memory buffer size. Implements a merge sort by
writing the sorted in-memory buffer to a file when full, and then inter-
leaving instances from the disk-based file(s) when the incoming stream
has finished.

• SubstringReplacer - replaces substrings in String attributes using either a
literal match-and-replace, or regular expression matching.

• SubstringLabeler - a step that labels instances according to substring or
regular expression matches in String attributes. The user can specify
the attributes to match against and associated label to create by defining
“match” rules. A new attribute is appended to the data to contain the
label. Rules are applied in order when processing instances, and the label
associated with the first matching rule is applied. Non-matching instances
can either receive a missing value for the label attribute or be “consumed”
(i.e. they are not output).

110 CHAPTER 7. KNOWLEDGEFLOW

7.4 Examples

7.4.1 Cross-validated J48

Setting up a flow to load an ARFF file (batch mode) and perform a cross-
validation using J48 (WEKA’s C4.5 implementation). This example can be
accessed from the “Cross validation” entry of the popup menu that appears
when the “templates” button in the toolbar is clicked.

• Expand the DataSources entry in the Design panel and choose ArffLoader
(the mouse pointer will change to a cross hairs).

• Next place the ArffLoader step on the layout area by clicking somewhere
on the layout (a copy of the ArffLoader icon will appear on the layout
area).

• Next specify an ARFF file to load by first right clicking the mouse over
the ArffLoader icon on the layout. A pop-up menu will appear. Select
Configure under Edit in the list from this menu and browse to the location
of your ARFF file.

• Next click expand the Evaluation entry in the Design panel and choose
the ClassAssigner (allows you to choose which column to be the class)
step from the toolbar. Place this on the layout.

• Now connect the ArffLoader to the ClassAssigner: first right click over
the ArffLoader and select the dataSet under Connections in the menu. A
rubber band line will appear. Move the mouse over the ClassAssigner step
and left click - a red line labeled dataSet will connect the two steps.

• Next right click over the ClassAssigner and choose Configure from the
menu. This will pop up a window from which you can specify which
column is the class in your data (last is the default).

• Next grab a CrossValidationFoldMaker step from the Evaluation entry in
the Design panel and place it on the layout. Connect the ClassAssigner
to the CrossValidationFoldMaker by right clicking over ClassAssigner and
selecting dataSet from under Connections in the menu.

7.4. EXAMPLES 111

• Next expand the Classifiers entry and then the trees sub-entry in the
Design panel and choose the J48 step. Place a J48 step on the layout.

• Connect the CrossValidationFoldMaker to J48 TWICE by first choosing
trainingSet and then testSet from the pop-up menu for the CrossValida-
tionFoldMaker.

• Next go back to the Evaluation entry and place a ClassifierPerformanceE-
valuator step on the layout. Connect J48 to this step by selecting the
batchClassifier entry from the pop-up menu for J48.

• Next go to the Visualization entry and place a TextViewer step on the
layout. Connect the ClassifierPerformanceEvaluator to the TextViewer by
selecting the text entry from the pop-up menu for ClassifierPerformanceE-
valuator.

• Now start the flow executing by pressing the play button on the toolbar
at the top of the window. Progress information for each step in the flow
will appear in the Status area and Log at the bottom of the window.

When finished you can view the results by choosing Show results from the
pop-up menu for the TextViewer step.

Other cool things to add to this flow: connect a TextViewer and/or a
GraphViewer to J48 in order to view the textual or graphical representations of
the trees produced for each fold of the cross validation (this is something that
is not possible in the Explorer).

112 CHAPTER 7. KNOWLEDGEFLOW

7.4.2 Plotting multiple ROC curves

The KnowledgeFlow can draw multiple ROC curves in the same plot window,
something that the Explorer cannot do. In this example we use J48 and Ran-
domForest as classifiers. This example can be accessed from the “ROC curves
for two classifiers” entry of the popup menu that appears when the “templates”
button in the toolbar is clicked. It can also be found on the WekaWiki as well
[14].

• Click on the DataSources entry in the Design panel and choose ArffLoader
(the mouse pointer will change to a cross hairs).

• Next place the ArffLoader step on the layout area by clicking somewhere
on the layout (a copy of the ArffLoader icon will appear on the layout
area).

• Next specify an ARFF file to load by first right clicking the mouse over
the ArffLoader icon on the layout. A pop-up menu will appear. Select
Configure under Edit in the list from this menu and browse to the location
of your ARFF file.

• Next click the Evaluation entry in the Design panel and choose the Clas-
sAssigner (allows you to choose which column to be the class) step from
the toolbar. Place this on the layout.

• Now connect the ArffLoader to the ClassAssigner: first right click over
the ArffLoader and select the dataSet under Connections in the menu. A
rubber band line will appear. Move the mouse over the ClassAssigner step
and left click - a red line labeled dataSet will connect the two stepss.

• Next right click over the ClassAssigner and choose Configure from the
menu. This will pop up a window from which you can specify which
column is the class in your data (last is the default).

• Next choose the ClassValuePicker (allows you to choose which class label
to be evaluated in the ROC) step from Evaluation. Place this on the
layout and right click over ClassAssigner and select dataSet from under
Connections in the menu and connect it with the ClassValuePicker.

7.4. EXAMPLES 113

• Next grab a CrossValidationFoldMaker step from Evaluation and place
it on the layout. Connect the ClassAssigner to the CrossValidationFold-
Maker by right clicking over ClassAssigner and selecting dataSet from
under Connections in the menu.

• Next click on the Classifiers entry in the Design panel and choose the J48
step from the trees sub-entry. Place a J48 step on the layout.

• Connect the CrossValidationFoldMaker to J48 TWICE by first choosing
trainingSet and then testSet from the pop-up menu for the CrossValida-
tionFoldMaker.

• Repeat these two steps with the RandomForest classifier.

• Next go back to Evaluation and place a ClassifierPerformanceEvaluator
step on the layout. Connect J48 to this step by selecting the batchClassi-
fier entry from the pop-up menu for J48. Add another ClassifierPerfor-
manceEvaluator for RandomForest and connect them via batchClassifier
as well.

• Next go to the Visualization entry and place a ModelPerformanceChart
step on the layout. Connect both ClassifierPerformanceEvaluators to the
ModelPerformanceChart by selecting the thresholdData entry from the
pop-up menu for ClassifierPerformanceEvaluator.

• Now start the flow executing by pressing the play button on the toolbar
at the top of the window. Progress information for each step in the flow
will appear in the Status bar and Log at the bottom of the window.

• Select Show plot from the popup-menu of the ModelPerformanceChart
under the Actions section.

Here are the two ROC curves generated from the UCI dataset credit-g, eval-
uated on the class label good :

114 CHAPTER 7. KNOWLEDGEFLOW

7.4. EXAMPLES 115

7.4.3 Processing data incrementally

Some classifiers, clusterers and filters in Weka can handle data incrementally
in a streaming fashion. Here is an example of training and testing naive Bayes
incrementally. The results are sent to a TextViewer and predictions are plotted
by a StripChart step. This example can be accessed from the “Learn and
evaluate naive Bayes incrementally” entry of the popup menu that appears
when the “templates” button in the toolbar is clicked.

• Expand the DataSources entry in the Design panel and choose ArffLoader
(the mouse pointer will change to a cross hairs).

• Next place the ArffLoader step on the layout area by clicking somewhere
on the layout (a copy of the ArffLoader icon will appear on the layout
area).

• Next specify an ARFF file to load by first right clicking the mouse over
the ArffLoader icon on the layout. A pop-up menu will appear. Select
Configure under Edit in the list from this menu and browse to the location
of your ARFF file.

• Next expand the Evaluation entry in the Design panel and choose the
ClassAssigner (allows you to choose which column to be the class). Place
this on the layout.

• Now connect the ArffLoader to the ClassAssigner: first right click over
the ArffLoader and select the dataSet under Connections in the menu. A
rubber band line will appear. Move the mouse over the ClassAssigner step
and left click - a red line labeled dataSet will connect the two steps.

• Next right click over the ClassAssigner and choose Configure from the
menu. This will pop up a window from which you can specify which
column is the class in your data (last is the default).

• Now grab a NaiveBayesUpdateable step from the bayes section of the Clas-
sifiers entry and place it on the layout.

• Next connect the ClassAssigner to NaiveBayesUpdateable using a instance
connection.

• Next place an IncrementalClassiferEvaluator from the Evaluation entry
onto the layout and connect NaiveBayesUpdateable to it using a incre-
mentalClassifier connection.

116 CHAPTER 7. KNOWLEDGEFLOW

• Next place a TextViewer step from the Visualization entry on the Layout.
Connect the IncrementalClassifierEvaluator to it using a text connection.

• Next place a StripChart step from the Visualization entry on the layout
and connect IncrementalClassifierEvaluator to it using a chart connection.

• Display the StripChart’s chart by right-clicking over it and choosing Show
chart from the pop-up menu. Note: the StripChart can be configured
with options that control how often data points and labels are displayed.

• Finally, start the flow by pressing the play button on the toolbar at the
top of the window.

Note that, in this example, a prediction is obtained from naive Bayes for each
incoming instance before the classifier is trained (updated) with the instance.
If you have a pre-trained classifier, you can specify that the classifier not be
updated on incoming instances by unselecting the check box in the configuration
dialog for the classifier. If the pre-trained classifier is a batch classifier (i.e. it
is not capable of incremental training) then you will only be able to test it in
an incremental fashion.

7.5. PLUGINS 117

7.5 Plugins

7.5.1 Flow components

The KnowledgeFlow offers the ability to easily add new components via a plugin
mechanism. From Weka 3.7.2 this plugin mechanism has been subsumed by the
package management system and KnowledgeFlow plugins are no longer installed
in .knowledgeFlow/plugins in the user’s home directory. Jar files containing
plugin components for the KnowledgeFlow need to be bundled into a package
archive. Information on the structure of a Weka package is given in the Ap-
pendix (Chapter 19). In order to tell the KnowledgeFlow which classes in the
jar file to instantiate as components, a second file called PlugnManager.props

needs to be included in the top-level directory of the package. This file con-
tains key/value entries, where the key specifies an interface or base class, and
the value is a comma-separated list of concrete implementations. For exam-
ple, if we’d developed a new Knowledge Flow step called FunkyStep, then the
PluginManager.props file would contain the following entry:

weka.knowledgeflow.steps.Step=weka.knowledgeflow.steps.FunkyStep

If we had developed a new perspective (see the next section) called FunkyPerspective,
then an entry such as the following would make it appear in the Knowledge Flow
(and Workbench).

weka.gui.Perspective=weka.gui.knowledgeflow.FunkyPerspective

7.5.2 Perspectives

From Weka 3.7.4, the KnowledgeFlow offers a new type of plugin, called a “per-
spective”, that can take over the main UI and add major new functionality.
One example is the timeSeriesForecasting package. This package offer not only
a plugin tab for the Explorer, but also a plugin perspective for the Knowledge-
Flow as well. Another example is the scatterPlot3D package which adds a 3D
visualization facility for datasets. Both these perspectives operate on a set of
instances. Instances can be sent to a perspective by right-clicking over a config-
ured DataSource component and choosing Send to perspective from the popup
menu.

118 CHAPTER 7. KNOWLEDGEFLOW

Several perspectives are built-in to Knowledge Flow and others, such as the
time series environment, can be installed as packages. The built-in perspectives
include: Attribute summary, SQL Viewer and Scatter plot matrix. Which per-
spectives appear in the toolbar can be configured by clicking the button shaped
like a cog in the upper left-hand corner of the main Knowledge Flow window. If
the Perspectives toolbar is not visible then it can be shown/hidden by clicking
the “cog with arrow” button in the main toolbar at the top right-hand side of
the main Knowledge Flow window.

Chapter 8

Workbench

8.1 Introduction

From Weka 3.8.0 a new user interface called the Workbench is available. The
Workbench provides an all-in-one application that subsumes all the majorWEKA
GUIs described in earlier sections. The Workbench presents a set of “perspec-
tives”, where a perspective might contain an entire application or individual
panels/tabs from an application. For example, the Explorer’s main panels and
plugin panels all appear as separate perspectives in the Workbench, so at first
glance it appears very similar to the Explorer. However, other perspectives
can contain entire applications — for example, the Knowledge Flow or Experi-
menter.

Because the Workbench is made up of other applications, there is not much
further to describe here with respect to its functionality. One exception is that
the Workbench exposes a number of general and perspective-specific settings
and preferences that the user can modify. Settings are accessible by either the

119

120 CHAPTER 8. WORKBENCH

gear shaped icon in the upper left-hand side of the GUI, or from the “Program”
menu.

From the settings the user can choose which perspectives should appear,
and modify general settings, such as the look-and-feel to use. Some settings
will come into affect immediately; while others, such as the look-and-feel, will
require that WEKA is restarted after making the change.

Beyond the Perspectives and General tabs in the settings dialog each per-
spective will have its own tab for settings (as long as a given perspective has
user-configurable settings).

Chapter 9

ArffViewer

The ArffViewer is a little tool for viewing ARFF files in a tabular format. The
advantage of this kind of display over the file representation is, that attribute
name, type and data are directly associated in columns and not separated in
defintion and data part. But the viewer is not only limited to viewing multiple
files at once, but also provides simple editing functionality, like sorting and
deleting.

121

122 CHAPTER 9. ARFFVIEWER

9.1 Menus

The ArffViewer offers most of its functionality either through the main menu
or via popups (table header and table cells).

Short description of the available menus:

• File

contains options for opening and closing files, as well as viewing properties
about the current file.

• Edit

allows one to delete attributes/instances, rename attributes, choose a new
class attribute, search for certain values in the data and of course undo
the modifications.

• View

brings either the chosen attribute into view or displays all the values of
an attribute.

After opening a file, by default, the column widths are optimized based on
the attribute name and not the content. This is to ensure that overlong cells
do not force an enormously wide table, which the user has to reduce with quite
some effort.

9.1. MENUS 123

In the following, screenshots of the table popups:

124 CHAPTER 9. ARFFVIEWER

9.2 Editing

Besides the first column, which is the instance index, all cells in the table are
editable. Nominal values can be easily modified via dropdown lists, numeric
values are edited directly.

9.2. EDITING 125

For convenience, it is possible to sort the view based on a column (the
underlying data is NOT changed; via Edit/Sort data one can sort the data
permanently). This enables one to look for specific values, e.g., missing values.
To better distinguish missing values from empty cells, the background of cells
with missing values is colored grey.

126 CHAPTER 9. ARFFVIEWER

Chapter 10

Bayesian Network
Classifiers

10.1 Introduction

Let U = {x1, . . . , xn}, n ≥ 1 be a set of variables. A Bayesian network B
over a set of variables U is a network structure BS , which is a directed acyclic
graph (DAG) over U and a set of probability tables BP = {p(u|pa(u))|u ∈ U}
where pa(u) is the set of parents of u in BS . A Bayesian network represents a
probability distributions P (U) =

∏
u∈U p(u|pa(u)).

Below, a Bayesian network is shown for the variables in the iris data set.
Note that the links between the nodes class, petallength and petalwidth do not
form a directed cycle, so the graph is a proper DAG.

This picture just shows the network structure of the Bayes net, but for each
of the nodes a probability distribution for the node given its parents are specified
as well. For example, in the Bayes net above there is a conditional distribution

127

128 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

for petallength given the value of class. Since class has no parents, there is an
unconditional distribution for sepalwidth.

Basic assumptions

The classification task consist of classifying a variable y = x0 called the class
variable given a set of variables x = x1 . . . xn, called attribute variables. A
classifier h : x → y is a function that maps an instance of x to a value of y.
The classifier is learned from a dataset D consisting of samples over (x, y). The
learning task consists of finding an appropriate Bayesian network given a data
set D over U .

All Bayes network algorithms implemented in Weka assume the following for
the data set:

• all variables are discrete finite variables. If you have a data set with
continuous variables, you can use the following filter to discretize them:
weka.filters.unsupervised.attribute.Discretize

• no instances have missing values. If there are missing values in the data
set, values are filled in using the following filter:
weka.filters.unsupervised.attribute.ReplaceMissingValues

The first step performed by buildClassifier is checking if the data set
fulfills those assumptions. If those assumptions are not met, the data set is
automatically filtered and a warning is written to STDERR.1

Inference algorithm

To use a Bayesian network as a classifier, one simply calculates argmaxyP (y|x)
using the distribution P (U) represented by the Bayesian network. Now note
that

P (y|x) = P (U)/P (x)

∝ P (U)

=
∏

u∈U

p(u|pa(u)) (10.1)

And since all variables in x are known, we do not need complicated inference
algorithms, but just calculate (10.1) for all class values.

Learning algorithms

The dual nature of a Bayesian network makes learning a Bayesian network as a
two stage process a natural division: first learn a network structure, then learn
the probability tables.

There are various approaches to structure learning and in Weka, the following
areas are distinguished:

1If there are missing values in the test data, but not in the training data, the values are
filled in in the test data with a ReplaceMissingValues filter based on the training data.

10.1. INTRODUCTION 129

• local score metrics: Learning a network structure BS can be considered
an optimization problem where a quality measure of a network structure
given the training dataQ(BS |D) needs to be maximized. The quality mea-
sure can be based on a Bayesian approach, minimum description length,
information and other criteria. Those metrics have the practical property
that the score of the whole network can be decomposed as the sum (or
product) of the score of the individual nodes. This allows for local scoring
and thus local search methods.

• conditional independence tests: These methods mainly stem from the goal
of uncovering causal structure. The assumption is that there is a network
structure that exactly represents the independencies in the distribution
that generated the data. Then it follows that if a (conditional) indepen-
dency can be identified in the data between two variables that there is no
arrow between those two variables. Once locations of edges are identified,
the direction of the edges is assigned such that conditional independencies
in the data are properly represented.

• global score metrics: A natural way to measure how well a Bayesian net-
work performs on a given data set is to predict its future performance
by estimating expected utilities, such as classification accuracy. Cross-
validation provides an out of sample evaluation method to facilitate this
by repeatedly splitting the data in training and validation sets. A Bayesian
network structure can be evaluated by estimating the network’s param-
eters from the training set and the resulting Bayesian network’s perfor-
mance determined against the validation set. The average performance
of the Bayesian network over the validation sets provides a metric for the
quality of the network.

Cross-validation differs from local scoring metrics in that the quality of a
network structure often cannot be decomposed in the scores of the indi-
vidual nodes. So, the whole network needs to be considered in order to
determine the score.

• fixed structure: Finally, there are a few methods so that a structure can
be fixed, for example, by reading it from an XML BIF file2.

For each of these areas, different search algorithms are implemented in Weka,
such as hill climbing, simulated annealing and tabu search.

Once a good network structure is identified, the conditional probability ta-
bles for each of the variables can be estimated.

You can select a Bayes net classifier by clicking the classifier ’Choose’ button
in the Weka explorer, experimenter or knowledge flow and find BayesNet under
the weka.classifiers.bayes package (see below).

2See http://www.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/ for details on
XML BIF.

http://www.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/

130 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The Bayes net classifier has the following options:

The BIFFile option can be used to specify a Bayes network stored in file in
BIF format. When the toString() method is called after learning the Bayes
network, extra statistics (like extra and missing arcs) are printed comparing the
network learned with the one on file.

The searchAlgorithm option can be used to select a structure learning
algorithm and specify its options.

The estimator option can be used to select the method for estimating the
conditional probability distributions (Section 10.6).

When setting the useADTree option to true, counts are calculated using the
ADTree algorithm of Moore [24]. Since I have not noticed a lot of improvement
for small data sets, it is set off by default. Note that this ADTree algorithm is dif-
ferent from the ADTree classifier algorithm from weka.classifiers.tree.ADTree.

The debug option has no effect.

10.2. LOCAL SCORE BASED STRUCTURE LEARNING 131

10.2 Local score based structure learning

Distinguish score metrics (Section 2.1) and search algorithms (Section 2.2). A
local score based structure learning can be selected by choosing one in the
weka.classifiers.bayes.net.search.local package.

Local score based algorithms have the following options in common:
initAsNaiveBayes if set true (default), the initial network structure used for
starting the traversal of the search space is a naive Bayes network structure.
That is, a structure with arrows from the class variable to each of the attribute
variables.
If set false, an empty network structure will be used (i.e., no arrows at all).
markovBlanketClassifier (false by default) if set true, at the end of the
traversal of the search space, a heuristic is used to ensure each of the attributes
are in the Markov blanket of the classifier node. If a node is already in the
Markov blanket (i.e., is a parent, child of sibling of the classifier node) nothing
happens, otherwise an arrow is added.
If set to false no such arrows are added.
scoreType determines the score metric used (see Section 2.1 for details). Cur-
rently, K2, BDe, AIC, Entropy and MDL are implemented.
maxNrOfParents is an upper bound on the number of parents of each of the
nodes in the network structure learned.

10.2.1 Local score metrics

We use the following conventions to identify counts in the database D and a
network structure BS . Let ri (1 ≤ i ≤ n) be the cardinality of xi. We use qi
to denote the cardinality of the parent set of xi in BS , that is, the number of
different values to which the parents of xi can be instantiated. So, qi can be
calculated as the product of cardinalities of nodes in pa(xi), qi =

∏
xj∈pa(xi)

rj .

132 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Note pa(xi) = ∅ implies qi = 1. We use Nij (1 ≤ i ≤ n, 1 ≤ j ≤ qi) to denote
the number of records in D for which pa(xi) takes its jth value.We use Nijk

(1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri) to denote the number of records in D
for which pa(xi) takes its jth value and for which xi takes its kth value. So,
Nij =

∑ri
k=1 Nijk. We use N to denote the number of records in D.

Let the entropy metric H(BS , D) of a network structure and database be
defined as

H(BS , D) = −N
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk

N
log

Nijk

Nij

(10.2)

and the number of parameters K as

K =

n∑

i=1

(ri − 1) · qi (10.3)

AIC metric The AIC metric QAIC(BS , D) of a Bayesian network structure
BS for a database D is

QAIC(BS , D) = H(BS , D) +K (10.4)

A term P (BS) can be added [15] representing prior information over network
structures, but will be ignored for simplicity in the Weka implementation.

MDL metric The minimum description length metric QMDL(BS , D) of a
Bayesian network structure BS for a database D is is defined as

QMDL(BS , D) = H(BS , D) +
K

2
logN (10.5)

Bayesian metric The Bayesian metric of a Bayesian network structure BD

for a database D is

QBayes(BS , D) = P (BS)

n∏

i=0

qi∏

j=1

Γ(N ′

ij)

Γ(N ′

ij +Nij)

ri∏

k=1

Γ(N ′

ijk +Nijk)

Γ(N ′

ijk)

where P (BS) is the prior on the network structure (taken to be constant hence
ignored in the Weka implementation) and Γ(.) the gamma-function. N ′

ij and

N ′

ijk represent choices of priors on counts restricted by N ′

ij =
∑ri

k=1 N
′

ijk. With
N ′

ijk = 1 (and thus N ′

ij = ri), we obtain the K2 metric [19]

QK2(BS , D) = P (BS)
n∏

i=0

qi∏

j=1

(ri − 1)!

(ri − 1 +Nij)!

ri∏

k=1

Nijk!

With N ′

ijk = 1/ri · qi (and thus N ′

ij = 1/qi), we obtain the BDe metric [22].

10.2.2 Search algorithms

The following search algorithms are implemented for local score metrics;

• K2 [19]: hill climbing add arcs with a fixed ordering of variables.
Specific option: randomOrder if true a random ordering of the nodes is
made at the beginning of the search. If false (default) the ordering in the
data set is used. The only exception in both cases is that in case the initial
network is a naive Bayes network (initAsNaiveBayes set true) the class
variable is made first in the ordering.

10.2. LOCAL SCORE BASED STRUCTURE LEARNING 133

• Hill Climbing [16]: hill climbing adding and deleting arcs with no fixed
ordering of variables.
useArcReversal if true, also arc reversals are consider when determining
the next step to make.

• Repeated Hill Climber starts with a randomly generated network and then
applies hill climber to reach a local optimum. The best network found is
returned.
useArcReversal option as for Hill Climber.

• LAGD Hill Climbing does hill climbing with look ahead on a limited set
of best scoring steps, implemented by Manuel Neubach. The number
of look ahead steps and number of steps considered for look ahead are
configurable.

• TAN [17, 21]: T ree Augmented N aive Bayes where the tree is formed
by calculating the maximum weight spanning tree using Chow and Liu
algorithm [18].
No specific options.

• Simulated annealing [15]: using adding and deleting arrows.
The algorithm randomly generates a candidate network B′

S close to the
current network BS . It accepts the network if it is better than the current,
i.e., Q(B′

S , D) > Q(BS , D). Otherwise, it accepts the candidate with
probability

eti·(Q(B′

S,D)−Q(BS ,D))

where ti is the temperature at iteration i. The temperature starts at t0
and is slowly decreases with each iteration.

Specific options:
TStart start temperature t0.
delta is the factor δ used to update the temperature, so ti+1 = ti · δ.
runs number of iterations used to traverse the search space.
seed is the initialization value for the random number generator.

• Tabu search [15]: using adding and deleting arrows.
Tabu search performs hill climbing until it hits a local optimum. Then it

134 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

steps to the least worse candidate in the neighborhood. However, it does
not consider points in the neighborhood it just visited in the last tl steps.
These steps are stored in a so called tabu-list.

Specific options:
runs is the number of iterations used to traverse the search space.
tabuList is the length tl of the tabu list.

• Genetic search: applies a simple implementation of a genetic search algo-
rithm to network structure learning. A Bayes net structure is represented
by a array of n ·n (n = number of nodes) bits where bit i ·n+ j represents
whether there is an arrow from node j → i.

Specific options:
populationSize is the size of the population selected in each generation.
descendantPopulationSize is the number of offspring generated in each

10.3. CONDITIONAL INDEPENDENCETEST BASED STRUCTURE LEARNING135

generation.
runs is the number of generation to generate.
seed is the initialization value for the random number generator.
useMutation flag to indicate whether mutation should be used. Mutation
is applied by randomly adding or deleting a single arc.
useCrossOver flag to indicate whether cross-over should be used. Cross-
over is applied by randomly picking an index k in the bit representation
and selecting the first k bits from one and the remainder from another
network structure in the population. At least one of useMutation and
useCrossOver should be set to true.
useTournamentSelection when false, the best performing networks are
selected from the descendant population to form the population of the
next generation. When true, tournament selection is used. Tournament
selection randomly chooses two individuals from the descendant popula-
tion and selects the one that performs best.

10.3 Conditional independence test based struc-
ture learning

Conditional independence tests in Weka are slightly different from the standard
tests described in the literature. To test whether variables x and y are condi-
tionally independent given a set of variables Z, a network structure with arrows
∀z∈Zz → y is compared with one with arrows {x → y} ∪ ∀z∈Zz → y. A test is
performed by using any of the score metrics described in Section 2.1.

At the moment, only the ICS [25]and CI algorithm are implemented.
The ICS algorithm makes two steps, first find a skeleton (the undirected

graph with edges iff there is an arrow in network structure) and second direct

136 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

all the edges in the skeleton to get a DAG.
Starting with a complete undirected graph, we try to find conditional inde-

pendencies 〈x, y|Z〉 in the data. For each pair of nodes x, y, we consider sets
Z starting with cardinality 0, then 1 up to a user defined maximum. Further-
more, the set Z is a subset of nodes that are neighbors of both x and y. If
an independency is identified, the edge between x and y is removed from the
skeleton.

The first step in directing arrows is to check for every configuration x−−z−
−y where x and y not connected in the skeleton whether z is in the set Z of
variables that justified removing the link between x and y (cached in the first
step). If z is not in Z, we can assign direction x→ z ← y.

Finally, a set of graphical rules is applied [25] to direct the remaining arrows.

Rule 1: i->j--k & i-/-k => j->k

Rule 2: i->j->k & i--k => i->k

Rule 3 m

/|\

i | k => m->j

i->j<-k \|/

j

Rule 4 m

/ \

i---k => i->m & k->m

i->j \ /

j

Rule 5: if no edges are directed then take a random one (first we can find)

The ICS algorithm comes with the following options.

Since the ICS algorithm is focused on recovering causal structure, instead
of finding the optimal classifier, the Markov blanket correction can be made
afterwards.

Specific options:
The maxCardinality option determines the largest subset of Z to be considered
in conditional independence tests 〈x, y|Z〉.
The scoreType option is used to select the scoring metric.

10.4. GLOBAL SCORE METRIC BASED STRUCTURE LEARNING 137

10.4 Global score metric based structure learn-
ing

Common options for cross-validation based algorithms are:
initAsNaiveBayes, markovBlanketClassifier and maxNrOfParents (see Sec-
tion 10.2 for description).

Further, for each of the cross-validation based algorithms the CVType can be
chosen out of the following:

• Leave one out cross-validation (loo-cv) selects m = N training sets simply
by taking the data set D and removing the ith record for training set Dt

i .
The validation set consist of just the ith single record. Loo-cv does not
always produce accurate performance estimates.

• K-fold cross-validation (k-fold cv) splits the data D in m approximately
equal parts D1, . . . , Dm. Training set Dt

i is obtained by removing part
Di from D. Typical values for m are 5, 10 and 20. With m = N , k-fold
cross-validation becomes loo-cv.

• Cumulative cross-validation (cumulative cv) starts with an empty data set
and adds instances item by item from D. After each time an item is added
the next item to be added is classified using the then current state of the
Bayes network.

Finally, the useProb flag indicates whether the accuracy of the classifier
should be estimated using the zero-one loss (if set to false) or using the esti-
mated probability of the class.

138 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The following search algorithms are implemented: K2, HillClimbing, Repeat-
edHillClimber, TAN, Tabu Search, Simulated Annealing and Genetic Search.
See Section 10.2 for a description of the specific options for those algorithms.

10.5 Fixed structure ’learning’

The structure learning step can be skipped by selecting a fixed network struc-
ture. There are two methods of getting a fixed structure: just make it a naive
Bayes network, or reading it from a file in XML BIF format.

10.6 Distribution learning

Once the network structure is learned, you can choose how to learn the prob-
ability tables selecting a class in the weka.classifiers.bayes.net.estimate

10.6. DISTRIBUTION LEARNING 139

package.

The SimpleEstimator class produces direct estimates of the conditional
probabilities, that is,

P (xi = k|pa(xi) = j) =
Nijk +N ′

ijk

Nij +N ′

ij

where N ′

ijk is the alpha parameter that can be set and is 0.5 by default. With
alpha = 0, we get maximum likelihood estimates.

With the BMAEstimator, we get estimates for the conditional probability
tables based on Bayes model averaging of all network structures that are sub-
structures of the network structure learned [15]. This is achieved by estimat-
ing the conditional probability table of a node xi given its parents pa(xi) as
a weighted average of all conditional probability tables of xi given subsets of
pa(xi). The weight of a distribution P (xi|S) with S ⊆ pa(xi) used is propor-
tional to the contribution of network structure ∀y∈Sy → xi to either the BDe
metric or K2 metric depending on the setting of the useK2Prior option (false
and true respectively).

140 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

10.7 Running from the command line

These are the command line options of BayesNet.

General options:

-t <name of training file>

Sets training file.

-T <name of test file>

Sets test file. If missing, a cross-validation will be performed on the

training data.

-c <class index>

Sets index of class attribute (default: last).

-x <number of folds>

Sets number of folds for cross-validation (default: 10).

-no-cv

Do not perform any cross validation.

-split-percentage <percentage>

Sets the percentage for the train/test set split, e.g., 66.

-preserve-order

Preserves the order in the percentage split.

-s <random number seed>

Sets random number seed for cross-validation or percentage split

(default: 1).

-m <name of file with cost matrix>

Sets file with cost matrix.

-l <name of input file>

Sets model input file. In case the filename ends with ’.xml’,

the options are loaded from the XML file.

-d <name of output file>

Sets model output file. In case the filename ends with ’.xml’,

only the options are saved to the XML file, not the model.

-v

Outputs no statistics for training data.

-o

Outputs statistics only, not the classifier.

-i

Outputs detailed information-retrieval statistics for each class.

-k

10.7. RUNNING FROM THE COMMAND LINE 141

Outputs information-theoretic statistics.

-p <attribute range>

Only outputs predictions for test instances (or the train

instances if no test instances provided), along with attributes

(0 for none).

-distribution

Outputs the distribution instead of only the prediction

in conjunction with the ’-p’ option (only nominal classes).

-r

Only outputs cumulative margin distribution.

-g

Only outputs the graph representation of the classifier.

-xml filename | xml-string

Retrieves the options from the XML-data instead of the command line.

Options specific to weka.classifiers.bayes.BayesNet:

-D

Do not use ADTree data structure

-B <BIF file>

BIF file to compare with

-Q weka.classifiers.bayes.net.search.SearchAlgorithm

Search algorithm

-E weka.classifiers.bayes.net.estimate.SimpleEstimator

Estimator algorithm

The search algorithm option -Q and estimator option -E options are manda-
tory.

Note that it is important that the -E options should be used after the -Q
option. Extra options can be passed to the search algorithm and the estimator
after the class name specified following ’--’.
For example:

java weka.classifiers.bayes.BayesNet -t iris.arff -D \

-Q weka.classifiers.bayes.net.search.local.K2 -- -P 2 -S ENTROPY \

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 1.0

Overview of options for search algorithms

• weka.classifiers.bayes.net.search.local.GeneticSearch

-L <integer>

Population size

-A <integer>

Descendant population size

-U <integer>

Number of runs

-M

Use mutation.

142 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

(default true)

-C

Use cross-over.

(default true)

-O

Use tournament selection (true) or maximum subpopulatin (false).

(default false)

-R <seed>

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.HillClimber

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.K2

-N

Initial structure is empty (instead of Naive Bayes)

-P <nr of parents>

Maximum number of parents

-R

Random order.

(default false)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

10.7. RUNNING FROM THE COMMAND LINE 143

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.LAGDHillClimber

-L <nr of look ahead steps>

Look Ahead Depth

-G <nr of good operations>

Nr of Good Operations

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.RepeatedHillClimber

-U <integer>

Number of runs

-A <seed>

Random number seed

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.SimulatedAnnealing

144 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

-A <float>

Start temperature

-U <integer>

Number of runs

-D <float>

Delta temperature

-R <seed>

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.TabuSearch

-L <integer>

Tabu list length

-U <integer>

Number of runs

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.TAN

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

10.7. RUNNING FROM THE COMMAND LINE 145

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.ci.CISearchAlgorithm

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm

-cardinality <num>

When determining whether an edge exists a search is performed

for a set Z that separates the nodes. MaxCardinality determines

the maximum size of the set Z. This greatly influences the

length of the search. (default 2)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.global.GeneticSearch

-L <integer>

Population size

-A <integer>

Descendant population size

-U <integer>

Number of runs

-M

Use mutation.

(default true)

-C

Use cross-over.

(default true)

-O

Use tournament selection (true) or maximum subpopulatin (false).

(default false)

-R <seed>

146 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.HillClimber

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.K2

-N

Initial structure is empty (instead of Naive Bayes)

-P <nr of parents>

Maximum number of parents

-R

Random order.

(default false)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

10.7. RUNNING FROM THE COMMAND LINE 147

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.RepeatedHillClimber

-U <integer>

Number of runs

-A <seed>

Random number seed

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.SimulatedAnnealing

-A <float>

Start temperature

-U <integer>

Number of runs

-D <float>

Delta temperature

-R <seed>

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

148 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

• weka.classifiers.bayes.net.search.global.TabuSearch

-L <integer>

Tabu list length

-U <integer>

Number of runs

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.TAN

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.fixed.FromFile

-B <BIF File>

Name of file containing network structure in BIF format

• weka.classifiers.bayes.net.search.fixed.NaiveBayes

10.7. RUNNING FROM THE COMMAND LINE 149

No options.

Overview of options for estimators

• weka.classifiers.bayes.net.estimate.BayesNetEstimator

-A <alpha>

Initial count (alpha)

• weka.classifiers.bayes.net.estimate.BMAEstimator

-k2

Whether to use K2 prior.

-A <alpha>

Initial count (alpha)

• weka.classifiers.bayes.net.estimate.MultiNomialBMAEstimator

-k2

Whether to use K2 prior.

-A <alpha>

Initial count (alpha)

• weka.classifiers.bayes.net.estimate.SimpleEstimator

-A <alpha>

Initial count (alpha)

Generating random networks and artificial data sets

You can generate random Bayes nets and data sets using
weka.classifiers.bayes.net.BayesNetGenerator

The options are:

-B

Generate network (instead of instances)

-N <integer>

Nr of nodes

-A <integer>

Nr of arcs

-M <integer>

Nr of instances

-C <integer>

Cardinality of the variables

-S <integer>

Seed for random number generator

-F <file>

The BIF file to obtain the structure from.

150 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The network structure is generated by first generating a tree so that we can
ensure that we have a connected graph. If any more arrows are specified they
are randomly added.

