Babel

Localization and internationalization

Unicode
\TeX
\pdfTeX
\luaTeX
\Xe\TeX
Contents

I User guide

1 The user interface
 1.1 Monolingual documents ... 4
 1.2 Multilingual documents ... 6
 1.3 Mostly monolingual documents 7
 1.4 Modifiers ... 8
 1.5 Troubleshooting ... 8
 1.6 Plain .. 9
 1.7 Basic language selectors .. 9
 1.8 Auxiliary language selectors 10
 1.9 More on selection ... 10
 1.10 Shorthands ... 12
 1.11 Package options ... 15
 1.12 The base option ... 17
 1.13 ini files ... 17
 1.14 Selecting fonts .. 25
 1.15 Modifying a language ... 27
 1.16 Creating a language .. 28
 1.17 Digits and counters ... 31
 1.18 Dates .. 33
 1.19 Accessing language info .. 33
 1.20 Hyphenation and line breaking 35
 1.21 Transforms .. 37
 1.22 Selection based on BCP 47 tags 39
 1.23 Selecting scripts .. 40
 1.24 Selecting directions .. 41
 1.25 Language attributes ... 45
 1.26 Hooks .. 45
 1.27 Languages supported by babel with ldf files 47
 1.28 Unicode character properties in luatex 48
 1.29 Tweaking some features ... 48
 1.30 Tips, workarounds, known issues and notes 48
 1.31 Current and future work ... 50
 1.32 Tentative and experimental code 50

2 Loading languages with `language.dat`
 2.1 Format ... 51

II Source code

3 The interface between the core of babel and the language definition files
 3.1 Guidelines for contributed languages 52
 3.2 Basic macros .. 53
 3.3 Skeleton ... 54
 3.4 Support for active characters .. 55
 3.5 Support for saving macro definitions 55
 3.6 Support for extending macros 56
 3.7 Macros common to a number of languages 56
 3.8 Encoding-dependent strings .. 56
 3.9 Executing code based on the selector 59

II Source code

4 Identification and loading of required files 60

5 locale directory .. 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Tools</td>
<td>Multiple languages</td>
<td>61</td>
</tr>
<tr>
<td>6.1</td>
<td>The Package File (\texttt{\LaTeX}, babel.sty)</td>
<td>65</td>
</tr>
<tr>
<td>6.2</td>
<td>base</td>
<td>66</td>
</tr>
<tr>
<td>6.3</td>
<td>key=value options and other general options</td>
<td>67</td>
</tr>
<tr>
<td>6.4</td>
<td>Conditional loading of shorthands</td>
<td>69</td>
</tr>
<tr>
<td>6.5</td>
<td>Interlude for Plain</td>
<td>70</td>
</tr>
<tr>
<td>7 Multiple languages</td>
<td>Selecting the language</td>
<td>70</td>
</tr>
<tr>
<td>7.1</td>
<td>Errors</td>
<td>81</td>
</tr>
<tr>
<td>7.2</td>
<td>Hooks</td>
<td>83</td>
</tr>
<tr>
<td>7.3</td>
<td>Setting up language files</td>
<td>85</td>
</tr>
<tr>
<td>7.4</td>
<td>Shorthands</td>
<td>87</td>
</tr>
<tr>
<td>7.5</td>
<td>Language attributes</td>
<td>96</td>
</tr>
<tr>
<td>7.6</td>
<td>Support for saving macro definitions</td>
<td>97</td>
</tr>
<tr>
<td>7.7</td>
<td>Short tags</td>
<td>98</td>
</tr>
<tr>
<td>7.8</td>
<td>Hyphens</td>
<td>99</td>
</tr>
<tr>
<td>7.9</td>
<td>Multiencoding strings</td>
<td>100</td>
</tr>
<tr>
<td>7.10</td>
<td>Macros common to a number of languages</td>
<td>107</td>
</tr>
<tr>
<td>7.11</td>
<td>Making glyphs available</td>
<td>107</td>
</tr>
<tr>
<td>7.12</td>
<td>Quotation marks</td>
<td>107</td>
</tr>
<tr>
<td>7.12.1</td>
<td>Letters</td>
<td>108</td>
</tr>
<tr>
<td>7.12.2</td>
<td>Shorthands for quotation marks</td>
<td>109</td>
</tr>
<tr>
<td>7.12.3</td>
<td>Umlauts and tremas</td>
<td>110</td>
</tr>
<tr>
<td>7.13</td>
<td>Layout</td>
<td>111</td>
</tr>
<tr>
<td>7.14</td>
<td>Load engine specific macros</td>
<td>112</td>
</tr>
<tr>
<td>7.15</td>
<td>Creating and modifying languages</td>
<td>112</td>
</tr>
<tr>
<td>8 Adjusting the Babel behavior</td>
<td>Cross referencing macros</td>
<td>133</td>
</tr>
<tr>
<td>8.1</td>
<td>Marks</td>
<td>135</td>
</tr>
<tr>
<td>8.2</td>
<td>Preventing clashes with other packages</td>
<td>138</td>
</tr>
<tr>
<td>8.3</td>
<td>ifthen</td>
<td>139</td>
</tr>
<tr>
<td>8.3.1</td>
<td>varioref</td>
<td>140</td>
</tr>
<tr>
<td>8.3.2</td>
<td>hhline</td>
<td>140</td>
</tr>
<tr>
<td>8.4</td>
<td>Encoding and fonts</td>
<td>141</td>
</tr>
<tr>
<td>8.5</td>
<td>Basic bidi support</td>
<td>142</td>
</tr>
<tr>
<td>8.6</td>
<td>Local Language Configuration</td>
<td>146</td>
</tr>
<tr>
<td>8.7</td>
<td>Language options</td>
<td>146</td>
</tr>
<tr>
<td>9 The kernel of Babel (babel.def, common)</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>10 Loading hyphenation patterns</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>11 Font handling with fontspec</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>12 Hooks for \texttt{\LaTeX} and \texttt{\LaTeX}</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>\texttt{\LaTeX}</td>
<td>157</td>
</tr>
<tr>
<td>12.2</td>
<td>Layout</td>
<td>159</td>
</tr>
<tr>
<td>12.3</td>
<td>Lua\texttt{\LaTeX}</td>
<td>160</td>
</tr>
<tr>
<td>12.4</td>
<td>Southeast Asian scripts</td>
<td>166</td>
</tr>
<tr>
<td>12.5</td>
<td>CJK line breaking</td>
<td>167</td>
</tr>
<tr>
<td>12.6</td>
<td>Arabic justification</td>
<td>170</td>
</tr>
<tr>
<td>12.7</td>
<td>Common stuff</td>
<td>173</td>
</tr>
<tr>
<td>12.8</td>
<td>Automatic fonts and ids switching</td>
<td>173</td>
</tr>
<tr>
<td>12.9</td>
<td>Bidi</td>
<td>178</td>
</tr>
<tr>
<td>12.10</td>
<td>Layout</td>
<td>180</td>
</tr>
<tr>
<td>12.11</td>
<td>Lua: transforms</td>
<td>185</td>
</tr>
</tbody>
</table>
Troubleshooting

Paragraph ended before `UTFviii@three@octets was complete` 5
No hyphenation patterns were preloaded for (babel) the language ‘LANG’ into the format 5
You are loading directly a language style 8
Unknown language ‘LANG’ 8
Argument of `\language@active@arg` has an extra } 12
Package fontspec Warning: ‘Language ‘LANG’ not available for font ‘FONT’ with script ‘SCRIPT’ ‘Default’ language used instead’ 26
Package babel Info: The following fonts are not babel standard families 26
Part I

User guide

What is this document about? This user guide focuses on internationalization and localization with \LaTeX{} and pdftex, xetex and luatex with the babel package. There are also some notes on its use with e-Plain and pdf-Plain \TeX{}. Part II describes the code, and usually it can be ignored.

What if I’m interested only in the latest changes? Changes and new features with relation to version 3.8 are highlighted with New X.XX, and there are some notes for the latest versions in the babel site. The most recent features can be still unstable.

Can I help? Sure! If you are interested in the \TeX{} multilingual support, please join the kadingira mail list. You can follow the development of babel in GitHub and make suggestions; feel free to fork it and make pull requests. If you are the author of a package, send to me a few test files which I’ll add to mine, so that possible issues can be caught in the development phase.

It doesn’t work for me! You can ask for help in some forums like tex.stackexchange, but if you have found a bug, I strongly beg you to report it in GitHub, which is much better than just complaining on an e-mail list or a web forum. Remember warnings are not errors by themselves, they just warn about possible problems or incompatibilities.

How can I contribute a new language? See section 3.1 for contributing a language.

I only need learn the most basic features. The first subsections (1.1-1.3) describe the traditional way of loading a language (with ldf files), which is usually all you need. The alternative way based on ini files, which complements the previous one (it does not replace it, although it is still necessary in some languages), is described below; go to 1.13.

I don’t like manuals. I prefer sample files. This manual contains lots of examples and tips, but in GitHub there are many sample files.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in \LaTeX{} is to load the package using its standard mechanism for this purpose, namely, passing that language as an optional argument. In addition, you may want to set the font and input encodings. Another approach is making the language a global option in order to let other packages detect and use it. This is the standard way in \LaTeX{} for an option – in this case a language – to be recognized by several packages.

Many languages are compatible with xetex and luatex. With them you can use babel to localize the documents. When these engines are used, the Latin script is covered by default in current \LaTeX{} (provided the document encoding is UTF-8), because the font loader is preloaded and the font is switched to lmroman. Other scripts require loading fontspec. You may want to set the font attributes with fontspec, too.

EXAMPLE Here is a simple full example for “traditional” \TeX{} engines (see below for xetex and luatex). The packages fontenc and inputenc do not belong to babel, but they are included in the example because typically you will need them. It assumes UTF-8, the default encoding:

\begin{verbatim}
\documentclass{article}
\usepackage[T1]{fontenc}
\end{verbatim}
\usepackage[french]{babel}
\begin{document}
Plus ça change, plus c'est la même chose!
\end{document}

Now consider something like:

\documentclass[french]{article}
\usepackage{babel}
\usepackage{varioref}

With this setting, the package \texttt{varioref} will also see the option \texttt{french} and will be able to use it.

\textbf{EXAMPLE} And now a simple monolingual document in Russian (text from the Wikipedia) with xetex or luatex. Note neither \texttt{fontenc} nor \texttt{inputenc} are necessary, but the document should be encoded in UTF-8 and a so-called Unicode font must be loaded (in this example \texttt{\babelfont} is used, described below).

\texttt{\babelfont{rm}{DejaVu Serif}}
\begin{document}
Россия, находящаяся на пересечении множества культур, а также с учётом многонационального характера её населения, — отличается высокой степенью этнокультурного многообразия и способностью к межкультурному диалогу.
\end{document}

\textbf{TROUBLESHOOTING} A common source of trouble is a wrong setting of the input encoding. Depending on the \LaTeX version you can get the following somewhat cryptic error:

! Paragraph ended before \UTFviii@three@octets was complete.

Or the more explanatory:

! Package inputenc Error: Invalid UTF-8 byte ...

Make sure you set the encoding actually used by your editor.

\textbf{NOTE} Because of the way \texttt{babel} has evolved, “language” can refer to (1) a set of hyphenation patterns as preloaded into the format, (2) a package option, (3) an \texttt{.lfd} file, and (4) a name used in the document to select a language or dialect. So, a package option refers to a language in a generic way – sometimes it is the actual language name used to select it, sometimes it is a file name loading a language with a different name, sometimes it is a file name loading several languages. Please, read the documentation for specific languages for further info.

\textbf{TROUBLESHOOTING} The following warning is about hyphenation patterns, which are not under the direct control of \texttt{babel}:
The document will be typeset, but very likely the text will not be correctly hyphenated. Some languages may be raising this warning wrongly (because they are not hyphenated); it is a bug to be fixed – just ignore it. See the manual of your distribution (Mac\TeX, MiK\TeX, \TeX\Live, etc.) for further info about how to configure it.

\textbf{NOTE} With hyperref you may want to set the document language with something like:

\begin{verbatim}
\usepackage[pdflang=es-MX]{hyperref}
\end{verbatim}

This is not currently done by babel and you must set it by hand.

\textbf{NOTE} Although it has been customary to recommend placing \texttt{\textbackslash title}, \texttt{\textbackslash author} and other elements printed by \texttt{\textbackslash maketitle} after \texttt{\textbackslash begin\{document\}}, mainly because of shorthands, it is advisable to keep them in the preamble. Currently there is no real need to use shorthands in those macros.

1.2 Multilingual documents

In multilingual documents, just use a list of the required languages as package or class options. The last language is considered the main one, activated by default. Sometimes, the main language changes the document layout (e.g., \texttt{spanish} and \texttt{french}).

\textbf{EXAMPLE} In \LaTeX\, the preamble of the document:

\begin{verbatim}
\documentclass\{article\}
\usepackage\{dutch,english\}\{babel\}
\end{verbatim}

would tell \LaTeX\ that the document would be written in two languages, Dutch and English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly, but it is discouraged except if there is a real reason to do so:

\begin{verbatim}
\documentclass\{article\}
\usepackage\{main=english,dutch\}\{babel\}
\end{verbatim}

Examples of cases where \texttt{main} is useful are the following.

\textbf{NOTE} Some classes load babel with a hardcoded language option. Sometimes, the main language can be overridden with something like that before \texttt{\documentclass}:

\begin{verbatim}
\PassOptionsToPackage\{main=english\}\{babel\}
\end{verbatim}

\textbf{WARNING} Languages may be set as global and as package option at the same time, but in such a case you should set explicitly the main language with the package option \texttt{main}:

\begin{verbatim}
\documentclass\{italian\}\{book\}
\usepackage\{ngerman,main=italian\}\{babel\}
\end{verbatim}

\textbf{WARNING} In the preamble the main language has not been selected, except hyphenation patterns and the name assigned to \texttt{\textbackslash languagename} (in particular, shorthands, captions and date are not activated). If you need to define boxes and the like in the preamble, you might want to use some of the language selectors described below.
To switch the language there are two basic macros, described below in detail:\texttt{selectlanguage} is used for blocks of text, while \texttt{foreignlanguage} is for chunks of text inside paragraphs.

EXAMPLE A full bilingual document with pdftex follows. The main language is \texttt{french}, which is activated when the document begins. It assumes UTF-8:

```latex
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[english,french]{babel}
\begin{document}
Plus ça change, plus c'est la même chose!
\selectlanguage{english}
And an English paragraph, with a short text in \texttt{foreignlanguage(french}{\texttt{français}}.
\end{document}
```

EXAMPLE With xetex and luatex, the following bilingual, single script document in UTF-8 encoding just prints a couple of ‘captions’ and \today in Danish and Vietnamese. No additional packages are required.

```latex
\documentclass{article}
\usepackage[vietnamese,danish]{babel}
\begin{document}
\prefacename{} -- \alsoname{} -- \today
\selectlanguage{vietnamese}
\prefacename{} -- \alsoname{} -- \today
\end{document}
```

NOTE Once loaded a language, you can select it with the corresponding BCP47 tag. See section 1.22 for further details.

1.3 Mostly monolingual documents

New 3.39 Very often, multilingual documents consist of a main language with small pieces of text in another languages (words, idioms, short sentences). Typically, all you need is to set the line breaking rules and, perhaps, the font. In such a case, babel now does not require declaring these secondary languages explicitly, because the basic settings are loaded on the fly when the language is selected (and also when provided in the optional argument of \texttt{babelfont}, if used.)

This is particularly useful, too, when there are short texts of this kind coming from an external source whose contents are not known on beforehand (for example, titles in a bibliography). At this regard, it is worth remembering that \texttt{babelfont} does \textit{not} load any font until required, so that it can be used just in case.

EXAMPLE A trivial document with the default font in English and Spanish, and FreeSerif in Russian is:
NOTE Instead of its name, you may prefer to select the language with the corresponding BCP47 tag. This alternative, however, must be activated explicitly, because a two- or tree-letter word is a valid name for a language (e.g., yi). See section 1.22 for further details.

1.4 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by means of modifiers. They are set after the language name, and are prefixed with a dot (only when the language is set as package option – neither global options nor the main key accepts them). An example is (spaces are not significant and they can be added or removed):¹

\usepackage[latin .medieval, spanish.notilde.lcroman , danish]{babel}

Attributes (described below) are considered modifiers, i.e., you can set an attribute by including it in the list of modifiers. However, modifiers are a more general mechanism.

1.5 Troubleshooting

- Loading directly sty files in \TeX (i.e., \usepackage{⟨language⟩}) is deprecated and you will get the error:²

\[
\text{! Package babel Error: You are loading directly a language style.}
\]

(babel) This syntax is deprecated and you must use \usepackage[⟨language⟩]{babel}.

- Another typical error when using babel is the following:³

\[
\text{! Package babel Error: Unknown language '⟨#1⟩'. Either you have}
\]

(babel) misspelled its name, it has not been installed,
(babel) or you requested it in a previous run. Fix its name,
(babel) install it or just rerun the file, respectively. In
(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but you realized this language is not used after all, and therefore you removed it from the option list). In most cases, the error vanishes when the document is typeset again, but in more severe ones you will need to remove the aux file.

¹Non predictable “axis” for modifiers are provided because languages and their scripts have quite different needs.
²In old versions the error read “You have used an old interface to call babel”, not very helpful.
³In old versions the error read “You haven't loaded the language LANG yet”.
1.6 Plain

In e-Plain and pdf-Plain, load languages styles with \input and then use \begindocument (the latter is defined by babel):

\input estonian.sty
\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with those formats. Please, refer to Using babel with Plain for further details.

1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in multilingual documents. In most cases, only the two basic macros \selectlanguage and \foreignlanguage are necessary. The environments otherlanguage, otherlanguage* and hyphenrules are auxiliary, and described in the next section. The main language is selected automatically when the document environment begins.

\selectlanguage{⟨language⟩}

When a user wants to switch from one language to another he can do so using the macro \selectlanguage. This macro takes the language, defined previously by a language definition file, as its argument. It calls several macros that should be defined in the language definition files to activate the special definitions for the language chosen:

\selectlanguage{german}

This command can be used as environment, too.

NOTE For “historical reasons”, a macro name is converted to a language name without the leading \; in other words, \selectlanguage{german} is equivalent to \selectlanguage{german}. Using a macro instead of a “real” name is deprecated. New 3.43 However, if the macro name does not match any language, it will get expanded as expected.

NOTE Bear in mind \selectlanguage can be automatically executed, in some cases, in the auxiliary files, at heads and foots, and after the environment otherlanguage*.

WARNING If used inside braces there might be some non-local changes, as this would be roughly equivalent to:

{\selectlanguage{⟨inner-language⟩} ...}\selectlanguage{⟨outer-language⟩}

If you want a change which is really local, you must enclose this code with an additional grouping level.

WARNING There are a couple of issues related to the way the language information is written to the auxiliary files:

- \selectlanguage should not be used inside some boxed environments (like floats or minipage) to switch the language if you need the information written to the aux be correctly synchronized. This rarely happens, but if it were the case, you must use otherlanguage instead.
- In addition, this macro inserts a \write in vertical mode, which may break the vertical spacing in some cases (for example, between lists). New 3.64 The behavior can be adjusted with babeladjust{select.write=(mode)}, where (mode) is shift (which shifts the skips down and adds a \penalty); keep (the default – with it the \write and the skips are kept in the order they are written), and omit (which may seem a too drastic solution, because nothing is written, but more often than not this command is applied to more or less shorts texts with no sectioning or similar commands and therefore no language synchronization is necessary).
\foreignlanguage{⟨option-list⟩}{⟨language⟩}{⟨text⟩}

The command $\texttt{foreignlanguage}$ takes two arguments; the second argument is a phrase to be typeset according to the rules of the language named in its first one.

This command (1) only switches the extra definitions and the hyphenation rules for the language, not the names and dates, (2) does not send information about the language to auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the language has not been set as package option (but in such a case it only sets the hyphenation patterns and a warning is shown). With the \texttt{bidi} option, it also enters in horizontal mode (this is not done always for backwards compatibility), and since it is meant for phrases only the text direction (and not the paragraph one) is set.

New 3.44 As already said, captions and dates are not switched. However, with the optional argument you can switch them, too. So, you can write:

\begin{verbatim}
\foreignlanguage{date}{polish}{\today}
\end{verbatim}

In addition, captions can be switched with captions (or both, of course, with date, captions). Until 3.43 you had to write something like \{\selectlanguage{.} ..\}, which was not always the most convenient way.

1.8 Auxiliary language selectors

\begin{otherlanguage}{⟨language⟩} ... \end{otherlanguage}

The environment $\texttt{otherlanguage}$ does basically the same as $\texttt{selectlanguage}$, except that language change is (mostly) local to the environment.

Actually, there might be some non-local changes, as this environment is roughly equivalent to:

\begin{verbatim}
\begingroup
\selectlanguage{<inner-language>}
...
\endgroup
\selectlanguage{<outer-language>}
\end{verbatim}

If you want a change which is really local, you must enclose this environment with an additional grouping, like braces \{\}. Spaces after the environment are ignored.

\begin{otherlanguage*}[⟨option-list⟩]{⟨language⟩} ... \end{otherlanguage*}

Same as $\texttt{foreignlanguage}$ but as environment. Spaces after the environment are not ignored.

This environment was originally intended for intermixing left-to-right typesetting with right-to-left typesetting in engines not supporting a change in the writing direction inside a line. However, by default it never complied with the documented behavior and it is just a version as environment of $\texttt{foreignlanguage}$, except when the option \texttt{bidi} is set – in this case, $\texttt{foreignlanguage}$ emits a $\texttt{\leavevmode}$, while $\texttt{otherlanguage*}$ does not.

1.9 More on selection

$\texttt{babeltags}$ \{⟨tag1⟩ = ⟨language1⟩, ⟨tag2⟩ = ⟨language2⟩, ...\}

New 3.9i In multilingual documents with many language-switches the commands above can be cumbersome. With this tool shorter names can be defined. It adds nothing really new – it is just syntactical sugar.
It defines \text{⟨tag1⟩}{⟨text⟩} to be \foreignlanguage{⟨language1⟩}{⟨text⟩}, and \begin{⟨tag1⟩} to be \begin{otherlanguage*}{⟨language1⟩}{⟨text⟩}, and so on. Note \⟨tag1⟩ is also allowed, but remember to set it locally inside a group.

WARNING There is a clear drawback to this feature, namely, the ‘prefix’ \text... is heavily overloaded in \LaTeX and conflicts with existing macros may arise (\textlatin, \textbar, \textit, \textcolor and many others). The same applies to environments, because arabic conflicts with \arabic. Furthermore, and because of this overloading, detecting the language of a chunk of text by external tools can become unfeasible. Except if there is a reason for this ‘syntactical sugar’, the best option is to stick to the default selectors or to define your own alternatives.

EXAMPLE With

\begin{verbatim}
\babeltags{de = german}
\end{verbatim}

you can write

\begin{verbatim}
text \textde{German text} text
\end{verbatim}

and

\begin{verbatim}
text
\begin{de}
German text
\end{de}
text
\end{verbatim}

NOTE Something like \babeltags{finnish = finnish} is legitimate – it defines \textfinnish and \finnish (and, of course, \begin{finnish}).

NOTE Actually, there may be another advantage in the ‘short’ syntax \text⟨tag⟩, namely, it is not affected by \MakeUppercase (while \foreignlanguage is).

\begin{verbatim}
\babelensure [include={⟨commands⟩}, exclude={⟨commands⟩}, fontenc={⟨encoding⟩}]{⟨language⟩}
\end{verbatim}

New 3.9i Except in a few languages, like russian, captions and dates are just strings, and do not switch the language. That means you should set it explicitly if you want to use them, or hyphenation (and in some cases the text itself) will be wrong. For example:

\begin{verbatim}
\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}
\end{verbatim}

Of course, \TeX can do it for you. To avoid switching the language all the while, \babelensure redefines the captions for a given language to wrap them with a selector:

\begin{verbatim}
\babelensure{polish}
\end{verbatim}

By default only the basic captions and \today are redefined, but you can add further macros with the key include in the optional argument (without commas). Macros not to be modified are listed in exclude. You can also enforce a font encoding with the option fontenc. A couple of examples:

\begin{verbatim}
\babelensure[include=\Today]{spanish}
\babelensure[fontenc=T5]{vietnamese}
\end{verbatim}

They are activated when the language is selected (at the afterextras event), and it makes some assumptions which could not be fulfilled in some languages. Note also you should include only macros defined by the language, not global macros (eg, \TeX of \dag). With ini files (see below), captions are ensured by default.

\footnote{With it, encoded strings may not work as expected.}
1.10 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary \TeX code. Shorthands can be used for different kinds of things; for example: (1) in some languages shorthands such as "a are defined to be able to hyphenate the word if the encoding is OT1; (2) in some languages shorthands such as ! are used to insert the right amount of white space; (3) several kinds of discretionary and breaks can be inserted easily with ", "=, etc. The package inputenc as well as xetex and luatex have alleviated entering non-ASCII characters, but minority languages and some kinds of text can still require characters not directly available on the keyboards (and sometimes not even as separated or precomposed Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can manipulate the glyph list. Tools for point 3 can be still very useful in general. There are four levels of shorthands: user, language, system, and language user (by order of precedence). In most cases, you will use only shorthands provided by languages.

NOTE Keep in mind the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace } and the spaces following are gobbled. With one-char shorthands (eg, :), they are preserved.
2. If on a certain level (system, language, user, language user) there is a one-char shorthand, two-char ones starting with that char and on the same level are ignored.
3. Since they are active, a shorthand cannot contain the same character in its definition (except if deactivated with, eg, \string).

TROUBLESHOOTING A typical error when using shorthands is the following:

! Argument of \language@active@arg has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}"). Just add \} after (eg, "{\}).

\shorthandon \{\shorthands-list\}
\shorthandoff *\{\shorthands-list\}

It is sometimes necessary to switch a shorthand character off temporarily, because it must be used in an entirely different way. For this purpose, the user commands \shorthandoff and \shorthandon are provided. They each take a list of characters as their arguments. The command \shorthandoff sets the \catcode for each of the characters in its argument to other (12); the command \shorthandon sets the \catcode to active (13). Both commands only work on 'known' shorthand characters.

New 3.9a However, \shorthandoff does not behave as you would expect with characters like ~ or ^, because they usually are not "other". For them \shorthandoff* is provided, so that with

\shorthandoff*{-^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the superscript character. The \catcodes used are those when the shorthands are defined, usually when language files are loaded.

If you do not need shorthands, or prefer an alternative approach of your own, you may want to switch them off with the package option \shorthands=off, as described below.

WARNING It is worth emphasizing these macros are meant for temporary changes. Whenever possible and if there are not conflicts with other packages, shorthands must be always enabled (or disabled).
\texttt{\useshorthands}\{\textit{char}\}\}

The command \texttt{\useshorthands} initiates the definition of user-defined shorthand sequences. It has one argument, the character that starts these personal shorthands.

\textbf{New 3.9a} User shorthands are not always alive, as they may be deactivated by languages (for example, if you use " for your user shorthands and switch from german to french, they stop working). Therefore, a starred version \texttt{\useshorthands*\{\textit{char}\}} is provided, which makes sure shorthands are always activated.

Currently, if the package option shorthands is used, you must include any character to be activated with \texttt{\useshorthands}. This restriction will be lifted in a future release.

\texttt{\defineshorthand}\{\textit{language}, \textit{language}, ...\}\{\textit{shorthand}\}\{\textit{code}\}\}

The command \texttt{\defineshorthand} takes two arguments: the first is a one- or two-character shorthand sequence, and the second is the code the shorthand should expand to.

\textbf{New 3.9a} An optional argument allows to (re)define language and system shorthands (some languages do not activate shorthands, so you may want to add \texttt{\languageshorthands}\{\textit{lang}\} to the corresponding \texttt{\extras\{lang\}}, as explained below).

By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.

Language-dependent user shorthands (new in 3.9) take precedence over "normal" user shorthands.

\textbf{EXAMPLE} Let’s assume you want a unified set of shorthand for discretionary (languages do not define shorthands consistently, and "-", "\-", "=" have different meanings). You can start with, say:

\begin{verbatim}
\useshorthands*"
\defineshorthand*"{\babelhyphen{soft}}
\defineshorthand"-{\babelhyphen{hard}}
\end{verbatim}

However, the behavior of hyphens is language-dependent. For example, in languages like Polish and Portuguese, a hard hyphen inside compound words are repeated at the beginning of the next line. You can then set:

\begin{verbatim}
\defineshorthand*{polish, portuguese}"-{\babelhyphen{repeat}}
\end{verbatim}

Here, options with * set a language-dependent user shorthand, which means the generic one above only applies for the rest of languages; without * they would (re)define the language shorthands instead, which are overridden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning (‘compound word hyphen’) whose visual behavior is that expected in each context.

\texttt{\languageshorthands}\{\textit{language}\}\}

The command \texttt{\languageshorthands} can be used to switch the shorthands on the language level. It takes one argument, the name of a language or none (the latter does what its name suggests).5 Note that for this to work the language should have been specified as an option when loading the babel package. For example, you can use in English the shorthands defined by ngerman with

\begin{verbatim}
\addto\extrasenglish{\languageshorthands{ngerman}}
\end{verbatim}

(You may also need to activate them as user shorthands in the preamble with, for example, \texttt{\useshorthands} or \texttt{\useshorthands*}).

5 Actually, any name not corresponding to a language group does the same as none. However, follow this convention because it might be enforced in future releases of babel to catch possible errors.
Very often, this is a more convenient way to deactivate shorthands than \shorthandoff, for example if you want to define a macro to easy typing phonetic characters with \ipa:

\newcommand{\myipa}[1]{\languageshorthands{none}tipaencoding#1}

\babelshorthand \{〈shorthand〉\}

With this command you can use a shorthand even if (1) not activated in shorthands (in this case only shorthands for the current language are taken into account, i.e., not user shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal \@deactivate; for example, \babelshorthand{"u} or \babelshorthand{\cdot}. (You can conveniently define your own macros, or even your own user shorthands provided they do not overlap.)

Since by default shorthands are not activated until \begin{document}, you may use this macro when defining the \title in the preamble:

\title{Documento científico\babelshorthand{"-} técnico}

For your records, here is a list of shorthands, but you must double check them, as they may change.⁶

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew, Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish, Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian, Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script), Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~
Breton : ; ? !
Catalan " '
Czech " ~
Esperanto ^
Estonian " ~
French (all varieties) : ; ? !
Galician " , ' ~ < >
Greek ~
Hungarian \
Kurmanji ^
Latin " ^ =
Slovak " ^ ' ~
Spanish " . < > ' ~
Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the standard ~, to a non-breaking space.⁷

\ifbabelshorthand \{〈character〉\}\{〈true〉\}\{〈false〉\}

New 3.23 Tests if a character has been made a shorthand.

\aliasshorthand \{〈original〉\}\{〈alias〉\}

The command \aliasshorthand can be used to let another character perform the same functions as the default shorthand character. If one prefers for example to use the

⁶Thanks to Enrico Gregorio
⁷This declaration serves to nothing, but it is preserved for backward compatibility.
character / over " in typing Polish texts, this can be achieved by entering \aliashorthand{"}/>. For the reasons in the warning below, usage of this macro is not recommended.

NOTE The substitute character must not have been declared before as shorthand (in such a case, \aliashorthand is ignored).

EXAMPLE The following example shows how to replace a shorthand by another

\aliashorthand{-}{^}
\AtBeginDocument{\shorthandoff*{-}}

WARNING Shorthands remember somehow the original character, and the fallback value is that of the latter. So, in this example, if no shorthand if found, ^ expands to a non-breaking space, because this is the value of ~ (internally, ^ still calls \active@char~ or \normal@char~).

Furthermore, if you change the system value of ^ with \defineshorthand nothing happens.

1.11 Package options

New 3.9a These package options are processed before language options, so that they are taken into account irrespective of its order. The first three options have been available in previous versions.

- **KeepShorthandsActive** Tells babel not to deactivate shorthands after loading a language file, so that they are also available in the preamble.

- **activeacute** For some languages babel supports this option to set ' as a shorthand in case it is not done by default.

- **activegrave** Same for `.

- **shorthands= (char)(char)... | off**

 The only language shorthands activated are those given, like, eg:

 \usepackage{esperanto,french,shorthands=::!?}{babel}

 If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters (like ~) should be preceded by \string (otherwise they will be expanded by \Ifn before they are passed to the package and therefore they will not be recognized); however, t is provided for the common case of ~ (as well as c for not so common case of the comma). With shorthands=off no language shorthands are defined. As some languages use this mechanism for tools not available otherwise, a macro \beshorthand is defined, which allows using them; see above.

- **safe= none | ref | bib**

 Some \IfnX macros are redefined so that using shorthands is safe. With safe=bib only \nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and \pageref are redefined (as well as a few macros from \varioref and \ifthen). With safe=none no macro is redefined. This option is strongly recommended, because a good deal of incompatibilities and errors are related to these redefinitions. As of New 3.34, in \IfnX based engines (ie, almost every engine except the oldest ones) shorthands can be used in these macros (formerly you could not).

- **math= active | normal**

 Shorthands are mainly intended for text, not for math. By setting this option with the value normal they are deactivated in math mode (default is active) and things like $\{a'$} (a closing brace after a shorthand) are not a source of trouble anymore.
config= ⟨file⟩
Load ⟨file⟩.cfg instead of the default config file bblopts.cfg (the file is loaded even with noconfigs).

main= ⟨language⟩
Sets the main language, as explained above, ie, this language is always loaded last. If it is not given as package or global option, it is added to the list of requested languages.

headfoot= ⟨language⟩
By default, headlines and footlines are not touched (only marks), and if they contain language-dependent macros (which is not usual) there may be unexpected results. With this option you may set the language in heads and foots.

noconfigs
Global and language default config files are not loaded, so you can make sure your document is not spoilt by an unexpected .cfg file. However, if the key config is set, this file is loaded.

showlanguages
Prints to the log the list of languages loaded when the format was created: number (remember dialects can share it), name, hyphenation file and exceptions file.

nocase
New 3.9l Language settings for uppercase and lowercase mapping (as set by \SetCase) are ignored. Use only if there are incompatibilities with other packages.

silent
New 3.9l No warnings and no infos are written to the log file.\footnote{You can use alternatively the package silence.}

strings= generic | unicode | encoded | ⟨label⟩ | ⟨font encoding⟩
Selects the encoding of strings in languages supporting this feature. Predefined labels are generic (for traditional \TeX, LIRC and ASCII strings), unicode (for engines like xetex and luatex) and encoded (for special cases requiring mixed encodings). Other allowed values are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be aware with encoded captions are protected, but they work in \MakeUppercase and the like (this feature misuses some internal \TeX tools, so use it only as a last resort).

hyphenmap= off | first | select | other | other*
New 3.9g Sets the behavior of case mapping for hyphenation, provided the language defines it.\footnote{Turned off in plain.} It can take the following values:

off deactivates this feature and no case mapping is applied;
first sets it at the first switching commands in the current or parent scope (typically, when the aux file is first read and at \begin{document}, but also the first \selectlanguage in the preamble), and it’s the default if a single language option has been stated;\footnote{Duplicated options count as several ones.}
select sets it only at \selectlanguage;
other also sets it at otherlanguage;
other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot is used) and in auxiliary files (ie, at \select@language), and it’s the default if several language options have been stated. The option first can be regarded as an optimized version of other* for monolingual documents.\footnote{Providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if either xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL] think it isn’t really useful, but who knows.}
bidi= default basic basic-r bidi-l bidi-r

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.24.

layout= layout

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.24.

provide= *

New 3.49 An alternative to \babelprovide for languages passed as options. See section 1.13, which describes also the variants provide+= and provide*=.

1.12 The base option

With this package option babel just loads some basic macros (those in switch.def), defines \AfterBabelLanguage and exits. It also selects the hyphenation patterns for the last language passed as option (by its name in language.dat). There are two main uses: classes and packages, and as a last resort in case there are, for some reason, incompatible languages. It can be used if you just want to select the hyphenation patterns of a single language, too.

\AfterBabelLanguage{⟨option-name⟩}{⟨code⟩}

This command is currently the only provided by base. Executes ⟨code⟩ when the file loaded by the corresponding package option is finished (at \ldef@finish). The setting is global. So

\AfterBabelLanguage{french}{...}

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the code is executed only if ⟨option-name⟩ is the same as \CurrentOption (which could not be the same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with \newcommand. An error is raised if you attempt to load both. Here is a way to overcome this problem:

\usepackage[base]{babel}
\AfterBabelLanguage{foo}{%
\let\macroFoo\macro
\let\macro\relax
\usepackage[foo,bar]{babel}
}

NOTE With a recent version of \TeX, an alternative method to execute some code just after an ldf file is loaded is with \AddToHook and the hook file/<language>.ldf/after. Babel does not predeclare it, and you have to do it yourself with \ActivateGenericHook.

WARNING Currently this option is not compatible with languages loaded on the fly.

1.13 ini files

An alternative approach to define a language (or, more precisely, a locale) is by means of an ini file. Currently babel provides about 250 of these files containing the basic data required for a locale, plus basic templates for 500 about locales. ini files are not meant only for babel, and they has been devised as a resource for other packages. To easy interoperability between \TeX and other systems, they are identified with the BCP 47 codes as preferred by the Unicode Common Locale Data Repository, which was used as source for most of the data provided by these files, too (the main exception being the \... name strings).
Most of them set the date, and many also the captions (Unicode and LIDCR). They will be evolving with the time to add more features (something to keep in mind if backward
compatibility is important). The following section shows how to make use of them by means of \babelprovide. In other words, \babelprovide is mainly meant for auxiliary tasks, and as alternative when the ldf, for some reason, does work as expected.

EXAMPLE Although Georgian has its own ldf file, here is how to declare this language with an ini file in Unicode engines.

```latex
\documentclass{book}
\usepackage{babel}
\babelprovide[import, main]{georgian}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}
\begin{document}
\tableofcontents
\chapter{სამზარეულო და სუფრის ტრადიციები}
ქართული ტრადიციული სამზარეულო ერთ-ერთი უმდიდრესია მთელ მსოფლიოში.
\end{document}
```

New 3.49 Alternatively, you can tell babel to load all or some languages passed as options with \babelprovide and not from the ldf file in a few few typical cases. Thus, provide=* means 'load the main language with the \babelprovide mechanism instead of the ldf file' applying the basic features, which in this case means import, main. There are (currently) three options:

- provide=* is the option just explained, for the main language;
- provide+=* is the same for additional languages (the main language is still the ldf file);
- provide*=* is the same for all languages, ie, main and additional.

EXAMPLE The preamble in the previous example can be more compactly written as:

```latex
\documentclass{book}
\usepackage[ georgian, provide=* ]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}
```

Or also:

```latex
\documentclass[georgian]{book}
\usepackage[provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}
```

NOTE The ini files just define and set some parameters, but the corresponding behavior is not always implemented. Also, there are some limitations in the engines. A few remarks follow (which could no longer be valid when you read this manual, if the packages involved have been updated). The Harfbuzz renderer has still some issues, so as a rule of thumb prefer the default renderer, and resort to Harfbuzz only if the former does not work for you. Fortunately, fonts can be loaded twice with different renderers; for example:

```latex
\babelfont[spanish]{rm}{FreeSerif}
\babelfont[hindi]{rm}[Renderer=Harfbuzz]{FreeSerif}
```
Arabic Monolingual documents mostly work in luatex, but it must be fine tuned, particularly math and graphical elements like picture. In xetex babel resorts to the bidi package, which seems to work.

Hebrew Niqqud marks seem to work in both engines, but depending on the font cantillation marks might be misplaced (xetex or luatex with Harfbuzz seems better).

Devanagari In luatex and the the default renderer many fonts work, but some others do not, the main issue being the 'ra'. You may need to set explicitly the script to either deva or dev2, eg:

\newfontscript{Devanagari}{deva}

Other Indic scripts are still under development in the default luatex renderer, but should work with Renderer=Harfbuzz. They also work with xetex, although unlike with luatex fine tuning the font behavior is not always possible.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules are hard-coded in xetex, but they can be modified in luatex). Lao seems to work, too, but there are no patterns for the latter in luatex. Khmer clusters are rendered wrongly with the default renderer. The comment about Indic scripts and luatex also applies here. Some quick patterns can help, with something similar to:

\babelprovide[import, hyphenrules=+]{lao}
\babelpatterns[lao]{1 olduğunu 1মান 1አንitizen 1alım 1и} % Random

East Asia scripts Settings for either Simplified or Traditional should work out of the box, with basic line breaking with any renderer. Although for a few words and shorts texts the ini files should be fine, CJK texts are best set with a dedicated framework (CJK, luatexja, kotex, CTeX, etc.). This is what the class ltxbook does with luatex, which can be used in conjunction with the ldf for japanese, because the following piece of code loads luatexja:

\documentclass[japanese]{ltjbook}
\usepackage{babel}

Latin, Greek, Cyrillic Combining chars with the default luatex font renderer might be wrong; on then other hand, with the Harfbuzz renderer diacritics are stacked correctly, but many hyphenations points are discarded (this bug is related to kerning, so it depends on the font). With xetex both combining characters and hyphenation work as expected (not quite, but in most cases it works; the problem here are font clusters).

NOTE Wikipedia defines a locale as follows: “In computing, a locale is a set of parameters that defines the user's language, region and any special variant preferences that the user wants to see in their user interface. Usually a locale identifier consists of at least a language code and a country/region code.” Babel is moving gradually from the old and fuzzy concept of language to the more modern of locale. Note each locale is by itself a separate “language”, which explains why there are so many files. This is on purpose, so that possible variants can be created and/or redefined easily.

Here is the list (u means Unicode captions, and 1 means L1CR captions):

<table>
<thead>
<tr>
<th>Script</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>af</td>
<td>Afrikaansu</td>
</tr>
<tr>
<td>agq</td>
<td>Aghem</td>
</tr>
<tr>
<td>ak</td>
<td>Akan</td>
</tr>
<tr>
<td>am</td>
<td>Amharicu</td>
</tr>
<tr>
<td>ar</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-DZ</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-EG</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-IQ</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-JO</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-LB</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-MA</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-PS</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-SA</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-SY</td>
<td>Arabicu</td>
</tr>
<tr>
<td>ar-TN</td>
<td>Arabicu</td>
</tr>
<tr>
<td>as</td>
<td>Assamese</td>
</tr>
<tr>
<td>asa</td>
<td>Asu</td>
</tr>
<tr>
<td>ast</td>
<td>Asturianu</td>
</tr>
<tr>
<td>az-Cyr</td>
<td>Azerbaijani</td>
</tr>
<tr>
<td>az-Lat</td>
<td>Azerbaijani</td>
</tr>
<tr>
<td>az</td>
<td>Azerbaijani</td>
</tr>
<tr>
<td>be</td>
<td>Belarusianu</td>
</tr>
<tr>
<td>bem</td>
<td>Bemba</td>
</tr>
<tr>
<td>bez</td>
<td>Bena</td>
</tr>
<tr>
<td>bg</td>
<td>Bulgarianu</td>
</tr>
<tr>
<td>bm</td>
<td>Bambara</td>
</tr>
<tr>
<td>bn</td>
<td>Banglau</td>
</tr>
<tr>
<td>bo</td>
<td>Tibetanu</td>
</tr>
<tr>
<td>brx</td>
<td>Bodo</td>
</tr>
<tr>
<td>bs-Cyr</td>
<td>Bosnian</td>
</tr>
<tr>
<td>bs-Lat</td>
<td>Bosnianu</td>
</tr>
<tr>
<td>Code</td>
<td>Language</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>bs</td>
<td>Bosnianul</td>
</tr>
<tr>
<td>ca</td>
<td>Catalanul</td>
</tr>
<tr>
<td>ce</td>
<td>Chechen</td>
</tr>
<tr>
<td>cgg</td>
<td>Chiga</td>
</tr>
<tr>
<td>chr</td>
<td>Cherokee</td>
</tr>
<tr>
<td>ckb</td>
<td>Central Kurdish</td>
</tr>
<tr>
<td>cop</td>
<td>Coptic</td>
</tr>
<tr>
<td>cs</td>
<td>Czechul</td>
</tr>
<tr>
<td>cu</td>
<td>Church Slavic</td>
</tr>
<tr>
<td>cu-Cyrs</td>
<td>Church Slavic</td>
</tr>
<tr>
<td>cu-Glag</td>
<td>Church Slavic</td>
</tr>
<tr>
<td>cy</td>
<td>Welshul</td>
</tr>
<tr>
<td>da</td>
<td>Danishul</td>
</tr>
<tr>
<td>dav</td>
<td>Taita</td>
</tr>
<tr>
<td>de-AT</td>
<td>Germanul</td>
</tr>
<tr>
<td>de-CH</td>
<td>Swiss High Germanul</td>
</tr>
<tr>
<td>de</td>
<td>Germanul</td>
</tr>
<tr>
<td>dje</td>
<td>Zarma</td>
</tr>
<tr>
<td>dsb</td>
<td>Lower Sorbianul</td>
</tr>
<tr>
<td>dua</td>
<td>Duala</td>
</tr>
<tr>
<td>dyo</td>
<td>Jola-Fonyi</td>
</tr>
<tr>
<td>dz</td>
<td>Dzongkha</td>
</tr>
<tr>
<td>ebu</td>
<td>Embu</td>
</tr>
<tr>
<td>ee</td>
<td>Ewe</td>
</tr>
<tr>
<td>el</td>
<td>Greekul</td>
</tr>
<tr>
<td>el-polyton</td>
<td>Polytonic Greekul</td>
</tr>
<tr>
<td>en-AU</td>
<td>Englishul</td>
</tr>
<tr>
<td>en-CA</td>
<td>Englishul</td>
</tr>
<tr>
<td>en-GB</td>
<td>Englishul</td>
</tr>
<tr>
<td>en-NZ</td>
<td>Englishul</td>
</tr>
<tr>
<td>en-US</td>
<td>Englishul</td>
</tr>
<tr>
<td>en</td>
<td>Englishul</td>
</tr>
<tr>
<td>eo</td>
<td>Esperantoul</td>
</tr>
<tr>
<td>es-MX</td>
<td>Spanishul</td>
</tr>
<tr>
<td>es</td>
<td>Spanishul</td>
</tr>
<tr>
<td>et</td>
<td>Estonianul</td>
</tr>
<tr>
<td>eu</td>
<td>Basqueul</td>
</tr>
<tr>
<td>ewo</td>
<td>Ewondo</td>
</tr>
<tr>
<td>fa</td>
<td>Persianul</td>
</tr>
<tr>
<td>ff</td>
<td>Fulah</td>
</tr>
<tr>
<td>fi</td>
<td>Finnishul</td>
</tr>
<tr>
<td>fil</td>
<td>Filipo</td>
</tr>
<tr>
<td>fo</td>
<td>Filipino</td>
</tr>
<tr>
<td>fr</td>
<td>Frenchul</td>
</tr>
<tr>
<td>fr-BE</td>
<td>Frenchul</td>
</tr>
<tr>
<td>fr-CA</td>
<td>Frenchul</td>
</tr>
<tr>
<td>fr-CH</td>
<td>Frenchul</td>
</tr>
<tr>
<td>fr-LU</td>
<td>Frenchul</td>
</tr>
<tr>
<td>fur</td>
<td>Friulianul</td>
</tr>
<tr>
<td>fy</td>
<td>Western Frisian</td>
</tr>
<tr>
<td>ga</td>
<td>Irishul</td>
</tr>
<tr>
<td>gd</td>
<td>Scottish Gaelicul</td>
</tr>
<tr>
<td>gl</td>
<td>Galicianul</td>
</tr>
<tr>
<td>grc</td>
<td>Ancient Greekul</td>
</tr>
<tr>
<td>gsw</td>
<td>Swiss German</td>
</tr>
<tr>
<td>gu</td>
<td>Gujarati</td>
</tr>
<tr>
<td>guz</td>
<td>Gusii</td>
</tr>
<tr>
<td>gv</td>
<td>Manx</td>
</tr>
<tr>
<td>Code</td>
<td>Language</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>mgo</td>
<td>Meta'</td>
</tr>
<tr>
<td>mk</td>
<td>Macedonian</td>
</tr>
<tr>
<td>ml</td>
<td>Malayalam</td>
</tr>
<tr>
<td>mn</td>
<td>Mongolian</td>
</tr>
<tr>
<td>mr</td>
<td>Marathi</td>
</tr>
<tr>
<td>ms-BN</td>
<td>Malay</td>
</tr>
<tr>
<td>ms-SG</td>
<td>Malay</td>
</tr>
<tr>
<td>ms</td>
<td>Malay</td>
</tr>
<tr>
<td>mt</td>
<td>Maltese</td>
</tr>
<tr>
<td>mua</td>
<td>Mundang</td>
</tr>
<tr>
<td>my</td>
<td>Burmese</td>
</tr>
<tr>
<td>mzn</td>
<td>Mazanderani</td>
</tr>
<tr>
<td>naq</td>
<td>Nama</td>
</tr>
<tr>
<td>nb</td>
<td>Norwegian Bokmål</td>
</tr>
<tr>
<td>nd</td>
<td>North Ndebele</td>
</tr>
<tr>
<td>ne</td>
<td>Nepali</td>
</tr>
<tr>
<td>nl</td>
<td>Dutch</td>
</tr>
<tr>
<td>nmg</td>
<td>Kwasio</td>
</tr>
<tr>
<td>nn</td>
<td>Norwegian Nynorsk</td>
</tr>
<tr>
<td>nnh</td>
<td>Ngiemboon</td>
</tr>
<tr>
<td>no</td>
<td>Norwegian</td>
</tr>
<tr>
<td>nus</td>
<td>Nuer</td>
</tr>
<tr>
<td>nyn</td>
<td>Nyankole</td>
</tr>
<tr>
<td>om</td>
<td>Oromo</td>
</tr>
<tr>
<td>or</td>
<td>Odia</td>
</tr>
<tr>
<td>os</td>
<td>Ossetic</td>
</tr>
<tr>
<td>pa-Arab</td>
<td>Punjabi</td>
</tr>
<tr>
<td>pa-Guru</td>
<td>Punjabi</td>
</tr>
<tr>
<td>pa</td>
<td>Punjabi</td>
</tr>
<tr>
<td>pl</td>
<td>Polish</td>
</tr>
<tr>
<td>pms</td>
<td>Piedmontese</td>
</tr>
<tr>
<td>ps</td>
<td>Pashto</td>
</tr>
<tr>
<td>pt-BR</td>
<td>Portuguese</td>
</tr>
<tr>
<td>pt-PT</td>
<td>Portuguese</td>
</tr>
<tr>
<td>pt</td>
<td>Portuguese</td>
</tr>
<tr>
<td>qu</td>
<td>Quechua</td>
</tr>
<tr>
<td>rm</td>
<td>Romansh</td>
</tr>
<tr>
<td>rn</td>
<td>Rundi</td>
</tr>
<tr>
<td>ro</td>
<td>Romanian</td>
</tr>
<tr>
<td>ro-MD</td>
<td>Moldavian</td>
</tr>
<tr>
<td>rof</td>
<td>Rombo</td>
</tr>
<tr>
<td>ru</td>
<td>Russian</td>
</tr>
<tr>
<td>rw</td>
<td>Kinyarwanda</td>
</tr>
<tr>
<td>rwk</td>
<td>Rwa</td>
</tr>
<tr>
<td>sa-Beng</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sa-Deva</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sa-Gujr</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sa-Knda</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sa-Mlym</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sa-Telu</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sa</td>
<td>Sanskrit</td>
</tr>
<tr>
<td>sah</td>
<td>Sakha</td>
</tr>
<tr>
<td>saq</td>
<td>Samburu</td>
</tr>
<tr>
<td>sbp</td>
<td>Sangu</td>
</tr>
<tr>
<td>se</td>
<td>Northern Sami</td>
</tr>
<tr>
<td>seh</td>
<td>Sena</td>
</tr>
<tr>
<td>ses</td>
<td>Koyraboro Senni</td>
</tr>
<tr>
<td>sg</td>
<td>Sango</td>
</tr>
<tr>
<td>shi-Latn</td>
<td>Tachelhit</td>
</tr>
</tbody>
</table>
In some contexts (currently \texttt{\textbackslash babelfont}) an ini file may be loaded by its name. Here is the list of the names currently supported. With these languages, \texttt{\textbackslash babelfont} loads (if not done before) the language and script names (even if the language is defined as a package option with an ldf file). These are also the names recognized by \texttt{\textbackslash babelprovide} with a valueless import.

