
The FlightGear Flight Simulator
History, status and future

A.R. Perry � alex.perry@ieee.org �
C. Olson � curt@flightgear.org �

http://www.flightgear.org/

Abstract
The open source flight simulator FlightGear is being developed through
gracious contributions of source code and time by many talented people from
around the globe. The main focus of this project is a desire to ‘do things right’,
to minimize short cuts, to learn and advance knowledge and to have better toys
to play with on ordinary computers.

Figure 1: Cessna 172 on landing approach

In April 1996, David Murr, drawing on ideas brought
forth by others, proposed a new flight simulator devel-
oped by volunteers over the Internet. This flight simulator
was to be distributed free of charge via the Internet and
similar networks.

Curt Olson made a multiplatform release of
FlightGear[1] in July 1997. Since then, it has expanded
beyond flight aerodynamics by improving graphics,
adding a shaded sky with sun, moon and stars correctly
drawn, automatically generated worldwide scenery,
clouds and fog, head up display and instrument panel,
electronic navigation systems, airports and runways,
network play, and much more (as shown in figure 1).

How does it all work ?

Simulator Portability

FlightGear aims to be portable across many different
processors and operating systems, as well as scale

upwards from commodity computers. In addition to
endianness, which inconveniences most open source
projects, we must also use services (such as sound) whose
implementation may be equivalent, yet very different,
under the various operating systems. For those services
which are common across most video games, the PLIB
project offers a simple API that acts as a Portable
Library[2]. Some aspects, such as sound support,
generate libraries that implement the functionality. Other
aspects, such as joystick support, are able to declare an
object in a single header file and thereby avoid the library.

Compared to Windows, MacOS and Irix, the various dis-
tributions and releases of Linux-based operating systems
are very similar. There are important differences, most
of which cause problems when trying to build and test
PLIB, so these rarely impact FlightGear directly. With
joysticks, for example:

1. The kernel provides two methods for retrieving
input data, the newer one permits more axes and
buttons

2. Distributions disagree on whether the js* files
should reside in a subdirectory under /dev

3. Autodetection of serial and gameport devices often
occurs at boot, earlier than users expect

4. Hot-swap support for USB does not assign pre-
dictable devices, so the yoke and rudder pedals are
sometimes exchanged

Once the facilities required by video games are available
through the Portable Library, the remainder of the
code acts as a conventional application. Compile-time
incompatibilities are primarily due to gcc versioning and
installing libraries without their header files. Run-time
problems are rare, if PLIB ’s example code was used as
test cases.



Any linux user can download the source, compile it and
safely expect it to run. Unfortunately, you generally
cannot short-cut this process by copying someone else’s
binary. This is a generic problem, encountered by
many applications, and led to the Linux Standards Base
project[3].

It is made many times worse for FlightGear because
hardware differences force library selections to be mod-
ified so that a given binary may not even be usable on
another machine with the same Linux distribution and
release if it has a different graphics card (for example).
This is especially true with GL support, the extensions,
and the level of GLX implementation available. This
is being addressed by the Linux OpenGL Application
Binary Interface (ABI)[4].

Simulator Structure

Current commercial PC flight simulators are proprietary,
lack extensibility and thus are resistant to modification
and enhancement. If the FlightGear project wishes to fill
the gap, it must provide a flexible framework.

The FlightGear source tree is only one level deep, except
that all the flight data models are each in their own
subdirectory located under the FDM directory. Each
directory contains a few header files that expose its
object definitions. Other source files refer to the headers
directly, without path globbing or multiple include paths
for the compiler. The directory names are mostly pretty
self-explanatory:

Aircraft, Airports, Autopilot, Time (in the simulated
world), Cockpit, Controls (in the aircraft cockpit), FDM
(only one constituent in use), GUI (menus and the
like), Include (for compiler configuration), Joystick,
Main (initialization and command line parsing), Network
(data sharing), NetworkOLK (network play), Objects
(dynamically loaded and changing scenery), Scenery
(static), Weather (world wide basic factors), WeatherCM
(four dimensional world database), Navaids, Ephemeris
(of celestial bodies) and Sound.