10.8 Inspecting Bayesian networks

You can inspect some of the properties of Bayesian networks that you learned
in the Explorer in text format and also in graphical format.

Bayesian networks in text

Below, you find output typical for a 10 fold cross-validation run in the Weka
Explorer with comments where the output is specific for Bayesian nets.

=== Run information ===

Scheme: weka.classifiers.bayes.BayesNet -D -B iris.xml -Q weka.classifiers.bayes

Options for BayesNet include the class names for the structure learner and for
the distribution estimator.

Relation: iris-weka.filters.unsupervised.attribute.Discretize-B2-M-1.0-Rfirst-last

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Bayes Network Classifier

not using ADTree

Indication whether the ADTree algorithm [24] for calculating counts in the data
set was used.

#attributes=5 #classindex=4

This line lists the number of attribute and the number of the class variable for
which the classifier was trained.

Network structure (nodes followed by parents)

sepallength(2): class

sepalwidth(2): class

petallength(2): class sepallength

petalwidth(2): class petallength

class(3):

10.8. INSPECTING BAYESIAN NETWORKS 151

This list specifies the network structure. Each of the variables is followed by a
list of parents, so the petallength variable has parents sepallength and class,
while class has no parents. The number in braces is the cardinality of the
variable. It shows that in the iris dataset there are three class variables. All
other variables are made binary by running it through a discretization filter.

LogScore Bayes: -374.9942769685747

LogScore BDeu: -351.85811477631626

LogScore MDL: -416.86897021246466

LogScore ENTROPY: -366.76261727150217

LogScore AIC: -386.76261727150217

These lines list the logarithmic score of the network structure for various meth-
ods of scoring.

If a BIF file was specified, the following two lines will be produced (if no
such file was specified, no information is printed).

Missing: 0 Extra: 2 Reversed: 0

Divergence: -0.0719759699700729

In this case the network that was learned was compared with a file iris.xml
which contained the naive Bayes network structure. The number after “Missing”
is the number of arcs that was in the network in file that is not recovered by
the structure learner. Note that a reversed arc is not counted as missing. The
number after “Extra” is the number of arcs in the learned network that are not
in the network on file. The number of reversed arcs is listed as well.

Finally, the divergence between the network distribution on file and the one
learned is reported. This number is calculated by enumerating all possible in-
stantiations of all variables, so it may take some time to calculate the divergence
for large networks.

The remainder of the output is standard output for all classifiers.

Time taken to build model: 0.01 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 116 77.3333 %

Incorrectly Classified Instances 34 22.6667 %

etc...

Bayesian networks in GUI

To show the graphical structure, right click the appropriate BayesNet in result
list of the Explorer. A menu pops up, in which you select “Visualize graph”.

152 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The Bayes network is automatically layed out and drawn thanks to a graph
drawing algorithm implemented by Ashraf Kibriya.

When you hover the mouse over a node, the node lights up and all its children
are highlighted as well, so that it is easy to identify the relation between nodes
in crowded graphs.

Saving Bayes nets You can save the Bayes network to file in the graph
visualizer. You have the choice to save as XML BIF format or as dot format.
Select the floppy button and a file save dialog pops up that allows you to select
the file name and file format.

Zoom The graph visualizer has two buttons to zoom in and out. Also, the
exact zoom desired can be entered in the zoom percentage entry. Hit enter to
redraw at the desired zoom level.

10.9. BAYES NETWORK GUI 153

Graph drawing options Hit the ’extra controls’ button to show extra
options that control the graph layout settings.

The Layout Type determines the algorithm applied to place the nodes.
The Layout Method determines in which direction nodes are considered.
The Edge Concentration toggle allows edges to be partially merged.
The Custom Node Size can be used to override the automatically deter-

mined node size.
When you click a node in the Bayesian net, a window with the probability

table of the node clicked pops up. The left side shows the parent attributes and
lists the values of the parents, the right side shows the probability of the node
clicked conditioned on the values of the parents listed on the left.

So, the graph visualizer allows you to inspect both network structure and
probability tables.

10.9 Bayes Network GUI

The Bayesian network editor is a stand alone application with the following
features
• Edit Bayesian network completely by hand, with unlimited undo/redo stack,
cut/copy/paste and layout support.
• Learn Bayesian network from data using learning algorithms in Weka.
• Edit structure by hand and learn conditional probability tables (CPTs) using

154 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

learning algorithms in Weka.
• Generate dataset from Bayesian network.
• Inference (using junction tree method) of evidence through the network, in-
teractively changing values of nodes.
• Viewing cliques in junction tree.
• Accelerator key support for most common operations.

The Bayes network GUI is started as
java weka.classifiers.bayes.net.GUI ¡bif file¿
The following window pops up when an XML BIF file is specified (if none is
specified an empty graph is shown).

Moving a node

Click a node with the left mouse button and drag the node to the desired
position.

10.9. BAYES NETWORK GUI 155

Selecting groups of nodes

Drag the left mouse button in the graph panel. A rectangle is shown and all
nodes intersecting with the rectangle are selected when the mouse is released.
Selected nodes are made visible with four little black squares at the corners (see
screenshot above).

The selection can be extended by keeping the shift key pressed while selecting
another set of nodes.

The selection can be toggled by keeping the ctrl key pressed. All nodes in
the selection selected in the rectangle are de-selected, while the ones not in the
selection but intersecting with the rectangle are added to the selection.

Groups of nodes can be moved by keeping the left mouse pressed on one of
the selected nodes and dragging the group to the desired position.

File menu

The New, Save, Save As, and Exit menu provide functionality as expected.
The file format used is XML BIF [20].

There are two file formats supported for opening
• .xml for XML BIF files. The Bayesian network is reconstructed from the
information in the file. Node width information is not stored so the nodes are
shown with the default width. This can be changed by laying out the graph
(menu Tools/Layout).
• .arff Weka data files. When an arff file is selected, a new empty Bayesian net-
work is created with nodes for each of the attributes in the arff file. Continuous
variables are discretized using the weka.filters.supervised.attribute.Discretize
filter (see note at end of this section for more details). The network structure
can be specified and the CPTs learned using the Tools/Learn CPT menu.

The Print menu works (sometimes) as expected.

The Export menu allows for writing the graph panel to image (currently
supported are bmp, jpg, png and eps formats). This can also be activated using
the Alt-Shift-Left Click action in the graph panel.

156 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Edit menu

Unlimited undo/redo support. Most edit operations on the Bayesian network
are undoable. A notable exception is learning of network and CPTs.

Cut/copy/paste support. When a set of nodes is selected these can be placed
on a clipboard (internal, so no interaction with other applications yet) and a
paste action will add the nodes. Nodes are renamed by adding ”Copy of” before
the name and adding numbers if necessary to ensure uniqueness of name. Only
the arrows to parents are copied, not these of the children.

The Add Node menu brings up a dialog (see below) that allows to specify
the name of the new node and the cardinality of the new node. Node values are
assigned the names ’Value1’, ’Value2’ etc. These values can be renamed (right
click the node in the graph panel and select Rename Value). Another option is
to copy/paste a node with values that are already properly named and rename
the node.

The Add Arc menu brings up a dialog to choose a child node first;

10.9. BAYES NETWORK GUI 157

Then a dialog is shown to select a parent. Descendants of the child node,
parents of the child node and the node itself are not listed since these cannot
be selected as child node since they would introduce cycles or already have an
arc in the network.

The Delete Arc menu brings up a dialog with a list of all arcs that can be
deleted.

The list of eight items at the bottom are active only when a group of at least
two nodes are selected.
• Align Left/Right/Top/Bottom moves the nodes in the selection such that all
nodes align to the utmost left, right, top or bottom node in the selection re-
spectively.
• Center Horizontal/Vertical moves nodes in the selection halfway between left
and right most (or top and bottom most respectively).
• Space Horizontal/Vertical spaces out nodes in the selection evenly between
left and right most (or top and bottom most respectively). The order in which
the nodes are selected impacts the place the node is moved to.

Tools menu

The Generate Network menu allows generation of a complete random Bayesian
network. It brings up a dialog to specify the number of nodes, number of arcs,
cardinality and a random seed to generate a network.

158 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The Generate Data menu allows for generating a data set from the Bayesian
network in the editor. A dialog is shown to specify the number of instances to
be generated, a random seed and the file to save the data set into. The file
format is arff. When no file is selected (field left blank) no file is written and
only the internal data set is set.

The Set Data menu sets the current data set. From this data set a new
Bayesian network can be learned, or the CPTs of a network can be estimated.
A file choose menu pops up to select the arff file containing the data.

The Learn Network and Learn CPT menus are only active when a data set
is specified either through
• Tools/Set Data menu, or
• Tools/Generate Data menu, or
• File/Open menu when an arff file is selected.

The Learn Network action learns the whole Bayesian network from the data
set. The learning algorithms can be selected from the set available in Weka by
selecting the Options button in the dialog below. Learning a network clears the
undo stack.

The Learn CPT menu does not change the structure of the Bayesian network,
only the probability tables. Learning the CPTs clears the undo stack.

The Layout menu runs a graph layout algorithm on the network and tries
to make the graph a bit more readable. When the menu item is selected, the
node size can be specified or left to calculate by the algorithm based on the size
of the labels by deselecting the custom node size check box.

10.9. BAYES NETWORK GUI 159

The Show Margins menu item makes marginal distributions visible. These
are calculated using the junction tree algorithm [23]. Marginal probabilities for
nodes are shown in green next to the node. The value of a node can be set
(right click node, set evidence, select a value) and the color is changed to red to
indicate evidence is set for the node. Rounding errors may occur in the marginal
probabilities.

The Show Cliques menu item makes the cliques visible that are used by the
junction tree algorithm. Cliques are visualized using colored undirected edges.
Both margins and cliques can be shown at the same time, but that makes for
rather crowded graphs.

160 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

View menu

The view menu allows for zooming in and out of the graph panel. Also, it allows
for hiding or showing the status and toolbars.

Help menu

The help menu points to this document.

Toolbar

10.9. BAYES NETWORK GUI 161

The toolbar allows a shortcut to many functions. Just hover the mouse
over the toolbar buttons and a tooltiptext pops up that tells which function is
activated. The toolbar can be shown or hidden with the View/View Toolbar
menu.

Statusbar

At the bottom of the screen the statusbar shows messages. This can be helpful
when an undo/redo action is performed that does not have any visible effects,
such as edit actions on a CPT. The statusbar can be shown or hidden with the
View/View Statusbar menu.

Click right mouse button

Clicking the right mouse button in the graph panel outside a node brings up
the following popup menu. It allows to add a node at the location that was
clicked, or add select a parent to add to all nodes in the selection. If no node is
selected, or no node can be added as parent, this function is disabled.

Clicking the right mouse button on a node brings up a popup menu.
The popup menu shows list of values that can be set as evidence to selected

node. This is only visible when margins are shown (menu Tools/Show margins).
By selecting ’Clear’, the value of the node is removed and the margins calculated
based on CPTs again.

A node can be renamed by right click and select Rename in the popup menu.
The following dialog appears that allows entering a new node name.

162 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

The CPT of a node can be edited manually by selecting a node, right
click/Edit CPT. A dialog is shown with a table representing the CPT. When a
value is edited, the values of the remainder of the table are update in order to
ensure that the probabilities add up to 1. It attempts to adjust the last column
first, then goes backward from there.

The whole table can be filled with randomly generated distributions by selecting
the Randomize button.

The popup menu shows list of parents that can be added to selected node.
CPT for the node is updated by making copies for each value of the new parent.

The popup menu shows list of parents that can be deleted from selected
node. CPT of the node keeps only the one conditioned on the first value of the
parent node.

10.9. BAYES NETWORK GUI 163

The popup menu shows list of children that can be deleted from selected
node. CPT of the child node keeps only the one conditioned on the first value
of the parent node.

Selecting the Add Value from the popup menu brings up this dialog, in which
the name of the new value for the node can be specified. The distribution for
the node assign zero probability to the value. Child node CPTs are updated by
copying distributions conditioned on the new value.

The popup menu shows list of values that can be renamed for selected node.

164 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Selecting a value brings up the following dialog in which a new name can be
specified.

The popup menu shows list of values that can be deleted from selected node.
This is only active when there are more then two values for the node (single
valued nodes do not make much sense). By selecting the value the CPT of the
node is updated in order to ensure that the CPT adds up to unity. The CPTs
of children are updated by dropping the distributions conditioned on the value.

A note on CPT learning

Continuous variables are discretized by the Bayes network class. The discretiza-
tion algorithm chooses its values based on the information in the data set.

10.10. BAYESIAN NETS IN THE EXPERIMENTER 165

However, these values are not stored anywhere. So, reading an arff file with
continuous variables using the File/Open menu allows one to specify a network,
then learn the CPTs from it since the discretization bounds are still known.
However, opening an arff file, specifying a structure, then closing the applica-
tion, reopening and trying to learn the network from another file containing
continuous variables may not give the desired result since a the discretization
algorithm is re-applied and new boundaries may have been found. Unexpected
behavior may be the result.

Learning from a dataset that contains more attributes than there are nodes
in the network is ok. The extra attributes are just ignored.

Learning from a dataset with differently ordered attributes is ok. Attributes
are matched to nodes based on name. However, attribute values are matched
with node values based on the order of the values.

The attributes in the dataset should have the same number of values as the
corresponding nodes in the network (see above for continuous variables).

10.10 Bayesian nets in the experimenter

Bayesian networks generate extra measures that can be examined in the exper-
imenter. The experimenter can then be used to calculate mean and variance for
those measures.

The following metrics are generated:

• measureExtraArcs: extra arcs compared to reference network. The net-
work must be provided as BIFFile to the BayesNet class. If no such
network is provided, this value is zero.

• measureMissingArcs: missing arcs compared to reference network or zero
if not provided.

• measureReversedArcs: reversed arcs compared to reference network or
zero if not provided.

• measureDivergence: divergence of network learned compared to reference
network or zero if not provided.

• measureBayesScore: log of the K2 score of the network structure.

• measureBDeuScore: log of the BDeu score of the network structure.

• measureMDLScore: log of the MDL score.

• measureAICScore: log of the AIC score.

• measureEntropyScore:log of the entropy.

10.11 Adding your own Bayesian network learn-

ers

You can add your own structure learners and estimators.

166 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Adding a new structure learner

Here is the quick guide for adding a structure learner:

1. Create a class that derives from weka.classifiers.bayes.net.search.SearchAlgorithm.
If your searcher is score based, conditional independence based or cross-
validation based, you probably want to derive from ScoreSearchAlgorithm,
CISearchAlgorithmor CVSearchAlgorithm instead of deriving from SearchAlgorithm

directly. Let’s say it is called
weka.classifiers.bayes.net.search.local.MySearcher derived from
ScoreSearchAlgorithm.

2. Implement the method
public void buildStructure(BayesNet bayesNet, Instances instances).
Essentially, you are responsible for setting the parent sets in bayesNet.
You can access the parentsets using bayesNet.getParentSet(iAttribute)
where iAttribute is the number of the node/variable.

To add a parent iParent to node iAttribute, use
bayesNet.getParentSet(iAttribute).AddParent(iParent, instances)

where instances need to be passed for the parent set to derive properties
of the attribute.

Alternatively, implement public void search(BayesNet bayesNet, Instances

instances). The implementation of buildStructure in the base class.
This method is called by the SearchAlgorithm will call search after ini-
tializing parent sets and if the initAsNaiveBase flag is set, it will start
with a naive Bayes network structure. After calling search in your cus-
tom class, it will add arrows if the markovBlanketClassifier flag is set
to ensure all attributes are in the Markov blanket of the class node.

3. If the structure learner has options that are not default options, you
want to implement public Enumeration listOptions(), public void

setOptions(String[] options), public String[] getOptions() and
the get and set methods for the properties you want to be able to set.

NB 1. do not use the -E option since that is reserved for the BayesNet

class to distinguish the extra options for the SearchAlgorithm class and
the Estimator class. If the -E option is used, it will not be passed to your
SearchAlgorithm (and probably causes problems in the BayesNet class).

NB 2. make sure to process options of the parent class if any in the
get/setOpions methods.

Adding a new estimator

This is the quick guide for adding a new estimator:

1. Create a class that derives from
weka.classifiers.bayes.net.estimate.BayesNetEstimator. Let’s say
it is called
weka.classifiers.bayes.net.estimate.MyEstimator.

2. Implement the methods
public void initCPTs(BayesNet bayesNet)

10.12. FAQ 167

public void estimateCPTs(BayesNet bayesNet)

public void updateClassifier(BayesNet bayesNet, Instance instance),
and
public double[] distributionForInstance(BayesNet bayesNet, Instance

instance).

3. If the structure learner has options that are not default options, you
want to implement public Enumeration listOptions(), public void

setOptions(String[] options), public String[] getOptions() and
the get and set methods for the properties you want to be able to set.

NB do not use the -E option since that is reserved for the BayesNet class
to distinguish the extra options for the SearchAlgorithm class and the
Estimator class. If the -E option is used and no extra arguments are
passed to the SearchAlgorithm, the extra options to your Estimator will
be passed to the SearchAlgorithm instead. In short, do not use the -E
option.

10.12 FAQ

How do I use a data set with continuous variables with the
BayesNet classes?

Use the class weka.filters.unsupervised.attribute.Discretize to discretize
them. From the command line, you can use
java weka.filters.unsupervised.attribute.Discretize -B 3 -i infile.arff

-o outfile.arff

where the -B option determines the cardinality of the discretized variables.

How do I use a data set with missing values with the
BayesNet classes?

You would have to delete the entries with missing values or fill in dummy values.

How do I create a random Bayes net structure?

Running from the command line
java weka.classifiers.bayes.net.BayesNetGenerator -B -N 10 -A 9 -C

2

will print a Bayes net with 10 nodes, 9 arcs and binary variables in XML BIF
format to standard output.

How do I create an artificial data set using a random Bayes
nets?

Running
java weka.classifiers.bayes.net.BayesNetGenerator -N 15 -A 20 -C 3

-M 300

will generate a data set in arff format with 300 instance from a random network
with 15 ternary variables and 20 arrows.

168 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

How do I create an artificial data set using a Bayes nets I
have on file?

Running
java weka.classifiers.bayes.net.BayesNetGenerator -F alarm.xml -M 1000

will generate a data set with 1000 instances from the network stored in the file
alarm.xml.

How do I save a Bayes net in BIF format?

• GUI: In the Explorer

– learn the network structure,

– right click the relevant run in the result list,

– choose “Visualize graph” in the pop up menu,

– click the floppy button in the Graph Visualizer window.

– a file “save as” dialog pops up that allows you to select the file name
to save to.

• Java: Create a BayesNet and call BayesNet.toXMLBIF03()which returns
the Bayes network in BIF format as a String.

• Command line: use the -g option and redirect the output on stdout
into a file.

How do I compare a network I learned with one in BIF
format?

Specify the -B <bif-file> option to BayesNet. Calling toString() will produce
a summary of extra, missing and reversed arrows. Also the divergence between
the network learned and the one on file is reported.

How do I use the network I learned for general inference?

There is no general purpose inference in Weka, but you can export the network as
XML BIF file (see above) and import it in other packages, for example JavaBayes
available under GPL from http://www.cs.cmu.edu/~javabayes.

10.13 Future development

If you would like to add to the current Bayes network facilities in Weka, you
might consider one of the following possibilities.

• Implement more search algorithms, in particular,

– general purpose search algorithms (such as an improved implemen-
tation of genetic search).

– structure search based on equivalent model classes.

– implement those algorithms both for local and global metric based
search algorithms.

http://www.cs.cmu.edu/~javabayes

10.13. FUTURE DEVELOPMENT 169

– implement more conditional independence based search algorithms.

• Implement score metrics that can handle sparse instances in order to allow
for processing large datasets.

• Implement traditional conditional independence tests for conditional in-
dependence based structure learning algorithms.

• Currently, all search algorithms assume that all variables are discrete.
Search algorithms that can handle continuous variables would be interest-
ing.

• A limitation of the current classes is that they assume that there are no
missing values. This limitation can be undone by implementing score
metrics that can handle missing values. The classes used for estimating
the conditional probabilities need to be updated as well.

• Only leave-one-out, k-fold and cumulative cross-validation are implemented.
These implementations can be made more efficient and other cross-validation
methods can be implemented, such as Monte Carlo cross-validation and
bootstrap cross validation.

• Implement methods that can handle incremental extensions of the data
set for updating network structures.

And for the more ambitious people, there are the following challenges.

• A GUI for manipulating Bayesian network to allow user intervention for
adding and deleting arcs and updating the probability tables.

• General purpose inference algorithms built into the GUI to allow user
defined queries.

• Allow learning of other graphical models, such as chain graphs, undirected
graphs and variants of causal graphs.

• Allow learning of networks with latent variables.

• Allow learning of dynamic Bayesian networks so that time series data can
be handled.

170 CHAPTER 10. BAYESIAN NETWORK CLASSIFIERS

Part III

Data

171

Chapter 11

ARFF

An ARFF (= Attribute-Relation File Format) file is an ASCII text file that
describes a list of instances sharing a set of attributes.

11.1 Overview

ARFF files have two distinct sections. The first section is the Header informa-
tion, which is followed the Data information.

The Header of the ARFF file contains the name of the relation, a list of
the attributes (the columns in the data), and their types. An example header
on the standard IRIS dataset looks like this:

% 1. Title: Iris Plants Database

%

% 2. Sources:

% (a) Creator: R.A. Fisher

% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

% (c) Date: July, 1988

%

@RELATION iris

@ATTRIBUTE sepallength NUMERIC

@ATTRIBUTE sepalwidth NUMERIC

@ATTRIBUTE petallength NUMERIC

@ATTRIBUTE petalwidth NUMERIC

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

The Data of the ARFF file looks like the following:

@DATA

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

5.4,3.9,1.7,0.4,Iris-setosa

173

174 CHAPTER 11. ARFF

4.6,3.4,1.4,0.3,Iris-setosa

5.0,3.4,1.5,0.2,Iris-setosa

4.4,2.9,1.4,0.2,Iris-setosa

4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and
@DATA declarations are case insensitive.

11.2 Examples

Several well-known machine learning datasets are distributed with Weka in the
$WEKAHOME/data directory as ARFF files.

11.2.1 The ARFF Header Section

The ARFF Header section of the file contains the relation declaration and at-
tribute declarations.

The @relation Declaration

The relation name is defined as the first line in the ARFF file. The format is:

@relation <relation-name>

where <relation-name> is a string. The string must be quoted if the name
includes spaces. Furthermore, relation names or attribute names (see below)
cannot begin with

• a character below \\u0021

• ’{’, ’}’, ’,’, or ’%’

Moreover, it can only begin with a single or double quote if there is a corre-
sponding quote at the end of the name.

The @attribute Declarations

Attribute declarations take the form of an ordered sequence of @attribute

statements. Each attribute in the data set has its own @attribute statement
which uniquely defines the name of that attribute and it’s data type. The order
the attributes are declared indicates the column position in the data section
of the file. For example, if an attribute is the third one declared then Weka
expects that all that attributes values will be found in the third comma delimited
column.

The format for the @attribute statement is:

@attribute <attribute-name> <datatype>

where the <attribute-name> must adhere to the constraints specified in the
above section on the @relation declaration.

The <datatype> can be any of the four types supported by Weka:

11.2. EXAMPLES 175

• numeric

• integer is treated as numeric

• real is treated as numeric

• <nominal-specification>

• string

• date [<date-format>]

• relational for multi-instance data (for future use)

where <nominal-specification> and <date-format> are defined below. The
keywords numeric, real, integer, string and date are case insensitive.

Numeric attributes

Numeric attributes can be real or integer numbers.

Nominal attributes

Nominal values are defined by providing an <nominal-specification> listing the
possible values: <nominal-name1>, <nominal-name2>, <nominal-name3>,

...

For example, the class value of the Iris dataset can be defined as follows:

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

Values that contain spaces must be quoted.

String attributes

String attributes allow us to create attributes containing arbitrary textual val-
ues. This is very useful in text-mining applications, as we can create datasets
with string attributes, then write Weka Filters to manipulate strings (like String-
ToWordVectorFilter). String attributes are declared as follows:

@ATTRIBUTE LCC string

Date attributes

Date attribute declarations take the form:

@attribute <name> date [<date-format>]

where <name> is the name for the attribute and <date-format> is an op-
tional string specifying how date values should be parsed and printed (this is the
same format used by SimpleDateFormat). The default format string accepts
the ISO-8601 combined date and time format: yyyy-MM-dd’T’HH:mm:ss.

Dates must be specified in the data section as the corresponding string rep-
resentations of the date/time (see example below).

176 CHAPTER 11. ARFF

Relational attributes

Relational attribute declarations take the form:

@attribute <name> relational

<further attribute definitions>

@end <name>

For the multi-instance dataset MUSK1 the definition would look like this (”...”
denotes an omission):

@attribute molecule_name {MUSK-jf78,...,NON-MUSK-199}

@attribute bag relational

@attribute f1 numeric

...

@attribute f166 numeric

@end bag

@attribute class {0,1}

...

11.2.2 The ARFF Data Section

The ARFF Data section of the file contains the data declaration line and the
actual instance lines.

The @data Declaration

The @data declaration is a single line denoting the start of the data segment in
the file. The format is:

@data

The instance data

Each instance is represented on a single line, with carriage returns denoting the
end of the instance. A percent sign (%) introduces a comment, which continues
to the end of the line.

Attribute values for each instance are delimited by commas. They must
appear in the order that they were declared in the header section (i.e. the data
corresponding to the nth @attribute declaration is always the nth field of the
attribute).

Missing values are represented by a single question mark, as in:

@data

4.4,?,1.5,?,Iris-setosa

Values of string and nominal attributes are case sensitive, and any that contain
space or the comment-delimiter character % must be quoted. (The code suggests
that double-quotes are acceptable and that a backslash will escape individual
characters.) An example follows:

11.3. SPARSE ARFF FILES 177

@relation LCCvsLCSH

@attribute LCC string

@attribute LCSH string

@data

AG5, ’Encyclopedias and dictionaries.;Twentieth century.’

AS262, ’Science -- Soviet Union -- History.’

AE5, ’Encyclopedias and dictionaries.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Phases.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Tables.’

Dates must be specified in the data section using the string representation spec-
ified in the attribute declaration. For example:

@RELATION Timestamps

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"

@DATA

"2001-04-03 12:12:12"

"2001-05-03 12:59:55"

Relational data must be enclosed within double quotes ”. For example an in-
stance of the MUSK1 dataset (”...” denotes an omission):

MUSK-188,"42,...,30",1

11.3 Sparse ARFF files

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not
be explicitly represented.

Sparse ARFF files have the same header (i.e @relation and @attribute

tags) but the data section is different. Instead of representing each value in
order, like this:

@data

0, X, 0, Y, "class A"

0, 0, W, 0, "class B"

the non-zero attributes are explicitly identified by attribute number and their
value stated, like this:

@data

{1 X, 3 Y, 4 "class A"}

{2 W, 4 "class B"}

Each instance is surrounded by curly braces, and the format for each entry is:
<index> <space> <value> where index is the attribute index (starting from
0).

178 CHAPTER 11. ARFF

Note that the omitted values in a sparse instance are 0, they are notmissing
values! If a value is unknown, you must explicitly represent it with a question
mark (?).

Warning: There is a known problem saving SparseInstance objects from
datasets that have string attributes. In Weka, string and nominal data values
are stored as numbers; these numbers act as indexes into an array of possible
attribute values (this is very efficient). However, the first string value is as-
signed index 0: this means that, internally, this value is stored as a 0. When a
SparseInstance is written, string instances with internal value 0 are not out-
put, so their string value is lost (and when the arff file is read again, the default
value 0 is the index of a different string value, so the attribute value appears
to change). To get around this problem, add a dummy string value at index 0
that is never used whenever you declare string attributes that are likely to be
used in SparseInstance objects and saved as Sparse ARFF files.

11.4 Instance weights in ARFF files

A weight can be associated with an instance in a standard ARFF file by ap-
pending it to the end of the line for that instance and enclosing the value in
curly braces. E.g:

@data

0, X, 0, Y, "class A", {5}

For a sparse instance, this example would look like:

@data

{1 X, 3 Y, 4 "class A"}, {5}

Note that any instance without a weight value specified is assumed to have a
weight of 1 for backwards compatibility.

Chapter 12

XRFF

The XRFF (Xml attribute Relation File Format) is a representing the data in
a format that can store comments, attribute and instance weights.

12.1 File extensions

The following file extensions are recognized as XRFF files:

• .xrff

the default extension of XRFF files

• .xrff.gz

the extension for gzip compressed XRFF files (see Compression section
for more details)

12.2 Comparison

12.2.1 ARFF

In the following a snippet of the UCI dataset iris in ARFF format:

@relation iris

@attribute sepallength numeric

@attribute sepalwidth numeric

@attribute petallength numeric

@attribute petalwidth numeric

@attribute class {Iris-setosa,Iris-versicolor,Iris-virginica}

@data

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3,1.4,0.2,Iris-setosa

...

179

180 CHAPTER 12. XRFF

12.2.2 XRFF

And the same dataset represented as XRFF file:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE dataset

[

<!ELEMENT dataset (header,body)>

<!ATTLIST dataset name CDATA #REQUIRED>

<!ATTLIST dataset version CDATA "3.5.4">

<!ELEMENT header (notes?,attributes)>

<!ELEMENT body (instances)>

<!ELEMENT notes ANY>

<!ELEMENT attributes (attribute+)>

<!ELEMENT attribute (labels?,metadata?,attributes?)>

<!ATTLIST attribute name CDATA #REQUIRED>

<!ATTLIST attribute type (numeric|date|nominal|string|relational) #REQUIRED>

<!ATTLIST attribute format CDATA #IMPLIED>

<!ATTLIST attribute class (yes|no) "no">

<!ELEMENT labels (label*)>

<!ELEMENT label ANY>

<!ELEMENT metadata (property*)>

<!ELEMENT property ANY>

<!ATTLIST property name CDATA #REQUIRED>

<!ELEMENT instances (instance*)>

<!ELEMENT instance (value*)>

<!ATTLIST instance type (normal|sparse) "normal">

<!ATTLIST instance weight CDATA #IMPLIED>

<!ELEMENT value (#PCDATA|instances)*>

<!ATTLIST value index CDATA #IMPLIED>

<!ATTLIST value missing (yes|no) "no">

]

>

<dataset name="iris" version="3.5.3">

<header>

<attributes>

<attribute name="sepallength" type="numeric"/>

<attribute name="sepalwidth" type="numeric"/>

<attribute name="petallength" type="numeric"/>

<attribute name="petalwidth" type="numeric"/>

<attribute class="yes" name="class" type="nominal">

<labels>

<label>Iris-setosa</label>

<label>Iris-versicolor</label>

<label>Iris-virginica</label>

</labels>

12.3. SPARSE FORMAT 181

</attribute>

</attributes>

</header>

<body>

<instances>

<instance>

<value>5.1</value>

<value>3.5</value>

<value>1.4</value>

<value>0.2</value>

<value>Iris-setosa</value>

</instance>

<instance>

<value>4.9</value>

<value>3</value>

<value>1.4</value>

<value>0.2</value>

<value>Iris-setosa</value>

</instance>

...

</instances>

</body>

</dataset>

12.3 Sparse format

The XRFF format also supports a sparse data representation. Even though the
iris dataset does not contain sparse data, the above example will be used here
to illustrate the sparse format:

...

<instances>

<instance type="sparse">

<value index="1">5.1</value>

<value index="2">3.5</value>

<value index="3">1.4</value>

<value index="4">0.2</value>

<value index="5">Iris-setosa</value>

</instance>

<instance type="sparse">

<value index="1">4.9</value>

<value index="2">3</value>

<value index="3">1.4</value>

<value index="4">0.2</value>

<value index="5">Iris-setosa</value>

</instance>

...

</instances>

...

182 CHAPTER 12. XRFF

In contrast to the normal data format, each sparse instance tag contains a type
attribute with the value sparse:

<instance type="sparse">

And each value tag needs to specify the index attribute, which contains the
1-based index of this value.

<value index="1">5.1</value>

12.4 Compression

Since the XML representation takes up considerably more space than the rather
compact ARFF format, one can also compress the data via gzip. Weka automat-
ically recognizes a file being gzip compressed, if the file’s extension is .xrff.gz
instead of .xrff.

The Weka Explorer, Experimenter and command-line allow one to load/save
compressed and uncompressed XRFF files (this applies also to ARFF files).

12.5 Useful features

In addition to all the features of the ARFF format, the XRFF format contains
the following additional features:

• class attribute specification

• attribute weights

12.5.1 Class attribute specification

Via the class="yes" attribute in the attribute specification in the header, one
can define which attribute should act as class attribute. A feature that can
be used on the command line as well as in the Experimenter, which now can
also load other data formats, and removing the limitation of the class attribute
always having to be the last one.

Snippet from the iris dataset:

<attribute class="yes" name="class" type="nominal">

12.5.2 Attribute weights

Attribute weights are stored in an attributes meta-data tag (in the header sec-
tion). Here is an example of the petalwidth attribute with a weight of 0.9:

<attribute name="petalwidth" type="numeric">

<metadata>

<property name="weight">0.9</property>

</metadata>

</attribute>

12.5. USEFUL FEATURES 183

12.5.3 Instance weights

Instance weights are defined via the weight attribute in each instance tag. By
default, the weight is 1. Here is an example:

<instance weight="0.75">

<value>5.1</value>

<value>3.5</value>

<value>1.4</value>

<value>0.2</value>

<value>Iris-setosa</value>

</instance>

184 CHAPTER 12. XRFF

Chapter 13

Converters

13.1 Introduction

Weka offers conversion utilities for several formats, in order to allow import from
different sorts of datasources. These utilities, called converters, are all located
in the following package:

weka.core.converters

For a certain kind of converter you will find two classes

• one for loading (classname ends with Loader) and

• one for saving (classname ends with Saver).

Weka contains converters for the following data sources:

• ARFF files (ArffLoader, ArffSaver)

• C4.5 files (C45Loader, C45Saver)

• CSV files (CSVLoader, CSVSaver)

• files containing serialized instances (SerializedInstancesLoader, Serial-
izedInstancesSaver)

• JDBC databases (DatabaseLoader, DatabaseSaver)

• libsvm files (LibSVMLoader, LibSVMSaver)

• XRFF files (XRFFLoader, XRFFSaver)

• text directories for text mining (TextDirectoryLoader)

185

186 CHAPTER 13. CONVERTERS

13.2 Usage

13.2.1 File converters

File converters can be used as follows:

• Loader
They take one argument, which is the file that should be converted, and
print the result to stdout. You can also redirect the output into a file:

java <classname> <input-file> > <output-file>

Here’s an example for loading the CSV file iris.csv and saving it as
iris.arff :

java weka.core.converters.CSVLoader iris.csv > iris.arff

• Saver
For a Saver you specify the ARFF input file via -i and the output file in
the specific format with -o:

java <classname> -i <input> -o <output>

Here’s an example for saving an ARFF file to CSV:

java weka.core.converters.CSVSaver -i iris.arff -o iris.csv

A few notes:

• Using the ArffSaver from commandline doesn’t make much sense, since
this Saver takes an ARFF file as input and output. The ArffSaver is
normally used from Java for saving an object of weka.core.Instances

to a file.

• The C45Loader either takes the .names-file or the .data-file as input, it
automatically looks for the other one.

• For the C45Saver one specifies as output file a filename without any ex-
tension, since two output files will be generated; .names and .data are
automatically appended.

13.2.2 Database converters

The database converters are a bit more complex, since they also rely on ad-
ditional configuration files, besides the parameters on the commandline. The
setup for the database connection is stored in the following props file:

DatabaseUtils.props

The default file can be found here:

weka/experiment/DatabaseUtils.props

13.2. USAGE 187

• Loader
You have to specify at least a SQL query with the -Q option (there are
additional options for incremental loading)

java weka.core.converters.DatabaseLoader -Q "select * from employee"

• Saver
The Saver takes an ARFF file as input like any other Saver, but then also
the table where to save the data to via -T :

java weka.core.converters.DatabaseSaver -i iris.arff -T iris

188 CHAPTER 13. CONVERTERS

Chapter 14

Stemmers

14.1 Introduction

Weka now supports stemming algorithms. The stemming algorithms are located
in the following package:

weka.core.stemmers

Currently, the Lovins Stemmer (+ iterated version) and support for the Snow-
ball stemmers are included.

14.2 Snowball stemmers

Weka contains a wrapper class for the Snowball (homepage: http://snowball.tartarus.org/)
stemmers (containing the Porter stemmer and several other stemmers for dif-
ferent languages). The relevant class is weka.core.stemmers.Snowball.

The Snowball classes are not included, they only have to be present in the
classpath. The reason for this is, that the Weka team doesn’t have to watch out
for new versions of the stemmers and update them.