<table>
<thead>
<tr>
<th>Language</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>aghem</td>
<td>chechen</td>
</tr>
<tr>
<td>akan</td>
<td>cherokee</td>
</tr>
<tr>
<td>albanian</td>
<td>chiga</td>
</tr>
<tr>
<td>american</td>
<td>chinese-hans-hk</td>
</tr>
<tr>
<td>amharic</td>
<td>chinese-hans-mo</td>
</tr>
<tr>
<td>ancientgreek</td>
<td>chinese-hans-sg</td>
</tr>
<tr>
<td>arabic</td>
<td>chinese-hans</td>
</tr>
<tr>
<td>arabic-algeria</td>
<td>chinese-hant-hk</td>
</tr>
<tr>
<td>arabic-DZ</td>
<td>chinese-hant-mo</td>
</tr>
<tr>
<td>arabic-morocco</td>
<td>chinese-hant</td>
</tr>
<tr>
<td>arabic-MA</td>
<td>chinese-simplified-hongkongsarchina</td>
</tr>
<tr>
<td>arabic-syria</td>
<td>chinese-simplified-macausarchina</td>
</tr>
<tr>
<td>arabic-SY</td>
<td>chinese-simplified-singapore</td>
</tr>
<tr>
<td>armenian</td>
<td>chinese-simplified</td>
</tr>
<tr>
<td>assamese</td>
<td>chinese-traditional-hongkongsarchina</td>
</tr>
<tr>
<td>asturian</td>
<td>chinese-traditional-macausarchina</td>
</tr>
<tr>
<td>asu</td>
<td>chinese-traditional</td>
</tr>
<tr>
<td>australian</td>
<td>chinese</td>
</tr>
<tr>
<td>austrian</td>
<td>churchslavic</td>
</tr>
<tr>
<td>azerbaijani-cyrillic</td>
<td>churchslavic-cyrs</td>
</tr>
<tr>
<td>azerbaijani-cyrl</td>
<td>churchslavic-oldcyrillic</td>
</tr>
<tr>
<td>azerbaijani-latin</td>
<td>churchslavic-glag</td>
</tr>
<tr>
<td>azerbaijani-latn</td>
<td>churchslavic-glagolitic</td>
</tr>
<tr>
<td>azerbaijani</td>
<td>colognian</td>
</tr>
<tr>
<td>bafia</td>
<td>cornish</td>
</tr>
<tr>
<td>bambara</td>
<td>croatian</td>
</tr>
<tr>
<td>basaa</td>
<td>czech</td>
</tr>
<tr>
<td>basque</td>
<td>danish</td>
</tr>
<tr>
<td>belarusian</td>
<td>duala</td>
</tr>
<tr>
<td>bemba</td>
<td>dutch</td>
</tr>
<tr>
<td>bena</td>
<td>dzongkha</td>
</tr>
<tr>
<td>bangla</td>
<td>embu</td>
</tr>
<tr>
<td>bodo</td>
<td>english-au</td>
</tr>
<tr>
<td>bosnian-cyrillic</td>
<td>english-australia</td>
</tr>
<tr>
<td>bosnian-cyrl</td>
<td>english-ca</td>
</tr>
<tr>
<td>bosnian-latin</td>
<td>english-canada</td>
</tr>
<tr>
<td>bosnian-latn</td>
<td>english-gb</td>
</tr>
<tr>
<td>bosnian</td>
<td>english-newzealand</td>
</tr>
<tr>
<td>brazilian</td>
<td>english-nz</td>
</tr>
<tr>
<td>breton</td>
<td>english-unitedkingdom</td>
</tr>
<tr>
<td>british</td>
<td>english-unitedstates</td>
</tr>
<tr>
<td>bulgarian</td>
<td>english-us</td>
</tr>
<tr>
<td>burmese</td>
<td>english</td>
</tr>
<tr>
<td>canadian</td>
<td>esperanto</td>
</tr>
<tr>
<td>cantonese</td>
<td>estonian</td>
</tr>
<tr>
<td>catalan</td>
<td>ewe</td>
</tr>
<tr>
<td>centralatlastamazight</td>
<td>ewondo</td>
</tr>
<tr>
<td>centralkurdish</td>
<td>faroese</td>
</tr>
</tbody>
</table>

\footnote{The name in the CLDR is Old Church Slavonic Cyrillic, but it has been shortened for practical reasons.}
Modifying and adding values to ini files

New 3.39 There is a way to modify the values of ini files when they get loaded with \babelprovide and import. To set, say, digits.native in the numbers section, use something like numbers/digits.native=abcdefghij. Keys may be added, too. Without import you may modify the identification keys. This can be used to create private variants easily. All you need is to import the same ini file with a different locale name and different parameters.

1.14 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There is no need to load fontspec explicitly – babel does it for you with the first \babelfont.\footnote{See also the package combofont for a complementary approach.}

\babelfont \langle language-list \rangle \{ \langle font-family \rangle \} \langle font-options \rangle \{ \langle font-name \rangle \}

\textbf{NOTE} See the note in the previous section about some issues in specific languages.

The main purpose of \babelfont is to define at once in a multilingual document the fonts required by the different languages, with their corresponding language systems (script and language). So, if you load, say, 4 languages, \babelfont{rm}{FreeSerif} defines 4 fonts (with their variants, of course), which are switched with the language by babel. It is a tool to make things easier and transparent to the user. Here font-family is \textit{rm}, \textit{sf} or \textit{tt} (or newly defined ones, as explained below), and font-name is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family, activated when a language is selected.

On the other hand, if there is one or more languages in the optional argument, the font will be assigned to them, overriding the default one. Alternatively, you may set a font for a script – just precede its name (lowercase) with a star (eg, *devanagari). With this optional argument, the font is not yet defined, but just predeclared. This means you may define as many fonts as you want `just in case`, because if the language is never selected, the corresponding \babelfont declaration is just ignored.

Babel takes care of the font language and the font script when languages are selected (as well as the writing direction); see the recognized languages above. In most cases, you will not need font-options, which is the same as in fontspec, but you may add further key/value pairs if necessary.

\textbf{EXAMPLE} Usage in most cases is very simple. Let us assume you are setting up a document in Swedish, with some words in Hebrew, with a font suited for both languages.

\begin{verbatim}
\documentclass{article}
\usepackage[swedish, bidi=default]{babel}
\babelprovide{import}{hebrew}
\babelfont{rm}{FreeSerif}
\begin{document}
 Svenska \foreignlanguage{hebrew}{עברית} svenska.
\end{document}
\end{verbatim}

If on the other hand you have to resort to different fonts, you can replace the red line above with, say:
\babelfont{rm}{Iwona}
\babelfont[hebrew]{rm}{FreeSerif}

\babelfont can be used to implicitly define a new font family. Just write its name instead of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic families.

EXAMPLE Here is how to do it:

\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

\usepackage{fontspec}
\newfontscript{Devanagari}{deva}
\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2, in case it is not detected correctly. You may also pass some options to fontspec: with silent, the warnings about unavailable scripts or languages are not shown (they are only really useful when the document format is being set up).

NOTE Directionality is a property affecting margins, indentation, column order, etc., not just text. Therefore, it is under the direct control of the language, which applies both the script and the direction to the text. As a consequence, there is no need to set Script when declaring a font with \babelfont (nor Language). In fact, it is even discouraged.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the like). If a language is switched when an ad hoc font is active, or you select the font with this command, neither the script nor the language is passed. You must add them by hand. This is by design, for several reasons — for example, each font has its own set of features and a generic setting for several of them can be problematic, and also preserving a “lower-level” font selection is useful.

NOTE The keys Language and Script just pass these values to the font, and do not set the script for the language (and therefore the writing direction). In other words, the ini file or \babelfont provide provides default values for \babelfont if omitted, but the opposite is not true. See the note above for the reasons of this behavior.

WARNING Using \setxxxxfont and \babelfont at the same time is discouraged, but very often works as expected. However, be aware with \setxxxxfont the language system will not be set by babel and should be set with fontspec if necessary.

TROUBLESHOOTING Package fontspec Warning: 'Language 'LANG' not available for font 'FONT' with script 'SCRIPT' 'Default' language used instead'.

This is not an error: This warning is shown by fontspec, not by babel. It can be irrelevant for English, but not for many other languages, including Urdu and Turkish. This is a useful and harmless warning, and if everything is fine with your document the best thing you can do is just to ignore it altogether.

TROUBLESHOOTING Package babel Info: The following fonts are not babel standard families.

This is not an error: babel assumes that if you are using \babelfont for a family, very likely you want to define the rest of them. If you don’t, you can find some inconsistencies between families. This checking is done at the beginning of the document, at a point where we cannot know which families will be used.

Actually, there is no real need to use \babelfont in a monolingual document, if you set the language system in \setmainfont (or not, depending on what you want). As the message explains, there is nothing intrinsically wrong with not defining all the families. In fact, there is nothing intrinsically wrong with not using \babelfont at all. But you must be aware that this may lead to some problems.
\babelfont is a high level interface to fontspec, and therefore in xetex you can apply Mappings. For example, there is a set of transliterations for Brahmic scripts by Davis M. Jones. After installing them in your distribution, just set the map as you would do with fontspec.

1.15 Modifying a language

Modifying the behavior of a language (say, the chapter “caption”), is sometimes necessary, but not always trivial. In the case of caption names a specific macro is provided, because this is perhaps the most frequent change:

\setlocalecaption{⟨language-name⟩}{⟨caption-name⟩}{⟨string⟩}

New 3.51 Here caption-name is the name as string without the trailing name. An example, which also shows caption names are often a stylistic choice, is:

\setlocalecaption{english}{contents}{Table of Contents}

This works not only with existing caption names, because it also serves to define new ones by setting the caption-name to the name of your choice (name will be postpended). Captions so defined or redefined behave with the ‘new way’ described in the following note.

NOTE There are a few alternative methods:

- With data import’ed from ini files, you can modify the values of specific keys, like:

 \babelprovide[import, captions/listtable = Lista de tablas]{spanish}

 (In this particular case, instead of the captions group you may need to modify the captions.licr one.)

- The ‘old way’, still valid for many languages, to redefine a caption is the following:

 \addto\captionsenglish{%
 \renewcommand\contentsname{Foo}%
 }

 As of 3.15, there is no need to hide spaces with % (babel removes them), but it is advisable to do so. This redefinition is not activated until the language is selected.

- The ‘new way’, which is found in bulgarian, azerbaijani, spanish, french, turkish, icelandic, vietnamese and a few more, as well as in languages created with \babelprovide and its key import, is:

 \renewcommand\spanishchaptername{Foo}

 This redefinition is immediate.

NOTE Do not redefine a caption in the following way:

\AtBeginDocument{\renewcommand\contentsname{Foo}}

The changes may be discarded with a language selector, and the original value restored.

Macros to be run when a language is selected can be add to \extras{lang}:

\addto\extrasrussian{mymacro}

There is a counterpart for code to be run when a language is unselected: \noextras{lang}.

NOTE These macros (\captions{lang}, \extras{lang}) may be redefined, but must not be used as such – they just pass information to babel, which executes them in the proper context.
Another way to modify a language loaded as a package or class option is by means of \babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}
\babelprovide[captions=da, hyphenrules=nohyphenation]{danish}

first loads danish.ldf, and then redefines the captions for danish (as provided by the ini file) and prevents hyphenation. The rest of the language definitions are not touched. Without the optional argument it just loads some additional tools if provided by the ini file, like extra counters.

1.16 Creating a language

And what if there is no style for your language or none fits your needs? You may then define quickly a language with the help of the following macro in the preamble (which may be used to modify an existing language, too, as explained in the previous subsection).

\babelprovide [\textit{options}]{\textit{language-name}}

If the language \textit{language-name} has not been loaded as class or package option and there are no \textit{options}, it creates an “empty” one with some defaults in its internal structure: the hyphen rules, if not available, are set to the current ones, left and right hyphen mins are set to 2 and 3. In either case, caption, date and language system are not defined. If no ini file is imported with import, \textit{language-name} is still relevant because in such a case the hyphenation and like breaking rules (including those for South East Asian and CJK) are based on it as provided in the ini file corresponding to that name; the same applies to OpenType language and script. Conveniently, some options allow to fill the language, and babel warns you about what to do if there is a missing string. Very likely you will find alerts like that in the log file:

Package babel Warning: \chaptername not set for 'mylang'. Please, define it after the language has been loaded
(babel) (typically in the preamble) with:
(babel) \setlocalecaption{mylang}{chapter}{..}
(babel) Reported on input line 26.

In most cases, you will only need to define a few macros. Note languages loaded on the fly are not yet available in the preamble.

\textbf{EXAMPLE} If you need a language named arhinish:

\usepackage[danish]{babel}
\babelprovide{arhinish}
\setlocalecaption{arhinish}{chapter}{Chapitula}
\setlocalecaption{arhinish}{refname}{Refirenke}
\renewcommand\arhinishhyphenmins{22}

\textbf{EXAMPLE} Locales with names based on BCP 47 codes can be created with something like:

\babelprovide[import=en-US]{enUS}

Note, however, mixing ways to identify locales can lead to problems. For example, is yi the name of the language spoken by the Yi people or is it the code for Yiddish?

The main language is not changed (danish in this example). So, you must add \selectlanguage{arhinish} or other selectors where necessary. If the language has been loaded as an argument in \documentclass or \usepackage, then \babelprovide redefines the requested data.
import= *(language-tag)*

New 3.13 Imports data from an ini file, including captions and date (also line breaking rules in newly defined languages). For example:

\begin{verbatim}
\babelprovide[import=hu]{hungarian}
\end{verbatim}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros like \' or \ss) ones.

New 3.23 It may be used without a value. In such a case, the ini file set in the corresponding \texttt{babel-<language>.tex} (where <language> is the last argument in \texttt{\babelprovide}) is imported. See the list of recognized languages above. So, the previous example can be written:

\begin{verbatim}
\babelprovide[import]{hungarian}
\end{verbatim}

There are about 250 ini files, with data taken from the ldf files and the CLDR provided by Unicode. Not all languages in the latter are complete, and therefore neither are the ini files. A few languages may show a warning about the current lack of suitability of some features.

Besides \texttt{\today}, this option defines an additional command for dates: \texttt{\<language>date}, which takes three arguments, namely, year, month and day numbers. In fact, \texttt{\today} calls \texttt{\<language>today}, which in turn calls \texttt{\<language>date\{the\year\}\{the\month\}\{the\day\}}. **New 3.44** More convenient is usually \texttt{localedate}, with prints the date for the current locale.

captions= *(language-tag)*

Loads only the strings. For example:

\begin{verbatim}
\babelprovide[captions=hu]{hungarian}
\end{verbatim}

hyphenrules= *(language-list)*

With this option, with a space-separated list of hyphenation rules, babel assigns to the language the first valid hyphenation rules in the list. For example:

\begin{verbatim}
\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}
\end{verbatim}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example we set chavacano as first option – without it, it would select spanish even if chavacano exists.

A special value is +, which allocates a new language (in the \TeX sense). It only makes sense as the last value (or the only one; the subsequent ones are silently ignored). It is mostly useful with luatex, because you can add some patterns with \texttt{\babelpatterns}, as for example:

\begin{verbatim}
\babelprovide[hyphenrules=+]{neo}
\babelpatterns[neo]{a1 e1 i1 o1 u1}
\end{verbatim}

In other engines it just suppresses hyphenation (because the pattern list is empty).

New 3.58 Another special value is unhyphenated, which activates a line breaking mode that allows spaces to be stretched to arbitrary amounts.
This valueless option makes the language the main one (thus overriding that set when babel is loaded). Only in newly defined languages.

EXAMPLE Let’s assume your document (xetex or luatex) is mainly in Polytonic Greek with but with some sections in Italian. Then, the first attempt should be:

\usepackage[italian, greek.polutonic]{babel}

But if, say, accents in Greek are not shown correctly, you can try

\usepackage[italian, polytonicgreek, provide=*]{babel}

Remember there is an alternative syntax for the latter:

\usepackage[italian]{babel}
\babelprovide[import, main]{polytonicgreek}

Finally, also remember you might not need to load ital at all if there are only a few word in this language (see 1.3).

script= (script-name)

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the value in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the ini file. This value is particularly important because it sets the writing direction, so you must use it if for some reason the default value is wrong.

language= (language-name)

New 3.15 Sets the language name to be used by fontspec (eg, Hindi). Overrides the value in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the ini file. Not so important, but sometimes still relevant.

alph= (counter-name)

Assigns to \alph that counter. See the next section.

Alph= (counter-name)

Same for \Alph.

A few options (only luatex) set some properties of the writing system used by the language. These properties are always applied to the script, no matter which language is active. Although somewhat inconsistent, this makes setting a language up easier in most typical cases.

onchar= ids | fonts

New 3.38 This option is much like an ‘event’ called when a character belonging to the script of this locale is found (as its name implies, it acts on characters, not on spaces). There are currently two ‘actions’, which can be used at the same time (separated by a space): with ids the \language and the \localeid are set to the values of this locale; with fonts, the fonts are changed to those of this locale (as set with \belfont). This option is not compatible with mapfont. Characters can be added or modified with \belfontprop.

NOTE An alternative approach with luatex and Harfbuzz is the font option

RawFeature={multiscript=\auto}. It does not switch the babel language and therefore the line breaking rules, but in many cases it can be enough.
intraspace= \{base\} \{shrink\} \{stretch\}

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0 is 0em plus .1em). Like \spaceskip, the em unit applied is that of the current text (more precisely, the previous glyph). Currently used only in Southeast Asian scripts, like Thai, and CJK.

intrapenalty= \{penalty\}

Sets the interword penalty for the writing system of this language. Currently used only in Southeast Asian scripts, like Thai. Ignored if 0 (which is the default value).

transforms= \{transform-list\}

See section 1.21.

justification= kashida | elongated | unhyphenated

New 3.59 There are currently three options, mainly for the Arabic script. It sets the linebreaking and justification method, which can be based on the the ARABIC_TATWEEL character or in the ‘justification alternatives’ OpenType table (jal.t). For an explanation see the babel site.

linebreaking= New 3.59 Just a synonymous for justification.

mapfont= direction

Assigns the font for the writing direction of this language (only with bidi=basic). Whenever possible, instead of this option use onchar, based on the script, which usually makes more sense. More precisely, what mapfont=direction means is, ‘when a character has the same direction as the script for the “provided” language, then change its font to that set for this language’. There are 3 directions, following the bidi Unicode algorithm, namely, Arabic-like, Hebrew-like and left to right. So, there should be at most 3 directives of this kind.

NOTE (1) If you need shorthands, you can define them with \useshorthand s and \defineshorthand as described above. (2) Captions and \today are “ensured” with \babelensure (this is the default in ini-based languages).

1.17 Digits and counters

New 3.20 About thirty ini files define a field named digits native. When it is present, two macros are created: \$<language>digits and \$<language>counter (only xetex and luatex). With the first, a string of ‘Latin’ digits are converted to the native digits of that language; the second takes a counter name as argument. With the option maparabic in \babelprovide, \arabic is redefined to produce the native digits (this is done globally, to avoid inconsistencies in, for example, page numbering, and note as well dates do not rely on \arabic.)

For example:

\babelprovide[import]{telugu}
% Or also, if you want:
% \babelprovide[import, maparabic]{telugu}
\babelfont{rm}{Gautami} % With luatex, better with Harfbuzz
\begin{document}
\telugudigits{1234}
\telugucounter{section}
\end{document}

Languages providing native digits in all or some variants are:
With \texttt{xetex} you can use the option \texttt{Mapping} when defining a font.

\begin{verbatim}
\localenumeral \{\langle style\rangle\}\{\langle number\rangle\}
\localecounter \{\langle style\rangle\}\{\langle counter\rangle\}
\end{verbatim}

New 3.41 Many ‘ini’ locale files has been extended with information about non-positional numerical systems, based on those predefined in CSS. They only work with \texttt{xetex} and \texttt{luatex} and are fully expendable (even inside an unprotected \texttt{\edef}). Currently, they are limited to numbers below 10000.

There are several ways to use them (for the available styles in each language, see the list below):

- \texttt{\localenumeral\{\langle style\rangle\}\{\langle number\rangle\}}, like \texttt{\localenumeral\{abjad\}\{15\}}
- \texttt{\localecounter\{\langle style\rangle\}\{\langle counter\rangle\}}, like \texttt{\localecounter\{lower\}\{section\}}
- In \texttt{\babelprovide}, as an argument to the keys \texttt{alph} and \texttt{Alph}, which redefine what \texttt{\alph} and \texttt{\Alph} print. For example:

 \begin{verbatim}
 \babelprovide[alph=alphabetic]{thai}
 \end{verbatim}

The styles are:

- Ancient Greek lower.ancient, upper.ancient
- Amharic afar, agaw, ari, blin, dizi, gedeo, gumuz, hadiyya, harari, kaffa, kebena, kembata, konso, kunama, meen, oromo, saho, sidama, silti, tigre, wolaita, yeensa
- Arabic abjad, maghrebi.abjad
- Armenian lower.letter, upper.letter
- Belarusan, Bulgarian, Church Slavic, Macedonian, Serbian lower, upper
- Bangla alphabetic
- Central Kurdish alphabetic
- Chinese cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph, parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha
- Church Slavic (Glagolitic) letters
- Coptic epact, lower.letters
- French date.day (mainly for internal use).
- Georgian letters
- Greek lower.modern, upper.modern, lower.ancient, upper.ancient (all with keraia)
- Hebrew letters (neither geres nor gershayim yet)
- Hindi alphabetic
- Italian lower.legal, upper.legal
- Japanese hiragana, hiragana.iroha, katakana, katakana.iroha, circled.katakana, informal, formal, cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph, parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha
Khmer consonant
Korean consonant, syllable, hanja.informal, hanja.formal, hangul.formal, cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph, parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha
Marathi alphabetic
Persian abjad, alphabetic
Russian lower, lower.full, upper, upper.full
Syriac letters
Tamil ancient
Thai alphabetic
Ukrainian lower, lower.full, upper, upper.full

New 3.45 In addition, native digits (in languages defining them) may be printed with the numeral style digits.

1.18 Dates
New 3.45 When the data is taken from an ini file, you may print the date corresponding to the Gregorian calendar and other lunisolar systems with the following command.

\localedate \{calendar=., variant=., convert\}\{year\}\{month\}\{day\}

By default the calendar is the Gregorian, but an ini file may define strings for other calendars (currently ar, ar-*; he, fa, hi). In the latter case, the three arguments are the year, the month, and the day in those in the corresponding calendar. They are not the Gregorian data to be converted (which means, say, 13 is a valid month number with calendar=hebrew and calendar=coptic). However, with the option convert it's converted (using internally the following command).

Even with a certain calendar there may be variants. In Kurmanjji the default variant prints something like 30. Çileya Pêşîn 2019, but with variant=izafa it prints 31'ê Çileya Pêşînê 2019.

\babelcalendar \{date\}\{calendar\}\{year-macro\}\{month-macro\}\{day-macro\}

New 3.76 Although calendars aren’t the primary concern of babel, the package should be able to, at least, generate correctly the current date in the way users would expect in their own culture. Currently, \localedate can print dates in a few calendars (provided the ini locale file has been imported), but year, month and day had to be entered by hand, which is very inconvenient. With this macro, the current date is converted and stored in the three last arguments, which must be macros: allowed calendars are buddhist, coptic, hebrew, islamic-civil, islamic-umalqura, persian. The optional argument converts the given date, in the form '{year}-{month}-{day}'. Please, refer to the page on the news for 3.76 in the babel site for further details.

1.19 Accessing language info

\languagename The control sequence \languagename contains the name of the current language.

WARNING Due to some internal inconsistencies in catcodes, it should not be used to test its value.
Use \iflang, by Heiko Oberdiek.

\iflanguage \{language\}\{true\}\{false\}

If more than one language is used, it might be necessary to know which language is active at a specific time. This can be checked by a call to \iflanguage, but note here “language” is used in the \TeX sense, as a set of hyphenation patterns, and not as its babel name. This macro takes three arguments. The first argument is the name of a language; the second and third arguments are the actions to take if the result of the test is true or false respectively.
\localeinfo \{\{field\}\}

New 3.38 If an ini file has been loaded for the current language, you may access the information stored in it. This macro is fully expandable, and the available fields are:

- name.english as provided by the Unicode CLDR.
- tag.ini is the tag of the ini file (the way this file is identified in its name).
- tag.bcp47 is the full BCP 47 tag (see the warning below). This is the value to be used for the 'real' provided tag (babel may fill other fields if they are considered necessary).
- language.tag.bcp47 is the BCP 47 language tag.
- tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47).
- script.name, as provided by the Unicode CLDR.
- script.tag.bcp47 is the BCP 47 tag of the script used by this locale. This is a required field for the fonts to be correctly set up, and therefore it should be always defined.
- script.tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47).
- region.tag.bcp47 is the BCP 47 tag of the region or territory. Defined only if the locale loaded actually contains it (eg, es-MX does, but es doesn't), which is how locales behave in the CLDR. New 3.75
- variant.tag.bcp47 is the BCP 47 tag of the variant (in the BCP 47 sense, like 1901 for German). New 3.75
- extension.(s).tag.bcp47 is the BCP 47 value of the extension whose singleton is (s) (currently the recognized singletons are x, t and u). The internal syntax can be somewhat complex, and this feature is still somewhat tentative. An example is classiclatin which sets extension.x.tag.bcp47 to classic. New 3.75

WARNING New 3.46 As of version 3.46 tag.bcp47 returns the full BCP 47 tag. Formerly it returned just the language subtag, which was clearly counterintuitive.

New 3.75 Sometimes, it comes in handy to be able to use \localeinfo in an expandable way even if something went wrong (for example, the locale currently active is undefined). For these cases, \localeinfo* just returns an empty string instead of raising an error. Bear in mind that babel, following the CLDR, may leave the region unset, which means \getlocaleproperty*, described below, is the preferred command, so that the existence of a field can be checked before. This also means building a string with the language and the region with \localeinfo*{language.tag.bcp47}-\localeinfo*{region.tag.bcp47} is not usually a good idea (because of the hyphen).

\getlocaleproperty \{\{macro\}\}\{\{locale\}\}\{\{property\}\}

New 3.42 The value of any locale property as set by the ini files (or added/modified with \babelprovide) can be retrieved and stored in a macro with this command. For example, after:

\getlocaleproperty\hechap{hebrew}\{captions/chapter\}

the macro \hechap will contain the string \hechap.
If the key does not exist, the macro is set to \relax and an error is raised. New 3.47 With the starred version no error is raised, so that you can take your own actions with undefined properties.

\localeid Each language in the babel sense has its own unique numeric identifier, which can be retrieved with \localeid.

The \localeid is not the same as the \language identifier, which refers to a set of hyphenation patterns (which, in turn, is just a component of the line breaking algorithm described in the next section). The data about preloaded patterns are store in an internal macro named vbl@languages (see the code for further details), but note several locales may share a single \language, so they are separated concepts. In luatex, the \localeid is saved in each node (when it makes sense) as an attribute, too.
\LocaleForEach \{\code\}
Babel remembers which ini files have been loaded. There is a loop named
\LocaleForEach to traverse the list, where \#1 is the name of the current item, so that
\LocaleForEach{\message{ **\#1** }} just shows the loaded ini's.

\ensureinfo=off New 3.75 Previously, ini files are loaded only with \babelprovide and also when
languages are selected if there is a \babelfont or they have not been explicitly declared.
Now the ini files are loaded (and therefore the corresponding data) even if these two
conditions are not met (in previous versions you had to enable it with \BabelEnsureInfo in
the preamble). Because of the way this feature works, problems are very unlikely, but
there is switch as a package option to turn the new behavior off (\ensureinfo=off).

1.20 Hyphenation and line breaking
Babel deals with three kinds of line breaking rules: Western, typically the LGC group,
South East Asian, like Thai, and CJK, but support depends on the engine: pdftex only deals
with the former; xetex also with the second one (although in a limited way), while luatex
provides basic rules for the latter, too. With luatex there are also tools for non-standard
hyphenation rules, explained in the next section.

\babelhyphen *{\langle \text \rangle}
\babelhyphen *{\langle type \rangle}

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens,
which in \TeX are entered as -, and (2) optional or soft hyphens, which are entered as \-.
Strictly, a soft hyphen is not a hyphen, but just a breaking opportunity or, in \TeX terms, a
“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further
type is a non-breaking hyphen, a hyphen without a breaking opportunity.
In \TeX, - and \- forbid further breaking opportunities in the word. This is the desired
behavior very often, but not always, and therefore many languages provide shorthands for
these cases. Unfortunately, this has not been done consistently: for example, " - in Dutch,
Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,
Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \-, so that
you cannot insert a soft hyphen without breaking opportunities in the rest of the word.
Therefore, some macros are provided with a set of basic “hyphens” which can be used by
themselves, to define a user shorthand, or even in language files.

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the
next line, as done in languages like Polish, Portuguese and Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space
follows).

• \babelhyphen{empty} inserts a break opportunity without a hyphen at all.

• \babelhyphen{\langle text \rangle} is a hard “hyphen” using \langle text \rangle instead. A typical case is
\babelhyphen{\langle \rangle}.

With all of them, hyphenation in the rest of the word is enabled. If you don't want to
enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is
equivalent to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes (eg,
-ism), but in both cases \babelnulthyphen*{nobreak} is usually better.

There are also some differences with \HTeX: (1) the character used is that set for the current
font, while in \HTeX it is hardwired to \- (a typical value); (2) the hyphen to be used in fonts
with a negative \hyphenchar is \-, like in \HTeX, but it can be changed to another value by
redefining \babelnulthyphen; (3) a break after the hyphen is forbidden if preceded by a
glue >0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a
parenthesis).
\babelhyphenation \[\langle language \rangle, \langle language \rangle, \ldots \}\{\langle exceptions \rangle\}

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional argument, for all languages (eg. proper nouns or common loan words, and of course monolingual documents). Multiple declarations work much like \hyphenation (last wins), but language exceptions take precedence over global ones. It can be used only in the preamble, and exceptions are set when the language is first selected, thus taking into account changes of \lccodes's done in \extras{lang} as well as the language-specific encoding (not set in the preamble by default). Multiple \babelhyphenation's are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also works without the LICR if the input and the font encodings are the same, like in Unicode based engines.

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with \babelpatterns (below) you may fine-tune line breaking (only luatex). Even if there are no patterns for the language, you can add at least some typical cases.

NOTE Use \babelhyphenation instead of \hyphenation to set hyphenation exceptions in the preamble before any language is explicitly set with a selector. In the preamble the hyphenation rules are not always fully set up and an error can be raised.

\begin{hyphenrules} \{ \langle language \rangle \} \ldots \end{hyphenrules}

The environment \hyphenrules can be used to select only the hyphenation rules to be used (it can be used as command, too). This can for instance be used to select `nohyphenation', provided that in \language.dat the `language' nohyphenation is defined by loading zerohyph.tex. It deactivates language shorthands, too (but not user shorthands). Except for these simple uses, \hyphenrules is deprecated and other \language* (the starred version) is preferred, because the former does not take into account possible changes in encodings of characters like, say, ‘ done by some languages (eg. italian, french, ukraineb).

\babelpatterns \[\langle language \rangle, \langle language \rangle, \ldots \}\{\langle patterns \rangle\}

New 3.9m In luatex only,\footnote{With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a separate package and babel only provides the most basic tools.} adds or replaces patterns for the languages given or, without the optional argument, for all languages. If a pattern for a certain combination already exists, it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first selected, thus taking into account changes of \lccodes's done in \extras{lang} as well as the language-specific encoding (not set in the preamble by default). Multiple \babelpatterns's are allowed.

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also works without the LICR if the input and the font encodings are the same, like in Unicode based engines.

New 3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple generic line breaking algorithm (push-out-first) is applied, based on a selection of the Unicode rules (New 3.32 it is disabled in verbatim mode, or more precisely when the hyphenrules are set to rohyphenation). It can be activated alternatively by setting explicitly the intraspace.

New 3.27 Interword spacing for Thai, Lao and Khmer is activated automatically if a language with one of those scripts are loaded with \babelprovide. See the sample on the babel repository. With both Unicode engines, spacing is based on the “current” em unit (the size of the previous char in luatex, and the font size set by the last \selectfont in xetex).
1.21 Transforms

Transforms (only \luatex) provide a way to process the text on the typesetting level in several language-dependent ways, like non-standard hyphenation, special line breaking rules, script to script conversion, spacing conventions and so on.\footnote{They are similar in concept, but not the same, as those in Unicode. The main inspiration for this feature is the Omega transformation processes.}\footnote{15}

It currently embraces \texttt{\babelprehyphenation} and \texttt{\babelposthyphenation}.

New 3.57 Several ini files predefine some transforms. They are activated with the key transforms in \texttt{\babelprovide}, either if the locale is being defined with this macro or the languages has been previously loaded as a class or package option, as the following example illustrates:

```latex
\usepackage[magyar]{babel}
\babelprovide[transforms = digraphs.hyphen]{magyar}
```

New 3.67 Transforms predefined in the ini locale files can be made attribute-dependent, too. When an attribute between parenthesis is inserted subsequent transforms will be assigned to it (up to the list end or another attribute). For example, and provided an attribute called \texttt{\withsigmafinal} has been declared:

```latex
transforms = transliteration.omega (\withsigmafinal) sigma.final
```

This applies \texttt{transliteration.omega} always, but \texttt{sigma.final} only when \texttt{\withsigmafinal} is set.

Here are the transforms currently predefined. (More to follow in future releases.)

<table>
<thead>
<tr>
<th>Language</th>
<th>Transform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>transliteration.dad</td>
<td>Applies the transliteration system devised by Yannis Haralambous for dad (simple and \TeX-friendly). Not yet complete, but sufficient for most texts.</td>
</tr>
<tr>
<td>Croatian</td>
<td>digraphs.ligatures</td>
<td>Ligatures DŽ, Dž, dž, LJ, lj, Nj, Nj, nj. It assumes they exist. This is not the recommended way to make these transformations (the best way is with OTF features), but it can get you out of a hurry.</td>
</tr>
<tr>
<td>Czech, Polish, Portuguese, Slovak, Spanish</td>
<td>hyphen.repeat</td>
<td>Explicit hyphens behave like \texttt{\babelhyphen{repeat}}.</td>
</tr>
<tr>
<td>Czech, Polish, Slovak</td>
<td>oneletter.nobreak</td>
<td>Converts a space after a non-syllabic preposition or conjunction into a non-breaking space.</td>
</tr>
<tr>
<td>Finnish</td>
<td>prehyphen.nobreak</td>
<td>Line breaks just after hyphens prepended to words are prevented, like in “pakastekaapit ja-arkut”.</td>
</tr>
<tr>
<td>Greek</td>
<td>diaeresis.hyphen</td>
<td>Removes the diaeresis above iota and upsilon if hyphenated just before. It works with the three variants.</td>
</tr>
<tr>
<td>Greek</td>
<td>transliteration.omega</td>
<td>Although the provided combinations are not the full set, this transform follows the syntax of Omega: = for the circumflex, v for digamma, and so on. For better compatibility with Levy's system, ~ (as 'string') is an alternative to =. ' is tonos in Monotonic Greek, but oxia in Polytonic and Ancient Greek.</td>
</tr>
</tbody>
</table>
Greek sigma.final The transliteration system above does not convert the sigma at the end of a word (on purpose). This transforms does it. To prevent the conversion (an abbreviation, for example), write “s.

Hindi, Sanskrit transliteration.hk The Harvard-Kyoto system to romanize Devanagari.

Hindi, Sanskrit punctuation.space Inserts a space before the following four characters: ?;:.

Hungarian digraphs.hyphen Hyphenates the long digraphs ccs, ddz, ggy, lly, nny, ssz, tty and zzs as cs-cs, dz-dz, etc.

Indic scripts danda.nobreak Prevents a line break before a danda or double danda if there is a space. For Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Tamil, Telugu.

Latin digraphs.ligatures Replaces the groups ae, AE, oe, OE with ae, AE, oe, OE.

Latin letters.noj Replaces j, J with i, I.

Latin letters.uv Replaces v, U with u, V.

Sanskrit transliteration.iast The IAST system to romanize Devanagari.\(^{16}\)

Serbian transliteration.gajica (Note serbian with ini files refers to the Cyrillic script, which is here the target.) The standard system devised by Ljudevit Gaj.

Arabic, Persian kashida.plain Experimental. A very simple and basic transform for ‘plain’ Arabic fonts, which attempts to distribute the tatwil as evenly as possible (starting at the end of the line). See the news for version 3.59.

\texttt{\textbackslash babelposthyphenation} \{\langle\text{options}\rangle\}\{\langle\text{hyphenrules-name}\rangle\}\{\langle\text{lua-pattern}\rangle\}\{\langle\text{replacement}\rangle\}

\textbf{New 3.37-3.39} With \texttt{luatex} it is possible to define non-standard hyphenation rules, like f-f → ff-f, repeated hyphens, ranked ruled (or more precisely, ‘penalized’ hyphenation points), and so on. A few rules are currently provided (see above), but they can be defined as shown in the following example, where \{1\} is the first captured char (between () in the pattern):

\begin{verbatim}
\texttt{\textbackslash babelposthyphenation\{german\}\{\langle\text{fmtrp}\rangle\} | \{1\}}
{
 { no = \{1\}, pre = \{1\}\{1\}- }, % Replace first char with disc
 remove,
 % Remove automatic disc (2nd node)
 \}
\end{verbatim}

In the replacements, a captured char may be mapped to another, too. For example, if the first capture reads \{\[i\]}, the replacement could be \{1 | \[i\]| \[i\]}, which maps \[i\] to \[i\], and \[i\] to \[i\], so that the diaeresis is removed.

This feature is activated with the first \texttt{\textbackslash babelposthyphenation} or \texttt{\textbackslash babelprehyphenation}.

\textbf{New 3.67} With the optional argument you can associate a user defined transform to an attribute, so that it’s active only when it’s set (currently its attribute value is ignored). With this mechanism transforms can be set or unset even in the middle of paragraphs, and applied to single words. To define, set and unset the attribute, the \LaTeX{} kernel provides the macros \texttt{\textbackslash newattribute}, \texttt{\textbackslash setattribute} and \texttt{\textbackslash unsetattribute}. The following example shows how to use it, provided an attribute named \texttt{\textbackslash latinnoj} has been declared:
\babelprehyphenation{attribute=\latinnoj}{latin}{ J }{ string = I }

See the \texttt{babel site} for a more detailed description and some examples. It also describes a few additional replacement types (\texttt{string}, \texttt{penalty}). Although the main purpose of this command is non-standard hyphenation, it may actually be used for other transformations (after hyphenation is applied, so you must take discretionaries into account).

You are limited to substitutions as done by \texttt{lua}, although a future implementation may alternatively accept \texttt{lpeg}.

\newcommand{\babelprehyphenation}{\langle\text{options}\rangle}{\langle\text{locale-name}\rangle}{\langle\text{lua-pattern}\rangle}{\langle\text{replacement}\rangle}

\textbf{New 3.44-3-52} It is similar to the latter, but (as its name implies) applied before hyphenation, which is particularly useful in transliterations. There are other differences: (1) the first argument is the locale instead of the name of the hyphenation patterns; (2) in the search patterns \texttt{=} has no special meaning, while \texttt{\mid} stands for an ordinary space; (3) in the replacement, discretionaries are not accepted. See the description above for the optional argument.

This feature is activated with the first \texttt{\babelposthyphenation} or \texttt{\babelprehyphenation}.

\textbf{EXAMPLE} You can replace a character (or series of them) by another character (or series of them).

Thus, to enter \v{z} as zh and \v{s} as sh in a newly created locale for transliterated Russian:

\begin{verbatim}
\babelprovide[hyphenrules=+]{russian-latin} % Create locale
\babelprehyphenation{russian-latin}{((sz))h} % Create rule
{ string = {1|sz|šž},
 remove
}
\end{verbatim}

\textbf{EXAMPLE} The following rule prevent the word “a” from being at the end of a line:

\texttt{\babelprehyphenation{english}{|a|}}
{ }, {}, % Keep first space and a
{ insert, penalty = 10000 }, % Insert penalty
{ } % Keep last space

\textbf{NOTE} With \texttt{luatex} there is another approach to make text transformations, with the function \texttt{fonts.handlers.otf.addfeature}, which adds new features to an OTF font (substitution and positioning). These features can be made language-dependent, and babel by default recognizes this setting if the font has been declared with \texttt{\babelfont}. The \texttt{transforms} mechanism supplements rather than replaces OTF features.

With \texttt{xetex}, where \texttt{transforms} are not available, there is still another approach, with font mappings, mainly meant to perform encoding conversions and transliterations. Mappings, however, are linked to fonts, not to languages.

\section*{1.22 Selection based on BCP 47 tags}

\textbf{New 3.43} The recommended way to select languages is that described at the beginning of this document. However, BCP 47 tags are becoming customary, particularly in documents (or parts of documents) generated by external sources, and therefore babel will provide a set of tools to select the locales in different situations, adapted to the particular needs of each case. Currently, babel provides autoloading of locales as described in this section. In these contexts autoloading is particularly important because we may not know on beforehand which languages will be requested.

It must be activated explicitly, because it is primarily meant for special tasks. Mapping from BCP 47 codes to locale names are not hardcoded in babel. Instead the data is taken

39
from the ini files, which means currently about 250 tags are already recognized. Babel performs a simple lookup in the following way: fr-Latn-FR → fr-Latn → fr-FR → fr. Languages with the same resolved name are considered the same. Case is normalized before, so that fr-latn-fr → fr-Latn-FR. If a tag and a name overlap, the tag takes precedence.

Here is a minimal example:

```latex
\documentclass{article}
\usepackage[danish]{babel}
\babeladjust{
  autoload.bcp47 = on,
  autoload.bcp47.options = import
}
\begin{document}
Chapter in Danish: \chaptername.
\selectlanguage{de-AT}
\localedate{2020}{1}{30}
\end{document}
```

Currently the locales loaded are based on the ini files and decoupled from the main ldf files. This is by design, to ensure code generated externally produces the same result regardless of the languages requested in the document, but an option to use the ldf instead will be added in a future release, because both options make sense depending on the particular needs of each document (there will be some restrictions, however). The behaviour is adjusted with `\babeladjust` with the following parameters:

- `autoload.bcp47` with values `on` and `off`.
- `autoload.bcp47.options`, which are passed to `\babelprovide`; empty by default, but you may add `import` (features defined in the corresponding babel-...tex file might not be available).
- `autoload.bcp47.prefix`. Although the public name used in selectors is the tag, the internal name will be different and generated by prepending a prefix, which by default is `bcp47-`. You may change it with this key.

New 3.46 If an ldf file has been loaded, you can enable the corresponding language tags as selector names with:

```latex
\babeladjust{ bcp47.toname = on }
```

(You can deactivate it with `off`.) So, if dutch is one of the package (or class) options, you can write `\selectlanguage{nl}`. Note the language name does not change (in this example is still dutch), but you can get it with `\localeinfo` or `\getlanguageproperty`. It must be turned on explicitly for similar reasons to those explained above.

1.23 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best selected with either `\fontencoding` (low-level) or a language name (high-level). Even the
Latin script may require different encodings (i.e., sets of glyphs) depending on the language, and therefore such a switch would be in a sense incomplete.17 Some languages sharing the same script define macros to switch it (e.g., \texttt{\textcyrillic}), but be aware they may also set the language to a certain default. Even the babel core defined \texttt{\textlatin}, but is was somewhat buggy because in some cases it messed up encodings and fonts (for example, if the main Latin encoding was LY1), and therefore it has been deprecated.18

\texttt{\textasciitilde{}\textasciitilde{\langle text\rangle}}

New 3.9i This macro makes sure \texttt{\langle text\rangle} is typeset with a LICR-savvy encoding in the ASCII range. It is used to redefine \texttt{\TeX} and \texttt{\LaTeX} so that they are correctly typeset even with LGR or X2 (the complete list is stored in \texttt{\BabelNonASCII}, which by default is LGR, X2, OT2, OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \texttt{\TeX} and \texttt{\LaTeX} are not redefined); otherwise, \texttt{\textasciitilde{\langle text\rangle}} switches to the encoding at the beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For example, if you load LY1, LGR, then it is set to LY1, but if you load LY1, T2A it is set to T2A. The symbol encodings T51, T3, and T53 are not taken into account, since they are not used for “ordinary” text (they are stored in \texttt{\BabelNonText}, used in some special cases when no Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of the cases. No assumption is made on characters above 127, which may not follow the LICR conventions – the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.24 Selecting directions

No macros to select the writing direction are provided, either – writing direction is intrinsic to each script and therefore it is best set by the language (which can be a dummy one). Furthermore, there are in fact two right-to-left modes, depending on the language, which differ in the way ‘weak’ numeric characters are ordered (e.g., Arabic %123 vs Hebrew 123%).

WARNING The current code for \texttt{\texttext} in \texttt{\textluatex} should be considered essentially stable, but, of course, it is not bug-free and there can be improvements in the future, because setting bidi text has many subtleties (see for example <https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must wait. This applies to text; there is a basic support for graphical elements, including the picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under study, as well as math (there are progresses in the latter, including amsmath and mathtools too, but for example gathered may fail).

An effort is being made to avoid incompatibilities in the future (this one of the reason currently bidi must be explicitly requested as a package option, with a certain bidi model, and also the layout options described below).

WARNING If characters to be mirrored are shown without changes with \texttt{\textluatex}, try with the following line:

```
\babeladjust{bidi.mirroring=off}
```

There are some package options controlling bidi writing.

\texttt{bidi= default | basic | basic-r | bidi-l | bidi-r}

17The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not necessarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does not mean it includes them for Classic Greek.

18But still defined for backwards compatibility.
New 3.14 Selects the bidi algorithm to be used. With default the bidi mechanism is just activated (by default it is not), but every change must be marked up. In \textit{xetex} and \textit{pdftex} this is the only option. In \textit{luatex}, \textit{basic-r} provides a simple and fast method for \textit{R} text, which handles numbers and unmarked \textit{L} text within an \textit{R} context many in typical cases. **New 3.19** Finally, \textit{basic} supports both \textit{L} and \textit{R} text, and it is the preferred method (support for \textit{basic-r} is currently limited). (They are named \textit{basic} mainly because they only consider the intrinsic direction of scripts and weak directionality.)

New 3.29 In \textit{xetex}, \textit{bidi-r} and \textit{bidi-l} resort to the package \textit{bidi} (by Vafa Khalighi). Integration is still somewhat tentative, but it mostly works. For RL documents use the former, and for LR ones use the latter. There are samples on GitHub, under \texttt{/required/babel/samples}. See particularly \texttt{lua-bidibasic.tex} and \texttt{lua-secenum.tex}.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia). Copy-pasting some text from the Wikipedia is a good way to test this feature. Remember \textit{basic} is available in \textit{luatex} only.

\begin{document}

\textit{ـﺑ(ﻲﻘﻳﺮﻏﻻا)ﻲﻨﻴﻠﻴﻬﻟاﺮﺼﻌﻟاﺔﻠﻴﻃبﺮﻌﻟاﺔﻠﻴﻃبﺮﻌﻟاةﺮﻳﺰﺟﻪﺒﺷﺖﻓﺮﻋﺪﻗو Arabia} و أ \textit{Aravia (بالتركية)} ثلاث نموذج تدخل، "ـﺑتﺎﺋدﺎﺑ Arabia" ألا إ،

\end{document}

EXAMPLE With \textit{bidi=basic} both \textit{L} and \textit{R} text can be mixed without explicit markup (the latter will be only necessary in some special cases where the Unicode algorithm fails). It is used much like \textit{bidi=basic-r}, but with \textit{R} text inside \textit{L} text you may want to map the font so that the correct features are in force. This is accomplished with an option in \texttt{\babelfont}, as illustrated:

\begin{document}

Most Arabic speakers consider the two varieties to be two registers of one language, although the two registers can be referred to in Arabic as \textit{fuṣḥā l-‘aṣr} (MSA) and \textit{fuṣḥā t-turāth} (CA).

\end{document}

In this example, and thanks to \texttt{onchar=ids fonts}, any Arabic letter (because the language is \texttt{arabic}) changes its font to that set for this language (here defined via \texttt{*arabic}, because \textit{Crimson} does not provide Arabic letters).
NOTE Boxes are “black boxes”. Numbers inside an \hbox (for example in a \ref) do not know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in the visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the digits inside the \hbox'es). If you need \ref ranges, the best option is to define a dedicated macro like this (to avoid explicit direction changes in the body; here \texte must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texte\ref{#1}}-\texte\ref{#2}}

In the future a more complete method, reading recursively boxed text, may be added.

layout= sectioning | counters | lists | contents | footnotes | captions | columns | graphics | extras

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents, including some text elements (except with options loading the bidi package, which provides its own mechanism to control these elements). You may use several options with a dot-separated list (eg. layout=counters.contents.sectioning). This list will be expanded in future releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with the title text in the current language (see below \BabelPatchSection for further details).

counters required in all engines (except luatex with bidi=basic) to reorder section numbers and the like (eg. (subsection).\langle section\rangle); required in xetex and pdftex for counters in general, as well as in luatex with bidi=default; required in luatex for numeric footnote marks >9 with bidi=basic-r (but not with bidi=basic); note, however, it can depend on the counter format.

With counters, \arabic is not only considered \text always (with \babelsublr, see below), but also an “isolated” block which does not interact with the surrounding chars. So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal number), in \arabic\{c1\}.\arabic\{c2\} the visual order is c2.c1. Of course, you may always adjust the order by changing the language, if necessary.

lists required in xetex and pdftex, but only in bidirectional (with both R and L paragraphs) documents in luatex.

WARNING As of April 2019 there is a bug with \parshape in luatex (a \TeX primitive) which makes lists to be horizontally misplaced if they are inside a \hbox (like minipage) and the current direction is different from the main one. A workaround is to restore the main language before the box and then set the local one inside.

contents required in xetex and pdftex; in luatex toc entries are R by default if the main language is R.

columns required in xetex and pdftex to reverse the column order (currently only the standard two-column mode); in luatex they are R by default if the main language is R (including multicol).

footnotes not required in monolingual documents, but it may be useful in bidirectional documents (with both R and L paragraphs) in all engines; you may use alternatively \BabelFootnote described below (what this option does exactly is also explained there).

captions is similar to sectioning, but for \caption; not required in monolingual documents with luatex, but may be required in xetex and pdftex in some styles (support for the latter two engines is still experimental) New 3.18.

tabular required in luatex for R tabular, so that the first column is the right one (it has been tested only with simple tables, so expect some readjustments in the future); ignored in pdftex or xetex (which will not support a similar option in the short term). It patches an internal command, so it might be ignored by some packages and classes (or even raise an error). New 3.18.

New 3.18

43

19Next on the roadmap are counters and numeral systems in general. Expect some minor readjustments.
graphics modifies the picture environment so that the whole figure is L but the text is R. It does not work with the standard picture, and pict2e is required. It attempts to do the same for pgf/tikz. Somewhat experimental. New 3.32.

extras is used for miscellaneous readjustments which do not fit into the previous groups. Currently redefines in \LaTeX{2e} New 3.19.

EXAMPLE Typically, in an Arabic document you would need:

```
\usepackage[bidi=basic,
    layout=counters.tabular]{babel}
```

\babelsublr {⟨lr-text⟩}

Digits in pdftex must be marked up explicitly (unlike \LaTeX\ with bidi=basic or bidi=basic-r and, usually, \TeX{}). This command is provided to set ⟨⟨lr-text⟩⟩ in L mode if necessary. It’s intended for what Unicode calls weak characters, because words are best set with the corresponding language. For this reason, there is no r1 counterpart. Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L, it first returns to R and then switches to explicit L. To clarify this point, consider, in an R context:

RTL A ltr text \thechapter{} and still ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still ltr 1 ltr text RTL A. This is by design to provide the proper behavior in the most usual cases—but if you need to use \ref in an L text inside R, the L text must be marked up explicitly; for example:

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B

\BabelPatchSection {⟨section-name⟩}

Mainly for bidi text, but it can be useful in other cases. \BabelPatchSection and the corresponding option layout=sectioning takes a more logical approach (at least in many cases) because it applies the global language to the section format (including the \chaptername{} in \chapter), while the section text is still the current language. The latter is passed to tocs and marks, too, and with sectioning in layout they both reset the “global” language to the main one, while the text uses the “local” language. With layout=sectioning all the standard sectioning commands are redefined (it also “isolates” the page number in heads, for a proper bidi behavior), but with this command you can set them individually if necessary (but note then tocs and marks are not touched).