In addition to the collection of interacting objects, Flight-
Gear also exposes the high level state of the simulation in
two ways. First, a meta-object BFI provides a long list of
methods to retrieve (and, in some cases, modify) popular
information that is distributed around the many different
types of objects. This avoids making each source file
dependent on the declarations of almost every object type
and header file. These references and interactions can
only really be modified at compile time.

The second exposure of the simulator state occurs
through the property database, which dynamically maps a
name (such as /position/latitude) into an object
with getter and setter methods. Although slower, the

dynamic access is especially appropriate for the user
interface, parametric graphics elements and configuration
files.

The property database is also exposed to other applica-
tions by the network interface. The command line option
--props=socket,bi,20,,5555,tcp, for exam-
ple, allows someone else (such as the flight instructor)
to run telnet localhost 5555. This allows
arbitrary properties to be viewed and modified while the
simulation is running.

Many tasks within the simulator need to only run
periodically. These are typically tasks that calculate
values that don’t change significantly in 1/60th of a
second, but instead change noticeably on the order of
seconds, minutes, or hours. Running these tasks every
iteration would needless degrade performance. Instead,
we would like to spread these out over time to minimize
the impact they might have on frame rates, and minimize
the chance of pauses and hesitations.

We do this using the Periodic Event Manager and
Scheduler, which consists of two parts. The first part
is simply a list of registered events along with any
management information associated with that event. The
second part is a run queue. When events are triggered,
they are placed in the run queue. The system executes
only one pending event per iteration in order to balance
the load. The manager also acquires statistics about event
execution such as the total time spent running this event,
the quickest run, the slowest run, and the total number
of times run. We can output the list of events along with
these statistics in order to determine if any of them are
consuming an excessive amount of time, or if there is any
chance that a particular event could run slow enough to
be responsible for a perceived hesitation or pause in the
flow of the simulation.

Simulator Execution

Installing and running FlightGear is relatively easy under
Linux, especially compared to other operating systems
with weak tool automation.

1. Install Linux normally and test internet access.

2. Add video card support, using a maximum of 25%
of memory for 2D display.

3. Enable hardware accelerated OpenGL support and
test for speed, using glTron[5] for example.

4. Install PLIB 1.2 or above, which is already in
many distributions, and test with all the supplied
examples to ensure the API is working.

5. Download, compile and install SimGear. If your
distribution already includes some components,
such as zlib, verify that headers are present.



6. While that compiles, download the FlightGear
source. Once SimGear is installed, start the
compile and then install it

7. While the simulator is compiling, download Flight-
Gear’s base package. This contains data files that
are required to execute the binary application.

8. Type runfgfs and enjoy.

For a computer system which is directly supported by
your chosen distribution, the first five steps are often
trivialized into telling the installer to ensure ‘plib-dev’ is
present. Starting from a blank hard drive, FlightGear can
be running in less than an hour.

Simulating the Pilot

The new FlightGear pilot will probably not want to
remain within the San Francisco bay area, which is the
small scenery patch included in the Base package. The
scenery server allows the selection and retrieval of any
region of the world. Joining other users in the sky is
another possibility.

In a large group of users, coordinating the position and
activities of all the players requires considerable network
traffic, which can degrade the apparent performance.
The FlightGear Deamon, fgd, is a standalone program
which can run on a separate computer that is independent
of any FlightGear session. It registers FGFS players
willing to take part in a multiplayer FGFS environment
via TCP/IP. Information like the player’s IP/lon/lat/alt
and inter-player messages can be sent to fgd, which in
turn sends back the gathered information upon request.
In this way, the simulated aircraft all become visible to
each other.

Due to limited monitor size, the view that is available
on a normal computer is more like the little passenger
portholes on airlines and a poor substitute for the
wraparound windows of general aviation aircraft. This
is especially true when the simulated aircraft has an open
cockpit and an unrestricted view in almost all directions.