There are two ways of getting hold of the Snowball stemmers:

1. You can add the following pre-compiled jar archive to your classpath and
you’re set (based on source code from 2005-10-19, compiled 2005-10-22).
http://www.cs.waikato.ac.nz/~ml/weka/stemmers/snowball.jar

2. You can compile the stemmers yourself with the newest sources. Just
download the following ZIP file, unpack it and follow the instructions in
the README file (the zip contains an ANT (http://ant.apache.org/)
build script for generating the jar archive).
http://www.cs.waikato.ac.nz/~ml/weka/stemmers/snowball.zip

Note: the patch target is specific to the source code from 2005-10-19.

189

http://snowball.tartarus.org/
http://www.cs.waikato.ac.nz/~ml/weka/stemmers/snowball.jar
http://ant.apache.org/
http://www.cs.waikato.ac.nz/~ml/weka/stemmers/snowball.zip

190 CHAPTER 14. STEMMERS

14.3 Using stemmers

The stemmers can either used

• from commandline

• within the StringToWordVector (package weka.filters.unsupervised.attribute)

14.3.1 Commandline

All stemmers support the following options:

• -h
for displaying a brief help

• -i <input-file>
The file to process

• -o <output-file>
The file to output the processed data to (default stdout)

• -l
Uses lowercase strings, i.e., the input is automatically converted to lower
case

14.3.2 StringToWordVector

Just use the GenericObjectEditor to choose the right stemmer and the desired
options (if the stemmer offers additional options).

14.4 Adding new stemmers

You can easily add new stemmers, if you follow these guidelines (for use in the
GenericObjectEditor):

• they should be located in the weka.core.stemmers package (if not, then
the GenericObjectEditor.props/GenericPropertiesCreator.propsfile
need to be updated) and

• they must implement the interface weka.core.stemmers.Stemmer.

Chapter 15

Databases

15.1 Configuration files

Thanks to JDBC it is easy to connect to Databases that provide a JDBC
driver. Responsible for the setup is the following properties file, located in
the weka.experiment package:

DatabaseUtils.props

You can get this properties file from the weka.jar or weka-src.jar jar-archive,
both part of a normal Weka release. If you open up one of those files, you’ll find
the properties file in the sub-folder weka/experiment.

Weka comes with example files for a wide range of databases:

• DatabaseUtils.props.hsql - HSQLDB (>= 3.4.1)

• DatabaseUtils.props.msaccess - MS Access (> 3.4.14, > 3.5.8, > 3.6.0)
see the Windows databases chapter for more information:

• DatabaseUtils.props.mssqlserver - MS SQL Server 2000 (>= 3.4.9,
>= 3.5.4)

• DatabaseUtils.props.mssqlserver2005 - MS SQL Server 2005 (>=
3.4.11, >= 3.5.6)

• DatabaseUtils.props.mysql - MySQL (>= 3.4.9, >= 3.5.4)

• DatabaseUtils.props.odbc - ODBC access via Sun’s ODBC/JDBC bridge,
e.g., for MS Sql Server (>= 3.4.9, >= 3.5.4)
see the Windows databases chapter for more information:

• DatabaseUtils.props.oracle - Oracle 10g (>= 3.4.9, >= 3.5.4)

• DatabaseUtils.props.postgresql - PostgreSQL 7.4 (>= 3.4.9,>= 3.5.4)

• DatabaseUtils.props.sqlite3 - sqlite 3.x (> 3.4.12, > 3.5.7)

191

192 CHAPTER 15. DATABASES

The easiest way is just to place the extracted properties file into your HOME
directory. For more information on how property files are processed, check out
the following URL:

http://weka.wikispaces.com/Properties+File

Note: Weka only looks for the DatabaseUtils.props file. If you take one of
the example files listed above, you need to rename it first.

15.2 Setup

Under normal circumstances you only have to edit the following two properties:

• jdbcDriver

• jdbcURL

Driver

jdbcDriver is the classname of the JDBC driver, necessary to connect to your
database, e.g.:

• HSQLDB
org.hsqldb.jdbcDriver

• MS SQL Server 2000 (Desktop Edition)
com.microsoft.jdbc.sqlserver.SQLServerDriver

• MS SQL Server 2005
com.microsoft.sqlserver.jdbc.SQLServerDriver

• MySQL
org.gjt.mm.mysql.Driver (or com.mysql.jdbc.Driver)

• ODBC - part of Sun’s JDKs/JREs, no external driver necessary
sun.jdbc.odbc.JdbcOdbcDriver

• Oracle
oracle.jdbc.driver.OracleDriver

• PostgreSQL
org.postgresql.Driver

• sqlite 3.x
org.sqlite.JDBC

URL

jdbcURL specifies the JDBC URL pointing to your database (can be still changed
in the Experimenter/Explorer), e.g. for the database MyDatabase on the server
server.my.domain:

http://weka.wikispaces.com/Properties+File

15.3. MISSING DATATYPES 193

• HSQLDB
jdbc:hsqldb:hsql://server.my.domain/MyDatabase

• MS SQL Server 2000 (Desktop Edition)
jdbc:microsoft:sqlserver://v:1433

(Note: if you add ;databasename=db-name you can connect to a different
database than the default one, e.g., MyDatabase)

• MS SQL Server 2005
jdbc:sqlserver://server.my.domain:1433

• MySQL
jdbc:mysql://server.my.domain:3306/MyDatabase

• ODBC
jdbc:odbc:DSN name (replace DSN name with the DSN that you want to
use)

• Oracle (thin driver)
jdbc:oracle:thin:@server.my.domain:1526:orcl

(Note: @machineName:port:SID)
for the Express Edition you can use
jdbc:oracle:thin:@server.my.domain:1521:XE

• PostgreSQL
jdbc:postgresql://server.my.domain:5432/MyDatabase

You can also specify user and password directly in the URL:
jdbc:postgresql://server.my.domain:5432/MyDatabase?user=<...>&password=<...>
where you have to replace the <...> with the correct values

• sqlite 3.x
jdbc:sqlite:/path/to/database.db

(you can access only local files)

15.3 Missing Datatypes

Sometimes (e.g. with MySQL) it can happen that a column type cannot be
interpreted. In that case it is necessary to map the name of the column type
to the Java type it should be interpreted as. E.g. the MySQL type TEXT is
returned as BLOB from the JDBC driver and has to be mapped to String (0
represents String - the mappings can be found in the comments of the properties
file):

194 CHAPTER 15. DATABASES

Java type Java method Identifier Weka attribute type
String getString() 0 nominal
boolean getBoolean() 1 nominal
double getDouble() 2 numeric
byte getByte() 3 numeric
short getByte() 4 numeric
int getInteger() 5 numeric
long getLong() 6 numeric
float getFloat() 7 numeric
date getDate() 8 date
text getString() 9 string
time getTime() 10 date

In the props file one lists now the type names that the database returns and
what Java type it represents (via the identifier), e.g.:

CHAR=0

VARCHAR=0

CHAR and VARCHAR are both String types, hence they are interpreted as String
(identifier 0)
Note: in case database types have blanks, one needs to replace those blanks
with an underscore, e.g., DOUBLE PRECISION must be listed like this:

DOUBLE_PRECISION=2

15.4 Stored Procedures

Let’s say you’re tired of typing the same query over and over again. A good
way to shorten that, is to create a stored procedure.

PostgreSQL 7.4.x

The following example creates a procedure called emplyoee name that returns
the names of all the employees in table employee. Even though it doesn’t make
much sense to create a stored procedure for this query, nonetheless, it shows
how to create and call stored procedures in PostgreSQL.

• Create

CREATE OR REPLACE FUNCTION public.employee_name()

RETURNS SETOF text AS ’select name from employee’

LANGUAGE ’sql’ VOLATILE;

• SQL statement to call procedure

SELECT * FROM employee_name()

• Retrieve data via InstanceQuery

java weka.experiment.InstanceQuery

-Q "SELECT * FROM employee_name()"

-U <user> -P <password>

15.5. TROUBLESHOOTING 195

15.5 Troubleshooting

• In case you’re experiencing problems connecting to your database, check
out the WEKA Mailing List (see Weka homepage for more information).
It is possible that somebody else encountered the same problem as you
and you’ll find a post containing the solution to your problem.

• Specific MS SQL Server 2000 Troubleshooting

– Error Establishing Socket with JDBC Driver
Add TCP/IP to the list of protocols as stated in the following article:
http://support.microsoft.com/default.aspx?scid=kb;en-us;313178

– Login failed for user ’sa’. Reason: Not associated with a trusted SQL
Server connection.
For changing the authentication to mixed mode see the following
article:
http://support.microsoft.com/kb/319930/en-us

• MS SQL Server 2005 : TCP/IP is not enabled for SQL Server, or the
server or port number specified is incorrect.Verify that SQL Server is lis-
tening with TCP/IP on the specified server and port. This might be re-
ported with an exception similar to: ”The login has failed. The TCP/IP
connection to the host has failed.” This indicates one of the following:

– SQL Server is installed but TCP/IP has not been installed as a net-
work protocol for SQL Server by using the SQL Server Network Util-
ity for SQL Server 2000, or the SQL Server Configuration Manager
for SQL Server 2005

– TCP/IP is installed as a SQL Server protocol, but it is not listening
on the port specified in the JDBC connection URL. The default port
is 1433.

– The port that is used by the server has not been opened in the firewall

• The Added driver: ... output on the commandline does not mean that
the actual class was found, but only that Weka will attempt to load the
class later on in order to establish a database connection.

• The error message No suitable driver can be caused by the following:

– The JDBC driver you are attempting to load is not in the CLASS-
PATH (Note: using -jar in the java commandline overwrites the
CLASSPATH environment variable!). Open the SimpleCLI, run the
command java weka.core.SystemInfoand check whether the prop-
erty java.class.path lists your database jar. If not correct your
CLASSPATH or the Java call you start Weka with.

– The JDBC driver class is misspelled in the jdbcDriver property or
you have multiple entries of jdbcDriver (properties files need unique
keys !)

– The jdbcURL property has a spelling error and tries to use a non-
existing protocol or you listed it multiple times, which doesn’t work
either (remember, properties files need unique keys!)

http://support.microsoft.com/default.aspx?scid=kb;en-us;313178
http://support.microsoft.com/kb/319930/en-us

196 CHAPTER 15. DATABASES

Chapter 16

Windows databases

A common query we get from our users is how to open a Windows database in
the Weka Explorer. This page is intended as a guide to help you achieve this. It
is a complicated process and we cannot guarantee that it will work for you. The
process described makes use of the JDBC-ODBC bridge that is part of Sun’s
JRE/JDK 1.3 (and higher).

The following instructions are for Windows 2000. Under other Windows
versions there may be slight differences.

Step 1: Create a User DSN

1. Go to the Control Panel

2. Choose Adminstrative Tools

3. Choose Data Sources (ODBC)

4. At the User DSN tab, choose Add...

5. Choose database

• Microsoft Access

(a) Note: Make sure your database is not open in another application
before following the steps below.

(b) Choose the Microsoft Access driver and click Finish

(c) Give the source a name by typing it into the Data Source
Name field

(d) In the Database section, choose Select...

(e) Browse to find your database file, select it and click OK

(f) Click OK to finalize your DSN

• Microsoft SQL Server 2000 (Desktop Engine)

(a) Choose the SQL Server driver and click Finish

(b) Give the source a name by typing it into the Name field

(c) Add a description for this source in the Description field

(d) Select the server you’re connecting to from the Server combobox

197

198 CHAPTER 16. WINDOWS DATABASES

(e) For the verification of the authenticity of the login ID choose
With SQL Server...

(f) CheckConnect to SQL Server to obtain default settings...
and supply the user ID and password with which you installed
the Desktop Engine

(g) Just click on Next until it changes into Finish and click this,
too

(h) For testing purposes, click on Test Data Source... - the result
should be TESTS COMPLETED SUCCESSFULLY!

(i) Click on OK

• MySQL

(a) Choose the MySQL ODBC driver and click Finish

(b) Give the source a name by typing it into the Data Source
Name field

(c) Add a description for this source in the Description field

(d) Specify the server you’re connecting to in Server

(e) Fill in the user to use for connecting to the database in the User
field, the same for the password

(f) Choose the database for this DSN from the Database combobox

(g) Click on OK

6. Your DSN should now be listed in the User Data Sources list

Step 2: Set up the DatabaseUtils.props file

You will need to configure a file called DatabaseUtils.props. This file already
exists under the path weka/experiment/ in the weka.jar file (which is just a
ZIP file) that is part of the Weka download. In this directory you will also find a
sample file for ODBC connectivity, called DatabaseUtils.props.odbc, and one
specifically for MS Access, called DatabaseUtils.props.msaccess, also using
ODBC. You should use one of the sample files as basis for your setup, since they
already contain default values specific to ODBC access.

This file needs to be recognized when the Explorer starts. You can achieve
this by making sure it is in the working directory or the home directory (if you
are unsure what the terms working directory and home directory mean, see the
Notes section). The easiest is probably the second alternative, as the setup will
apply to all the Weka instances on your machine.

Just make sure that the file contains the following lines at least:

jdbcDriver=sun.jdbc.odbc.JdbcOdbcDriver

jdbcURL=jdbc:odbc:dbname

where dbname is the name you gave the user DSN. (This can also be changed
once the Explorer is running.)

199

Step 3: Open the database

1. Start up the Weka Explorer.

2. Choose Open DB...

3. The URL should read ”jdbc:odbc:dbname” where dbname is the name
you gave the user DSN.

4. Click Connect

5. Enter a Query, e.g., ”select * from tablename” where tablename is
the name of the database table you want to read. Or you could put a
more complicated SQL query here instead.

6. Click Execute

7. When you’re satisfied with the returned data, click OK to load the data
into the Preprocess panel.

Notes

• Working directory
The directory a process is started from. When you start Weka from the
Windows Start Menu, then this directory would be Weka’s installation
directory (the java process is started from that directory).

• Home directory
The directory that contains all the user’s data. The exact location depends
on the operating system and the version of the operating system. It is
stored in the following environment variable:

– Unix/Linux
$HOME

– Windows
%USERPROFILE%

– Cygwin
$USERPROFILE

You should be able output the value in a command prompt/terminal with
the echo command. E.g., for Windows this would be:

echo %USERPROFILE%

200 CHAPTER 16. WINDOWS DATABASES

Part IV

Appendix

201

Chapter 17

Research

17.1 Citing Weka

If you want to refer to Weka in a publication, please cite following SIGKDD
Explorations1 paper. The full citation is:

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-
ter Reutemann, Ian H. Witten (2009); The WEKA Data Mining
Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

17.2 Paper references

Due to the introduction of the weka.core.TechnicalInformationHandler in-
terface it is now easy to extract all the paper references via weka.core.ClassDiscovery
and weka.core.TechnicalInformation.

The script listed at the end, extracts all the paper references from Weka
based on a given jar file and dumps it to stdout. One can either generate simple
plain text output (option -p) or BibTeX compliant one (option -b).

Typical use (after an ant exejar) for BibTeX:

get_wekatechinfo.sh -d ../ -w ../dist/weka.jar -b > ../tech.txt

(command is issued from the same directory the Weka build.xml is located in)

1http://www.kdd.org/explorations/issues/11-1-2009-07/p2V11n1.pdf

203

 http://www.kdd.org/explorations/issues/11-1-2009-07/p2V11n1.pdf

204 CHAPTER 17. RESEARCH

Bash shell script get wekatechinfo.sh

#!/bin/bash
#
This script prints the information stored in TechnicalInformationHandlers

to stdout.
#

FracPete, $Revision: 4582 $

the usage of this script
function usage()
{

echo
echo "${0##*/} -d <dir> [-w <jar>] [-p|-b] [-h]"

echo
echo "Prints the information stored in TechnicalInformationHandlers to stdout."
echo

echo " -h this help"
echo " -d <dir>"

echo " the directory to look for packages, must be the one just above"
echo " the ’weka’ package, default: $DIR"

echo " -w <jar>"
echo " the weka jar to use, if not in CLASSPATH"
echo " -p prints the information in plaintext format"

echo " -b prints the information in BibTeX format"
echo

}

generates a filename out of the classname TMP and returns it in TMP
uses the directory in DIR
function class_to_filename()

{
TMP=$DIR"/"‘echo $TMP | sed s/"\."/"\/"/g‘".java"

}

variables

DIR="."
PLAINTEXT="no"

BIBTEX="no"
WEKA=""

TECHINFOHANDLER="weka.core.TechnicalInformationHandler"
TECHINFO="weka.core.TechnicalInformation"
CLASSDISCOVERY="weka.core.ClassDiscovery"

interprete parameters

while getopts ":hpbw:d:" flag
do

case $flag in

p) PLAINTEXT="yes"
;;

b) BIBTEX="yes"
;;

d) DIR=$OPTARG
;;

w) WEKA=$OPTARG

;;
h) usage

exit 0
;;

*) usage

exit 1
;;

esac
done

either plaintext or bibtex
if ["$PLAINTEXT" = "$BIBTEX"]

then
echo

echo "ERROR: either -p or -b has to be given!"
echo
usage

exit 2
fi

17.2. PAPER REFERENCES 205

do we have everything?
if ["$DIR" = ""] || [! -d "$DIR"]

then
echo

echo "ERROR: no directory or non-existing one provided!"
echo

usage
exit 3

fi

generate Java call

if ["$WEKA" = ""]
then

JAVA="java"

else
JAVA="java -classpath $WEKA"

fi
if ["$PLAINTEXT" = "yes"]

then
CMD="$JAVA $TECHINFO -plaintext"

elif ["$BIBTEX" = "yes"]

then
CMD="$JAVA $TECHINFO -bibtex"

fi

find packages

TMP=‘find $DIR -mindepth 1 -type d | grep -v CVS | sed s/".*weka"/"weka"/g | sed s/"\/"/./g‘
PACKAGES=‘echo $TMP | sed s/" "/,/g‘

get technicalinformationhandlers

TECHINFOHANDLERS=‘$JAVA weka.core.ClassDiscovery $TECHINFOHANDLER $PACKAGES | grep "\. weka" | sed s/".*weka"/weka/g‘

output information

echo
for i in $TECHINFOHANDLERS

do
TMP=$i;class_to_filename

exclude internal classes
if [! -f $TMP]

then
continue

fi

$CMD -W $i

echo
done

206 CHAPTER 17. RESEARCH

Chapter 18

Using the API

Using the graphical tools, like the Explorer, or just the command-line is in most
cases sufficient for the normal user. But WEKA’s clearly defined API (“ap-
plication programming interface”) makes it very easy to “embed” it in another
projects. This chapter covers the basics of how to achieve the following common
tasks from source code:

• Setting options

• Creating datasets in memory

• Loading and saving data

• Filtering

• Classifying

• Clustering

• Selecting attributes

• Visualization

• Serialization

Even though most of the code examples are for the Linux platform, using for-
ward slashes in the paths and file names, they do work on the MS Windows plat-
form as well. To make the examples work under MS Windows, one only needs
to adapt the paths, changing the forward slashes to backslashes and adding a
drive letter where necessary.

Note
WEKA is released under the GNU General Public License version 31 (GPLv3),
i.e., that derived code or code that uses WEKA needs to be released under the
GPLv3 as well. If one is just using WEKA for a personal project that does
not get released publicly then one is not affected. But as soon as one makes
the project publicly available (e.g., for download), then one needs to make the
source code available under the GLPv3 as well, alongside the binaries.

1http://www.gnu.org/licenses/gpl-3.0-standalone.html

207

http://www.gnu.org/licenses/gpl-3.0-standalone.html

208 CHAPTER 18. USING THE API

18.1 Option handling

Configuring an object, e.g., a classifier, can either be done using the appro-
priate get/set-methods for the property that one wishes to change, like the
Explorer does. Or, if the class implements the weka.core.OptionHandler in-
terface, one can just use the object’s ability to parse command-line options
via the setOptions(String[]) method (the counterpart of this method is
getOptions(), which returns a String[] array). The difference between the
two approaches is, that the setOptions(String[]) method cannot be used
to set the options incrementally. Default values are used for all options that
haven’t been explicitly specified in the options array.

The most basic approach is to assemble the String array by hand. The
following example creates an array with a single option (“-R”) that takes an
argument (“1”) and initializes the Remove filter with this option:

import weka.filters.unsupervised.attribute.Remove;

...

String[] options = new String[2];

options[0] = "-R";

options[1] = "1";

Remove rm = new Remove();

rm.setOptions(options);

Since the setOptions(String[]) method expects a fully parsed and correctly
split up array (which is done by the console/command prompt), some common
pitfalls with this approach are:

• Combination of option and argument – Using “-R 1” as an element of
the String array will fail, prompting WEKA to output an error message
stating that the option “R 1” is unknown.

• Trailing blanks – Using “-R ” will fail as well, since no trailing blanks are
removed and therefore option “R ” will not be recognized.

The easiest way to avoid these problems, is to provide a String array that
has been generated automatically from a single command-line string using the
splitOptions(String) method of the weka.core.Utils class. Here is an ex-
ample:

import weka.core.Utils;

...

String[] options = Utils.splitOptions("-R 1");

As this method ignores whitespaces, using “ -R 1” or “-R 1 ” will return the
same result as “-R 1”.

Complicated command-lines with lots of nested options, e.g., options for the
support-vector machine classifier SMO (package weka.classifiers.functions)
including a kernel setup, are a bit tricky, since Java requires one to escape dou-
ble quotes and backslashes inside a String. The Wiki[2] article “Use Weka
in your Java code” references the Java class OptionsToCode, which turns any
command-line into appropriate Java source code. This example class is also
available from the Weka Examples collection[3]: weka.core.OptionsToCode.

18.1. OPTION HANDLING 209

Instead of using the Remove filter’s setOptions(String[]) method, the
following code snippet uses the actual set-method for this property:

import weka.filters.unsupervised.attribute.Remove;

...

Remove rm = new Remove();

rm.setAttributeIndices("1");

In order to find out, which option belongs to which property, i.e., get/set-
method, it is best to have a look at the setOptions(String[])and getOptions()

methods. In case these methods use the member variables directly, one just has
to look for the methods making this particular member variable accessible to
the outside.

Using the set-methods, one will most likely come across ones that re-
quire a weka.core.SelectedTag as parameter. An example for this, is the
setEvaluation method of the meta-classifier GridSearch (located in package
weka.classifiers.meta). The SelectedTag class is used in the GUI for dis-
playing drop-down lists, enabling the user to chose from a predefined list of
values. GridSearch allows the user to chose the statistical measure to base the
evaluation on (accuracy, correlation coefficient, etc.).

A SelectedTag gets constructed using the array of all possible weka.core.Tag
elements that can be chosen and the integer or string ID of the Tag. For in-
stance, GridSearch’s setOptions(String[]) method uses the supplied string
ID to set the evaluation type (e.g., “ACC” for accuracy), or, if the evaluation
option is missing, the default integer ID EVALUATION ACC. In both cases, the
array TAGS EVALUATION is used, which defines all possible options:

import weka.core.SelectedTag;

...

String tmpStr = Utils.getOption(’E’, options);

if (tmpStr.length() != 0)

setEvaluation(new SelectedTag(tmpStr, TAGS_EVALUATION));

else

setEvaluation(new SelectedTag(EVALUATION_CC, TAGS_EVALUATION));

210 CHAPTER 18. USING THE API

18.2 Loading data

Before any filter, classifier or clusterer can be applied, data needs to be present.
WEKA enables one to load data from files (in various file formats) and also from
databases. In the latter case, it is assumed in that the database connection is
set up and working. See chapter 15 for more details on how to configure WEKA
correctly and also more information on JDBC (Java Database Connectivity)
URLs.

Example classes, making use of the functionality covered in this section, can
be found in the wekaexamples.core.converters package of the Weka Exam-
ples collection[3].

The following classes are used to store data in memory:

• weka.core.Instances – holds a complete dataset. This data structure
is row-based; single rows can be accessed via the instance(int) method
using a 0-based index. Information about the columns can be accessed via
the attribute(int)method. This method returns weka.core.Attribute
objects (see below).

• weka.core.Instance – encapsulates a single row. It is basically a wrap-
per around an array of double primitives. Since this class contains no
information about the type of the columns, it always needs access to a
weka.core.Instances object (see methods dataset and setDataset).
The class weka.core.SparseInstance is used in case of sparse data.

• weka.core.Attribute – holds the type information about a single column
in the dataset. It stores the type of the attribute, as well as the labels
for nominal attributes, the possible values for string attributes or the
datasets for relational attributes (these are just weka.core.Instances

objects again).

18.2.1 Loading data from files

When loading data from files, one can either let WEKA choose the appropriate
loader (the available loaders can be found in the weka.core.converters pack-
age) based on the file’s extension or one can use the correct loader directly. The
latter case is necessary if the files do not have the correct extension.

The DataSource class (inner class of the weka.core.converters.ConverterUtils
class) can be used to read data from files that have the appropriate file extension.
Here are some examples:

import weka.core.converters.ConverterUtils.DataSource;

import weka.core.Instances;

...

Instances data1 = DataSource.read("/some/where/dataset.arff");

Instances data2 = DataSource.read("/some/where/dataset.csv");

Instances data3 = DataSource.read("/some/where/dataset.xrff");

In case the file does have a different file extension than is normally associated
with the loader, one has to use a loader directly. The following example loads
a CSV (“comma-separated values”) file:

import weka.core.converters.CSVLoader;

18.2. LOADING DATA 211

import weka.core.Instances;

import java.io.File;

...

CSVLoader loader = new CSVLoader();

loader.setSource(new File("/some/where/some.data"));

Instances data = loader.getDataSet();

NB: Not all file formats allow to store information about the class attribute
(e.g., ARFF stores no information about class attribute, but XRFF does). If a
class attribute is required further down the road, e.g., when using a classifier,
it can be set with the setClassIndex(int) method:

// uses the first attribute as class attribute

if (data.classIndex() == -1)

data.setClassIndex(0);

...

// uses the last attribute as class attribute

if (data.classIndex() == -1)

data.setClassIndex(data.numAttributes() - 1);

18.2.2 Loading data from databases

For loading data from databases, one of the following two classes can be used:

• weka.experiment.InstanceQuery

• weka.core.converters.DatabaseLoader

The differences between them are, that the InstanceQuery class allows one to
retrieve sparse data and the DatabaseLoader can retrieve the data incremen-
tally.

Here is an example of using the InstanceQuery class:

import weka.core.Instances;

import weka.experiment.InstanceQuery;

...

InstanceQuery query = new InstanceQuery();

query.setDatabaseURL("jdbc_url");

query.setUsername("the_user");

query.setPassword("the_password");

query.setQuery("select * from whatsoever");

// if your data is sparse, then you can say so, too:

// query.setSparseData(true);

Instances data = query.retrieveInstances();

And an example using the DatabaseLoader class in “batch retrieval”:

import weka.core.Instances;

import weka.core.converters.DatabaseLoader;

...

DatabaseLoader loader = new DatabaseLoader();

loader.setSource("jdbc_url", "the_user", "the_password");

loader.setQuery("select * from whatsoever");

Instances data = loader.getDataSet();

212 CHAPTER 18. USING THE API

The DatabaseLoader is used in “incremental mode” as follows:

import weka.core.Instance;

import weka.core.Instances;

import weka.core.converters.DatabaseLoader;

...

DatabaseLoader loader = new DatabaseLoader();

loader.setSource("jdbc_url", "the_user", "the_password");

loader.setQuery("select * from whatsoever");

Instances structure = loader.getStructure();

Instances data = new Instances(structure);

Instance inst;

while ((inst = loader.getNextInstance(structure)) != null)

data.add(inst);

Notes:

• Not all database systems allow incremental retrieval.

• Not all queries have a unique key to retrieve rows incrementally. In that
case, one can supply the necessary columns with the setKeys(String)

method (comma-separated list of columns).

• If the data cannot be retrieved in an incremental fashion, it is first fully
loaded into memory and then provided row-by-row (“pseudo-incremental”).

18.2. LOADING DATA 213

214 CHAPTER 18. USING THE API

18.3 Creating datasets in memory

Loading datasets from disk or database are not the only ways of obtaining
data in WEKA: datasets can be created in memory or on-the-fly. Generating a
dataset memory structure (i.e., a weka.core.Instances object) is a two-stage
process:

1. Defining the format of the data by setting up the attributes.

2. Adding the actual data, row by row.

The class wekaexamples.core.CreateInstances of theWeka Examples collection[3]
generates an Instances object containing all attribute types WEKA can handle
at the moment.

18.3.1 Defining the format

There are currently five different types of attributes available in WEKA:

• numeric – continuous variables

• date – date variables

• nominal – predefined labels

• string – textual data

• relational – contains other relations, e.g., the bags in case of multi-
instance data

For all of the different attribute types, WEKA uses the same class, weka.core.Attribute,
but with different constructors. In the following, these different constructors are
explained.

• numeric – The easiest attribute type to create, as it requires only the
name of the attribute:

Attribute numeric = new Attribute("name_of_attr");

• date – Date attributes are handled internally as numeric attributes, but
in order to parse and present the date value correctly, the format of the
date needs to be specified. The date and time patterns are explained in
detail in the Javadoc of the java.text.SimpleDateFormat class. In the
following, an example of how to create a date attribute using a date format
of 4-digit year, 2-digit month and a 2-digit day, separated by hyphens:

Attribute date = new Attribute("name_of_attr", "yyyy-MM-dd");

• nominal – Since nominal attributes contain predefined labels, one needs
to supply these, stored in form of a java.util.ArrayList<String> ob-
ject:

ArrayList<String> labels = new ArrayList<String>();

labels.addElement("label_a");

labels.addElement("label_b");

labels.addElement("label_c");

labels.addElement("label_d");

Attribute nominal = new Attribute("name_of_attr", labels);

• string – In contrast to nominal attributes, this type does not store a
predefined list of labels. Normally used to store textual data, i.e., content
of documents for text categorization. The same constructor as for the
nominal attribute is used, but a null value is provided instead of an
instance of java.util.ArrayList<String>:

Attribute string = new Attribute("name_of_attr", (ArrayList<String>)

null);

18.3. CREATING DATASETS IN MEMORY 215

• relational – This attribute just takes another weka.core.Instances

object for defining the relational structure in the constructor. The follow-
ing code snippet generates a relational attribute that contains a relation
with two attributes, a numeric and a nominal attribute:

ArrayList<Attribute> atts = new ArrayList<Attribute>();

atts.addElement(new Attribute("rel.num"));

ArrayList<String> values = new ArrayList<String>();

values.addElement("val_A");

values.addElement("val_B");

values.addElement("val_C");

atts.addElement(new Attribute("rel.nom", values));

Instances rel_struct = new Instances("rel", atts, 0);

Attribute relational = new Attribute("name_of_attr", rel_struct);

A weka.core.Instancesobject is then created by supplying a java.util.ArrayList<Attribute>
object containing all the attribute objects. The following example creates a
dataset with two numeric attributes and a nominal class attribute with two
labels “no” and “yes”:

Attribute num1 = new Attribute("num1");

Attribute num2 = new Attribute("num2");

ArrayList<String> labels = new ArrayList<String>();

labels.addElement("no");

labels.addElement("yes");

Attribute cls = new Attribute("class", labels);

ArrayList<Attribute> attributes = new ArrayList<Attribute>();

attributes.addElement(num1);

attributes.addElement(num2);

attributes.addElement(cls);

Instances dataset = new Instances("Test-dataset", attributes, 0);

The final argument in the Instances constructor above tells WEKA how much
memory to reserve for upcoming weka.core.Instance objects. If one knows
how many rows will be added to the dataset, then it should be specified as it
saves costly operations for expanding the internal storage. It doesn’t matter, if
one aims to high with the amount of rows to be added, it is always possible to
trim the dataset again, using the compactify() method.

18.3.2 Adding data

After the structure of the dataset has been defined, one can add the actual data
to it, row by row. weka.core.Instance was turned into an interface to provide
greater flexibility. weka.core.AbstractInstance implements this interface and
provides basic functionality that is common to weka.core.DenseInstance (for-
merly weka.core.Instance) and weka.core.SparseInstance (which stores
only non-zero values). In the following examples, only the DenseInstance class
is used; the SparseInstance class is very similar in handling.

216 CHAPTER 18. USING THE API

There are basically two constructors of the DenseInstance class that one
can use for instantiating a data row:

• DenseInstance(double weight, double[] attValues) – this construc-
tor generates a DenseInstance object with the specified weight and the
given double values. WEKA’s internal format is using doubles for all at-
tribute types. For nominal, string and relational attributes this is just an
index of the stored values.

• DenseInstance(int numAttributes) – generates a new DenseInstance

object with weight 1.0 and all missing values.

The second constructor may be easier to use, but setting values using the meth-
ods of the DenseInstance is a bit costly, especially if one is adding a lot of rows.
Therefore, the following code examples cover the first constructor. For simplic-
ity, an Instances object “data” based on the code snippets for the different
attribute introduced used above is used, as it contains all possible attribute
types.

For each instance, the first step is to create a new double array to hold
the attribute values. It is important not to reuse this array, but always create
a new one, since WEKA only references it and does not create a copy of it,
when instantiating the DenseInstance object. Reusing means changing the
previously generated DenseInstance object:

double[] values = new double[data.numAttributes()];

After that, the double array is filled with the actual values:

• numeric – just sets the numeric value:

values[0] = 1.23;

• date – turns the date string into a double value:

values[1] = data.attribute(1).parseDate("2001-11-09");

• nominal – determines the index of the label:

values[2] = data.attribute(2).indexOf("label_b");

• string – determines the index of the string, using the addStringValue

method (internally, a hashtable holds all the string values):

values[3] = data.attribute(3).addStringValue("This is a string");

• relational – first, a new Instances object based on the attribute’s rela-
tional definition has to be created, before the index of it can be determined,
using the addRelation method:

Instances dataRel = new Instances(data.attribute(4).relation(),0);

valuesRel = new double[dataRel.numAttributes()];

valuesRel[0] = 2.34;

valuesRel[1] = dataRel.attribute(1).indexOf("val_C");

dataRel.add(new DenseInstance(1.0, valuesRel));

values[4] = data.attribute(4).addRelation(dataRel);

Finally, an Instance object is generated with the initialized double array and
added to the dataset:

Instance inst = new DenseInstance(1.0, values);

data.add(inst);

18.4. GENERATING ARTIFICIAL DATA 217

18.4 Generating artificial data

Using WEKA’s data generators it is very easy to generate artificial datasets.
There are two possible approaches to generating data, which get discussed in
turn in the following sections.

18.4.1 Generate ARFF file

Simply generating an ARFF file is achieved using the static DataGenerator.makeData
method. In order to write to a file, the generator needs to have a java.io.PrintWriter
object for writing to, in this case a FileWriter.

The code below writes data generated by RDG1 to the file rdg1.arff :

import weka.datagenerators.DataGenerator;

import weka.datagenerators.classifiers.classification.RDG1;

...

// configure generator

RDG1 generator = new RDG1();

generator.setMaxRuleSize(5);

// set where to write output to

java.io.PrintWriter output = new java.io.PrintWriter(

new java.io.BufferedWriter(new java.io.FileWriter("rdg1.arff")));

generator.setOutput(output);

DataGenerator.makeData(generator, generator.getOptions());

output.flush();

output.close();

18.4.2 Generate Instances

Rather than writing the artificial data directly to a file, it is possible to ob-
tain the data in the form of Instance/Instances directly. Depending on
the generator, the data can be retrieved instance by instance (determined by
getSingleModeFlag()), or as full dataset.

The example below generates data using the Agrawal generator:

import weka.datagenerators.classifiers.classification.Agrawal;

...

// configure data generator

Agrawal generator = new Agrawal();

generator.setBalanceClass(true);

// initialize dataset and get header

generator.setDatasetFormat(generator.defineDataFormat());

Instances header = generator.getDatasetFormat();

// generate data

if (generator.getSingleModeFlag()) {

for (int i = 0; i < generator.getNumExamplesAct(); i++) {

Instance inst = generator.generateExample();

}

} else {

Instances data = generator.generateExamples();

}

218 CHAPTER 18. USING THE API

18.5 Randomizing data

Since learning algorithms can be prone to the order the data arrives in, random-
izing (also called “shuffling”) the data is a common approach to alleviate this
problem. Especially repeated randomizations, e.g., as during cross-validation,
help to generate more realistic statistics.

WEKA offers two possibilities for randomizing a dataset:

• Using the randomize(Random) method of the weka.core.Instances ob-
ject containing the data itself. This method requires an instance of the
java.util.Random class. How to correctly instantiate such an object is
explained below.

• Using the Randomize filter (package weka.filters.unsupervised.instance).
For more information on how to use filters, see section 18.6.