\BabelFootnote {⟨cmd⟩}{⟨local-language⟩}{⟨before⟩}{⟨after⟩} New 3.17 Something like:

```
\BabelFootnote{\parsfootnote}{\languagename}{(}{)}
```

defines \parsfootnotetext so that \parsfootnotetext{note} is equivalent to:

```
\footnote{{\foreignlanguage{\languagename}{note}}}
```

but the footnote itself is typeset in the main language (to unify its direction). In addition, \parsfootnotetext is defined. The option footnotes just does the following:
(which also redefine \footnotetext and define \localfootnotetext and \mainfootnotetext). If the language argument is empty, then no language is selected inside the argument of the footnote. Note this command is available always in bidi documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes entirely in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line. This means the dot the end of the footnote text should be omitted.

1.25 Language attributes

\languageattribute

This is a user-level command, to be used in the preamble of a document (after \usepackage{...}{babel}), that declares which attributes are to be used for a given language. It takes two parameters: the first is the name of the language; the second, a (list of) attribute(s) to be used. Attributes must be set in the preamble and only once – they cannot be turned on and off. The command checks whether the language is known in this document and whether the attribute(s) are known for this language.

Very often, using a modifier in a package option is better. Several language definition files use their own methods to set options. For example, french uses \frenchsetup, magyar (1.5) uses \magyarOptions; modifiers provided by spanish have no attribute counterparts. Macros setting options are also used (eg, \ProsodicMarksOn in latin).

1.26 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are predefined when luatex and xetex are used.

New 3.64 This is not the only way to inject code at those points. The events listed below can be used as a hook name in \AddToHook in the form babel/⟨language-name⟩/⟨event-name⟩ (with * it’s applied to all languages), but there is a limitation, because the parameters passed with the babel mechanism are not allowed. The \AddToHook mechanism does not replace the current one in ’babel’. Its main advantage is you can reconfigure ’babel’ even before loading it. See the example below.

\AddBabelHook \langle lang\rangle\langle name\rangle\langle event\rangle\langle code\rangle

The same name can be applied to several events. Hooks with a certain \langle name\rangle may be enabled and disabled for all defined events with \EnableBabelHook\langle name\rangle, \DisableBabelHook\langle name\rangle. Names containing the string babel are reserved (they are used, for example, by \useshortands* to add a hook for the event afterextras).

New 3.33 They may be also applied to a specific language with the optional argument; language-specific settings are executed after global ones.

Current events are the following; in some of them you can use one to three \TeX parameters (#1, #2, #3), with the meaning given:

addialect (language name, dialect name) Used by luababel.def to load the patterns if not preloaded.
patterns (language name, language with encoding) Executed just after the `\language` has been set. The second argument has the patterns name actually selected (in the form of either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before exceptions given in `\babelhyphenation` are actually set.

defaultcommands Used (locally) in `\StartBabelCommands`.

encodedcommands (input, font encodings) Used (locally) in `\StartBabelCommands`. Both xetex and luatex make sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

beforeextras Just before executing `\extras{language}`. This event and the next one should not contain language-dependent code (for that, add it to `\extras{language}`).

afterextras Just after executing `\extras{language}`. For example, the following deactivates shorthands in all languages:

```latex
\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}
```

stringprocess Instead of a parameter, you can manipulate the macro `\BabelString` containing the string to be defined with `\SetString`. For example, to use an expanded version of the string in the definition, write:

```latex
\AddBabelHook{myhook}{stringprocess}{%
  \protected@edef\BabelString{\BabelString}}
```

initiateactive (char as active, char as other, original char) New 3.9i Executed just after a shorthand has been 'initiated'. The three parameters are the same character with different catcodes: active, other (`\string'ed) and the original one.

afterreset New 3.9i Executed when selecting a language just after `\originalTeX` is run and reset to its base value, before executing `\captions{language}` and `\date{language}`.

Four events are used in `hyphen.cfg`, which are handled in a quite different way for efficiency reasons – unlike the precedent ones, they only have a single hook and replace a default definition.

everylanguage (language) Executed before every language patterns are loaded.

loadkernel (file) By default just defines a few basic commands. It can be used to define different versions of them or to load a file.

loadpatterns (patterns file) Loads the patterns file. Used by `luababel.def`.

loadexceptions (exceptions file) Loads the exceptions file. Used by `luababel.def`.

EXAMPLE The generic unlocalized \LaTeX hooks are predefined, so that you can write:

```latex
\AddToHook{babel/*/afterextras}{\frenchspacing}
```

which is executed always after the extras for the language being selected (and just before the non-localized hooks defined with `\AddBabelHook`).

In addition, locale-specific hooks in the form `babel/{language-name}/{event-name}` are recognized (executed just before the localized babel hooks), but they are not predefined. You have to do it yourself. For example, to set \frenchspacing only in bengali:

```latex
\ActivateGenericHook{babel/bengali/afterextras}
\AddToHook{babel/bengali/afterextras}{\frenchspacing}
```
New 3.9a This macro contains a list of “toc” types requiring a command to switch the
language. Its default value is toc, lof, lot, but you may redefine it with \renewcommand
(it's up to you to make sure no toc type is duplicated).

1.27 Languages supported by babel with ldf files

In the following table most of the languages supported by babel with and .ldf file are
listed, together with the names of the option which you can load babel with for each
language. Note this list is open and the current options may be different. It does not
include 1n1 files.

Afrikaans afrikaans
Azerbaijani azerbaijani
Basque basque
Breton breton
Bulgarian bulgarian
Catalan catalan
Croatian croatian
Czech czech
Danish danish
Dutch dutch
English english, USenglish, american, UKenglish, british, canadian, australian, newzealand
Esperanto esperanto
Estonian estonian
Finnish finnish
French french, francais, canadien, acadian
Galician galician
German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Icelandic icelandic
Indonesian indonesian (bahasa, indon, bahasai)
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
Malay malay, melayu (bahasam)
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuguese, brazilian (portuges, brazil)20
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

There are more languages not listed above, including hindi, thai, thaijck, latvian, turkmen,
magyar, mongolian, romansh, lithuanian, spanenglish, vietnamese, japanese, pinyin, arabic,
farsi, ibygreek, bgreek, serbianc, freenle, ethiop and friulan.

20The two last name comes from the times when they had to be shortened to 8 characters
Most of them work out of the box, but some may require extra fonts, encoding files, a preprocessor or even a complete framework (like CJK or luatexja). For example, if you have got the velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}
\usepackage[hindi]{babel}
\begin{document}
{\dn devaana.m priya.h}
\end{document}

Then you preprocess it with devnag ⟨file⟩, which creates ⟨file⟩.tex; you can then typeset the latter with \TeX.

1.28 Unicode character properties in luatex

New 3.32 Part of the babel job is to apply Unicode rules to some script-specific features based on some properties. Currently, they are 3, namely, direction (ie, bidi class), mirroring glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which you can modify with the following macro (for example, to set them for glyphs in the PUA).

\babelcharproperty {⟨char-code⟩}{⟨to-char-code⟩}{⟨property⟩}{⟨value⟩}

New 3.32 Here, {⟨char-code⟩} is a number (with \TeX syntax). With the optional argument, you can set a range of values. There are three properties (with a short name, taken from Unicode): direction (bc), mirror (bmg), linebreak (lb). The settings are global, and this command is allowed only in vertical mode (the preamble or between paragraphs). For example:

\babelcharproperty{`¿}{mirror}{`?}
\babelcharproperty{`-}{direction}{l} % or al, r, en, an, on, et, cs
\babelcharproperty{`)}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy

New 3.39 Another property is locale, which adds characters to the list used by onchar in \babelprovide, or, if the last argument is empty, removes them. The last argument is the locale name:

\babelcharproperty{`,}{locale}{english}

1.29 Tweaking some features

\babeladjust {⟨key-value-list⟩}

New 3.36 Sometimes you might need to disable some babel features. Currently this macro understands the following keys (and only for luatex), with values on or off: bidi.text, bidi.mirroring, bidi.mapdigits, layout.lists, layout.tabular, linebreak.sea, linebreak.cjk, justify.arabic. For example, you can set \babeladjust{bidi.text=off} if you are using an alternative algorithm or with large sections not requiring it. Use with care, because these options do not deactivate other related options (like paragraph direction with bidi.text).

1.30 Tips, workarounds, known issues and notes

- If you use the document class book and you use \ref inside the argument of \chapter (or just use \ref inside \MakeUppercase), \TeX will keep complaining about an undefined label. To prevent such problems, you can revert to using uppercase labels, you can use \lowercase{\ref{foo}} inside the argument of \chapter, or, if you will not use shorthands in labels, set the safe option to none or bib.
• Both ltxdoc and babel use `\AtBeginDocument` to change some catcodes, and babel reloads `hhline` to make sure it has the right one, so if you want to change the catcode of `|` it has to be done using the same method at the proper place, with

```latex
\AtBeginDocument{\DeleteShortVerb{|}}
```

Before loading babel. This way, when the document begins the sequence is (1) make `|` active (ltxdoc); (2) make it unactive (your settings); (3) make babel shorthands active (babel); (4) reload `hhline` (babel, now with the correct catcodes for `|` and `:`).

• Documents with several input encodings are not frequent, but sometimes are useful. You can set different encodings for different languages as the following example shows:

```latex
\addto\extrasfrench{\inputencoding{latin1}}
\addto\extrasrussian{\inputencoding{koi8-r}}
```

• For the hyphenation to work correctly, lccodes cannot change, because Ti\TeX\ only takes into account the values when the paragraph is hyphenated, i.e., when it has been finished.\(^\text{21}\) So, if you write a chunk of French text with `\foreignlanguage`, the apostrophes might not be taken into account. This is a limitation of Ti\TeX, not of babel. Alternatively, you may use `\useshortshands` to activate `'` and `\defineshorthand`, or redefine `\textquoteleft` (the latter is called by the non-ASCII right quote).

• `\bibitem` is out of sync with `\selectlanguage` in the `.aux` file. The reason is `\bibitem` uses `\immediate` (and others, in fact), while `\selectlanguage` doesn’t. There is a similar issue with floats, too. There is no known workaround.

• Babel does not take into account `\mathnomsf` and (non-)French spacing is not always properly (un)set by languages. However, problems are unlikely to happen and therefore this part remains untouched in version 3.9 (but it is in the ‘to do’ list).

• Using a character mathematically active (i.e., with math code “8000”) as a shorthand can make Ti\TeX enter in an infinite loop in some rare cases. (Another issue in the ‘to do’ list, although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

- **csquotes** Logical markup for quotes.
- **iflang** Tests correctly the current language.
- **hyphsubst** Selects a different set of patterns for a language.
- **translator** An open platform for packages that need to be localized.
- **siunitx** Typesetting of numbers and physical quantities.
- **biblatex** Programmable bibliographies and citations.
- **bicaption** Bilingual captions.
- **babelbib** Multilingual bibliographies.
- **microtype** Adjusts the typesetting according to some languages (kerning and spacing). Ligatures can be disabled.
- **substitutfont** Combines fonts in several encodings.
- **mkpattern** Generates hyphenation patterns.
- **tracklang** Tracks which languages have been requested.
- **ucharclasses** (xetex) Switches fonts when you switch from one Unicode block to another.
- **zhspacing** Spacing for CJK documents in xetex.

\(^{21}\)This explains why Ti\TeX assumes the lowercase mapping of T1 and does not provide a tool for multiple mappings. Unfortunately, `\savethypcodes` is not a solution either, because lccodes for hyphenation are frozen in the format and cannot be changed.
1.31 Current and future work

The current work is focused on the so-called complex scripts in \textit{latex}. In 8-bit engines, \texttt{babel} provided a basic support for bidi text as part of the style for Hebrew, but it is somewhat unsatisfactory and internally replaces some hardwired commands by other hardwired commands (generic changes would be much better).

Useful additions would be, for example, time, currency, addresses and personal names. But that is the easy part, because they don’t require modifying the \texttt{latex} internals.

Calendars (Arabic, Persian, Indic, etc.) are under study. Also interesting are differences in the sentence structure or related to it. For example, in Basque the number precedes the name (including chapters), in Hungarian “from (1)” is “(1)-ből”, but “from (3)” is “(3)-ből”. In Spanish an item labelled “3.ño” may be referred to as either “item 3.ño” or “3.ño item”, and so on.

An option to manage bidirectional document layout in \textit{latex} (lists, footnotes, etc.) is almost finished, but \texttt{xe}tex required more work. Unfortunately, proper support for \texttt{xe}tex requires patching somehow lots of macros and packages (and some issues related to \texttt{\special}s remain, like color and hyperlinks), so \texttt{babel} resorts to the \texttt{bidi} package (by Vafa Khalighi). See the \texttt{babel} repository for a small example (xe-bidi).

1.32 Tentative and experimental code

See the code section for \texttt{\foreignlanguage*} (a new starred version of \texttt{\foreignlanguage}). For old and deprecated functions, see the \texttt{babel} site.

Options for locales loaded on the fly

\begin{verbatim}
\newcommand{\babeladjust}[1]{\let\autoLoadOptions=\let\loadOptions=#1}
\end{verbatim}

\texttt{\babeladjust{ autoload.options = ... }} sets the options when a language is loaded on the fly (by default, no options). A typical value would be \texttt{import}, which defines captions, date, numerals, etc., but ignores the code in the \texttt{tex} file (for example, extended numerals in Greek).

Labels

\texttt{\newcommand{\language}{...}} There is some work in progress for \texttt{babel} to deal with labels, both with the relation to captions (chapters, part), and how counters are used to define them. It is still somewhat tentative because it is far from trivial – see the \texttt{babel} site for further details.

2 Loading languages with \texttt{language.dat}

\TeX{} and most engines based on it (pdf\TeX, \texttt{xetex}, \texttt{\-\TeX}, the main exception being \texttt{latex}) require hyphenation patterns to be preloaded when a format is created (eg, \texttt{\-\TeX}, \texttt{Xe\-\TeX}, pdf\TeX). \texttt{babel} provides a tool which has become standard in many distributions and based on a “configuration file” named \texttt{language.dat}. The exact way this file is used depends on the distribution, so please, read the documentation for the latter (note also some distributions generate the file with some tool).

\texttt{\newcommand{\language}{...}} With \texttt{latex}, however, patterns are loaded on the fly when requested by the language (except the “0th” language, typically \texttt{english}, which is preloaded always). Until 3.9n, this task was delegated to the package \texttt{latex-hyphen}, by Khaled Hosny, Élie Roux, and Manuel Pégourié-Gonnard, and required an extra file named \texttt{language.dat.1ua}, but now a new mechanism has been devised based solely on \texttt{language.dat}. \textbf{You must rebuild the formats} if upgrading from a previous version. You may want to have a local \texttt{language.dat} for a particular project (for example, a book on Chemistry).\footnote{The loader for \texttt{latex} is slightly different as it’s not based on \texttt{babel} but on \texttt{etex.src}. Until 3.9p it just didn’t work, but thanks to the new code it works by reloading the data in the \texttt{babel} way, \ie, with \texttt{language.dat}.}

\footnote{This feature was added to 3.9o, but it was buggy. Both 3.9o and 3.9p are deprecated.}

\footnote{See for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR). Those systems, however, have limited application to \TeX{} because their aim is just to display information and not fine typesetting.}
2.1 Format

In that file the person who maintains a \TeX environment has to record for which languages he has hyphenation patterns and in which files these are stored\(^{25}\). When hyphenation exceptions are stored in a separate file this can be indicated by naming that file after the file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an equals (=) sign. Such a line will instruct \TeX that the hyphenation patterns just processed have to be known under an alternative name. Here is an example:

\begin{verbatim}
% File : language.dat
% Purpose : tell \texmf \ what files with patterns to load.
english english.hyphenations
british

 dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger
\end{verbatim}

You may also set the font encoding the patterns are intended for by following the language name by a colon and the encoding code.\(^{26}\) For example:

\begin{verbatim}
german:T1 hyphenT1.ger
german hyphen.ger
\end{verbatim}

With the previous settings, if the encoding when the language is selected is T1 then the patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the encoding can be set in \texttt{\LaTeX}⟨lang⟩).

A typical error when using babel is the following:

\begin{verbatim}
No hyphenation patterns were preloaded for
the language `<lang>' into the format.
Please, configure your \TeX{} system to add them and
rebuild the format. Now I will use the patterns
preloaded for english instead}
\end{verbatim}

It simply means you must reconfigure language.dat, either by hand or with the tools provided by your distribution.

3 The interface between the core of babel and the language definition files

The language definition files (ldf) must conform to a number of conventions, because these files have to fill in the gaps left by the common code in babel.def, i.e., the definitions of the macros that produce texts. Also the language-switching possibility which has been built into the babel system has its implications.

The following assumptions are made:

- Some of the language-specific definitions might be used by plain \TeX users, so the files have to be coded so that they can be read by both \TeX and plain \TeX. The current format can be checked by looking at the value of the macro \texttt{\LaTeX}⟨\filename⟩.

- The common part of the babel system redefines a number of macros and environments (defined previously in the document style) to put in the names of macros that replace the previously hard-wired texts. These macros have to be defined in the language definition files.

\(^{25}\)This is because different operating systems sometimes use very different file-naming conventions.

\(^{26}\)This is not a new feature, but in former versions it didn’t work correctly.
• The language definition files must define five macros, used to activate and deactivate the language-specific definitions. These macros are \langle lang\rangle \hyphenmins, \captions{lang}, \date{lang}, \extras{lang} and \noextras{lang}; the last two may be left empty: where \langle lang\rangle is either the name of the language definition file or the name of the \LaTeX option that is to be used. These macros and their functions are discussed below. You must define all or none for a language (or a dialect); defining, say, \date{lang} but not \captions{lang} does not raise an error but can lead to unexpected results.

• When a language definition file is loaded, it can define \l@{lang} to be a dialect of \language0 when \l@{lang} is undefined.

• Language names must be all lowercase. If an unknown language is selected, babel will attempt setting it after lowercasing its name.

• The semantics of modifiers is not defined (on purpose). In most cases, they will just be simple separated options (eg. spanish), but a language might require, say, a set of options organized as a tree with suboptions (in such a case, the recommended separator is /).

Some recommendations:

• The preferred shorthand is ”, which is not used in \LaTeX (quotes are entered as ‘‘ and ’’). Other good choices are characters which are not used in a certain context (eg. = in an ancient language). Note however =, <, >, : and the like can be dangerous, because they may be used as part of the syntax of some elements (numeric expressions, key/value pairs, etc.).

• Captions should not contain shorthands or encoding-dependent commands (the latter is not always possible, but should be clearly documented). They should be defined using the \LICR. You may also use the new tools for encoded strings, described below.

• Avoid adding things to \noextras{lang} except for umlauthigh and friends, \bbl@deactivate, \bbl@(non)frenchspacing, and language-specific macros. Use always, if possible, \bbl@save and \bbl@savevariable (except if you still want to have access to the previous value). Do not reset a macro or a setting to a hardcoded value. Never. Instead save its value in \extras{lang}.

• Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the font encoding (low-level) or the language (high-level, which in turn may switch the font encoding). Usage of things like \latintext is deprecated.\footnote{But not removed, for backward compatibility.}

• Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and it can lead to incompatibilities.

There are no special requirements for documenting your language files. Now they are not included in the base babel manual, so provide a standalone document suited for your needs, as well as other files you think can be useful. A PDF and a “readme” are strongly recommended.

3.1 Guidelines for contributed languages

Currently, the easiest way to contribute a new language is by taking one the the 500 or so ini templates available on GitHub as a basis. Just make a pull request to download it and then, after filling the fields, sent it to me. Fell free to ask for help or to make feature requests.

As to .l df files, now language files are “outsourced” and are located in a separate directory (/macros/latex/contrib/babel-contrib), so that they are contributed directly to CTAN (please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do it, here are a few guidelines.
• Do not hesitate stating on the file heads you are the author and the maintainer, if you actually are. There is no need to state the babel maintainer(s) as authors if they have not contributed significantly to your language files.

• Fonts are not strictly part of a language, so they are best placed in the corresponding TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.

• Font and input encodings are usually best placed in the corresponding tree, too, but sometimes they belong more naturally to the babel style. Note you may also need to define a LICR.

• Babel ldf files may just interface a framework, as it happens often with Oriental languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point for ldf files: http://www.texnia.com/incubator.html. See also https://latex3.github.io/babel/guides/list-of-locale-templates.html.

If you need further assistance and technical advice in the development of language styles, I am willing to help you. And of course, you can make any suggestion you like.

3.2 Basic macros

In the core of the babel system, several macros are defined for use in language definition files. Their purpose is to make a new language known. The first two are related to hyphenation patterns.

\addlanguage The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in plain.tex version 3.x. Here “language” is used in the TeX sense of set of hyphenation patterns.

\adddialect The macro \adddialect can be used when two languages can (or must) use the same hyphenation patterns. This can also be useful for languages for which no patterns are preloaded in the format. In such cases the default behavior of the babel system is to define this language as a ‘dialect’ of the language for which the patterns were loaded as \language0. Here “language” is used in the TeX sense of set of hyphenation patterns.

<lang>hyphenmins The macro \langle lang\rangle hyphenmins is used to store the values of the \lefthyphenmin and \righthyphenmin. Redefine this macro to set your own values, with two numbers corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang> has no effect.)

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to set \lefthyphenmin and \righthyphenmin. This macro will check whether these parameters were provided by the hyphenation file before it takes any action. If these values have been already set, this command is ignored (currently, default pattern files do not set them).

\captions<lang> The macro \captions<lang> defines the macros that hold the texts to replace the original hard-wired texts.

\date<lang> The macro \date<lang> defines \today.

\extras<lang> The macro \extras<lang> contains all the extra definitions needed for a specific language. This macro, like the following, is a hook – you can add things to it, but it must not be used directly.

\noextras<lang> Because we want to let the user switch between languages, but we do not know what state TeX might be in after the execution of \extras<lang>, a macro that brings TeX into a predefined state is needed. It will be no surprise that the name of this macro is \noextras<lang>.

\bbl@declare@attribute This is a command to be used in the language definition files for declaring a language attribute. It takes three arguments: the name of the language, the attribute to be defined, and the code to be executed when the attribute is to be used.

\mainlanguage To postpone the activation of the definitions needed for a language until the beginning of a
document, all language definition files should use \main@language instead of
\selectlanguage. This will just store the name of the language, and the proper language
will be activated at the start of the document.

\ProvidesLanguage

The macro \ProvidesLanguage should be used to identify the language definition files. Its
syntax is similar to the syntax of the \ProvidesPackage command.

\LdfInit

The macro \LdfInit performs a couple of standard checks that must be made at the
beginning of a language definition file, such as checking the category code of the @-sign,
preventing the .ldf file from being processed twice, etc.

\ldf@quit

The macro \ldf@quit does work needed if a .ldf file was processed earlier. This includes
resetting the category code of the @-sign, preparing the language to be activated at
\begin{document} time, and ending the input stream.

\ldf@finish

The macro \ldf@finish does work needed at the end of each .ldf file. This includes
resetting the category code of the @-sign, loading a local configuration file, and preparing
the language to be activated at \begin{document} time.

\loadlocalcfg

After processing a language definition file, \LaTeX can be instructed to load a local
configuration file. This file can, for instance, be used to add strings to \captions⟨lang⟩ to
support local document classes. The user will be informed that this configuration file has
been loaded. This macro is called by \ldf@finish.

\substitutefontfamily

(Deprecated.) This command takes three arguments, a font encoding and two font family
names. It creates a font description file for the first font in the given encoding. This .fd file
will instruct \LaTeX to use a font from the second family when a font from the first family in
the given encoding seems to be needed.

3.3 Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an attribute.
Strings are best defined using the method explained in sec. 3.8 (babel 3.9 and later).

```latex
\ProvidesLanguage{<language>}
\[2016/04/23 v0.0 <Language> support from the babel system\]
\LdfInit{<language>}{captions<language>}
\ifx\undefined\l@<language>\@nopatterns{<Language>}
\adddialect\l@<language>0
\fi
\adddialect\l@<dialect>\l@<language>
\bbl@declare@attribute{<language>}{<attrib>}{%
\expandafter\addto\expandafter\extras<language>
\expandafter{\extras<attrib><language>}%
\let\captions<language>\captions<attrib><language>}%
\providehyphenmins{<language>}{\tw@\thr@@}
\StartBabelCommands*{<language>}{captions}
\SetString\chaptername{<chapter name>}
\% More strings
\StartBabelCommands*{<language>}{date}
\SetString\monthiname{<name of first month>}
\% More strings
\StartBabelCommands*{<dialect>}{captions}
\SetString\chaptername{<chapter name>}
\% More strings
\StartBabelCommands*{<dialect>}{date}
\SetString\monthiname{<name of first month>}
```
NOTE If for some reason you want to load a package in your style, you should be aware it cannot be done directly in the ldf file, but it can be delayed with \AtEndOfPackage. Macros from external packages can be used inside definitions in the ldf itself (for example, \extras<language>), but if executed directly, the code must be placed inside \AtEndOfPackage. A trivial example illustrating these points is:

\AtEndOfPackage{%
 \RequirePackage{dingbat}% Delay package
 \savebox{\myeye}{\eye}% And direct usage
 \newsavebox{\myeye}
 \newcommand{\myanchor}{\anchor}% But OK inside command
%

3.4 Support for active characters

In quite a number of language definition files, active characters are introduced. To facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files to instruct \LaTeX to give a character the category code 'active'. When a character has been made active it will remain that way until the end of the document. Its definition may vary.

The command \bbl@activate is used to change the way an active character expands. \bbl@activate 'switches on' the active behavior of the character. \bbl@deactivate lets the active character expand to its former (mostly) non-active self.

The macro \declare@shorthand is used to define the various shorthands. It takes three arguments: the name for the collection of shorthands this definition belongs to; the character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be executed when the shorthand is encountered. (It does not raise an error if the shorthand character has not been "initiated".)

The \TeXbook states: "Plain \TeX includes a macro called \dospecials that is essentially a set macro, representing the set of all characters that have a special category code." [4, p. 380] It is used to set text `verbatim'. To make this work if more characters get a special category code, you have to add this character to the macro \dospecial. \TeX adds another macro called \s@sanitize representing the same character set, but without the curly braces. The macros \bbl@add@special⟨char⟩ and \bbl@remove@special⟨char⟩ add and remove the character ⟨char⟩ to these two sets.

3.5 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a mechanism for saving (and restoring) the original definition of those macros is provided. We provide two macros for this\footnote{This mechanism was introduced by Bernd Raichle}.

To save the current meaning of any control sequence, the macro \bbl@save is provided. It takes one argument, ⟨csname⟩, the control sequence for which the meaning has to be saved.

A second macro is provided to save the current value of a variable. In this context,
anything that is allowed after the \the primitive is considered to be a variable. The macro takes one argument, the \langle variable \rangle.

The effect of the preceding macros is to append a piece of code to the current definition of \originalTeX. When \originalTeX is expanded, this code restores the previous definition of the control sequence or the previous value of the variable.

3.6 Support for extending macros

\addto{} The macro \addto{\langle control sequence \rangle}{\langle \TeX code \rangle} can be used to extend the definition of a macro. The macro need not be defined (ie, it can be undefined or \relax). This macro can, for instance, be used in adding instructions to a macro like \extrasenglish. Be careful when using this macro, because depending on the case the assignment can be either global (usually) or local (sometimes). That does not seem very consistent, but this behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp Lehman, consider using the tools provided by this package instead of \addto.

3.7 Macros common to a number of languages

\allowhyphens Same as \bb@allowhyphens, but does nothing if the encoding is T1. It is intended mainly for characters provided as real glyphs by this encoding but constructed with \accent in OT1. Note the previous command (\bb@allowhyphens) has different applications (hyphens and discretionary) than this one (composite chars). Note also prior to version 3.7, \allowhyphens had the behavior of \bb@allowhyphens.

\setlowbox For some languages, quotes need to be lowered to the baseline. For this purpose the macro \setlowbox is available. It takes one argument and puts that argument in an \hbox, at the baseline. The result is available in \box0 for further processing.

\save@sfq Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro \save@sfq is available. It takes one argument, saves the current spacefactor, executes the argument, and restores the spacefactor.

\bbl@frenchspacing The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to properly switch French spacing on and off.

3.8 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings, intended mainly for \latex{} and \xetex{}. This is the only new feature requiring changes in language files if you want to make use of it. Furthermore, it must be activated explicitly, with the package option \string{}s. If there is no \string{}s, these blocks are ignored, except \SetCases (and except if forced as described below). In other words, the old way of defining/switching strings still works and it’s used by default.

It consists of a series of blocks started with \StartBabelCommands. The last block is closed with \EndBabelCommands. Each block is a single group (ie, local declarations apply until the next \StartBabelCommands or \EndBabelCommands). An \ldf{} may contain several series of this kind.

Thanks to this new feature, string values and string language switching are not mixed any more. No need of \addto. If the language is french, just redefine \frenchchaptername.

\StartBabelCommands{}{} \EndBabelCommands{}{}
\StartBabelCommands sets it to \CurrentOption. You may write \CurrentOption as the language, but this is discouraged – a explicit name (or names) is much better and clearer. A “selector” is a name to be used as value in package option strings, optionally followed by extra info about the encodings to be used. The name unicode must be used for xetex and luatex (the key strings has also other two special values: generic and encoded). If a string is set several times (because several blocks are read), the first one takes precedence (ie, it works much like \providecommand). Encoding info is charset= followed by a charset, which if given sets how the strings should be translated to the internal representation used by the engine, typically utf8, which is the only value supported currently (default is no translations). Note charset is applied by luatex and xetex when reading the file, not when the macro or string is used in the document. A list of font encodings which the strings are expected to work with can be given after fontenc= (separated with spaces, if two or more) – recommended, but not mandatory, although blocks without this key are not taken into account if you have requested strings=encoded. Blocks without a selector are read always if the key strings has been used. They provide fallback values, and therefore must be the last blocks; they should be provided always if possible and all strings should be defined somehow inside it; they can be the only blocks (mainly LGC scripts using the LICR). Blocks without a selector can be activated explicitly with strings=generic (no block is taken into account except those). With strings=encoded, strings in those blocks are set as default (internally, ?). With strings=encoded strings are protected, but they are correctly expanded in \MakeUppercase and the like. If there is no key strings, string definitions are ignored, but \SetCases are still honored (in a encoded way). The \langle category \rangle is either captions, date or extras. You must stick to these three categories, even if no error is raised when using other name.\footnote{In future releases further categories may be added.} It may be empty, too, but in such a case using \SetString is an error (but not \SetCase).

A real example is:

\StartBabelCommands{language}{captions} [unicode, fontenc=TU EU1 EU2, charset=utf8] \SetString{\chaptername}{utf8-string} \EndBabelCommands

\StartBabelCommands{language}{captions} \SetString{\chaptername}{ascii-maybe-LICR-string} \EndBabelCommands

\StartBabelCommands{austrian}{date} [unicode, fontenc=TU EU1 EU2, charset=utf8] \SetString{\monthiname}{Jänner} \EndBabelCommands

\StartBabelCommands{german,austrian}{date} [unicode, fontenc=TU EU1 EU2, charset=utf8] \SetString{\monthiiiname}{März} \EndBabelCommands

\StartBabelCommands{austrian}{date} \SetString{\monthiname}{J"{a}nner} \EndBabelCommands

\StartBabelCommands{german}{date} \SetString{\monthiname}{Januar} \EndBabelCommands

\StartBabelCommands{german,austrian}{date} \SetString{\monthiiiname}{Februar} \SetString{\monthiiiname}{M\"{a}rz} \EndBabelCommands
When used in ldf files, previous values of \langle category \rangle \langle language \rangle are overridden, which means the old way to define strings still works and used by default (to be precise, is first set to undefined and then strings are added). However, when used in the preamble or in a package, new settings are added to the previous ones, if the language exists (in the babel sense, ie, if \date \langle language \rangle exists).

\StartBabelCommands *\langle language-list \rangle \{ \langle category \rangle \}[\{selector\}]
The starred version just forces strings to take a value – if not set as package option, then the default for the engine is used. This is not done by default to prevent backward incompatibilities, but if you are creating a new language this version is better. It's up to the maintainers of the current languages to decide if using it is appropriate.

\EndBabelCommands Marks the end of the series of blocks.

\AfterBabelCommands \{ \langle code \rangle \}
The code is delayed and executed at the global scope just after \EndBabelCommands.

\SetString \{ \langle macro-name \rangle \}\{ \langle string \rangle \}
Adds \langle macro-name \rangle to the current category, and defines globally \langle lang-macro-name \rangle to \langle code \rangle (after applying the transformation corresponding to the current charset or defined with the hook stringprocess).
Use this command to define strings, without including any "logic" if possible, which should be a separate macro. See the example above for the date.

\SetStringLoop \{ \langle macro-name \rangle \}\{ \langle string-list \rangle \}
A convenient way to define several ordered names at once. For example, to define \abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,ab,my,jn,jl,ag,sp,oc,nv,dc}
\SetStringLoop{abday#1name}{lu,ma,xi,vi,sa,do}

#1 is replaced by the roman numeral.

\SetCase \[\langle map-list \rangle \}\{ \langle toupper-code \rangle \}\{ \langle tolower-code \rangle \}

30This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.
Sets globally code to be executed at \MakeUpperCase and \MakeLowercase. The code would typically be things like \let\BB\bb and \uccode or \lccode (although for the reasons explained above, changes in \lc/uc codes may not work). A \textit{map-list} is a series of macros using the internal format of \@uclclist (eg. \bb\BB\cc\CC). The mandatory arguments take precedence over the optional one. This command, unlike \SetStringEncoding, is executed always (even without \texttt{strings}), and it is intended for minor readjustments only. For example, as T1 is the default case mapping in \LaTeX, we can set for Turkish:

```latex
\StartBabelCommands{turkish}{}[ot1enc, fontenc=OT1]
\SetCase
{\uccode"10=`I\relax}
{\lccode`I="10\relax}
\StartBabelCommands{turkish}{}[unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetCase
{\uccode`i=`İ\relax
  \uccode`ı=`ı\relax
  \lccode`İ=`i\relax
  \lccode`I=`ı\relax}
\StartBabelCommands{turkish}{}
\SetCase
{\uccode"9D=`I\relax
  \uccode"19=`I\relax
  \lccode"9D=`i\relax
  \lccode"19=`ı\relax}
\EndBabelCommands
```

(Note the mapping for OT1 is not complete.)

```latex
\SetHyphenMap \texttt{(to-lower-macros)}
```

\textbf{New 3.9g} Case mapping serves in \LaTeX{} for two unrelated purposes: case transforms (upper/lower) and hyphenation. \texttt{\SetCase} handles the former, while hyphenation is handled by \texttt{\SetHyphenMap} and controlled with the package option \texttt{hyphenmap}. So, even if internally they are based on the same \LaTeX{} primitive (\lccode), babel sets them separately. There are three helper macros to be used inside \texttt{\SetHyphenMap}:

- \texttt{\BabelLower\{uccode\}\{lccode\}} is similar to \lccode but it's ignored if the char has been set and saves the original \lccode to restore it when switching the language (except with \texttt{hyphenmap=first}).
- \texttt{\BabelLowerMM\{uccode-from\}\{uccode-to\}\{step\}\{lccode-from\}} loops though the given uppercase codes, using the step, and assigns them the \lccode, which is also increased (MM stands for many-to-many).
- \texttt{\BabelLowerMO\{uccode-from\}\{uccode-to\}\{step\}\{lccode\}} loops though the given uppercase codes, using the step, and assigns them the \lccode, which is fixed (MO stands for many-to-one).

An example is (which is redundant, because these assignments are done by both \texttt{luatex} and \texttt{xetex}):

```latex
\SetHyphenMap{\BabelLowerMM{100}{11F}{2}{101}}
```

This macro is not intended to fix wrong mappings done by Unicode (which are the default in both \texttt{xetex} and \texttt{luatex}) – if an assignment is wrong, fix it directly.

3.9 Executing code based on the selector
\IfBabelSelectorTF \{\langle \textit{selectors} \rangle\}\{\langle \textit{true} \rangle\}\{\langle \textit{false} \rangle\}

New 3.67 Sometimes a different setup is desired depending on the selector used. Values allowed in \langle \textit{selectors} \rangle are select, other, foreign, other* (and also foreign* for the tentative starred version), and it can consist of a comma-separated list. For example:

\IfBabelSelectorTF{other, other*}{A}{B}

is true with these two environment selectors.
Its natural place of use is in hooks or in \texttt{\latex\langle languages\rangle}.

Part II

Source code

babel is being developed incrementally, which means parts of the code are under development and therefore incomplete. Only documented features are considered complete. In other words, use babel only as documented (except, of course, if you want to explore and test them – you can post suggestions about multilingual issues to kadingira@tug.org on http://tug.org/mailman/listinfo/kadingira).

4 Identification and loading of required files

\emph{Code documentation is still under revision.}

The following description is no longer valid, because switch and plain have been merged into babel.def.
The babel package after unpacking consists of the following files:

\texttt{switch.def} defines macros to set and switch languages.
\texttt{babel.def} defines the rest of macros. It has two parts: a generic one and a second one only for \LaTeX.
\texttt{babel.sty} is the \LaTeX package, which set options and load language styles.
\texttt{plain.def} defines some \LaTeX macros required by babel . def and provides a few tools for Plain.
\texttt{hyphen.cfg} is the file to be used when generating the formats to load hyphenation patterns.
The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at installation time. They are used with <\@name@> at the appropriate places in the source code and shown below with \langle\langle \textit{name} \rangle\rangle. That brings a little bit of literate programming.

5 locale directory

A required component of babel is a set of ini files with basic definitions for about 200 languages. They are distributed as a separate zip file, not packed as dtx. With them, babel will fully support Unicode engines.
Most of them are essentially finished (except bugs and mistakes, of course). Some of them are still incomplete (but they will be usable), and there are some omissions (eg, Latin and polytonic Greek, and there are no geographic areas in Spanish). Hindi, French, Occitan and Breton will show a warning related to dates. Not all include LICR variants.
This is a preliminary documentation.
ini files contain the actual data; tex files are currently just proxies to the corresponding ini files. Most keys are self-explanatory.

\texttt{charset} the encoding used in the ini file.
\texttt{version} of the ini file
\texttt{level} “version” of the ini specification. which keys are available (they may grow in a compatible way) and how they should be read.
\texttt{encodings} a descriptive list of font encodings.
\texttt{[captions]} section of captions in the file charset
\texttt{[captions.licr]} same, but in pure ASCII using the LICR
date.long fields are as in the CLDR, but the syntax is different. Anything inside brackets is a date field (eg, MMMM for the month name) and anything outside is text. In addition, [] is a non-breakable space and [.] is an abbreviation dot.

Keys may be further qualified in a particular language with a suffix starting with an uppercase letter. It can be just a letter (eg, babel.name.A, babel.name.B) or a name (eg, date.long. Nominative, date.long.Formal, but no language is currently using the latter). Multi-letter qualifiers are forward compatible in the sense they won't conflict with new "global" keys (which start always with a lowercase case). There is an exception, however: the section counters have been devised to have arbitrary keys, so you can add lowercased keys if you want.

6 Tools

Do not use the following macros in \texttt{.ldf} files. They may change in the future. This applies mainly to those recently added for replacing, trimming and looping. The older ones, like \texttt{\backslash bbl@afterfi}, will not change.

We define some basic macros which just make the code cleaner: \texttt{\backslash bbl@add} is now used internally instead of \texttt{\addto} because of the unpredictable behavior of the latter. Used in \texttt{.latex} and in \texttt{.sty}, which means in \texttt{EPiX} is executed twice, but we need them when defining options and \texttt{.def} cannot be load until options have been defined. This does not hurt, but should be fixed somehow.

\begin{verbatim}
\bbl@add@list This internal macro adds its second argument to a comma separated list in its first argument. When the list is not defined yet (or empty), it will be initiated. It presumes expandable character strings.
\end{verbatim}

\begin{verbatim}
\bbl@afterelse \bbl@afterfi Because the code that is used in the handling of active characters may need to look ahead, we take extra care to 'throw' it over the \texttt{\relax} and \texttt{\fi} parts of an \texttt{\if} statement. These macros will break if another \texttt{\if...\fi} statement appears in one of the arguments and it is not enclosed in braces.
\end{verbatim}

\begin{verbatim}
\bbl@exp Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple and readable. Here \texttt{\relax} stands for \texttt{\noexpand}, \texttt{\<..>} for \texttt{\noexpand} applied to a built macro name (which does not define the macro if undefined to \texttt{\relax}, because it is created locally), and \texttt{\[..\]} for
\end{verbatim}

\footnote{This code is based on code presented in \textit{TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by Sonja Maus.}}
one-level expansion (where . is the macro name without the backslash). The result may be followed by extra arguments, if necessary.

\def\bbl@exp#1{\begingroup\let\\\noexpand\let\<\bbl@exp@en\let\[\bbl@exp@ue\edef\bbl@exp@aux{\endgroup#1}\bbl@exp@aux}

% The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and trailing spaces from the second argument and then applies the first argument (a macro, \toks@ and the like). The second one, as its name suggests, defines the first argument as the stripped second argument.

\def\bbl@tempa#1{\long\def\bbl@trim##1##2{\futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}\def\bbl@trim@c{\ifx\bbl@trim@a\@sptoken\expandafter\bbl@trim@b\else\expandafter\bbl@trim@b\expandafter#1\fi}\long\def\bbl@trim@b#1##1\@nil\@nil#2\relax#3{#3{#1}}\long\def\bbl@trim@def#1{\bbl@trim{\def#1}}}

\bbl@ifunset To check if a macro is defined, we create a new macro, which does the same as \@ifundefined. However, in an \epsilon-tex engine, it is based on \ifcsname, which is more efficient, and does not waste memory:

\begingroup\gdef\bbl@ifunset#1{\expandafter\ifx\csname#1\endcsname\relax\expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi}

\bbl@ifblank A tool from url, by Donald Arseneau, which tests if a string is empty or space. The companion macros tests if a macro is defined with some 'real' value, ie, not \relax and not empty:

\def\bbl@ifblank#1{\bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}

\def\bbl@ifset#1#2#3{\bbl@ifunset{#1}{#3}{\bbl@exp{\\bbl@ifblank{#1}}{#3}{#2}}}
For each element in the comma separated `<key>=<value>` list, execute `<code>` with #1 and #2 as the key and the value of current item (trimmed). In addition, the item is passed verbatim as #3. With the `<key>` alone, it passes `\empty` (ie, the macro thus named, not an empty argument, which is what you get with `<key>=` and no value).

A `for` loop. Each item (trimmed), is #1. It cannot be nested (it's doable, but we don't need it).

An extension to the previous macro. It takes into account the parameters, and it is string based (ie, if you replace `relax` by `ho`, then `relax` becomes `\rho`). No checking is done at all, because it is not a general purpose macro, and it is used by babel only when it works (an example where it does not work is in `\bbl@TG@@date`, and also fails if there are macros with spaces, because they are retokenized). It may change! (or even merged with `\bbl@replace`; I'm not sure checking the replacement is really necessary or just paranoia).

Returns implicitly `\toks@` with the modified string.
Two further tools. \bbl@ifsamestring first expands its arguments and then compare their expansion (sanitized, so that the catcodes do not matter). \bbl@engine takes the following values: 0 is pdf\TeX, 1 is luatex, and 2 is xetex. You may use the latter in your language style if you want.

A somewhat hackish tool (hence its name) to avoid spurious spaces in some contexts.

Another hackish tool, to apply case changes inside a protected macros. It's based on the internal \let's made by \MakeUppercase and \MakeLowercase between things like \oe and \OE.

An alternative to \IfFormatAtLeastTF for old versions. Temporary.
The following adds some code to \extras... both before and after, while avoiding doing it twice. It's somewhat convoluted, to deal with #'.s. Used to deal with alph, Alph and french spacing when there are already changes (with \babel@save).

\def\bbl@extras@wrap#1#2#3{%
\toks@\expandafter\expandafter\expandafter{\csname extras\languagename\endcsname}\
\bbl@exp{\in@{#1}{\the\toks@}}\
\ifin@\else\@temptokena{#2}\edef\bbl@tempc{\the\@temptokena\the\toks@}\toks@\expandafter{\bbl@tempc#3}\expandafter\edef\csname extras\languagename\endcsname{\the\toks@}\fi
\}

\langle⟨/Basic macros⟩⟩

Some files identify themselves with a \LaTeX{} macro. The following code is placed before them to define (and then undefine) if not in \LaTeX{}.

\langle⟨∗ Make sure ProvidesFile is defined⟩⟩ ≡
\ifx\ProvidesFile\@undefined\def\ProvidesFile#1[#2 #3 #4]{\wlog{File: #1 #4 #3 <#2>}\let\ProvidesFile\@undefined}\fi

\langle⟨/Define core switching macros⟩⟩
\csname newcount\endcsname\language
\countdef\last@language=19
\def\addlanguage{\csname newlanguage\endcsname}

\langle⟨/Make sure ProvidesFile is defined⟩⟩

6.1 Multiple languages
\language Plain \TeX{} version 3.0 provides the primitive \language that is used to store the current language. When used with a pre-3.0 version this function has to be implemented by allocating a counter. The following block is used in switch.def and hyphen.cfg; the latter may seem redundant, but remember babel doesn't requires loading switch.def in the format.

\langle⟨/Define core switching macros⟩⟩
\ifx\language\@undefined\csname newcount\endcsname\language\else\csname newcount\endcsname\language\fi
\countdef\last@language=19
\def\addlanguage{\csname newlanguage\endcsname}

\langle⟨/Define core switching macros⟩⟩

\last@language Another counter is used to keep track of the allocated languages. \TeX{} and \LaTeX{} reserves for this purpose the count 19.

\addlanguage This macro was introduced for \TeX{} < 2. Preserved for compatibility.

\langle⟨/Define core switching macros⟩⟩
\countdef\last@language=19
\def\addlanguage{\csname newlanguage\endcsname}
\langle⟨/Define core switching macros⟩⟩

Now we make sure all required files are loaded. When the command \AtBeginDocument doesn't exist we assume that we are dealing with a plain-based format. In that case the file plain.def is needed (which also defines \AtBeginDocument, and therefore it is not loaded twice). We need the first part when the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the second part, so \orig@dump is not defined (plain.def undefines it). Check if the current version of switch.def has been previously loaded (mainly, hyphen.cfg). If not, load it now. We cannot load babel.def here because we first need to declare and process the package options.
6.2 The Package File (\TeX, babel.sty)

Start with some “private” debugging tool, and then define macros for errors.

\NeedsTeXFormat{LaTeX2e}[2005/12/01]
\ProvidesPackage{babel}[\langle\langle date\rangle\rangle \langle\langle version\rangle\rangle The Babel package]

This file also takes care of a number of compatibility issues with other packages and defines a few additional package options. Apart from all the language options below we also have a few options that influence the behavior of language definition files. Many of the following options don’t do anything themselves, they are just defined in order to make it possible for babel and language definition files to check if one of them was specified by the user. But first, include here the \textit{Basic macros} defined above.

This file also takes care of a number of compatibility issues with other packages and defines a few additional package options. Apart from all the language options below we also have a few options that influence the behavior of language definition files. Many of the following options don’t do anything themselves, they are just defined in order to make it possible for babel and language definition files to check if one of them was specified by the user. But first, include here the \textit{Basic macros} defined above.

If the format created a list of loaded languages (in \texttt{\textbackslash{}bb1@languages}), get the name of the 0-th to show the actual language used. Also available with base, because it just shows info.

If the format created a list of loaded languages (in \texttt{\textbackslash{}bb1@languages}), get the name of the 0-th to show the actual language used. Also available with base, because it just shows info.
The first 'real' option to be processed is base, which set the hyphenation patterns then resets \texttt{ver@babel}.\texttt{sty} so that \LaTeX forgets about the first loading. After a subset of \texttt{babel.def} has been loaded (the old \texttt{switch.def}) and \texttt{\AfterBabelLanguage} defined, it exits.

Now the base option. With it we can define (and load, with \texttt{luatex}) hyphenation patterns, even if we are not interested in the rest of babel.

The following macros extract language modifiers, and only real package options are kept in the option list. Modifiers are saved and assigned to \texttt{\BabelModifiers} at \texttt{\bbl@load@language}; when no modifiers have been given, the former is \relax. How modifiers are handled are left to language styles; they can use \texttt{\in@}, loop them with \texttt{\@for} or load keyval, for example.
Thenextoptiontellsbabeltolaveshorthandcharactersactiveattheendofprocessingthepackage.
Thisisnot the default as it can cause problems with other packages, but for those who want to use
the shorthand characters in the preamble of their documentsthis can help.

The following tool is defined temporarily to store the values of options.

Now the option list is processed, taking into account only currently declared options (including those
declared with a =), and <key>=<value> options (the former take precedence). Unrecognized options
are saved in \bbl@language@opts, because they are language options.
Now we finish the first pass (and start over).

\ProcessOptions*
\ifx\bbl@opt@provide@\@nnil
\let\bbl@opt@provide@\@empty % %%% MOVE above
\else
\chardef\bbl@iniflag@\@ne
\bbl@exp{\bbl@forkv{\@nameuse{@raw@opt@babel.sty}}}{%
\in@{,provide,}{,#1,}%
\ifin@
\def\bbl@opt@provide@{#2}%
\bbl@replace\bbl@opt@provide@{;}{,}%
\fi}
\fi
%

6.5 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babel macros are left untouched, but if there is, these macros are wrapped (in babel.def) to define only those given. A bit of optimization: if there is no shorthands=, then \bbl@ifshorthand is always true, and it is always false if shorthands is empty. Also, some code makes sense only with shorthands=... .

\bbl@trace{Conditional loading of shorthands}
\def\bbl@sh@string#1{%
\ifx#1\@empty\else
\ifx#1t\string~%
\else\ifx#1c\string,%
\else\string#1%
\fi\fi
\expandafter\bbl@sh@string
\fi%
\ifx\bbl@opt@shorthands@\@nnil
\def\bbl@ifshorthand#1#2#3{#2}%
\else\ifx\bbl@opt@shorthands@\@empty
\def\bbl@ifshorthand#1#2#3{#3}%
\else
The following macro tests if a shorthand is one of the allowed ones.

\def\bbl@ifshorthand@\%1%
\bbl@xin@{\string#1}{\bbl@opt@shorthands}%
\ifin@
\expandafter@firstoftwo
\else
\expandafter@secondoftwo
\fi%
\ifx\bbl@opt@shorthands@\@nnil
\def\bbl@ifshorthand@\#2\#3{\#2}%
\else\ifx\bbl@opt@shorthands@\@empty
\def\bbl@ifshorthand@\#2\#3{\#3}%
\else
The following is ignored with shorthands=off, since it is intended to take some additional actions for certain chars.

\edef\bbl@opt@shorthands@{}%
\{\PassOptionsToPackage{activeacute}{babel}\}{}

69
With headfoot=lang we can set the language used in heads/foots. For example, in babel/3796 just adds headfoot=english. It misuses \resetactivechars but seems to work.

For the optionsafe we use a different approach – \bbl@opt@safe says which macros are redefined (B for bibs and R for refs). By default, both are set.

For layout an auxiliary macro is provided, available for packages and language styles. Optimization: if there is no layout, just do nothing.

6.6 Interlude for Plain

Because of the way docstrip works, we need to insert some code for Plain here. However, the tools provided by the babel installer for literate programming makes this section a short interlude, because the actual code is below, tagged as `EmulateLaTeX`.

That is all for the moment. Now follows some common stuff, for both Plain and \LaTeX. After it, we will resume the \LaTeX-only stuff.

7 Multiple languages

This is not a separate file (switch.def) anymore.

Plain \LaTeX version 3.0 provides the primitive \language that is used to store the current language.

When used with a pre-3.0 version this function has to be implemented by allocating a counter.
\addialect The macro \addialect can be used to add the name of a dialect or variant language, for which an already defined hyphenation table can be used.

```latex
\def\addialect#1#2{% 
  \global\chardef#1#2\relax 
  \bbl@usehooks{addialect}{{#1}{#2}}% 
  \begingroup 
  \count@#1\relax 
  \def\bbl@elt##1##2##3##4{% 
    \ifnum\count@=##2\relax 
      \edef\bbl@tempa{\expandafter\@gobbletwo\string#1}{} 
      \bbl@info{Hyphen rules for \string\csname l@##1\endcsname\% (\string\language\the\count@). Reported}% 
    \fi} 
  \bbl@cs{languages} 
  \endgroup} 
\bbl@iflanguage executes code only if the language l@ exists. Otherwise raises an error. The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if casing (lc/uc) is wrong. It’s an attempt to fix a long-standing bug when \foreignlanguage and the like appear in a \MakeXXXcase. However, a lowercase form is not imposed to improve backward compatibility (perhaps you defined a language named MYLANG, but unfortunately mixed case names cannot be trapped). Note l@ is encapsulated, so that its case does not change.