To alleviate the problem with lack of external view,
FlightGear supports synchronizing several displays to-
gether to form a panoramic or wrap around view.

FlightGear has built in support for network socket
communication and the display synchronzing is built on
top of this support. FlightGear also supports a null or
do-nothing flight model which expects the flight model
parameters to be updated somewhere else in the code.
Combining these two features allows you to synchronize
displays.

Figure 2: Panoramic scenery

For example, let’s assume we want to setup the example
shown in figure 2.

1. Ideally, configure three identical computers and
monitors.

2. Pick one of the computers (i.e. the center channel)
to be the master. The left and right will be slaves
s1 and s2.

3. When you start runfgfs on the master, use the
command line options
--native=socket,out,60,s1,5500,udp
--native=socket,out,60,s2,5500,udp
respectively to specify that we are sending the
“native” protocol out of a udp socket channel at
60 Hz, to a slave machine on port 5500.

4. When you start runfgfs on each of the
slave computers, use the command line option
--native=socket,in,60,,5500,udp to
specify that we expect to receive the native pro-
tocol via a udp socket on port 5500. The second
option --fdm=external tells the slave not to
run it’s own flight model math, but instead receive
the values from an “external” source.

5. You need to ensure that the field of view on the
scenery matches the apparent size of the monitor to
the pilot. --fov=xx.x allows you to specify the
field of view in degrees on each computer display
individually.

6. --view-offset=xx.x allows you to specify
the view offset direction in degrees. For instance,
--view-offset=0 for the center channel,
--view-offset=-50 for slave 1, and
--view-offset=50 for slave 2.

There is no built in limit to the number of slaves you
may have. It wouldn’t be too hard to implement a full



360 degree wrap around display using 6 computers and
6 projectors, each covering 60 degree field of view on a
cylindrical projection screen.

Simulating the Aircraft

The aerodynamic simulation may be only one constituent
of the whole environment being simulated for the user,
but its performance is critical to the quality of the user’s
simulation experience. Errors in this Flight Dynamics
Model (FDM) are distracting to the pilot. Other
simulator components, such as the autopilot, are designed
to expect a realistic aircraft, may respond incorrectly
as a result of FDM errors and provide additional pilot
distractions. These factors can ruin the immersive
experience that the user is seeking.

As a result of this concern, FlightGear abstracts all of the
code that implements an FDM behind an object oriented
interface. As future applications find that existing FDM
choices do not meet their requirements, additional FDM
code can be added to the project without impacting the
consistent performance of existing applications.

The original FDM was LaRCsim, which models a Cessna
172 using dedicated C source that has the necessary
coefficients hard coded. It is sufficient for most flight
situations that a passenger would choose to experience
in a real aircraft. Unusual maneuvers that are often
intentionally performed for training purposes are poorly
modelled, including deep stalls, incipient and developed
spins and steep turns. The code also supports a Navion
and a Cherokee, to a similar quality.

A research group at the University of Illinois created
a derivative of LaRCsim, with simplified the models
such that they are only really useful for cruise flight
regimes. They enhanced the code with a parametric
capability, such that a configuration file could be selected
at simulation start to determine how the aircraft will fly.
Their use for this modification was to investigate the
effect on aircraft handling of progressive accumulations
of ice.

Another group is developing a completely parametric
FDM code base, where all the information is retrieved
from XML format files. Their JSBSim project[6] can
run independently of a full environmental simulation,
to examine aerodynamic handling and other behavior.
An abstraction layer links the object environment of
FlightGear to the object collection of JSBSim to provide
an integrated system. Currently, this FDM supports the
Cessna 172 and the X-15 (a hypersonic rocket propelled
research vehicle), providing the contrast between an
aircraft used for teaching new student pilots and an
aircraft that could only be flown by highly trained test
pilots.

Figure 3: Tux flying over Woods Hole

The rest of FlightGear’s configuration files are also
moving towards XML, such as the engine models, the
instrument panel layouts and instrument design, the
HUD layout, the user preferences and saved state. The
real benefit of using XML here is that people with
no software development experience can easily and
effectively contribute. Pilots, instructors, maintenance
technicians and researchers all have in-depth technical
knowledge of how an aircraft and hence the simulator
should behave, so it is critical that we allow them direct
access to the internals.