A very important aspect of Machine Learning experiments is, that experiments
have to be repeatable. Subsequent runs of the same experiment setup have
to yield the exact same results. It may seem weird, but randomization is still
possible in this scenario. Random number generates never return a completely
random sequence of numbers anyway, only a pseudo-random one. In order to
achieve repeatable pseudo-random sequences, seeded generators are used. Using
the same seed value will always result in the same sequence then.

The default constructor of the java.util.Random random number generator
class should never be used, as such created objects will generate most likely
different sequences. The constructor Random(long), using a specified seed value,
is the recommended one to use.

In order to get a more dataset-dependent randomization of the data, the
getRandomNumberGenerator(int) method of the weka.core.Instances class
can be used. This method returns a java.util.Random object that was seeded
with the sum of the supplied seed and the hashcode of the string representation
of a randomly chosen weka.core.Instance of the Instances object (using a
random number generator seeded with the seed supplied to this method).

18.6. FILTERING 219

18.6 Filtering

In WEKA, filters are used to preprocess the data. They can be found below
package weka.filters. Each filter falls into one of the following two categories:

• supervised – The filter requires a class attribute to be set.

• unsupervised – A class attribute is not required to be present.

And into one of the two sub-categories:

• attribute-based – Columns are processed, e.g., added or removed.

• instance-based – Rows are processed, e.g., added or deleted.

These categories should make it clear, what the difference between the two
Discretize filters in WEKA is. The supervised one takes the class attribute
and its distribution over the dataset into account, in order to determine the
optimal number and size of bins, whereas the unsupervised one relies on a user-
specified number of bins.

Apart from this classification, filters are either stream- or batch-based. Stream
filters can process the data straight away and make it immediately available for
collection again. Batch filters, on the other hand, need a batch of data to setup
their internal data structures. The Add filter (this filter can be found in the
weka.filters.unsupervised.attribute package) is an example of a stream
filter. Adding a new attribute with only missing values does not require any
sophisticated setup. However, the ReplaceMissingValues filter (same package
as the Add filter) needs a batch of data in order to determine the means and
modes for each of the attributes. Otherwise, the filter will not be able to replace
the missing values with meaningful values. But as soon as a batch filter has been
initialized with the first batch of data, it can also process data on a row-by-row
basis, just like a stream filter.

Instance-based filters are a bit special in the way they handle data. As
mentioned earlier, all filters can process data on a row-by-row basis after the
first batch of data has been passed through. Of course, if a filter adds or removes
rows from a batch of data, this no longer works when working in single-row
processing mode. This makes sense, if one thinks of a scenario involving the
FilteredClassifier meta-classifier: after the training phase (= first batch of
data), the classifier will get evaluated against a test set, one instance at a time.
If the filter now removes the only instance or adds instances, it can no longer be
evaluated correctly, as the evaluation expects to get only a single result back.
This is the reason why instance-based filters only pass through any subsequent
batch of data without processing it. The Resample filters, for instance, act like
this.

One can find example classes for filtering in the wekaexamples.filters

package of the Weka Examples collection[3].

220 CHAPTER 18. USING THE API

The following example uses the Remove filter (the filter is located in package
weka.filters.unsupervised.attribute) to remove the first attribute from a
dataset. For setting the options, the setOptions(String[]) method is used.

import weka.core.Instances;

import weka.filters.Filter;

import weka.filters.unsupervised.attribute.Remove;

...

String[] options = new String[2];

options[0] = "-R"; // "range"

options[1] = "1"; // first attribute

Remove remove = new Remove(); // new instance of filter

remove.setOptions(options); // set options

remove.setInputFormat(data); // inform filter about dataset

// **AFTER** setting options

Instances newData = Filter.useFilter(data, remove); // apply filter

A common trap to fall into is setting options after the setInputFormat(Instances)
has been called. Since this method is (normally) used to determine the output
format of the data, all the options have to be set before calling it. Otherwise,
all options set afterwards will be ignored.

18.6.1 Batch filtering

Batch filtering is necessary if two or more datasets need to be processed accord-
ing to the same filter initialization. If batch filtering is not used, for instance
when generating a training and a test set using the StringToWordVector fil-
ter (package weka.filters.unsupervised.attribute), then these two filter
runs are completely independent and will create two most likely incompatible
datasets. Running the StringToWordVector on two different datasets, this will
result in two different word dictionaries and therefore different attributes being
generated.

The following code example shows how to standardize, i.e., transforming all
numeric attributes to have zero mean and unit variance, a training and a test set
with the Standardizefilter (package weka.filters.unsupervised.attribute):

Instances train = ... // from somewhere

Instances test = ... // from somewhere

Standardize filter = new Standardize();

// initializing the filter once with training set

filter.setInputFormat(train);

// configures the Filter based on train instances and returns

// filtered instances

Instances newTrain = Filter.useFilter(train, filter);

// create new test set

Instances newTest = Filter.useFilter(test, filter);

18.6. FILTERING 221

18.6.2 Filtering on-the-fly

Even though using the API gives one full control over the data and makes it eas-
ier to juggle several datasets at the same time, filtering data on-the-fly makes
life even easier. This handy feature is available through meta schemes in WEKA,
like FilteredClassifier (package weka.classifiers.meta), FilteredClusterer
(package weka.clusterers), FilteredAssociator (package weka.associations)
and FilteredAttributeEval/FilteredSubsetEval (in weka.attributeSelection).
Instead of filtering the data beforehand, one just sets up a meta-scheme and lets
the meta-scheme do the filtering for one.

The following example uses the FilteredClassifier in conjunction with
the Remove filter to remove the first attribute (which happens to be an ID
attribute) from the dataset and J48 (J48 is WEKA’s implementation of C4.5;
package weka.classifiers.trees) as base-classifier. First the classifier is built
with a training set and then evaluated with a separate test set. The actual and
predicted class values are printed in the console. For more information on
classification, see chapter 18.7.

import weka.classifiers.meta.FilteredClassifier;

import weka.classifiers.trees.J48;

import weka.core.Instances;

import weka.filters.unsupervised.attribute.Remove;

...

Instances train = ... // from somewhere

Instances test = ... // from somewhere

// filter

Remove rm = new Remove();

rm.setAttributeIndices("1"); // remove 1st attribute

// classifier

J48 j48 = new J48();

j48.setUnpruned(true); // using an unpruned J48

// meta-classifier

FilteredClassifier fc = new FilteredClassifier();

fc.setFilter(rm);

fc.setClassifier(j48);

// train and output model

fc.buildClassifier(train);

System.out.println(fc);

for (int i = 0; i < test.numInstances(); i++) {

double pred = fc.classifyInstance(test.instance(i));

double actual = test.instance(i).classValue();

System.out.print("ID: "

+ test.instance(i).value(0));

System.out.print(", actual: "

+ test.classAttribute().value((int) actual));

System.out.println(", predicted: "

+ test.classAttribute().value((int) pred));

}

222 CHAPTER 18. USING THE API

18.7 Classification

Classification and regression algorithms in WEKA are called “classifiers” and are
located below the weka.classifiers package. This section covers the following
topics:

• Building a classifier – batch and incremental learning.

• Evaluating a classifier – various evaluation techniques and how to obtain
the generated statistics.

• Classifying instances – obtaining classifications for unknown data.

TheWeka Examples collection[3] contains example classes covering classification
in the wekaexamples.classifiers package.

18.7.1 Building a classifier

By design, all classifiers in WEKA are batch-trainable, i.e., they get trained on
the whole dataset at once. This is fine, if the training data fits into memory.
But there are also algorithms available that can update their internal model
on-the-go. These classifiers are called incremental. The following two sections
cover the batch and the incremental classifiers.

Batch classifiers

A batch classifier is really simple to build:

• set options – either using the setOptions(String[]) method or the ac-
tual set-methods.

• train it – calling the buildClassifier(Instances) method with the
training set. By definition, the buildClassifier(Instances) method
resets the internal model completely, in order to ensure that subsequent
calls of this method with the same data result in the same model (“re-
peatable experiments”).

The following code snippet builds an unpruned J48 on a dataset:

import weka.core.Instances;

import weka.classifiers.trees.J48;

...

Instances data = ... // from somewhere

String[] options = new String[1];

options[0] = "-U"; // unpruned tree

J48 tree = new J48(); // new instance of tree

tree.setOptions(options); // set the options

tree.buildClassifier(data); // build classifier

Incremental classifiers

All incremental classifiers in WEKA implement the interface UpdateableClassifier
(located in package weka.classifiers). Bringing up the Javadoc for this par-
ticular interface tells one what classifiers implement this interface. These classi-
fiers can be used to process large amounts of data with a small memory-footprint,
as the training data does not have to fit in memory. ARFF files, for instance,
can be read incrementally (see chapter 18.2).

18.7. CLASSIFICATION 223

Training an incremental classifier happens in two stages:

1. initialize the model by calling the buildClassifier(Instances)method.
One can either use a weka.core.Instances object with no actual data or
one with an initial set of data.

2. update the model row-by-row, by calling the updateClassifier(Instance)
method.

The following example shows how to load an ARFF file incrementally using the
ArffLoader class and train the NaiveBayesUpdateable classifier with one row
at a time:

import weka.core.converters.ArffLoader;

import weka.classifiers.bayes.NaiveBayesUpdateable;

import java.io.File;

...

// load data

ArffLoader loader = new ArffLoader();

loader.setFile(new File("/some/where/data.arff"));

Instances structure = loader.getStructure();

structure.setClassIndex(structure.numAttributes() - 1);

// train NaiveBayes

NaiveBayesUpdateable nb = new NaiveBayesUpdateable();

nb.buildClassifier(structure);

Instance current;

while ((current = loader.getNextInstance(structure)) != null)

nb.updateClassifier(current);

224 CHAPTER 18. USING THE API

18.7.2 Evaluating a classifier

Building a classifier is only one part of the equation, evaluating how well it
performs is another important part. WEKA supports two types of evaluation:

• Cross-validation – If one only has a single dataset and wants to get a
reasonable realistic evaluation. Setting the number of folds equal to the
number of rows in the dataset will give one leave-one-out cross-validation
(LOOCV).

• Dedicated test set – The test set is solely used to evaluate the built clas-
sifier. It is important to have a test set that incorporates the same (or
similar) concepts as the training set, otherwise one will always end up
with poor performance.

The evaluation step, including collection of statistics, is performed by the Evaluation
class (package weka.classifiers).

Cross-validation

The crossValidateModel method of the Evaluation class is used to perform
cross-validation with an untrained classifier and a single dataset. Supplying an
untrained classifier ensures that no information leaks into the actual evaluation.
Even though it is an implementation requirement, that the buildClassifier

method resets the classifier, it cannot be guaranteed that this is indeed the case
(“leaky” implementation). Using an untrained classifier avoids unwanted side-
effects, as for each train/test set pair, a copy of the originally supplied classifier
is used.

Before cross-validation is performed, the data gets randomized using the
supplied random number generator (java.util.Random). It is recommended
that this number generator is “seeded” with a specified seed value. Otherwise,
subsequent runs of cross-validation on the same dataset will not yield the same
results, due to different randomization of the data (see section 18.5 for more
information on randomization).

The code snippet below performs 10-fold cross-validation with a J48 decision
tree algorithm on a dataset newData, with random number generator that is
seeded with “1”. The summary of the collected statistics is output to stdout.

18.7. CLASSIFICATION 225

import weka.classifiers.Evaluation;

import weka.classifiers.trees.J48;

import weka.core.Instances;

import java.util.Random;

...

Instances newData = ... // from somewhere

Evaluation eval = new Evaluation(newData);

J48 tree = new J48();

eval.crossValidateModel(tree, newData, 10, new Random(1));

System.out.println(eval.toSummaryString("\nResults\n\n", false));

The Evaluation object in this example is initialized with the dataset used in
the evaluation process. This is done in order to inform the evaluation about the
type of data that is being evaluated, ensuring that all internal data structures
are setup correctly.

Train/test set

Using a dedicated test set to evaluate a classifier is just as easy as cross-
validation. But instead of providing an untrained classifier, a trained classifier
has to be provided now. Once again, the weka.classifiers.Evaluation class
is used to perform the evaluation, this time using the evaluateModel method.

The code snippet below trains a J48 with default options on a training set
and evaluates it on a test set before outputting the summary of the collected
statistics:

import weka.core.Instances;

import weka.classifiers.Evaluation;

import weka.classifiers.trees.J48;

...

Instances train = ... // from somewhere

Instances test = ... // from somewhere

// train classifier

Classifier cls = new J48();

cls.buildClassifier(train);

// evaluate classifier and print some statistics

Evaluation eval = new Evaluation(train);

eval.evaluateModel(cls, test);

System.out.println(eval.toSummaryString("\nResults\n\n", false));

226 CHAPTER 18. USING THE API

Statistics

In the previous sections, the toSummaryString of the Evaluation class was
already used in the code examples. But there are other summary methods for
nominal class attributes available as well:

• toMatrixString – outputs the confusion matrix.

• toClassDetailsString– outputs TP/FP rates, precision, recall, F-measure,
AUC (per class).

• toCumulativeMarginDistributionString– outputs the cumulative mar-
gins distribution.

If one does not want to use these summary methods, it is possible to access
the individual statistical measures directly. Below, a few common measures are
listed:

• nominal class attribute

– correct() – The number of correctly classified instances. The in-
correctly classified ones are available through incorrect().

– pctCorrect() – The percentage of correctly classified instances (ac-
curacy). pctIncorrect() returns the number of misclassified ones.

– areaUnderROC(int) – The AUC for the specified class label index
(0-based index).

• numeric class attribute

– correlationCoefficient() – The correlation coefficient.

• general

– meanAbsoluteError() – The mean absolute error.

– rootMeanSquaredError() – The root mean squared error.

– numInstances() – The number of instances with a class value.

– unclassified() - The number of unclassified instances.

– pctUnclassified() - The percentage of unclassified instances.

For a complete overview, see the Javadoc page of the Evaluation class. By
looking up the source code of the summary methods mentioned above, one can
easily determine what methods are used for which particular output.

18.7. CLASSIFICATION 227

18.7.3 Classifying instances

After a classifier setup has been evaluated and proven to be useful, a built classi-
fier can be used to make predictions and label previously unlabeled data. Section
18.6.2 already provided a glimpse of how to use a classifier’s classifyInstance
method. This section here elaborates a bit more on this.

The following example uses a trained classifier tree to label all the instances
in an unlabeled dataset that gets loaded from disk. After all the instances have
been labeled, the newly labeled dataset gets written back to disk to a new file.

// load unlabeled data and set class attribute

Instances unlabeled = DataSource.read("/some/where/unlabeled.arff");

unlabeled.setClassIndex(unlabeled.numAttributes() - 1);

// create copy

Instances labeled = new Instances(unlabeled);

// label instances

for (int i = 0; i < unlabeled.numInstances(); i++) {

double clsLabel = tree.classifyInstance(unlabeled.instance(i));

labeled.instance(i).setClassValue(clsLabel);

}

// save newly labeled data

DataSink.write("/some/where/labeled.arff", labeled);

The above example works for classification and regression problems alike, as
long as the classifier can handle numeric classes, of course. Why is that? The
classifyInstance(Instance) method returns for numeric classes the regres-
sion value and for nominal classes the 0-based index in the list of available class
labels.

If one is interested in the class distribution instead, then one can use the
distributionForInstance(Instance) method (this array sums up to 1). Of
course, using this method makes only sense for classification problems. The
code snippet below outputs the class distribution, the actual and predicted
label side-by-side in the console:

// load data

Instances train = DataSource.read(args[0]);

train.setClassIndex(train.numAttributes() - 1);

Instances test = DataSource.read(args[1]);

test.setClassIndex(test.numAttributes() - 1);

// train classifier

J48 cls = new J48();

cls.buildClassifier(train);

// output predictions

System.out.println("# - actual - predicted - distribution");

for (int i = 0; i < test.numInstances(); i++) {

double pred = cls.classifyInstance(test.instance(i));

double[] dist = cls.distributionForInstance(test.instance(i));

System.out.print((i+1) + " - ");

System.out.print(test.instance(i).toString(test.classIndex()) + " - ");

System.out.print(test.classAttribute().value((int) pred) + " - ");

System.out.println(Utils.arrayToString(dist));

}

228 CHAPTER 18. USING THE API

18.8. CLUSTERING 229

18.8 Clustering

Clustering is an unsupervised Machine Learning technique of finding patterns
in the data, i.e., these algorithms work without class attributes. Classifiers, on
the other hand, are supervised and need a class attribute. This section, similar
to the one about classifiers, covers the following topics:

• Building a clusterer – batch and incremental learning.

• Evaluating a clusterer – how to evaluate a built clusterer.

• Clustering instances – determining what clusters unknown instances be-
long to.

Fully functional example classes are located in the wekaexamples.clusterers

package of the Weka Examples collection[3].

18.8.1 Building a clusterer

Clusterers, just like classifiers, are by design batch-trainable as well. They all
can be built on data that is completely stored in memory. But a small subset of
the cluster algorithms can also update the internal representation incrementally.
The following two sections cover both types of clusterers.

Batch clusterers

Building a batch clusterer, just like a classifier, happens in two stages:

• set options – either calling the setOptions(String[]) method or the
appropriate set-methods of the properties.

• build the model with training data – calling the buildClusterer(Instances)
method. By definition, subsequent calls of this method must result in
the same model (“repeatable experiments”). In other words, calling this
method must completely reset the model.

Below is an example of building the EM clusterer with a maximum of 100 itera-
tions. The options are set using the setOptions(String[]) method:

import weka.clusterers.EM;

import weka.core.Instances;

...

Instances data = ... // from somewhere

String[] options = new String[2];

options[0] = "-I"; // max. iterations

options[1] = "100";

EM clusterer = new EM(); // new instance of clusterer

clusterer.setOptions(options); // set the options

clusterer.buildClusterer(data); // build the clusterer

Incremental clusterers

Incremental clusterers in WEKA implement the interface UpdateableClusterer
(package weka.clusterers). Training an incremental clusterer happens in
three stages, similar to incremental classifiers:

1. initialize the model by calling the buildClusterer(Instances)method.
Once again, one can either use an empty weka.core.Instances object or
one with an initial set of data.

2. update the model row-by-row by calling the the updateClusterer(Instance)
method.

3. finish the training by calling updateFinished() method. In case cluster
algorithms need to perform computational expensive post-processing or
clean up operations.

230 CHAPTER 18. USING THE API

An ArffLoader is used in the following example to build the Cobweb clusterer
incrementally:

import weka.clusterers.Cobweb;

import weka.core.Instance;

import weka.core.Instances;

import weka.core.converters.ArffLoader;

...

// load data

ArffLoader loader = new ArffLoader();

loader.setFile(new File("/some/where/data.arff"));

Instances structure = loader.getStructure();

// train Cobweb

Cobweb cw = new Cobweb();

cw.buildClusterer(structure);

Instance current;

while ((current = loader.getNextInstance(structure)) != null)

cw.updateClusterer(current);

cw.updateFinished();

18.8. CLUSTERING 231

18.8.2 Evaluating a clusterer

Evaluation of clusterers is not as comprehensive as the evaluation of classi-
fiers. Since clustering is unsupervised, it is also a lot harder determining
how good a model is. The class used for evaluating cluster algorithms, is
ClusterEvaluation (package weka.clusterers).

In order to generate the same output as the Explorer or the command-line,
one can use the evaluateClusterer method, as shown below:

import weka.clusterers.EM;

import weka.clusterers.ClusterEvaluation;

...

String[] options = new String[2];

options[0] = "-t";

options[1] = "/some/where/somefile.arff";

System.out.println(ClusterEvaluation.evaluateClusterer(new EM(), options));

Or, if the dataset is already present in memory, one can use the following ap-
proach:

import weka.clusterers.ClusterEvaluation;

import weka.clusterers.EM;

import weka.core.Instances;

...

Instances data = ... // from somewhere

EM cl = new EM();

cl.buildClusterer(data);

ClusterEvaluation eval = new ClusterEvaluation();

eval.setClusterer(cl);

eval.evaluateClusterer(new Instances(data));

System.out.println(eval.clusterResultsToString());

Density based clusterers, i.e., algorithms that implement the interface named
DensityBasedClusterer (package weka.clusterers) can be cross-validated
and the log-likelyhood obtained. Using the MakeDensityBasedClusterermeta-
clusterer, any non-density based clusterer can be turned into such. Here is an
example of cross-validating a density based clusterer and obtaining the log-
likelyhood:

import weka.clusterers.ClusterEvaluation;

import weka.clusterers.DensityBasedClusterer;

import weka.core.Instances;

import java.util.Random;

...

Instances data = ... // from somewhere

DensityBasedClusterer clusterer = new ... // the clusterer to evaluate

double logLikelyhood =

ClusterEvaluation.crossValidateModel(// cross-validate

clusterer, data, 10, // with 10 folds

new Random(1)); // and random number generator

// with seed 1

232 CHAPTER 18. USING THE API

Classes to clusters

Datasets for supervised algorithms, like classifiers, can be used to evaluate a
clusterer as well. This evaluation is called classes-to-clusters, as the clusters are
mapped back onto the classes.

This type of evaluation is performed as follows:

1. create a copy of the dataset containing the class attribute and remove the
class attribute, using the Remove filter (this filter is located in package
weka.filters.unsupervised.attribute).

2. build the clusterer with this new data.

3. evaluate the clusterer now with the original data.

And here are the steps translated into code, using EM as the clusterer being
evaluated:

1. create a copy of data without class attribute

Instances data = ... // from somewhere

Remove filter = new Remove();

filter.setAttributeIndices("" + (data.classIndex() + 1));

filter.setInputFormat(data);

Instances dataClusterer = Filter.useFilter(data, filter);

2. build the clusterer

EM clusterer = new EM();

// set further options for EM, if necessary...

clusterer.buildClusterer(dataClusterer);

3. evaluate the clusterer

ClusterEvaluation eval = new ClusterEvaluation();

eval.setClusterer(clusterer);

eval.evaluateClusterer(data);

// print results

System.out.println(eval.clusterResultsToString());

18.8. CLUSTERING 233

18.8.3 Clustering instances

Clustering of instances is very similar to classifying unknown instances when
using classifiers. The following methods are involved:

• clusterInstance(Instance)– determines the cluster the Instancewould
belong to.

• distributionForInstance(Instance)– predicts the cluster membership
for this Instance. The sum of this array adds up to 1.

The code fragment outlined below trains an EM clusterer on one dataset and
outputs for a second dataset the predicted clusters and cluster memberships of
the individual instances:

import weka.clusterers.EM;

import weka.core.Instances;

...

Instances dataset1 = ... // from somewhere

Instances dataset2 = ... // from somewhere

// build clusterer

EM clusterer = new EM();

clusterer.buildClusterer(dataset1);

// output predictions

System.out.println("# - cluster - distribution");

for (int i = 0; i < dataset2.numInstances(); i++) {

int cluster = clusterer.clusterInstance(dataset2.instance(i));

double[] dist = clusterer.distributionForInstance(dataset2.instance(i));

System.out.print((i+1));

System.out.print(" - ");

System.out.print(cluster);

System.out.print(" - ");

System.out.print(Utils.arrayToString(dist));

System.out.println();

}

234 CHAPTER 18. USING THE API

18.9 Selecting attributes

Preparing one’s data properly is a very important step for getting the best re-
sults. Reducing the number of attributes can not only help speeding up runtime
with algorithms (some algorithms’ runtime are quadratic in regards to number
of attributes), but also help avoid “burying” the algorithm in a mass of at-
tributes, when only a few are essential for building a good model.

There are three different types of evaluators in WEKA at the moment:

• single attribute evaluators – perform evaluations on single attributes. These
classes implement the weka.attributeSelection.AttributeEvaluator

interface. The Ranker search algorithm is usually used in conjunction with
these algorithms.

• attribute subset evaluators – work on subsets of all the attributes in the
dataset. The weka.attributeSelection.SubsetEvaluator interface is
implemented by these evaluators.

• attribute set evaluators – evaluate sets of attributes. Not to be con-
fused with the subset evaluators, as these classes are derived from the
weka.attributeSelection.AttributeSetEvaluator superclass.

Most of the attribute selection schemes currently implemented are supervised,
i.e., they require a dataset with a class attribute. Unsupervised evaluation
algorithms are derived from one of the following superclasses:

• weka.attributeSelection.UnsupervisedAttributeEvaluator

e.g., LatentSemanticAnalysis, PrincipalComponents

• weka.attributeSelection.UnsupervisedSubsetEvaluator

none at the moment

Attribute selection offers filtering on-the-fly, like classifiers and clusterers, as
well:

• weka.attributeSelection.FilteredAttributeEval – filter for evalua-
tors that evaluate attributes individually.

• weka.attributeSelection.FilteredSubsetEval – for filtering evalua-
tors that evaluate subsets of attributes.

So much about the differences among the various attribute selection algorithms
and back to how to actually perform attribute selection. WEKA offers three
different approaches:

• Using a meta-classifier – for performing attribute selection on-the-fly (sim-
ilar to FilteredClassifier’s filtering on-the-fly).

• Using a filter - for preprocessing the data.

• Low-level API usage - instead of using the meta-schemes (classifier or
filter), one can use the attribute selection API directly as well.

The following sections cover each of the topics, accompanied with a code exam-
ple. For clarity, the same evaluator and search algorithm is used in all of these
examples.

Feel free to check out the example classes of theWeka Examples collection[3],
located in the wekaexamples.attributeSelection package.

18.9. SELECTING ATTRIBUTES 235

18.9.1 Using the meta-classifier

The meta-classifier AttributeSelectedClassifier (this classifier is located in
package weka.classifiers.meta), is similar to the FilteredClassifier. But
instead of taking a base-classifier and a filter as parameters to perform the
filtering, the AttributeSelectedClassifier uses a search algorithm (derived
from weka.attributeSelection.ASEvaluation), an evaluator (superclass is
weka.attributeSelection.ASSearch) to perform the attribute selection and
a base-classifier to train on the reduced data.

This example here uses J48 as base-classifier, CfsSubsetEval as evaluator
and a backwards operating GreedyStepwise as search method:

import weka.attributeSelection.CfsSubsetEval;

import weka.attributeSelection.GreedyStepwise;

import weka.classifiers.Evaluation;

import weka.classifiers.meta.AttributeSelectedClassifier;

import weka.classifiers.trees.J48;

import weka.core.Instances;

...

Instances data = ... // from somewhere

// setup meta-classifier

AttributeSelectedClassifier classifier = new AttributeSelectedClassifier();

CfsSubsetEval eval = new CfsSubsetEval();

GreedyStepwise search = new GreedyStepwise();

search.setSearchBackwards(true);

J48 base = new J48();

classifier.setClassifier(base);

classifier.setEvaluator(eval);

classifier.setSearch(search);

// cross-validate classifier

Evaluation evaluation = new Evaluation(data);

evaluation.crossValidateModel(classifier, data, 10, new Random(1));

System.out.println(evaluation.toSummaryString());

236 CHAPTER 18. USING THE API

18.9.2 Using the filter

In case the data only needs to be reduced in dimensionality, but not used for
training a classifier, then the filter approach is the right one. The AttributeSelection
filter (package weka.filters.supervised.attribute) takes an evaluator and
a search algorithm as parameter.

The code snippet below uses once again CfsSubsetEval as evaluator and a
backwards operating GreedyStepwise as search algorithm. It just outputs the
reduced data to stdout after the filtering step:

import weka.attributeSelection.CfsSubsetEval;

import weka.attributeSelection.GreedyStepwise;

import weka.core.Instances;

import weka.filters.Filter;

import weka.filters.supervised.attribute.AttributeSelection;

...

Instances data = ... // from somewhere

// setup filter

AttributeSelection filter = new AttributeSelection();

CfsSubsetEval eval = new CfsSubsetEval();

GreedyStepwise search = new GreedyStepwise();

search.setSearchBackwards(true);

filter.setEvaluator(eval);

filter.setSearch(search);

filter.setInputFormat(data);

// filter data

Instances newData = Filter.useFilter(data, filter);

System.out.println(newData);

18.9. SELECTING ATTRIBUTES 237

18.9.3 Using the API directly

Using the meta-classifier or the filter approach makes attribute selection fairly
easy. But it might not satify everybody’s needs. For instance, if one wants to
obtain the ordering of the attributes (using Ranker) or retrieve the indices of
the selected attributes instead of the reduced data.

Just like the other examples, the one shown here uses the CfsSubsetEval

evaluator and the GreedyStepwise search algorithm (in backwards mode). But
instead of outputting the reduced data, only the selected indices are printed in
the console:

import weka.attributeSelection.AttributeSelection;

import weka.attributeSelection.CfsSubsetEval;

import weka.attributeSelection.GreedyStepwise;

import weka.core.Instances;

...

Instances data = ... // from somewhere

// setup attribute selection

AttributeSelection attsel = new AttributeSelection();

CfsSubsetEval eval = new CfsSubsetEval();

GreedyStepwise search = new GreedyStepwise();

search.setSearchBackwards(true);

attsel.setEvaluator(eval);

attsel.setSearch(search);

// perform attribute selection

attsel.SelectAttributes(data);

int[] indices = attsel.selectedAttributes();

System.out.println(

"selected attribute indices (starting with 0):\n"

+ Utils.arrayToString(indices));

238 CHAPTER 18. USING THE API

18.10 Saving data

Saving weka.core.Instances objects is as easy as reading the data in the first
place, though the process of storing the data again is far less common than of
reading the data into memory. The following two sections cover how to save the
data in files and in databases.

Just like with loading the data in chapter 18.2, examples classes for saving
data can be found in the wekaexamples.core.converters package of the Weka
Examples collection[3];

18.10.1 Saving data to files

Once again, one can either let WEKA choose the appropriate converter for sav-
ing the data or use an explicit converter (all savers are located in the weka.core.converters
package). The latter approach is necessary, if the file name under which the data
will be stored does not have an extension that WEKA recognizes.

Use the DataSink class (inner class of weka.core.converters.ConverterUtils),
if the extensions are not a problem. Here are a few examples:

import weka.core.Instances;

import weka.core.converters.ConverterUtils.DataSink;

...

// data structure to save

Instances data = ...

// save as ARFF

DataSink.write("/some/where/data.arff", data);

// save as CSV

DataSink.write("/some/where/data.csv", data);

And here is an example of using the CSVSaver converter explicitly:

import weka.core.Instances;

import weka.core.converters.CSVSaver;

import java.io.File;

...

// data structure to save

Instances data = ...

// save as CSV

CSVSaver saver = new CSVSaver();

saver.setInstances(data);

saver.setFile(new File("/some/where/data.csv"));

saver.writeBatch();

18.10.2 Saving data to databases

Apart from the KnowledgeFlow, saving to databases is not very obvious in
WEKA, unless one knows about the DatabaseSaver converter. Just like the
DatabaseLoader, the saver counterpart can store the data either in batch mode
or incrementally as well.

18.10. SAVING DATA 239

The first example shows how to save the data in batch mode, which is the
easier way of doing it:

import weka.core.Instances;

import weka.core.converters.DatabaseSaver;

...

// data structure to save

Instances data = ...

// store data in database

DatabaseSaver saver = new DatabaseSaver();

saver.setDestination("jdbc_url", "the_user", "the_password");

// we explicitly specify the table name here:

saver.setTableName("whatsoever2");

saver.setRelationForTableName(false);

// or we could just update the name of the dataset:

// saver.setRelationForTableName(true);

// data.setRelationName("whatsoever2");

saver.setInstances(data);

saver.writeBatch();

Saving the data incrementally, requires a bit more work, as one has to specify
that writing the data is done incrementally (using the setRetrieval method),
as well as notifying the saver when all the data has been saved:

import weka.core.Instances;

import weka.core.converters.DatabaseSaver;

...

// data structure to save

Instances data = ...

// store data in database

DatabaseSaver saver = new DatabaseSaver();

saver.setDestination("jdbc_url", "the_user", "the_password");

// we explicitly specify the table name here:

saver.setTableName("whatsoever2");

saver.setRelationForTableName(false);

// or we could just update the name of the dataset:

// saver.setRelationForTableName(true);

// data.setRelationName("whatsoever2");

saver.setRetrieval(DatabaseSaver.INCREMENTAL);

saver.setStructure(data);

count = 0;

for (int i = 0; i < data.numInstances(); i++) {

saver.writeIncremental(data.instance(i));

}

// notify saver that we’re finished

saver.writeIncremental(null);

240 CHAPTER 18. USING THE API

18.11 Visualization

The concepts covered in this chapter are also available through the example
classes of the Weka Examples collection[3]. See the following packages:

• wekaexamples.gui.graphvisualizer

• wekaexamples.gui.treevisualizer

• wekaexamples.gui.visualize

18.11.1 ROC curves

WEKA can generate “Receiver operating characteristic” (ROC) curves, based
on the collected predictions during an evaluation of a classifier. In order to
display a ROC curve, one needs to perform the following steps:

1. Generate the plotable data based on the Evaluation’s collected predic-
tions, using the ThresholdCurve class (package weka.classifiers.evaluation).

2. Put the plotable data into a plot container, an instance of the PlotData2D
class (package weka.gui.visualize).

3. Add the plot container to a visualization panel for displaying the data, an
instance of the ThresholdVisualizePanel class (package weka.gui.visualize).

4. Add the visualization panel to a JFrame (package javax.swing) and dis-
play it.

And now, the four steps translated into actual code:

1. Generate the plotable data

Evaluation eval = ... // from somewhere

ThresholdCurve tc = new ThresholdCurve();

int classIndex = 0; // ROC for the 1st class label

Instances curve = tc.getCurve(eval.predictions(), classIndex);

2. Put the plotable into a plot container

PlotData2D plotdata = new PlotData2D(curve);

plotdata.setPlotName(curve.relationName());

plotdata.addInstanceNumberAttribute();

3. Add the plot container to a visualization panel

ThresholdVisualizePanel tvp = new ThresholdVisualizePanel();

tvp.setROCString("(Area under ROC = " +

Utils.doubleToString(ThresholdCurve.getROCArea(curve),4)+")");

tvp.setName(curve.relationName());

tvp.addPlot(plotdata);

4. Add the visualization panel to a JFrame

final JFrame jf = new JFrame("WEKA ROC: " + tvp.getName());

jf.setSize(500,400);

jf.getContentPane().setLayout(new BorderLayout());

jf.getContentPane().add(tvp, BorderLayout.CENTER);

jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

jf.setVisible(true);

18.11. VISUALIZATION 241

18.11.2 Graphs

Classes implementing the weka.core.Drawable interface can generate graphs
of their internal models which can be displayed. There are two different types of
graphs available at the moment, which are explained in the subsequent sections:

• Tree – decision trees.

• BayesNet – bayesian net graph structures.

18.11.2.1 Tree

It is quite easy to display the internal tree structure of classifiers like J48
or M5P (package weka.classifiers.trees). The following example builds
a J48 classifier on a dataset and displays the generated tree visually using
the TreeVisualizer class (package weka.gui.treevisualizer). This visu-
alization class can be used to view trees (or digraphs) in GraphViz’s DOT
language[26].

import weka.classifiers.trees.J48;

import weka.core.Instances;

import weka.gui.treevisualizer.PlaceNode2;

import weka.gui.treevisualizer.TreeVisualizer;

import java.awt.BorderLayout;

import javax.swing.JFrame;

...

Instances data = ... // from somewhere

// train classifier

J48 cls = new J48();

cls.buildClassifier(data);

// display tree

TreeVisualizer tv = new TreeVisualizer(

null, cls.graph(), new PlaceNode2());

JFrame jf = new JFrame("Weka Classifier Tree Visualizer: J48");

jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

jf.setSize(800, 600);

jf.getContentPane().setLayout(new BorderLayout());

jf.getContentPane().add(tv, BorderLayout.CENTER);

jf.setVisible(true);

// adjust tree

tv.fitToScreen();

242 CHAPTER 18. USING THE API

18.11.2.2 BayesNet

The graphs that the BayesNet classifier (package weka.classifiers.bayes)
generates can be displayed using the GraphVisualizer class (located in package
weka.gui.graphvisualizer). The GraphVisualizer can display graphs that
are either in GraphViz’s DOT language[26] or in XML BIF[20] format. For
displaying DOT format, one needs to use the method readDOT, and for the BIF
format the method readBIF.

The following code snippet trains a BayesNet classifier on some data and
then displays the graph generated from this data in a frame:

import weka.classifiers.bayes.BayesNet;

import weka.core.Instances;

import weka.gui.graphvisualizer.GraphVisualizer;

import java.awt.BorderLayout;

import javax.swing.JFrame;

...