```latex
\def\bbl@fixname#1{%
 \begingroup
 \def\bbl@tempe{l@}{}
 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}{}
 \bbl@tempd{}{\lowercase\expandafter{\bbl@tempd}{}{\uppercase\expandafter{\bbl@tempd}}}{}{\edef\bbl@tempd{\def\noexpand#1{#1}}}{}{\lowercase\expandafter{\bbl@tempd}}}{}{\edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}}{}{\bbl@exp{\@@@@\bbl@usehooks{languages}{{\language}{}}}}{}{\bbl@iflanguage l@{}{\@nolanerr{#1}{\@gobble}\@firstofone}

After a name has been ‘fixed’, the selectors will try to load the language. If even the fixed name is not defined, will load it on the fly, either based on its name, or if activated, its BCP47 code.

We first need a couple of macros for a simple BCP 47 look up. It also makes sure, with \bbl@bcpcase, casing is the correct one, so that sr-latn-ba becomes fr-Latn-BA. Note #4 may contain some \@empty's, but they are eventually removed. \bbl@bcplookup either returns the found ini or it is \relax.

```latex
\def\bbl@bcpcase#1#2#3#4\@@{}{ 
  \lowercase\expandafter{\bbl@length{\noexpand\bbl@tempa}}{} 
  \uppercase\expandafter{\def\noexpand\bbl@tempa{\bbl@tempd}}{} 
  \relax 
  \bbl@exp{\@@@@\bbl@usehooks{languages}{{\language}{}{}}}{}{\bbl@iflanguage l@{}{\@nolanerr{#1}{\@gobble}\@firstofone} 

\let\bbl@bcp\relax 
\lowercase\expandafter{\def\noexpand\bbl@tempa{\bbl@tempd}}{} 
\relax 
\bbl@exp{\@@@@\bbl@usehooks{languages}{{\language}{}{}}}{}{\bbl@iflanguage l@{}{\@nolanerr{#1}{\@gobble}\@firstofone} 

\let\bbl@bcp\relax 
\lowercase\expandafter{\def\noexpand\bbl@tempa{\bbl@tempd}}{} 
\relax 
\bbl@exp{\@@@@\bbl@usehooks{languages}{{\language}{}{}}}{}{\bbl@iflanguage l@{}{\@nolanerr{#1}{\@gobble}\@firstofone}} 

71
\iflanguage
Users might want to test (in a private package for instance) which language is currently active. For this we provide a test macro, \iflanguage, that has three arguments. It checks whether the first argument is a known language. If so, it compares the first argument with the value of \language.
Then, depending on the result of the comparison, it executes either the second or the third argument.

```latex
\def\iflanguage#1{%
 \ifnum\csname l@#1\endcsname=\language
 \else
 \fi}
```

### 7.1 Selecting the language

The macro `\selectlanguage` checks whether the language is already defined before it performs its actual task, which is to update `\language` and activate language-specific definitions.

```latex
\let\bbl@select@type\z@
\edef\selectlanguage{%
 \noexpand\protect\expandafter
 \csname selectlanguage \endcsname}
```

Because the command `\selectlanguage` could be used in a moving argument it expands to `\protect\selectlanguage`. Therefore, we have to make sure that a macro `\protect` exists. If it doesn't it is `\let` to `\relax`.

```latex
\ifx\@undefined\protect\let\protect\relax\fi
```

The following definition is preserved for backwards compatibility (eg, `arabi`, `koma`). It is related to a trick for 2.09, now discarded.

```latex
\let\xstring\string
```

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of contents etc. in the correct language environment.

```latex
\bbl@pop@language But when the language change happens inside a group the end of the group doesn't write anything to the auxiliary files. Therefore we need \TeX's `aftergroup` mechanism to help us. The command `\aftergroup` stores the token immediately following it to be executed when the current group is closed. So we define a temporary control sequence `\bbl@pop@language` to be executed at the end of the group. It calls `\bbl@set@language` with the name of the current language as its argument.

```latex
\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as more levels are used it is no longer adequate. For that case we need to keep track of the nested languages using a stack mechanism. This stack is called `\bbl@language@stack` and initially empty.

```latex
\def\bbl@language@stack{}
```

When using a stack we need a mechanism to push an element on the stack and to retrieve the information afterwards.

```latex
\bbl@push@language \bbl@pop@language The stack is simply a list of languagenames, separated with a ‘+’ sign; the push function can be simple:

```latex
\def\bbl@push@language{% 
  \iffalse\language@name\undefined\else
  \iffalse\currentgrouplevel\undefined
  \xdef\bbl@language@stack{\language@name+\bbl@language@stack}\% 
  \else
  \ifeq\currentgrouplevel\z@
  \xdef\bbl@language@stack{\language@name+}\% 
  \else
  \xdef\bbl@language@stack{\language@name+\bbl@language@stack}\% 
  \fi
  \fi
  \fi
}
```

Retrieving information from the stack is a little bit less simple, as we need to remove the element from the stack while storing it in the macro `\language@name`. For this we first define a helper function.
This macro stores its first element (which is delimited by the ‘+’-sign) in \languagename and stores the rest of the string in \bbl@language@stack.

```
\def\bbl@pop@lang#1+#2@@{\edef\languagename{#1}\xdef\bbl@language@stack{#2}}
```

The reason for the somewhat weird arrangement of arguments to the helper function is the fact it is called in the following way. This means that before \bbl@pop@lang is executed \TeX first expands the stack, stored in \bbl@language@stack. The result of that is that the argument string of \bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign (zero language names won’t occur as this macro will only be called after something has been pushed on the stack).

```
\let\bbl@ifrestoring\@secondoftwo
\def\bbl@pop@language{\expandafter\bbl@pop@lang\bbl@language@stack\@@}\let\bbl@ifrestoring\@firstoftwo\expandafter\bbl@set@language\expandafter{\languagename}\let\bbl@ifrestoring\@secondoftwo
```

Once the name of the previous language is retrieved from the stack, it is fed to \bbl@set@language to do the actual work of switching everything that needs switching.

An alternative way to identify languages (in the babel sense) with a numerical value is introduced in 3.30. This is one of the first steps for a new interface based on the concept of locale, which explains the name of \localeid. This means \l@... will be reserved for hyphenation patterns (so that two locales can share the same rules).

```
\chardef\localeid\z@\def\bbl@id@last{0}\% No real need for a new counter\def\bbl@id@assign{%\bbl@ifunset{bbl@id@@\languagename}{\count@\bbl@id@last\relax\advance\count@\@ne\bbl@csarg\chardef{id@@\languagename}\count@\edef\bbl@id@last{\the\count@}\ifcase\bbl@engine\or\directlua{Babel = Babel or {}Babel.locale_props = Babel.locale_props or {}Babel.locale_props[\bbl@id@last] = {}Babel.locale_props[\bbl@id@last].name = '\languagename'\}\fi}%\chardef\localeid\bbl@cl{id@}}
```

The unprotected part of \selectlanguage.

```
\expandafter\def\csname selectlanguage \endcsname#1{%\ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel=\tw@\fi\bbl@push@language\aftergroup\bbl@pop@language\bbl@set@language(#1)}
```

The macro \bbl@set@language takes care of switching the language environment and of writing entries on the auxiliary files. For historical reasons, language names can be either language of \language. To catch either form a trick is used, but unfortunately as a side effect the catcodes of letters in \languagename are messed up. This is a bug, but preserved for backwards compatibility. The list of auxiliary files can be extended by redefining \BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc, lof, and lot do) or the last language of the document will remain active afterwards.

We also write a command to change the current language in the auxiliary files. \bbl@save@last@skip is used to deal with skips before the write whatsit (as suggested by U Fischer). Adapted from hyperref, but it might fail, so I’ll consider it a temporary hack, while I study other options (the ideal, but very likely unfeasible except perhaps in luatex, is to avoid the \write altogether when not needed).
\def\BabelContentsFiles{toc,lof,lot}
\def\bbl@set@language#1{% from selectlanguage, pop@
 \ifnum\escapechar=\string#1\empty
 \else\string#1\empty\fi%
 \ifcat\relax\noexpand#1%
 \expandafter\ifx\csname date\languagename\endcsname\relax
 \edef\languagename{#1}%
 \let\localename\languagename
 \else
 \bbl@info{Using 'string\language' instead of 'language' is\%
 deprecated. If what you want is to use a\%
 macro containing the actual locale, make\%
 sure it does not not match any language.\%
 Reported}%
 \ifx\scantokens\@undefined
 \def\localename{??}%
 \else
 \scantokens\expandafter{\expandafter
 \def\expandafter\localename\expandafter{\languagename}}%
 \fi
 \fi
\else
 \def\localename{#1}% This one has the correct catcodes
\fi
\select@language{\languagename}%
% write to auxs
\expandafter\ifx\csname date\languagename\endcsname\relax\else
 \if@filesw
 \ifx\babel@aux\@gobbletwo\else % Set if single in the first, redundant
 \bbl@savelastskip
 \protected@write@auxout{}{\string\babel@aux{\bbl@auxname}{}}%
 \bbl@restorelastskip
 \fi
\fi
\bbl@usehooks{write}{%}
\fi
\fi%
% Here are the \selectlanguage hooks
\let\bbl@restorelastskip\relax
\let\bbl@savelastskip\relax
% bcpallowed is not a locality, but a feature.
\newif\iffullbcpallowed
\fullbcpallowedfalse
\def\select@language#1{% from set@, babel@aux
 \ifx\bbl@selectorname\@empty
 \def\bbl@selectorname{select}%
 \fi
 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax%
 \set hymap
 \edef\languagename{#1}%
 \bbl@fixname\languagename
 % TODO. name@map must be here?
 \bbl@provide@locale
 \bbl@iflanguage\languagename{%)
 \expandafter\ifx\csname date\languagename\endcsname\relax
 \bbl@error
 {Unknown language '\language'. Either you have\%
 misspelled its name, it has not been installed,\%
 or you requested it in a previous run. Fix its name,\%
 install it or just rerun the file, respectively. In\%
 some cases, you may need to remove the aux file}%
 \fi%
 \fi
 % set name
 \edef\language@name{#1}%
 \bbl@fixname\language
 % TDOO. name@map must be here?
 \bbl@provide@locale
 \bbl@iflanguage\language@name{%}
 \expandafter\ifx\csname date\language@name\endcsname\relax
 \bbl@error
 {Unknown language '\language@name'. Either you have\%
 misspelled its name, it has not been installed,\%
 or you requested it in a previous run. Fix its name,\%
 install it or just rerun the file, respectively. In\%
 some cases, you may need to remove the aux file}%
 \fi%
First, check if the user asks for a known language. If so, update the value of \language and call \originalTeX to bring \TeX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.

Then we have to redefine \originalTeX to compensate for the things that have been activated. To save memory space for the macro definition of \originalTeX, we construct the control sequence name for the \noextras⟨lang⟩ command at definition time by expanding the \csname primitive.

Now activate the language-specific definitions. This is done by constructing the names of three macros by concatenating three words with the argument of \selectlanguage, and calling these macros.

The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat different. First we save their current values, then we check if \langle lang⟩hyphenmins is defined. If it is not, we set default values (2 and 3), otherwise the values in \langle lang⟩hyphenmins will be used.
otherlanguage (env.) The otherlanguage environment can be used as an alternative to using the \selectlanguage declarative command. When you are typesetting a document which mixes left-to-right and right-to-left typesetting you have to use this environment in order to let things work as you expect them to.

The \ignorespaces command is necessary to hide the environment when it is entered in horizontal mode.

\long\def\otherlanguage#1{%
 \def\bbl@selectorname{other}
 \ifnum\bbl@hymapsel=\@cclv \let\bbl@hymapsel=\thr@@ \fi
 \csname selectlanguage \endcsname{#1}
 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called in horizontal mode.

\long\def\endotherlanguage{%
The `otherlanguage*` environment is meant to be used when a large part of text from a different language needs to be typeset, but without changing the translation of words such as 'figure'. This environment makes use of \foreign@language.

At the end of the environment we need to switch off the extra definitions. The grouping mechanism of the environment will take care of resetting the correct hyphenation rules and "extras".

The \foreignlanguage command is another substitute for the \selectlanguage command. This command takes two arguments, the first argument is the name of the language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn't switch everything, it only switches the hyphenation rules and the extra definitions for the language specified. It does this within a group and assumes the \extras⟨⟨lang⟩⟩ command doesn't make any \global changes. The coding is very similar to part of \selectlanguage.

\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a 'text' command, and therefore it must emit a \leavevmode, but it does not, and therefore the indent is placed on the opposite margin. For backward compatibility, however, it is done only if a right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different script direction, while preserving the paragraph format (thank the braces around \par, things like \hangindent are not reset). Do not use it in production, because its semantics and its syntax may change (and very likely will, or even it could be removed altogether). Currently it enters in vmode and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine \BabelText which by default does nothing. Its behavior is not well defined yet. So, use it in horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the surrounding lang, and with \foreignlanguage* with the new lang.

\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a 'text' command, and therefore it must emit a \leavevmode, but it does not, and therefore the indent is placed on the opposite margin. For backward compatibility, however, it is done only if a right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different script direction, while preserving the paragraph format (thank the braces around \par, things like \hangindent are not reset). Do not use it in production, because its semantics and its syntax may change (and very likely will, or even it could be removed altogether). Currently it enters in vmode and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine \BabelText which by default does nothing. Its behavior is not well defined yet. So, use it in horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the surrounding lang, and with \foreignlanguage* with the new lang.
\BabelText{#2}% Still in vertical mode!
{\par}"
\endgroup"\foreign@language This macro does the work for \foreignlanguage and the other language* environment. First we need to store the name of the language and check that it is a known language. Then it just calls bbl@switch.
\def\foreign@language#1{%
% set name
\edef\languagename{#1}%
% if bbl@usedategroup
\bbl@add\bbl@select@opts{,date,}%
% set bbl@usedategroup false
\fi
% set bbl@fixname
\bbl@fixname\languagename%
% TODO. name@map here?
% set bbl@provide@locale
% if bbl@iflanguage\languagename{%
\expandafter\ifx\csname date\languagename\endcsname\relax
% I'll proceed, but expect wrong results.\%
Reported)%
% set type
\let\bbl@select@type\@ne
\expandafter\bbl@switch\expandafter{\languagename}}}%
The following macro executes conditionally some code based on the selector being used.
\def\IfBabelSelectorTF#1{%
\bbl@xin@{,\bbl@selectorname,}{,\zap@space#1 \@empty,}%
\ifin@
\expandafter\@firstoftwo
\else
\expandafter\@secondoftwo
\fi} \bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If special hyphenation patterns are available specifically for the current font encoding, use them instead of the default.
It also sets hyphenation exceptions, but only once, because they are global (here language \lccode's has been set, too). \bbl@hyphenation@ is set to relax until the very first \babelhyphenation, so do nothing with this value. If the exceptions for a language (by its number, not its name, so that :ENC is taken into account) has been set, then use \hyphenation with both global and language exceptions and empty the latter to mark they must not be set again.
The environment 	exttt{hyphenrules} can be used to select just the hyphenation rules. This environment does not change \texttt{language}name and when the hyphenation rules specified were not loaded it has no effect. Note however, \texttt{lccode}s and font encodings are not set at all, so in most cases you should use \texttt{otherlanguage*}.

\begin{verbatim}
\def\hyphenrules#1{%
 \edef\bbl@tempf{#1}%
 \bbl@fixname\bbl@tempf
 \bbl@iflanguage\bbl@tempf{%\expandafter\bbl@patterns\expandafter{\bbl@tempf}%\ifx\languageshorthands\@undefined\else\languageshorthands{none}\fi\expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax\set@hyphenmins\tw@\thr@@\relax\else\expandafter\expandafter\expandafter\set@hyphenmins\csname\bbl@tempf hyphenmins\endcsname\relax\fi}\fi
\endgroup}}
\providehyphenmins
The macro \texttt{providehyphenmins} should be used in the language definition files to provide a default setting for the hyphenation parameters \texttt{lefthyphenmin} and \texttt{righthyphenmin}. If the macro \texttt{\langle lang\rangle hyphenmins} is already defined this command has no effect.

\begin{verbatim}
\def\providehyphenmins#1#2{%
 \expandafter\ifx\csname #1hyphenmins\endcsname\relax\@namedef{#1hyphenmins}{#2}\fi}
\set@hyphenmins
This macro sets the values of \texttt{lefthyphenmin} and \texttt{righthyphenmin}. It expects two values as its argument.

\begin{verbatim}
\def\set@hyphenmins#1#2{%
 \lefthyphenmin#1\relax
 \righthyphenmin#2\relax}
\ProvidesLanguage
The identification code for each file is something that was introduced in \TeX\,\LaTeX\,\bbl. When the command \texttt{\ProvidesFile} does not exist, a dummy definition is provided temporarily. For use in the language definition file the command \texttt{\ProvidesLanguage} is defined by \bbl. Depending on the format, ie, on if the former is defined, we use a similar definition or not.

\begin{verbatim}
\ifx\ProvidesFile\@undefined
 \def\ProvidesLanguage#1[#2 #3 #4]{%\wlog{Language: #1 #4 #3 <#2>}%}
\else
 \def\ProvidesLanguage#1{%
 \begingroup
 \catcode`\ 10 \relax
 \@makeother/\endgroup}
\end{verbatim}
\end{verbatim}
The macro \originalTeX should be known to \TeX at this moment. As it has to be expandable we let it to \@empty instead of \relax.

Because this part of the code can be included in a format, we make sure that the macro which initializes the save mechanism, \babel@beginsave, is not considered to be undefined.

A few macro names are reserved for future releases of babel, which will use the concept of `locale':

\providecommand\setlocale{\let\uselocale\setlocale\let\locale\setlocale\let\selectlocale\setlocale\let\textlocale\setlocale\let\textlanguage\setlocale\let\languagetext\setlocale}

7.2 Errors

\@nolanerr\@nopatterns The babel package will signal an error when a documents tries to select a language that hasn't been defined earlier. When a user selects a language for which no hyphenation patterns were loaded into the format he will be given a warning about that fact. We revert to the patterns for \language=0 in that case. In most formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as expected. An error message is issued in that case.
When the format knows about \PackageError it must be \LaTeX2ε, so we can safely use its error handling interface. Otherwise we'll have to 'keep it simple'.
Infos are not written to the console, but on the other hand many people think warnings are errors, so a further message type is defined: an important info which is sent to the console.

\edef\bbl@nulllanguage{\string\language=0}
\def\bbl@nocaption{\protect\bbl@nocaption@i}
\def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname
\global\@namedef{#2}{\textbf{?#1?}}\@nameuse{#2}\edef\bbl@tempa{#1}\bbl@sreplace\bbl@tempa{name}{}\bbl@warning{\@backslashchar#1 not set for '\languagename'. Please,\\% define it after the language has been loaded\\% (typically in the preamble) with:\\% \string\setlocalecaption{\languagename}{\bbl@tempa}{..}\Reported}}
\def\bbl@tentative{\protect\bbl@tentative@i}
\def\bbl@tentative@i#1{\bbl@warning{\@nameuse{#2}}\edef\bbl@tempa{#1}\bbl@sreplace\bbl@tempa{name}{}\bbl@warning{\backslashchar#1 not set for '\languagename'. Please,\\% define it after the language has been loaded\\% (typically in the preamble) with:\\% \string\setlocalecaption{\languagename}{\bbl@tempa}{..}\Reported}}
\def\bbl@tentative{\protect\bbl@tentative@i}
\def\bbl@tentative@i#1{% 1
\bbl@warning{Some functions for '#1' are tentative.\\% They might not work as expected and their behavior\\% could change in the future.\\% Reported}}
\def\@molanerr#1{% \bbl@error

81
{You haven't defined the language '#1' yet.\%
Perhaps you misspelled it or your installation\%
is not complete}\%
{Your command will be ignored, type <return> to proceed}}
\def\@nopatterns#1{%
\bbl@warning
{No hyphenation patterns were preloaded for\%
the language '#1' into the format.\%
Please, configure your TeX system to add them and\%
rebuild the format. Now I will use the patterns\%
preloaded for \bbl@nulllanguage\space instead})
\let\bbl@usehooks\@gobbletwo
\ifx\bbl@onlyswitch\@empty\endinput\fi
% Here ended switch.def
Here ended the now discarded switch.def. Here also (currently) ends the base option.
\ifx\directlua\@undefined\else
\ifx\bbl@luapatterns\@undefined
\input luababel.def
\fi
\fi
⟨⟨
\bbl@trace{Compatibility with language.def}
\ifx\bbl@languages\@undefined
\ifx\directlua\@undefined
\openin1 = language.def % TODO. Remove hardcoded number
\ifeof1
\closein1
\message{I couldn't find the file language.def}
\else
\closein1
\begingroup
\def\addlanguage#1#2#3#4#5{%
\expandafter\ifx\csname lang@#1\endcsname\relax\else
\global\expandafter\let\csname l@#1\expandafter\endcsname
\csname lang@#1\endcsname
\fi%
\def\uselanguage#1{}%
\input language.def
\endgroup
\fi
\fi
\addto\Ittaketwo arguments, a ⟨control sequence⟩ and TeX-code to be added to the ⟨control sequence⟩. If the ⟨control sequence⟩ has not been defined before it is defined now. The control sequence could also expand to \relax, in which case a circular definition results. The net result is a stack overflow. Note there is an inconsistency, because the assignment in the last branch is global.
\def\addto#1#2{%
\ifx#1\@undefined
\def#1{#2}%
\else
\ifx#1\relax
\def#1{#2}%
\else
\toks0\expandafter{#1#2}%
\def#1{\the\toks0}%
\fi
\fi
\fi}
The macro \initiate-active@char below takes all the necessary actions to make its argument a shorthand character. The real work is performed once for each character. But first we define a little tool. TODO. Always used with additional expansions. Move them here? Move the macro to basic?
To redefine a command, we save the old meaning of the macro. Then we redefine it to call the original macro with the ‘sanitized’ argument. The reason why we do it this way is that we don’t want to redefine the \TeX macros completely in case their definitions change (they have changed in the past). A macro named \texttt{macro} will be saved new control sequences named \texttt{org@macro}.

This version of \texttt{babel\redefine} can be used to redefine \texttt{\long} commands such as \texttt{\ifthenelse}.

For commands that are redefined, but which \texttt{might} be robust we need a slightly more intelligent macro. A robust command \texttt{foo} is defined to expand to \texttt{\protect\foo}. So it is necessary to check whether \texttt{\foo} exists. The result is that the command that is being redefined is always robust afterwards. Therefore all we need to do now is define \texttt{\foo}.

Admittedly, the current implementation is somewhat simplistic and does very little to catch errors, but it is meant for developers, after all. \texttt{\bbl\usehooks} is the commands used by babel to execute hooks defined for an event.
To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further argument is added in the future, there is no need to change the existing code. Note events intended for hyphen.cfg are also loaded (just in case you need them for some reason).

1038 \def\bbl@evargs{,% <- don't delete this comma
1039 everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%
1040 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%
1041 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%
1042 hyphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0,%
1043 beforestart=0,languagename=2}
1044 \ifx\NewHook\@undefined\else
1045 \def\bbl@tempa#1=#2\@@{\NewHook{babel/#1}}
1046 \bbl@foreach\bbl@evargs{\bbl@tempa#1\@@}
1047 \fi

\babelensure The user command just parses the optional argument and creates a new macro named \bbl@e@[language]. We register a hook at the afterextras event which just executes this macro in a “complete” selection (which, if undefined, is \relax and does nothing). This part is somewhat involved because we have to make sure things are expanded the correct number of times. The macro \bbl@e@[language] contains \bbl@ensure((include))((exclude))((fontenc)), which in in turn loops over the macros names in \bbl@captionslist, excluding (with the help of \in@) those in the exclude list. If the fontenc is given (and not \relax), the \fontencoding is also added. Then we loop over the include list, but if the macro already contains \foreignlanguage, nothing is done. Note this macro (1) is not restricted to the preamble, and (2) changes are local.

1048 \bbl@trace{Defining babelensure}
1049 \newcommand\babelensure[2][]{% TODO - revise test files
1050 \AddBabelHook{babel-ensure}{afterextras}{%
1051 \ifcase\bbl@select@type
1052 \bbl@cl{e}%
1053 \fi}%
1054 \begingroup
1055 \let\bbl@ens@include\@empty
1056 \let\bbl@ens@exclude\@empty
1057 \def\bbl@ens@fontenc{\relax}%
1058 \def\bbl@tempb##1{%
1059 \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%
1060 \edef\bbl@tempa{\bbl@tempb#1\@empty}%
1061 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ens@##1}{##2}}%
1062 \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%
1063 \def\bbl@tempc{\bbl@ensure}%
1064 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
1065 \expandafter{\bbl@ens@include}}%
1066 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
1067 \expandafter{\bbl@ens@exclude}}%
1068 \toks@\expandafter{\bbl@tempc}%
1069 \bbl@exp{%
1070 \endgroup
1071 \def\bbl@e@[#2]{\the\toks@{\bbl@ens@fontenc}}}%
1072 \edef\bbl@ensure#1#2#3{% 1: include 2: exclude 3: fontenc
1073 \edef\bbl@tempb#1{% elt for (excluding) \bbl@captionslist list
1074 \fx#1% Undefined % 3.32 - Don't assume the macro exists
1075 \edef#1{%\noexpand\bbl@nocaption
1076 \{\bbl@stripslash#1}\{\languagename\bbl@stripslash#1}\}%
1077 \fi
1078 \fx#1%\empty% else
1079 \in@{#1}%[#2]%
1080 \ifin@else
1081 \bbl@ifunset{bbl@ensure@\languagename}%
1082 {%bbl@exp%
1083 \\DeclareRobustCommand\bbl@ensure@\languagename>[1]{%
1084 \\foreignlanguage{\languagename}%
1085 {\ifx\relax#3%else
1086 {\\fontencoding{#3}\selectfont
1087 \fi
1088 \fi
1089 \fi
1090 \fi
1091 \relax
7.4 Setting up language files

\LdfInit macro takes two arguments. The first argument is the name of the language that will be defined in the language definition file; the second argument is either a control sequence or a string from which a control sequence should be constructed. The existence of the control sequence indicates that the file has been processed before.

At the start of processing a language definition file we always check the category code of the at-sign. We make sure that it is a 'letter' during the processing of the file. We also save its name as the last called option, even if not loaded.

Another character that needs to have the correct category code during processing of language definition files is the equals sign, ‘=’, because it is sometimes used in constructions with the \let primitive. Therefore we store its current catcode and restore it later on.

Now we check whether we should perhaps stop the processing of this file. To do this we first need to check whether the second argument that is passed to \LdfInit is a control sequence. We do that by looking at the first token after passing \#2 through string. When it is equal to \@backslashchar we are dealing with a control sequence which we can compare with \@undefined.

If so, we call \ldf@quit to set the main language, restore the category code of the @-sign and call \endinput.

When \#2 was not a control sequence we construct one and compare it with \relax.

Finally we check \originalTeX.

\bbl@trace{Macros for setting language files up}
\def\bbl@ldfinit{%
\let\bbl@screset@empty
\let\BabelStrings@empty
\let\BabelOptions@empty
\let\BabelLanguages@relax
\if\originalTeX@undefined
\let\originalTeX@empty
\else
\originalTeX
\fi}
\def\LdfInit#1#2{%
\chardef\atcatcode=\catcode`@\relax
\chardef\eqcatcode=\catcode`==\relax
\expandafter\if\expandafter\@backslashchar
\expandafter\@car\string#2\@nil
This macro interrupts the processing of a language definition file.

This macro takes one argument. It is the name of the language that was defined in the language definition file.

We load the local configuration file if one is present, we set the main language (taking into account that the argument might be a control sequence that needs to be expanded) and reset the category code of the @-sign.

After the preamble of the document the commands \LdfInit, \ldf@quit and \ldf@finish are no longer needed. Therefore they are turned into warning messages in \LaTeX.

This command should be used in the various language definition files. It stores its argument in \bbl@main@language; to be used to switch to the correct language at the beginning of the document.

We also have to make sure that some code gets executed at the beginning of the document, either when the aux file is read or, if it does not exist, when the \AtBeginDocument is executed. Languages do not set \pagemode, so we set here for the whole document to the main \bodydir.
A bit of optimization. Select in heads/foots the language only if necessary.

7.5 Shorthands

\bbl@add@special\ The macro \bbl@add@special is used to add a new character (or single character control sequence) to the macro \dospecials and @sanitize if \TeX{} is used. It is used only at one place, namely when \initiate@active@char is called (which is ignored if the char has been made active before). Because @sanitize can be undefined, we put the definition inside a conditional. Items are added to the lists without checking its existence or the original catcode. It does not hurt, but should be fixed. It's already done with \nfss@catcodes, added in 3.10.

\bbl@remove@special\ The companion of the former macro is \bbl@remove@special. It removes a character from the set macros \dospecials and @sanitize, but it is not used at all in the babel core.

\initiate@active@char\ A language definition file can call this macro to make a character active. This macro takes one argument, the character that is to be made active. When the character was already active this macro does nothing. Otherwise, this macro defines the control sequence \normal@char to expand to the character in its 'normal state' and it defines the active character to expand to \active@char by default (\char being the character to be made active). Later its definition can be changed to expand to \active@char by calling \bbl@activate{\char}. 87
For example, to make the double quote character active one could have `\initiate@active@char{"}` in a language definition file. This defines the " as `\active@prefix \active@char` (where the first " is the character with its original catcode, when the shorthand is created, and `\active@char` is a single token). In protected contexts, it expands to `\protect " or `\noexpand " (ie, with the original "); otherwise `\active@char` is executed. This macro in turn expands to `\normal@char` in “safe” contexts (eg, `\label`), but `\user@active` in normal “unsafe” ones. The latter search a definition in the user, language and system levels, in this order, but if none is found, `\normal@char` is used. However, a deactivated shorthand (with `\bbl@deactivate` defined as `\active@prefix \normal@char`).

The following macro is used to define shorthands in the three levels. It takes 4 arguments: the (string’ed) character, `<level>@group, <level>@active and <next-level>@active (except in system).

1216 \def\bbl@active@def#1#2#3#4{%
1217 \@namedef{#3#1}{%
1218 \expandafter:\ifx\csname#2@sh@#1@\endcsname\relax
1219 \bbl@afterelse\bbl@sh@select#2#1{(\#3\arg\#1)\#4\#1}%
1220 \else
1221 \bbl@afterfi\csname#2@sh@#1@\endcsname
1222 \fi}%

When there is also no current-level shorthand with an argument we will check whether there is a next-level defined shorthand for this active character.

1223 \long\@namedef{#3\arg\#1}##1{%
1224 \expandafter:\ifx\csname#2@sh@#1@\string##1@\endcsname\relax
1225 \bbl@afterelse\bbl@sh@select#2#1\string\#1\#1\#1\endcsname
1226 \else
1227 \bbl@afterfi\csname#2@sh@#1@\string\#1\endcsname
1228 \fi}%

\initiate@active@char calls `\initiate@active@char` with 3 arguments. All of them are the same character with different catcodes: active, other (string’ed) and the original one. This trick simplifies the code a lot.

1229 \def\initiate@active@char1{%
1230 \bbl@ifunset{active@char\string\#1}{%
1231 \bbl@withactive
1232 \{\expandafter\\initiate@active@char\expandafter\#1\string\#1\#1\endcsname
1233 \}{%}

The very first thing to do is saving the original catcode and the original definition, even if not active, which is possible (undefined characters require a special treatment to avoid making them \relax and preserving some degree of protection).

1234 \def\@initiate@active@char1#2#3{%
1235 \bbl@csarg\edef{oricat@#2}{\catcode`#2=\the\catcode`#2\relax}%
1236 \ifx\#1\undefined
1237 \bbl@csarg\def\oridef@@#2{\def#1{\active@prefix\#1\undefined}}%
1238 \else
1239 \bbl@csarg\let\oridef@@#2\#1%
1240 \bbl@csarg\edef\oridef@@#2{%
1241 \let\noexpand#1%
1242 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname
1243 \fi

If the character is already active we provide the default expansion under this shorthand mechanism. Otherwise we write a message in the transcript file, and define `\normal@char\char` to expand to the character in its default state. If the character is mathematically active when babel is loaded (for example ’) the normal expansion is somewhat different to avoid an infinite loop (but it does not prevent the loop if the mathcode is set to "8000 a posteriori).
To prevent problems with the loading of other packages after babel we reset the catcode of the character to the original one at the end of the package and of each language file (except with KeepShorthandsActive). It is re-activate again at \begin{document}. We also need to make sure that the shorthands are active during the processing of the .aux file. Otherwise some citations may give unexpected results in the printout when a shorthand was used in the optional argument of \bibitem for example. Then we make it active (not strictly necessary, but done for backward compatibility).

Now we have set \normal@char\langle char\rangle, we must define \active@char\langle char\rangle, to be executed when the character is activated. We define the first level expansion of \active@char\langle char\rangle to check the status of the @safe@actives flag. If it is set to true we expand to the normal' version of this character, otherwise we call \user@active\langle char\rangle to start the search of a definition in the user, language and system levels (or eventually \normal@char\langle char\rangle).

We now define the default values which the shorthand is set to when activated or deactivated. It is set to the deactivated form (globally), so that the character expands to \active@prefix (char) \normal@char (char) (where \active@char (char) is one control sequence!).

The next level of the code checks whether a user has defined a shorthand for himself with this character. First we check for a single character shorthand. If that doesn't exist we check for a shorthand with an argument.
In order to do the right thing when a shorthand with an argument is used by itself at the end of the line we provide a definition for the case of an empty argument. For that case we let the shorthand character expand to its non-active self. Also, when a shorthand combination such as '' ends up in a heading \TeX{} would see \protect \protect. To prevent this from happening a couple of shorthand needs to be defined at user level.

Finally, a couple of special cases are taken care of. (1) If we are making the right quote (') active we need to change \pr as well. Also, make sure that a single ' in math mode 'does the right thing'. (2) If we are using the caret (^) as a shorthand character special care should be taken to make sure math still works. Therefore an extra level of expansion is introduced with a check for math mode on the upper level.

The following package options control the behavior of shorthands in math mode.

Initiating a shorthand makes the char. That is not strictly necessary but it is still done for backward compatibility. So we need to restore the original catcode at the end of package and and the end of the ldf.

This command helps the shorthand supporting macros to select how to proceed. Note that this macro needs to be expandable as do all the shorthand macros in order for them to work in expansion-only environments such as the argument of \hyphenation. This macro expects the name of a group of shorthands in its first argument and a shorthand character in its second argument. It will expand to either \bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.

This command is used in the expansion of active characters has a function similar to \OT1-cmd in that it \protects the active character whenever \protect is not \typeset@protect. The \gobble is needed to remove a token such as \activechar: (when the double colon was the active character to be dealt with). There are two definitions, depending of \ifincsname is available. If there is, the expansion will be more robust.
In some circumstances it is necessary to be able to change the expansion of an active character on the fly. For this purpose the switch \texttt{@safe@actives} is available. The setting of this switch should be checked in the first level expansion of \texttt{\active@char}\langle\texttt{char}\rangle.

\newif\if@safe@actives
\@safe@activesfalse
\bbl@restore@actives

When the output routine kicks in while the active characters were made “safe” this must be undone in the headers to prevent unexpected typeset results. For this situation we define a command to make them “unsafe” again.

\def\bbl@restore@actives{
 \if@safe@actives\@safe@activesfalse\fi}

Both macros take one argument, like \texttt{\initiate@active@char}. The macro is used to change the definition of an active character to expand to \texttt{\active@char}\langle\texttt{char}\rangle in the case of \texttt{\bbl@activate}, or \texttt{\normal@char}\langle\texttt{char}\rangle in the case of \texttt{\bbl@deactivate}.

\def\bbl@firstcs#1#2{
 \csname#1\endcsname}
\def\bbl@scndcs#1#2{
 \csname#2\endcsname}

These macros are used only as a trick when declaring shorthands.

The command \texttt{\declare@shorthand} is used to declare a shorthand on a certain level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;
2. the character (sequence) that makes up the shorthand, i.e. ~ or “a;
3. the code to be executed when the shorthand is encountered.
The auxiliary macro \babel@texpdf improves the interoperativity with hyperref and takes 4 arguments: (1) The \TeX code in text mode, (2) the string for hyperref, (3) the \TeX code in math mode, and (4), which is currently ignored, but it's meant for a string in math mode, like a minus sign instead of an hyphen (currently hyperref doesn't discriminate the mode). This macro may be used in \LaTeX{} files.

\begin{verbatim}
def\babel@texpdf#1#2#3#4{\%
 \ifx\texorpdfstring\@undefined
 \textormath{#1}{#3}\%
 \else
 \texorpdfstring{\textormath{#1}{#3}}{#2}\%
 \fi}
\end{verbatim}

Some of the shorthands that will be declared by the language definition files have to be usable in both text and math mode. To achieve this the helper macro \textormath is provided.

\begin{verbatim}
def\textormath{\%
 \ifmmode\expandafter\@secondoftwo\else\expandafter\@firstoftwo\fi}
\end{verbatim}

The current concept of 'shorthands' supports three levels or groups of shorthands. For each level the name of the level or group is stored in a macro. The default is to have a user group; use language group 'english' and have a system group called 'system'.

\begin{verbatim}
def\useshorthands{\%
 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}
\end{verbatim}

This is the user level macro. It initializes and activates the character for use as a shorthand character (ie, it's active in the preamble). Languages can deactivate shorthands, so a starred version is also provided which activates them always after the language has been switched.

\begin{verbatim}
def\useshorthands{\%
 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}
\end{verbatim}
\begin{verbatim}
\defineshorthand Currently we only support two groups of user level shorthands, named internally user and user@<lang> (language-dependent user shorthands). By default, only the first one is taken into account, but if the former is also used (in the optional argument of \defineshorthand) a new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make also sure \{} and \protect are taken into account in this new top level.

\def\user@language@group{user@\language@group}
\def\bbl@set@user@generic#1#2{\bbl@ifunset{user@generic@active#1}{\bbl@active@def#1\user@language@group{user@active}{user@generic@active}\bbl@active@def#1\user@group{user@generic@active}{language@active}\expandafter\edef\csname#2@sh@#1@@\endcsname{\expandafter\noexpand\csname normal@char#1\endcsname}\expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{\expandafter\noexpand\csname user@active#1\endcsname}}\@empty}
\newcommand\defineshorthand[3][user]{\edef\bbl@tempa{\zap@space#1 \@empty}\bbl@for\bbl@tempb\bbl@tempa{\if*\expandafter\@car\bbl@tempb\@nil\edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}\@expandtwoargs\bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb}\fi\declare@shorthand{\bbl@tempb}{#2}{#3}}
\languageshorthands A user level command to change the language from which shorthands are used. Unfortunately, babel currently does not keep track of defined groups, and therefore there is no way to catch a possible change in casing to fix it in the same way languages names are fixed. [TODO].
\def\languageshorthands#1{\def\language@group{#1}}
\aliasshorthand First the new shorthand needs to be initialized. Then, we define the new shorthand in terms of the original one, but note with \aliasshorthands("}{/} is \active@prefix /\active@char/, so we still need to let the latest to \active@char".
\def\aliasshorthand#1#2{\\bbl@ifshorthand[2]\{\expandafter\ifx\csname active@char\string#2\endcsname\relax
\iffalse\document\notprerr
\notshorthand[2]\else\else\initiate@active@char[2]\expandafter\let\csname active@char\string#2\expandafter\endcsname\csname active@char\string#1\expandafter\endcsname\expandafter\let\csname normal@char\string#2\expandafter\endcsname\csname normal@char\string#1\expandafter\endcsname\bbl@activate[2]\fi\fi\\bbl@error
\{\Cannot declare a shorthand turned off (\string#2)}
\end{verbatim}
\@notshorthand
\def\@notshorthand#1{\bbl@error{The character \string#1 should be made a shorthand character; add the command \string\useshorthands\string#1 to the preamble. I will ignore your instruction}{You may proceed, but expect unexpected results}}

\shorthandon
The first level definition of these macros just passes the argument on to \bbl@switch@sh, adding \@nil at the end to denote the end of the list of characters.

\shorthandoff
\newcommand*{\shorthandon}[1]{\bbl@switch@sh\@ne#1\@nnil}
\DeclareRobustCommand*{\shorthandoff}{\@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}
\def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh
The macro \bbl@switch@sh takes the list of characters apart one by one and subsequently switches the category code of the shorthand character according to the first argument of \bbl@switch@sh.

But before any of this switching takes place we make sure that the character we are dealing with is known as a shorthand character. If it is, a macro such as \active@char should exist.

Switching off and on is easy – we just set the category code to ‘other’ (12) and \active. With the starred version, the original catcode and the original definition, saved in @initiate@active@char, are restored.

% The value is that at the expansion time; e.g., in the preamble shorthands are usually deactivated.
\def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}
\def\bbl@putsh#1{\ifx#1\@empty\@nnil\else
\bbl@ifunset{\bbl@active@\string#1}{\bbl@putsh@i#1\@empty\@nnil}{\csname \bbl@active@\string#1\endcsname}}
You may want to test if a character is a shorthand. Note it does not test whether the shorthand is on or off.

You can use \ifbabelshorthand[3]\{bl@ifunset{bbl@active@string}{}{\textbf{error}}\}

One of the internal macros that are involved in substituting \prime for each right quote in math mode is \prim@s. This checks if the next character is a right quote. When the right quote is active, the definition of this macro needs to be adapted to look also for an active right quote; the hat could be active, too.

The position of the double quote character is different for the OT1 and T1 encodings. It will later be selected using the \f@encoding macro. Therefore we define two macros here to store the position of the character in these encodings.

\begin{align*}
\def\OT1dqpos{127} \\
\def\T1dqpos{4}
\end{align*}
When the macro `\f@encoding` is undefined (as it is in plain TeX) we define it here to expand to OT1

```latex
\ifx\f@encoding\@undefined
  \def\f@encoding{OT1}
\fi
```

7.6 Language attributes

Language attributes provide a means to give the user control over which features of the language definition files he wants to enable.

```
\languageattribute
```

The macro `\languageattribute` checks whether its arguments are valid and then activates the selected language attribute. First check whether the language is known, and then process each attribute in the list.

We want to make sure that each attribute is selected only once; therefore we store the already selected attributes in `\bbl@known@attribs`. When that control sequence is not yet defined this attribute is certainly not selected before.

When we end up here the attribute is not selected before. So, we add it to the list of selected attributes and execute the associated TeX-code.

```
\bbl@declare@attribute
```

This command adds the new language/attribute combination to the list of known attributes. Then it defines a control sequence to be executed when the attribute is used in a document. The result of this should be that the macro `\extras...` for the current language is extended, otherwise the attribute will not work as its code is removed from memory at `\begin{document}`.

```latex
\def\bbl@declare@attribute#1#2#3{% 
 \AfterBabelLanguage{#1}\languageattribute{#1}{#2}%)% 
 \edef\bbl@exp{\bbl@add@list\bbl@attributes{#1-#2}}% 
 \edef\csname#1@attr@#2\endcsname{#3}}
```

The error text to be issued when an unknown attribute is selected.

```
\newcommand*{\@attrerr}{[2]{% 
 \AfterBabelLanguage{#1}\languageattribute{#1}{#2}%)% 
 \edef\bbl@exp{\bbl@add@list\bbl@attributes{#1-#2}}% 
 \edef\csname#1@attr@#2\endcsname{#3}}
```

The macro `\extras...` for the current language is extended, otherwise the attribute will not work as its code is removed from memory at `\begin{document}`.
\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret \TeX code based on whether a certain attribute was set. This command should appear inside the argument to \AtBeginDocument because the attributes are set in the document preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being checked, and the third and fourth arguments are the true and false clauses.

\begin{verbatim}
\def\bbl@ifattributeset#1#2#3#4{%
 \ifx\bbl@known@attribs\@undefined
 \in@false
 \else
 \bbl@xin@{,#1-#2,}{,\bbl@known@attribs,}%
 \fi
 \ifin@
 \bbl@afterelse#3%
 \else
 \bbl@afterfi#4%
 \fi}
\end{verbatim}

\bbl@ifknown@trib An internal macro to check whether a given language/attribute is known. The macro takes 4 arguments, the language/attribute, the attribute list, the \TeX-code to be executed when the attribute is known and the \TeX-code to be executed otherwise.

We first assume the attribute is unknown. Then we loop over the list of known attributes, trying to find a match.

\begin{verbatim}
\def\bbl@ifknown@trib#1#2{%
 \let\bbl@tempa\@secondoftwo
 \bbl@loopx\bbl@tempb{#2}{%\expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%
 \ifin@
 \let\bbl@tempa\@firstoftwo
 \else
 \fi}
 \bbl@tempa}
\end{verbatim}

\bbl@clear@tribs This macro removes all the attribute code from \TeX's memory at \begin{document} time (if any is present).

\begin{verbatim}
\def\bbl@clear@tribs{%\ifx\bbl@attributes\@undefined\else
 \bbl@loopx\bbl@tempa{\bbl@attributes}{%\expandafter\bbl@clear@trib\bbl@tempa.}%
 \let\bbl@attributes\@undefined
 \fi}
\end{verbatim}

\section*{7.7 Support for saving macro definitions}

To save the meaning of control sequences using \bbl@save, we use temporary control sequences. To save hash table entries for these control sequences, we don't use the name of the control sequence to be saved to construct the temporary name. Instead we simply use the value of a counter, which is reset to zero each time we begin to save new values. This works well because we release the saved meanings before we begin to save a new set of control sequence meanings (see \selectlanguage and \originalTeX). Note undefined macros are not undefined any more when saved -- they are \relax'ed.

\begin{verbatim}
\def\babel@beginsave{
 \bbl@trace{Macros for saving definitions}
 \def\babel@beginsave{\bbl@savecnt\z@
 \bfbegin{document}{\bbl@clear@tribs}}
\end{verbatim}

The initialization of a new save cycle: reset the counter to zero.

Before it's forgotten, allocate the counter and initialize all.

\begin{verbatim}
\def\babel@beginsave{\bbl@savecnt\z@}
\end{verbatim}

\begin{verbatim}
\def\babel@beginsave{\newcount\bbl@savecnt
\begin{document}{\bbl@clear@tribs}}
\end{verbatim}

97
The macro \texttt{\babel@save\cname} saves the current meaning of the control sequence \texttt{\cname} to \original\TeX32. To do this, we let the current meaning to a temporary control sequence, the restore commands are appended to \original\TeX{} and the counter is incremented. The macro \texttt{\babel@savevariable\texttt{\variable}} saves the value of the variable. \texttt{\variable} can be anything allowed after the \texttt{\the} primitive.

```latex
\def\babel@save#1{%
  \expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax
  \toks@\expandafter{\original\TeX\let#1=}%
  \bbl@exp{%\original\TeX{}\let\the#1=}{%\Detokenize{\original\TeX{}\let\the#1=}{}
} \advance\babel@savecnt\@ne}
```

\texttt{\babel@savevariable\texttt{\variable}} saves the value of the variable. \texttt{\variable} can be anything allowed after the \texttt{\the} primitive.

```latex
\def\babel@savevariable#1{%
  \toks@\expandafter{\original\TeX{}#1=}%
  \bbl@exp{\def\original\TeX{}{\the\toks@\the#1}}{}}
```

\subsection*{7.8 Short tags}

\texttt{\babeltags} This macro is straightforward. After zapping spaces, we loop over the list and define the macros \texttt{\text{tag}} and \texttt{\dquote{tag}}. Definitions are first expanded so that they don't contain \texttt{\csname} but the \original\TeX{} has to be expandable, i.e. you shouldn't let it to \relax.

\texttt{\bbl@frenchspacing} Some languages need to have \frenchspacing in effect. Others don't want that. The command \bbl@frenchspacing switches it on when it isn't already in effect and \bbl@nonfrenchspacing switches it off if necessary. A more refined way to switch the catcodes is done with ini files. Here an auxiliary macro is defined, but the main part is in \babelprovide. This new method should be ideally the default one.

```latex
\def\bbl@frenchspacing{%
  \ifnum\the\sfcode`.=\@m
    \let\bbl@nonfrenchspacing\relax
  \else
    \frenchspacing
    \let\bbl@nonfrenchspacing\nonfrenchspacing
  \fi}
```

```latex
\let\bbl@elt\relax
\edef\bbl@fs@chars{\bbl@elt{.}\@m{3000}\bbl@elt{?}\@m{3000}\bbl@elt{!}\@m{3000}\bbl@elt;\@m{2000}\bbl@elt,\@m{1250}}
```

```latex
\edef\bbl@pre@fs{%\bbl@save@sfcodes%
\def\bbl@elt##1##2##3{%\ifnum\sfcode`##1=##2\relax\babel@savevariable\\sfcode`##1\relax\sfcode`##1=##3\relax\fi}%\bbl@fs@chars%}
```

```latex
\edef\bbl@post@fs{%\bbl@save@sfcodes%
\edef\bbl@tempa{\bbl@cl{frspc}}%
\edef\bbl@tempa{\expandafter\@car\bbl@tempa\@nil}%
\if\bbl@tempa % do nothing
\else\if\bbl@tempa % non french
\def\bbl@elt##1##2##3{%\ifnum\sfcode`##1=##2\relax\babel@savevariable\\sfcode`##1\relax\sfcode`##1=##3\relax\fi}%
\bbl@fs@chars
\else\if\bbl@tempa % french
\def\bbl@elt##1##2##3{%\ifnum\sfcode`##1=##3\relax\babel@savevariable\\sfcode`##1\relax\sfcode`##1=##2\relax\fi}%
\bbl@fs@chars
\else\fi}
```

\section*{7.8 Short tags}

\texttt{\babeltags} This macro is straightforward. After zapping spaces, we loop over the list and define the macros \texttt{\text{tag}} and \texttt{\dquote{tag}}. Definitions are first expanded so that they don't contain \texttt{\csname} but the \original\TeX{} has to be expandable, i.e. you shouldn't let it to \relax.
actual macro.
\bbl@trace{Short tags}
\def\babeltags##1{\edef\bbl@tempa{\zap@space##1 \@empty}\def\bbl@tempb##1=##2\@@{\edef\bbl@tempc{\noexpand\newcommand\expandafter\noexpand\csname ##1\endcsname{\noexpand\protect\expandafter\noexpand\csname otherlanguage*\endcsname{##2}}}\noexpand\newcommand\expandafter\noexpand\csname text##1\endcsname{\noexpand\foreignlanguage{##2}}}\bbl@tempc}\bbl@for\bbl@tempa\bbl@tempa{\expandafter\bbl@tempb\bbl@tempa\@@}}

7.9 Hyphens

\babelhyphenation\ This macro saves hyphenation exceptions. Two macros are used to store them: \bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for language ones. See \bbl@patterns above for further details. We make sure there is a space between words when multiple commands are used.
\bbl@trace{Hyphens}\@onlypreamble\babelhyphenation\AtEndOfPackage{%\newcommand\babelhyphenation[2][\@empty]{%\ifx\bbl@hyphenation@\relax\let\bbl@hyphenation@\@empty\fi\ifx\bbl@hyphlist\@empty\else\bbl@warning{%You must not intermingle \string\selectlanguage\space and\%\string\babelhyphenation\space or some exceptions will not\%be taken into account. Reported}%\fi\if\@empty#1%\protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}\else\bbl@vforeach{#1}{\def\bbl@tempa{##1}\bbl@fixname\bbl@tempa\bbl@iflanguage\bbl@tempa{\bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{\bbl@ifunset{bbl@hyphenation@\bbl@tempa}\{}\bbl@csname \bbl@hyphenation@\bbl@tempa\endcsname\space}\bbl@ifset{bbl@hyphenation@\bbl@tempa}{\csname bbl@hyphenation@\bbl@tempa\endcsname\space}\bbl@hyphenation@}}%\fi}}\bbl@allowhyphens\ This macro makes hyphenation possible. Basically its definition is nothing more than \nobreak \hspace{0pt plus 0pt}33.\def\bbl@allowhyphens{%\ifvmode\else\nobreak\hspace{.ptkip}\fi}\def\bbl@t@one{T1}\def\allowhyphens{%\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}\babelhyphen\ These macros to insert common hyphens. Note the space before \@ in \babelhyphen. Instead of protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same procedure as shorthands, with \active@prefix.
\newcommand\babelnullhyphen{\char\hyphenchar\font}\def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}
³¹ In X begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at this glue node.
The following two commands are used to wrap the "hyphen" and set the behavior of the rest of the word—the version with a single @ is used when further hyphenation is allowed, while that with @@ if no more hyphens are allowed. In both cases, if the hyphen is preceded by a positive space, breaking after the hyphen is disallowed. There should not be a discretionary after a hyphen at the beginning of a word, so it is prevented if preceded by a skip. Unfortunately, this does handle cases like "(suffix)": \nobreak is always preceded by \leavevmode, in case the shorthand starts a paragraph.