Both the head up display (HUD) and the instrument panel
allow the user to specify an XML file describing which
instruments are to be displayed and where they should
be located on-screen. Individual instruments are defined
in independent XML files, selecting graphic elements,
texture bitmaps and transforms that modify these to build
the desired effect. Some of the transforms are fixed
and others are parametric on simulator data, so that
the rotation angle of a needle bitmap on the airspeed
instrument is determined by the computed airspeed value
inside the FDM section of the simulator.

The head up display of a real aircraft uses computer
generated graphics, so the software can generally detect,
and correct for, the flaws and inaccuracies in the sensors
that are feeding it data. As a result, the information
presented to the pilot is generally accurate. Simulating
that is relatively easy, since the actual state of the aircraft
can be retrieved and directly displayed.

An important aspect of learning to fly an aircraft (without
computer assistance) is understanding what the limita-
tions and errors of the various instruments are, and when
their indications can be trusted as useful flight data.
Unfortunately, the information from panel instruments
has errors, which in general only read a single sensor
value with negligible correction for the limitations of



the sensors being used. When the FlightGear panel
advanced from no errors to having only two of the
limitations implemented, the non-pilot developers went
from trivially flying instrument approaches to frequent
ground impacts.

Considerable effort is needed to write this code. Gyro-
scopes can slow down and wobble, their rotation axis
can drift, they can hit gimbal stops and tumble and their
power source can be weak or fail. Air-based instruments
are wrong in certain weather conditions, tend not to
respond immediately, can be blocked by rainwater in
the lines, or become unusable when iced over. Radio
navigation is subject to line-of-sight, signals bounce off
hills and bend near lake shores or where another aircraft
is in the way and distant stations can interfere. Still
more errors are associated with the magnetic compass,
and other instruments that seem ’trivial’.

Currently, the communication radios are not imple-
mented, so that pilots cannot use their microphone inputs
to interact. Radio usage is a large part of the complexity
in operating at large and busy airports. Unfortunately,
this often encourages pilots to fly the microphone and
forget about the airplane, occasionally with disastrous
results. We hope to implement this feature soon, to
provide another source of challenging distractions to the
pilot.

Simulating the World

The purpose of the TerraGear project[7] is to develop
open-source tools and rendering libraries and collect free
data for building 3D representations (or maps) of the
earth for use in real time rendering projects. There is
much freely available Geographic Information System
(GIS) data on the internet. Because the core data for
FlightGear has to be unrestricted, the default use of
the project only uses source data that doesn’t impose
restrictions on derivative works. Three categories of data
are used.

Digital Elevation Model (DEM) data is typically a set
of elevation points on a regular grid. Currently, 30
arcsecond (about ���������
	 ���� ) data for the whole
world, and 3 arcsecond (about ������������������� ) data for
the United States, is available from the USGS, but better
data sources are hoped for. An optimizing algorithm
seeks to find the smallest number of flat triangles that
provide a fairly smooth and realistic terrain contour.
This algorithm reduces the number of triangles need to
render an area while preserving all the detail within some
specified error tolerance.

Other more specialized data such as airport beacon,
lighthouse locations, radio transmission towers and the
like are available in listings from various government
agencies. These generally provide a short text description

of the item and its geographic coordinates. The challenge
is to convert each entry into a realistic visual object which
can be inserted into the scenery database.

Polygonal data such as landmass outlines, lakes, islands,
ponds, urban areas, glaciers, land use and vegetation
are available from the USGS and other sources. The
GSHHS database provides a highly detailed and accurate
global land mass data so we can model precise coast
lines for the entire world. Based on the source of
the data and factoring in the land use data, we can
select an appropriate texture which will be painted onto
the individual triangles. Where necessary, triangles
are subdivided to get the effect correct. Runways and
taxiways are generated by converting the list of runway
segments into polygons, painted with appropriate surface
texture and markings, and then integrated into the scenery
in the same way.