Instances data = ... // from somewhere

// train classifier

BayesNet cls = new BayesNet();

cls.buildClassifier(data);

// display graph

GraphVisualizer gv = new GraphVisualizer();

gv.readBIF(cls.graph());

JFrame jf = new JFrame("BayesNet graph");

jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

jf.setSize(800, 600);

jf.getContentPane().setLayout(new BorderLayout());

jf.getContentPane().add(gv, BorderLayout.CENTER);

jf.setVisible(true);

// layout graph

gv.layoutGraph();

18.12. SERIALIZATION 243

18.12 Serialization

Serialization2 is the process of saving an object in a persistent form, e.g., on
the harddisk as a bytestream. Deserialization is the process in the opposite
direction, creating an object from a persistently saved data structure. In Java,
an object can be serialized if it imports the java.io.Serializable interface.
Members of an object that are not supposed to be serialized, need to be declared
with the keyword transient.

In the following are some Java code snippets for serializing and deserializing a
J48 classifier. Of course, serialization is not limited to classifiers. Most schemes
in WEKA, like clusterers and filters, are also serializable.

Serializing a classifier

The weka.core.SerializationHelper class makes it easy to serialize an ob-
ject. For saving, one can use one of the write methods:

import weka.classifiers.Classifier;

import weka.classifiers.trees.J48;

import weka.core.converters.ConverterUtils.DataSource;

import weka.core.SerializationHelper;

...

// load data

Instances inst = DataSource.read("/some/where/data.arff");

inst.setClassIndex(inst.numAttributes() - 1);

// train J48

Classifier cls = new J48();

cls.buildClassifier(inst);

// serialize model

SerializationHelper.write("/some/where/j48.model", cls);

Deserializing a classifier

Deserializing an object can be achieved by using one of the read methods:

import weka.classifiers.Classifier;

import weka.core.SerializationHelper;

...

// deserialize model

Classifier cls = (Classifier) SerializationHelper.read(

"/some/where/j48.model");

2http://en.wikipedia.org/wiki/Serialization

http://en.wikipedia.org/wiki/Serialization

244 CHAPTER 18. USING THE API

Deserializing a classifier saved from the Explorer

The Explorer does not only save the built classifier in the model file, but also the
header information of the dataset the classifier was built with. By storing the
dataset information as well, one can easily check whether a serialized classifier
can be applied on the current dataset. The readAll methods returns an array
with all objects that are contained in the model file.

import weka.classifiers.Classifier;

import weka.core.Instances;

import weka.core.SerializationHelper;

...

// the current data to use with classifier

Instances current = ... // from somewhere

// deserialize model

Object o[] = SerializationHelper.readAll("/some/where/j48.model");

Classifier cls = (Classifier) o[0];

Instances data = (Instances) o[1];

// is the data compatible?

if (!data.equalHeaders(current))

throw new Exception("Incompatible data!");

Serializing a classifier for the Explorer

If one wants to serialize the dataset header information alongside the classifier,
just like the Explorer does, then one can use one of the writeAll methods:

import weka.classifiers.Classifier;

import weka.classifiers.trees.J48;

import weka.core.converters.ConverterUtils.DataSource;

import weka.core.SerializationHelper;

...

// load data

Instances inst = DataSource.read("/some/where/data.arff");

inst.setClassIndex(inst.numAttributes() - 1);

// train J48

Classifier cls = new J48();

cls.buildClassifier(inst);

// serialize classifier and header information

Instances header = new Instances(inst, 0);

SerializationHelper.writeAll(

"/some/where/j48.model", new Object[]{cls, header});

Chapter 19

Extending WEKA

For most users, the existing WEKA framework will be sufficient to perform
the task at hand, offering a wide range of filters, classifiers, clusterers, etc.
Researchers, on the other hand, might want to add new algorithms and compare
them against existing ones. The framework with its existing algorithms is not
set in stone, but basically one big plugin framework. With WEKA’s automatic
discovery of classes on the classpath, adding new classifiers, filters, etc. to the
existing framework is very easy.

Though algorithms like clusterers, associators, data generators and attribute
selection are not covered in this chapter, their implemention is very similar to
the one of implementing a classifier. You basically choose a superclass to derive
your new algorithm from and then implement additional interfaces, if necessary.
Just check out the other algorithms that are already implemented.

The section covering the GenericObjectEditor (see chapter 21.4) shows you
how to tell WEKA where to find your class(es) and therefore making it/them
available in the GUI (Explorer/Experimenter) via the GenericObjectEditor.

245

246 CHAPTER 19. EXTENDING WEKA

19.1 Writing a new Classifier

19.1.1 Choosing the base class

Common to all classifiers in WEKA is the weka.classifiers.Classifier in-
terface. Your new classifier must implement this interface in order to be visible
through the GenericObjectEditor. But in order to make implementations of
new classifiers even easier, WEKA comes already with a range of other abstract
classes that implement weka.classifiers.Classifier. In the following you
will find an overview that will help you decide what base class to use for your
classifier. For better readability, the weka.classifiers prefix was dropped
from the class names:

• simple classifier

– AbstractClassifier – not randomizable

– RandomizableClassifier – randomizable

• meta classifier

– single base classifier

∗ SingleClassifierEnhancer – not randomizable, not iterated

∗ RandomizableSingleClassifierEnhancer – randomizable, not
iterated

∗ IteratedSingleClassifierEnhancer – not randomizable, iter-
ated

∗ RandomizableIteratedSingleClassifierEnhancer – random-
izable, iterated

– multiple base classifiers

∗ MultipleClassifiersCombiner – not randomizable

∗ RandomizableMultipleClassifiersCombiner – randomizable

In order to make the most of multi-core machines, WEKA offers also meta-
classifiers that can build the base-classifiers in parallel:

• ParallelIteratedSingleClassifierEnhancer

• ParallelMultipleClassifiersCombiner

• RandomizableParallelIteratedSingleClassifierEnhancer– e.g., Bagging

• RandomizableParallelMultipleClassifiersCombiner – e.g., Stacking

If you are still unsure about what superclass to choose, then check out the
Javadoc of those superclasses. In the Javadoc you will find all the classifiers
that are derived from it, which should give you a better idea whether this
particular superclass is suited for your needs.

19.1. WRITING A NEW CLASSIFIER 247

19.1.2 Additional interfaces

The abstract classes listed above basically just implement various combinations
of the following two interfaces:

• weka.core.Randomizable – to allow (seeded) randomization taking place

• weka.classifiers.IterativeClassifier – to make the classifier an it-
erated one

But these interfaces are not the only ones that can be implemented by a classifier.
Here is a list for further interfaces:

• weka.core.AdditionalMeasureProducer – the classifier returns addi-
tional information, e.g., J48 returns the tree size with this method.

• weka.core.WeightedInstancesHandler – denotes that the classifier can
make use of weighted Instance objects (the default weight of an Instance

is 1.0).

• weka.core.TechnicalInformationHandler – for returning paper refer-
ences and publications this classifier is based on.

• weka.classifiers.Sourcable – classifiers implementing this interface
can return Java code of a built model, which can be used elsewhere.

• weka.classifiers.UpdateableClassifier – for classifiers that can be
trained incrementally, i.e., row by row like NaiveBayesUpdateable.

19.1.3 Packages

A few comments about the different sub-packages in the weka.classifiers

package:

• bayes – contains bayesian classifiers, e.g., NaiveBayes

• evaluation – classes related to evaluation, e.g., confusion matrix, thresh-
old curve (= ROC)

• functions – e.g., Support Vector Machines, regression algorithms, neural
nets

• lazy – “learning” is performed at prediction time, e.g., k-nearest neighbor
(k-NN)

• meta – meta-classifiers that use a base one or more classifiers as input,
e.g., boosting, bagging or stacking

• mi – classifiers that handle multi-instance data

• misc – various classifiers that don’t fit in any another category

• rules – rule-based classifiers, e.g., ZeroR

• trees – tree classifiers, like decision trees with J48 a very common one

248 CHAPTER 19. EXTENDING WEKA

19.1.4 Implementation

In the following you will find information on what methods need to be imple-
mented and other coding guidelines for methods, option handling and documen-
tation of the source code.

19.1.4.1 Methods

This section explains what methods need to be implemented in general and
more specialized ones in case of meta-classifiers (either with single or multiple
base-classifiers).

General
Here is an overview of methods that your new classifier needs to implement in or-
der to integrate nicely into the WEKA framework. Since AbstractClassifier
implements weka.core.OptionHandler, these methods are listed as well.

globalInfo()
returns a short description that is displayed in the GUI, like the Explorer or
Experimenter. How long this description will be is really up to you, but it
should be sufficient to understand the classifier’s underlying algorithm. If the
classifier implements the weka.core.TechnicalInformationHandler interface
then you could refer to the publication(s) by extending the returned string by
getTechnicalInformation().toString().

listOptions()
returns a java.util.Enumeration of weka.core.Option objects. This enu-
meration is used to display the help on the command-line, hence it needs to
return the Option objects of the superclass as well.

setOptions(String[])
parses the options that the classifier would receive from a command-line invoca-
tion. A parameter and argument are always two elements in the string array. A
common mistake is to use a single cell in the string array for both of them, e.g.,
"-S 1" instead of "-S","1". You can use the methods getOption and getFlag

of the weka.core.Utils class to retrieve the values of an option or to ascertain
whether a flag is present. But note that these calls remove the option and, if
applicable, the argument from the string array (“destructive”). The last call in
the setOptions methods should always be the super.setOptions(String[])

one, in order to pass on any other arguments still present in the array to the
superclass.

19.1. WRITING A NEW CLASSIFIER 249

The following code snippet just parses the only option “alpha” that an imag-
inary classifier defines:

import weka.core.Utils;

...

public void setOptions(String[] options) throws Exception {

String tmpStr = Utils.getOption("alpha", options);

if (tmpStr.length() == 0) {

setAlpha(0.75);

}

else {

setAlpha(Double.parseDouble(tmpStr));

}

super.setOptions(options);

}

getOptions()
returns a string array of command-line options that resemble the current clas-
sifier setup. Supplying this array to the setOptions(String[]) method must
result in the same configuration. This method will get called in the GUI when
copying a classifier setup to the clipboard. Since handling of arrays is a bit cum-
bersome in Java (due to fixed length), using an instance of java.util.Vector
is a lot easier for creating the array that needs to be returned. The following
code snippet just adds the only option “alpha” that the classifier defines to the
array that is being returned, including the options of the superclass:

import java.util.Arrays;

import java.util.Vector;

...

public String[] getOptions() {

Vector<String> result = new Vector<String>();

result.add("-alpha");

result.add("" + getAlpha());

result.addAll(Arrays.asList(super.getOptions())); // superclass

return result.toArray(new String[result.size()]);

}

Note, that the getOptions()method requires you to add the preceding dash for
an option, opposed to the getOption/getFlag calls in the setOptionsmethod.

getCapabilities()
returns meta-information on what type of data the classifier can handle, in
regards to attributes and class attributes. See section “Capabilities” on page
247 for more information.

250 CHAPTER 19. EXTENDING WEKA

buildClassifier(Instances)
builds the model from scratch with the provided dataset. Each subsequent call of
this method must result in the same model being built. The buildClassifier
method also tests whether the supplied data can be handled at all by the clas-
sifier, utilizing the capabilities returned by the getCapabilities() method:

public void buildClassifier(Instances data) throws Exception {

// test data against capabilities

getCapabilities().testWithFail(data);

// remove instances with missing class value,

// but don’t modify original data

data = new Instances(data);

data.deleteWithMissingClass();

// actual model generation

...

}

toString()
is used for outputting the built model. This is not required, but it is useful
for the user to see properties of the model. Decision trees normally ouput the
tree, support vector machines the support vectors and rule-based classifiers the
generated rules.

distributionForInstance(Instance)
returns the class probabilities array of the prediction for the given weka.core.Instance
object. If your classifier handles nominal class attributes, then you need to over-
ride this method.

classifyInstance(Instance)
returns the classification or regression for the given weka.core.Instanceobject.
In case of a nominal class attribute, this method returns the index of the class
label that got predicted. You do not need to override this method in this case as
the weka.classifiers.Classifier superclass already determines the class la-
bel index based on the probabilities array that the distributionForInstance(Instance)
method returns (it returns the index in the array with the highest probability;
in case of ties the first one). For numeric class attributes, you need to override
this method, as it has to return the regression value predicted by the model.

main(String[])
executes the classifier from command-line. If your new algorithm is called
FunkyClassifier, then use the following code as your main method:

/**

* Main method for executing this classifier.

*

* @param args the options, use "-h" to display options

*/

public static void main(String[] args) {

AbstractClassifier.runClassifier(new FunkyClassifier(), args);

}

19.1. WRITING A NEW CLASSIFIER 251

Meta-classifiers

Meta-classifiers define a range of other methods that you might want to override.
Normally, this should not be the case. But if your classifier requires the base-
classifier(s) to be of a certain type, you can override the specific set-method and
add additional checks.

SingleClassifierEnhancer
The following methods are used for handling the single base-classifier of this
meta-classifier.

defaultClassifierString()
returns the class name of the classifier that is used as the default one for this
meta-classifier.

setClassifier(Classifier)
sets the classifier object. Override this method if you require further checks, like
that the classifiers needs to be of a certain class. This is necessary, if you still
want to allow the user to parametrize the base-classifier, but not choose another
classifier with the GenericObjectEditor. Be aware that this method does not
create a copy of the provided classifier.

getClassifier()
returns the currently set classifier object. Note, this method returns the internal
object and not a copy.

MultipleClassifiersCombiner
This meta-classifier handles its multiple base-classifiers with the following meth-
ods:

setClassifiers(Classifier[])
sets the array of classifiers to use as base-classifiers. If you require the base-
classifiers to implement a certain interface or be of a certain class, then override
this method and add the necessary checks. Note, this method does not create
a copy of the array, but just uses this reference internally.

getClassifiers()
returns the array of classifiers that is in use. Careful, this method returns the
internal array and not a copy of it.

getClassifier(int)
returns the classifier from the internal classifier array specified by the given
index. Once again, this method does not return a copy of the classifier, but the
actual object used by this classifier.

252 CHAPTER 19. EXTENDING WEKA

19.1.4.2 Guidelines

WEKA’s code base requires you to follow a few rules. The following sections
can be used as guidelines in writing your code.

Parameters
There are two different ways of setting/obtaining parameters of an algorithm.
Both of them are unfortunately completely independent, which makes option
handling so prone to errors. Here are the two:

1. command-line options, using the setOptions/getOptions methods

2. using the properties through the GenericObjectEditor in the GUI

Each command-line option must have a corresponding GUI property and vice
versa. In case of GUI properties, the get- and set-method for a property must
comply with Java Beans style in order to show up in the GUI. You need to
supply three methods for each property:

• public void set<PropertyName>(<Type>) – checks whether the sup-
plied value is valid and only then updates the corresponding member vari-
able. In any other case it should ignore the value and output a warning
in the console or throw an IllegalArgumentException.

• public <Type> get<PropertyName>() – performs any necessary conver-
sions of the internal value and returns it.

• public String <propertyName>TipText() – returns the help text that
is available through the GUI. Should be the same as on the command-line.
Note: everything after the first period “.” gets truncated from the tool
tip that pops up in the GUI when hovering with the mouse cursor over
the field in the GenericObjectEditor.

With a property called “alpha” of type “double”, we get the following method
signatures:

• public void setAlpha(double)

• public double getAlpha()

• public String alphaTipText()

These get- and set-methods should be used in the getOptions and setOptions

methods as well, to impose the same checks when getting/setting parameters.

Randomization
In order to get repeatable experiments, one is not allowed to use unseeded
random number generators like Math.random(). Instead, one has to instantiate
a java.util.Random object in the buildClassifier(Instances)method with
a specific seed value. The seed value can be user supplied, of course, which all
the Randomizable... abstract classifiers already implement.

19.1. WRITING A NEW CLASSIFIER 253

Capabilities
By default, the weka.classifiers.AbstractClassifier superclass returns an
object that denotes that the classifier can handle any type of data. This is use-
ful for rapid prototyping of new algorithms, but also very dangerous. If you do
not specifically define what type of data can be handled by your classifier, you
can end up with meaningless models or errors. This can happen if you devise
a new classifier which is supposed to handle only numeric attributes. By using
the value(int/Attribute) method of a weka.core.Instance to obtain the
numeric value of an attribute, you also obtain the internal format of nominal,
string and relational attributes. Of course, treating these attribute types as
numeric ones does not make any sense. Hence it is highly recommended (and
required for contributions) to override this method in your own classifier.

There are three different types of capabilities that you can define:

1. attribute related – e.g., nominal, numeric, date, missing values, ...

2. class attribute related – e.g., no-class, nominal, numeric, missing class
values, ...

3. miscellaneous – e.g., only multi-instance data, minimum number of in-
stances in the training data

There are some special cases:

• incremental classifiers – need to set the minimum number of instances in
the training data to 0, since the default is 1:
setMinimumNumberInstances(0)

• multi-instance classifiers – in order to signal that the special multi-instance
format (bag-id, bag-data, class) is used, they need to enable the following
capability:
enable(Capability.ONLY MULTIINSTANCE)

These classifiers also need to implement the interface specific to multi-
instance, weka.core.MultiInstanceCapabilitiesHandler, which returns
the capabilities for the bag-data.

• cluster algorithms – since clusterers are unsupervised algorithms, they
cannot process data with the class attribute set. The capability that
denotes that an algorithm can handle data without a class attribute is
Capability.NO CLASS

And a note on enabling/disabling nominal attributes or nominal class attributes.
These operations automatically enable/disable the binary, unary and empty
nominal capabilities as well. The following sections list a few examples of how
to configure the capabilities.

254 CHAPTER 19. EXTENDING WEKA

Simple classifier
A classifier that handles only numeric classes and numeric and nominal at-
tributes, but no missing values at all, would configure the Capabilities object
like this:

public Capabilities getCapabilities() {

Capabilities result = new Capabilities(this);

// attributes

result.enable(Capability.NOMINAL_ATTRIBUTES);

result.enable(Capability.NUMERIC_ATTRIBUTES);

// class

result.enable(Capability.NUMERIC_CLASS);

return result;

}

Another classifier, that only handles binary classes and only nominal attributes
and missing values, would implement the getCapabilities() method as fol-
lows:

public Capabilities getCapabilities() {

Capabilities result = new Capabilities(this);

// attributes

result.enable(Capability.NOMINAL_ATTRIBUTES);

result.enable(Capability.MISSING_VALUES);

// class

result.enable(Capability.BINARY_CLASS);

result.disable(Capability.UNNARY_CLASS);

result.enable(Capability.MISSING_CLASS_VALUES);

return result;

}

Meta-classifier
Meta-classifiers, by default, just return the capabilities of their base classifiers -
in case of descendants of the weka.classifier.MultipleClassifiersCombiner,
an AND over all the Capabilities of the base classifiers is returned.

Due to this behavior, the capabilities depend – normally – only on the cur-
rently configured base classifier(s). To soften filtering for certain behavior, meta-
classifiers also define so-called Dependencies on a per-Capability basis. These
dependencies tell the filter that even though a certain capability is not sup-
ported right now, it is possible that it will be supported with a different base
classifier. By default, all capabilities are initialized as Dependencies.

weka.classifiers.meta.LogitBoost, e.g., is restricted to nominal classes.
For that reason it disables the Dependencies for the class:

result.disableAllClasses(); // disable all class types

result.disableAllClassDependencies(); // no dependencies!

result.enable(Capability.NOMINAL_CLASS); // only nominal classes allowed

19.1. WRITING A NEW CLASSIFIER 255

Javadoc
In order to keep code-quality high and maintenance low, source code needs to
be well documented. This includes the following Javadoc requirements:

• class

– description of the classifier

– listing of command-line parameters

– publication(s), if applicable

– @author and @version tag

• methods (all, not just public)

– each parameter is documented

– return value, if applicable, is documented

– exception(s) are documented

– the setOptions(String[]) method also lists the command-line pa-
rameters

Most of the class-related and the setOptions Javadoc is already available
through the source code:

• description of the classifier – globalInfo()

• listing of command-line parameters – listOptions()

• publication(s), if applicable – getTechnicalInformation()

In order to avoid manual syncing between Javadoc and source code, WEKA
comes with some tools for updating the Javadoc automatically. The following
tools take a concrete class and update its source code (the source code directory
needs to be supplied as well, of course):

• weka.core.AllJavadoc – executes all Javadoc-producing classes (this is
the tool, you would normally use)

• weka.core.GlobalInfoJavadoc – updates the globalinfo tags

• weka.core.OptionHandlerJavadoc – updates the option tags

• weka.core.TechnicalInformationHandlerJavadoc – updates the tech-
nical tags (plain text and BibTeX)

These tools look for specific comment tags in the source code and replace every-
thing in between the start and end tag with the documentation obtained from
the actual class.

• description of the classifier

<!-- globalinfo-start -->

will be automatically replaced

<!-- globalinfo-end -->

• listing of command-line parameters

<!-- options-start -->

will be automatically replaced

<!-- options-end -->

• publication(s), if applicable

<!-- technical-bibtex-start -->

will be automatically replaced

<!-- technical-bibtex-end -->

for a shortened, plain-text version use the following:

<!-- technical-plaintext-start -->

will be automatically replaced

<!-- technical-plaintext-end -->

256 CHAPTER 19. EXTENDING WEKA

Here is a template of a Javadoc class block for an imaginary classifier that also
implements the weka.core.TechnicalInformationHandler interface:

/**

<!-- globalinfo-start -->

<!-- globalinfo-end -->

*

<!-- technical-bibtex-start -->

<!-- technical-bibtex-end -->

*

<!-- options-start -->

<!-- options-end -->

*

* @author John Doe (john dot doe at no dot where dot com)

* @version $Revision: 8032 $

*/

The template for any classifier’s setOptions(String[]) method is as follows:

/**

* Parses a given list of options.

*

<!-- options-start -->

<!-- options-end -->

*

* @param options the list of options as an array of strings

* @throws Exception if an option is not supported

*/

Running the weka.core.AllJavadoc tool over this code will output code with
the comments filled out accordingly.

Revisions
Classifiers implement the weka.core.RevisionHandler interface. This pro-
vides the functionality of obtaining the Subversion revision from within Java.
Classifiers that are not part of the official WEKA distribution do not have to
implement the method getRevision() as the weka.classifiers.Classifier
class already implements this method. Contributions, on the other hand, need
to implement it as follows, in order to obtain the revision of this particular
source file:

/**

* Returns the revision string.

*

* @return the revision

*/

public String getRevision() {

return RevisionUtils.extract("$Revision: 8032 $");

}

Note, a commit into Subversion will replace the revision number above with the
actual revision number.

19.1. WRITING A NEW CLASSIFIER 257

Testing
WEKA provides already a test framework to ensure correct basic functionality
of a classifier. It is essential for the classifier to pass these tests.

Option handling
You can check the option handling of your classifier with the following tool from
command-line:

weka.core.CheckOptionHandler -W classname [-- additional parameters]

All tests need to return yes.

GenericObjectEditor
The CheckGOE class checks whether all the properties available in the GUI have a
tooltip accompanying them and whether the globalInfo()method is declared:

weka.core.CheckGOE -W classname [-- additional parameters]

All tests, once again, need to return yes.

Source code
Classifiers that implement the weka.classifiers.Sourcable interface can out-
put Java code of the built model. In order to check the generated code, one
should not only compile the code, but also test it with the following test class:

weka.classifiers.CheckSource

This class takes the originalWEKA classifier, the generated code and the dataset
used for generating the model (and an optional class index) as parameters. It
builds the WEKA classifier on the dataset and compares the output, the one
from the WEKA classifier and the one from the generated source code, whether
they are the same.

Here is an example call for weka.filters.trees.J48 and the generated
class weka.filters.WEKAWrapper (it wraps the actual generated code in a
pseudo-classifier):

java weka.classifiers.CheckSource \

-W weka.classifiers.trees.J48 \

-S weka.classifiers.WEKAWrapper \

-t data.arff

It needs to return Tests OK!.

Unit tests
In order to make sure that your classifier applies to the WEKA criteria, you
should add your classifier to the junit unit test framework, i.e., by creating a Test
class. The superclass for classifier unit tests is weka.classifiers.AbstractClassifierTest.

258 CHAPTER 19. EXTENDING WEKA

19.2 Writing a new Filter

The “work horses” of preprocessing in WEKA are filters. They perform many
tasks, from resampling data, to deleting and standardizing attributes. In the
following are two different approaches covered that explain in detail how to
implement a new filter:

• default – this is how filters had to be implemented in the past.

• simple – since there are mainly two types of filters, batch or stream, ad-
ditional abstract classes were introduced to speed up the implementation
process.

19.2.1 Default approach

The default approach is the most flexible, but also the most complicated one
for writing a new filter. This approach has to be used, if the filter cannot be
written using the simple approach described further below.

19.2.1.1 Implementation

The following methods are of importance for the implementation of a filter and
explained in detail further down. It is also a good idea studying the Javadoc of
these methods as declared in the weka.filters.Filter class:

• getCapabilities()

• setInputFormat(Instances)

• getInputFormat()

• setOutputFormat(Instances)

• getOutputFormat()

• input(Instance)

• bufferInput(Instance)

• push(Instance)

• output()

• batchFinished()

• flushInput()

• getRevision()

But only the following ones normally need to be modified:

• getCapabilities()

• setInputFormat(Instances)

• input(Instance)

• batchFinished()

• getRevision()

For more information on “Capabilities” see section 19.2.3. Please note, that the
weka.filters.Filter superclass does not implement the weka.core.OptionHandler
interface. See section “Option handling” on page 254.

19.2. WRITING A NEW FILTER 259

setInputFormat(Instances)
With this call, the user tells the filter what structure, i.e., attributes, the input
data has. This method also tests, whether the filter can actually process this
data, according to the capabilities specified in the getCapabilities()method.

If the output format of the filter, i.e., the new Instances header, can be
determined based alone on this information, then the method should set the
output format via setOutputFormat(Instances) and return true, otherwise
it has to return false.

getInputFormat()
This method returns an Instances object containing all currently buffered
Instance objects from the input queue.

setOutputFormat(Instances)
setOutputFormat(Instances) defines the new Instances header for the out-
put data. For filters that work on a row-basis, there should not be any changes
between the input and output format. But filters that work on attributes, e.g.,
removing, adding, modifying, will affect this format. This method must be
called with the appropriate Instances object as parameter, since all Instance
objects being processed will rely on the output format (they use it as dataset
that they belong to).

getOutputFormat()
This method returns the currently set Instances object that defines the output
format. In case setOutputFormat(Instances) has not been called yet, this
method will return null.

input(Instance)
returns true if the given Instance can be processed straight away and can be
collected immediately via the output() method (after adding it to the output
queue via push(Instance), of course). This is also the case if the first batch
of data has been processed and the Instance belongs to the second batch. Via
isFirstBatchDone() one can query whether this Instance is still part of the
first batch or of the second.

If the Instance cannot be processed immediately, e.g., the filter needs to
collect all the data first before doing some calculations, then it needs to be
buffered with bufferInput(Instance) until batchFinished() is called. In
this case, the method needs to return false.

bufferInput(Instance)
In case an Instance cannot be processed immediately, one can use this method
to buffer them in the input queue. All buffered Instance objects are available
via the getInputFormat() method.

push(Instance)
adds the given Instance to the output queue.

output()
Returns the next Instance object from the output queue and removes it from
there. In case there is no Instance available this method returns null.

260 CHAPTER 19. EXTENDING WEKA

batchFinished()
signals the end of a dataset being pushed through the filter. In case of a filter
that could not process the data of the first batch immediately, this is the place to
determine what the output format will be (and set if via setOutputFormat(Instances))
and finally process the input data. The currently available data can be retrieved
with the getInputFormat() method. After processing the data, one needs to
call flushInput() to remove all the pending input data.

flushInput()
flushInput() removes all buffered Instance objects from the input queue.
This method must be called after all the Instance objects have been processed
in the batchFinished() method.

Option handling

If the filter should be able to handle command-line options, then the inter-
face weka.core.OptionHandler needs to be implemented. In addition to that,
the following code should be added at the end of the setOptions(String[])

method:

if (getInputFormat() != null) {

setInputFormat(getInputFormat());

}

This will inform the filter about changes in the options and therefore reset it.

19.2. WRITING A NEW FILTER 261

19.2.1.2 Examples

The following examples, covering batch and stream filters, illustrate the filter
framework and how to use it.

Unseeded random number generators like Math.random() should never be
used since they will produce different results in each run and repeatable exper-
iments are essential in machine learning.

BatchFilter

This simple batch filter adds a new attribute called blah at the end of the
dataset. The rows of this attribute contain only the row’s index in the data.
Since the batch-filter does not have to see all the data before creating the output
format, the setInputFormat(Instances) sets the output format and returns
true (indicating that the output format can be queried immediately). The
batchFinished() method performs the processing of all the data.

import weka.core.*;

import weka.core.Capabilities.*;

public class BatchFilter extends Filter {

public String globalInfo() {

return "A batch filter that adds an additional attribute ’blah’ at the end "
+ "containing the index of the processed instance. The output format "

+ "can be collected immediately.";
}

public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();

result.enableAllAttributes();
result.enableAllClasses();

result.enable(Capability.NO_CLASS); // filter doesn’t need class to be set
return result;

}

public boolean setInputFormat(Instances instanceInfo) throws Exception {

super.setInputFormat(instanceInfo);
Instances outFormat = new Instances(instanceInfo, 0);

outFormat.insertAttributeAt(new Attribute("blah"),
outFormat.numAttributes());

setOutputFormat(outFormat);

return true; // output format is immediately available
}

public boolean batchFinished() throws Exception {
if (getInputFormat() = null)

throw new NullPointerException("No input instance format defined");
Instances inst = getInputFormat();

Instances outFormat = getOutputFormat();
for (int i = 0; i < inst.numInstances(); i++) {

double[] newValues = new double[outFormat.numAttributes()];
double[] oldValues = inst.instance(i).toDoubleArray();
System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);

newValues[newValues.length - 1] = i;
push(new Instance(1.0, newValues));

}
flushInput();
m_NewBatch = true;

m_FirstBatchDone = true;
return (numPendingOutput() != 0);

}

public static void main(String[] args) {
runFilter(new BatchFilter(), args);

}

}

262 CHAPTER 19. EXTENDING WEKA

BatchFilter2

In contrast to the first batch filter, this one here cannot determine the output
format immediately (the number of instances in the first batch is part of the
attribute name now). This is done in the batchFinished() method.

import weka.core.*;
import weka.core.Capabilities.*;

public class BatchFilter2 extends Filter {

public String globalInfo() {
return "A batch filter that adds an additional attribute ’blah’ at the end "

+ "containing the index of the processed instance. The output format "

+ "cannot be collected immediately.";
}

public Capabilities getCapabilities() {

Capabilities result = super.getCapabilities();
result.enableAllAttributes();
result.enableAllClasses();

result.enable(Capability.NO_CLASS); // filter doesn’t need class to be set
return result;

}

public boolean batchFinished() throws Exception {

if (getInputFormat() = null)
throw new NullPointerException("No input instance format defined");

// output format still needs to be set (depends on first batch of data)
if (!isFirstBatchDone()) {

Instances outFormat = new Instances(getInputFormat(), 0);
outFormat.insertAttributeAt(new Attribute(

"blah-" + getInputFormat().numInstances()), outFormat.numAttributes());

setOutputFormat(outFormat);
}

Instances inst = getInputFormat();
Instances outFormat = getOutputFormat();
for (int i = 0; i < inst.numInstances(); i++) {

double[] newValues = new double[outFormat.numAttributes()];
double[] oldValues = inst.instance(i).toDoubleArray();

System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);
newValues[newValues.length - 1] = i;

push(new Instance(1.0, newValues));
}
flushInput();

m_NewBatch = true;
m_FirstBatchDone = true;

return (numPendingOutput() != 0);
}

public static void main(String[] args) {
runFilter(new BatchFilter2(), args);

}
}

19.2. WRITING A NEW FILTER 263

BatchFilter3

As soon as this batch filter’s first batch is done, it can process Instance objects
immediately in the input(Instance) method. It adds a new attribute which
contains just a random number, but the random number generator being used
is seeded with the number of instances from the first batch.

import weka.core.*;
import weka.core.Capabilities.*;
import java.util.Random;

public class BatchFilter3 extends Filter {

protected int m_Seed;

protected Random m_Random;

public String globalInfo() {

return "A batch filter that adds an attribute ’blah’ at the end "
+ "containing a random number. The output format cannot be collected "

+ "immediately.";
}

public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();

result.enableAllAttributes();
result.enableAllClasses();

result.enable(Capability.NO_CLASS); // filter doesn’t need class to be set
return result;

}

public boolean input(Instance instance) throws Exception {

if (getInputFormat() = null)
throw new NullPointerException("No input instance format defined");

if (isNewBatch()) {
resetQueue();
m_NewBatch = false;

}
if (isFirstBatchDone())

convertInstance(instance);
else

bufferInput(instance);

return isFirstBatchDone();
}

public boolean batchFinished() throws Exception {

if (getInputFormat() = null)
throw new NullPointerException("No input instance format defined");

// output format still needs to be set (random number generator is seeded

// with number of instances of first batch)
if (!isFirstBatchDone()) {

m_Seed = getInputFormat().numInstances();
Instances outFormat = new Instances(getInputFormat(), 0);
outFormat.insertAttributeAt(new Attribute(

"blah-" + getInputFormat().numInstances()), outFormat.numAttributes());
setOutputFormat(outFormat);

}
Instances inst = getInputFormat();

for (int i = 0; i < inst.numInstances(); i++) {
convertInstance(inst.instance(i));

}

flushInput();
m_NewBatch = true;

m_FirstBatchDone = true;
m_Random = null;
return (numPendingOutput() != 0);

}

protected void convertInstance(Instance instance) {
if (m_Random = null)

m_Random = new Random(m_Seed);
double[] newValues = new double[instance.numAttributes() + 1];
double[] oldValues = instance.toDoubleArray();

newValues[newValues.length - 1] = m_Random.nextInt();
System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);

push(new Instance(1.0, newValues));
}

public static void main(String[] args) {
runFilter(new BatchFilter3(), args);

}
}

264 CHAPTER 19. EXTENDING WEKA

StreamFilter

This stream filter adds a random number (the seed value is hard-coded) at the
end of each Instance of the input data. Since this does not rely on having access
to the full data of the first batch, the output format is accessible immediately
after using setInputFormat(Instances). All the Instance objects are imme-
diately processed in input(Instance) via the convertInstance(Instance)

method, which pushes them immediately to the output queue.

import weka.core.*;

import weka.core.Capabilities.*;
import java.util.Random;

public class StreamFilter extends Filter {

protected Random m_Random;

public String globalInfo() {
return "A stream filter that adds an attribute ’blah’ at the end "

+ "containing a random number. The output format can be collected "
+ "immediately.";

}

public Capabilities getCapabilities() {

Capabilities result = super.getCapabilities();
result.enableAllAttributes();

result.enableAllClasses();
result.enable(Capability.NO_CLASS); // filter doesn’t need class to be set
return result;

}

public boolean setInputFormat(Instances instanceInfo) throws Exception {
super.setInputFormat(instanceInfo);
Instances outFormat = new Instances(instanceInfo, 0);

outFormat.insertAttributeAt(new Attribute("blah"),
outFormat.numAttributes());

setOutputFormat(outFormat);
m_Random = new Random(1);

return true; // output format is immediately available
}

public boolean input(Instance instance) throws Exception {
if (getInputFormat() = null)

throw new NullPointerException("No input instance format defined");
if (isNewBatch()) {

resetQueue();

m_NewBatch = false;
}

convertInstance(instance);
return true; // can be immediately collected via output()

}

protected void convertInstance(Instance instance) {

double[] newValues = new double[instance.numAttributes() + 1];
double[] oldValues = instance.toDoubleArray();

newValues[newValues.length - 1] = m_Random.nextInt();
System.arraycopy(oldValues, 0, newValues, 0, oldValues.length);
push(new Instance(1.0, newValues));

}

public static void main(String[] args) {
runFilter(new StreamFilter(), args);

}
}

19.2. WRITING A NEW FILTER 265

19.2.2 Simple approach

The base filters and interfaces are all located in the following package:

weka.filters

One can basically divide filters roughly into two different kinds of filters:

• batch filters – they need to see the whole dataset before they can start
processing it, which they do in one go

• stream filters – they can start producing output right away and the data
just passes through while being modified

You can subclass one of the following abstract filters, depending on the kind of
classifier you want to implement:

• weka.filters.SimpleBatchFilter

• weka.filters.SimpleStreamFilter

These filters simplify the rather general and complex framework introduced by
the abstract superclass weka.filters.Filter. One only needs to implement
a couple of abstract methods that will process the actual data and override, if
necessary, a few existing methods for option handling.