The following macro inserts the hyphen char:

Finally, we define the hyphen "types". Their names will not change, so you may use them in \ldf's. After a space, the \box in \bl@hay@nobreak is redundant.

For some languages the macro \bb@disc is used to ease the insertion of discretionary for letters that behave 'abnormally' at a breakpoint.

7.10 Multiencoding strings

The aim following commands is to provide a common interface for strings in several encodings. They also contains several hooks which can be used by luatex and xetex. The code is organized here with pseudo-guards, so we start with the basic commands.

Tools But first, a couple of tools. The first one makes global a local variable. This is not the best solution, but it works.
These second one. We need to patch \@ucclist, but it is done once and only if \SetCase is used or if strings are encoded. The code is far from satisfactory for several reasons, including the fact \@ucclist is not a list any more. Therefore a package option is added to ignore it. Instead of gobbling the macro getting the next two elements (usually \reserved@a), we pass it as argument to \bbl@ulc. The parser is restarted inside \langle \lang \rangle \bbl@ulc because we do not know how many expansions are necessary (depends on whether strings are encoded). The last part is tricky – when uppecasing, we have:

\let\bbl@tolower\@empty\let\bbl@toupper\@empty

and starts over (and similarly when lowercasing).

\let\bbl@opt@strings\@nnil % accept strings=value
\DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}
\DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}
\def\BabelStringsDefault{generic}

The following package options control the behavior of \SetString.

Main command

This is the main command. With the first use it is redefined to omit the basic setup in subsequent blocks. We make sure strings contain actual letters in the range 128-255, not active characters.
Parse the encoding info to get the label, input, and font parts.
Select the behavior of \SetString. There are two main cases, depending of if there is an optional argument: without it and strings=encoded, strings are defined always; otherwise, they are set only if they are still undefined (ie, fallback values). With labelled blocks and strings=encoded, define the strings, but with another value, define strings only if the current label or font encoding is the value of strings; otherwise (ie, no strings or a block whose label is not in strings=) do nothing.

We presume the current block is not loaded, and therefore set (above) a couple of default values to gobble the arguments. Then, these macros are redefined if necessary according to several parameters.

\newcommand{\bbl@startcmds@ii}[1][\@empty]{
 \let\SetString\@gobbletwo
 \let\bbl@stringdef\@gobbletwo
 \let\AfterBabelCommands\@gobble
 \ifx\@empty#1%
 \def\bbl@sc@label{generic}
 \bbl@encstring##1##2{%
 \ProvideTextCommandDefault##1{##2}
 \bbl@toglobal##1
 \expandafter\@gobble\csname\string?##1\endcsname}
 \let\bbl@sctest\in@true
 \else
 \let\bbl@sc@charset \space % <- zapped below
 \let\bbl@sc@fontenc \space % <- " "
 \def\bbl@tempa##1=##2\@nil{\bbl@csarg\edef{sc\@space##1 \@empty}{##2}}
 \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}
 \def\bbl@tempa##1 ##2{% space -> comma
 ##1
 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}
 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}
 \edef\bbl@sc@charset{\expandafter\fir@space\bbl@sc@charset\@empty}
 \fi
 \def\bbl@sctest{\bbl@xin@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}}
 \fi
}\else
 \let\bbl@sc@charset \space % <- zapped below
 \let\bbl@sc@fontenc \space % <- " "
 \def\bbl@tempa##1=##2\@nil{\bbl@csarg\edef{sc\@space##1 \@empty}{##2}}
 \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}
 \def\bbl@tempa##1 ##2{% space -> comma
 ##1
 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}
 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}
 \edef\bbl@sc@charset{\expandafter\fir@space\bbl@sc@charset\@empty}
\fi
\def\bbl@sctest{%
 \bbl@xin@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}
\fi
\def\bbl@opt@strings\@nnil % ie, no strings key -> defaults
There are two versions of \bbl@scswitch. The first version is used when \ldfs are read, and it makes sure \langle group\rangle\langle language\rangle is reset, but only once (\bbl@screset is used to keep track of this). The second version is used in the preamble and packages loaded after babel and does nothing. The macro \bbl@forlang loops \bbl@G, but its body is executed only if the value is in \BabelLanguages (inside babel) or \date\langle language\rangle is defined (after babel has been loaded). There are also two version of \bbl@forlang. The first one skips the current iteration if the language is not in \BabelLanguages (used in \ldfs), and the second one skips undefined languages (after babel has been loaded).

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is “active”
First save the “switcher”. Create it if undefined. Strings are defined only if undefined (ie, like \providecommand). With the event stringprocess you can preprocess the string by manipulating the value of \BabelString. If there are several hooks assigned to this event, preprocessing is done in the same order as defined. Finally, the string is set.

```latex
\def\bbl@setstring#1#2{%
  \bbl@forlang\bbl@teampa{%%
    \edef\bbl@LC{\bbl@tempa\bbl@stripslash#1}%
    \bbl@ifunset{\bbl@LC}{% eg, \germanchaptername
      \bbl@exp{%
        \global\\bbl@add\langle\bbl@G\bbl@tempa>{\\bbl@scset\#1<\bbl@LC>}}}%
    \bbl@usehooks{stringprocess}{%}
    \expandafter\bbl@stringdef
      \csname\bbl@LC\expandafter\endcsname\expandafter{#2}}%}
```

Now, some additional stuff to be used when encoded strings are used. Captions then include \bbl@encoded for string to be expanded in case transformations. It is \relax by default, but in \MakeUppercase and \MakeLowercase its value is a modified expandable \@changed@cmd.

```latex
\ifx\bbl@opt@strings\relax
  \def\bbl@scset#1#2{\def#1{\bbl@encoded#2}}
\bbl@patchuclc
\let\bbl@encoded\relax
\def\bbl@encoded@uclc#1{\@inmathwarn#1\expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
\expandafter\ifx\csname ?\string#1\endcsname\TextSymbolUnavailable#1\else
\csname ?\string#1\endcsname\fi\else
\csname\cf@encoding\string#1\endcsname\fi}
\else
  \def\bbl@scset#1#2{\def#1{#2}}
\fi
```

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current definition is somewhat complicated because we need a count, but \count@ is not under our control (remember \SetString may call hooks). Instead of defining a dedicated count, we just “pre-expand” its value.

```latex
\def\SetStringLoop##1##2{\def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}\
  \count@\z@
  \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok
    \advance\count@\@ne
    \toks@\expandafter{\bbl@tempa}{% empty items and spaces are ok
      \toks@\expandafter{\bbl@tempa}%
      \bbl@exp{%
        \\SetString\bbl@templ{\roman\numeral\count@}{\the\toks@}{\count@=}\the\count@\relax)}}%}
```

\section*{Delaying code}
Now the definition of \AfterBabelCommands when it is activated.

```latex
\def\bbl@aftercmds#1{%
  \toks@\expandafter{\bbl@scafter#1}{%}
\def\bbl@scafter{\the\toks@}
```

\section*{Case mapping}
The command \SetCase provides a way to change the behavior of \MakeUppercase and \MakeLowercase. \bbl@tempa is set by the patched \@ucilclist to the parsing command.

```latex
\def\bbl@aftercmds#1{%
  \toks@\expandafter{\bbl@scafter#1}{%}
\def\bbl@scafter{\the\toks@}
```

\section*{Macros local to BabelCommands}
\endinput
Macros to deal with case mapping for hyphenation. To decide if the document is monolingual or multilingual, we make a rough guess – just see if there is a comma in the languages list, built in the first pass of the package options.

There are 3 helper macros which do most of the work for you.

The following package options control the behavior of hyphenation mapping.

Initial setup to provide a default behavior if hyphenmap is not set.
This section ends with a general tool for resetting the caption names with a unique interface. With the old way, which mixes the switcher and the string, we convert it to the new one, which separates these two steps.

\newcommand\setlocalecaption{% TODO. Catch typos. What about ensure?
 \@ifstar\bbl@setcaption@s\bbl@setcaption@x}
\def\bbl@setcaption@x#1#2#3{% language caption-name string
 \bbl@trim@def\bbl@tempa{#2}%
 \bbl@xin@{.template}{\bbl@tempa}%
 \ifin@
 \bbl@ini@captions@template{#3}{#1}%
 \else
 \edef\bbl@tempd{\expandafter\expandafter\expandafter
 \strip@prefix\expandafter\meaning\csname captions#1\endcsname}%
 \bbl@xin@
 {\expandafter\string\csname #2name\endcsname}%
 {\bbl@tempd}%
 \ifin@ % Renew caption
 \bbl@xin@{\string\bbl@scset}{\bbl@tempd}%
 \else % Old way converts to new way
 \bbl@funset{#1#2name}%
 {\bbl@exp{%
 \bbl@ifsamestring{\bbl@tempa}{\languagename}%
 {\bbl@scset\<#2name\>\<#1#2name>}%
 }%}
 \else % New way
 \bbl@exp{%
 \bbl@add\<captions#1>{\def\<#1#2name>{}%}
 \bbl@ifsamestring{\bbl@tempa}{\languagename}%
 {\def\<#1#2name>{\<#1#2name>}}%
 }%}
 \fi%
 \fi
 \@namedef{#1#2name}{#3}%
 \toks0\expandafter{\bbl@captionslist}%
 \bbl@exp{\\in@{\<#2name>}{\the\toks0} % New way}
 \bbl@exp{%
 \bbl@add\<captions#1>{\\bbl@scset\<#1#2name>}%
 \bbl@ifsamestring{\bbl@tempa}{\languagename}%
 }%
 \bbl@exp{%
 \bbl@add\<captions#1>{\def\<#1#2name>{}%}
 \bbl@ifsamestring{\bbl@tempa}{\languagename}%
 }%
}
\def\bbl@setcaption@s#1#2#3{} % TODO. Not yet implemented
7.11 Macros common to a number of languages

\set@low@box
The following macro is used to lower quotes to the same level as the comma. It prepares its argument in box register 0.

2051 \bbl@trace{Macros related to glyphs}
2052 \def\set@low@box#1{\setbox\tw@hbox{,}
2053 \setbox\z@hbox{#1}\setbox\z@vbox{
2054 \ht@z@ -\ht@tw@\lowerdimen@ \box@z@\ht@z@\tw@\dp@z@\dp@tw@}

\save@sf@q
The macro \save@sf@q is used to save and reset the current space factor.

2055 \def\save@sf@q#1{\leavevmode
2056 \begingroup
2057 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF
2058 \endgroup}

7.12 Making glyphs available

This section makes a number of glyphs available that either do not exist in the OT1 encoding and have to be 'faked', or that are not accessible through T1enc.def.

7.12.1 Quotation marks

\quotedblbase
In the T1 encoding the opening double quote at the baseline is available as a separate character, accessible via \quotedblbase. In the OT1 encoding it is not available, therefore we make it available by lowering the normal open quote character to the baseline.

2059 \ProvideTextCommand{\quotedblbase}{OT1}{}
2060 \save@sf@q{\set@low@box{\textquotedblright}}%
2061 \box@z@\kern-.04em\bbl@allowhyphens}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be typeset.

2062 \ProvideTextCommandDefault{\quotedblbase}{%}
2063 \UseTextSymbol{OT1}{\quotedblbase}

\quotesinglbase
We also need the single quote character at the baseline.

2064 \ProvideTextCommand{\quotesinglbase}{OT1}{}
2065 \save@sf@q{\set@low@box{\textquotationright}}%
2066 \box@z@\kern-.04em\bbl@allowhyphens}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be typeset.

2067 \ProvideTextCommandDefault{\quotesinglbase}{%}
2068 \UseTextSymbol{OT1}{\quotesinglbase}

\guillemetleft
\guillemetr
The guillemet characters are not available in OT1 encoding. They are faked. (Wrong names with o preserved for compatibility.)

2069 \ProvideTextCommand{\guillemetleft}{OT1}{}
2070 \ifmmode
2071 \ll
2072 \else
2073 \save@sf@q{\nobreak
2074 \raise.2ex\hbox{\scriptscriptstyle\ll}$\bbl@allowhyphens}%
2075 \fi}
2076 \ProvideTextCommand{\guillemetr}{OT1}{}
2077 \ifmmode
2078 \gg
2079 \else
2080 \save@sf@q{\nobreak
2081 \raise.2ex\hbox{\scriptscriptstyle\gg}$\bbl@allowhyphens}%
2082 \fi}
2083 \ProvideTextCommand{\guillemetleft}{OT1}{}
2084 \ifmmode
2085 \ll
2086 \else
Mak sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

\providecommand{\guillemotleft}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens} \fi}
\providecommand{\guillemetleft}{% \UseTextSymbol{OT1}{\guillemetleft}}
\providecommand{\guillemotright}{% \UseTextSymbol{OT1}{\guillemotright}}
\providecommand{\guilsingleleft}{% \ProvideTextCommandDefault{\guilsingleleft}{% \UseTextSymbol{OT1}{\guilsingleleft}}
\providecommand{\guilsingleright}{% \ProvideTextCommandDefault{\guilsingleright}{% \UseTextSymbol{OT1}{\guilsingleright}}

\guilsingleleft \guilsingleright

The single guillemets are not available in OT1 encoding. They are faked.

\providecommand{\guilsingleleft}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleright}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleleft}{% \ProvideTextCommandDefault{\guilsingleleft}{% \UseTextSymbol{OT1}{\guilsingleleft}}
\providecommand{\guilsingleright}{% \ProvideTextCommandDefault{\guilsingleright}{% \UseTextSymbol{OT1}{\guilsingleright}}

\texttt{\guilsingleleft} \texttt{\guilsingleright}

The single guillemets are not available in OT1 encoding. They are faked.

\providecommand{\guilsingleleft}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleright}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleleft}{% \ProvideTextCommandDefault{\guilsingleleft}{% \UseTextSymbol{OT1}{\guilsingleleft}}
\providecommand{\guilsingleright}{% \ProvideTextCommandDefault{\guilsingleright}{% \UseTextSymbol{OT1}{\guilsingleright}}

\texttt{\guilsingleleft} \texttt{\guilsingleright}

The single guillemets are not available in OT1 encoding. They are faked.

\providecommand{\guilsingleleft}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleright}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleleft}{% \ProvideTextCommandDefault{\guilsingleleft}{% \UseTextSymbol{OT1}{\guilsingleleft}}
\providecommand{\guilsingleright}{% \ProvideTextCommandDefault{\guilsingleright}{% \UseTextSymbol{OT1}{\guilsingleright}}

\texttt{\guilsingleleft} \texttt{\guilsingleright}

The single guillemets are not available in OT1 encoding. They are faked.

\providecommand{\guilsingleleft}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleright}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleleft}{% \ProvideTextCommandDefault{\guilsingleleft}{% \UseTextSymbol{OT1}{\guilsingleleft}}
\providecommand{\guilsingleright}{% \ProvideTextCommandDefault{\guilsingleright}{% \UseTextSymbol{OT1}{\guilsingleright}}

\texttt{\guilsingleleft} \texttt{\guilsingleright}

The single guillemets are not available in OT1 encoding. They are faked.

\providecommand{\guilsingleleft}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleright}{OT1}{% \ifmmode \& \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens} \fi}
\providecommand{\guilsingleleft}{% \ProvideTextCommandDefault{\guilsingleleft}{% \UseTextSymbol{OT1}{\guilsingleleft}}
\providecommand{\guilsingleright}{% \ProvideTextCommandDefault{\guilsingleright}{% \UseTextSymbol{OT1}{\guilsingleright}}

\texttt{\guilsingleleft} \texttt{\guilsingleright}

The single guillemets are not available in OT1 encoding. They are faked.
Some code to construct these glyphs for the OT1 encoding was made available to me by Stipčević Mario, (stipcevic@olimp.irb.hr).

\def\crrtic@{\hrule height0.1ex width0.3em}
\def\ddj@{\setbox0\hbox{d}\dimen@=\ht0
\leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
\def\DDJ@{\setbox0\hbox{D}\dimen@=.55\ht0
\leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
\DeclareTextCommand\dj{OT1}{\ddj@ d}
\DeclareTextCommand\DJ{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

\ProvideTextCommandDefault\dj{\UseTextSymbol{OT1}{\dj}}
\ProvideTextCommandDefault\DJ{\UseTextSymbol{OT1}{\DJ}}

SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other encodings it is not available. Therefore we make it available here.

\DeclareTextCommand\SS{OT1}{SS}
\ProvideTextCommandDefault\SS{\UseTextSymbol{OT1}{\SS}}

7.12.3 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them usable both outside and inside mathmode. They are defined with \ProvideTextCommandDefault, but this is very likely not required because their definitions are based on encoding-dependent macros.

\glq The 'german' single quotes.
\grq

\ProvideTextCommandDefault\glq{%
\textormath{\quotesinglbase}{\mbox{\quotesinglbase}}} The definition of \grq depends on the font encoding. With T1 encoding no extra kerning is needed.

\ProvideTextCommand\glq{T1}{%\textormath{\kern.0.125em}{\textquoteleft}}
\ProvideTextCommand\glq{TU}{%\textormath{\textquoteleft}}
\ProvideTextCommand\glq{OT1}{%\save@sf@q{\kern-.0125em
\textormath{\textquoteleft}{\mbox{\textquoteleft}\kern.07em\relax}}}
\ProvideTextCommandDefault\grq{\UseTextSymbol{OT1}{\grq}}

\glqq The 'german' double quotes.
\grqq

\ProvideTextCommandDefault\glqq{%
\textormath{\quotedblbase}{\mbox{\quotedblbase}}} The definition of \grqq depends on the font encoding. With T1 encoding no extra kerning is needed.

\ProvideTextCommand\grqq{T1}{%\textormath{\kern.07em\textquoteleftright}{\mbox{\textquoteleftright}}}
\ProvideTextCommand\grqq{TU}{%\textormath{\textquoteleftright}{\mbox{\textquoteleftright}}}
\ProvideTextCommand\grqq{OT1}{%\save@sf@q{\kern-.0125em
\textormath{\textquoteleftright}{\mbox{\textquoteleftright}\kern.07em\relax}}}
\ProvideTextCommandDefault\grqq{\UseTextSymbol{OT1}{\grqq}}
The 'french' single guillemets.

The 'french' double guillemets.

7.12.4 Umlauts and tremas

The command " needs to have a different effect for different languages. For German for instance, the 'umlaut' should be positioned lower than the default position for placing it over the letters a, o, u, A, O and U. When placed over an e, i, E or I it can retain its normal position. For Dutch the same glyph is always placed in the lower position.

\umlauthigh To be able to provide both positions of " we provide two commands to switch the positioning, the default will be \umlauthigh (the normal positioning).

\umlautlow

\lower@umlaut The command \lower@umlaut is used to position the " closer to the letter. We want the umlaut character lowered, nearer to the letter. To do this we need an extra \texttt{dimen} register.

\lower@umlaut The following code fools \TeX{}'s \texttt{make_accent} procedure about the current x-height of the font to force another placement of the umlaut character. First we have to save the current x-height of the font, because we'll change this font dimension and this is always done globally. Then we compute the new x-height in such a way that the umlaut character is lowered to the base character. The value of .45ex depends on the METAFONT parameters with which the fonts were built. (Just try out, which value will look best.) If the new x-height is too low, it is not changed. Finally we call the \texttt{accent} primitive, reset the old x-height and insert the base character in the argument.

\lower@umlaut
For all vowels we declare " to be a composite command which uses \bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to be sure that these definitions override the ones that are provided when the package fontenc with option OT1 is used. Therefore these declarations are postponed until the beginning of the document. Note these definitions only apply to some languages, but babel sets them for all languages – you may want to redefine \bbl@umlauta and/or \bbl@umlaute for a language in the corresponding ldf (using the babel switching mechanism, of course).

\AtBeginDocument{%
\DeclareTextCompositeCommand{"}{OT1}{a}{\bbl@umlauta{a}}%
\DeclareTextCompositeCommand{"}{OT1}{e}{\bbl@umlaute{e}}%
\DeclareTextCompositeCommand{"}{OT1}{i}{\bbl@umlaute{i}}%
\DeclareTextCompositeCommand{"}{OT1}{\i}{\bbl@umlaute{i}}%
\DeclareTextCompositeCommand{"}{OT1}{o}{\bbl@umlauta{o}}%
\DeclareTextCompositeCommand{"}{OT1}{u}{\bbl@umlauta{u}}%
\DeclareTextCompositeCommand{"}{OT1}{A}{\bbl@umlauta{A}}%
\DeclareTextCompositeCommand{"}{OT1}{E}{\bbl@umlaute{E}}%
\DeclareTextCompositeCommand{"}{OT1}{I}{\bbl@umlaute{I}}%
\DeclareTextCompositeCommand{"}{OT1}{O}{\bbl@umlauta{O}}%
\DeclareTextCompositeCommand{"}{OT1}{U}{\bbl@umlauta{U}}%
}

Finally, make sure the default hyphen rules are defined (even if empty). For internal use, another empty \language is defined. Currently used in Amharic.

\ifx l@english \undefined
\chardef l@english z@
\fi
% The following is used to cancel rules in ini files (see Amharic).
\ifx l@unhyphenated \undefined
\newlanguage l@unhyphenated
\fi

7.13 Layout

Layout is mainly intended to set bidi documents, but there is at least a tool useful in general.

\bbl@trace{Bidi_layout}
\providecommand\IfBabelLayout[3]{#3}
\newcommand\BabelPatchSection[1]{%
 \@ifundefined{#1}{}{%\bbl@exp{%\let\langle\bbl@ss@#1}\langle#1\}\%\@namedef{#1}{%\@ifstar{\bbl@presec@s{#1}}{}{%\@dblarg{\bbl@presec@x{#1}}}}}\bbl@presec@x#1[#2]#3%
\bbl@exp%
7.14 Load engine specific macros

\bbl@trace{Input engine specific macros}
\ifcase\bbl@engine
\input txtbabel.def
\or
\input luababel.def
\or
\input xebabel.def
\fi

7.15 Creating and modifying languages

\bbl@provide is a general purpose tool for creating and modifying languages. It creates the language infrastructure, and loads, if requested, an ini file. It may be used in conjunction to previously loaded ldf files.

\bbl@trace{Creating languages and reading ini files}
\let\bbl@extend@ini\@gobble
\newcommand\bbl@provide[2][]{%
 \let\bbl@savelangname\languagename
 \edef\bbl@savelocaleid{\the\localeid}%
 % Set name and locale id
 \edef\languagename{#2}%
 \bbl@id@assign
 % Initialize keys
 \let\bbl@KVP@captions\@nil
 \let\bbl@KVP@date\@nil
 \let\bbl@KVP@import\@nil
 \let\bbl@KVP@main\@nil
 \let\bbl@KVP@script\@nil
 \let\bbl@KVP@language\@nil
 \let\bbl@KVP@hyphenrules\@nil
 \let\bbl@KVP@linebreaking\@nil
 \let\bbl@KVP@justification\@nil
 \let\bbl@KVP@mapfont\@nil
 \let\bbl@KVP@maparabic\@nil
 \let\bbl@KVP@mapdigits\@nil
 \let\bbl@KVP@intraspace\@nil
 \let\bbl@KVP@intrapenalty\@nil
 \let\bbl@KVP@onchar\@nil
 \let\bbl@KVP@transforms\@nil
 \global\let\bbl@release@transforms\@empty
 \global\let\bbl@extend@ini\@gobble
 \gdef\bbl@key@list{;}{% TODO - error handling
 \in@{(/}{##1}{%\#1}%
 \ift{\in@}{\{##1}{%\#2}%
 \glob@{\bbl@extend@ini\bbl@extend@ini\aux}
 \bbl@renewinikey##1@@{##2}%
 \else

112
\bbl@csarg\def{KVP@##1}{##2}%
\fi}
\chardef\bbl@howloaded=%0:none; 1:ldf without ini; 2:ini
\bbl@ifunset{date#2}\z@\{\bbl@ifunset{bbl@llevel@#2}\@ne\tw@}%
% == init ==
\ifx\bbl@screset\@undefined
\bbl@ldfinit
\fi
% == import, captions ==
\ifx\bbl@KVP@import\@nil\else
\bbl@exp{\bbl@ifblank{\bbl@KVP@import}\relax}{\ifx\bbl@initoload\relax
\begingroup
\def\BabelBeforeIni##1##2{\gdef\bbl@KVP@import{##1}\endinput}%
\bbl@input@texini{#2}\endgroup}
\else\xdef\bbl@KVP@import{\bbl@initoload}\fi}{}
\fi
% == Load ini ==
\ifcase\bbl@howloaded
\bbl@provide@new{#2}\else
\bbl@ifblank{#1}{}% With \bbl@load@basic below
\bbl@provide@renew{#2}\fi
% Post tasks
% ----------
% == subsequent calls after the first provide for a locale ==
\ifx\bbl@inidata\@empty\else
\bbl@extend@ini{#2}\fi
% == ensure captions ==
\ifx\bbl@KVP@captions\@nil\else
\bbl@ifunset{bbl@extracaps@#2}{\bbl@exp{\bbl@ensure\[exclude=\today\]{#2}}\bbl@exp{\bbl@ensure\[exclude=\today,include=\bbl@extracaps@#2\]}}{}
\bbl@ifunset{bbl@ensure@\languagename}{\bbl@exp{\DeclareRobustCommand<\bbl@ensure@\languagename>[1]{}}{}
At this point all parameters are defined if 'import'. Now we execute some code depending on them. But what about if nothing was imported? We just set the basic parameters, but still loading the whole ini file.

% == script, language ==
\ifx\bbl@KVP@script\@nil\else
 \bbl@csarg\edef{sname@#2}{\bbl@KVP@script}\fi
\ifx\bbl@KVP@language\@nil\else
 \bbl@csarg\edef{lname@#2}{\bbl@KVP@language}\fi
\ifcase\bbl@engine\or
 \bbl@ifunset{bbl@chrng@\languagename}{}\fi
 \directlua{Babel.set_chranges_b('\bbl@cl{sbcp}', 'bbl@cl{chrng}')}
\fi

% == onchar ==
\ifx\bbl@KVP@onchar\@nil\else
 \bbl@luahyphenate\bbl@exp{\AddToHook{env/document/before}{{\select@language{#2}}}\}
\directlua{
 if Babel.locale_mapped == nil then
 Babel.locale_mapped = true
 Babel.linebreaking.add_before(Babel.locale_map)
 Babel.loc_to_scr = {}
 Babel.chr_to_loc = Babel.chr_to_loc or {
 end}
 \bbl@xin@{ ids }{ \bbl@KVP@onchar\space}\fi
\ifin@
 \\AddToHook{env/document/before}{{\select@language{#2}}}\}
\directlua{
 if Babel.locale_mapped == nil then
 Babel.locale_mapped = true
 Babel.linebreaking.add_before(Babel.locale_map)
 Babel.loc_to_scr = {}
 Babel.chr_to_loc = Babel.chr_to_loc or {
 end}
 \bbl@xin@{ fonts }{ \bbl@KVP@onchar\space}\fi
\ifin@
\directlua{
 if Babel.script_blocks['\bbl@cl{sbcp}'] then
 Babel.loc_to_scr['the\localeid'] = Babel.script_blocks['\bbl@cl{sbcp}']
 Babel.locale_props['the\localeid'].lc = 'the\localeid\space'
 Babel.locale_props['the\localeid'].lg = 'the\@nameuse@l\languagename\space'
 end
\ifin@
\directlua{
 if Babel.script_blocks['\bbl@cl{sbcp}'] then
 Babel.loc_to_scr['the\localeid'] = Babel.script_blocks['\bbl@cl{sbcp}']
 end
\ifin@
\bbl@xin@{ fonts }{ \bbl@KVP@onchar\space}\fi
\ifin@
 \bbl@ifunset{\bbl@lsys@\languagename}{\bbl@provide@lsys\languagename}\}
\bbl@ifnull@{\bbl@dir@\languagename}{\bbl@provide@dirs\languagename}\}
\directlua{
 if Babel.script_blocks['\bbl@cl{sbcp}'] then
 Babel.loc_to_scr['the\localeid'] = Babel.script_blocks['\bbl@cl{sbcp}']
 end
\ifin@
\directlua{
 Babel.loc_to_scr['the\localeid'] = Babel.script_blocks['\bbl@cl{sbcp}']
\ifin@
\ifx\bbl@mapselect\undefined % TODO. almost the same as mapfont
\AtBeginDocument{%
 \bbl@patchfont{{\bbl@mapselect}}%
 {\selectfont}%
 \def\bbl@mapselect{%
 \let\bbl@mapselect\relax
 \edef\bbl@prefontid{\fontid\font}%
 }%}
 \def\bbl@mapdir##1{%}
 \def\languagename{##1}%
 \let\bbl@ifrestoring\@firstoftwo % To avoid font warning
 \bbl@switchfont
 \ifnum\fontid\font>\z@ % A hack, for the pgf nullfont hack
 \directlua{
 Babel.locale_props{\the\csname bbl@id@@##1\endcsname}[
 '/\bbl@prefontid'] = \fontid\font
 }%
 \fi}
 \bbl@exp{\bbl@add{\bbl@mapselect{\bbl@mapdir{\languagename}}}%}
 \fi
% == mapfont ==
% For bidi texts, to switch the font based on direction
\ifx\bbl@KVP@mapfont\@nil\else
 \bbl@ifsamestring{\bbl@KVP@mapfont}{direction}{}%
 \bbl@error{Option 'bbl@KVP@mapfont' unknown for '%
 mapfont. Use 'direction'.%}
 \See{the manual for details.}%
 \bbl@ifunset{bbl@lsys@\languagename}{}%
 \bbl@ifunset{bbl@wdir@\languagename}{}%
 \ifx\bbl@mapselect\undefined % TODO. See onchar.
 \AtBeginDocument{%
 \bbl@patchfont{{\bbl@mapselect}}%
 {\selectfont}%
 \def\bbl@mapselect{%
 \let\bbl@mapselect\relax
 \edef\bbl@prefontid{\fontid\font}}%
 \def\bbl@mapdir##1{%}
 \def\languagename{##1}%
 \let\bbl@ifrestoring\@firstoftwo % avoid font warning
 \bbl@switchfont
 \directlua{Babel.locale_props{\the\localeid}.cjk_quotes = {}
 local cs = 'op'
 for c in string.utfvalues(}%
 \fi}
 \bbl@exp{\bbl@add{\bbl@mapselect{\bbl@mapdir{\languagename}}}%}
 \fi
% == Line breaking: intraspace, intrapenalty ==
% For CJK, East Asian, Southeast Asian, if interspace in ini
\ifx\bbl@KVP@intraspacem@nil\else % We can override the ini or set
 \bbl@csarg\edef{intsp@#2}{\bbl@KVP@intraspacem}%
\fi
% TODO - catch non-valid values
% == Line breaking: CJK quotes ==
\ifcase\bbl@engine\or
 \bbl@xin{/c}{/\bbl@cl{lnbrk}}%
 \bbl@provide@cjk_quotes
% == Line breaking: intraspace, intrapenalty ==
% For CJK, East Asian, Southeast Asian, if interspace in ini
 \bbl@csarg\edef{intsp@#2}{\bbl@KVP@intraspacem}
\fi
% == Line breaking: CJK quotes ==
\ifcase\bbl@engine\or
 \bbl@xin{/c}{/\bbl@cl{lnbrk}}%
\fi
\bbl@ifunset{\bbl@quote@\languagename}{}%
{\directlua{Babel.locale_props{\the\localeid}.cjk_quotes = {}}
 local cs = 'op'
 for c in string.utfvalues(}
2503 if Babel.cjk_characters[c].c == 'qu' then
2504 Babel.locale_props[\the\localeid].cjk_quotes[c] = cs
2505 end
2506 cs = (cs == 'op') and 'cl' or 'op'
2507 end

% == Line breaking: justification ==
2512 \ifx\bbl@KVP@justification\@nil\else
2513 \let\bbl@KVP@linebreaking\bbl@KVP@justification
2514 \fi

% == Line breaking: hyphenate.other.(locale|script) ==
2526 \ifx\bbl@linebreak@\@empty
2527 \ifx\bbl@hyotl\@empty
2528 \ifcase\bbl@engine
2529 \ifnum##1<257
2530 \SetHyphenMap{\BabelLower{##1}{##1}}
2531 \else
2532 \global\lccode##1=##1
elax
2533 \fi
2534 \else
2535 \Bblarabicjust
2536 \fi
2537 \fi

% == Counters: maparabic ==
2551 \ifcase\bbl@engine\else
2552 \ifx\bbl@dignat\@empty
2553 \expandafter\expandafter\expandafter
2554 \bbl@setdigits\csname bbl@dgnat@\languagename\endcsname
2555 \fi
2556 \fi
\fi
\fi\%
% == Counters: mapdigits ==
% Native digits (lua level).
\iffod\\bbl@engine
 \iffx\\bbl@KVP@mapdigits\nil\else
 \bbl@ifunset{bbl@dgnat@\\languagename}@{}%
 {\RequirePackage{luatexbase}%
 {\bbl@activate@preotf%
 \directlua{
 Babel = Babel or {} %%% -> presets in luababel
 Babel.digits_mapped = true
 Babel.digits = Babel.digits or {}
 Babel.digits[\\the\localeid] =
 table.pack(string.utfvalue('\\bbl@cl{dgnat}'))
 if not Babel.numbers then
 function Babel.numbers(head)
 local LOCALE = Babel.attr_locale
 local GLYPH = node.id'glyph'
 local inmath = false
 for item in node.traverse(head) do
 if not inmath and item.id == GLYPH then
 local temp = node.get_attribute(item, LOCALE)
 if Babel.digits[temp] then
 local chr = item.char
 if chr > 47 and chr < 58 then
 item.char = Babel.digits[temp][chr-47]
 end
 end
 elseif item.id == node.id'math' then
 inmath = (item.subtype == 0)
 end
 end
 return head
 end
 end
 }}%
 }\fi%
 \fi\%
% == Counters: alph, Alph ==
% What if extras<lang> contains a \bbl@save@\alph? It won't be
% restored correctly when exiting the language, so we ignore
% this change with the \bbl@alph@saved trick.
\iffx\\bbl@KVP@alph\nil\else
 \bbl@extras@wrap{\\bbl@alpha@saved}%
 {\let\\bbl@alpha@saved@alph\@alph}
 {\let@alph\\bbl@alpha@saved@alph}\%
 \bbl@save@\alph%
 \bbl@exp%
 \bbl@add<extras\\languagename>@{%
 \let\@alph@alph\\bbl@cntr\\bbl@KVP@alph@\languagename}
}
\fi%
\iffx\\bbl@KVP@Alph\nil\else
 \bbl@extras@wrap{\\bbl@Alph@saved}%
 {\let\\bbl@Alph@saved@Alph\@Alph}%
 {\let@Alph\\bbl@Alph@saved@Alph}\%
 \bbl@save@\Alph%
 \bbl@exp%
 \bbl@add<extras\\languagename>@{%
 \let\@Alph@Alph\\bbl@cntr\\bbl@KVP@Alph@\languagename}
}
\fi%
% == Calendars ==

Depending on whether or not the language exists (based on \date<language>), we define two macros. Remember \bbl@startcommands opens a group.

\def\bbl@provide@new#1{\@namedef{date#1}{}% marks lang exists - required by \StartBabelCommands
\@namedef{extras#1}{}%
\@namedef{noextras#1}{}%
\bbl@startcommands*{#1}{captions}% and also if import, implicit
Load the basic parameters (ids, typography, counters, and a few more), while captions and dates are left out. But it may happen some data has been loaded before automatically, so we first discard the saved values. (TODO. But preserving previous values would be useful.)
The hyphenrules option is handled with an auxiliary macro.

\def\Bbl@provide@hyphens#1{\let\bbl@tempa\relax\ifx\bbl@KVP@hyphenrules\@nil\else\bbl@replace\bbl@KVP@hyphenrules{}{,}\bbl@foreach\bbl@KVP@hyphenrules{%\ifx\bbl@tempa\relax % if not yet found\bbl@ifsamestring{##1}{+}{\addlanguage\<l@##1>}\fi}{\bbl@ifunset{l@##1}{}{\bbl@exp{\let\bbl@tempa\<l@##1>}}}{\ifx\bbl@tempa\relax % if no opt or no language in opt found\ifx\bbl@KVP@import\@nil\bbl@exp{% and hyphenrules is not empty\bbl@ifsamestring{##1}{+}{}%\bbl@exp{\addlanguage\<l@##1>}\fi\bbl@input@texini{#1}{\let\bbl@tempa\<l@\bbl@cl{hyphr}>}}\else % if importing\bbl@exp{% and hyphenrules is not empty\bbl@ifsamestring{##1}{+}%\bbl@exp{\addlanguage\<l@##1>}}\fi\let\bbl@tempa\relax\fi\bbl@ifunset{bbl@tempa}% ie, relax or undefined\ifx\bbl@tempa\relax% no hyphenrules found - fallback\bbl@exp{\addlanguage\<l@##1>\language}\fi\{\bbl@input@texini{#1}{\let\bbl@tempa\<l@\bbl@cl{hyphr}>}}\}}% found in opt list or ini

The reader of babel-...tex files. We reset temporarily some catcodes.
The following macros read and store ini files (but don't process them). For each line, there are 3 possible actions: ignore if starts with ;, switch section if starts with [, and store otherwise. There are used in the first step of \bbl@read@ini.

\def\bbl@iniline#1\bbl@iniline{%
@\ifnextchar[\bbl@inisect{\@ifnextchar;\bbl@iniskip\bbl@inistore}#1\@@}%
\def\bbl@inisect[#1]#2\@@{\def\bbl@section{#1}}%
\def\bbl@iniskip#1\@@{}% if starts with ;%
\def\bbl@inistore#1=#2\@@{% full (default)
 \bbl@trim@def\bbl@tempa{#1}%
 \bbl@trim\toks@{#2}%
 \bbl@xin@{;\bbl@section/\bbl@tempa;}{\bbl@key@list}%
 \ifin@else \bbl@exp%
 \bbl@inidata{%
 \bbl@elt{\bbl@section}{\bbl@tempa}{\the\toks@}}%
 \fi} % minimal (maybe set in \bbl@read@ini)
\def\bbl@inistore@min#1=#2\@@{%
 \bbl@trim@def\bbl@tempa{#1}%
 \bbl@trim\toks@{#2}%
 \bbl@xin@{.identification.}{.\bbl@section.}%
 \ifin@ \bbl@exp{\g@addto@macro\bbl@inidata{%
 \bbl@elt{identification}{\bbl@tempa}{\the\toks@}}%
 \fi}
Now, the 'main loop', which **must be executed inside a group**. At this point, \bbl@inidata may contain data declared in \babelprovide, with 'slashed' keys. There are 3 steps: first read the ini file and store it; then traverse the stored values, and process some groups if required (date, captions, labels, counters); finally, 'export' some values by defining global macros (identification, typography, characters, numbers). The second argument is 0 when called to read the minimal data for fonts; with \babelprovide it's either 1 or 2.

\ifx\bbl@readstream\@undefined
 \csname newread\endcsname\bbl@readstream
\fi
\def\bbl@read@ini#1#2{%
 \global\let\bbl@extend@ini\@gobble
 \openin\bbl@readstream=babel-#1.ini
 \ifeof\bbl@readstream
 \bbl@error{There is no ini file for the requested language\%
 \languagename}. Perhaps you misspelled it or your\%
 installation is not complete.\}%
 \ifnum#2=\z@
 \global\let\bbl@inidata\@empty
 \let\bbl@inistore\bbl@inistore@min % Remember it's local
 \fi
 \bbl@section{identification} %
 \ifcase#2font and identification \or basic \fi
 \bbl@info{Importing \languagename\%
 \ifnum#2=\z@ \catcode`\^[=12 \catcode`\]=12 \catcode`\|=12 \catcode`\%=14 \catcode`\-=12 \bbl@info{Importing}
 \ifcase\bbl@read@ini\fi
 \bbl@inidata{%
 \bbl@elt{\languagename}{\bbl@tempa}{\the\toks@}}%
 \fi} % from babel-\languagename. Reported\%
 \else \fi
 \else
 \catcode`\^[=12 \catcode`\]=12 \catcode`\|=12 \catcode`\%=14 \catcode`\-=12
 \bbl@section{identification} %
 \bbl@info{Importing \languagename\%
 \ifnum#2=\z@ \catcode`\^[=12 \catcode`\]=12 \catcode`\|=12 \catcode`\%=14 \catcode`\-=12 \bbl@info{Importing}
 \ifcase\bbl@read@ini\fi
 \bbl@inidata{%
 \bbl@elt{\languagename}{\bbl@tempa}{\the\toks@}}%
 \fi} % from babel-\languagename. Reported\%
 \else
 \fi
\fi
\global\let\bbl@inidata\@empty
\let\bbl@ Extend@ini\@empty
\let\bbl@inistore\bbl@inistore@min % Remember it's local
\fi
\def\bbl@section{identification} %
\bbl@exp{\g@addto@macro\bbl@inidata{%
 \bbl@elt{\languagename}{\bbl@tempa}{\the\toks@}}%
\fi
\loop
\if T\ifeof\bbl@readstream F\fi \relax \% Trick, because inside \loop
\endlinechar\^\M
\ifx\bbl@line\empty\else
\expandafter\bbl@iniline\bbl@line\bbl@iniline
\fi
\repeat
% == Process stored data ==
\bbl@csarg\xdef{lini@\languagename}{#1}%
\bbl@read@ini@aux
% == 'Export' data ==
\bbl@ini@exports{#2}%
\global\bbl@csarg\let{inidata@\languagename}\bbl@inidata
\global\let\bbl@inidata\@empty
\bbl@exp{\\bbl@add@list\\bbl@ini@loaded{\languagename}}%
\bbl@toglobal\bbl@ini@loaded
\fi}
\def\bbl@read@ini@aux{%
\let\bbl@savestrings\@empty
\let\bbl@savetoday\@empty
\let\bbl@savedate\@empty
\def\bbl@elt##1##2##3{%
\def\bbl@section{##1}%
\in@{=date.}{=##1}% Find a better place
\ifin@
\bbl@ifunset{bbl@inikv@##1}%
{\bbl@ini@calendar{##1}}%
{}%
\fi
\in@{=identification/extension.}{=##1/##2}%
\ifin@
\bbl@ini@extension{##2}%
\fi
\bbl@ifunset{bbl@inikv@##1}{}%
{\csname bbl@inikv@##1\endcsname{##2}{##3}}}%
\bbl@inidata}
A variant to be used when the ini file has been already loaded, because it's not the first \babelprovide for this language.
\def\bbl@extend@ini@aux{%
\bbl@startcommands*{#1}{captions}%
% Activate captions/... and modify exports
\bbl@csarg\def\bbl@inikv@captions.licr}{##1}{##2}{%
\setlocalecaption{#1}{##1}{##2}{%
\bbl@ini@captions@aux{##1}{##2}{%
\bbl@stringdef##1##2{\gdef##1{##2}}%
\bbl@exportkey##1##2##3{%
\bbl@ifunset{bbl@@kv@##2}{}%
{\expandafter\ifx\csname bbl@@kv@##2\endcsname\@empty\else
\bbl@exp{\global\let\bbl@##1@\languagename\bbl@@kv@##2}\
\fi}}%
% As with \bbl@read@ini, but with some changes
\bbl@read@ini@aux
\bbl@ini@exports\tw@
% Update inidata@lang by pretending the ini is read.
\def\bbl@elt##1##2##3{%
\def\bbl@section{##1}%
\bbl@ini@line#1\#2\#3{%
\cnsname bbl@inidata@#1\endcsname
\global\bbl@csarg\let\bbl@inidata@#1\bbl@inidata
\StartBabelCommands*{#1}{date} And from the import stuff
\def\bbl@stringdef##1##2{\gdef##1{##2}}%
\bbl@savetoday
\bbl@savedate
\bbl@endcommands}
A somewhat hackish tool to handle calendar sections. TODO. To be improved.

\def\bbl@ini@calendar#1{%
 \lowercase{\def\bbl@tempa{=#1=}}%
 \bbl@replace\bbl@tempa{=date.gregorian}{}%
 \bbl@replace\bbl@tempa{=date.}{}%
 \in@{.licr=}{#1=}%
 \ifcase\bbl@engine
 \bbl@replace\bbl@tempa{.licr=}{}%
 \else
 \let\bbl@tempa\relax
 \fi
 \ifx\bbl@tempa\relax\else
 \bbl@replace\bbl@tempa{=}{}%
 \ifx\bbl@tempa\@empty\else
 \xdef\bbl@calendars{,\bbl@tempa}%
 \fi
 \bbl@exp{%
 \def\<bbl@inikv@#1>####1####2{\bbl@inidate####1...
elax{####2}{\bbl@tempa}}}%
 \fi}

A key with a slash in \bbl@provide replaces the value in the ini file (which is ignored altogether). The mechanism is simple (but suboptimal): add the data to the ini one (at this point the ini file has not yet been read), and define a dummy macro. When the ini file is read, just skip the corresponding key and reset the macro (in \bbl@inistore above).

\def\bbl@renewinikey#1/#2\@@#3{%
 \edef\bbl@tempa{\zap@space #1 \@empty}% section
 \edef\bbl@tempb{\zap@space #2 \@empty}% key
 \bbl@trim\toks@{#3}% value
 \bbl@exp{%
 \edef\bbl@key@list{\bbl@key@list \bbl@tempa/\bbl@tempb;}%
 \g@addto@macro\bbl@inidata{\bbl@elt{\bbl@tempa}{\bbl@tempb}{\the\toks@}}}%
}

The previous assignments are local, so we need to export them. If the value is empty, we can provide a default value.

\def\bbl@exportkey#1#2#3{%
 \bbl@ifunset{bbl@@kv@#2}{}%
 \bbl@ifunset{bbl@@kv@identification.warning#1}{\bbl@warning{\bbl@cs{@kv@identification.warning#1}\Reported}}%
 \bbl@exp{%
 \edef\\bbl@key@list\bbl@key@list \bbl@tempa/\bbl@tempb;}%
 \g@addto@macro\bbl@inidata{%
 \bbl@elt{\bbl@tempa}{\bbl@tempb}{\the\toks@}}}%
}

Key-value pairs are treated differently depending on the section in the ini file. The following macros are the readers for identification and typography. Note \bbl@ini@exports is called always (via \bbl@inisec), while \bbl@after@ini must be called explicitly after \bbl@read@ini if necessary.

\def\bbl@ini@warning#1{%
 \bbl@ifunset{bbl@kv@identification.warning#1}{}%
 \bbl@warning{%
 From babel-\bbl@cs{lini@\languagename}.ini:\:\%
 \bbl@cs{\kv@identification.warning#1}\Reported }}%
}

BCP 47 extensions are separated by a single letter (eg, latin-x-medieval. The following macro handles this special case to create correctly the corresponding info.
A shared handler for key=val lines to be stored in \bbl@kv@<section>.<key>.
By default, the following sections are just read. Actions are taken later.

Now captions and captions.licr, depending on the engine. And below also for dates. They rely on a few auxiliary macros. It is expected the ini file provides the complete set in Unicode and LICR, in that order.

The auxiliary macro for captions define \caption{name}.
Labels. Captions must contain just strings, no format at all, so there is new group in ini files.
The following code is still under study. You can test it and make suggestions. Eg, enumerate.2 = ([enumi]).([enumii]). It's language dependent.

\in\{enumerate.\}
\def\bbl@tempa{#1}
\ifin@
\def\bbl@toreplace{#2}
\if\bbl@toreplace{}
\def\bbl@toreplace{[\]}{\nobreakspace{}}
\def\bbl@toreplace{[}{\csname the}\}
\def\bbl@toreplace{]}{\endcsname{}}
\toks@\expandafter{\bbl@toreplace}"
% TODO. Execute only once:
\bbl@exp{\
\bbl@add<extras\languagename>{\
\babel@save<labelenum\romannumeral\bbl@tempa>\
\def<labelenum\romannumeral\bbl@tempa>{\the\toks@}}\
\bbl@toglobal<extras\languagename>}\
\fi
\fi
\def\bbl@chaptype{chapter}
\ifx\@makechapterhead\@undefined
\let\bbl@patchchapter\relax
\else\ifx\thechapter\@undefined
\let\bbl@patchchapter\relax
\else\ifx\ps@headings\@undefined
\let\bbl@patchchapter\relax
\else
\def\bbl@patchchapter{\
global\let\bbl@patchchapter\relax
\gdef\bbl@chfmt{\
\bbl@ifunset{bbl@\bbl@chaptype fmt@\languagename}\
{}{\@chapapp\space\thechapter\
\@nameuse{bbl@\bbl@chaptype fmt@\languagename}}}\
\bbl@add<appendix>{\def\bbl@chaptype{appendix}}\% Not harmful, I hope
\bbl@replace\ps@headings{\@chapapp \thechapter}{\bbl@chfmt}\
\bbl@replace\chaptermark{\@chapapp \thechapter}{\bbl@chfmt}\
\bbl@replace\@makechapterhead{\@chapapp \space \thechapter}{\bbl@chfmt}\
\bbl@toappendix}
\bbl@to\appendix}
\let\bbl@patchchapter\bbl@patchchapter
\fi\fi\fi
\let\bbl@patchappendix\bbl@patchchapter
\fi\fi\fi
\else
\def\bbl@patchchapter{\
global\let\bbl@patchchapter\relax
\gdef\bbl@chfmt{\
\bbl@ifunset{bbl@\bbl@chaptype fmt@\languagename}\
{}{\@chapapp\space\thechapter\
\@nameuse{bbl@\bbl@chaptype fmt@\languagename}}}\
\bbl@add<appendix>{\def\bbl@chaptype{appendix}}\% Not harmful, I hope
\bbl@replace\ps@headings{\@chapapp \thechapter}{\bbl@chfmt}\
\bbl@replace\chaptermark{\@chapapp \thechapter}{\bbl@chfmt}\
\bbl@replace\@makechapterhead{\@chapapp \space \thechapter}{\bbl@chfmt}\
\bbl@to\appendix}
\bbl@to\appendix}
\let\bbl@patchchapter\bbl@patchchapter
\fi\fi\fi
\else
\def\bbl@patchpart{\
global\let\bbl@patchpart\relax
\gdef\bbl@partfmt{\
\bbl@ifunset{bbl@\bbl@partfmt@\languagename}\
{}{\partname \nobreakspace \thepart\
\@nameuse{bbl@\bbl@partfmt@\languagename}}}\
\bbl@replace\part{\partname \nobreakspace \thepart}{\bbl@partfmt}\
\bbl@tottoc{\part}
\fi

To show correctly some captions in a few languages, we need to patch some internal macros, because the order is hardcoded. For example, in Japanese the chapter number is surrounded by two string, while in Hungarian is placed after. These replacement works in many classes, but not all. Actually, the following lines are somewhat tentative.
Arguments (year, month, day) are not protected, on purpose. In \today, arguments are always gregorian, and therefore always converted with other calendars. TODO. Document...
Dates will require some macros for the basic formatting. They may be redefined by language, so “semi-public” names (camel case) are used. Oddly enough, the CLDR places particles like “de” inconsistently in either in the date or in the month name. Note after \@replace \toks@ contains the resulting string, which is used by \@replace@finish@iii (this implicit behavior doesn’t seem a good idea, but it’s efficient).

\let\@calendar\@empty
\newcommand\babelcalendar[2][\the\year-\the\month-\the\day]{% \@nameuse{bbl@ca#2}\#1}\@@
\newcommand\BabelDateSpace{\nobreakspace}
\newcommand\BabelDateDot{.\@} % TODO. \let instead of repeating
\newcommand\BabelDated[1]{{\number#1}}
\newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}
\newcommand\BabelDateM[1]{{\number#1}}
\newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}
\newcommand\BabelDateMMMM[1]{{\csname month\romannumeral#1\bbl@calendar name\endcsname}}
\newcommand\BabelDatey[1]{{\number#1}}
\newcommand\BabelDateyy[1]{{\ifnum#1<10 0\number#1\else\ifnum#1<100 \number#1\else\ifnum#1<1000 \expandafter\@gobble\number#1\else\ifnum#1<10000 \expandafter\@gobbletwo\number#1\else\bbl@error{Currently two-digit years are restricted to the}\range{0-9999}.\}\fi\fi\fi\fi}}
\newcommand\BabelDateyyyy[1]{{\number#1}} % TODO - add leading 0
\def\bbl@replace@finish@iii#1{\bbl@exp{\def\#1####1####2####3{\the\toks@}}}
\def\bbl@TG@@date{\bbl@replace\bbl@toreplace{[\]}{\BabelDateSpace}{}}
\bbl@replace\bbl@toreplace{[.]}{\BabelDateDot}{}}
\bbl@replace\bbl@toreplace{[d]}{\BabelDated}{}}
\bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd}{}}
\bbl@replace\bbl@toreplace{[M]}{\BabelDateM}{}}
\bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM}{}}
\bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM}{}}
\bbl@replace\bbl@toreplace{[y]}{\BabelDatey}{}}
\bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy}{}}
\bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy}{}}
\bbl@replace\bbl@toreplace{[y]}{\bbl@datecntr[\#1]}{}}
\bbl@replace\bbl@toreplace{[yy]}{\bbl@datecntr[\#2]}{}}
\bbl@replace\bbl@toreplace{[yyyy]}{\bbl@datecntr[\#3]}{}}
\bbl@replace\bbl@toreplace{[y]}{\bbl@datecntr[\#1]}{}}
\bbl@replace\bbl@toreplace{[yy]}{\bbl@datecntr[\#2]}{}}
\bbl@replace\bbl@toreplace{[yyyy]}{\bbl@datecntr[\#3]}{}}
\bbl@replace\bbl@toreplace{[d]}{\bbl@datecntr[\#1]}{}}
\bbl@replace\bbl@toreplace{[dd]}{\bbl@datecntr[\#2]}{}}
\bbl@replace\bbl@toreplace{[M]}{\bbl@datecntr[\#1]}{}}
\bbl@replace\bbl@toreplace{[MM]}{\bbl@datecntr[\#2]}{}}
\bbl@replace\bbl@toreplace{[MMMM]}{\bbl@datecntr[\#3]}{}}
\bbl@replace@finish\bbl@toreplace
\def\bbl@datecntr{\expandafter\bbl@xdatecntr\expandafter}
\bbl@xdatecntr[#1|#2]{\localenumeral[#2]{\#1}}

Transforms.
\let\@calendar\@empty
\@namedef{bbl@inikv@transforms.prehyphenation}{\bbl@transforms\babelprehyphenation}
\@namedef{bbl@inikv@transforms.posthyphenation}{\bbl@transforms\babelposthyphenation}
\def\bbl@transforms@aux#1#2#3#4,#5\relax{#1[#2][#3][#4][#5]}
\begingroup % A hack. TODO. Don’t require an specific order
\catcode`\%=12
\endgroup
\catcode`\%=12
Language and Script values to be used when defining a font or setting the direction are set with the following macros.

```latex
\def\bbl@provide@lsys#1{% 
  \bbl@ifunset{bbl@lname@#1}{}% 
  \bbl@csarg\let{lsys@#1}@empty% 
  \bbl@ifunset{bbl@sname@#1}{\bbl@csarg\gdef{sname@#1}{Default}}{}% 
  \bbl@ifunset{bbl@sotf@#1}{\bbl@csarg\gdef{sotf@#1}{DFLT}}{}% 
  \bbl@csarg\bbl@add@list{lsys@#1}{Script=\bbl@cs{sname@#1}}% 
  \bbl@ifunset{bbl@lname@#1}{}% 
  \bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{lname@#1}}% 
  \ifcase\bbl@engine\or\or %
  \bbl@ifunset{bbl@prehc@#1}{}% 
  \bbl@exp{\ifblank{\bbl@cs{prehc@#1}}{}% 
  \bbl@ifset{bbl@prehc@languagename}@empty% 
  \bbl@ifset{bbl@cs{prehc@languagename}}{% \bbl@cs{prehc@languagename}}% 
  \global\let\bbl@xenohyph\bbl@xenohyph@d% 
  \ifx\AtBeginDocument@notprerr % to execute right now 
  \AtBeginDocument{% 
    \bbl@patchfont{\bbl@xenohyph}% 
    \expandafter\selectlanguage\expandafter{\languagename}% 
  }% 
  \fi} %
  \fi} %
  \bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{languagename}}% 
  \fi}% 
\def\bbl@provide@lsys{%
\def\bbl@provide@lsys{\bbl@provide@lsys{bbl@languagename} lsys@#1}
The following ini reader ignores everything but the identification section. It is called when a font is defined (i.e., when the language is first selected) to know which script/language must be enabled. This means we must make sure a few characters are not active. The ini is not read directly, but with a proxy tex file named as the language (which means any code in it must be skipped, too).

\def\bbl@load@info#1{%
  \bbl@BabelBeforeIni##1##2{%%
    \begingroup
    \bbl@read@ini{##1}0%
    \endinput % babel- .tex may contain onlypreamble's
    \endgroup}% boxed, to avoid extra spaces:
{\bbl@input@texini{#1}}%
\}

A tool to define the macros for native digits from the list provided in the ini file. Somewhat convoluted because there are 10 digits, but only 9 arguments in \TeX. Non-digits characters are kept.

The first macro is the generic “localized” command.

\def\bbl@setdigits#1#2#3#4#5{%
\bbl@exp{%\def\bbl@digits@lang####1{%
  \def\langdigits####1{%
    \expandafter\bbl@digits@####1\@nil}\
  \def\langcounter####1{%
    \expandafter\bbl@counter@####1\csname c@####1\endcsname}\
  \def\bbl@counter@####1{%
    \expandafter\bbl@digits@####1\number####1\@nil}}%}
\def\bbl@tempa##1##2##3##4##5{%\def\bbl@digits@####1{%\
  \if####1\@nil % ie, \bbl@digits@lang
    \else\if0####1#1%\
      \else\if1####1#2%\
        \else\if2####1#3%\
          \else\if3####1#4%\
            \else\if4####1#5%\
              \else\if5####1##1%\
                \else\if6####1##2%\
                  \else\if7####1##3%\
                    \else\if8####1##4%\
                      \else\if9####1##5%\
                        \else####1%
                      \fi\fi\fi\fi\fi\fi\fi\i\fi\fi\fi\fi\fi\fi\fi}\
\expandafter\bbl@digits@####1}}%
\def\bbl@tempa
Alphabetic counters must be converted from a space separated list to an `\ifcase` structure.

The code for additive counters is somewhat tricky and it's based on the fact the arguments just before `@` collects digits which have been left 'unused' in previous arguments, the first of them being the number of digits in the number to be converted. This explains the reverse set 76543210. Digits above 10000 are not handled yet. When the key contains the subkey `.F.`, the number after is treated as a special case, for a fixed form (see `babel-he.ini`, for example).

The information in the identification section can be useful, so the following macro just exposes it with a user command.

The code for additive counters is somewhat tricky and it's based on the fact the arguments just before `@` collects digits which have been left 'unused' in previous arguments, the first of them being the number of digits in the number to be converted. This explains the reverse set 76543210. Digits above 10000 are not handled yet. When the key contains the subkey `.F.`, the number after is treated as a special case, for a fixed form (see `babel-he.ini`, for example).
Extensions are dealt with in a special way

Now, an internal \LaTeX{} macro:

\providecommand\BCPdata[1]{\localeinfo*{#1.tag.bcp47}}

With version 3.75 \BabelEnsureInfo is executed always, but there is an option to disable it.

\DeclareOption{ensureinfo=off}{}

More general, but non-expandable, is \getlocaleproperty. To inspect every possible loaded ini, we define \LocaleForEach, where \bbl@ini@loaded is a comma-separated list of locales, built by \bbl@read@ini.

\newcommand\getlocaleproperty{\@ifstar\bbl@getproperty@s\bbl@getproperty@x}

\let\bbl@ini@loaded\@empty
\newcommand\LocaleForEach{\bbl@foreach\bbl@ini@loaded}

\section{Adjusting the Babel behavior}

A generic high level interface is provided to adjust some global and general settings.
\newcommand\babeladjust[1]{% TODO. Error handling.
\bbl@forkv{#1}{%
\bbl@ifunset{bbl@ADJ@##1@##2}{%
{\bbl@cs{ADJ@##1@##2}}%
{\bbl@cs{ADJ@##1}{##2}}}
%
\def\bbl@adjust@lua#1#2{%
\ifvmode
\ifnum\currentgrouplevel=\z@
\directlua{ Babel.#2 }%
\expandafter\expandafter\expandafter\@gobble
\fi
\fi
{\bbl@error % The error is gobbled if everything went ok.
{Currently, #1 related features can be adjusted only in
the main vertical list.}%
{Maybe things change in the future, but this is what it is.}{}\}}
\@namedef{bbl@ADJ@bidi.mirroring@on}{%
\bbl@adjust@lua{bidi}{mirroring_enabled=true}}
\@namedef{bbl@ADJ@bidi.mirroring@off}{%
\bbl@adjust@lua{bidi}{mirroring_enabled=false}}
\@namedef{bbl@ADJ@bidi.text@on}{%
\bbl@adjust@lua{bidi}{bidi_enabled=true}}
\@namedef{bbl@ADJ@bidi.text@off}{%
\bbl@adjust@lua{bidi}{bidi_enabled=false}}
\@namedef{bbl@ADJ@bidi.mapdigits@on}{%
\bbl@adjust@lua{bidi}{digits_mapped=true}}
\@namedef{bbl@ADJ@bidi.mapdigits@off}{%
\bbl@adjust@lua{bidi}{digits_mapped=false}}
\@namedef{bbl@ADJ@linebreak.sea@on}{%
\bbl@adjust@lua{linebreak}{sea_enabled=true}}
\@namedef{bbl@ADJ@linebreak.sea@off}{%
\bbl@adjust@lua{linebreak}{sea_enabled=false}}
\@namedef{bbl@ADJ@linebreak.cjk@on}{%
\bbl@adjust@lua{linebreak}{cjk_enabled=true}}
\@namedef{bbl@ADJ@linebreak.cjk@off}{%
\bbl@adjust@lua{linebreak}{cjk_enabled=false}}
\@namedef{bbl@ADJ@justify.arabic@on}{%
\bbl@adjust@lua{linebreak}{arabic.justify_enabled=true}}
\@namedef{bbl@ADJ@justify.arabic@off}{%
\bbl@adjust@lua{linebreak}{arabic.justify_enabled=false}}
\@namedef{bbl@ADJ@layout.tabular@on}{%
\@namedef{bbl@ADJ@layout.tabular@off}{%
\@namedef{bbl@ADJ@layout.lists@on}{%
\@namedef{bbl@ADJ@layout.lists@off}{%
\@namedef{bbl@ADJ@hyphenation.extra@on}{%
\@namedef{bbl@ADJ@hyphenation.extra@off}{
%
As the final task, load the code for lua. TODO: use babel name, override

As the final task, load the code for lua. TODO: use babel name, override

8.1 Cross referencing macros

The \LaTeX{} book states:

The key argument is any sequence of letters, digits, and punctuation symbols; upper- and lowercase letters are regarded as different.
When the above quote should still be true when a document is typeset in a language that has active characters, special care has to be taken of the category codes of these characters when they appear in an argument of the cross referencing macros.

When a cross referencing command processes its argument, all tokens in this argument should be character tokens with category 'letter' or 'other'.

The following package options control which macros are to be redefined.

\begin{verbatim}
\DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}
\DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}
\DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}
\DeclareOption{safe=refbib}{\def\bbl@opt@safe{BR}}
\DeclareOption{safe=bibref}{\def\bbl@opt@safe{BR}}
\end{verbatim}

\@newl@bel
First we open a new group to keep the changed setting of \protect local and then we set the \@safe@actives switch to true to make sure that any shorthand that appears in any of the arguments immediately expands to its non-active self.

\begin{verbatim}
\bbl@trace{Cross referencing macros}
\ifx\bbl@opt@safe\@empty\else % ie, if 'ref' and/or 'bib'
  \def@newl@bel#1#2#3{%
    \relax
    \{\gdef\@multiplelabels{%
      \latex@warning@no@line{There were multiply-defined labels}}%
      \latex@warning@no@line{Label `#2' multiply defined}}%
      \global\@namedef{#1@#2}{#3}}
\fi
\end{verbatim}

\@testdef
An internal \TeX\ macro used to test if the labels that have been written on the .aux file have changed. It is called by the \enddocument macro.

\begin{verbatim}
\CheckCommand*\@testdef[3]{%
  \def\reserved@a{#3}%
  \expandafter\ifx\csname#1@#2\endcsname\reserved@a
  \else
    \@tempswatrue
  \fi}
\end{verbatim}

Now that we made sure that \@testdef still has the same definition we can rewrite it. First we make the shorthands 'safe'. Then we use \bbl@tempa as an 'alias' for the macro that contains the label which is being checked. Then we define \bbl@tempb just as \@newl@bel does it. When the label is defined we replace the definition of \bbl@tempa by its meaning. If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.

\begin{verbatim}
\def\@testdef#1#2#3{% TODO. With @samestring?
  \@safe@activestrue
  \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname
  \def\bbl@tempb{#3}%
  \@safe@activesfalse
  \ifx\bbl@tempa\bbl@tempb
    \else
      \@tempswatrue
  \fi}
\end{verbatim}

\ref
The same holds for the macro \ref that references a label and \pageref to reference a page. We make them robust as well (if they weren’t already) to prevent problems if they should become expanded at the wrong moment.

\begin{verbatim}
\bbl@xin@{R}\bbl@opt@safe
\end{verbatim}
\@citex

The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is this internal macro that picks up the argument(s), so we redefine this internal macro and leave \cite alone. The first argument is used for typesetting, so the shorthands need only be deactivated in the second argument.

\cite

Unfortunately, the packages natbib and cite need a different definition of \@citex... To begin with, natbib has a definition for \@citex with three arguments... We only know that a package is loaded when \begin{document} is executed, so we need to postpone the different redefinition.

\cite

The package cite has a definition of \@citex where the shorthands need to be turned off in both arguments.

\cite

The macro \nocite which is used to instruct Bib\TeX to extract uncited references from the database.

\nocite
\bibcite The macro that is used in the .aux file to define citation labels. When packages such as natbib or cite are not loaded its second argument is used to typeset the citation label. In that case, this second argument can contain active characters but is used in an environment where \@safe@activestrue is in effect. This switch needs to be reset inside the \hbox which contains the citation label. In order to determine during .aux file processing which definition of \bibcite is needed we define \bibcite in such a way that it redefines itself with the proper definition. We call \bbl@cite@choice to select the proper definition for \bibcite. This new definition is then activated.

\begin{verbatim}
3734 \bbl@redefine\bibcite{%
3735 \bbl@cite@choice
3736 \bibcite}
\end{verbatim}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed. First we give \bibcite its default definition.

\begin{verbatim}
3739 \def\bbl@cite@choice{%
3740 \global\let\bibcite\bbl@bibcite
3741 \ifpackage{natbib}\global\let\bibcite\org@bibcite\fi%
3742 \ifpackage{cite}\global\let\bibcite\org@bibcite\fi%
3743 \global\let\bbl@cite@choice\relax}
\end{verbatim}

When a document is run for the first time, no .aux file is available, and \bibcite will not yet be properly defined. In this case, this has to happen before the document starts.

\begin{verbatim}
3744 \AtBeginDocument{\bbl@cite@choice}
\end{verbatim}

\@bibitem One of the two internal \LaTeX macros called by \bibitem that write the citation label on the .aux file.

\begin{verbatim}
3745 \bbl@redefine\bibitem#1{%
3746 \@safe@activestrue\org@bibitem#1\@safe@activestrue}
3747 \else
3748 \let\org@nocite\nocite
3749 \let\org@citex\@citex
3750 \let\org@bibcite\bibcite
3751 \let\org@bibitem\@bibitem
3752 \fi
\end{verbatim}

8.2 Marks

\markright Because the output routine is asynchronous, we must pass the current language attribute to the head lines. To achieve this we need to adapt the definition of \markright and \markboth somewhat. However, headlines and footlines can contain text outside marks; for that we must take some actions in the output routine if the 'headfoot' option is used. We need to make some redefinitions to the output routine to avoid an endless loop and to correctly handle the page number in bidi documents.

\begin{verbatim}
3753 \bbl@trace{Marks}
3754 \IfBabelLayout{sectioning}
3755 {\if\bbl@opt@headfoot\@nnil
3756 \g@addtomacro{\resetactivechars}{%
3757 \set@typeset@protect
3758 \expandafter\select@language@x\expandafter{\bbl@main@language}%
3759 \let\protect\noexpand
3760 \ifcase\bbl@bidimode\else % Only with bidi. See also above
3761 \edef\thepage{%
3762 \noexpand\babelsublr{\unexpanded\expandafter{\thepage}}%}
3763 \fi}%
3764 \fi}
3765 {\if\bbl@single\else
3766 \bbl@ifset{\markright }{\bbl@redefine\bbl@redefinerobust
3767 \markright#1}{
3768 \bbl@ifblank(#1)%
\end{verbatim}
The definition of \markboth is equivalent to that of \markright, except that we need two token registers. The document classes report and book define and set the headings for the page. While doing so they also store a copy of \markboth in \@mkboth. Therefore we need to check whether \@mkboth has already been set. If so we need to do that again with the new definition of \markboth.

(As of Oct 2019, \LaTeX stores the definition in an intermediate macro, so it's not necessary anymore, but it's preserved for older versions.)

\begin{Verbatim}
\def\bbl@tempc{%\let\@mkboth\markboth\else\def\bbl@tempc{}\fi}
\bbl@ifunset{markboth} \bbl@redefine\bbl@redefinerobust\markboth#1#2{%\protect\edef\bbl@tempb##1{\protect\foreignlanguage{\languagename}{\protect\bbl@restore@actives##1}}\bbl@ifblank{#1}{\toks@{}\toks@\expandafter{\bbl@tempb{#1}}}\bbl@ifblank{#2}{\@temptokena{}\@temptokena\expandafter{\bbl@tempb{#2}}}\bbl@exp{\\org@markboth{\the\toks@}{\the\@temptokena}}}
\bbl@tempc\fi \end{Verbatim}

8.3 Preventing clashes with other packages

8.3.1 ifthenelse

Sometimes a document writer wants to create a special effect depending on the page a certain fragment of text appears on. This can be achieved by the following piece of code:

\begin{Verbatim}
\ifthenelse{\isodd{\pageref{some:label}}}{{\{code for odd pages\}}}{{\{code for even pages\}}}
\end{Verbatim}

In order for this to work the argument of \isodd needs to be fully expandable. With the above redefinition of \pageref it is not in the case of this example. To overcome that, we add some code to the definition of \ifthenelse to make things work.

We want to revert the definition of \pageref and \ref to their original definition for the first argument of \ifthenelse, so we first need to store their current meanings.

Then we can set the @safe@actives switch and call the original \ifthenelse. In order to be able to use shorthands in the second and third arguments of \ifthenelse the resetting of the switch and the definition of \pageref happens inside those arguments.

\begin{Verbatim}
\bbl@trace{Preventing clashes with other packages}\/ifthenelse{\isodd{\pageref{some:label}}}{{\{code for odd pages\}}}{{\{code for even pages\}}}
\end{Verbatim}

\begin{Verbatim}
\ifthenelse{\isodd{\pageref{some:label}}}{{\{code for odd pages\}}}{{\{code for even pages\}}}
\end{Verbatim}

In order for this to work the argument of \isodd needs to be fully expandable. With the above redefinition of \pageref it is not in the case of this example. To overcome that, we add some code to the definition of \ifthenelse to make things work.

We want to revert the definition of \pageref and \ref to their original definition for the first argument of \ifthenelse, so we first need to store their current meanings.

Then we can set the @safe@actives switch and call the original \ifthenelse. In order to be able to use shorthands in the second and third arguments of \ifthenelse the resetting of the switch and the definition of \pageref happens inside those arguments.
When using the package `varioref` in order to prevent problems when an active character ends up in the argument of \ref or \vref. The same needs to happen for \vrefpagenum.

\AtBeginDocument{\
\@ifpackageloaded{varioref}{\@safe@activestrue\org@@@vpageref{#1}\#2\#3{\@safe@activesfalse}}\bbl@redefine\@@vpageref#1\[#2\]#3{\@safe@activestrue\org@@@vpageref{#1}\[#2\]{#3}\@safe@activesfalse}\bbl@redefine\vrefpagenum#1#2{\@safe@activestrue\org@vrefpagenum{#1}{#2}\@safe@activesfalse}}}

The package `varioref` defines \Ref to be a robust command which uppercasesthe first character of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So we employ a little trick here. We redefine the (internal) command \Ref to call \org@ref instead of \ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this definition needs to be updated as well.

\expandafter\def\csname Ref \endcsname#1{\protected@edef\@tempa{\org@ref{#1}}}\expandafter\MakeUppercase\@tempa}

\AtEndOfPackage{\AtBeginDocument{\@ifpackageloaded{hhline}{\expandafter\ifx\csname normal@char\string:\endcsname\relax\else\makeatletter\def\@currname{hhline}\input{hhline.sty}\makeatother\fi}}}

The package `varioref` defines \Ref to be a robust command which uppercasesthe first character of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So we employ a little trick here. We redefine the (internal) command \Ref to call \org@ref instead of \ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this definition needs to be updated as well.

\expandafter\def\csname Ref \endcsname#1{\protected@edef\@tempa{\org@ref{#1}}}\expandafter\MakeUppercase\@tempa}

\AtEndOfPackage{\AtBeginDocument{\@ifpackageloaded{hhline}{\expandafter\ifx\csname normal@char\string:\endcsname\relax\else\makeatletter\def\@currname{hhline}\input{hhline.sty}\makeatother\fi}}}

\substitutefontfamily

\AtBeginDocument{\@ifpackageloaded{varioref}{\@safe@activestrue\org@ifthenelse{#1}{}{\let\pageref\bbl@temp@pref\let\ref\bbl@temp@ref\@safe@activesfalse#2}{\let\pageref\bbl@temp@pref\let\ref\bbl@temp@ref\@safe@activesfalse#3}{}}}\fi

8.3.3 hhline

When using the package `varioref` in order to prevent problems when an active character ends up in the argument of \ref or \vref. The same needs to happen for \vrefpagenum.

\AtBeginDocument{\@ifpackageloaded{varioref}{\bbl@redefine\@@vpageref#1\[#2\]#3{\@safe@activestrue\org@@@vpageref{#1}\[#2\]{#3}\@safe@activesfalse}}\bbl@redefine\vrefpagenum#1#2{\@safe@activestrue\org@vrefpagenum{#1}{#2}\@safe@activesfalse}}}

The package `varioref` defines \Ref to be a robust command which uppercasesthe first character of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So we employ a little trick here. We redefine the (internal) command \Ref to call \org@ref instead of \ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this definition needs to be updated as well.

\expandafter\def\csname Ref \endcsname#1{\protected@edef\@tempa{\org@ref{#1}}}\expandafter\MakeUppercase\@tempa}

8.3.3 hhline

Delaying the activation of the shorthand characters has introduced a problem with the `hhline` package. The reason is that it uses the `:` character which is made active by the french support in babel. Therefore we need to reload the package when the `:` is an active character. Note that this happens after the category code of the @-sign has been changed to other, so we need to temporarily change it to letter again.

\AtEndOfPackage{\AtBeginDocument{\@ifpackageloaded{hhline}{\expandafter\ifx\csname normal@char\string:\endcsname\relax\else\makeatletter\def\@currname{hhline}\input{hhline.sty}\makeatother\fi}}}

\substitutefontfamily

\AtBeginDocument{\@ifpackageloaded{varioref}{\@safe@activestrue\org@ifthenelse{#1}{}{\let\pageref\bbl@temp@pref\let\ref\bbl@temp@ref\@safe@activesfalse#2}{\let\pageref\bbl@temp@pref\let\ref\bbl@temp@ref\@safe@activesfalse#3}{}}}\fi

8.3.3 hhline

When using the package `varioref` in order to prevent problems when an active character ends up in the argument of \ref or \vref. The same needs to happen for \vrefpagenum.

\AtBeginDocument{\@ifpackageloaded{varioref}{\bbl@redefine\@@vpageref#1\[#2\]#3{\@safe@activestrue\org@@@vpageref{#1}\[#2\]{#3}\@safe@activesfalse}}\bbl@redefine\vrefpagenum#1#2{\@safe@activestrue\org@vrefpagenum{#1}{#2}\@safe@activesfalse}}}

The package `varioref` defines \Ref to be a robust command which uppercasesthe first character of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So we employ a little trick here. We redefine the (internal) command \Ref to call \org@ref instead of \ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this definition needs to be updated as well.

\expandafter\def\csname Ref \endcsname#1{\protected@edef\@tempa{\org@ref{#1}}}\expandafter\MakeUppercase\@tempa}

8.3.3 hhline

Delaying the activation of the shorthand characters has introduced a problem with the `hhline` package. The reason is that it uses the `:` character which is made active by the french support in babel. Therefore we need to reload the package when the `:` is an active character. Note that this happens after the category code of the @-sign has been changed to other, so we need to temporarily change it to letter again.

\AtEndOfPackage{\AtBeginDocument{\@ifpackageloaded{hhline}{\expandafter\ifx\csname normal@char\string:\endcsname\relax\else\makeatletter\def\@currname{hhline}\input{hhline.sty}\makeatother\fi}}}

\substitutefontfamily

Deprecated. Use the tools provided by \LaTeX. The command \substitutefontfamily creates an .fd file on the fly. The first argument is an encoding mnemonic, the second and third arguments are font family names.
8.4 Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of \TeX{} and \LaTeX{} always come out in the right encoding. There is a list of non-ASCII encodings. Requested encodings are currently stored in \@fontenc@load@list. If a non-ASCII has been loaded, we define versions of \TeX{} and \LaTeX{} for them using \ensureascii. The default ASCII encoding is set, too (in reverse order): the "main" encoding (when the document begins), the last loaded, or OT1.

\ensureascii
Now comes the old deprecated stuff (with a little change in 3.9, for fontspec). The first thing we need
to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be nice to still have
Roman numerals come out in the Latin encoding. So we first assume that the current encoding at the
end of processing the package is the Latin encoding.

\begin{verbatim}
3894 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}
\end{verbatim}
But this might be overruled with a later loading of the package fontenc. Therefore we check at the
execution of \begin{document} whether it was loaded with the T1 option. The normal way to do this
(using \ifpackageloaded) is disabled for this package. Now we have to revert to parsing the
internal macro \filelist which contains all the filenames loaded.

\begin{verbatim}
3895 \AtBeginDocument{%
3896 \ifpackageloaded{fontspec}%
3897 {\edef\latinencoding{%
3898 \ifx\UTFencname\undefined
3899 EU\ifcase\bbl@engine\or2\or1\fi
3900 \else
3901 \UTFencname
3902 \fi}}%
3903 {\def\latinencoding{OT1}}%
3904 \ifx\cf@encoding\bbl@t@one
3905 \edef\latinencoding{\bbl@t@one}%
3906 \else
3907 \def\@elt#1{,#1,}%
3908 \edef\bbl@tempa{\expandafter\@gobbletwo\@fontenc@load@list}%
3909 \let\@elt\relax
3910 \bbl@xin{,T1,}\bbl@tempa
3911 \ifin@
3912 \edef\latinencoding{\bbl@t@one}%
3913 \fi
3914 \fi}
\end{verbatim}

\latintext Then we can define the command \latintext which is a declarative switch to a latin font-encoding.
Usage of this macro is deprecated.

\begin{verbatim}
3915 \DeclareRobustCommand{\latintext}{%\fontencoding{\latinencoding}\selectfont
3916 \def\encodingdefault{\latinencoding}}
\end{verbatim}

\textlatin This command takes an argument which is then typeset using the requested font encoding. In order
to avoid many encoding switches it operates in a local scope.

\begin{verbatim}
3918 \ifx\undefined\DeclareTextFontCommand
3919 \DeclareRobustCommand{\textlatin}{\leavevmode{\latintext #1}}
3920 \else
3921 \DeclareTextFontCommand{\textlatin}{\latintext}
3922 \fi
\end{verbatim}
For several functions, we need to execute some code with \selectfont. With \LaTeX\ 2021-06-01, there
is a hook for this purpose, but in older versions the \LaTeX\ command is patched (the latter solution will
be eventually removed).

\begin{verbatim}
3923 \def\bbl@patchfont#1{\AddToHook{selectfont}{#1}}
\end{verbatim}

8.5 Basic bidi support

Work in progress. This code is currently placed here for practical reasons. It will be moved to the
correct place soon, I hope.
It is loosely based on \rltext.def, but most of it has been developed from scratch. This babel
module (by Johannes Braams and Boris Lavva) has served the purpose of typesetting R documents
for two decades, and despite its flaws I think it is still a good starting point (some parts have been
copied here almost verbatim), partly thanks to its simplicity. I’ve also looked at \arabi (by Youssef
Jabri), which is compatible with babel.
There are two ways of modifying macros to make them “bidi”, namely, by patching the internal
low-level macros (which is what I have done with lists, columns, counters, tocs, much like \rltext did),
and by introducing a “middle layer” just below the user interface (sectioning, footnotes).
• pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical typesetting is not possible.

• xetex is somewhat better, thanks to its font engine (even if not always reliable) and a few additional tools. However, very little is done at the paragraph level. Another challenging problem is text direction does not honour \TeX\ grouping.

• luatex can provide the most complete solution, as we can manipulate almost freely the node list, the generated lines, and so on, but bidi text does not work out of the box and some development is necessary. It also provides tools to properly set left-to-right and right-to-left page layouts. As Lua\TeX\-ja shows, vertical typesetting is possible, too.

Now come the macros used to set the direction when a language is switched. First the (mostly) common macros.

\begin{verbatim}
\def\bbl@alscripts{,Arabic,Syriac,Thaana,}
\end{verbatim}
The following command is executed only if there is a right-to-left script (once). It activates the \everypar hack for xetex, to properly handle the par direction. Note text and par dirs are decoupled to some extent (although not completely).

A tool for weak L (mainly digits). We also disable warnings with hyperref.
8.6 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition file. This can be done by creating a file with the same name as the language definition file, but with the extension .cfg. For instance the file norsk.cfg will be loaded when the language definition file norsk.ldf is loaded.

For plain-based formats we don't want to override the definition of \loadlocalcfg from plain.def.

8.7 Language options

Languages are loaded when processing the corresponding option except if a main language has been set. In such a case, it is not loaded until all options has been processed. The following macro inputs the ldf file and does some additional checks (\input works, too, but possible errors are not caught).

Now, we set a few language options whose names are different from ldf files. These declarations are preserved for backwards compatibility, but they must be eventually removed. Use proxy files instead.

\DeclareOption{hebrew}{\input{rlbabel.def} \bbl@load@language{hebrew}}
\DeclareOption{hungarian}{\bbl@try@load@lang{}{magyar}{} }
\DeclareOption{lowersorbian}{\bbl@try@load@lang{}{lsorbian}{} }
\DeclareOption{nynorsk}{\bbl@try@load@lang{}{norsk}{} }
\DeclareOption{polutonikogreek}{\bbl@try@load@lang{}{greek}{\languageattribute{greek}{polutoniko}}}
Another way to extend the list of ‘known’ options for babel was to create the file bblopts.cfg in which one can add option declarations. However, this mechanism is deprecated – if you want an alternative name for a language, just create a new .ldf file loading the actual one. You can also set the name of the file with the package option config=<name>, which will load <name>.cfg instead.

4137 \ifx\bbl@opt@config\@nnil
4138 \@ifpackagewith{babel}{noconfigs}{}%
4139 \{\InputIfFileExists{bblopts.cfg}%
4140 \{\typeout{*************************************^^J%
4141 * Local config file bblopts.cfg used^^J%
4142 *}}%
4143 {}%
4144 \else
4145 \{\InputIfFileExists{\bbl@opt@config.cfg}%
4146 \{\typeout{*************************************^^J%
4147 * Local config file \bbl@opt@config.cfg used^^J%
4148 *}}%
4149 \bbl@error{(%
4150 Local config file '\bbl@opt@config.cfg' not found}%
4151 Perhaps you misspelled it.})%
4152 \fi

Recognizing global options in packages not having a closed set of them is not trivial, as for them to be processed they must be defined explicitly. So, package options not yet taken into account and stored in bbl@language@opts are assumed to be languages. If not declared above, the names of the option and the file are the same. We first pre-process the class and package options to determine the main language, which is processed in the third ‘main’ pass, except if all files are ldf and there is no main key. In the latter case (\bbl@opt@main is still \@nnil), the traditional way to set the main language is kept — the last loaded is the main language.

4153 \ifx\bbl@opt@main\@nnil
4154 \ifnum\bbl@iniflag>\z@ % if all ldf's: set implicitly, no main pass
4155 \let\bbl@tempb\@empty
4156 \edef\bbl@tempa{\Classoptionslist,\bbl@language@opts}%
4157 \bbl@foreach\bbl@tempa{\edef\bbl@tempb{#1,\bbl@tempb}}%
4158 \bbl@foreach\bbl@tempb{% \bbl@tempb is a reversed list
4159 \ifx\bbl@opt@main\@nnil % ie, if not yet assigned
4160 \ifodd\bbl@iniflag % *=
4161 \IfFileExists{babel-#1.tex}{\def\bbl@opt@main{#1}}{}%
4162 \else % n +=
4163 \IfFileExists{#1.ldf}{\def\bbl@opt@main{#1}}{}%
4164 \fi
4165 \fi%
4166 \fi
4167 \else
4168 \bbl@info{Main language set with 'main='. Except if you have\%
4169 problems, prefer the default mechanism for setting\%
4170 the main language. Reported}
4171 \fi

A few languages are still defined explicitly. They are stored in case they are needed in the ‘main’ pass (the value can be \relax).

4172 \ifx\bbl@opt@main\@nnil\else
4173 \bbl@csarg\let{loadmain\expandafter}\csname ds@\bbl@opt@main\endcsname
4174 \expandafter\let\csname ds@\bbl@opt@main\endcsname\relax
4175 \fi

Now define the corresponding loaders. With package options, assume the language exists. With class options, check if the option is a language by checking if the correspondin file exists.

4176 \bbl@foreach\bbl@language@opts{%
4177 \def\bbl@tempa{#1}%
4178 \ifx\bbl@opt@main\@nnil\else
4179 \ifnum\bbl@iniflag<\tw@ % 0 ø (other = ldf)
4180 \bbl@ifunisset(ds#1)%
4181 \{\DeclareOption{#1}{\bbl@load@language{#1}}}%
And we are done, because all options for this pass has been declared. Those already processed in the first pass are just ignored.

The options have to be processed in the order in which the user specified them (but remember class options are processes before):

```latex
\def\AfterBabelLanguage{\forwardlang}\forwardlanguage
\ProcessOptions*
```

This finished the second pass. Now the third one begins, which loads the main language set with the key main. A warning is raised if the main language is not the same as the last named one, or if the value of the key main is not a language. With some options in provide, the package luatexbase is loaded (and immediately used), and therefore \babelprovide can’t go inside a \DeclareOption; this explains why it’s executed directly, with a dummy declaration. Then all languages have been loaded, so we deactivate \AfterBabelLanguage.

```latex
\bbl@trace{Option ‘main’}
```

```latex
\edef\bbl@tempc\@empty
\bbl@for\bbl@tempb\bbl@tempa{%\ifin@\edef\bbl@tempb{\bbl@tempb}\fi}
```

148
9 The kernel of Babel (babel.def, common)

The kernel of the babel system is currently stored in babel.def. The file babel.def contains most of the code. The file hyphen.cfg is a file that can be loaded into the format, which is necessary when you want to be able to switch hyphenation patterns.

Because plain \TeX users might want to use some of the features of the babel system too, care has to be taken that plain \TeX can process the files. For this reason the current format will have to be checked in a number of places. Some of the code below is common to plain \TeX and \LaTeX, some of it is for the \LaTeX case only.

Plain formats based on etex (etex, xetex, luatex) don’t load hyphen.cfg but etex.src, which follows a different naming convention, so we need to define the babel names. It presumes language.def exists and it is the same file used when formats were created.

A proxy file for switch.def
\begin{verbatim}
\let\bbl@onlyswitch\@empty
\input babel.def
\let\bbl@onlyswitch\@undefined
\end{verbatim}

10 Loading hyphenation patterns

The following code is meant to be read by in\TeX because it should instruct \TeX to read hyphenation patterns. To this end the docstrip option patterns is used to include this code in the file hyphen.cfg. Code is written with lower level macros.
\begin{verbatim}
\ProvidesFile{hyphen.cfg}[\jobname] Babel hyphens
\xdef\bbl@format{\jobname}
\def\bbl@version{\jobname}
\def\bbl@date{\jobname}
\ifx\AtBeginDocument\@undefined
\def\bbl@loadlanguage{nil}
\fi
\end{verbatim}
Each line in the file `language.dat` is processed by \process@line after it is read. The first thing this macro does is to check whether the line starts with `. When the first token of a line is an `=`, the macro \process@synonym is called; otherwise the macro \process@language will continue.

\process@synonym

This macro takes care of the lines which start with an `. It needs an empty token register to begin with. \bbl@languages is also set to empty.

\process@language

The macro `\process@language` is used to process a non-empty line from the ‘configuration file’. It has three arguments, each delimited by white space. The first argument is the ‘name’ of a language; the second is the name of the file that contains the patterns. The optional third argument is the name of a file containing hyphenation exceptions.

The first thing to do is call `\addlanguage` to allocate a pattern register and to make that register ‘active’. Then the pattern file is read.

For some hyphenation patterns it is needed to load them with a specific font encoding selected. This can be specified in the file `language.dat` by adding for instance ‘`:T1`’ to the name of the language. The macro `\bbl@get@enc` extracts the font encoding from the language name and stores it in `\bbl@hyph@enc`. The latter can be used in hyphenation files if you need to set a behavior depending on the given encoding (it is set to empty if no encoding is given).

Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin. \TeX{} does not keep track of these assignments. Therefore we try to detect such assignments and store them in the `(lang)hyphenmins` macro. When no assignments were made we provide a default setting.

Some pattern files contain changes to the \lccode and \uccode arrays. Such changes should remain local to the language; therefore we process the pattern file in a group; the `\patterns` command acts globally so its effect will be remembered.

Then we globally store the settings of \lefthyphenmin and \righthyphenmin and close the group.

When the hyphenation patterns have been processed we need to see if a file with hyphenation exceptions needs to be read. This is the case when the third argument is not empty and when it does not contain a space token. (Note however there is no need to save hyphenation exceptions into the format)

\bbl@languages saves a snapshot of the loaded languages in the form

`\bbl@elt{language-name}{⟨number⟩}{⟨patterns-file⟩}{⟨exceptions-file⟩}`. Note the last 2 arguments are empty in ‘dialects’ defined in `language.dat` with `. Note also the language name can have encoding info.
Finally, if the counter \language is equal to zero we execute the synonyms stored.

\def\process@language##1##2##3{%
  \expandafter\addlanguage\csname l@##1\endcsname
  \edef\languagename{##1}\
  \bbl@hook@everylanguage{##1}%
  % > latex
  \bbl@get@enc_##1:::@@%
}

The macro \bbl@get@enc extracts the font encoding from the language name and stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

\def\bbl@get@enc##1:##2:##3@@{
  \def\bbl@hyph@enc{##2}}

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way. Besides latex, format-specific configuration files are taken into account. loadkernel currently loads nothing, but define some basic macros instead.

\def\bbl@hook@everylanguage{}\def\bbl@hook@loadpatterns{}\def\bbl@hook@loadexceptions{}\def\bbl@hook@loadkernel{}\def\addlanguage{
  \def\adddialect##1##2{%}
  \gdef\chardef##1##2\relax
  \wlog{\string##1 = a dialect from \string\language##2}}\def\iflanguage##1{%}
  \ifx\csname l@##1\endcsname\relax
    \@nolanerr{##1}\
  \else
    \ifnum\csname l@##1\endcsname=\language
      \expandafter\expandafter\expandafter\@firstoftwo
    \else
      \expandafter\expandafter\expandafter\@secondoftwo
    \fi
  \fi}
\def\providehyphenmins##1##2{% 
\expandafter\ifx\csname ##1hyphenmins\endcsname\relax 
\@namedef{##1hyphenmins}{##2}\% 
\fi}\% 
\def\set@hyphenmins##1##2{% 
\lefthyphenmin##1\relax 
\righthyphenmin##2\relax}\
\def\selectlanguage{% 
\errhelp{Selecting a language requires a package supporting it}% 
\errmessage{Not loaded}}% 
\let\foreignlanguage\selectlanguage 
\let\otherlanguage\selectlanguage 
\expandafter\let\csname otherlanguage*\endcsname\selectlanguage 
\def\setlocale{% 
\errhelp{Find an armchair, sit down and wait}% 
\errmessage{Not yet available}}% 
\let\uselocale\setlocale 
\let\locale\setlocale 
\let\selectlocale\setlocale 
\let\localename\setlocale 
\let\textlocale\setlocale 
\let\textlanguage\setlocale 
\let\languagetext\setlocale} 
\begingroup 
\def\AddBabelHook#1#2{% 
\expandafter\ifx\csname bbl@hook@#2\endcsname\relax 
\def\next\{\toks1}\% 
\else 
\def\next\{\expandafter\gdef\csname bbl@hook@#2faces\endcsname####1}\% 
\fi 
\next} 
\ifx\directlua\@undefined 
\ifx\XeTeXinputencoding\@undefined\else 
\input xebabel.def 
\fi 
\else 
\input luababel.def 
\fi 
\openin1=babel-\bbl@format.cfg 
\ifeof1 
\message{I couldn't find the file language.dat, I will try the file hyphen.tex} 
\input hyphen.tex\relax 
\chardef\l@english\z@ 
\else 
\input babel-\bbl@format.cfg\relax 
\fi 
\closein1 
\endgroup 
\bbl@hook@loadkernel{switch.def} 
\readconfigfile The configuration file can now be opened for reading. 
\openin1=language.dat 
See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be informed about this. 
\def\languagename{english}\% 
\ifeof1 
\message{I couldn’t find the file language.dat, I will try the file hyphen.tex} 
\input hyphen.tex\relax 
\chardef\l@english\z@ 
\else 
Pattern registers are allocated using count register \@last@language. Its initial value is 0. The definition of the macro \newlanguage is such that it first increments the count register and then
defines the language. In order to have the first patterns loaded in pattern register number 0 we 
initialize \last@language with the value \texttt{-1}.

\begin{verbatim}
definesthelanguage. In order to have the first patterns loaded in pattern register number 0 we
initialize \last@language with the value \texttt{-1}.

4404 \last@language@none

4405 \loop
4406 \endlinechar@none
4407 \read1 to \bbl@line
4408 \endlinechar@^M

We now read lines from the file until the end is found. While reading from the input, it is useful to
switch off recognition of the end-of-line character. This saves us stripping off spaces from the
contents of the control sequence.

4409 \if T\ifeof1F\fi T\relax
4410 \ifx\bbl@line@empty\else
4411 \edef\bbl@line{\bbl@line@space@space@space}%
4412 \expandafter\process@line\bbl@line\relax
4413 \fi
4414 \repeat

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add 3 space
characters to the end of \bbl@line. This is needed to be able to recognize the arguments of
\process@line later on. The default language should be the very first one.

4415 \if T\ifeof1F\fi T\relax
4416 \ifx\bbl@line@empty\else
4417 \edef\bbl@line{\bbl@line@space@space@space}%
4418 \expandafter\process@line\bbl@line\relax
4419 \fi
4420 \repeat

Check for the end of the file. We must reverse the test for \ifeof without \else. Then reactivate the
default patterns, and close the configuration file.

4421 \begingroup
4422 \def\bbl@elt#1#2#3#4{%
4423 \global\language=#2\relax
4424 \gdef\languagename{#1}%
4425 \def\bbl@elt##1##2##3##4{}%}
4426 \bbl@languages
4427 \endgroup
4428 \fi
4429 \closein1

We add a message about the fact that babel is loaded in the format and with which language patterns
to the \everyjob register.

4430 \if\the\toks@/\else
4431 \errhelp{language.dat loads no language, only synonyms}
4432 \errmessage{Orphan language synonym}
4433 \fi

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally load
\texttt{switch.def}, but the latter is not required and the line inputting it may be commented out.

4434 \let\bbl@line@undefined
4435 \let\process@line@undefined
4436 \let\process@synonym@undefined
4437 \let\process@language@undefined
4438 \let\bbl@get@enc@undefined
4439 \let\bbl@hyph@enc@undefined
4440 \let\bbl@tempa@undefined
4441 \let\bbl@hook@loadkernel@undefined
4442 \let\bbl@hook@everylanguage@undefined
4443 \let\bbl@hook@loadpatterns@undefined
4444 \let\bbl@hook@loadexceptions@undefined
4445 ⟨/patterns⟩

Here the code for \texttt{init\TeX} ends.

11 Font handling with fontspec

Add the bidi handler just before \texttt{luatextad Macros}, which is loaded by default by \LaTeX. Just in case, consider
the possibility it has not been loaded. First, a couple of definitions related to bidi [misplaced].

\begin{verbatim}
⟨⟨∗ More package options⟩⟩ ≡

153
\end{verbatim}
With explicit languages, we could define the font at once, but we don't. Just wait and see if the language is actually activated. \bbl@font replaces hardcoded font names inside \..family by the corresponding macro \..default.

At the time of this writing, fontspec shows a warning about there are languages not available, which some people think refers to babel, even if there is nothing wrong. Here is hack to patch fontspec to avoid the misleading message, which is replaced by a more explanatory one.

\def\bbl@loadfontspec{%
\usepackage{fontspec}% TODO. Apply patch always
\expandafter\def\csname msg~text~>~fontspec/language-not-exist\endcsname##1##2##3##4{%Font '\l_fontspec_fontname_tl' is using the\%
    default features for language '##1'.\%
    That's usually fine, because many languages\%
    require no specific features, but if the output is\%
    not as expected, consider selecting another font.}%
\expandafter\def\csname msg~text~>~fontspec/no-script\endcsname##1##2##3##4{%Font '\l_fontspec_fontname_tl' is using the\%
    default features for script '##2'.\%
    That's not always wrong, but if the output is\%
    not as expected, consider selecting another font.}}
\ExplSyntaxOff
\@onlypreamble\babelfont
\newcommand\babelfont[2][]{% 1=langs/scripts 2=fam
\bbl@foreach{#1}{%\ifx\csname date##1\endcsname\relax
\IfFileExists{babel-##1.tex}{}%{\babelprovide{##1}}%
\fi}%
\edef\bbl@tempa{#1}% Used by \bbl@bblfont
\def\bbl@tempb{#2}% Used by \bbl@switchfont
\ifx\fontspec\@undefined
\bbl@loadfontspec
\fi
\EnableBabelHook{babel-fontspec}% Just calls \bbl@switchfont
\bbl@bblfont
\newcommand\babelfont[2][]{% 1=features 2=fontname, @font=rm|sf|tt
\bbl@ifunset{\bbl@tempb family}{}%\bbl@providefam{\bbl@tempb}
\bbl@ifblank{\bbl@tempa}{}%\bbl@font@set{\bbl@tempb dflt@}{<>{#1}{#2}}%
\bbl@exp{\let\bbl@bblfont@<\bbl@tempb dflt@>\bbl@font@set\bbl@tempb dflt@}%
\bbl@exp{\let\bbl@bblfont@<\bbl@tempb dflt@>\bbl@font@set\bbl@tempb dflt@}%
If the family in the previous command does not exist, it must be defined. Here is how:

```latex
\def\bbl@providefam#1{%
 \bbl@exp{\
 \newcommand<#1default>{}
 }
 \bbl@add@list\
 \bbl@font@fams{#1}\
 \DeclareRobustCommand<#1family>{}
 \fontfamily<#1default>\
 \Selectfont}\

\DeclareTextFontCommand{<text#1>}{<#1family>}
```

The following macro is activated when the hook babel-fontspec is enabled. But before, we define a macro for a warning, which sets a flag to avoid duplicate them.