19.2.2.1 SimpleBatchFilter

Only the following abstract methods need to be implemented:

• globalInfo() – returns a short description of what the filter does; will
be displayed in the GUI

• determineOutputFormat(Instances) – generates the new format, based
on the input data

• process(Instances) – processes the whole dataset in one go

• getRevision() – returns the Subversion revision information, see section
“Revisions” on page 263

If you need access to the full input dataset in determineOutputFormat(Instances),
then you need to also override the method allowAccessToFullInputFormat()

and make it return true.
If more options are necessary, then the following methods need to be over-

ridden:

• listOptions() – returns an enumeration of the available options; these
are printed if one calls the filter with the -h option

• setOptions(String[]) – parses the given option array, that were passed
from command-line

• getOptions() – returns an array of options, resembling the current setup
of the filter

See section “Methods” on page 242 and section “Parameters” on page 246 for
more information.

266 CHAPTER 19. EXTENDING WEKA

In the following an example implementation that adds an additional at-
tribute at the end, containing the index of the processed instance:

import weka.core.*;

import weka.core.Capabilities.*;

import weka.filters.*;

public class SimpleBatch extends SimpleBatchFilter {

public String globalInfo() {

return "A simple batch filter that adds an additional attribute ’blah’ at the end "

+ "containing the index of the processed instance.";

}

public Capabilities getCapabilities() {

Capabilities result = super.getCapabilities();

result.enableAllAttributes();

result.enableAllClasses();

result.enable(Capability.NO_CLASS); //// filter doesn’t need class to be set//

return result;

}

protected Instances determineOutputFormat(Instances inputFormat) {

Instances result = new Instances(inputFormat, 0);

result.insertAttributeAt(new Attribute("blah"), result.numAttributes());

return result;

}

protected Instances process(Instances inst) {

Instances result = new Instances(determineOutputFormat(inst), 0);

for (int i = 0; i < inst.numInstances(); i++) {

double[] values = new double[result.numAttributes()];

for (int n = 0; n < inst.numAttributes(); n++)

values[n] = inst.instance(i).value(n);

values[values.length - 1] = i;

result.add(new Instance(1, values));

}

return result;

}

public static void main(String[] args) {

runFilter(new SimpleBatch(), args);

}

}

19.2. WRITING A NEW FILTER 267

19.2.2.2 SimpleStreamFilter

Only the following abstract methods need to be implemented for a stream filter:

• globalInfo() – returns a short description of what the filter does; will
be displayed in the GUI

• determineOutputFormat(Instances) – generates the new format, based
on the input data

• process(Instance) – processes a single instance and turns it from the
old format into the new one

• getRevision() – returns the Subversion revision information, see section
“Revisions” on page 263

If more options are necessary, then the following methods need to be overridden:

• listOptions() – returns an enumeration of the available options; these
are printed if one calls the filter with the -h option

• setOptions(String[]) – parses the given option array, that were passed
from command-line

• getOptions() – returns an array of options, resembling the current setup
of the filter

See also section 19.1.4.1, covering “Methods” for classifiers.

268 CHAPTER 19. EXTENDING WEKA

In the following an example implementation of a stream filter that adds an
extra attribute at the end, which is filled with random numbers. The reset()

method is only used in this example, since the random number generator needs
to be re-initialized in order to obtain repeatable results.

import weka.core.*;

import weka.core.Capabilities.*;

import weka.filters.*;

import java.util.Random;

public class SimpleStream extends SimpleStreamFilter {

protected Random m_Random;

public String globalInfo() {

return "A simple stream filter that adds an attribute ’blah’ at the end "

+ "containing a random number.";

}

public Capabilities getCapabilities() {

Capabilities result = super.getCapabilities();

result.enableAllAttributes();

result.enableAllClasses();

result.enable(Capability.NO_CLASS); //// filter doesn’t need class to be set//

return result;

}

protected void reset() {

super.reset();

m_Random = new Random(1);

}

protected Instances determineOutputFormat(Instances inputFormat) {

Instances result = new Instances(inputFormat, 0);

result.insertAttributeAt(new Attribute("blah"), result.numAttributes());

return result;

}

protected Instance process(Instance inst) {

double[] values = new double[inst.numAttributes() + 1];

for (int n = 0; n < inst.numAttributes(); n++)

values[n] = inst.value(n);

values[values.length - 1] = m_Random.nextInt();

Instance result = new Instance(1, values);

return result;

}

public static void main(String[] args) {

runFilter(new SimpleStream(), args);

}

}

A real-world implementation of a stream filter is the MultiFilter class (pack-
age weka.filters), which passes the data through all the filters it contains.
Depending on whether all the used filters are streamable or not, it acts either
as stream filter or as batch filter.

19.2. WRITING A NEW FILTER 269

19.2.2.3 Internals

Some useful methods of the filter classes:

• isNewBatch() – returns true if an instance of the filter was just instan-
tiated or a new batch was started via the batchFinished() method.

• isFirstBatchDone() – returns true as soon as the first batch was finished
via the batchFinished() method. Useful for supervised filters, which
should not be altered after being trained with the first batch of instances.

19.2.3 Capabilities

Filters implement the weka.core.CapabilitiesHandler interface like the clas-
sifiers. This method returns what kind of data the filter is able to process. Needs
to be adapted for each individual filter, since the default implementation allows
the processing of all kinds of attributes and classes. Otherwise correct function-
ing of the filter cannot be guaranteed. See section “Capabilities” on page 247
for more information.

19.2.4 Packages

A few comments about the different filter sub-packages:

• supervised – contains supervised filters, i.e., filters that take class distri-
butions into account. Must implement the weka.filters.SupervisedFilter
interface.

– attribute – filters that work column-wise.

– instance – filters that work row-wise.

• unsupervised – contains unsupervised filters, i.e., they work without
taking any class distributions into account. The filter must implement the
weka.filters.UnsupervisedFilter interface.

– attribute – filters that work column-wise.

– instance – filters that work row-wise.

Javadoc

The Javadoc generation works the same as with classifiers. See section “Javadoc”
on page 249 for more information.

19.2.5 Revisions

Filters, like classifiers, implement the weka.core.RevisionHandler interface.
This provides the functionality of obtaining the Subversion revision from within
Java. Filters that are not part of the official WEKA distribution do not have
to implement the method getRevision() as the weka.filters.Filter class
already implements this method. Contributions, on the other hand, need to
implement it, in order to obtain the revision of this particular source file. See
section “Revisions” on page 250.

270 CHAPTER 19. EXTENDING WEKA

19.2.6 Testing

WEKA provides already a test framework to ensure correct basic functionality
of a filter. It is essential for the filter to pass these tests.

19.2.6.1 Option handling

You can check the option handling of your filter with the following tool from
command-line:

weka.core.CheckOptionHandler -W classname [-- additional parameters]

All tests need to return yes.

19.2.6.2 GenericObjectEditor

The CheckGOE class checks whether all the properties available in the GUI have a
tooltip accompanying them and whether the globalInfo()method is declared:

weka.core.CheckGOE -W classname [-- additional parameters]

All tests, once again, need to return yes.

19.2.6.3 Source code

Filters that implement the weka.filters.Sourcable interface can output Java
code of their internal representation. In order to check the generated code, one
should not only compile the code, but also test it with the following test class:

weka.filters.CheckSource

This class takes the original WEKA filter, the generated code and the dataset
used for generating the source code (and an optional class index) as parameters.
It builds the WEKA filter on the dataset and compares the output, the one from
the WEKA filter and the one from the generated source code, whether they are
the same.

Here is an example call for weka.filters.unsupervised.attribute.ReplaceMissingValues
and the generated class weka.filters.WEKAWrapper (it wraps the actual gen-
erated code in a pseudo-filter):

java weka.filters.CheckSource \

-W weka.filters.unsupervised.attribute.ReplaceMissingValues \

-S weka.filters.WEKAWrapper \

-t data.arff

It needs to return Tests OK!.

19.2.6.4 Unit tests

In order to make sure that your filter applies to the WEKA criteria, you should
add your filter to the junit unit test framework, i.e., by creating a Test class.
The superclass for filter unit tests is weka.filters.AbstractFilterTest.

19.3. WRITING OTHER ALGORITHMS 271

19.3 Writing other algorithms

The previous sections covered how to implement classifiers and filters. In the
following you will find some information on how to implement clusterers, as-
sociators and attribute selection algorithms. The various algorithms are only
covered briefly, since other important components (capabilities, option handling,
revisions) have already been discussed in the other chapters.

19.3.1 Clusterers

Superclasses and interfaces

All clusterers implement the interface weka.clusterers.Clusterer, but most
algorithms will be most likely derived (directly or further up in the class hier-
archy) from the abstract superclass weka.clusterers.AbstractClusterer.

weka.clusterers.SingleClustererEnhancer is used for meta-clusterers,
like the FilteredClusterer that filters the data on-the-fly for the base-clusterer.

Here are some common interfaces that can be implemented:

• weka.clusterers.DensityBasedClusterer – for clusterers that can esti-
mate the density for a given instance. AbstractDensityBasedClusterer
already implements this interface.

• weka.clusterers.UpdateableClusterer – clusterers that can generate
their model incrementally implement this interface, like CobWeb.

• NumberOfClustersRequestable – is for clusterers that allow to specify
the number of clusters to generate, like SimpleKMeans.

• weka.core.Randomizable – for clusterers that support randomization in
one way or another. RandomizableClusterer, RandomizableDensityBasedClusterer
and RandomizableSingleClustererEnhancer all implement this inter-
face already.

Methods

In the following a short description of methods that are common to all cluster
algorithms, see also the Javadoc for the Clusterer interface.

buildClusterer(Instances)
Like the buildClassifier(Instances) method, this method completely re-
builds the model. Subsequent calls of this method with the same dataset must
result in exactly the same model being built. This method also tests the training
data against the capabilities of this this clusterer:

public void buildClusterer(Instances data) throws Exception {

// test data against capabilities

getCapabilities().testWithFail(data);

// actual model generation

...

}

clusterInstance(Instance)
returns the index of the cluster the provided Instance belongs to.

272 CHAPTER 19. EXTENDING WEKA

distributionForInstance(Instance)
returns the cluster membership for this Instance object. The membership is a
double array containing the probabilities for each cluster.

numberOfClusters()
returns the number of clusters that the model contains, after the model has
been generated with the buildClusterer(Instances) method.

getCapabilities()
see section “Capabilities” on page 247 for more information.

toString()
should output some information on the generated model. Even though this is
not required, it is rather useful for the user to get some feedback on the built
model.

main(String[])
executes the clusterer from command-line. If your new algorithm is called
FunkyClusterer, then use the following code as your main method:

/**

* Main method for executing this clusterer.

*

* @param args the options, use "-h" to display options

*/

public static void main(String[] args) {

AbstractClusterer.runClusterer(new FunkyClusterer(), args);

}

Testing

For some basic tests from the command-line, you can use the following test
class:

weka.clusterers.CheckClusterer -W classname [further options]

For junit tests, you can subclass the weka.clusterers.AbstractClustererTest
class and add additional tests.

19.3. WRITING OTHER ALGORITHMS 273

19.3.2 Attribute selection

Attribute selection consists basically of two different types of classes:

• evaluator – determines the merit of single attributes or subsets of at-
tributes

• search algorithm – the search heuristic

Each of the them will be discussed separately in the following sections.

Evaluator

The evaluator algorithm is responsible for determining merit of the current
attribute selection.

Superclasses and interfaces
The ancestor for all evaluators is the weka.attributeSelection.ASEvaluation
class.

Here are some interfaces that are commonly implemented by evaluators:

• AttributeEvaluator – evaluates only single attributes

• SubsetEvaluator – evaluates subsets of attributes

• AttributeTransformer – evaluators that transform the input data

Methods
In the following a brief description of the main methods of an evaluator.

buildEvaluator(Instances)
Generates the attribute evaluator. Subsequent calls of this method with the
same data (and the same search algorithm) must result in the same attributes
being selected. This method also checks the data against the capabilities:

public void buildEvaluator (Instances data) throws Exception {

// can evaluator handle data?

getCapabilities().testWithFail(data);

// actual initialization of evaluator

...

}

postProcess(int[])
can be used for optional post-processing of the selected attributes, e.g., for
ranking purposes.

274 CHAPTER 19. EXTENDING WEKA

main(String[])
executes the evaluator from command-line. If your new algorithm is called
FunkyEvaluator, then use the following code as your main method:

/**

* Main method for executing this evaluator.

*

* @param args the options, use "-h" to display options

*/

public static void main(String[] args) {

ASEvaluation.runEvaluator(new FunkyEvaluator(), args);

}

Search

The search algorithm defines the heuristic of searching, e.g, exhaustive search,
greedy or genetic.

Superclasses and interfaces
The ancestor for all search algorithms is the weka.attributeSelection.ASSearch
class.

Interfaces that can be implemented, if applicable, by a search algorithm:

• RankedOutputSearch – for search algorithms that produce ranked lists of
attributes

• StartSetHandler – search algorithms that can make use of a start set of
attributes implement this interface

Methods
Search algorithms are rather basic classes in regards to methods that need to
be implemented. Only the following method needs to be implemented:

search(ASEvaluation,Instances)
uses the provided evaluator to guide the search.

Testing

For some basic tests from the command-line, you can use the following test
class:

weka.attributeSelection.CheckAttributeSelection

-eval classname -search classname [further options]

For junit tests, you can subclass the weka.attributeSelection.AbstractEvaluatorTest
or weka.attributeSelection.AbstractSearchTest class and add additional
tests.

19.3. WRITING OTHER ALGORITHMS 275

19.3.3 Associators

Superclasses and interfaces

The interface weka.associations.Associator is common to all associator al-
gorithms. But most algorithms will be derived from AbstractAssociator, an
abstract class implementing this interface. As with classifiers and clusterers, you
can also implement a meta-associator, derived from SingleAssociatorEnhancer.
An example for this is the FilteredAssociator, which filters the training data
on-the-fly for the base-associator.

The only other interface that is used by some other association algorithms,
is the weka.clusterers.CARuleMiner one. Associators that learn class associ-
ation rules implement this interface, like Apriori.

Methods

The associators are very basic algorithms and only support building of the
model.

buildAssociations(Instances)
Like the buildClassifier(Instances) method, this method completely re-
builds the model. Subsequent calls of this method with the same dataset must
result in exactly the same model being built. This method also tests the training
data against the capabilities:

public void buildAssociations(Instances data) throws Exception {

// other necessary setups

...

// test data against capabilities

getCapabilities().testWithFail(data);

// actual model generation

...

}

getCapabilities()
see section “Capabilities” on page 247 for more information.

toString()
should output some information on the generated model. Even though this is
not required, it is rather useful for the user to get some feedback on the built
model.

276 CHAPTER 19. EXTENDING WEKA

main(String[])
executes the associator from command-line. If your new algorithm is called
FunkyAssociator, then use the following code as your main method:

/**

* Main method for executing this associator.

*

* @param args the options, use "-h" to display options

*/

public static void main(String[] args) {

AbstractAssociator.runAssociator(new FunkyAssociator(), args);

}

Testing

For some basic tests from the command-line, you can use the following test
class:

weka.associations.CheckAssociator -W classname [further options]

For junit tests, you can subclass the weka.associations.AbstractAssociatorTest
class and add additional tests.

19.4. EXTENDING THE EXPLORER 277

19.4 Extending the Explorer

The plugin architecture of the Explorer allows you to add new functionality
easily without having to dig into the code of the Explorer itself. In the following
you will find information on how to add new tabs, like the “Classify” tab, and
new visualization plugins for the “Classify” tab.

19.4.1 Adding tabs

The Explorer is a handy tool for initial exploration of your data – for proper
statistical evaluation, the Experimenter should be used instead. But if the
available functionality is not enough, you can always add your own custom-
made tabs to the Explorer.

19.4.1.1 Requirements

Here is roughly what is required in order to add a new tab (the examples below
go into more detail):

• your class must be derived from javax.swing.JPanel

• the interface weka.gui.explorer.Explorer.ExplorerPanelmust be im-
plemented by your class

• optional interfaces

– weka.gui.explorer.Explorer.LogHandler – in case you want to
take advantage of the logging in the Explorer

– weka.gui.explorer.Explorer.CapabilitiesFilterChangeListener

– in case your class needs to be notified of changes in the Capabilities,
e.g., if new data is loaded into the Explorer

• adding the classname of your class to the Tabs property in the Explorer.props
file

19.4.1.2 Examples

The following examples demonstrate the plugin architecture. Only the neces-
sary details are discussed, as the full source code is available from the WEKA
Examples [3] (package wekaexamples.gui.explorer).

SQL worksheet

Purpose

Displaying the SqlViewer as a tab in the Explorer instead of using it either
via the Open DB... button or as standalone application. Uses the existing
components already available in WEKA and just assembles them in a JPanel.
Since this tab does not rely on a dataset being loaded into the Explorer, it will
be used as a standalone one.

278 CHAPTER 19. EXTENDING WEKA

Useful for people who are working a lot with databases and would like to
have an SQL worksheet available all the time instead of clicking on a button
every time to open up a database dialog.

Implementation

• class is derived from javax.swing.JPanel and implements the interface
weka.gui.Explorer.ExplorerPanel (the full source code also imports
the weka.gui.Explorer.LogHandler interface, but that is only additional
functionality):

public class SqlPanel

extends JPanel

implements ExplorerPanel {

• some basic members that we need to have

/** the parent frame */

protected Explorer m_Explorer = null;

/** sends notifications when the set of working instances gets changed*/

protected PropertyChangeSupport m_Support = new PropertyChangeSupport(this);

• methods we need to implement due to the used interfaces

/** Sets the Explorer to use as parent frame */

public void setExplorer(Explorer parent) {

m_Explorer = parent;

}

/** returns the parent Explorer frame */

public Explorer getExplorer() {

return m_Explorer;

}

/** Returns the title for the tab in the Explorer */

public String getTabTitle() {

return "SQL"; // what’s displayed as tab-title, e.g., Classify

}

/** Returns the tooltip for the tab in the Explorer */

public String getTabTitleToolTip() {

return "Retrieving data from databases"; // the tooltip of the tab

}

/** ignored, since we "generate" data and not receive it */

public void setInstances(Instances inst) {

}

/** PropertyChangeListener which will be notified of value changes. */

public void addPropertyChangeListener(PropertyChangeListener l) {

m_Support.addPropertyChangeListener(l);

}

/** Removes a PropertyChangeListener. */

public void removePropertyChangeListener(PropertyChangeListener l) {

m_Support.removePropertyChangeListener(l);

}

19.4. EXTENDING THE EXPLORER 279

• additional GUI elements

/** the actual SQL worksheet */

protected SqlViewer m_Viewer;

/** the panel for the buttons */

protected JPanel m_PanelButtons;

/** the Load button - makes the data available in the Explorer */

protected JButton m_ButtonLoad = new JButton("Load data");

/** displays the current query */

protected JLabel m_LabelQuery = new JLabel("");

• loading the data into the Explorer by clicking on the Load button will fire
a propertyChange event:

m_ButtonLoad.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt){

m_Support.firePropertyChange("", null, null);

}

});

• the propertyChange event will perform the actual loading of the data,
hence we add an anonymous property change listener to our panel:

addPropertyChangeListener(new PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent e) {

try {

// load data

InstanceQuery query = new InstanceQuery();

query.setDatabaseURL(m_Viewer.getURL());

query.setUsername(m_Viewer.getUser());

query.setPassword(m_Viewer.getPassword());

Instances data = query.retrieveInstances(m_Viewer.getQuery());

// set data in preprocess panel (also notifies of capabilties changes)

getExplorer().getPreprocessPanel().setInstances(data);

}

catch (Exception ex) {

ex.printStackTrace();

}

}

});

• In order to add our SqlPanel to the list of tabs displayed in the Ex-
plorer, we need to modify the Explorer.props file (just extract it from
the weka.jar and place it in your home directory). The Tabs property
must look like this:

Tabs=weka.gui.explorer.SqlPanel,\

weka.gui.explorer.ClassifierPanel,\

weka.gui.explorer.ClustererPanel,\

weka.gui.explorer.AssociationsPanel,\

weka.gui.explorer.AttributeSelectionPanel,\

weka.gui.explorer.VisualizePanel

280 CHAPTER 19. EXTENDING WEKA

Screenshot

19.4. EXTENDING THE EXPLORER 281

Artificial data generation

Purpose

Instead of only having a Generate... button in the PreprocessPanel or using it
from command-line, this example creates a new panel to be displayed as extra
tab in the Explorer. This tab will be available regardless whether a dataset is
already loaded or not (= standalone).

Implementation

• class is derived from javax.swing.JPanel and implements the interface
weka.gui.Explorer.ExplorerPanel (the full source code also imports
the weka.gui.Explorer.LogHandler interface, but that is only additional
functionality):

public class GeneratorPanel

extends JPanel

implements ExplorerPanel {

• some basic members that we need to have (the same as for the SqlPanel

class):

/** the parent frame */

protected Explorer m_Explorer = null;

/** sends notifications when the set of working instances gets changed*/

protected PropertyChangeSupport m_Support = new PropertyChangeSupport(this);

• methods we need to implement due to the used interfaces (almost identical
to SqlPanel):

/** Sets the Explorer to use as parent frame */

public void setExplorer(Explorer parent) {

m_Explorer = parent;

}

/** returns the parent Explorer frame */

public Explorer getExplorer() {

return m_Explorer;

}

/** Returns the title for the tab in the Explorer */

public String getTabTitle() {

return "DataGeneration"; // what’s displayed as tab-title, e.g., Classify

}

/** Returns the tooltip for the tab in the Explorer */

public String getTabTitleToolTip() {

return "Generating artificial datasets"; // the tooltip of the tab

}

/** ignored, since we "generate" data and not receive it */

public void setInstances(Instances inst) {

}

/** PropertyChangeListener which will be notified of value changes. */

public void addPropertyChangeListener(PropertyChangeListener l) {

m_Support.addPropertyChangeListener(l);

}

/** Removes a PropertyChangeListener. */

public void removePropertyChangeListener(PropertyChangeListener l) {

m_Support.removePropertyChangeListener(l);

}

282 CHAPTER 19. EXTENDING WEKA

• additional GUI elements:

/** the GOE for the generators */

protected GenericObjectEditor m_GeneratorEditor = new GenericObjectEditor();

/** the text area for the output of the generated data */

protected JTextArea m_Output = new JTextArea();

/** the Generate button */

protected JButton m_ButtonGenerate = new JButton("Generate");

/** the Use button */

protected JButton m_ButtonUse = new JButton("Use");

• the Generate button does not load the generated data directly into the
Explorer, but only outputs it in the JTextArea (the Use button loads the
data - see further down):

m_ButtonGenerate.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent evt){

DataGenerator generator = (DataGenerator) m_GeneratorEditor.getValue();

String relName = generator.getRelationName();

String cname = generator.getClass().getName().replaceAll(".*\\.", "");

String cmd = generator.getClass().getName();

if (generator instanceof OptionHandler)

cmd += " "+Utils.joinOptions(((OptionHandler)generator).getOptions());

try {

// generate data

StringWriter output = new StringWriter();

generator.setOutput(new PrintWriter(output));

DataGenerator.makeData(generator, generator.getOptions());

m_Output.setText(output.toString());

}

catch (Exception ex) {

ex.printStackTrace();

JOptionPane.showMessageDialog(

getExplorer(), "Error generating data:\n" + ex.getMessage(),

"Error", JOptionPane.ERROR_MESSAGE);

}

generator.setRelationName(relName);

}

});

• the Use button finally fires a propertyChange event that will load the data
into the Explorer:

m_ButtonUse.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent evt){

m_Support.firePropertyChange("", null, null);

}

});

19.4. EXTENDING THE EXPLORER 283

• the propertyChange event will perform the actual loading of the data,
hence we add an anonymous property change listener to our panel:

addPropertyChangeListener(new PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent e) {

try {

Instances data = new Instances(new StringReader(m_Output.getText()));

// set data in preprocess panel (also notifies of capabilties changes)

getExplorer().getPreprocessPanel().setInstances(data);

}

catch (Exception ex) {

ex.printStackTrace();

JOptionPane.showMessageDialog(

getExplorer(), "Error generating data:\n" + ex.getMessage(),

"Error", JOptionPane.ERROR_MESSAGE);

}

}

});

• In order to add our GeneratorPanel to the list of tabs displayed in the
Explorer, we need to modify the Explorer.props file (just extract it from
the weka.jar and place it in your home directory). The Tabs property
must look like this:

Tabs=weka.gui.explorer.GeneratorPanel:standalone,\

weka.gui.explorer.ClassifierPanel,\

weka.gui.explorer.ClustererPanel,\

weka.gui.explorer.AssociationsPanel,\

weka.gui.explorer.AttributeSelectionPanel,\

weka.gui.explorer.VisualizePanel

• Note: the standalone option is used to make the tab available without
requiring the preprocess panel to load a dataset first.

Screenshot

284 CHAPTER 19. EXTENDING WEKA

Experimenter ”light”

Purpose

By default the Classify panel only performs 1 run of 10-fold cross-validation.
Since most classifiers are rather sensitive to the order of the data being pre-
sented to them, those results can be too optimistic or pessimistic. Averaging
the results over 10 runs with differently randomized train/test pairs returns
more reliable results. And this is where this plugin comes in: it can be used
to obtain statistical sound results for a specific classifier/dataset combination,
without having to setup a whole experiment in the Experimenter.

Implementation

• Since this plugin is rather bulky, we omit the implementation details, but
the following can be said:

– based on the weka.gui.explorer.ClassifierPanel

– the actual code doing the work follows the example in the Using the
Experiment API wiki article [2]

• In order to add our ExperimentPanel to the list of tabs displayed in the
Explorer, we need to modify the Explorer.props file (just extract it from
the weka.jar and place it in your home directory). The Tabs property
must look like this:

Tabs=weka.gui.explorer.ClassifierPanel,\

weka.gui.explorer.ExperimentPanel,\

weka.gui.explorer.ClustererPanel,\

weka.gui.explorer.AssociationsPanel,\

weka.gui.explorer.AttributeSelectionPanel,\

weka.gui.explorer.VisualizePanel

Screenshot

19.4. EXTENDING THE EXPLORER 285

19.4.2 Adding visualization plugins

19.4.2.1 Introduction

You can add visualization plugins in the Explorer (Classify panel). This makes
it easy to implement custom visualizations, if the ones WEKA offers are not
sufficient. The following examples can be found in the Examples collection
[3] (package wekaexamples.gui.visualize.plugins). The following types of
plugins are available and explained in the sections below:

• predictions – for displaying the predictions

• errors – for plotting actual vs predicted

• graphs – for displaying graphs generated by BayesNet

• trees – for displaying trees generated by classifiers like J48

19.4.2.2 Predictions

Requirements

• custom visualization class must implement the following interface

weka.gui.visualize.plugins.VisualizePlugin

• the class must either reside in the following package (visualization classes
are automatically discovered during run-time)

weka.gui.visualize.plugins

• or you must list the package this class belongs to in the properties file
weka/gui/GenericPropertiesCreator.props (or the equivalent in your
home directory) under the key weka.gui.visualize.plugins.VisualizePlugin.

Implementation
The visualization interface contains the following four methods

• getMinVersion – This method returns the minimum version (inclusive)
of WEKA that is necessary to execute the plugin, e.g., 3.5.0.

• getMaxVersion – This method returns the maximum version (exclusive)
of WEKA that is necessary to execute the plugin, e.g., 3.6.0.

• getDesignVersion – Returns the actual version of WEKA this plugin was
designed for, e.g., 3.5.1

• getVisualizeMenuItem – The JMenuItem that is returned via this method
will be added to the plugins menu in the popup in the Explorer. The
ActionListener for clicking the menu item will most likely open a new
frame containing the visualized data.

286 CHAPTER 19. EXTENDING WEKA

Examples
Table with predictions

The PredictionTable.java example simply displays the actual class label and
the one predicted by the classifier. In addition to that, it lists whether it was
an incorrect prediction and the class probability for the correct class label.

19.4. EXTENDING THE EXPLORER 287

Bar plot with probabilities
The PredictionError.java example uses the JMathTools library (needs the
jmathplot.jar [27] in the CLASSPATH) to display a simple bar plot of the
predictions. The correct predictions are displayed in blue, the incorrect ones
in red. In both cases the class probability that the classifier returned for the
correct class label is displayed on the y axis. The x axis is simply the index of
the prediction starting with 0.

288 CHAPTER 19. EXTENDING WEKA

19.4.2.3 Errors

Requirements
Almost the same requirements as for the visualization of the predictions (see
section 19.4.2.2), but with the following differences:

• weka.gui.visualize.plugins.ErrorVisualizePlugin – is the interface
to implement

• weka.gui.visualize.plugins.ErrorVisualizePlugin – is the key in
the GenericPropertiesCreator.props file to list the package name

Examples
weka.classifiers.functions.LinearRegression was used to generate the
following screenshots using default parameters on the UCI dataset bolts, using
a percentage split of 66% for the training set and the remainder for testing.

Using WEKA panels
The ClassifierErrorsWeka.java example simply displays the classifier errors
like the Visualize classifier errors menu item already available in WEKA. It is
just to demonstrate how to use existing WEKA classes.

19.4. EXTENDING THE EXPLORER 289

Using JMathtools’ Boxplot
The ClassifierErrorsMathtools.java example uses the JMathTools library
(needs the jmathplot.jar [27] in the CLASSPATH) to display a boxplot (the
width of the boxes is 0, to make it look like an error plot). The relative error
per prediction is displayed as vertical line.

Note: This display is only available for numeric classes.

290 CHAPTER 19. EXTENDING WEKA

19.4.2.4 Graphs

Requirements
Almost the same requirements as for the visualization of the predictions (see
section 19.4.2.2), but with the following differences:

• weka.gui.visualize.plugins.GraphVisualizePlugin – is the interface
to implement

• weka.gui.visualize.plugins.GraphVisualizePlugin – is the key in
the GenericPropertiesCreator.props file to list the package name

Examples
prefuse visualization toolkit

The PrefuseGraph.java example uses the prefuse visualization toolkit (prefuse-
beta, 2007.10.21 [28]). It is based on the prefuse.demos.GraphViewdemo class.

The following screenshot was generated using BayesNet on the UCI dataset
anneal with the following parametrization:

weka.classifiers.bayes.BayesNet -D -Q

weka.classifiers.bayes.net.search.local.K2 -- -P 3 -S BAYES -E

weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5

19.4. EXTENDING THE EXPLORER 291

19.4.2.5 Trees

Requirements
Almost the same requirements as for the visualization of the predictions (see
section 19.4.2.2), but with the following differences:

• weka.gui.visualize.plugins.TreeVisualizePlugin – is the interface
to implement

• weka.gui.visualize.plugins.TreeVisualizePlugin – is the key in the
GenericPropertiesCreator.props file to list the package name

Examples
prefuse visualization toolkit

The PrefuseTree.java example uses the prefuse visualization toolkit (prefuse-
beta, 2007.10.21 [28]). It is based on the prefuse.demos.TreeView demo class.

The following screenshot was generated using J48 on the UCI dataset anneal
with default parameters:

292 CHAPTER 19. EXTENDING WEKA

And here is an example of Cobweb on the same dataset, once again with
default parameters:

19.5. EXTENDING THE KNOWLEDGE FLOW 293

19.5 Extending the Knowledge Flow

The plugin architecture of the Knowledge Flow allows you to add new steps
and perspectives easily. Plugins for the Knowledge Flow are managed by the
/textitPluginManager class and can easily be deployed by creating a WEKA
package (see Chapter 19) that includes a PluginManager.props file that lists the
components to add.

The source code for all the examples described in the following sections are
available in the newKnowledgeFlowStepExamples package that can be installed
via the package manager.

19.5.1 Creating a simple batch processing Step

Steps are the building blocks of Knowledge Flow processes. The new Knowledge
Flow implementation has a fresh API and a collection of helper classes that
makes creating a new Step fairly simple.

294 CHAPTER 19. EXTENDING WEKA

The need-to-know API elements for new Steps are:

• weka.knowledgeflow.steps.Step - the main interface for Step imple-
mentations

• weka.knowledgeflow.steps.BaseStepExtender - a minimal subset of
the Step interface’s methods that a new Step would need to implement in
order to function as a start point and/or processing step in the Knowledge
Flow.

• weka.knowledgeflow.steps.BaseStep - a handy base class for new Steps
to extend. Provides functions for automatically setting up the Step’s
name and “about” info, resolving environment variables and gaining ac-
cess to the Step’s StepManager class. This class implements Step and
BaseStepExtender.

• weka.knowledgeflow.StepManager - an implementation of StepManager
is provided to every Step by the Knowledge Flow environment. StepManager
has lots of utility functions that allow a Step to find out information about
things such as its incoming connections, outgoing connections, and execu-
tion environment. It also provides methods to handle the output of data
and for informing the Knowledge Flow environment of the Step’s status.

• weka.knowledgelfow.steps.KFStep - a class annotation that Step im-
plementations can use for specifying their name, category, tool tip and
icon path.

Lets take a look at a simple Step that can accept batch datasets and compute
summary statistics for a user-specified attribute.

Implementation

Our new StatsCalculator step extends BaseStep. As BaseStep is abstract,
the methods that we must implement are shown in the skeleton class below:

public class StatsCalculator extends BaseStep {

@Override

public void stepInit() throws WekaException {

// TODO

}

@Override

public List<String> getIncomingConnectionTypes() {

// TODO

return null;

}

@Override

public List<String> getOutgoingConnectionTypes() {

// TODO

return null;

}

}

The stepInit() function is called on all steps before the knowledge flow starts
executing a flow. It allows a step to reset its state and check the validity of any
user-specified configuration. At this point the Step is guaranteed to have access
to a StepManager.

19.5. EXTENDING THE KNOWLEDGE FLOW 295

The getIncomingConnectionTypes() method allows a Step to specify which
incoming connection types it can accept. This should take into account the
current configuration of the step and any existing connections in (or out) of the
step (e.g. a step might only allow one incoming trainingSet connection, so if
one is already present then the list of connection types returned by this method
should not include trainingSet).

Similarly, the getOutgoingConnectionTypes() method allows the Step to spec-
ify which outgoing connection types can be made from it. Again, this should
take into account the current state of the step and (possibly) the incoming
connections.

296 CHAPTER 19. EXTENDING WEKA

Lets take a look at implementing these methods in StatsCalculator.:

public class StatsCalculator extends BaseStep {

protected String m_attName = "petallength";

@Override

public void stepInit() throws WekaException {

if (m_attName == null || m_attName.length() == 0) {

throw new WekaException("You must specify an attribute to compute "

+ "stats for!");

}

}

@Override

public List<String> getIncomingConnectionTypes() {

return Arrays.asList(StepManager.CON_DATASET, StepManager.CON_TRAININGSET,

StepManager.CON_TESTSET);

}

@Override

public List<String> getOutgoingConnectionTypes() {

List<String> outgoing = new ArrayList<String>();

if (getStepManager().numIncomingConnections() > 0) {

outgoing.add(StepManager.CON_TEXT);

}

if (getStepManager().numIncomingConnectionsOfType(

StepManager.CON_DATASET) > 0) {

outgoing.add(StepManager.CON_DATASET);

}

if (getStepManager().numIncomingConnectionsOfType(

StepManager.CON_TRAININGSET) > 0) {

outgoing.add(StepManager.CON_TRAININGSET);

}

if (getStepManager().numIncomingConnectionsOfType(

StepManager.CON_TESTSET) > 0) {

outgoing.add(StepManager.CON_TESTSET);

}

return outgoing;

}

}

The code specifies that the step can accept any number of incoming dataset,
trainingSet or testSet connections. There are a whole lot of constants defined
in StepManager for connection types and auxilliary data. The getOutgoingCon-
nectionTypes() method specifies that the step will only produce a text connec-
tion/output if it has at least one incoming connection. The text output will
contain our computed attribute summary statistics. Furthermore, the step also
passes through any instances that it receives, so it will only produce a particu-
lar dataset type (dataSet, trainingSet or testSet) if it has a corresponding
inpcoming connection of that type.

19.5. EXTENDING THE KNOWLEDGE FLOW 297

At this point there is some important functionality missing - namely a
method to do some actual processing when data is received by the step. In
fact, there are two methods related to this in BaseStep that have no-opp im-
plementations. One or both should be overridden by a Step implementation
in order to do some processing. the start() method should be overriden if the
step can act as a starting point in a flow (i.e. a step that, typically, loads,
sources or generates data of some sort). Any step that doesn’t have any in-
coming connections is considered as a potential start point by the Knowledge
Flow environment and has its start() method invoked. The processIncoming()
method should be overridden by steps that can accept incoming connections
(and the data that they typically carry).