```latex
\def\bbl@nostdfont#1{%
 \bbl@ifunset{bbl@WFF@f@family}{}
 \bbl@infowarn{The current font is not a babel standard family:\%
 #1\fontname\font\%
 There is nothing intrinsically wrong with this warning, and\%
 you can ignore it altogether if you do not need these\%
 families. But if they are used in the document, you should be\%
 aware 'babel' will not set Script and Language for them, so\%
 you may consider defining a new family with \string\babelfont.\%
 See the manual for further details about \string\babelfont.\%
 Reported}}%

\def\bbl@switchfont{%
 \bbl@ifunset{bbl@lsys@languagename}{
 \bbl@provide@lsys{\languagename}}{}%
 \lowercase{\edef\
 \bbl@cl{sname}}%
 \bbl@foreach\bbl@font@fams{%
 \bbl@ifunset{bbl@##1dflt@\languagename}% (1) language?
 \bbl@ifunset{bbl@##1dflt@*\bbl@cl{sname}}% (2) from script?
 \bbl@ifunset{bbl@##1dflt@}% 2=F - (3) from generic?
 {}% 123=F - nothing!
 \bbl@exp{%
 \global\let<\bbl@##1dflt>@\relax
 }% order is relevant. TODO: but sometimes wrong!
 \bbl@add\
 \originalTeX{<\bbl@cl{##1dflt}@<##1family>@<##1default>}}%
 \bbl@font@set<\bbl@##1dflt@\languagename>}% the main part!
 }%
 \bbl@ifrestoring{}{\bbl@tempa}}%
```

The following is executed at the beginning of the aux file or the document to warn about fonts not defined with \babelfont.
Now the macros defining the font with fontspec.
When there are repeated keys in fontspec, the last value wins. So, we just place the ini settings at the beginning, and user settings will take precedence. We must deactivate temporarily `\bbl@mapselect` because `\selectfont` is called internally when a font is defined.

\def\bbl@fontspec@set#1#2#3{% eg \bbl@rmdflt@lang fnt-opt fnt-nme \xxfamily
\let\bbl@tempe\bbl@mapselect
\let\bbl@mapselect\relax
\let#4\@empty% Make sure \renewfontfamily is valid
\renewfontfamily\#4%
\let\bbl@temp@fam#4% eg, \backslash \rmfamily', to be restored below
\let#4\empty% Make sure \renewfontfamily is valid
\bbl@exp(%
\let\bbl@temp@fam\strip\space% eg, \backslash \rmfamily'
\keys_if_exist:mmF\{fontspec-opentype\}{\script/\bbl@cl\{sname\}}%\bbl@cl\{soft\}}%}
\keys_if_exist:mmF\{fontspec-opentype\}{\lang/\bbl@cl\{lname\}}%}
\newfontlanguage{\bbl@cl\{lname\}}{\bbl@cl\{lotf\}}}
\renewfontfamily\#4%
\bbl@exp{\bbl@cl\{lnames\}}{#3}% ie \bbl@exp{..}{#3}
\begingroup
\def#1{\f@family}% eg, \bbl@rmdflt@lang{FreeSerif(0)}
\endgroup
\let#4\bbl@temp@fam
\bbl@exp{\let<\bbl@stripslash#4\space>\bbl@temp@pfam}
\let\bbl@mapselect\bbl@tempe}

font@rst and famrst are only used when there is no global settings, to save and restore de previous families. Not really necessary, but done for optimization.
\def\bbl@font@rst#1#2#3#4{%
\bbl@csarg\def{famrst@#4}{\bbl@font@set{#1}#2#3}}

The default font families. They are eurocentric, but the list can be expanded easily with \babelfont.
\def\bbl@font@fams{rm,sf,tt}

\section{Hooks for XeTeX and LuaTeX}
\subsection{XeTeX}

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to utf8, which seems a sensible default.
\def\bbl@trace{Bidi footnotes}
\ifnum\bbl@bidimode>\z@
\def\bbl@footnote#1#2#3{%
\@ifnextchar[{bl@footnote@o{#1}{#2}{#3}}{bl@footnote@x{#1}{#2}{#3}}}
\long\def\bbl@footnote@x#1#2#3#4{%
\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnote{#2#1\ignorespaces#4}#3%
\egroup}
\long\def\bbl@footnote@o#1#2#3[#4]{%
\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnote[#4]{#2#1\ignorespaces#3}%
\egroup}
\long\def\bbl@footnotetext#1#2#3{%
\@ifnextchar[{bl@footnotetext@o{#1}{#2}{#3}}{bl@footnotetext@x{#1}{#2}{#3}}}
\long\def\bbl@footnotetext@x#1#2#3#4{%
\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnotetext{#2#1\ignorespaces#4}#3%
\egroup}
\long\def\bbl@footnotetext@o#1#2#3[#4]{%
\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnotetext[#4]{#2#1\ignorespaces#3}%
\egroup}
\def\BabelFootnote#1#2#3#4{%
\ifx\bbl@fn@footnote\@undefined
\let\bbl@fn@footnote\footnote
\fi
\ifx\bbl@fn@footnotetext\@undefined
\let\bbl@fn@footnotetext\footnotetext
\fi
\bbl@ifblank{#2}{\def#1{\bbl@footnote\firstofone{#3}{#4}}}{#2}
Now, the code.

\begin{xetex}
\def\BabelStringsDefault{unicode}
\let\xebl@stop\relax
\AddBabelHook{xetex}{encodedcommands}{%
\def\bbl@tempa{#1}
\ifx\bbl@tempa\@empty
\XeTeXinputencoding"bytes"
\else
\XeTeXinputencoding"#1"
\fi
\def\xebl@stop{\XeTeXinputencoding"utf8"}
}
\AddBabelHook{xetex}{stopcommands}{%}
\xebl@stop
\let\xebl@stop\relax
\def\bbl@intraspace#1 #2 #3\@@{%
\bbl@csarg\gdef{xeisp\languagename}{\XeTeXlinebreakskip #1em plus #2em minus #3em}\relax}
\def\bbl@intrapenalty#1\@@{%
\bbl@csarg\gdef{xeipn\languagename}{\XeTeXlinebreakpenalty #1}\relax}
\def\bbl@provide@intraspace{%
\bbl@xin{/s}{/\bbl@cl{lnbrk}}
\ifin@\else\bbl@xin{/c}{/\bbl@cl{lnbrk}}\fi
\ifin@
\bbl@ifunset{bbl@intsp\languagename}{}
\ifx\bbl@KVP@intraspace\@nil
\bbl@exp{\bl@intraspace\bbl@cl{intsp}\@@}
\fi
\ifx\bbl@KVP@intrapenalty\@nil
\bbl@intrapenalty0\@@
\fi
\fi
\ifx\bbl@KVP@intraspace\@nil\else % We may override the ini
\expandafter\bbl@intraspace\bbl@KVP@intraspace\@@
\fi
\ifx\bbl@KVP@intrapenalty\@nil\else % We may override the ini
\expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@
\fi
\expandafter\bbl@exp{%
\% TODO. Execute only once (but redundant):
\\\bbl@add<\text{extras}\languagename>{%}
\\\XeTeXlinebreaklocale "\bbl@cl{tbcp}"%
\\\bbl@exp{%}
\\\\\bbl@add<\text{noextras}\languagename>{%}
\\\XeTeXlinebreaklocale "en"%}
\\\bbl@add<\text{noextras}\languagename>{%}
\\\\\bbl@add<\text{noextras}\languagename>{%}
\\\\\bbl@add<\text{noextras}\languagename>{%}
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\n
12.2 Layout

In progress.

Note elements like headlines and margins can be modified easily with packages like fancyhdr, typearea or titleps, and geometry. \bbl@startskip and \bbl@endskip are available to package authors. Thanks to the \TeX\ expansion mechanism the following constructs are valid: \adim\bbl@startskip, \advance\bbl@startskip\adim, \bbl@endskip\adim.

Consider txtbabel as a shorthand for tex–xet babel, which is the bidi model in both pdftex and xetex.
Implicitly reverses sectioning labels in bidi=basic, because the full stop is not in contact with L numbers any more. I think there must be a better way.

12.3 LuaTeX

The loader for luatex is based solely on language.dat, which is read on the fly. The code shouldn’t be executed when the format is build, so we check if \AddBabelHook is defined. Then comes a modified version of the loader in hyphen.cfg (without the hyphenmins stuff, which is under the direct control of babel).

The names \l@<language> are defined and take some value from the beginning because all ldf files assume this for the corresponding language to be considered valid, but patterns are not loaded (except the first one). This is done later when the language is first selected (which usually means when the ldf finishes). If a language has been loaded, \bbl@hyphendata@<num> exists (with the names of the files read).

The default setup preloads the first language into the format. This is intended mainly for ‘english’, so that it’s available without further intervention from the user. To avoid duplicating it, the following rule applies: if the “0th” language and the first language in language.dat have the same name then just ignore the latter. If there are new synonymous, the are added, but note if the language patterns have not been preloaded they won’t at run time.

Other preloaded languages could be read twice, if they have been preloaded into the format. This is not optimal, but it shouldn’t happen very often – with luatex patterns are best loaded when the document is typeset, and the “0th” language is preloaded just for backwards compatibility.

As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly didn’t work in this format, but with the new loader it does. Unfortunately, the format is not based on babel, and data could be duplicated, because languages are reassigned above those in the format (nothing serious, anyway). Note even with this format language.dat is used (under the principle of a single source), instead of language.def.
Of course, there is room for improvements, like tools to read and reassign languages, which would require modifying the language list, and better error handling. We need catcode tables, but no format (targeted by babel) provide a command to allocate them (although there are packages like tablestack). Fix - This isn't true anymore. For the moment, a dangerous approach is used - just allocate a high random number and cross the fingers. To complicate things, etex.sty changes the way languages are allocated.

This file is read at three places: (1) when plain.def, babel.sty starts, to read the list of available languages from language.dat (for the base option); (2) at hyphen.cfg, to modify some macros; (3) in the middle of plain.def and babel.sty, by babel.def, with the commands and other definitions for luatex (eg. \bblpattern).

4809 \langle luatex \rangle
4810 \ifx\AddBabelHook\@undefined \% When plain.def, babel.sty starts
4811 \bbl@trace{Read language.dat}
4812 \ifx\bbl@readstream\@undefined
4813 \csname newread\endcsname\bbl@readstream
4814 \fi
4815 \begingroup
4816 \toks@{} % 0-start, 1=0th, 2=normal
4817 \def\bbl@process@line#1#2 #3 #4 {%
4818 \if=#1%
4819 \bbl@process@synonym{#2}%
4820 \else
4821 \bbl@process@language{#1#2}{#3}{#4}%
4822 \fi
4823 \ignorespaces}
4824 \def\bbl@manylang{%
4825 \ifnum\bbl@last>1
4826 \bbl@info{Non-standard hyphenation setup}%
4827 \fi
4828 \let\bbl@manylang\relax}
4829 \def\bbl@process@language#1#2#3{%
4830 \ifcase\count@
4831 \toks@{\the\toks@\relax\bbl@process@synonym}{#1}{#2}{#3}}%
4832 \or
4833 \the\toks@
4834 \fi
4835 \iftoks@{}%
4836 \chardef\l@english\z@
4837 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}%
4838 \fi
4839 \the\toks@}
4840 \def\bbl@process@synonym@aux#1#2{%
4841 \global\expandafter\chardef\csname l@#1\endcsname 1#1\endcsname l@#1\endcsname l@#1\endcsname %
4842 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{#2}{#3}}%
4843 \fi
4844 \the\toks@}
4845 \iftoks@{}%
4846 \global\expandafter\chardef\csname l@#1\endcsname 1#1\endcsname %
4847 \let\bbl@elt\relax
4848 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{#2}{#3}}%
4849 \fi
4850 \iftoks@{}%
4851 \edef\bbl@process@synonym@aux{#1}{#2}{#3}{#4}{}%
```plaintext
else
 Babel.callback = callback.find('process_input_buffer')
 callback.register('process_input_buffer', Babel.bytes)
end
end

function Babel.end_process_input ()
 if luatexbase and luatexbase.remove_from_callback then
 luatexbase.remove_from_callback('process_input_buffer', 'Babel.bytes')
 else
 callback.register('process_input_buffer', Babel.callback)
 end
end

function Babel.addpatterns(pp, lg)
 local lg = lang.new(lg)
 local pats = lang.patterns(lg) or ''
 lang.clear_patterns(lg)
 for p in pp:gmatch('[%s]+') do
 ss = ''
 for i in string.utfcharacters(p:gsub('%d', '')) do
 ss = ss .. '%d?' .. i
 end
 ss = ss:gsub('^%%d%?%.', '%%.') .. '%d?'
 ss = ss:gsub('%.%%d%?$', '%%.')(pats, n = pats:gsub('%%s' .. ss .. '%%s', '%%s' .. '%%s', ' ' .. p .. ' '))
 if n == 0 then
 tex.sprint(\[
 \textbf{\texttt{\textquoteleft\textquoteleft New pattern: \texttt{'.. p .. '}}\textquoteright\textquoteright\})
 pats = pats .. ' ' .. p
 else
 tex.sprint(\[
 \textbf{\texttt{\textquoteleft\textquoteleft Renew pattern: \texttt{'.. p .. '}}\textquoteright\textquoteright\})
 end
 end
 end
 lang.patterns(lg, pats)
end

function Babel.hlist_has_bidi(head)
 local has_bidi = false
 for item in node.traverse(head) do
 if item.id == node.id'glyph' then
 local itemchar = item.char
 local chardata = Babel.characters[itemchar]
 local dir = chardata and chardata.d or nil
 if not dir then
 for nn, et in ipairs(Babel.ranges) do
 if itemchar < et[1] then
 break
 elseif itemchar <= et[2] then
 dir = et[3]
 break
 end
 end
 end
 if dir and (dir == 'al' or dir == 'r') then
 has_bidi = true
 end
 end
 end
 return has_bidi
end

function Babel.set_chranges_b(script, chrng)
 if chrng == '' then return end
```
Replacing `.. script ..` script ranges'

```lua
Babel.script_blocks[script] = {}
for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do
 table.insert(Babel.script_blocks[script], {tonumber(s,16), tonumber(e,16)})
end
end

```
This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for the global ones and \bbl@patterns@<lang> for language ones. We make sure there is a space between words when multiple commands are used.

5114 \@onlypreamble\bblpatterns
5115 \AtEndOfPackage{%  
5116 \newcommand\bblpatterns[2][\@empty]{%  
5117 \fx\bbl@patterns@\relax  
5118 \let\bbl@patterns@\@empty  
5119 \fi  
5120 \fx\bbl@pttnlist}@\empty\else  
5121 \bbl@warning{%  
5122 You must not intermingle \string\selectlanguage\space and\%
5123 \string\babelpatterns\space or some patterns will not\%
5124 be taken into account. Reported)%  
5125 \fi  
5126 \ifx\@empty#1%  
5127 \protected@edef\bbl@patterns@{bl@patterns@\space#2}%  
5128 \else  
5129 \edef\bbl@tempb{\zap@space#1 \@empty}%  
5130 \bbl@for\bbl@tempa\bbl@tempb{%  
5131 \bbl@fixname\bbl@tempa  
5132 \bbl@iflanguage\bbl@tempa{  
5133 \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%  
5134 \@ifundefined{bbl@patterns@\bbl@tempa}{\csname bbl@patterns@\bbl@tempa\endcsname\space}%  
5135 \@empty  
5136 \@empty  
5137 \@empty}  
5138 \fi}%
5139 % TODO - to a lua file  
5140 \directlua{  
5141 Babel = Babel or {}  
5142 Babel.linebreaking = Babel.linebreaking or {}  
5143 Babel.linebreaking.before = {}  
5144 Babel.linebreaking.after = {}  
5145 Babel.locale = {} % Free to use, indexed by \localeid  
5146 function Babel.linebreaking.add_before(func)  
5147 tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])  
5148 table.insert(Babel.linebreaking.before, func)  
5149 end  
5150 function Babel.linebreaking.add_after(func)  
5151 tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])  
5152 table.insert(Babel.linebreaking.after, func)  
5153 end  
5154 }  
5155 \def\bbl@intraspace#1 #2 #3\@@{%  
5156 \directlua{  
5157 Babel = Babel or {}  
5158 Babel.intraspaces = Babel.intraspaces or {}  
5159 Babel.intraspaces[\csname bbl@sbcp@\languagename\endcsname'] = %  
5160 {b = #1, p = #2, m = #3}  
5161 Babel.locale_props[\the\localeid].intraspace = %  
5162 {b = #1, p = #2, m = #3}  
5163 }}  
5164 \def\bbl@intrapenalty#1\@@{%  
5165 \directlua{
Babel = Babel or {}
Babel.intrapenalties = Babel.intrapenalties or {}
Babel.intrapenalties[\csname bbl@sbcp@\ languagename\endcsname] = #1
Babel.locale_props[\the\localeid].intrapenalty = #1
}
\begingroup
\catcode`\%=12
\catcode`\ ^=14
\catcode`\' =12
\catcode`\~ =12
}\def\bbl@seaintraspace{^}
\let\bbl@seaintraspace\relax
\directlua{
Babel = Babel or {}
Babel.sea_enabled = true
Babel.sea_ranges = Babel.sea_ranges or {}
function Babel.set_chranges (script, chrng)
local c = 0
for s, e in string.gmatch(chrng.. ' ', '(.-)%.%.(.-)%s') do
    Babel.sea_ranges[script..c] = {tonumber(s,16), tonumber(e,16)}
c = c + 1
end
end
function Babel.sea_disc_to_space (head)
local sea_ranges = Babel.sea_ranges
local last_char = nil
local quad = 655360 \% 10 pt = 655360 = 10 * 65536
for item in node.traverse(head) do
    local i = item.id
    if i == node.id'glyph' then
        last_char = item
        elseif i == 7 and item.subtype == 3 and last_char
            and last_char.char > 0x0C99 then
                quad = font.getfont(last_char.font).size
                for lg, rg in pairs(sea_ranges) do
                    if last_char.char > rg[1] and last_char.char < rg[2] then
                        lg = lg:sub(1, 4) \% Remove trailing number of, eg, Cyrl1
                        local intraspaces = Babel.intraspaces[lg]
                        local intrapenalties = Babel.intrapenalties[lg]
                        local n
                        if intrapenalty == 0 then
                            n = node.new(14, 0) \% penalty
                            n.penalty = intrapenalty
                            node.insert_before(head, item, n)
                        end
                        n = node.new(12, 13) \% (glue, spaceskip)
                        node.setglue(n, intraspaces.b * quad,
                                    intraspaces.p * quad,
                                    intraspaces.m * quad)
                        node.insert_before(head, item, n)
                        node.remove(head, item)
                    end
                end
            end
        end
    end
end
}
\bbl@luahyphenate

12.5 CJK line breaking
Minimal line breaking for CJK scripts, mainly intended for simple documents and short texts as a secondary language. Only line breaking, with a little stretching for justification, without any attempt
to adjust the spacing. It is based on (but does not strictly follow) the Unicode algorithm.
We first need a little table with the corresponding line breaking properties. A few characters have an
additional key for the width (fullwidth vs. halfwidth), not yet used. There is a separate file, defined
below.

\begin{verbatim}
\catcode`\%=14
\def\bbl@cjkintraspace{% \let\bbl@cjkintraspace\relax
\directlua{
Babel = Babel or {}
Babel.cjk_enabled = true
function Babel.cjk_linebreak(head)
    local GLYPH = node.id('glyph')
    local last_char = nil
    local quad = 655360 % 10 pt = 655360 = 10 * 65536
    local last_class = nil
    local last_lang = nil
    for item in node.traverse(head) do
        if item.id == GLYPH then
            local lang = item.lang
            local LOCALE = node.get_attribute(item,
                Babel.attr_locale)
            local props = Babel.locale_props[LOCALE]
            local class = Babel.cjk_class[item.char].c
            if props.cjk_quotes and props.cjk_quotes[item.char] then
                class = props.cjk_quotes[item.char]
            end
            if class == 'cp' then class = 'cl' end % )] as CL
            if class == 'id' then class = 'I' end
            local br = 0
            if class and last_class and Babel.cjk_breaks[last_class][class] then
                br = Babel.cjk_breaks[last_class][class]
            end
            if br == 1 and props.linebreak == 'c' and
                lang ~= \the\l@nohyphenation\space and
                last_lang ~= \the\l@nohyphenation then
                local intrapenalty = props.intrapenalty
                if intrapenalty ~= 0 then
                    local n = node.new(14, 0) % penalty
                    n.penalty = intrapenalty
                    node.insert_before(head, item, n)
                end
                local intraspace = props.intraspace
                local n = node.new(12, 13) % (glue, spaceskip)
                node.setglue(n, intraspace.b * quad,
                    intraspace.p * quad,
                    intraspace.m * quad)
                node.insert_before(head, item, n)
            end
            if font.getfont(item.font) then
                quad = font.getfont(item.font).size
            end
            last_class = class
            last_lang = lang
    end
\end{verbatim}
\end{verbatim}
else % if penalty, glue or anything else
    last_class = nil
end

end

lang.hyphenate(head)

end

}%
\bbl@luahyphenate}
\gdef\bbl@luahyphenate{%
\let\bbl@luahyphenate\relax
\directlua{
    luatexbase.add_to_callback('hyphenate',
        function (head, tail)
            if Babel.linebreaking.before then
                for k, func in ipairs(Babel.linebreaking.before) do
                    func(head)
                end
            end
            if Babel.cjk_enabled then
                Babel.cjk_linebreak(head)
            end
            lang.hyphenate(head)
            if Babel.linebreaking.after then
                for k, func in ipairs(Babel.linebreaking.after) do
                    func(head)
                end
            end
            if Babel.sea_enabled then
                Babel.sea_disc_to_space(head)
            end
            end,
            'Babel.hyphenate')
    end
}
\def\bbl@provide@intraspace{%
\bbl@ifunset{bbl@intsp@\languagename}{}%
{\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else
\bbl@xin@{/c}{/\bbl@cl{lnbrk}}%
\ifin@ % cjk
\bbl@cjkintraspace
\directlua{
    Babel = Babel or {}
    Babel.locale_props = Babel.locale_props or {}
    Babel.locale_props[\the\localeid].linebreak = 'c'
}%
\bbl@exp{\\\bbl@intraspace\bbl@cl{intsp}\\@}@%
\bbl@KVP@intrapenalty\nil
\bbl@intrapenalty01@@
\fi
\else % sea
\bbl@seaintraspace
\bbl@exp{\\\bbl@intraspace\bbl@cl{intsp}\\@}@%
\directlua{
    Babel = Babel or {}
    Babel.sea_ranges = Babel.sea_ranges or {}
    Babel.set_chranges('\bbl@cl{sbcp}','\bbl@cl{chrng}')
}%
\bbl@KVP@intrapenalty\nil
\bbl@intrapenalty01@@
\fi
\fi
12.6 Arabic justification

\def\bbl@arabicjust{%
\newattribute{\bblar@kashida}
\directlua{Babel.attr_kashida = luatexbase.registernumber'\bblar@kashida'}
\bblar@kashida=\z@
\bbl@patchfont{{\bbl@parsejalt}}%
\directlua{
Babel.arabic.elong_map = Babel.arabic.elong_map or {}
Babel.arabic.elong_map[\the\localeid] = {}
luatexbase.add_to_callback('post_linebreak_filter',
Babel.arabic.justify, 'Babel.arabic.justify')
luatexbase.add_to_callback('hpack_filter',
Babel.arabic.justify_hbox, 'Babel.arabic.justify_hbox')}
}%
\gdef\bbl@parsejalt{%
\ifx\addfontfeature\@undefined%
\bbl@xin{/e}{/\bbl@cl{lnbrk}}%
\fi
% Save both node lists to make replacement. TODO. Save also widths to
% make computations
\def\bbl@fetchjalt#1#2#3#4{%
{\bbl@foreach{#1}{%\bbl@ifunset{bblar@JE@##1}{%\setbox\z@\hbox{^^^^200d\char"##1#2}}{%\setbox\z@\hbox{^^^^200d\char"\@nameuse{bblar@JE@##1}#2}}%\directlua{%local last = nil
for item in node.traverse(tex.box[0].head) do
if item.id == node.id'glyph' and item.char > 0x600 and
not (item.char == 0x200D) then
last = item
end
end
Babel.arabic.#3['##1#4'] = last.char
}}}%
% Brute force. No rules at all, yet. The ideal: look at jalt table. And
% perhaps other tables (falt?, cswh?). What about kaf? And diacritic
% positioning?
\gdef\bbl@parsejalt{%
\ifx\addfontfeature\@undefined\else
\bbl@xin{/e}{/\bbl@cl{lnbrk}}%
\fi
%}{/string\csname\space bbl@parsejalti\endcsname}
\def\bbl@parsejalti{%}
\begingroup
\let\bbl@parsejalt\relax % To avoid infinite loop
\edef\bbl@tempb\fontid\font\%
\bblar@nofswarn
\bblar@fetchjalt\bblar@chars{^^^^064a}{from}{a}% Alef maksura
\bblar@fetchjalt\bblar@chars{^^^^0649}{from}{y}% Yeh
\addfontfeature{RawFeature=jalt}\%
% \namedef{bblar@JE@0643}{06AA}% todo: catch medial kaf
\bblar@fetchjalt\bblar@chars{^^^^064a}{dest}{a}\
\bblar@fetchjalt\bblar@chars{^^^^0649}{dest}{y}\%
\directlua{%
for k, v in pairs(Babel.arabic.from) do
  if Babel.arabic.dest[k] and
    not (Babel.arabic.from[k] == Babel.arabic.dest[k]) then
    Babel.arabic.elong_map[\the\localeid][\bbl@tempb][Babel.arabic.from[k]] = Babel.arabic.dest[k]
  end
end
}\%
\endgroup
\%\begingroup\catcode`#=11\catcode`~=11\directlua{
Babel.arabic = Babel.arabic or {}
Babel.arabic.from = {}
Babel.arabic.dest = {}
Babel.arabic.justify_factor = 0.95
Babel.arabic.justify_enabled = true
function Babel.arabic.justify(head)
  if not Babel.arabic.justify_enabled then return head end
  for line in node.traverse_id(node.id'hlist', head) do
    Babel.arabic.justify_hlist(head, line)
  end
  return head
end
function Babel.arabic.justify_hbox(head, gc, size, pack)
  local has_inf = false
  if Babel.arabic.justify_enabled and pack == 'exactly' then
    for n in node.traverse_id(12, head) do
      if n.stretch_order > 0 then has_inf = true end
    end
    if not has_inf then
      Babel.arabic.justify_hlist(head, nil, gc, size, pack)
    end
  end
  return head
end
function Babel.arabic.justify_hlist(head, line, gc, size, pack)
  local d, new
  local k_list, k_item, pos_inline
  local width, width_new, full, k_curr, wt_pos, goal, shift

local subst_done = false
local elong_map = Babel.arabic.elong_map
local last_line
local GLYPH = node.id'glyph'
local KASHIDA = Babel.attr_kashida
local LOCALE = Babel.attr_locale

if line == nil then
    line = {}
    line.glue_sign = 1
    line.glue_order = 0
    line.head = head
    line.shift = 0
    line.width = size
end

% Exclude last line. todo. But-- it discards one-word lines, too!
% ? Look for glue = 12:15
if (line.glue_sign == 1 and line.glue_order == 0) then
    elongs = {} % Stores elongated candidates of each line
    k_list = {} % And all letters with kashida
    pos_inline = 0 % Not yet used
    for n in node.traverse_id(GLYPH, line.head) do
        pos_inline = pos_inline + 1 % To find where it is. Not used.
        % Elongated glyphs
        if elong_map then
            local locale = node.get_attribute(n, LOCALE)
            if elong_map[locale] and elong_map[locale][n.font] and
                elong_map[locale][n.font][n.char] then
                table.insert(elongs, {node = n, locale = locale} )
                node.set_attribute(n.prev, KASHIDA, 0)
            end
        end % of node.traverse_id
    end % of for
    if #elongs == 0 and #k_list == 0 then goto next_line end
    full = line.width
    shift = line.shift
    goal = full * Babel.arabic.justify_factor % A bit crude
    width = node.dimensions(line.head) % The 'natural' width
    % == Elongated ==
    % Original idea taken from 'chikenize'
    while (#elongs > 0 and width < goal) do
        subst_done = true
        local x = #elongs
        local curr = elong_map[x].node
        local oldchar = curr.char
        curr.char = elong_map[elongs[x].locale][curr.font][curr.char]
        width = node.dimensions(line.head) % Check if the line is too wide
        if width > goal then
            subst_done = false
            curr.char = oldchar
        end
    end % of while
end % of node.traverse_id

if #elongs == 0 and #k_list == 0 then goto next_line end
full = line.width
shift = line.shift
goal = full * Babel.arabic.justify_factor % A bit crude
width = node.dimensions(line.head) % The 'natural' width
% == Elongated ==
% Original idea taken from 'chikenize'
while (#elongs > 0 and width < goal) do
    subst_done = true
    local x = #elongs
    local curr = elong_map[x].node
    local oldchar = curr.char
    curr.char = elong_map[elongs[x].locale][curr.font][curr.char]
    width = node.dimensions(line.head) % Check if the line is too wide
    if width > goal then
        subst_done = false
        curr.char = oldchar
    end
end % of while

% Tatwil
if Babel.kashida_wts then
    local k_wt = node.get_attribute(n, KASHIDA)
    if k_wt > 0 then % todo. parameter for multi inserts
        table.insert(k_list, {node = n, weight = k_wt, pos = pos_inline})
    end
end % of node.traverse_id
curr.char = oldchar
break
end
% If continue, pop the just substituted node from the list:
table.remove(elongs, x)
end
%
%% Tatwil ==
if #k_list == 0 then goto next_line end

width = node.dimensions(line.head) % The 'natural' width
k_curr = #k_list
wt_pos = 1

while width < goal do
subst_done = true
k_item = k_list[k_curr].node
if k_list[k_curr].weight == Babel.kashida_wts[wt_pos] then
d = node.copy(k_item)
d.char = 0x0640
line.head, new = node.insert_after(line.head, k_item, d)
width_new = node.dimensions(line.head)
if width > goal or width == width_new then
  node.remove(line.head, new) % Better compute before
  break
  end
width = width_new
end
if k_curr == 1 then
  k_curr = #k_list
  wt_pos = (wt_pos >= table.getn(Babel.kashida_wts)) and 1 or wt_pos+1
else
  k_curr = k_curr - 1
end
end
::next_line::

% Must take into account marks and ins, see luatex manual.
% Have to be executed only if there are changes. Investigate
% what's going on exactly.
if subst_done and not gc then
d = node.hpack(line.head, full, 'exactly')
d.shift = shift
node.insert_before(head, line, d)
node.remove(head, line)
end % if process line
end
endgroup
\fil\fi % Arabic just block

\section{Common stuff}
\AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}
\AddBabelHook{babel-fontspec}{beforestart}{\bbl@ckeckstdfonts}
\DisableBabelHook{babel-fontspec}
⟨⟨\Fontselection⟩⟩

\section{Automatic fonts and ids switching}
After defining the blocks for a number of scripts (must be extended and very likely fine tuned), we define a short function which just traverse the node list to carry out the replacements. The table \mbox{loc_to_scr} gets the locale form a script range (note the locale is the key, and that there is an
intermediatetablebuiltontheflyforoptimization). This locale is then used to get the \language and the \localeid as stored in locale_props, as well as the font (as requested). In the latter table a key starting with / maps the font from the global one (the key) to the local one (the value). Maths are skipped and discretionary are handled in a special way.

5588 % TODO - to a lua file
5589 \directlua{
5590 Babel.script_blocks = {
5591 ['dflt'] = {},
5592 ['Arab'] = {{0x0600, 0x06FF}, {0x08A0, 0x08BF}, {0x0750, 0x077F},
5593 {0xFE70, 0xFEFF}, {0xFB50, 0xFDFF}, {0x1EE00, 0x1EFFF}},
5594 ['Armn'] = {{0x0530, 0x058F}},
5595 ['Beng'] = {{0x0980, 0x09FF}},
5596 ['Cher'] = {{0x13A0, 0x13FF}, {0x0AB70, 0x0ABB0}},
5597 ['Copt'] = {{0x03E2, 0x03EF}, {0x2C80, 0x2CFF}, {0x102E0, 0x102FF}},
5598 ['Cyril'] = {{0x0400, 0x04FF}, {0x0500, 0x052F}, {0x1C80, 0x1C8F},
5599 {0x2DE0, 0x2DFF}, {0xA640, 0xA69F}},
5600 ['Deva'] = {{0x0900, 0x097F}, {0xA8E0, 0xA8FF}},
5601 ['Ethi'] = {{0x1200, 0x13FF}, {0x1380, 0x139F}, {0x2D80, 0x2D9F},
5602 {0xAB00, 0xAB2F}},
5603 ['Geor'] = {{0x10A0, 0x10FF}, {0x2D00, 0x2D2F}},
5604 % Don't follow strictly Unicode, which places some Coptic letters in
5605 % the 'Greek and Coptic' block
5606 ['Grek'] = {{0x0370, 0x03E1}, {0x03F0, 0x03FF}, {0x1F00, 0x1FFF}},
5607 ['Hans'] = {{0x2E80, 0x2EFF}, {0x3000, 0x303F}, {0x31C0, 0x31EF},
5608 {0x3300, 0x33FF}, {0x3400, 0x34FF}, {0x4E00, 0x9FFF},
5609 {0xF900, 0xFAFF}, {0x20000, 0x2A6DF}, {0x2A700, 0x2B73F},
5610 {0x2B740, 0x2B81F}, {0x2B820, 0x2CEAF},
5611 {0x2CEB0, 0x2EBEF}, {0x2F800, 0x2FA1F}},
5612 ['Hebr'] = {{0x0590, 0x05FF}},
5613 ['Jpan'] = {{0x3000, 0x303F}, {0x3040, 0x309F}, {0x30A0, 0x30FF},
5614 {0x4E00, 0x9FFF}, {0x4E00, 0x4E6F},
5615 ['Kana'] = {{0x1100, 0x11FF}, {0x3130, 0x318F},
5616 {0x31C0, 0x31EF}, {0x3300, 0x33FF},
5617 ['Kore'] = {{0x1100, 0x11FF}, {0x3300, 0x33FF}, {0x31C0, 0x318F},
5618 {0x4E00, 0x9FFF}, {0x4E00, 0x97FF},
5619 {0x5E00, 0x97FF}, {0x5E00, 0x96FF},
5620 ['Laoo'] = {{0x0E80, 0x0EFF}},
5621 ['Latn'] = {{0x0000, 0x007F}, {0x0080, 0x00FF}, {0x0100, 0x017F},
5622 {0x0180, 0x024F}, {0x1C60, 0x1C7F},
5623 {0x0180, 0x01FF}, {0x2C60, 0x2C7F},
5624 {0x0180, 0x01FF}, {0x2C60, 0x2C7F},
5625 ['Malay'] = {{0x11150, 0x11FF}},
5626 ['Mlym'] = {{0x0D00, 0x0D7F}},
5627 ['Mymr'] = {{0x1000, 0x109F}, {0x1100, 0x11FF},
5628 ['Orya'] = {{0x0C00, 0x0C7F}},
5629 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5630 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5631 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5632 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5633 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5634 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5635 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5636 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5637 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x11100, 0x11FF}},
5638 }
5639 Babel.script_blocks.Cyrs = Babel.script_blocks.Cyril
5640 Babel.script_blocks.Hant = Babel.script_blocks.Hans
5641 Babel.script_blocks.Kana = Babel.script_blocks.Japan
5642 Babel.locale_map(head)
5643 if not Babel.locale_mapped then return head end
local LOCALE = Babel.attr_locale
local GLYPH = node.id('glyph')
local inmath = false
local toloc_save
for item in node.traverse(head) do
  local toloc
  if not inmath and item.id == GLYPH then
    % Optimization: build a table with the chars found
    if Babel.chr_to_loc[item.char] then
      toloc = Babel.chr_to_loc[item.char]
    else
      for lc, maps in pairs(Babel.loc_to_scr) do
        for _, rg in pairs(maps) do
          if item.char >= rg[1] and item.char <= rg[2] then
            Babel.chr_to_loc[item.char] = lc
            toloc = lc
            break
          end
        end
      end
    end
    % Now, take action, but treat composite chars in a different
    % fashion, because they 'inherit' the previous locale. Not yet
    % optimized.
    if not toloc and
      (item.char >= 0x0300 and item.char <= 0x036F) or
      (item.char >= 0x1AB0 and item.char <= 0x1AFF) or
      (item.char >= 0x1DC0 and item.char <= 0x1DFF) then
      toloc = toloc_save
    end
    if toloc and toloc > -1 then
      if Babel.locale_props[toloc].lg then
        item.lang = Babel.locale_props[toloc].lg
        node.set_attribute(item, LOCALE, toloc)
      end
      if Babel.locale_props[toloc]['/'..item.font] then
        item.font = Babel.locale_props[toloc]['/'..item.font]
      end
      toloc_save = toloc
    end
    elseif not inmath and item.id == 7 then
      item.replace = item.replace and Babel.locale_map(item.replace)
      item.pre = item.pre and Babel.locale_map(item.pre)
      item.post = item.post and Babel.locale_map(item.post)
    elseif item.id == node.id('math') then
      inmath = (item.subtype == 0)
    end
  end
end
return head
}

The code for \babelcharproperty is straightforward. Just note the modified lua table can be
different.
Post-handling hyphenation patterns for non-standard rules, like ff to ff-f. There are still some issues with speed (not very slow, but still slow). The Lua code is below.

Now the \TeX high level interface, which requires the function defined above for converting strings to functions returning a string. These functions handle the \texttt{(n)} syntax. For example, \texttt{pre=\{1\}\{1\}} becomes \texttt{function(m) return m[1]..m[1]..'-' end}, where \texttt{m} are the matches returned after applying the pattern. With a mapped capture the functions are similar to \texttt{function(m) return Babel.capt_map(m[1],1) end}, where the last argument identifies the mapping to be applied to \texttt{m[1]}. The way it is carried out is somewhat tricky, but the effect is not dissimilar to \texttt{luadict} – save the code as string in a \TeX macro, and expand this macro at the appropriate place. As \texttt{directlua} does not take into account the current catcode of \texttt{@}, we just avoid this character in macro names (which explains the internal group, too).

\begin{verbatim}
\newcommand{\bbl@chprop}[3]{% \begin{verbatim}
\texttt{\ifnum\count@<\@tempcnta}\texttt{\bbl@error{No property named '2'. Allowed values are\%}
\texttt{direction (bc), mirror (bmg), and linebreak (lb)}%\texttt{\See the manual for further info}\%}{\end{verbatim}%
\end{verbatim}%
\end{verbatim}%}
\def{\bbl@chprop@direction#1}{% \begin{verbatim}
\texttt{\directlua{\Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}\Babel.characters[\the\count@][\texttt{d}'] = '1'}%}
\end{verbatim}%}
\let{\bbl@chprop@bc}{\bbl@chprop@direction}
\def{\bbl@chprop@mirror#1}{% \begin{verbatim}
\texttt{\directlua{\Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}\Babel.characters[\the\count@][\texttt{m}'] = '\number\texttt{1}'}%}
\end{verbatim}%}
\let{\bbl@chprop@bmg}{\bbl@chprop@mirror}
\def{\bbl@chprop@linebreak#1}{% \begin{verbatim}
\texttt{\directlua{\Babel.cjk_characters[\the\count@] = Babel.cjk_characters[\the\count@] or {}\Babel.cjk_characters[\the\count@][\texttt{c}'] = '1'}%}
\end{verbatim}%}
\let{\bbl@chprop@lb}{\bbl@chprop@linebreak}
\def{\bbl@chprop@locale#1}{% \begin{verbatim}
\texttt{\directlua{\Babel.chr_to_loc = Babel.chr_to_loc or {}\Babel.chr_to_loc[\the\count@] = \texttt{\bbl@ifblank{#1}{-1000}{\the\bbl@cs{id@@#1}}\space}}%}
\end{verbatim}%}
\end{verbatim}%}
\texttt{\newcommand{\bbl@chprop}{\begin{verbatim}}\newcommand{\bbl@cs}{\begin{verbatim}}%
\else
\bbl@activateposthyphen
\fi
\begingroup
\def\babeltempa{\bbl@add@list\babeltempb}&%
\let\babeltempb\@empty
\def\bbl@tempa{#5}&%
\bbl@replace\bbl@tempa{,}{ ,}&% TODO. Ugly trick to preserve {}
\expandafter\bbl@foreach\expandafter{\bbl@tempa}{&%
\bbl@ifsamestring{##1}{remove}&%
{\bbl@add@list\babeltempb{nil}}&%
{\directlua{
local rep = 
rep = rep:gsub('^%s*(remove)%s*$', 'remove = true')
rep = rep:gsub('^%s*(insert)%s*$', 'insert = true, ')  
rep = rep:gsub('(string)%s*=%s*([^%s,]*)', Babel.capture_func)
if #1 == 0 then
rep = rep:gsub('(space)%s*=%s*([%d%.]+)%s*([%d%.]+)%s*([%d%.]+)', 
' space = {' .. '%2, %3, %4' .. '}')
rep = rep:gsub('(spacefactor)%s*=%s*([%d%.]+)%s*([%d%.]+)%s*([%d%.]+)', 
'spacefactor = {' .. '%2, %3, %4' .. '}')
rep = rep:gsub('(kashida)%s*=%s*([^%s,]*)', Babel.capture_kashida)
else
rep = rep:gsub( '(no)%s*=%s*([^%s,]*)', Babel.capture_func)
rep = rep:gsub( '(pre)%s*=%s*([^%s,]*)', Babel.capture_func)
rep = rep:gsub( '(post)%s*=%s*([^%s,]*)', Babel.capture_func)
end
tex.print(\"\string>babeltempa\{[[\[\] .. rep .. \[\[\]]])
}}&%
\let\bbl@kv@attribute\relax
\let\bbl@kv@label\relax
\bbl@forkv{#2}{\bbl@csarg\edef{kv@##1}{##2}}&%
\ifx\bbl@kv@attribute\relax
attr = -1
\else
attr = luatexbase.registernumber'\bbl@kv@attribute'
\fi
\directlua{
local lbkr = Babel.linebreaking.replacements[#1]
local u = unicode.utf8
local id, attr, label
if #1 == 0 then
id = \the\csname bbl@id@@#3\endcsname\space
else
id = \the\csname l@#3\endcsname\space
end
\if\bbl@kv@attribute\relax
attr = -1
\else
attr = luatexbase.registernumber'\bbl@kv@attribute'
\fi
\iffalse
\else &% Same refs:
label = \[==\[bl@kv@label\]==\]
\fi
\directlua{
local patt = string.gsub(\[==\[#4\]==\], '%s', '')
if #1 == 0 then
patt = string.gsub(patt, '|', ' ')  
if not u.find(patt, '()', nil, true) then
patt = '() .. patt .. ')' 
end
if #1 == 1 then
patt = string.gsub(patt, '%%\([^%s,]*\)\^', '^()')
patt = string.gsub(patt, '%%\([^%s,]*\)', '(')
end
end
\endgroup
}
12.9 Bidi

As a first step, add a handler for bidi and digits (and potentially other processes) just before luaoftload is applied, which is loaded by default by \texttt{\LaTeX}. Just in case, consider the possibility it has not been loaded.

```latex
\def\bbl@activate@preotf{% \let\bbl@activate@preotf\relax % only once \directlua{ Babel = Babel or {} % function Babel.pre_otfload_v(head) if Babel.numbers and Babel.digits_mapped then head = Babel.numbers(head) end if Babel.bidi_enabled then head = Babel.bidi(head, false, dir) end return head end % function Babel.pre_otfload_h(head, gc, sz, pt, dir) if Babel.numbers and Babel.digits_mapped then head = Babel.numbers(head) end if Babel.bidi_enabled then head = Babel.bidi(head, false, dir) end return head end % luatexbase.add_to_callback('pre_linebreak_filter', Babel.pre_otfload_v, 'Babel.pre_otfload_v', luatexbase.priority_in_callback('pre_linebreak_filter', 'luaoftload.node_processor') or nil)\endgroup
```
luatexbase.add_to_callback('hpack_filter',
    Babel.pre_ofload_h,
    'Babel.pre_ofload_h',
    luatexbase.priority_in_callback('hpack_filter',
        'luaotfload.node_processor') or nil)
}

The basic setup. The output is modified at a very low level to set the \bodydir to the \pagedir. Sadly, we have to deal with boxes in math with basic, so the \bbl@mathboxdir hack is activated every math with the package option bidi=.

\ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200
\let\bbl@beforeforeign\leavevmode
\AtEndOfPackage{\EnableBabelHook{babel-bidi}}
\RequirePackage{luatexbase}
\bbl@activate@preotf
\directlua{
require('babel-data-bidi.lua')
\ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or
require('babel-bidi-basic.lua')
\or
require('babel-bidi-basic-r.lua')
\fi}
% TODO - to locale_props, not as separate attribute
\newattribute\bbl@attr@dir
\directlua{ Babel.attr_dir = luatexbase.registernumber'\bbl@attr@dir' }
% TODO. I don’t like it, hackish:
\bbl@exp{\output{\bodydir\pagedir\the\output}}
\AtEndOfPackage{\EnableBabelHook{babel-bidi}}
\fi\fi
\chardef\bbl@thetextdir\z@
\chardef\bbl@thepardir\z@
\def\bbl@getluadir#1{\
\directlua{
if tex.#1dir == 'TLT' then
tex.sprint('0')
elseif tex.#1dir == 'TRT' then
tex.sprint('1')
end}}
\def\bbl@setluadir#1#2#3{% 1=text/par.. 2=\textdir.. 3=0 lr/1 rl
\ifcase#3\relax
\ifcase\bbl@getluadir{#1}\relax
#2 TLT\relax
\else
#2 TRT\relax
\fi}
\def\bbl@thedir{0}
\def\bbl@textdir#1{\
\bbl@setluadir{text}\textdir{#1}\
\chardef\bbl@thetextdir#1\relax\
\edef\bbl@thedir{\the\numexpr\bbl@thepardir*3+#1}\
\setattribute\bbl@attr@dir{\numexpr\bbl@thepardir*3+#1}}
\def\bbl@pardir#1{\
\bbl@setluadir{par}\pardir{#1}\
\chardef\bbl@thepardir#1\relax}
\def\bbl@bodydir{\bbl@setluadir{body}\bodydir}
\def\bbl@pagedir{\bbl@setluadir{page}\pagedir}
\def\bbl@dirparastext{\pardir{the\textdir}\relax}% !!!!
\ifnum\bbl@bidimode>100 \else\fi
12.10 Layout

Unlike xetex, luatex requires only minimal changes for right-to-left layouts, particularly in monolingual documents (the engine itself reverses boxes – including column order or headings –, margins, etc.) with bidi=basic, without having to patch almost any macro where text direction is relevant. \@hangfrom is useful in many contexts and it is redefined always with the layout option. There are, however, a number of issues when the text direction is not the same as the box direction (as set by \bodydir), and when \parbox and \hangindent are involved. Fortunately, latest releases of luatex simplify a lot the solution with \shapemode.

With the issue #15 I realized commands are best patched, instead of redefined. With a few lines, a modification could be applied to several classes and packages. Now, tabular seems to work (at least in simple cases) with array, tabularx, hhline, colorbl, longtable, booktabs, etc. However, dcolumn still fails.
Implicitly reverses sectioning labels in \texttt{bidi=basic-\texttt{r}}, because the full stop is not in contact with L numbers any more. I think there must be a better way. Assumes \texttt{bidi=basic}, but there are some additional readjustments for \texttt{bidi=default}.

\IfBabelLayout{counters}{
  \let\bbl@OL@@textsuperscript@\@textsuperscript
  \bbl@sreplace\@textsuperscript{\m@th}{\m@th\mathdir\pagedir}
  \let\bbl@latinarabic@\@arabic
  \let\bbl@OL@@arabic@\@arabic
  \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}
  \@ifpackagewith{babel}{bidi=default}{
    \let\bbl@asciiroman@\@roman
    \let\bbl@OL@@roman@\@roman
    \textdir TLT\noexpand\tikzpicture%
  }
}
Some \LaTeX macros use internally the math mode for text formatting. They have very little in common and are grouped here, as a single option.

\begin{verbatim}
--- Discretionaries contain strings as nodes
function Babel.str_to_nodes(fn, matches, base)
    local n, head, last
    if fn == nil then return nil end
    for s in string.utfvalues(fn(matches)) do
        if base.id == 7 then
            base = base.replace
        end
        n = node.copy(base)
        n.char = s
        if not head then
            head = n
        else
            last.next = n
        end
        last = n
    end
end
\end{verbatim}

\section{Lua: transforms}

After declaring the table containing the patterns with their replacements, we define some auxiliary functions: \texttt{str\_to\_nodes} converts the string returned by a function to a node list, taking the node at base as a model (font, language, etc.); \texttt{fetch\_word} fetches a series of glyphs and discretionaries, which pattern is matched against (if there is a match, it is called again before trying other patterns, and this is very likely the main bottleneck).

\texttt{post\_hyphenate\_replace} is the callback applied after \texttt{lang\_hyphenate}. This means the automatic hyphenation points are known. As empty captures return a byte position (as explained in the \texttt{luatex} manual), we must convert it to a utf8 position. With first, the last byte can be the leading byte in a utf8 sequence, so we just remove it and add 1 to the resulting length. With last we must take into account the capture position points to the next character. Here \texttt{word\_head} points to the starting node of the text to be matched.
Babel.fetch_subtext = {}

Babel.ignore_pre_char = function(node)
  return (node.lang == Babel.nohyphenation)
end

-- Merging both functions doesn't seem feasible, because there are too
-- many differences.
Babel.fetch_subtext[0] = function(head)
  local word_string = ''
  local word_nodes = {}
  local lang
  local item = head
  local inmath = false

  while item do
    if item.id == 11 then
      inmath = (item.subtype == 0)
    end

    if inmath then
      -- pass
    elseif item.id == 29 then
      local locale = node.get_attribute(item, Babel.attr_locale)
      if lang == locale or lang == nil then
        lang = lang or locale
        if Babel.ignore_pre_char(item) then
          word_string = word_string .. Babel.us_char
        else
          word_string = word_string .. unicode.utf8.char(item.char)
        end
        word_nodes[#word_nodes+1] = item
      else
        break
      end
    elseif item.id == 12 and item.subtype == 13 then
      word_string = word_string .. ' ' 
      word_nodes[#word_nodes+1] = item
    -- Ignore leading unrecognized nodes, too.
    elseif word_string ~= '' then
      word_string = word_string .. Babel.us_char
      word_nodes[#word_nodes+1] = item -- Will be ignored
    end
    item = item.next
  end

  if word_string:sub(-1) == ' ' then
    word_string = word_string:sub(1,-2)
  end
  word_string = unicode.utf8.gsub(word_string, Babel.us_char .. '+$', '')
  return word_string, word_nodes, item, lang}

186
Babel.fetch_subtext[1] = function(head)
  local word_string = ''
  local word_nodes = {}
  local lang
  local item = head
  local inmath = false

  while item do
    if item.id == 11 then
      inmath = (item.subtype == 0)
    end
    if inmath then
      -- pass
    elseif item.id == 29 then
      if item.lang == lang or lang == nil then
        if (item.char ~= 124) and (item.char ~= 61) then -- not =, not |
          lang = lang or item.lang
          word_string = word_string .. unicode.utf8.char(item.char)
          word_nodes[#word_nodes+1] = item
        end
      else
        break
      end
    elseif item.id == 7 and item.subtype == 2 then
      word_string = word_string .. '='
      word_nodes[#word_nodes+1] = item
    elseif item.id == 7 and item.subtype == 3 then
      word_string = word_string .. '|' 
      word_nodes[#word_nodes+1] = item
    -- (1) Go to next word if nothing was found, and (2) implicitly
    -- remove leading USs.
    elseif word_string == '' then
      -- pass
    -- This is the responsible for splitting by words.
    elseif (item.id == 12 and item.subtype == 13) then
      break
    else
      word_string = word_string .. Babel.us_char
      word_nodes[#word_nodes+1] = item -- Will be ignored
    end
    item = item.next
  end
  word_string = unicode.utf8.gsub(word_string, Babel.us_char .. '+$', '')
  return word_string, word_nodes, item, lang
end

function Babel.pre_hyphenate_replace(head)
  Babel.hyphenate_replace(head, 0)
end

function Babel.post_hyphenate_replace(head)
Babel.hyphenate_replace(head, 1)
end

Babel.us_char = string.char(31)

function Babel.hyphenate_replace(head, mode)
local u = unicode.utf8
local lbkr = Babel.linebreaking.replacements[mode]
local word_head = head
while true do -- for each subtext block
local w, w_nodes, nw, lang = Babel.fetch_subtext[mode](word_head)
if Babel.debug then
print()
print((mode == 0) and '@@@@<' or '@@@@>', w)
end
if nw == nil and w == '' then break end
if not lang then goto next end
if not lbkr[lang] then goto next end
-- For each saved (pre|post)hyphenation. TODO. Reconsider how
-- loops are nested.
for k=1, #lbkr[lang] do
local p = lbkr[lang][k].pattern
local r = lbkr[lang][k].replace
local attr = lbkr[lang][k].attr or -1
if Babel.debug then
print('*****', p, mode)
end
-- This variable is set in some cases below to the first *byte*
-- after the match, either as found by u.match (faster) or the
-- computed position based on sc if w has changed.
local last_match = 0
local step = 0
-- For every match.
while true do
if Babel.debug then
print('=====')
end
local new -- used when inserting and removing nodes
local matches = { u.match(w, p, last_match) }
if #matches < 2 then break end
-- Get and remove empty captures (with ()'s, which return a
-- number with the position), and keep actual captures
-- (from (...)), if any, in matches.
local first = table.remove(matches, 1)
local last = table.remove(matches, #matches)
-- Non re-fetched substrings may contain \31, which separates
-- subsubstrings.
if string.find(w:sub(first, last-1), Babel.us_char) then break end
local save_last = last -- with A()BC()D, points to D

188
if (not enabled) or (crep and next(crep) == nil) then -- = {}
    last_match = save_last -- Optimization
    goto next
elseif crep == nil or crep.remove then
    node.remove(head, item)
    table.remove(w_nodes, sc)
    w = u.sub(w, 1, sc-1) .. u.sub(w, sc+1)
    sc = sc - 1 -- Nothing has been inserted.
    last_match = utf8.offset(w, sc+1+step)
    goto next
elseif crep and crep.kashida then -- Experimental
    node.set_attribute(item, Babel.attr_kashida, crep.kashida)
    last_match = utf8.offset(w, sc+1+step)
    goto next
elseif crep and crep.string then
    local str = crep.string(matches)
    if str == '' then -- Gather with nil
        node.remove(head, item)
        table.remove(w_nodes, sc)
        w = u.sub(w, 1, sc-1) .. u.sub(w, sc+1)
        sc = sc - 1 -- Nothing has been inserted.
    else
        local loop_first = true
        for s in string.utfvalues(str) do
            d = node.copy(item_base)
            d.char = s
            if loop_first then
                loop_first = false
                head, new = node.insert_before(head, item, d)
            end
            if sc == 1 then
                word_head = head
            end
            w_nodes[sc] = d
            w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc+1)
            sc = sc + 1
            head, new = node.insert_before(head, item, d)
            table.insert(w_nodes, sc, new)
            w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc)
        end
        if Babel.debug then
            print('.....', 'str')
            Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)
        end
    end -- for
    node.remove(head, item)
end -- if ''
last_match = utf8.offset(w, sc+1+step)
goto next
elseif mode == 1 and crep and (crep.pre or crep.no or crep.post) then
    d = node.new(7, 0) -- (disc, discretionary)
    d.pre = Babel.str_to_nodes(crep.pre, matches, item_base)
    d.post = Babel.str_to_nodes(crep.post, matches, item_base)
    d.replace = Babel.str_to_nodes(crep.no, matches, item_base)
    d.attr = item_base.attr
    if crep.pre == nil then -- TeXbook p96
d.penalty = crep.penalty or tex.hyphenpenalty
else
d.penalty = crep.penalty or tex.exhyphenpenalty
end
placeholder = '|' 
head, new = node.insert_before(head, item, d)

elseif mode == 0 and crep and (crep.pre or crep.no or crep.post) then
-- ERROR
endif

elseif crep and crep.penalty then
d = node.new(14, 0) -- (penalty, userpenalty)
d.attr = item_base.attr
d.penalty = crep.penalty
head, new = node.insert_before(head, item, d)

elseif crep and crep.space then
-- 655360 = 10 pt = 10 * 65536 sp
d = node.new(12, 13) -- (glue, spaceskip)
local quad = font.getfont(item_base.font).size or 655360
node.setglue(d, crep.space[1] * quad, 
crep.space[2] * quad, 
crep.space[3] * quad)
if mode == 0 then
placeholder = ''
end
head, new = node.insert_before(head, item, d)

elseif crep and crep.spacefactor then
d = node.new(12, 13) -- (glue, spaceskip)
local base_font = font.getfont(item_base.font)
node.setglue(d, 
crep.spacefactor[1] * base_font.parameters['space'], 
crep.spacefactor[2] * base_font.parameters['space_stretch'], 
crep.spacefactor[3] * base_font.parameters['space_shrink'])
if mode == 0 then
placeholder = ''
end
head, new = node.insert_before(head, item, d)

elseif mode == 0 and crep and crep.space then
-- ERROR
endif

end -- ie replacement cases

-- Shared by disc, space and penalty.
if sc == 1 then
word_head = head
end
if crep.insert then
w = u.sub(w, 1, sc-1) .. placeholder .. u.sub(w, sc)
table.insert(w_nodes, sc, new)
last = last + 1
else
w_nodes[sc] = d
node.remove(head, item)
w = u.sub(w, 1, sc-1) .. placeholder .. u.sub(w, sc+1)
end

last_match = utf8.offset(w, sc+1*step)
::next::
if Babel.debug then
    print('.....', '/
    Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)
end
end -- for match
end -- for patterns
::next::
word_head = mw
end -- for substring
return head
end

-- This table stores capture maps, numbered consecutively
Babel.capture_maps = {}

-- The following functions belong to the next macro
function Babel.capture_func(key, cap)
    local ret = "\[[" .. cap:gsub('([0-9])', '\]\]..m\[%1\]..\[""]"
    local cnt
    local u = unicode.utf8
    ret, cnt = ret:gsub('([0-9])|([^\|]+)|(-.}', Babel.capture_func_map)
    if cnt == 0 then
        ret = u.gsub(ret, '{(%x%x%x%x+x+)}',
        function (n)
            return u.char(tonumber(n, 16))
        end)
    end
    ret = ret:gsub("%\[%\]=[function(m) return \]%\]..ret .. [[ end]]")
end

function Babel.capt_map(from, mapno)
    return Babel.capture_maps[mapno][from] or from
end

-- Handle the \{n|abc\} syntax in captures
function Babel.capture_func_map(capno, from, to)
    local u = unicode.utf8
    from = u.gsub(from, '{(%x%x%x%x+x+)}',
    function (n)
        return u.char(tonumber(n, 16))
    end)
    to = u.gsub(to, '{(%x%x%x%x+x+)}',
    function (n)
        return u.char(tonumber(n, 16))
    end)
    local froms = {}
    for s in string.utfcharacters(from) do
        table.insert(froms, s)
    end
    for s in string.utfcharacters(to) do
        table.insert(to, s)
    end
    local cnt = 1
    table.insert(Babel.capture_maps, {}}
    local mlen = table.getn(Babel.capture_maps)
    for s in string.utfcharacters(to) do
        Babel.capture_maps[mlen][froms[cnt]] = s
        cnt = cnt + 1
    end
return "]..Babel.capt_map(m[" .. capno .. "]," ..
(mlen) .. ").." .. "[[
end

-- Create/Extend reversed sorted list of kashida weights:

function Babel.capture_kashida(key, wt)
  wt = tonumber(wt)
  if Babel.kashida_wts then
    for p, q in ipairs(Babel.kashida_wts) do
      if wt == q then
        break
      elseif wt > q then
        table.insert(Babel.kashida_wts, p, wt)
        break
      elseif table.getn(Babel.kashida_wts) == p then
        table.insert(Babel.kashida_wts, wt)
      end
    end
  else
    Babel.kashida_wts = { wt }
  end
  return 'kashida = ' .. wt
end

⟨/transforms⟩

12.12 Lua: Auto bidi with basic and basic-r

The file babel-data-bidi.lua currently only contains data. It is a large and boring file and it is not shown here (see the generated file), but here is a sample:

```
[0x25]={d='et'},
[0x26]={d='on'},
[0x27]={d='on'},
[0x28]={d='on', m=0x29},
[0x29]={d='on', m=0x28},
[0x2A]={d='on'},
[0x2B]={d='es'},
[0x2C]={d='cs'},
```

For the meaning of these codes, see the Unicode standard.

Now the basic-r bidi mode. One of the aims is to implement a fast and simple bidi algorithm, with a single loop. I managed to do it for R texts, with a second smaller loop for a special case. The code is still somewhat chaotic, but its behavior is essentially correct. I cannot resist copying the following text from Emacs bidi.c (which also attempts to implement the bidi algorithm with a single loop):

```
Arrrgh!! The UAX#9 algorithm is too deeply entrenched in the assumption of batch-style processing [...]. May the fleas of a thousand camels infest the armpits of those who design supposedly general-purpose algorithms by looking at their own implementations, and fail to consider other possible implementations!
```

Well, it took me some time to guess what the batch rules in UAX#9 actually mean (in other word, what they do and why, and not only how), but I think (or I hope) I’ve managed to understand them. In some sense, there are two bidi modes, one for numbers, and the other for text. Furthermore, setting just the direction in R text is not enough, because there are actually two R modes (set explicitly in Unicode with RLM and ALM). In babel the dir is set by a higher protocol based on the language/script, which in turn sets the correct dir (<l>, <r> or <al>).

From UAX#9: “Where available, markup should be used instead of the explicit formatting characters”. So, this simple version just ignores formatting characters. Actually, most of that annex is devoted to handle them.

BD14-BD16 are not implemented. Unicode (and the W3C) are making a great effort to deal with some special problematic cases in “streamed” plain text. I don’t think this is the way to go – particular issues should be fixed by a high level interface taking into account the needs of the document. And here is where luatex excels, because everything related to bidi writing is under our control.
Babel = Babel or {}  
Babel.bidi_enabled = true  
require('babel-data-bidi.lua')  
local characters = Babel.characters  
local ranges = Babel.ranges  
local DIR = node.id("dir")  
local function dir_mark(head, from, to, outer)  
  dir = (outer == 'r') and 'TLT' or 'TRT' -- ie, reverse  
  local d = node.new(DIR)  
  d.dir = '+' .. dir  
  node.insert_before(head, from, d)  
  d = node.new(DIR)  
  d.dir = '-' .. dir  
  node.insert_after(head, to, d)  
end  

function Babel.bidi(head, ispar)  
  local first_n, last_n, last_es -- first and last char with nums  
  local first_d, last_d -- first and last char in L/R block  
  local dir, dir_real

Next also depends on script/lang (<al>/<r>). To be set by babel. tex.pardir is dangerous, could be (re)set but it should be changed only in vmode. There are two strong's – strong = l/al/r and strong_lr = lr (there must be a better way):

  local strong = ('TRT' == tex.pardir) and 'r' or 'l'  
  local strong_lr = (strong == 'l') and 'l' or 'r'  
  local outer = strong  

  local new_dir = false  
  local first_dir = false  
  local inmath = false  

  local last_lr

  local type_n = ''  

  for item in node.traverse(head) do  
    -- three cases: glyph, dir, otherwise  
    if item.id == node.id'glyph'  
      or (item.id == 7 and item.subtype == 2) then  
      local itemchar  
      if item.id == 7 and item.subtype == 2 then  
        itemchar = item.replace.char  
      else  
        itemchar = item.char  
      end  
      local chardata = characters[itemchar]  
      dir = chardata and chardata.d or nil  
    end

    if not dir then  
      for nn, et in ipairs(ranges) do  
        if itemchar < et[1] then  
          break  
        elseif itemchar <= et[2] then  
          dir = et[3]  
        end  
      end  
    end

  end
Next is based on the assumption babel sets the language AND switches the script with its dir. We treat a language block as a separate Unicode sequence. The following piece of code is executed at the first glyph after a 'dir' node. We don't know the current language until then. This is not exactly true, as the math mode may insert explicit dirs in the node list, so, for the moment there is a hack by brute force (just above).