298 CHAPTER 19. EXTENDING WEKA

Lets add a processIncoming() method to the StatsCalculator.

public void setAttName(String attName) { m_attName = attName; }

public String getAttName() { return m_attName; }

@Override

public void processIncoming(Data data) throws WekaException {

getStepManager().processing();

Instances insts = data.getPrimaryPayload();

Attribute att = insts.attribute(getAttName());

if (att == null) {

throw new WekaException("Incoming data does not " + "contain attribute ’"

+ getAttName() + "’");

}

AttributeStats stats = insts.attributeStats(att.index());

Data textOut = new Data(StepManager.CON_TEXT, stats.toString());

textOut.setPayloadElement(StepManager.CON_AUX_DATA_TEXT_TITLE,

"Stats for: " + getAttName());

getStepManager().outputData(textOut); // output the textual stats

getStepManager().outputData(data); // pass the original dataset on

getStepManager().finished();

}

In the code above, we’ve added accessor and mutator methods for our sin-
gle user-supplied parameter - i.e. the name of the attribute to compute stats
for. Then we’ve overridden the no-opp implementation of the processIncoming()
method from BaseStep. This method is passed a Data object, which is the data
structure used by the Knowledge Flow environment for transferring all types
of data between steps. The code first tells the Knowledge Flow environment
that it is actively processing by calling the processing() method on the step’s
StepManager. It then retrieves the Instances dataset via the getPrimaryPay-
load() method of the Data object. The stats are then computed and a new
Data object is created to hold the results. In this case the results are textual,
so the data’s associated connection type is StepManager.CON_TEXT. The two
argument constructor for Data takes the connection type and the associated
primary payload data (i.e. the textual stats in this case). Additional data can
be attached to a Data object by storing it in a “payload” map. In this case we
have a textual title for our stats result that includes the name of the attribute.
Finally, the new data object, and the original dataset, is output by calling the
outputData() method on the StepManager, and the environment is informed
that our step has finished processing.

19.5. EXTENDING THE KNOWLEDGE FLOW 299

The last thing we can add to this step is the KFStep class annotation. This
provides some information about the step, including where it should appear in
the folders of the design palette in the GUI Knowledge Flow.

@KFStep(name = "StatsCalculator", category = "Examples",

toolTipText = "Compute summary stats for an attribute",

iconPath = KFGUIConsts.BASE_ICON_PATH + "DiamondPlain.gif")

public class StatsCalculator extends BaseStep {

...

The screenshot above shows the step, the results after execution on the iris
data and the GUI configuration dialog for the step. A simple, GUI configuration
dialog is provided dynamically by the Knowledge Flow environment, but you
have the option of overriding this to a greater or lesser extent in order to provide
a customized configuration dialog.

19.5.2 Creating a simple streaming Step

StepManager defines a number of constant strings that identify various types of
connections and data. Most data/connections in the Knowledge Flow are batch
ones - e.g. dataSet, trainingSet, testSet and batchClassifier (to name a few).
When the Knowledge Flow’s execution environment invokes processIncoming()
on a target step, it does so in a separate thread for batch connections. Thus, each
step automatically does its processing within a separate thread. There are sev-
eral types of incremental connections/data defined in StepManager as well: in-
stance, incrementalClassifier and chart are all examples. Furthermore, for your
own purposes it is possible to create your own connection/data types (as they are
just defined with a string identifier) and mark them as “incremental”. This can
be done by setting payload flag (StepManager.CON_AUX_DATA_IS_INCREMENTAL
to true) when configuring a Data object. Incremental connections/data do not
get executed in a new thread because it is assumed that processing individual
pieces of incremental data does not require much effort, and the overhead in
creating/invoking processing in a new thread could outweigh this.

300 CHAPTER 19. EXTENDING WEKA

Now lets take a look at a Step that does some simple processing in a stream-
ing fashion. Our new step, RoundRobin, simply accepts a single streaming “in-
stance” connection as input and distributes individual instances in a round-robin
fashion to the connected steps immediately downstream from it.

Implementation

@KFStep(name = "RoundRobin", category = "Examples",

toolTipText = "Round robin instances to outputs",

iconPath = KFGUIConsts.BASE_ICON_PATH + "DiamondPlain.gif")

public class RoundRobin extends BaseStep {

protected int m_counter;

protected int m_numConnected;

@Override

public void stepInit() throws WekaException {

m_counter = 0;

m_numConnected = getStepManager().numOutgoingConnections();

}

@Override

public List<String> getIncomingConnectionTypes() {

List<String> result = new ArrayList<String>();

if (getStepManager().numIncomingConnections() == 0) {

result.add(StepManager.CON_INSTANCE);

}

return result;

}

@Override

public List<String> getOutgoingConnectionTypes() {

List<String> result = new ArrayList<String>();

if (getStepManager().numIncomingConnections() == 1) {

result.add(StepManager.CON_INSTANCE);

}

return result;

}

@Override

public void processIncoming(Data data) throws WekaException {

if (isStopRequested()) {

getStepManager().interrupted();

return;

}

if (getStepManager().numOutgoingConnections() > 0) {

getStepManager().throughputUpdateStart();

if (!getStepManager().isStreamFinished(data)) {

List<StepManager> outgoing =

getStepManager().getOutgoingConnectedStepsOfConnectionType(

StepManager.CON_INSTANCE);

int target = m_counter++ % m_numConnected;

String targetStepName = outgoing.get(target).getName();

getStepManager().outputData(StepManager.CON_INSTANCE, targetStepName,

data);

getStepManager().throughputUpdateEnd();

} else {

// step manager notifies all downstream steps of stream end

getStepManager().throughputFinished(data);

}

}

}

19.5. EXTENDING THE KNOWLEDGE FLOW 301

This example step demonstrates a several different things over the one in the
previous section. Firstly the getIncomingConnectionTypes() and getOutgoing-
ConnectionTypes() methods demonstrate some constraints based on the current
state of incoming and outgoing connections. In the former method a constraint
of a single incoming instance connection is enforced; in the later method any
number of outgoing instance connections are allowed as long as there is an
incoming connection present. It also demonstrates checking to see whether a
request has been made to stop processing in the processIncoming() method. We
ommitted this from the previous example for brevity, but all steps should check
periodically to see if a stop has been requested. If so, then they should indi-
cate to the environment as soon as possible that they have been interrupted by
calling StepManager.interrupted(). This method will ensure that an interruped
message appears in the status area of the GUI Knowledge Flow.

The code also demonstrates several features of incremental processing in the
processIncoming() method. To get throughput statistics displayed in the status
area of the GUI Knowledge Flow interface the methods StepManager.throughputUpdateStart()
and StepManager.throughputUpdateEnd() are used to indicate the start and end
of processing for the incoming Data object respectively. A utility method Step-
Manager.isStreamFinished() can be called to see if the end of the stream has
been reached. This method takes the current Data object (as a flag is set in
the payload map of the Data object to indicate the end of the stream). By con-
vention, the primary payload of a Data object that is marked as end-of-stream
is empty/null. However, auxilliary data could be present, depending on what
processing has been done (e.g. a final classifier object if training a classifier
incrementally). If the end of stream has been reached, then a step should call
StepManager.throughputFinished() with a final Data object as an argument -
this tells the environment that processing is finished for the step and ensures
that downstream steps are informed of the end-of-stream along with any final
auxilliary data in the final Data object.

302 CHAPTER 19. EXTENDING WEKA

In the previous example, we had simply output data to all downstream steps
with the appropriate connection type by calling StepManager.outputData() with
a single Data object as an argument. The environment routes this data to appro-
priate connected steps because the Data object is constructed with a connection
type that it is associated with. In our round robin example, we further constrain
the destination of the data by calling a version of StepManager.outputData()
that takes a step name as an additional argument.

19.5.3 Features of StepManager

Aside from methods to query the state of incoming and outgoing connections
from a step, and support for outputing data, the StepManager also has a number
of other useful facilities. It provides methods for writing to the status and log in
the KnowledgeFlow. Messages can be logged at various logging levels, where the
user can configure up to which level they are interested in seeing in the log. The
following status and logging methods can be used by steps during execution:

• statusMessage() - write to the status area

• logLow()

• logBasic()

• logDetailed()

• logDebug()

• logWarning() - always gets to the log, regardless of user-specified logging
level

• logError() - always gets to the log; can supply an optional Throwable
cause

StepManager also provides access to the ExecutionEnvornment. The ExecutionEnvironment
can be used to find out whether the system is running headless, get the values of
environment variables and to launch separate processing “tasks” on the executor
service. In most cases, the processing done by a step will not require launch-
ing additional tasks/threads as processIncoming() is called in a separate thread
(when batch processing) by the Knowledge Flow environment. In some cases,
it might be beneficial to make use of additional threads. The BoundaryPlotter
step is an example that makes use of this facility - it computes each row of a
plotted graphic using a separate task/thread. Steps wanting to use the executor
service directly can call StepManager.getExecutionEnvironment().submitTask()
and supply a concrete sublcass of StepTask to do the processing. The step can
work with either the Future<ExectutionResult> returned by submitTask() or,
alternatively, supply a StepTaskCallback when constructing a StepTask for
asynchronous notification.

19.5.4 PairedDataHelper

A common processing pattern in machine learning is to deal with paired datasets
- i.e. typically train/test pairs. In the multi-threaded environment of the Knowl-
edge Flow, where usually each Data object is passed to a target step in a sep-
arate thread of execution, it is likely that training and test sets may arrive at
the target step out of order. Furthermore, in the case of multiple pairs (e.g.
cross-validation folds) they might not arrive in the order that the folds are cre-
ated. Handling this scenario within a step can be tedious, so a helper class is
available for use by step implementations needing to deal with paired datasets
- PairedDataHelper.

19.5. EXTENDING THE KNOWLEDGE FLOW 303

The PairedDataHelper has the concept of a primary and secondary con-
nection/data type, where the secondary connection/data for a given set number
typically needs to be processed using a result generated from the corresponding
primary connection/data. This class takes care of ensuring that the secondary
connection/data is only processed once the primary has completed. Users of this
helper need to provide an implementation of the PairedProcessor inner inter-
face, where the processPrimary() method will be called to process the primary
data/connection (and return a result), and processSecondary() called to deal
with the secondary connection/data. The result of execution on a particular
primary data set number can be retrieved by calling the getIndexedPrimaryRe-
sult() method, passing in the set number of the primary result to retrieve.

The PairedDataHelper class also provides an arbitrary storage mechanism
for additional results beyond the primary type of result. It also takes care of
invoking processing() and finished() on the client step’s StepManager.

304 CHAPTER 19. EXTENDING WEKA

Below is a code skeleton (taken from the javadoc for PairedDataHelper)
that shows the basic usage of this helper class.

public class MyFunkyStep extends BaseStep

implements PairedDataHelper.PairedProcessor<MyFunkyMainResult> {

...

protected PairedDataHelper<MyFunkyMainResult> m_helper;

...

public void stepInit() {

m_helper = new PairedDataHelper<MyFunkyMainResult>(this, this,

StepManager.[CON_WHATEVER_YOUR_PRIMARY_CONNECTION_IS],

StepManager.[CON_WHATEVER_YOUR_SECONDARY_CONNECTION_IS]);

...

}

public void processIncoming(Data data) throws WekaException {

// delegate to our helper to handle primary/secondary synchronization

// issues

m_helper.process(data);

}

public MyFunkyMainResult processPrimary(Integer setNum, Integer maxSetNun,

Data data, PairedDataHelper<MyFunkyMainResult> helper) throws WekaException {

SomeDataTypeToProcess someData = data.getPrimaryPayload();

MyFunkyMainResult processor = new MyFunkyMainResult();

// do some processing using MyFunkyMainResult and SomeDataToProcess

...

// output some data to downstream steps if necessary

...

return processor;

}

public void processSecondary(Integer setNum, Integer maxSetNum, Data data,

PairedDataHelper<MyFunkyMainResult> helper) throws WekaException {

SomeDataTypeToProcess someData = data.getPrimaryPayload();

// get the MyFunkyMainResult for this set number

MyFunkyMainResult result = helper.getIndexedPrimaryResult(setNum);

// do some stuff with the result and the secondary data

...

// output some data to downstream steps if necessary

}

}

The newKnowledgeFlowStepExamples package includes an example called
ExampleClassifier that demonstrates the use of PairedDataHelper to train
and evaluate a classifier on train/test splits.

Chapter 20

Weka Packages

The previous chapter described how to extend Weka to add your own learning
algorithms and various enhancements to the user interfaces. This chapter de-
scribes how such enhancements can be assembled into a “package” that can be
accessed via Weka’s package management system. Bundling your enhancements
in a package makes it easy to share with other Weka users.

In this chapter we refer to a “package” as an archive containing various
resources such as compiled code, source code, javadocs, package description
files (meta data), third-party libraries and configuration property files. Not all
of the preceding may be in a given package, and there may be other resources
included as well. This concept of a “package” is quite different to that of a Java
packages, which simply define how classes are arranged hierarchically.

20.1 Where does Weka store packages and other
configuration stuff?

By default, Weka stores packages and other information in $WEKA_HOME. The
default location for $WEKA_HOME is user.home/wekafiles, where user.home is
the user’s home directory. You can change the default location for WEKA_HOME by
setting this either as an evironment variable for your platform, or by specifying
it as a Java property when starting Weka. E.g.:

export WEKA_HOME=/home/somewhere/weka_bits_and_bobs

will set the directory thatWeka uses to /home/somewhere/weka_bits_and_bobs
under the LINUX operating system.

305

306 CHAPTER 20. WEKA PACKAGES

The same thing can be accomplished when starting Weka by specifying a
Java property on the command line, E.g.:

java -DWEKA_HOME=/home/somewhere/weka_bits_and_bobs -jar weka.jar

Inside $WEKA_HOME you will find the main weka log file (weka.log) and a
number of directories:

• packages holds installed packages. Each package is contained its own
subdirectory.

• props holds various Java property files used by Weka. This directory re-
places the user’s home directory (used in earlier releases of Weka) as one of
the locations checked byWeka for properties files (such as DatabaseUtils.props).
Weka first checks, in order, the current directory (i.e. the directory that
Weka is launched from), then $WEKA_HOME/props and finally the weka.jar
file for property files.

• repCache holds the cached copy of the meta data from the central pack-
age repository. If the contents of this directory get corrupted it can be
safely deleted and Weka will re-create it on the next restart.

• systemDialogs holds marker files that are created when you check “Don’t
show this again” in various system popup dialogs. Removing this directory
or its contents will cause Weka to display those prompts anew.

20.2 Anatomy of a package

A Weka package is a zip archive that must unpack to the current directory.
For example, the DTNB package contains the decision table naive Bayes hybrid
classifier and is delivered in a file called DTNB.zip. When unpacked this zip file
creates the following directory structure:

<current directory>
+-DTNB.jar

+-Description.props
+-build_package.xml
+-src

| +-main
| | +-java

| | +-weka
| | +-classifiers
| | +-rules

| | +-DTNB.java
| +-test

| +-java
| +-weka

| +-classifiers
| +-rules
| +-DTNBTest.java

+-lib
+-doc

When installing, the package manager will use the value of the “Package-
Name” field in the Description.props file (see below) to create a directory in
$WEKA_HOME/packages to hold the package contents. The contents of the doc

directory have not been shown in the above diagram, but this directory con-
tains javadoc for the DTNB class. A package must have a Description.props

file and contain at least one jar file with compiled java classes. The package
manager will attempt to load all jar files that it finds in the root directory and
the lib directory. Other files are optional, but if the package is open-source
then it is nice to include the source code and an ant build file that can be used
to compile the code. Template versions of the Description.props file and
build_package.xml file are available from the Weka site and from the Weka
wiki.

20.2.1 The description file

A valid package must contain a Description.props file that provides meta
data on the package. Identical files are stored at the central package repository
and the local cache maintained by the package manager. The package manager

20.2. ANATOMY OF A PACKAGE 307

The Description.props contains basic information on the package in the
following format:

Template Description file for a Weka package

Package name (required)
PackageName=funkyPackage

Version (required)

Version=1.0.0

#Date (year-month-day)

Date=2010-01-01

Title (required)
Title=My cool algorithm

Category (recommended)
Category=Classification

Author (required)

Author=Joe Dev <joe@somewhere.net>,Dev2 <dev2@somewhereelse.net>

Maintainer (required)

Maintainer=Joe Dev <joe@somewhere.net>

License (required)
License=GPL 2.0|Mozilla

Description (required)
Description=This package contains the famous Funky Classifer that performs \

truely funky prediction.

Package URL for obtaining the package archive (required)
PackageURL=http://somewhere.net/weka/funkyPackage.zip

URL for further information
URL=http://somewhere.net/funkyResearchInfo.html

Enhances various other packages ?

Enhances=packageName1,packageName2,...

Related to other packages?

Related=packageName1,packageName2,...

Dependencies (format: packageName (equality/inequality version_number)
Depends=weka (>=3.7.1), packageName1 (=x.y.z), packageName2 (>u.v.w|<=x.y.z),...

Lines that begin with # are comments. The ‘‘PackageName’’, ‘‘Version’’,
‘‘Title’’, ‘‘Author’’, ‘‘Maintainer’’, ‘‘License’’, ‘‘Description’’and
‘‘PackageURL’’ fields are mandatory, the others are optional.

The ‘‘PackageName’’ and ‘‘Version’’ give the name of the package and
version number respectively. The name can consist of letters, numbers, and the
dot character. It should not start with a dot and should not contain any spaces.
The version number is a sequence of three non-negative integers separated by
single “.” or “-” characters.

The ‘‘Title’’ field should give a one sentence description of the package.
The ‘‘Description’’ field can give a longer description of the package spaning
multiple sentences. It may include technical references and can use HTML
markup.

308 CHAPTER 20. WEKA PACKAGES

The ‘‘Category’’ field is strongly recommended as this information is dis-
played on both the repository web site and in the GUI package manager client.
In the latter, the user can sort the packages on the basis of the category field. It
is recommended that an existing category be assigned if possible. Some exam-
ples include (Classification, Text classification, Ensemble learning, Regression,
Clustering, Associations, Preprocessing, Visualization, Explorer, Experimenter,
KnowledgeFlow).

The ‘‘Author’’ field describes who wrote the package and may include
multiple names (separated by commas). Email addresses may be given in angle
brackets after each name. The field is intended for human readers and no email
addresses are automatically extracted.

The ‘‘Maintainer’’ field lists who maintains the package and should in-
clude a single email address, enclosed in angle brackets, for sending bug reports
to.

The ‘‘License’’ field lists the license(s) that apply to the package. This
field may contain the short specification of a license (such as LGPL, GPL 2.0
etc.) or the string “file LICENSE”, where “LICENSE” exists as a file in the
top-level directory of the package. The string “Unlimited” may be supplied to
indicate that there are no restrictions on distribution or use aside from those
imposed by relevant laws.

The ‘‘PackageURL’’ field lists valid URL that points to the package zip file.
This URL is used by the package manager to download and install the package.

The optional ‘‘Depends’’ field gives a comma separated list of packages
which this package depends on. The name of a package is optionally followed by
a version number constraint enclosed in parenthesis. Valid operators for version
number constraints include =, <,>,<=, >=. The keyword “weka” is reserved
to refer to the base Weka system and can be used to indicate a dependency on
a particular version of Weka. For example:

Depends=weka (>=3.7.2), DTNB (=1.0.0)

states that this package requires Weka 3.7.2 or higher and version 1.0.0 of
the package DTNB.

Depends=weka (>3.7.1|<3.8.0)

states that this package requires a version of Weka between 3.7.1 and 3.8.0.

Depends=DTNB (<1.5.0|>=2.0.1)

states that this package requires that a version of the DTNB package be
installed that is either less than version 1.5.0 or greater than or equal to version
2.0.1.

If there is no version number constraint following a package name, the pack-
age manager assumes that the latest version of the dependent package is suitable.

The optional ‘‘URL’’ field gives a URL at which the user can find additional
online information about the package or its constituent algorithms.

The optional ‘‘Enhances’’ field can be used to indicate which other pack-
ages this package is based on (i.e. if it extends methods/algorithms from another
package in some fashion).

20.2. ANATOMY OF A PACKAGE 309

The optional ‘‘Related’’ field is similar to the ‘‘Enhances’’ field. It can
be used to point the user to other packages that are related in some fashion to
this one.

There are several other fields that can be used to provide information to assist
the user with completing installation (if it can’t be completely accomplished
with the package zip file) or display error messages if necessary components are
missing:

MessageToDisplayOnInstall=Funky package requires some extra\n\
stuff to be installed after installing this package. You will\n\

need to blah, blah, blah in order to blah, blah, blah...

DoNotLoadIfFileNotPresent=lib/someLibrary.jar,otherStuff/important,...

DoNotLoadIfFileNotPresentMessage=funkyPackage can’t be loaded because some \
funky libraries are missing. Please download funkyLibrary.jar from \
http://www.funky.com and install in $WEKA_HOME/packages/funkyPackage/lib

DoNotLoadIfClassNotPresent=com.some.class.from.some.Where,org.some.other.Class,...

DoNotLoadIfClassNotPresentMessage=funkyPackage can’t be loaded because \
com.funky.FunkyClass can’t be instantiated. Have you downloaded and run \

the funky software installer for your platform?

The optional ‘‘MessageToDisplayOnInstall’’ field allows you to specify
special instructions to the user in order to help them complete the intallation
manually. This message gets displayed on the console, written to the log and
appears in a pop-up information dialog if using the GUI package manager. It
should include “\n” in order to avoid long lines when displayed in a GUI pop-up
dialog.

The optional ‘‘DoNotLoadIfFileNotPresent’’ field can be used to pre-
vent Weka from loading the package if the named files and/or directories are
not present in the package’s installation directory. An example is the mas-
siveOnlineAnalysis package. This package is a connector only package and does
not include the MOA library. Users of this package must download the moa.jar
file separately and copy it to the package’s lib directory manually. Multiple
files and directories can be specified as a comma separated list. All paths are
relative to the top-level directory of the package. IMPORTANT: use forward
slashes as separator characters, as these are portable accross all platforms. The
‘‘DoNotLoadIfFileNotPresentMessage’’ field can be used to supply an op-
tional message to display to the user if Weka detects that a file or directory is
missing from the package. This message will be displayed on the console and in
the log.

310 CHAPTER 20. WEKA PACKAGES

The optional ‘‘DoNotLoadIfClassNotPresent’’ field can be used to pre-
vent Weka from loading the package if the named class(es) can’t be instan-
tiated. This is useful for packages that rely on stuff that has to be installed
manually by the user. For example, Java3D is a separate download on all
platforms except for OSX, and installs itself into the system JRE/JDK. The
‘‘DoNotLoadIfClassNotPresentMessage’’ field can be used to supply an op-
tional message to display to the user if Weka detects that a class can’t be
instantiated. Again, this will be displayed on the console and in the log.

20.2.2 Additional configuration files

Certain types of packages may require additional configuration files to be present
as part of the package. The last chapter covered various ways in which Weka
can be extended without having to alter the core Weka code. These plugin
mechanisms have been subsumed by the package management system, so some
of the configuration property files they require must be present in the package’s
top-level directory if the package in question contains such a plugin. Examples
include additional tabs for the Explorer, mappings to custom property editors
for Weka’s GenericObjectEditor and Knowledge Flow plugins. Here are some
examples:

The scatterPlot3D package adds a new tab to the Explorer. In order to ac-
complish this a property has to be set in the Explorer.props file (which contains
default values for the Explorer) in order to tell Weka to instantiate and display
the new panel. The scatterPlot3D file includes an “Explorer.props” file in its
top-level directory that has the following contents:

Explorer.props file. Adds the Explorer3DPanel to the Tabs key.

Tabs=weka.gui.explorer.Explorer3DPanel

TabsPolicy=append

This property file is read by the package management system when the
package is loaded and any key-value pairs are added to existing Explorer prop-
erties that have been loaded by the system at startup. If the key already exists
in the Explorer properties, then the package has the option to either replace
(i.e. overwrite) or append to the existing value. This can be specified with the
TabsPolicy key. In this case, the value weka.gui.explorer.Explorer3DPanel
is appended to any existing value associated with the Tabs key. Explorer3DPanel
gets instantiated and added as a new tab when the Explorer starts.

20.3. CONTRIBUTING A PACKAGE 311

Another example is the kfGroovy package. This package adds a plugin com-
ponent to Weka’s Knowledge Flow that allows a Knowledge Flow step to be
implemented and compiled dynamically at runtime as a Groovy script. In order
for the Knowledge Flow to make the new step appear in its “Plugins” toolbar,
there needs to be a”Beans.props” file in the package’s top-level directory. In the
case of kfGroovy, this property file has the following contents:

Specifies that this component goes into the Plugins toolbar

weka.gui.beans.KnowledgeFlow.Plugins=org.pentaho.dm.kf.GroovyComponent

More information on Knowledge Flow plugins is given in Section 7.5.

20.3 Contributing a package

If you have created a package for Weka then there are two options for making
it available to the community. In both cases, hosting the package’s zip archive
is the responsibility of the contributer.

The first, and official, route is to contact the current Weka maintainer
(normally also the admin of the Weka homepage) and supply your package’s
Description.props file. The Weka team will then test downloading and using
your package to make sure that there are no obvious problems with what has
been specified in the Description.props file and that the software runs and
does not contain any malware/malicious code. If all is well, then the package
will become an “official” Weka package and the central package repository meta
data will be updated with the package’s Description.props file. Responsibility
for maintaining and supporting the package resides with the contributer.

The second, and unofficial, route is to simply make the package’s zip archive
available on the web somewhere and advertise it yourself. Although users will
not be able to browse it’s description in the official package repository, they
will be able to download and install it directly from your URL by using the
command line version of the package manager. This route could be attractive
for people who have published a new algorithm and want to quiclky make a
beta version available for others to try without having to go through the official
route.

20.4 Creating a mirror of the package meta data
repository

In this section we discuss an easy approach to setting up and maintaining a
mirror of the package meta data repository. Having a local mirror may provide
faster access times than to that of the official repository on Sourceforge. Extend-
ing this approach to the creation of an alternative central repository (hosting
packages not available at the official repository) should be straight forward.

312 CHAPTER 20. WEKA PACKAGES

Just about everything necessary for creating a mirror exists in the local
meta data cache created by Weka’s package management system. This cache
resides at $WEKA_HOME/repCache. The only thing missing (in Weka 3.7.2) for a
complete mirror is the file “images.txt”, that lists all the image files used in the
html index files. This file contains the following two lines:

Title-Bird-Header.gif

pentaho_logo_rgb_sm.png

“images.txt” is downloaded automatically by the package management sys-
tem in Weka 3.7.3 and higher.

To create a mirror:

1. Copy the contents of $WEKA_HOME/repCache to a temporary directory. For
the purposes of this example we’ll call it tempRep

2. Change directory into tempRep and run

java weka.core.RepositoryIndexGenerator .

Don’t forget the “.” after the command (this tells RepoistoryIndexGenerator
to operate on the current directory)

3. Change directory to the parent of tempRep and synchronize its contents to
wherever your web server is located (this is easy via rsync under Nix-like
operating systems).

RepositoryIndexGenerator automatically creates the main index.html file,
all the package index.html files and html files correpsonding to all version prop
files for each package. It will also create packageList.txtand numPackages.txt
files.

IMPORTANT: Make sure that all the files in tempRep are world readable.
It is easy to make packages available that are not part of the official Weka

repository. Assuming you want to add a package called “funkyPackage” (as
specified by the “PackageName” field in the Description.props file):

1. Create a directory called “funkyPackage” in tempRep

2. Copy the Description.propsfile to tempRep/funkyPackage/Latest.props

3. Copy the Description.props file to tempRep/funkyPackage/<version

number>.props, where “version number” is the version number specified
in the “Version” field of Description.props

4. Run RepositoryIndexGeneratoras described previously and sync tempRep
to your web server

Adding a new version of an existing package is very similar to what has
already been described. All that is required is that the new Description.props

file corresponding to the new version is copied to Latest.props and to <version
numer>.props in the package’s folder. Running RepositoryIndexGenerator

will ensure that all necessary html files are created and supporting text files are
updated.

20.4. CREATING AMIRROROF THE PACKAGEMETADATA REPOSITORY313

Automating the mirroring process would simply involve using your OS’s
scheduler to execute a script that:

1. Runs weka.core.WekaPackageManager -refresh-cache

2. rsyncs $WEKA_HOME/repCache to tempRep

3. Runs weka.core.RepoistoryIndexGenerator

4. rsyncs tempRep to your web server

314 CHAPTER 20. WEKA PACKAGES

Chapter 21

Technical documentation

21.1 ANT

What is ANT? This is how the ANT homepage (http://ant.apache.org/)
defines its tool:

Apache Ant is a Java-based build tool. In theory, it is kind of like Make, but
without Make’s wrinkles.

21.1.1 Basics

• the ANT build file is based on XML (http://www.w3.org/XML/)

• the usual name for the build file is:

build.xml

• invocation—the usual build file needs not be specified explicitly, if it’s in
the current directory; if not target is specified, the default one is used

ant [-f <build-file>] [<target>]

• displaying all the available targets of a build file

ant [-f <build-file>] -projecthelp

21.1.2 Weka and ANT

• a build file for Weka is available from subversion

• some targets of interest

– clean–Removes the build, dist and reports directories; also any class
files in the source tree

– compile–Compile weka and deposit class files in
${path_modifier}/build/classes

– docs–Make javadocs into ${path_modifier}/doc

– exejar–Create an executable jar file in ${path_modifier}/dist

315

http://ant.apache.org/
http://www.w3.org/XML/

316 CHAPTER 21. TECHNICAL DOCUMENTATION

21.2 CLASSPATH

The CLASSPATH environment variable tells Java where to look for classes.
Since Java does the search in a first-come-first-serve kind of manner, you’ll have
to take care where and what to put in your CLASSPATH. I, personally, never
use the environment variable, since I’m working often on a project in different
versions in parallel. The CLASSPATH would just mess up things, if you’re not
careful (or just forget to remove an entry). ANT (http://ant.apache.org/)
offers a nice way for building (and separating source code and class files) Java
projects. But still, if you’re only working on totally separate projects, it might
be easiest for you to use the environment variable.

21.2.1 Setting the CLASSPATH

In the following we add the mysql-connector-java-5.1.7-bin.jar to our
CLASSPATH variable (this works for any other jar archive) to make it possible to
access MySQL databases via JDBC.

Win32 (2k and XP)

We assume that the mysql-connector-java-5.1.7-bin.jar archive is located
in the following directory:

C:\Program Files\Weka-3-7

In the Control Panel click on System (or right click on My Computer and select
Properties) and then go to the Avanced tab. There you’ll find a button called
Environment Variables, click it. Depending on, whether you’re the only person
using this computer or it’s a lab computer shared by many, you can either create
a new system-wide (you’re the only user) environment variable or a user depen-
dent one (recommended for multi-user machines). Enter the following name for
the variable.

CLASSPATH

and add this value

C:\Program Files\Weka-3-7\mysql-connector-java-5.1.7-bin.jar

If you want to add additional jars, you will have to separate them with the path
separator, the semicolon “;” (no spaces!).

Unix/Linux

We make the assumption that the mysql jar is located in the following directory:

/home/johndoe/jars/

http://ant.apache.org/

21.2. CLASSPATH 317

Open a shell and execute the following command, depending on the shell you’re
using:

• bash

export CLASSPATH=$CLASSPATH:/home/johndoe/jars/mysql-connector-java-5.1.7-bin.jar

• c shell

setenv CLASSPATH $CLASSPATH:/home/johndoe/jars/mysql-connector-java-5.1.7-bin.jar

Cygwin

The process is like with Unix/Linux systems, but since the host system is Win32
and therefore the Java installation also a Win32 application, you’ll have to use
the semicolon ; as separator for several jars.

21.2.2 RunWeka.bat

From version 3.5.4, Weka is launched differently under Win32. The simple batch
file got replaced by a central launcher class (= RunWeka.class) in combination
with an INI-file (= RunWeka.ini). The RunWeka.bat only calls this launcher
class now with the appropriate parameters. With this launcher approach it is
possible to define different launch scenarios, but with the advantage of hav-
ing placeholders, e.g., for the max heap size, which enables one to change the
memory for all setups easily.

The key of a command in the INI-file is prefixed with cmd_, all other keys
are considered placeholders:

cmd_blah=java ... command blah

bloerk= ... placeholder bloerk

A placeholder is surrounded in a command with #:

cmd_blah=java #bloerk#

Note: The key wekajar is determined by the -w parameter with which the
launcher class is called.

By default, the following commands are predefined:

• default
The default Weka start, without a terminal window.

• console
For debugging purposes. Useful as Weka gets started from a terminal
window.

• explorer
The command that’s executed if one double-clicks on an ARFF or XRFF
file.

In order to change the maximum heap size for all those commands, one only
has to modify the maxheap placeholder.

318 CHAPTER 21. TECHNICAL DOCUMENTATION

For more information check out the comments in the INI-file.

21.2.3 java -jar

When you’re using the Java interpreter with the -jar option, be aware of the
fact that it overwrites your CLASSPATH and not augments it. Out of conve-
nience, people often only use the -jar option to skip the declaration of the main
class to start. But as soon as you need more jars, e.g., for database access, you
need to use the -classpath option and specify the main class.

Here’s once again how you start the Weka Main-GUIwith your current CLASSPATH
variable (and 128MB for the JVM):

• Linux
java -Xmx128m -classpath $CLASSPATH:weka.jar weka.gui.Main

• Win32
java -Xmx128m -classpath "%CLASSPATH%;weka.jar" weka.gui.Main

21.3 Subversion

21.3.1 General

The Weka Subversion repository is accessible and browseable via the following
URL:

https://svn.scms.waikato.ac.nz/svn/weka/

A Subversion repository has usually the following layout:

root

|

+- trunk

|

+- tags

|

+- branches

Where trunk contains the main trunk of the development, tags snapshots in
time of the repository (e.g., when a new version got released) and branches
development branches that forked off the main trunk at some stage (e.g., legacy
versions that still get bugfixed).

21.3.2 Source code

The latest version of the Weka source code can be obtained with this URL:

https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka

If you want to obtain the source code of the book version, use this URL:

https://svn.scms.waikato.ac.nz/svn/weka/
https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka

21.3. SUBVERSION 319

https://svn.scms.waikato.ac.nz/svn/weka/branches/book2ndEd-branch/weka

21.3.3 JUnit

The latest version of Weka’s JUnit tests can be obtained with this URL:

https://svn.scms.waikato.ac.nz/svn/weka/trunk/tests

And if you want to obtain the JUnit tests of the book version, use this URL:

https://svn.scms.waikato.ac.nz/svn/weka/branches/book2ndEd-branch/tests

21.3.4 Specific version

Whenever a release of Weka is generated, the repository gets tagged

• dev-X-Y-Z

the tag for a release of the developer version, e.g., dev-3.7.0 for Weka 3.7.0
https://svn.scms.waikato.ac.nz/svn/weka/tags/dev-3-7-0

• stable-X-Y-Z

the tag for a release of the book version, e.g., stable-3-4-15 for Weka 3.4.15
https://svn.scms.waikato.ac.nz/svn/weka/tags/stable-3-4-15

21.3.5 Clients

Commandline

Modern Linux distributions already come with Subversion either pre-installed
or easily installed via the package manager of the distribution. If that shouldn’t
be case, or if you are using Windows, you have to download the appropriate
client from the Subversion homepage (http://subversion.tigris.org/).
A checkout of the current developer version of Weka looks like this:

svn co https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka

SmartSVN

SmartSVN (http://smartsvn.com/) is a Java-based, graphical, cross-platform
client for Subversion. Though it is not open-source/free software, the foundation
version is for free.

TortoiseSVN

Under Windows, TortoiseCVS was a CVS client, neatly integrated into the
Windows Explorer. TortoiseSVN (http://tortoisesvn.tigris.org/) is the
equivalent for Subversion.

https://svn.scms.waikato.ac.nz/svn/weka/branches/book2ndEd-branch/weka
https://svn.scms.waikato.ac.nz/svn/weka/trunk/tests
https://svn.scms.waikato.ac.nz/svn/weka/branches/book2ndEd-branch/tests
https://svn.scms.waikato.ac.nz/svn/weka/tags/dev-3-7-0
https://svn.scms.waikato.ac.nz/svn/weka/tags/stable-3-4-15
http://subversion.tigris.org/
http://smartsvn.com/
http://tortoisesvn.tigris.org/

320 CHAPTER 21. TECHNICAL DOCUMENTATION

21.4 GenericObjectEditor

21.4.1 Introduction

As of version 3.4.4 it is possible for WEKA to dynamically discover classes at
runtime (rather than using only those specified in the GenericObjectEditor.props
(GOE) file). In some versions (3.5.8, 3.6.0) this facility was not enabled by de-
fault as it is a bit slower than the GOE file approach, and, furthermore, does
not function in environments that do not have a CLASSPATH (e.g., application
servers). Later versions (3.6.1, 3.7.0) enabled the dynamic discovery again, as
WEKA can now distinguish between being a standalone Java application or
being run in a non-CLASSPATH environment.