```
if new_dir then
 attr_dir = 0
 for at in node.traverse(item.attr) do
 if at.number == Babel.attr_dir then
 attr_dir = at.value % 3
 end
 end
 if attr_dir == 1 then
 strong = 'r'
 elseif attr_dir == 2 then
 strong = 'al'
 else
 strong = 'l'
 end
 strong_lr = (strong == 'l') and 'l' or 'r'
 outer = strong_lr
 new_dir = false
end
if dir == 'nsm' then dir = strong end -- W1
```

**Numbers.** The dual <al>/<r> system for R is somewhat cumbersome.

```
dir_real = dir
 -- We need dir_real to set strong below
if dir == 'al' then dir = 'r' end -- W3
```

By W2, there are no <en> <et> <es> if strong == <al>, only <an>. Therefore, there are not <et en> nor <en et>, W5 can be ignored, and W6 applied:

```
if dir == 'en' or dir == 'an' end -- W2
if dir == 'et' or dir == 'es' then dir = 'on' end -- W6
strong_lr = 'r' -- W3
end
```

Once finished the basic setup for glyphs, consider the two other cases: dir node and the rest.

```
if dir == 'en' or dir == 'an' or dir == 'et' then
 if dir ~= 'et' then
 type_n = dir
 end
end
```

**Numbers in R mode.** A sequence of <en>, <et>, <an>, <es> and <cs> is typeset (with some rules) in L mode. We store the starting and ending points, and only when anything different is found (including nil, ie, a non-char), the text dir is set. This means you cannot insert, say, a whatsit, but this is what I would expect (with luacolor you may colorize some digits). Anyway, this behavior could be changed with a switch in the future. Note in the first branch only <an> is relevant if <al>.

```
if dir == 'en' or dir == 'an' or dir == 'et' then
 if dir ~= 'et' then
 type_n = dir
 end
end
```
first_n = first_n or item
last_n = last_es or item
last_es = nil
elseif dir == 'es' and last_n then -- W3+W6
last_es = item
elseif dir == 'cs' then -- it's right - do nothing
elseif first_n then -- & if dir = any but en, et, an, es, cs, inc nil
if strong_lr == 'r' and type_n ~= '' then
dir_mark(head, first_n, last_n, 'r')
ellse strong_lr == 'l' and first_d and type_n == 'an' then
dir_mark(head, first_d, last_d, outer)
first_d, last_d = nil, nil
elseif strong_lr == 'l' and type_n ~= '' then
last_d = last_n
end
type_n = ''
first_n, last_n = nil, nil
end

R text in L, or L text in R. Order of dir_ mark's are relevant: d goes outside n, and therefore it's emitted after. See dir_mark to understand why (but is the nesting actually necessary or is a flat dir structure enough?). Only L, R (and AL) chars are taken into account – everything else, including spaces, whatsits, etc., are ignored:

if dir == 'l' or dir == 'r' then
if dir ~= outer then
first_d = first_d or item
last_d = item
elseif first_d and dir ~= strong_lr then
dir_mark(head, first_d, last_d, outer)
first_d, last_d = nil, nil
end
end

Mirroring. Each chunk of text in a certain language is considered a “closed” sequence. If <r on r> and <l on l>, it's clearly <r> and <l>, resp, but with other combinations depends on outer. From all these, we select only those resolving <on> → <r>. At the beginning (when last_lr is nil) of an R text, they are mirrored directly.

TODO - numbers in R mode are processed. It doesn't hurt, but should not be done.

if dir and not last_lr and dir ~= 'l' and outer == 'r' then
item.char = characters[item.char] and
characters[item.char].m or item.char
elseif (dir or new_dir) and last_lr ~= item then
local mir = outer .. strong_lr .. (dir or outer)
if mir == 'rrr' or mir == 'lrr' or mir == 'rrl' or mir == 'rlr' then
for ch in node.traverse(node.next(last_lr)) do
if ch == item then break end
if ch.id == node.id'glyph' and characters[ch.char] then
ch.char = characters[ch.char].m or ch.char
end
end
end

end

Save some values for the next iteration. If the current node is ‘dir’, open a new sequence. Since dir could be changed, strong is set with its real value (dir_real).

if dir == 'l' or dir == 'r' then
last_lr = item
strong = dir_real -- Don't search back - best save now
strong_lr = (strong == 'l') and 'l' or 'r'
ext new_dir then
last_lr = nil
end
end
Mirror the last chars if they are not directed. And make sure any open block is closed, too.

```lua
6898 if last_lr and outer == 'r' then
6899 for ch in node.traverse_id(node.id'glyph', node.next(last_lr)) do
6900 if characters[ch.char] then
6901 ch.char = characters[ch.char].m or ch.char
6902 end
6903 end
6904 end
6905 if first_n then
6906 dir_mark(head, first_n, last_n, outer)
6907 end
6908 if first_d then
6909 dir_mark(head, first_d, last_d, outer)
6910 end
In boxes, the dir node could be added before the original head, so the actual head is the previous node.
6911 return node.prev(head) or head
6912 end
6913 ⟨/basic-r⟩
And here the Lua code for bidi=basic:
6914 ⟨∗basic⟩
6915 Babel = Babel or {}
6916
6917 -- eg, Babel.fontmap[1][<prefontid>]=<dirfontid>
6918
6919 Babel.fontmap = Babel.fontmap or {}
6920 Babel.fontmap[0] = {} -- l
6921 Babel.fontmap[1] = {} -- r
6922 Babel.fontmap[2] = {} -- al/an
6923
6924 Babel.bidi_enabled = true
6925 Babel.mirroring_enabled = true
6926
6927 require('babel-data-bidi.lua')
6928
6929 local characters = Babel.characters
6930 local ranges = Babel.ranges
6931
6932 local DIR = node.id('dir')
6933 local GLYPH = node.id('glyph')
6934
6935 local function insert_implicit(head, state, outer)
6936 local new_state = state
6937 if state.sim and state.eim and state.sim ~= state.eim then
6938 dir = ((outer == 'r') and 'TLT' or 'TRT') -- ie, reverse
6939 local d = node.new(DIR)
6940 d.dir = '+' .. dir
6941 node.insert_before(head, state.sim, d)
6942 local d = node.new(DIR)
6943 d.dir = '-' .. dir
6944 node.insert_after(head, state.eim, d)
6945 end
6946 return head, new_state
6947 end
6948
6949 local function insert_numeric(head, state)
6950 local new_state = state
6951 if state.san and state.ean and state.san ~= state.ean then
6952 local d = node.new(DIR)
6953 return head, new_state
6954 end
6955
6956 local function insert_implicit(head, state, outer)
6957 local new_state = state
6958 if state.sim and state.eim and state.sim ~= state.eim then
6959 dir = ((outer == 'r') and 'TLT' or 'TRT') -- ie, reverse
6960 local d = node.new(DIR)
6961 d.dir = '+' .. dir
6962 node.insert_before(head, state.sim, d)
6963 local d = node.new(DIR)
6964 d.dir = '-' .. dir
6965 node.insert_after(head, state.eim, d)
6966 end
6967 return head, new_state
6968 end
6969
6970 local function insert_numeric(head, state)
6971 local new
6972 local new_state = state
6973 if state.san and state.ean and state.san ~= state.ean then
6974 local d = node.new(DIR)
6975 end
197```
6955 d.dir = '\text{+TLT}\\n', new = node.insert_before(head, state.san, d) 6956 if state.san == state.sim then state.sim = new end 6957 local d = node.new(DIR) 6958 d.dir = '\text{-TLT}\\n', new = node.insert_after(head, state.ean, d) 6959 if state.ean == state.eim then state.eim = new end 6960 end 6961 new_state.san, new_state.ean = nil, nil 6962 return head, new_state 6963 end 6964

6966 \text{-- TODO - \hbox with an explicit dir can lead to wrong results} 6967 \text{-- <R \hbox dir TLT\{\text{<R>}} and <L \hbox dir TRT\{\text{<L>}}. A small attempt} 6968 \text{-- was made to improve the situation, but the problem is the 3-dir} 6969 \text{-- model in babel/Unicode and the 2-dir model in LuaTeX don't fit} 6970 \text{-- well.} 6971

6972 function Babel.bidi(head, ispar, hdir) 6973 local d -- d is used mainly for computations in a loop 6974 local prev_d = '' 6975 local new_d = false
6976
6977 local nodes = {} 6978 local outer_first = nil 6979 local inmath = false
6980
6981 local glue_d = nil 6982 local glue_i = nil
6983
6984 local has_en = false 6985 local first_et = nil
6986
6987 local ATDIR = Babel.attr_dir
6988
6989 local save_outer
6990 local temp = node.get_attribute(head, ATDIR)
6991 if temp then
6992 temp = temp % 3
6993 save_outer = (temp == 0 and 'l') or
6994 (temp == 1 and 'r') or
6995 (temp == 2 and 'al')
6996 elseif ispar then -- Or error? Shouldn't happen
6997 save_outer = ('TRT' == tex.pardir) and 'r' or 'l'
6998 else -- Or error? Shouldn't happen
6999 save_outer = ('TRT' == hdir) and 'r' or 'l'
7000 end
7001
7002 -- when the callback is called, we are just_after_ the box,
7003 -- and the textdir is that of the surrounding text
7004 -- if not ispar and hdir ~= tex.textdir then
7005 -- save_outer = ('TRT' == hdir) and 'r' or 'l'
7006 -- end
7007 local outer = save_outer
7008 local last = outer
7009 -- 'al' is only taken into account in the first, current loop
7010 if save_outer == 'al' then save_outer = 'r' end
7011
7012 local fontmap = Babel.fontmap
7013 for item in node.traverse(head) do
7014 -- In what follows, #node is the last (previous) node, because the
7015 -- current one is not added until we start processing the neutrals.
-- three cases: glyph, dir, otherwise
if item.id == GLYPH
 or (item.id == 7 and item.subtype == 2) then
local d_font = nil
local item_r
if item.id == 7 and item.subtype == 2 then
 item_r = item.replace -- automatic discs have just 1 glyph
else
 item_r = item
end
local chardata = characters[item_r.char]
d = chardata and chardata.d or nil
if not d or d == 'nsm' then
 for nn, et in ipairs(ranges) do
 if item_r.char < et[1] then
 break
 elseif item_r.char <= et[2] then
 if not d then d = et[3]
 elseif d == 'nsm' then d_font = et[3]
 end
 break
 end
 end
end
end
end
d = d or 'l'

-- A short 'pause' in bidi for mapfont
d_font = d_font or d
if d_font and fontmap and fontmap[d_font][item_r.font] then
 item_r.font = fontmap[d_font][item_r.font]
end
if new_d then
 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})
 if inmath then
 attr_d = 0
 else
 attr_d = node.get_attribute(item, ATDIR)
 attr_d = attr_d % 3
 end
 if attr_d == 1 then
 outer_first = 'r'
 last = 'r'
 elseif attr_d == 2 then
 outer_first = 'r'
 last = 'al'
 else
 outer_first = 'l'
 last = 'l'
 end
 outer = last
 has_en = false
 first_et = nil
 new_d = false
end
if glue_d then
 if (d == 'l' and 'l' or 'r') ~= glue_d then
 table.insert(nodes, {glue_i, 'on', nil})
 end
 glue_d = nil
 glue_i = nil
end

elseif item.id == DIR then
 d = nil
 if head ~= item then new_d = true end
elseif item.id == node.id'glue' and item.subtype == 13 then
 glue_d = d
 glue_i = item
 d = nil
elseif item.id == node.id'math' then
 inmath = (item.subtype == 0)
else
 d = nil
end

-- AL <= EN/ET/ES -- W2 + W3 + W6
if last == 'al' and d == 'en' then
 d = 'an' -- W3
elseif last == 'al' and (d == 'et' or d == 'es') then
 d = 'on' -- W6
end

-- EN + CS/ES + EN -- W4
if d == 'en' and #nodes >= 2 then
 if (nodes[#nodes][2] == 'es' or nodes[#nodes][2] == 'cs')
 and nodes[#nodes-1][2] == 'en' then
 nodes[#nodes][2] = 'en'
 end
end

-- AN + CS + AN -- W4 too, because uax9 mixes both cases
if d == 'an' and #nodes >= 2 then
 if (nodes[#nodes][2] == 'cs')
 and nodes[#nodes-1][2] == 'an' then
 nodes[#nodes][2] = 'an'
 end
end

-- ET/EN -- W5 + W7->l / W6->on
if d == 'et' then
 first_et = first_et or (#nodes + 1)
elseif d == 'en' then
 has_en = true
 first_et = first_et or (#nodes + 1)
else first_et then -- d may be nil here!
 if has_en then
 if last == 'l' then
 temp = 'l' -- W7
 else
 temp = 'en' -- W5
 end
 else
 temp = 'on' -- W6
 end
end
for e = first_et, #nodes do
if nodes[e][1].id == GLYPH then nodes[e][2] = temp end
end
first_et = nil
has_en = false
end
-- Force mathdir in math if ON (currently works as expected only
-- with 'l')
if inmath and d == 'on' then
d = ('TRT' == tex.mathdir) and 'r' or 'l'
end

if d then
if d == 'al' then
 d = 'r'
 last = 'al'
elseif d == 'l' or d == 'r' then
 last = d
end
prev_d = d
end
end
outer_first = nil
end
-- TODO -- repeated here in case EN/ET is the last node. Find a
-- better way of doing things:
if first_et then -- dir may be nil here !
 if has_en then
 if last == 'l' then
 temp = 'l' -- W7
 else
 temp = 'en' -- W5
 end
 else
 temp = 'on' -- W6
 end
 for e = first_et, #nodes do
 if nodes[e][1].id == GLYPH then nodes[e][2] = temp end
 end
end
-- dummy node, to close things
table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

---------- NEUTRAL ----------

outer = save_outer
last = outer
local first_on = nil

for q = 1, #nodes do
 local item
 local outer_first = nodes[q][3]
 outer = outer_first or outer
 last = outer_first or last
 local d = nodes[q][2]
if d == 'an' or d == 'en' then d = 'r' end
if d == 'cs' or d == 'et' or d == 'es' then d = 'on' end --- W6

if d == 'on' then
 first_on = first_on or q
elseif first_on then
 if last == d then
 temp = d
 else
 temp = outer
 end
 for r = first_on, q - 1 do
 nodes[r][2] = temp
 item = nodes[r][1] -- MIRRORING
 if Babel.mirroring_enabled and item.id == Glyph
 and temp == 'r'
 and characters[item.char] then
 local font_mode = ''
 if font.fonts[item.font].properties then
 font_mode = font.fonts[item.font].properties.mode
 end
 if font_mode ~= 'harf' and font_mode ~= 'plug' then
 item.char = characters[item.char].m or item.char
 end
 end
 end
 first_on = nil
end
if d == 'r' or d == 'l' then last = d end

-------------- IMPLICIT, REORDER ----------------
outer = save_outer
last = outer
local state = {}
state.has_r = false
for q = 1, #nodes do
 local item = nodes[q][1]
 outer = nodes[q][3] or outer
 local d = nodes[q][2]
 if d == 'nsm' then d = last end -- W1
 if d == 'en' then d = 'an' end
 local isdir = (d == 'r' or d == 'l')
 if outer == 'l' and d == 'an' then
 state.san = state.san or item
 state.ean = item
 elseif state.san then
 head, state = insert_numeric(state, head)
 end
 if outer == 'l' and d == 'an' then
 state.san = state.san or item
 state.ean = item
 elseif state.san then
 head, state = insert_numeric(head, state)
 end
 if outer == 'l' then
 if d == 'an' or d == 'r' then -- im -> implicit
 if d == 'r' then state.has_r = true end
 state.sim = state.sim or item
 state.eim = item
 end
 end

202
7270 elseif d == 'l' and state.sim and state.has_r then
7271 head, state = insert_implicit(head, state, outer)
7272 elseif d == 'l' then
7273 state.sim, state.eim, state.has_r = nil, nil, false
7274 end
7275 else
7276 if d == 'an' or d == 'l' then
7277 if nodes[q][3] then -- nil except after an explicit dir
7278 state.sim = item -- so we move sim 'inside' the group
7279 else
7280 state.sim = state.sim or item
7281 end
7282 state.eim = item
7283 elseif d == 'r' and state.sim then
7284 head, state = insert_implicit(head, state, outer)
7285 elseif d == 'r' then
7286 state.sim, state.eim = nil, nil
7287 end
7288 end
7289
7290 if isdir then
7291 last = d -- Don’t search back - best save now
7292 elseif d == 'on' and state.san then
7293 state.san = state.san or item
7294 state.ean = item
7295 end
7296
7297 end
7298
7299 return node.prev(head) or head
7300 end
7301 ⟨/basic⟩

13 Data for CJK

It is a boring file and it is not shown here (see the generated file), but here is a sample:

[0x0021]={c='ex'},
[0x0024]={c='pr'},
[0x0025]={c='po'},
[0x0028]={c='op'},
[0x0029]={c='cp'},
[0x002B]={c='pr'},

For the meaning of these codes, see the Unicode standard.

14 The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to nohyphenation.
For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than once, checking the
category code of the @ sign, etc.

\ProvidesLanguage{nil}[⟨⟨date⟩⟩ ⟨⟨version⟩⟩ Nil language]
\LdfInit{nil}{datenil}

When this file is read as an option, i.e. by the \usepackage command, nil could be an ‘unknown’
language in which case we have to make it known.

\ifx\l@nil\@undefined
\newlanguage\l@nil
\fi

203
This macro is used to store the values of the hyphenation parameters \lefthyphenmin and \righthyphenmin.

The next step consists of defining commands to switch to (and from) the 'nil' language.

There is no locale file for this pseudo-language, so the corresponding fields are defined here.

The macro \ldf@finish takes care of looking for a configuration file, setting the main language to be switched on at \begin{document} and resetting the category code of @ to its original value.

15 Calendars

The code for specific calendars are placed in the specific files, loaded when requested by an ini file in the identification section with require.calendars.

Start with function to compute the Julian day. It's based on the little library calendar.js, by John Walker, in the public domain.
The code for the Civil calendar is based on it, too.

\ExplSyntaxOn
\ComputeJulianday % == islamic (default) % Not yet implemented\def\bbl@ca@islamic-civil++\bbl@ca@islamicvl@x{+2}\def\bbl@ca@islamic-civil+\bbl@ca@islamicvl@x{+1}\def\bbl@ca@islamic-civil\bbl@ca@islamicvl@x{0}\def\bbl@ca@islamic-civil-\bbl@ca@islamicvl@x{-1}\def\bbl@ca@islamic-civil--\bbl@ca@islamicvl@x{-2}% \today\def\bbl@cs@isltojd#1#2#3 % year, month, day((#3 + ceiling(29.5 * (#2 - 1)) + (#1 - 1) * 354 + floor((3 + (11 * #1)) / 30) + 1948439.5) - 1)\edef\bbl@tempa{\fp_eval:n{ floor(\bbl@cs@jd{#2}{#3}{#4})+0.5 #1}}\edef#5{\fp_eval:n{ floor(((30*(\bbl@tempa-1948439.5)) + 10646)/10631) }}\edef#6{\fp_eval:n{ min(12,ceil(((\bbl@tempa-(29+\bbl@cs@isltojd{#5}{1}{1}))/29.5)+1)}}\edef#7{\fp_eval:n{ \bbl@tempa - \bbl@cs@isltojd{#5}{#6}{1} + 1}}\ExplSyntaxOff

The Islamic calendar.

The Umm al-Qura calendar, used mainly in Saudi Arabia, is based on moment-hijri, by Abdullah Alsigar (license MIT).

Since the main aim is to provide a suitable \today, and maybe some close dates, data just covers Hijri ~1435~/~2014~/~2038\.

\def\bbl@cs@umalqura@data{56660, 56690, 56719, 56749, 56778, 56808, % 56837, 56867, 56897, 56926, 56956, 56985, 57015, 57044, 57074, 57103, % 57133, 57162, 57192, 57221, 57251, 57280, 57310, 57340, 57369, 57399, % 57429, 57458, 57487, 57517, 57546, 57576, 57605, 57634, 57664, 57694, % 57723, 57753, 57783, 57813, 57842, 57871, 57901, 57930, 57959, 57989, % 58018, 58048, 58077, 58107, 58137, 58167, 58196, 58226, 58255, 58285, % 58314, 58343, 58373, 58402, 58432, 58461, 58491, 58521, 58551, 58580, % 58610, 58639, 58669, 58698, 58727, 58757, 58786, 58816, 58845, 58875, % 58905, 58934, 58964, 58994, 59023, 59053, 59082, 59111, 59141, 59170, % 59200, 59229, 59259, 59288, 59318, 59348, 59377, 59407, 59436, 59466, % 59495, 59525, 59554, 59584, 59613, 59643, 59672, 59702, 59731, 59761, % 59791, 59820, 59850, 59879, 59909, 59939, 59968, 59997, 60027, 60056, % 60086, 60115, 60145, 60174, 60204, 60234, 60264, 60293, 60323, 60352, % 60381, 60411, 60440, 60469, 60499, 60528, 60558, 60588, 60618, 60648, % 60677, 60707, 60736, 60765, 60795, 60824, 60853, 60883, 60912, 60942, % 60972, 61002, 61031, 61061, 61090, 61120, 61149, 61179, 61208, 61237, % 61267, 61296, 61326, 61356, 61385, 61415, 61445, 61474, 61504, 61533, % 61563, 61592, 61621, 61651, 61680, 61710, 61739, 61769, 61799, 61828, % 61858, 61888, 61917, 61947, 61976, 62006, 62035, 62064, 62094, 62123, % 62153, 62182, 62212, 62242, 62271, 62301, 62331, 62360, 62390, 62419, % 62448, 62478, 62507, 62537, 62566, 62596, 62625, 62655, 62685, 62715, % 62744, 62774, 62803, 62832, 62862, 62891, 62921, 62950, 62980, 63009, % 63039, 63069, 63099, 63128, 63157, 63187, 63216, 63246, 63275, 63305, % 63334, 63363, 63393, 63423, 63453, 63482, 63512, 63541, 63571, 63600, % 63630, 63659, 63689, 63718, 63747, 63777, 63807, 63836, 63866, 63895, %}
16 Hebrew

This is basically the set of macros written by Michail Rozman in 1991, with corrections and adaptions by Rama Porrat, Misha, Dan Haran and Boris Lavva. This must be eventually replaced by computations with l3fp.

\newcount\bbl@cntcommon
\def\bbl@remainder#1#2#3{% #3 = #1 % c = a
\divide #3 by #2 % c = a/b
\multiply #3 by -#2 % c = -b(a/b)
\advance #3 by #1 }% % c = a - b(a/b)
\newif\ifbbl@divisible
\def\bbl@checkifdivisible#1#2{% \{\countdef\tmp = 0 % \tmp == \count0 - temporary variable
\bbl@remainder{#1}{#2}{\tmp}
\ifnum \tmp = 0
\global\bbl@divisibletrue
\else
\global\bbl@divisiblefalse
\fi\}}
\newif\ifbbl@gregleap
\def\bbl@ifgregleap#1{% \bbl@checkifdivisible{#1}{4}% \ifbbl@divisible
\bbl@checkifdivisible{#1}{100}%
\else
\fi\}}
\ifbbl@divisible
 \bbl@checkifdivisible{#1}{400}\
\fi
\ifbbl@divisible
 \bbl@gregleaptrue
\else
 \bbl@gregleapfalse
\fi
\else
 \bbl@gregleaptrue
\fi
\else
 \bbl@gregleapfalse
\fi
\ifbbl@gregleap}
\def\bbl@gregdayspriormonths#1#2#3{% no month number 0
 \#3 = \ifcase #1 0 \or 0 \or 31 \or 59 \or 90 \or 120 \or 151 \or 181 \or 212 \or 243 \or 273 \or 304 \or 334 \fi
 \bbl@ifgregleap{#2}\
 \ifnum #1 > 2 % if month after February
 \bbl@gregdays#3 by 1 % add leap day
 \fi
 \fi
\global\bbl@cntcommon = \#3}\
\def\bbl@gregdaysprioryears#1#2{%
 \countdef\tmpc = 4 % \tmpc==\count4
 \countdef\tmpb = 2 % \tmpb==\count2
 \tmpb = #1 %
 \advance \tmpb by -1 %
 \tmpc = \tmpb % \tmpc = \tmpb = year-1
 \multiply \tmpc by 365 % Days in prior years =
 \#2 = \tmpc % = 365*(year-1) ...
 \tmpc = \tmpb %
 \divide \tmpc by 4 % \tmpc = (year-1)/4
 \advance \#2 by \tmpc % ... plus Julian leap days ...
 \tmpc = \tmpb %
 \divide \tmpc by 100 % \tmpc = (year-1)/100
 \advance \#2 by -\tmpc % ... minus century years ...
 \tmpc = \tmpb %
 \divide \tmpc by 400 % \tmpc = (year-1)/400
 \advance \#2 by \tmpc % ... plus 4-century years.
 \global\bbl@cntcommon = \#2}\
\global\bbl@cntcommon = \#3}\
\def\bbl@absfromgreg#1#2#3#4{%
 \countdef\tmpd = 0 % \tmpd==\count0
 \#4 = \ifnum #1 % days so far this month
 \bbl@gregdayspriormonths{#2}{#3}{\#4}\
 \bbl@gregdaysprioryears{#3}{\#4}\
 \global\bbl@cntcommon = \#4}\
\global\bbl@cntcommon = \#2}\
\newif\ifbbl@hebrleap
\def\bbl@checkleaphebryear#1{%
 \countdef\tmpa = 0 % \tmpa==\count0
 \#4 = \if #1 %
 \bbl@gregdayspriormonths{#2}{#3}{\#4}\
 \global\bbl@cntcommon = \#4}\
\multiply\tmpa by 7
\advance \tmpa by 1
\bbl@remainder\tmpa{19}{\tmpb}\
\ifnum \tmpb < 7 % \tmpb = (7*year+1)%19
 \global\bbl@hebrleaptrue
\else
 \global\bbl@hebrleapfalse
\fi
207
\ifnum \tmpa = 3 % Wednesday ...
\advance #2 by 1
\else
\ifnum \tmpa = 5 % or Friday
\advance #2 by 1
\fi
\fi
\global\bbl@cntcommon = #2}%
#2 = \bbl@cntcommon}
\def\bbl@daysinhebryear#1#2{%
{\countdef \tmpe = 12 % \tmpe==\count12
\bbl@hebrelapseddays(#1){\tmpe}%
\advance #1 by 1
\bbl@hebrelapseddays(#1){#2}%
\advance #2 by -\tmpe
\global\bbl@cntcommon = #2}%
\global\bbl@cntcommon = #2}%
#2 = \bbl@cntcommon}
\def\bbl@hebrdayspriormonths#1#2#3{%
{\countdef \tmpf= 14 % \tmpf==\count14
#3 = \ifcase #1 % Days in prior month of regular year
 0 \or % no month number 0
 0 \or % Tishri
 30 \or % Heshvan
 59 \or % Kislev
 89 \or % Tebeth
 118 \or % Shebat
 148 \or % Adar I
 148 \or % Adar II
 177 \or % Nisan
 207 \or % Iyar
 236 \or % Sivan
 266 \or % Tammuz
 295 \or % Av
 325 \or % Elul
 400 % Dummy
\fi
\bbl@checkleaphebryear(#2)%
\ifbbl@hebrleap % in leap year
\ifnum #1 > 6 % if month after Adar I
\advance #3 by 30 % add 30 days
\fi
\fi
\global\bbl@cntcommon = #3}%
\global\bbl@cntcommon = #3}%
\def\bbl@absfromhebr#1#2#3#4{%
There is an algorithm written in TeX by Jabri, Abolhassani, Pournader and Esfahbod, created for the first versions of the FarsiTeX system (no longer available), but the original license is GPL, so its use with LPPL is problematic. The code here follows loosely that by John Walker, which is free and accurate, but sadly very complex, so the relevant data for the years 2013-2050 have been pre-calculated and stored. Actually, all we need is the first day (either March 20 or March 21).

17 Persian

There is an algorithm written in TeX by Jabri, Abolhassani, Pournader and Esfahbod, created for the first versions of the FarsiTeX system (no longer available), but the original license is GPL, so its use with LPPL is problematic. The code here follows loosely that by John Walker, which is free and accurate, but sadly very complex, so the relevant data for the years 2013-2050 have been pre-calculated and stored. Actually, all we need is the first day (either March 20 or March 21).
18 Coptic

Adapted from jquery.calendars.package-1.1.4, written by Keith Wood, 2010. Dual license: GPL and MIT.

19 Buddhist

That's very simple.

20 Support for Plain \TeX (plain.def)

20.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to designate his version of the American English hyphenation patterns, a new solution has to be found in order to be able to load hyphenation patterns for other languages in a plain-based \TeX-format. When asked he responded:
That filename is “sacred”, and if anybody changes it they will cause severe upward/downward compatibility headaches. People can have a file locally hyphen.tex or whatever they like, but they mustn’t diddle with hyphen.tex (or plain.tex except to preload additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around plain.tex and lplain.tex to achieve the desired effect, based on the babel package. If you load each of them with init\TeX, you will get a file called either bplain.fmt or blplain.fmt, which you can use as replacements for plain.fmt and lplain.fmt.

As these files are going to be read as the first thing init\TeX sees, we need to set some category codes just to be able to change the definition of \input.

```latex
\catcode`\{=1 % left brace is begin-group character
\catcode`\}=2 % right brace is end-group character
\catcode`\#=6 % hash mark is macro parameter character
```

If a file called hyphen.cfg can be found, we make sure that it will be read instead of the file hyphen.tex. We do this by first saving the original meaning of \input (and I use a one letter control sequence for that so as not to waste multi-letter control sequence on this in the format).

```latex
\openin 0 hyphen.cfg
\ifeof0
\let\a\input
\else
\let\a\undefined
\fi
```

Then \input is defined to forget about its argument and load hyphen.cfg instead. Once that’s done the original meaning of \input can be restored and the definition of \a can be forgotten.

```latex
\def\input #1 {%
\let\input\a
\a hyphen.cfg
\let\a\undefined
}
```

Now that we have made sure that hyphen.cfg will be loaded at the right moment it is time to load plain.tex.

```latex
(bplain)\a plain.tex
(bplain)\a lplain.tex
```

Finally we change the contents of \fmtname to indicate that this is not the plain format, but a format based on plain with the babel package preloaded.

```latex
(bplain)\def\fmtname{babel-plain}
(bplain)\def\fmtname{babel-lplain}
```

When you are using a different format, based on plain.tex you can make a copy of blplain.tex, rename it and replace plain.tex with the name of your format file.

20.2 Emulating some \LaTeX features

The file babel.def expects some definitions made in the \LaTeX\ style file. So, in Plain we must provide at least some predefined values as well some tools to set them (even if not all options are available). There are no package options, and therefore and alternative mechanism is provided. For the moment, only \babeloptionstrings and \babeloptionmath are provided, which can be defined before loading babel. \b babelModifiers can be set too (but not sure it works).

```latex
(\texttt{\LaTeX}) ≡
\def\empty{}
\def\loadlocalcfg#1{%
\openin0#1.cfg
\ifeof0
\else
\closein0
\else
\closein0
{\immediate\write16{*************************************}%
\immediate\write16{* Local config file #1.cfg used}%
\immediate\write16{*******************************************************}%
```

212
20.3 General tools

A number of \TeX macro's that are needed later on.
\begin{verbatim}
\long\def\@firstofone#1{#1}
\long\def\@firstoftwo#1#2{#1}
\long\def\@secondoftwo#1#2{#2}
\def\@nnil{"\nil} \def\@gobbletwo#1#2{ }
\def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}
\def\@star@or@long#1{\@ifstar{\let\l@ngrel@x\relax#1}{\let\l@ngrel@x\long#1}}
\let\l@ngrel@x\relax
\def\@car#1#2\@nil{\@firstofone{#1}}
\def\@cdr#1#2\@nil{\@firstofone{#2}}
\let\@typeset@protect\relax
\let\protected@edef\edef
\long\def\@gobble#1{ }
\edef\@backslashchar{\expandafter\@gobble\string\\}
\def\strip@prefix#1>{}
\def\g@addto@macro#1#2{{\toks@\expandafter{#1#2}\xdef#1{\the	oks@}}}
\def\@namedef#1{\expandafter\def\csname #1\endcsname}
\def\@nameuse#1{\csname #1\endcsname}
\def\@ifundefined#1{\ifx\csname#1\endcsname\relax\else\fi}
\def\@expandtwoargs#1#2#3{\edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}
\def\zap@space#1 #2{#1\ifx#2\@empty\else\expandafter\zap@space\fi #2}
\let\bbl@trace\@gobble
\def\bbl@error#1#2{\begingroup\newlinechar=`\^^J\def\{\^^J(babel)\} \errhelp{#2}\errmessage{\#1}\endgroup}
\def\bbl@warning#1{\begingroup\newlinechar=`\^^J\def\{\^^J\message{\#1}\endgroup}
\let\bbl@infowarn\bbl@warning
\def\bbl@info#1{\wlog{#1}}
\end{verbatim}
\end{document}
\LaTeX has the command \texttt{\@onlypreamble} which adds commands to a list of commands that are no longer needed after \texttt{\begin{document}}.

\begin{verbatim}
\ifx\@preamblecmds\@undefined
\def\@preamblecmds{}
\fi
\def\@onlypreamble#1{\expandafter\gdef\expandafter\@preamblecmds\expandafter{\@preamblecmds\do#1}}
\@onlypreamble\@onlypreamble
\end{verbatim}

Mimick \LaTeX's \texttt{\AtBeginDocument}; for this to work the user needs to add \texttt{\begindocument} to his file.

\begin{verbatim}
\def\begindocument{\@begindocumenthook
\global\let\@begindocumenthook\@undefined
\def\do##1{\global\let##1\@undefined}\@preamblecmds
\global\let\do\noexpand}
\ifx\@begindocumenthook\@undefined
\def\@begindocumenthook{}
\fi
\@onlypreamble\@begindocumenthook
\def\AtBeginDocument{\g@addto@macro\@begindocumenthook}
\end{verbatim}

We also have to mimick \LaTeX's \texttt{\AtEndOfPackage}. Our replacement macro is much simpler; it stores its argument in \texttt{\@endofldf}.

\begin{verbatim}
\def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}
\@onlypreamble\AtEndOfPackage
\@onlypreamble\@endofldf
\let\bbl@afterlang\@empty
\catcode`&=\z@\ifx&if@filesw\@undefined
\expandafter\let\csname if@filesw\expandafter\endcsname\csname iffalse\endcsname\fi
\catcode`&=4
\end{verbatim}

\LaTeX needs to be able to switch off writing to its auxiliary files; plain doesn't have them by default. There is a trick to hide some conditional commands from the outer \texttt{\ifx}. The same trick is applied below.

\begin{verbatim}
\catcode`\&=\z@\ifx\if\@undefined\expandafter\let\csname if\expandafter\endcsname\csname iffalse\endcsname\fi
\catcode`\&=4
\end{verbatim}

Mimick \LaTeX's commands to define control sequences.

\begin{verbatim}
\def\newcommand{\@star@or@long\new@command}
\def\new@command#1{\@testopt{\@newcommand#1\[#2\]}0}
\def\@newcommand#1\[#2\]\[#3\]{\@ifnextchar\[\@xargdef#1\[#2\]\[#3\]\[#4\]{}\@argdef#1\[#2\]\[#3\]{}\@yargdef#1\@ne{#2}{#3}{}\@xargdef#1\[#2\]\[#3\]\[#4\]{}\@argdef#1\[#2\]\[#3\]{}\@yargdef#1\@ne{#2}{#3}}
\def\@yargdef#1#2#3{\@tempcnta#3\relax\advance\@tempcnta\@ne\let\@hash@\relax\expandafter\def\expandafter#1\expandafter{\expandafter\@protected@testopt\expandafter #1\csname\string#1\endcsname{#3}}\expandafter\@yargdef\csname\string#1\endcsname\tw@{#2}{#4}}
\def\tw@#2\{#4\}{}\expandafter\@yargdef\csname\string#1\endcsname\tw@{#2\}{#4\}{}\expandafter\@yargdef\csname\string#1\endcsname\tw@{#2\}{#4\}{}\expandafter\@yargdef\csname\string#1\endcsname\tw@{#2\}{#4\}{}\expandafter\@yargdef\csname\string#1\endcsname\tw@{#2\}{#4\}{}
\long\def\@argdef#1\[#2\]#3{\@yargdef#1\@ne{#2}{#3}}\long\def\@xargdef#1\[#2\]\[#3\]\[#4\]{}\@argdef#1\[#2\]\[#3\]\[#4\]{}\@xargdef#1\[#2\]\[#3\]\[#4\]{}\@argdef#1\[#2\]\[#3\]\[#4\]{}\@xargdef#1\[#2\]\[#3\]\[#4\]{}
\end{verbatim}
The following little macro \in@ is taken from \texttt{latex.ltx}; it checks whether its first argument is part of its second argument. It uses the boolean \in@, allocating a new boolean inside conditionally executed code is not possible, hence the construct with the temporary definition of \bbl@tempa.

\def\bbl@tempa{\csname newif\endcsname\in@}
\catcode`&=4
\ifx\in@\@undefined
\let\bbl@tempa\@empty
\fi
\bbl@tempa

\begingroup
\escapechar\m@ne\xdef\@gtempa{{\string#1}}\endgroup
\expandafter\@ifundefined\@gtempa
\def\reserved@a{\new@command#1}\else
\let\reserved@a\relax\def\reserved@a{\new@command\reserved@a}\fi
\reserved@a

\DeclareRobustCommand{\@star@or@long\declare@robustcommand}
\def\declare@robustcommand#1{\edef\reserved@a{\string#1}\def\reserved@b{#1}\edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}\edef#1{\ifx\reserved@a\reserved@b\noexpand\x@protect\noexpand#1\fi\noexpand\protect\expandafter
\noexpand\csname\expandafter\@gobble\string#1 \endcsname}}\expandafter\new@command\csname\expandafter\@gobble\string#1 \endcsname\
\x@protect#1&fi#2#3{&fi\protect#1}

\catcode`&=4
\ifx\in@\@undefined
\def\in@#1#2{\def\in@@##1#1##2##3\in@@{\ifx\in@##2\in@false\else\in@true\fi}\in@@#2#1\in@\in@@}
\else
\let\bbl@tempa\@empty
\fi
\bbl@tempa

The following little macro \in@ is taken from \texttt{latex.ltx}; it checks whether its first argument is part of its second argument. It uses the boolean \in@, allocating a new boolean inside conditionally executed code is not possible, hence the construct with the temporary definition of \bbl@tempa.

\def\bbl@tempa{\csname newif\endcsname newif\endcsname@ifin@}
\catcode`\&=4
\ifx\in@\@undefined
\let\bbl@tempa\@empty
\fi
\bbl@tempa

\ifx\in@\@undefined
\def\in@\@undefined
\else
\let\bbl@tempa\@empty
\fi
\bbl@tempa

\ifX has a macro to check whether a certain package was loaded with specific options. The command has two extra arguments which are code to be executed in either the true or false case. This is used to detect whether the document needs one of the accents to be activated (activegrave and activeacute). For plain \TeX{} we assume that the user wants them to be active by default. Therefore the only thing we do is execute the third argument (the code for the true case).
The \LaTeX macro \texttt{@ifladed} checks whether a file was loaded. This functionality is not needed for plain TeX but we need the macro to be defined as a no-op.

For the following code we need to make sure that the commands \texttt{newcommand} and \texttt{providecommand} exist with some sensible definition. They are not fully equivalent to their \LaTeXe versions; just enough to make things work in plain \TeX environments.

To prevent wasting two counters in \LaTeX (because counters with the same name are allocated later by it) we reset the counter that holds the next free counter (\texttt{\count10}).

\textbf{20.4 Encoding related macros}

Code from \LaTeXe\texttt{ltoutenc.dtx}, adapted for use in the plain \TeX environment.
Currently we only use the \LTXE method for accents for those that are known to be made active in some language definition file.

The following control sequences are used in babel.def but are not defined for plain \TeX.

\DeclareTextAccent{\^}{OT1}{94}
\DeclareTextAccent{\`}{OT1}{18}
\DeclareTextAccent{\~}{OT1}{126}
\DeclareTextAccent{"}{OT1}{92}
\DeclareTextAccent{\'}{OT1}{19}
\DeclareTextAccent{\ }{OT1}{127}
\DeclareTextAccent{\i}{OT1}{16}
\DeclareTextAccent{\ss}{OT1}{25}
\DeclareTextAccent{\textquotedblleft}{OT1}{92}
\DeclareTextAccent{\textquotedblright}{OT1}{19}
\DeclareTextAccent{\textquoteleft}{OT1}{16}
\DeclareTextAccent{\textquoteright}{OT1}{25}
For a couple of languages we need the \texttt{\LaTeX}-control sequence \texttt{\scriptsize} to be available. Because plain \TeX{} doesn't have such a sophisticated font mechanism as \LaTeX{} has, we just let it to \texttt{\sevenrm}.

\begin{verbatim}
103 \ifx\scriptsize@undefined
104 \let\scriptsize\sevenrm
105 \fi
And a few more “dummy” definitions.
106 \def\languagename{english}\
107 \let\bbl@opt@shorthands@nil
108 \def\bbl@ifshorthand#1#2#3{#2}\
109 \let\bbl@language@opts@nil
110 \ifx\bbl@opt@strings@nil
111 \let\bbl@opt@strings@nil
112 \else
113 \let\bbl@opt@strings\bbl@opt@strings
114 \fi
115 \def\BabelStringsDefault{generic}
116 \def\bbl@tempa{normal}
117 \ifx\bbl@opt@safe@BR\else
118 \def\bbl@mathnormal{\noexpand\textormath}
119 \fi
120 \def\AfterBabelLanguage#1#2{}
121 \ifx\BabelModifiers@undefined\let\BabelModifiers@relax\fi
122 \let\bbl@afterlang@relax
123 \def\bbl@opt@safe{BR}
124 \ifx\ucliclist@undefined\let\ucliclist@empty\fi
125 \ifx\bbl@trace@undefined\def\bbl@trace@1\{}\fi
126 \expandafter\newif\csname ifbbl@single\endcsname
127 \chardef\bbl@bidimode
128 ⟨\langle
\langle/
Emulate\LaTeX\⟩⟩
\end{verbatim}

A proxy file:

\begin{verbatim}
129 ⟨\plain⟩
130 \input babel.def
131 ⟨\plain⟩
\end{verbatim}

\section{Acknowledgements}

I would like to thank all who volunteered as \textbeta-testers for their time. Michel Goossens supplied contributions for most of the other languages. Nico Poppelier helped polish the text of the documentation and supplied parts of the macros for the Dutch language. Paul Wackers and Werenfried Spith helped find and repair bugs. During the further development of the babel system I received much help from Bernd Raichle, for which I am grateful.

\section*{References}

\begin{enumerate}
\item Huda Smitsujiyen Abifares, \textit{Arabic Typography}, Saqi, 2001.
\item Yannis Haralambous, \textit{Fonts & Encodings}, O’Reilly, 2007.
\item Donald E. Knuth, \textit{The \TeX{}book}, Addison-Wesley, 1986.
\item Leslie Lamport, \textit{\LaTeX}, \textit{A document preparation System}, Addison-Wesley, 1986.
\item Leslie Lamport, in: \textit{\TeX.xhax Digest}, Volume 89, \#13, 17 February 1989.
\item Hubert Partl, \textit{German \TeX{}}, \textit{TUGboat} 9 (1988) \#1, p. 70–72.
\item Joachim Schrod, \textit{International \LaTeX{} is ready to use}, \textit{TUGboat} 11 (1990) \#1, p. 87–90.
\end{enumerate}

\section*{Acknowledgements}

I would like to thank all who volunteered as \textbeta-testers for their time. Michel Goossens supplied contributions for most of the other languages. Nico Poppelier helped polish the text of the documentation and supplied parts of the macros for the Dutch language. Paul Wackers and Werenfried Spith helped find and repair bugs. During the further development of the babel system I received much help from Bernd Raichle, for which I am grateful.

\section*{References}

\begin{enumerate}
\item Huda Smitsujiyen Abifares, \textit{Arabic Typography}, Saqi, 2001.
\item Yannis Haralambous, \textit{Fonts & Encodings}, O’Reilly, 2007.
\item Donald E. Knuth, \textit{The \TeX{}book}, Addison-Wesley, 1986.
\item Leslie Lamport, \textit{\LaTeX}, \textit{A document preparation System}, Addison-Wesley, 1986.
\item Leslie Lamport, in: \textit{\TeX.xhax Digest}, Volume 89, \#13, 17 February 1989.
\item Hubert Partl, \textit{German \TeX{}}, \textit{TUGboat} 9 (1988) \#1, p. 70–72.
\item Joachim Schrod, \textit{International \LaTeX{} is ready to use}, \textit{TUGboat} 11 (1990) \#1, p. 87–90.
\end{enumerate}