If you wish to enable or disable dynamic class discovery, the relevant file
to edit is GenericPropertiesCreator.props (GPC). You can obtain this file
either from the weka.jar or weka-src.jar archive. Open one of these files
with an archive manager that can handle ZIP files (for Windows users, you
can use 7-Zip (http://7-zip.org/) for this) and navigate to the weka/gui

directory, where the GPC file is located. All that is required, is to change the
UseDynamic property in this file from false to true (for enabling it) or the
other way round (for disabling it). After changing the file, you just place it in
your home directory. In order to find out the location of your home directory,
do the following:

• Linux/Unix

– Open a terminal

– run the following command:
echo $HOME

• Windows

– Open a command-primpt

– run the following command:
echo %USERPROFILE%

If dynamic class discovery is too slow, e.g., due to an enormous CLASSPATH,
you can generate a new GenericObjectEditor.props file and then turn dy-
namic class discovery off again. It is assumed that you already placed the GPC
file in your home directory (see steps above) and that the weka.jar jar archive
with the WEKA classes is in your CLASSPATH (otherwise you have to add it
to the java call using the -classpath option).

http://7-zip.org/

21.4. GENERICOBJECTEDITOR 321

For generating the GOE file, execute the following steps:

• generate a new GenericObjectEditor.props file using the following com-
mand:

– Linux/Unix

java weka.gui.GenericPropertiesCreator \

$HOME/GenericPropertiesCreator.props \

$HOME/GenericObjectEditor.props

– Windows (command must be in one line)

java weka.gui.GenericPropertiesCreator

%USERPROFILE%\GenericPropertiesCreator.props

%USERPROFILE%\GenericObjectEditor.props

• edit the GenericPropertiesCreator.props file in your home directory
and set UseDynamic to false.

A limitation of the GOE prior to 3.4.4 was, that additional classifiers, filters,
etc., had to fit into the same package structure as the already existing ones,
i.e., all had to be located below weka. WEKA can now display multiple class
hierarchies in the GUI, which makes adding new functionality quite easy as we
will see later in an example (it is not restricted to classifiers only, but also works
with all the other entries in the GPC file).

21.4.2 File Structure

The structure of the GOE is a key-value-pair, separated by an equals-sign. The
value is a comma separated list of classes that are all derived from the su-
perclass/superinterface key. The GPC is slightly different, instead of declar-
ing all the classes/interfaces one need only to specify all the packages de-
scendants are located in (only non-abstract ones are then listed). E.g., the
weka.classifiers.Classifier entry in the GOE file looks like this:

weka.classifiers.Classifier=\

weka.classifiers.bayes.AODE,\

weka.classifiers.bayes.BayesNet,\

weka.classifiers.bayes.ComplementNaiveBayes,\

weka.classifiers.bayes.NaiveBayes,\

weka.classifiers.bayes.NaiveBayesMultinomial,\

weka.classifiers.bayes.NaiveBayesSimple,\

weka.classifiers.bayes.NaiveBayesUpdateable,\

weka.classifiers.functions.LeastMedSq,\

weka.classifiers.functions.LinearRegression,\

weka.classifiers.functions.Logistic,\

...

The entry producing the same output for the classifiers in the GPC looks like
this (7 lines instead of over 70 for WEKA 3.4.4):

weka.classifiers.Classifier=\

weka.classifiers.bayes,\

weka.classifiers.functions,\

weka.classifiers.lazy,\

weka.classifiers.meta,\

weka.classifiers.trees,\

weka.classifiers.rules

322 CHAPTER 21. TECHNICAL DOCUMENTATION

21.4.3 Exclusion

It may not always be desired to list all the classes that can be found along the
CLASSPATH. Sometimes, classes cannot be declared abstract but still shouldn’t
be listed in the GOE. For that reason one can list classes, interfaces, superclasses
for certain packages to be excluded from display. This exclusion is done with
the following file:

weka/gui/GenericPropertiesCreator.excludes

The format of this properties file is fairly simple:

<key>=<prefix>:<class>[,<prefix>:<class>]

Where the <key> corresponds to a key in the GenericPropertiesCreator.props
file and the <prefix> can be one of the following:

• S = Superclass
any class derived from this will be excluded

• I = Interface
any class implementing this interface will be excluded

• C = Class
exactly this class will be excluded

Here are a few examples:

exclude all ResultListeners that also implement the ResultProducer interface

(all ResultProducers do that!)

weka.experiment.ResultListener=\

I:weka.experiment.ResultProducer

exclude J48 and all SingleClassifierEnhancers

weka.classifiers.Classifier=\

C:weka.classifiers.trees.J48,\

S:weka.classifiers.SingleClassifierEnhancer

21.4.4 Class Discovery

Unlike the Class.forName(String) method that grabs the first class it can
find in the CLASSPATH, and therefore fixes the location of the package it found
the class in, the dynamic discovery examines the complete CLASSPATH you are
starting the Java Virtual Machine (= JVM) with. This means that you can
have several parallel directories with the same WEKA package structure, e.g.,
the standard release of WEKA in one directory (/distribution/weka.jar)
and another one with your own classes (/development/weka/...), and display
all of the classifiers in the GUI. In case of a name conflict, i.e., two directories
contain the same class, the first one that can be found is used. In a nutshell,
your java call of the GUIChooser can look like this:

java -classpath "/development:/distribution/weka.jar" weka.gui.GUIChooser

Note: Windows users have to replace the “:” with “;” and the forward slashes
with backslashes.

21.4. GENERICOBJECTEDITOR 323

21.4.5 Multiple Class Hierarchies

In case you are developing your own framework, but still want to use your clas-
sifiers within WEKA that was not possible with WEKA prior to 3.4.4. Starting
with the release 3.4.4 it is possible to have multiple class hierarchies being dis-
played in the GUI. If you have developed a modified version of NaiveBayes, let
us call it DummyBayes and it is located in the package dummy.classifiers
then you will have to add this package to the classifiers list in the GPC file like
this:

weka.classifiers.Classifier=\

weka.classifiers.bayes,\

weka.classifiers.functions,\

weka.classifiers.lazy,\

weka.classifiers.meta,\

weka.classifiers.trees,\

weka.classifiers.rules,\

dummy.classifiers

Your java call for the GUIChooser might look like this:
java -classpath "weka.jar:dummy.jar" weka.gui.GUIChooser

Starting up the GUI you will now have another root node in the tree view of the
classifiers, called root, and below it the weka and the dummy package hierarchy
as you can see here:

324 CHAPTER 21. TECHNICAL DOCUMENTATION

21.4.6 Capabilities

Version 3.5.3 of Weka introduced the notion of Capabilities. Capabilities basi-
cally list what kind of data a certain object can handle, e.g., one classifier can
handle numeric classes, but another cannot. In case a class supports capabili-
ties the additional buttons Filter... and Remove filter will be available in the
GOE. The Filter... button pops up a dialog which lists all available Capabilities:

One can then choose those capabilities an object, e.g., a classifier, should have.
If one is looking for classification problem, then the Nominal class Capability
can be selected. On the other hand, if one needs a regression scheme, then the
Capability Numeric class can be selected. This filtering mechanism makes the
search for an appropriate learning scheme easier. After applying that filter, the
tree with the objects will be displayed again and lists all objects that can handle
all the selected Capabilities black, the ones that cannot grey and the ones that
might be able to handle them blue (e.g., meta classifiers which depend on their
base classifier(s)).

21.5. PROPERTIES 325

21.5 Properties

A properties file is a simple text file with this structure:

<key>=<value>

Comments start with the hash sign #.

To make a rather long property line more readable, one can use a backslash to
continue on the next line. The Filter property, e.g., looks like this:

weka.filters.Filter= \

weka.filters.supervised.attribute, \

weka.filters.supervised.instance, \

weka.filters.unsupervised.attribute, \

weka.filters.unsupervised.instance

21.5.1 Precedence

The Weka property files (extension .props) are searched for in the following
order:

• current directory

• the user’s home directory (*nix $HOME, Windows %USERPROFILE%)

• the class path (normally the weka.jar file)

If Weka encounters those files it only supplements the properties, never overrides
them. In other words, a property in the property file of the current directory
has a higher precedence than the one in the user’s home directory.

Note: Under Cywgin (http://cygwin.com/), the home directory is still the
Windows one, since the java installation will be still one for Windows.

21.5.2 Examples

• weka/gui/LookAndFeel.props

• weka/gui/GenericPropertiesCreator.props

• weka/gui/beans/Beans.props

http://cygwin.com/

326 CHAPTER 21. TECHNICAL DOCUMENTATION

21.6 XML

Weka now supports XML (http://www.w3c.org/XML/) (eXtensible Markup
Language) in several places.

21.6.1 Command Line

WEKA now allows Classifiers and Experiments to be started using an -xml

option followed by a filename to retrieve the command line options from the
XML file instead of the command line.

For such simple classifiers like e.g. J48 this looks like overkill, but as soon
as one uses Meta-Classifiers or Meta-Meta-Classifiers the handling gets tricky
and one spends a lot of time looking for missing quotes. With the hierarchical
structure of XML files it is simple to plug in other classifiers by just exchanging
tags.

The DTD for the XML options is quite simple:

<!DOCTYPE options

[

<!ELEMENT options (option)*>

<!ATTLIST options type CDATA "classifier">

<!ATTLIST options value CDATA "">

<!ELEMENT option (#PCDATA | options)*>

<!ATTLIST option name CDATA #REQUIRED>

<!ATTLIST option type (flag | single | hyphens | quotes) "single">

]

>

The type attribute of the option tag needs some explanations. There are cur-
rently four different types of options in WEKA:

• flag
The simplest option that takes no arguments, like e.g. the -V flag for
inversing an selection.

<option name="V" type="flag"/>

• single
The option takes exactly one parameter, directly following after the op-
tion, e.g., for specifying the trainings file with -t somefile.arff. Here
the parameter value is just put between the opening and closing tag. Since
single is the default value for the type tag we don’t need to specify it ex-
plicitly.

<option name="t">somefile.arff</option>

• hyphens
Meta-Classifiers like AdaBoostM1 take another classifier as option with
the -W option, where the options for the base classifier follow after the
--. And here it is where the fun starts: where to put parameters for the
base classifier if the Meta-Classifier itself is a base classifier for another
Meta-Classifier?

http://www.w3c.org/XML/

21.6. XML 327

E.g., does -W weka.classifiers.trees.J48 -- -C 0.001 become this:

<option name="W" type="hyphens">

<options type="classifier" value="weka.classifiers.trees.J48">

<option name="C">0.001</option>

</options>

</option>

Internally, all the options enclosed by the options tag are pushed to the
end after the -- if one transforms the XML into a command line string.

• quotes
A Meta-Classifier like Stacking can take several -B options, where each
single one encloses other options in quotes (this itself can contain a Meta-
Classifier!). From -B ‘‘weka.classifiers.trees.J48’’ we then get
this XML:

<option name="B" type="quotes">

<options type="classifier" value="weka.classifiers.trees.J48"/>

</option>

With the XML representation one doesn’t have to worry anymore about
the level of quotes one is using and therefore doesn’t have to care about
the correct escaping (i.e. ‘‘ ... \" ... \" ...’’) since this is done
automatically.

328 CHAPTER 21. TECHNICAL DOCUMENTATION

And if we now put all together we can transform this more complicated
command line (java and the CLASSPATH omitted):

<options type="class" value="weka.classifiers.meta.Stacking">

<option name="B" type="quotes">

<options type="classifier" value="weka.classifiers.meta.AdaBoostM1">

<option name="W" type="hyphens">

<options type="classifier" value="weka.classifiers.trees.J48">

<option name="C">0.001</option>

</options>

</option>

</options>

</option>

<option name="B" type="quotes">

<options type="classifier" value="weka.classifiers.meta.Bagging">

<option name="W" type="hyphens">

<options type="classifier" value="weka.classifiers.meta.AdaBoostM1">

<option name="W" type="hyphens">

<options type="classifier" value="weka.classifiers.trees.J48"/>

</option>

</options>

</option>

</options>

</option>

<option name="B" type="quotes">

<options type="classifier" value="weka.classifiers.meta.Stacking">

<option name="B" type="quotes">

<options type="classifier" value="weka.classifiers.trees.J48"/>

</option>

</options>

</option>

<option name="t">test/datasets/hepatitis.arff</option>

</options>

Note: The type and value attribute of the outermost options tag is not used
while reading the parameters. It is merely for documentation purposes, so that
one knows which class was actually started from the command line.

Responsible Class(es):

weka.core.xml.XMLOptions

21.6. XML 329

21.6.2 Serialization of Experiments

It is now possible to serialize the Experiments from the WEKA Experimenter
not only in the proprietary binary format Java offers with serialization (with
this you run into problems trying to read old experiments with a newer WEKA
version, due to different SerialUIDs), but also in XML. There are currently two
different ways to do this:

• built-in
The built-in serialization captures only the necessary informations of an
experiment and doesn’t serialize anything else. It’s sole purpose is to save
the setup of a specific experiment and can therefore not store any built
models. Thanks to this limitation we’ll never run into problems with
mismatching SerialUIDs.

This kind of serialization is always available and can be selected via a
Filter (*.xml) in the Save/Open-Dialog of the Experimenter.

The DTD is very simple and looks like this (for version 3.4.5):

<!DOCTYPE object[

<!ELEMENT object (#PCDATA | object)*>

<!ATTLIST object name CDATA #REQUIRED>

<!ATTLIST object class CDATA #REQUIRED>

<!ATTLIST object primitive CDATA "no">

<!ATTLIST object array CDATA "no">

<!ATTLIST object null CDATA "no">

<!ATTLIST object version CDATA "3.4.5">

]>

Prior to versions 3.4.5 and 3.5.0 it looked like this:

<!DOCTYPE object

[

<!ELEMENT object (#PCDATA | object)*>

<!ATTLIST object name CDATA #REQUIRED>

<!ATTLIST object class CDATA #REQUIRED>

<!ATTLIST object primitive CDATA "yes">

<!ATTLIST object array CDATA "no">

]

>

Responsible Class(es):

weka.experiment.xml.XMLExperiment

for general Serialization:

weka.core.xml.XMLSerialization

weka.core.xml.XMLBasicSerialization

330 CHAPTER 21. TECHNICAL DOCUMENTATION

• KOML (http://old.koalateam.com/xml/serialization/)
The Koala Object Markup Language (KOML) is published under the
LGPL (http://www.gnu.org/copyleft/lgpl.html) and is an alterna-
tive way of serializing and derserializing Java Objects in an XML file.
Like the normal serialization it serializes everything into XML via an Ob-
jectOutputStream, including the SerialUID of each class. Even though we
have the same problems with mismatching SerialUIDs it is at least pos-
sible edit the XML files by hand and replace the offending IDs with the
new ones.

In order to use KOML one only has to assure that the KOML classes
are in the CLASSPATH with which the Experimenter is launched. As
soon as KOML is present another Filter (*.koml) will show up in the
Save/Open-Dialog.

The DTD for KOML can be found at http://old.koalateam.com/xml/koml12.dtd

Responsible Class(es):

weka.core.xml.KOML

The experiment class can of course read those XML files if passed as input or out-
put file (see options of weka.experiment.Experiment and weka.experiment.RemoteExperiment

21.6.3 Serialization of Classifiers

The options for models of a classifier, -l for the input model and -d for the out-
put model, now also supports XML serialized files. Here we have to differentiate
between two different formats:

• built-in
The built-in serialization captures only the options of a classifier but not
the built model. With the -l one still has to provide a training file, since
we only retrieve the options from the XML file. It is possible to add more
options on the command line, but it is no check performed whether they
collide with the ones stored in the XML file.

The file is expected to end with .xml.

• KOML
Since the KOML serialization captures everything of a Java Object we can
use it just like the normal Java serialization.

The file is expected to end with .koml.

The built-in serialization can be used in the Experimenter for loading/saving
options from algorithms that have been added to a Simple Experiment. Unfor-
tunately it is not possible to create such a hierarchical structure like mentioned
in Section 21.6.1. This is because of the loss of information caused by the
getOptions() method of classifiers: it returns only a flat String-Array and not
a tree structure.

http://old.koalateam.com/xml/serialization/
http://www.gnu.org/copyleft/lgpl.html
http://old.koalateam.com/xml/koml12.dtd

21.6. XML 331

Responsible Class(es):

weka.core.xml.KOML

weka.classifiers.xml.XMLClassifier

21.6.4 Bayesian Networks

The GraphVisualizer (weka.gui.graphvisualizer.GraphVisualizer) can save
graphs into the Interchange Format
(http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/) for
Bayesian Networks (BIF). If started from command line with an XML filename
as first parameter and not from the Explorer it can display the given file directly.

The DTD for BIF is this:

<!DOCTYPE BIF [

<!ELEMENT BIF (NETWORK)*>

<!ATTLIST BIF VERSION CDATA #REQUIRED>

<!ELEMENT NETWORK (NAME, (PROPERTY | VARIABLE | DEFINITION)*)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT VARIABLE (NAME, (OUTCOME | PROPERTY)*) >

<!ATTLIST VARIABLE TYPE (nature|decision|utility) "nature">

<!ELEMENT OUTCOME (#PCDATA)>

<!ELEMENT DEFINITION (FOR | GIVEN | TABLE | PROPERTY)* >

<!ELEMENT FOR (#PCDATA)>

<!ELEMENT GIVEN (#PCDATA)>

<!ELEMENT TABLE (#PCDATA)>

<!ELEMENT PROPERTY (#PCDATA)>

]>

Responsible Class(es):

weka.classifiers.bayes.BayesNet#toXMLBIF03()

weka.classifiers.bayes.net.BIFReader

weka.gui.graphvisualizer.BIFParser

21.6.5 XRFF files

With Weka 3.5.4 a new, more feature-rich, XML-based data format got intro-
duced: XRFF. For more information, please see Chapter 12.

http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/

332 CHAPTER 21. TECHNICAL DOCUMENTATION

Chapter 22

Other resources

22.1 Mailing list

The WEKA Mailing list can be found here:

• http://list.scms.waikato.ac.nz/mailman/listinfo/wekalist

for subscribing/unsubscribing the list

• https://list.scms.waikato.ac.nz/pipermail/wekalist/

(Mirrors: http://news.gmane.org/gmane.comp.ai.weka,
http://www.nabble.com/WEKA-f435.html)
for searching previous posted messages

Before posting, please read the Mailing List Etiquette:
http://www.cs.waikato.ac.nz/~ml/weka/mailinglist_etiquette.html.

22.2 Troubleshooting

Here are a few of things that are useful to know when you are having trouble
installing or running Weka successfullyon your machine.

NB these java commands refer to ones executed in a shell (bash, command
prompt, etc.) and NOT to commands executed in the SimpleCLI.

22.2.1 Weka download problems

When you download Weka, make sure that the resulting file size is the same
as on our webpage. Otherwise things won’t work properly. Apparently some
web browsers have trouble downloading Weka.

22.2.2 OutOfMemoryException

Most Java virtual machines only allocate a certain maximum amount of memory
to run Java programs. Usually this is much less than the amount of RAM in
your computer. However, you can extend the memory available for the virtual
machine by setting appropriate options. With Sun’s JDK, for example, you can
go

333

http://list.scms.waikato.ac.nz/mailman/listinfo/wekalist
https://list.scms.waikato.ac.nz/pipermail/wekalist/
http://news.gmane.org/gmane.comp.ai.weka
http://www.nabble.com/WEKA-f435.html
http://www.cs.waikato.ac.nz/~ml/weka/mailinglist_etiquette.html

334 CHAPTER 22. OTHER RESOURCES

java -Xmx100m ...

to set the maximum Java heap size to 100MB. For more information about these
options see http://java.sun.com/docs/hotspot/VMOptions.html.

22.2.2.1 Windows

Book version
You have to modify the JVM invocation in the RunWeka.bat batch file in your
installation directory.

Developer version

• up to Weka 3.5.2
just like the book version.

• Weka 3.5.3
You have to modify the link in the Windows Start menu, if you’re starting
the console-less Weka (only the link with console in its name executes the
RunWeka.bat batch file)

• Weka 3.5.4 and higher Due to the new launching scheme, you no longer
modify the batch file, but the RunWeka.ini file. In that particular file,
you’ll have to change the maxheap placeholder. See section 21.2.2.

22.2.3 Mac OSX

In your Weka installation directory (weka-3-x-y.app) locate the Contents sub-
directory and edit the Info.plist file. Near the bottom of the file you should
see some text like:

<key>VMOptions</key>

<string>-Xmx256M</string>

Alter the 256M to something higher.

22.2.4 StackOverflowError

Try increasing the stack of your virtual machine. With Sun’s JDK you can use
this command to increase the stacksize:

java -Xss512k ...

http://java.sun.com/docs/hotspot/VMOptions.html

22.2. TROUBLESHOOTING 335

to set the maximum Java stack size to 512KB. If still not sufficient, slowly
increase it.

22.2.5 just-in-time (JIT) compiler

For maximum enjoyment, use a virtual machine that incorporates a just-in-
time compiler. This can speed things up quite significantly. Note also that
there can be large differences in execution time between different virtual ma-
chines.

22.2.6 CSV file conversion

Either load the CSV file in the Explorer or use the CVS converter on the com-
mandline as follows:

java weka.core.converters.CSVLoader filename.csv > filename.arff

22.2.7 ARFF file doesn’t load

One way to figure out why ARFF files are failing to load is to give them to the
Instances class. At the command line type the following:

java weka.core.Instances filename.arff

where you substitute ’filename’ for the actual name of your file. This should
return an error if there is a problem reading the file, or show some statistics if
the file is ok. The error message you get should give some indication of what is
wrong.

22.2.8 Spaces in labels of ARFF files

A common problem people have with ARFF files is that labels can only have
spaces if they are enclosed in single quotes, i.e. a label such as:

some value

should be written either ’some value’ or some value in the file.

22.2.9 CLASSPATH problems

Having problems getting Weka to run from a DOS/UNIX command prompt?
Getting java.lang.NoClassDefFoundError exceptions? Most likely yourCLASS-
PATH environment variable is not set correctly - it needs to point to the
Weka.jar file that you downloaded with Weka (or the parent of the Weka direc-
tory if you have extracted the jar). Under DOS this can be achieved with:

set CLASSPATH=c:\weka-3-4\weka.jar;%CLASSPATH%

336 CHAPTER 22. OTHER RESOURCES

Under UNIX/Linux something like:

export CLASSPATH=/home/weka/weka.jar:$CLASSPATH

An easy way to get avoid setting the variable this is to specify the CLASSPATH
when calling Java. For example, if the jar file is located at c:\weka-3-4\weka.jar
you can use:

java -cp c:\weka-3-4\weka.jar weka.classifiers... etc.

See also Section 21.2.

22.2.10 Instance ID

People often want to tag their instances with identifiers, so they can keep
track of them and the predictions made on them.

22.2.10.1 Adding the ID

A new ID attribute is added real easy: one only needs to run the AddID filter
over the dataset and it’s done. Here’s an example (at a DOS/Unix command
prompt):

java weka.filters.unsupervised.attribute.AddID

-i data_without_id.arff

-o data_with_id.arff

(all on a single line).
Note: the AddID filter adds a numeric attribute, not a String attribute

to the dataset. If you want to remove this ID attribute for the classifier in a
FilteredClassifier environment again, use the Remove filter instead of the
RemoveType filter (same package).

22.2.10.2 Removing the ID

If you run from the command line you can use the -p option to output predic-
tions plus any other attributes you are interested in. So it is possible to have a
string attribute in your data that acts as an identifier. A problem is that most
classifiers don’t like String attributes, but you can get around this by using the
RemoveType (this removes String attributes by default).

Here’s an example. Lets say you have a training file named train.arff,
a testing file named test.arff, and they have an identifier String attribute
as their 5th attribute. You can get the predictions from J48 along with the
identifier strings by issuing the following command (at a DOS/Unix command
prompt):

java weka.classifiers.meta.FilteredClassifier

-F weka.filters.unsupervised.attribute.RemoveType

-W weka.classifiers.trees.J48

-t train.arff -T test.arff -p 5

(all on a single line).

22.2. TROUBLESHOOTING 337

If you want, you can redirect the output to a file by adding “> output.txt”
to the end of the line.

In the Explorer GUI you could try a similar trick of using the String attribute
identifiers here as well. Choose the FilteredClassifier, with RemoveType as
the filter, and whatever classifier you prefer. When you visualize the results you
will need click through each instance to see the identifier listed for each.

22.2.11 Visualization

Access to visualization from the ClassifierPanel, ClusterPanel and Attribute-
Selection panel is available from a popup menu. Click the right mouse button
over an entry in the Result list to bring up the menu. You will be presented with
options for viewing or saving the text output and—depending on the scheme—
further options for visualizing errors, clusters, trees etc.

22.2.12 Memory consumption and Garbage collector

There is the ability to print how much memory is available in the Explorer
and Experimenter and to run the garbage collector. Just right click over the
Status area in the Explorer/Experimenter.

22.2.13 GUIChooser starts but not Experimenter or Ex-
plorer

The GUIChooser starts, but Explorer and Experimenter don’t start and output
an Exception like this in the terminal:

/usr/share/themes/Mist/gtk-2.0/gtkrc:48: Engine "mist" is unsupported, ignoring

---Registering Weka Editors---

java.lang.NullPointerException

at weka.gui.explorer.PreprocessPanel.addPropertyChangeListener(PreprocessPanel.java:519)

at javax.swing.plaf.synth.SynthPanelUI.installListeners(SynthPanelUI.java:49)

at javax.swing.plaf.synth.SynthPanelUI.installUI(SynthPanelUI.java:38)

at javax.swing.JComponent.setUI(JComponent.java:652)

at javax.swing.JPanel.setUI(JPanel.java:131)

...

This behavior happens only under Java 1.5 and Gnome/Linux, KDE doesn’t
produce this error. The reason for this is, that Weka tries to look more “native”
and therefore sets a platform-specific Swing theme. Unfortunately, this doesn’t
seem to be working correctly in Java 1.5 together with Gnome. A workaround
for this is to set the cross-platform Metal theme.

In order to use another theme one only has to create the following properties
file in ones home directory:

LookAndFeel.props

With this content:

338 CHAPTER 22. OTHER RESOURCES

Theme=javax.swing.plaf.metal.MetalLookAndFeel

22.2.14 KnowledgeFlow toolbars are empty

In the terminal, you will most likely see this output as well:

Failed to instantiate: weka.gui.beans.Loader

This behavior can happen under Gnome with Java 1.5, see Section 22.2.13 for
a solution.

22.2.15 Links

• Java VM options (http://java.sun.com/docs/hotspot/VMOptions.html)

http://java.sun.com/docs/hotspot/VMOptions.html

339

340 BIBLIOGRAPHY

Bibliography

[1] Witten, I.H. and Frank, E. (2005) Data Mining: Practical machine learn-
ing tools and techniques. 2nd edition Morgan Kaufmann, San Francisco.

[2] WekaWiki – http://weka.wikispaces.com/

[3] Weka Examples – A collection of example classes, as part of
an ANT project, included in the WEKA snapshots (available
for download on the homepage) or directly from subversion
https://svn.scms.waikato.ac.nz/svn/weka/trunk/wekaexamples/

[4] J. Platt (1998): Machines using Sequential Minimal Optimization. In B.
Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning.

[5] Drummond, C. and Holte, R. (2000) Explicitly representing expected
cost: An alternative to ROC representation. Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Publishers, San Mateo, CA.

[6] Extensions for Weka’s main GUI on WekaWiki –
http://weka.wikispaces.com/Extensions+for+Weka%27s+main+GUI

[7] Adding tabs in the Explorer on WekaWiki –
http://weka.wikispaces.com/Adding+tabs+in+the+Explorer

[8] Explorer visualization plugins on WekaWiki –
http://weka.wikispaces.com/Explorer+visualization+plugins

[9] Bengio, Y. and Nadeau, C. (1999) Inference for the Generalization Error.

[10] Ross Quinlan (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann
Publishers, San Mateo, CA.

[11] Subversion – http://weka.wikispaces.com/Subversion

[12] HSQLDB – http://hsqldb.sourceforge.net/

[13] MySQL – http://www.mysql.com/

[14] Plotting multiple ROC curves on WekaWiki –
http://weka.wikispaces.com/Plotting+multiple+ROC+curves

[15] R.R. Bouckaert. Bayesian Belief Networks: from Construction to Inference.
Ph.D. thesis, University of Utrecht, 1995.

[16] W.L. Buntine. A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering, 8:195–210, 1996.

[17] J. Cheng, R. Greiner. Comparing bayesian network classifiers. Proceedings UAI,
101–107, 1999.

http://weka.wikispaces.com/
https://svn.scms.waikato.ac.nz/svn/weka/trunk/wekaexamples/
http://weka.wikispaces.com/Extensions+for+Weka%27s+main+GUI
http://weka.wikispaces.com/Adding+tabs+in+the+Explorer
http://weka.wikispaces.com/Explorer+visualization+plugins
http://weka.wikispaces.com/Subversion
http://hsqldb.sourceforge.net/
http://www.mysql.com/
http://weka.wikispaces.com/Plotting+multiple+ROC+curves

BIBLIOGRAPHY 341

[18] C.K. Chow, C.N.Liu. Approximating discrete probability distributions with de-
pendence trees. IEEE Trans. on Info. Theory, IT-14: 426–467, 1968.

[19] G. Cooper, E. Herskovits. A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9: 309–347, 1992.

[20] Cozman. See http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/
for details on XML BIF.

[21] N. Friedman, D. Geiger, M. Goldszmidt. Bayesian Network Classifiers. Machine
Learning, 29: 131–163, 1997.

[22] D. Heckerman, D. Geiger, D. M. Chickering. Learning Bayesian networks: the
combination of knowledge and statistical data. Machine Learining, 20(3): 197–
243, 1995.

[23] S.L. Lauritzen and D.J. Spiegelhalter. Local Computations with Probabilities on
graphical structures and their applications to expert systems (with discussion).
Journal of the Royal Statistical Society B. 1988, 50, 157-224

[24] Moore, A. and Lee, M.S. Cached Sufficient Statistics for Efficient Machine
Learning with Large Datasets, JAIR, Volume 8, pages 67-91, 1998.

[25] Verma, T. and Pearl, J.: An algorithm for deciding if a set of observed indepen-
dencies has a causal explanation. Proc. of the Eighth Conference on Uncertainty
in Artificial Intelligence, 323-330, 1992.

[26] GraphViz. See http://www.graphviz.org/doc/info/lang.html for more infor-
mation on the DOT language.

[27] JMathPlot. See http://code.google.com/p/jmathplot/ for more information
on the project.

[28] Prefuse Visualization Toolkit. See http://prefuse.org/ for more information
on the project.

http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/
http://www.graphviz.org/doc/info/lang.html
http://code.google.com/p/jmathplot/
http://prefuse.org/

	I The Command-line
	A command-line primer
	Introduction
	Basic concepts
	Dataset
	Classifier
	weka.filters
	weka.classifiers

	Examples
	Additional packages and the package manager
	Package management
	Running installed learning algorithms

	II The Graphical User Interface
	Launching WEKA
	Package Manager
	Main window
	Installing and removing packages
	Unoffical packages

	Using a http proxy
	Using an alternative central package meta data repository
	Package manager property file

	Simple CLI
	Commands
	Invocation
	Command redirection
	Command completion

	Explorer
	The user interface
	Section Tabs
	Status Box
	Log Button
	WEKA Status Icon
	Graphical output

	Preprocessing
	Loading Data
	The Current Relation
	Working With Attributes
	Working With Filters

	Classification
	Selecting a Classifier
	Test Options
	The Class Attribute
	Training a Classifier
	The Classifier Output Text
	The Result List

	Clustering
	Selecting a Clusterer
	Cluster Modes
	Ignoring Attributes
	Working with Filters
	Learning Clusters

	Associating
	Setting Up
	Learning Associations

	Selecting Attributes
	Searching and Evaluating
	Options
	Performing Selection

	Visualizing
	The scatter plot matrix
	Selecting an individual 2D scatter plot
	Selecting Instances

	Experimenter
	Introduction
	Standard Experiments
	Simple
	New experiment
	Results destination
	Experiment type
	Datasets
	Iteration control
	Algorithms
	Saving the setup
	Running an Experiment

	Advanced
	Defining an Experiment
	Running an Experiment
	Changing the Experiment Parameters
	Other Result Producers

	Cluster Experiments
	Remote Experiments
	Preparation
	Database Server Setup
	Remote Engine Setup
	Configuring the Experimenter
	Multi-core support
	Troubleshooting

	Analysing Results
	Setup
	Saving the Results
	Changing the Baseline Scheme
	Statistical Significance
	Summary Test
	Ranking Test

	KnowledgeFlow
	Introduction
	Features
	Flow Steps
	DataSources
	DataSinks
	DataGenerators
	Filters
	Classifiers
	Clusterers
	Attribute selection
	Evaluation
	Visualization
	Flow
	Tools

	Examples
	Cross-validated J48
	Plotting multiple ROC curves
	Processing data incrementally

	Plugins
	Flow components
	Perspectives

	Workbench
	Introduction

	ArffViewer
	Menus
	Editing

	Bayesian Network Classifiers
	Introduction
	Local score based structure learning
	Local score metrics
	Search algorithms

	Conditional independence test based structure learning
	Global score metric based structure learning
	Fixed structure 'learning'
	Distribution learning
	Running from the command line
	Inspecting Bayesian networks
	Bayes Network GUI
	Bayesian nets in the experimenter
	Adding your own Bayesian network learners
	FAQ
	Future development

	III Data
	ARFF
	Overview
	Examples
	The ARFF Header Section
	The ARFF Data Section

	Sparse ARFF files
	Instance weights in ARFF files

	XRFF
	File extensions
	Comparison
	ARFF
	XRFF

	Sparse format
	Compression
	Useful features
	Class attribute specification
	Attribute weights
	Instance weights

	Converters
	Introduction
	Usage
	File converters
	Database converters

	Stemmers
	Introduction
	Snowball stemmers
	Using stemmers
	Commandline
	StringToWordVector

	Adding new stemmers

	Databases
	Configuration files
	Setup
	Missing Datatypes
	Stored Procedures
	Troubleshooting

	Windows databases

	IV Appendix
	Research
	Citing Weka
	Paper references

	Using the API
	Option handling
	Loading data
	Loading data from files
	Loading data from databases

	Creating datasets in memory
	Defining the format
	Adding data

	Generating artificial data
	Generate ARFF file
	Generate Instances

	Randomizing data
	Filtering
	Batch filtering
	Filtering on-the-fly

	Classification
	Building a classifier
	Evaluating a classifier
	Classifying instances

	Clustering
	Building a clusterer
	Evaluating a clusterer
	Clustering instances

	Selecting attributes
	Using the meta-classifier
	Using the filter
	Using the API directly

	Saving data
	Saving data to files
	Saving data to databases

	Visualization
	ROC curves
	Graphs
	Tree
	BayesNet

	Serialization

	Extending WEKA
	Writing a new Classifier
	Choosing the base class
	Additional interfaces
	Packages
	Implementation
	Methods
	Guidelines

	Writing a new Filter
	Default approach
	Implementation
	Examples

	Simple approach
	SimpleBatchFilter
	SimpleStreamFilter
	Internals

	Capabilities
	Packages
	Revisions
	Testing
	Option handling
	GenericObjectEditor
	Source code
	Unit tests

	Writing other algorithms
	Clusterers
	Attribute selection
	Associators

	Extending the Explorer
	Adding tabs
	Requirements
	Examples

	Adding visualization plugins
	Introduction
	Predictions
	Errors
	Graphs
	Trees

	Extending the Knowledge Flow
	Creating a simple batch processing Step
	Creating a simple streaming Step
	Features of StepManager
	PairedDataHelper

	Weka Packages
	Where does Weka store packages and other configuration stuff?
	Anatomy of a package
	The description file
	Additional configuration files

	Contributing a package
	Creating a mirror of the package meta data repository

	Technical documentation
	ANT
	Basics
	Weka and ANT

	CLASSPATH
	Setting the CLASSPATH
	RunWeka.bat
	java -jar

	Subversion
	General
	Source code
	JUnit
	Specific version
	Clients

	GenericObjectEditor
	Introduction
	File Structure
	Exclusion
	Class Discovery
	Multiple Class Hierarchies
	Capabilities

	Properties
	Precedence
	Examples

	XML
	Command Line
	Serialization of Experiments
	Serialization of Classifiers
	Bayesian Networks
	XRFF files

	Other resources
	Mailing list
	Troubleshooting
	Weka download problems
	OutOfMemoryException
	Windows

	Mac OSX
	StackOverflowError
	just-in-time (JIT) compiler
	CSV file conversion
	ARFF file doesn't load
	Spaces in labels of ARFF files
	CLASSPATH problems
	Instance ID
	Adding the ID
	Removing the ID

	Visualization
	Memory consumption and Garbage collector
	GUIChooser starts but not Experimenter or Explorer
	KnowledgeFlow toolbars are empty
	Links

	Bibliography