Clearly, someone can gain access to data sources that are
under more restrictive licenses, use the TerraGear project
tools to generate enhanced scenery and then distribute
those files as they choose. Both the FlightGear and
TerraGear projects encourage this kind of enhancement,
because the basic open source packages cannot do this.

There is a trade-off between the quality of the scenery
and the speed at which it can be rendered by the graphics
card. As cards get faster, it becomes feasible to place
more detail into the scenery while maintaining a useful
and smooth visual effect. There are many techniques for
adjusting the level of detail according to the altitude and
attitude of the aircraft, to optimize the visual quality, but
none of them are currently implemented as they cause
visual artifacts.

Currently, the visual effect is clearly synthetic, as can
be seen in figure 3, but it has sufficient information to
readily permit navigation by pilotage (i.e. comparing the
view out of the window to a chart). The compressed data
requires about one kilobyte per square kilometer. All the
information inside the scenery database is arranged in a
four-level hierarchy, where each level changes scale by a
factor between 10 and 100:

1. One planet, currently only the Earth

2. ������������� rectangle as shown in figure 4,

3. � �!�����#"%$&���'��)(*����+�,�����#������������� ,

4. (�����.-/�,���������0- approximately.

One of the difficulties facing the TerraGear developers
is that most information sources are only generated at a
national level. It is easy to justify writing special code to
read and process data files for the largest ten countries,
since they cover most of the land surface of the planet,



Figure 4: World scenery

but this approach rapidly reaches the point of diminishing
returns.

There are already many organizations that painstakingly
collect and transform the data into standardized formats,
precisely for these kinds of applications. However, the
huge amount of effort involved requires them to keep the
prices extremely high in order to fund the conversions.
Therefore, in the medium term, it is possible that these
organizations (or one of their licensees) may start selling
TerraGear compatible scenery files that is derived from
their data archive. You can expect a high price tag for
such reliable data though.

Data that is released into the public domain is generally
of reduced quality, or out of date, or does not give
widespread area coverage. The scenery generated from
such data is actually wrong, compared to the real
world, but generally only in ways that are visually
unobtrusive. These errors are more visible in electronic
navigation, such as needed for instrument flight, since
the route tolerances are extremely tight. Navigating the
simulated aircraft around imperfect scenery according to
current Jeppesen (or NOS, etc) charts can be extremely
frustrating and occasionally impossible when a piece of
scenery is in the way.

To avoid the frustration, the Atlas project[8] has devel-
oped software which automatically synthesizes aviation
style charts from the actual scenery files and databases
being used by FlightGear. Thse charts, while inaccurate
to the real world and therefore useless for flight in an
aircraft, are extremely accurate for the simulated world
in which the FlightGear aircraft operate. Thus, it is often
easier to make printouts from the Map program of the
Atlas project.

The project also includes the namesake Atlas application.
This can be used for browsing those maps and can
also connect directly to FlightGear in order to display
aircraft current location on a moving map display. This
capability must be used selectively by the simulator pilot,
since most small aircraft do not contain GPS units with

Figure 5: Chart of San Diego, California

integrated moving map displays ... yet. However, the
moving map is invaluable to instructors for gauging
student performance.

The connection between FlightGear and Atlas is a special
case of their general capabilities. FlightGear can emit a
stream of NMEA compliant position reports (the format
used by GPS units) to serial port or UDP socket. Atlas
can receive NMEA format position data and adjust the
moving map image. The user who is browsing the chart
atlas can zoom in and out, toggle the display of airports,
navigational stations, terrain tint and name overlays.

Simulator Status

We have a wide range of people interested and partici-
pating in this project. This is truly a global effort with
contributors from just about every continent. Interests
range from building a realistic home simulator out old
airplane parts, to university research and instructional
use, to simply having a viable alternative to commercial
PC simulators. Here are some current uses:

1. University of Illinois at Urbana Champaign.
FlightGear is providing a platform for icing re-
search for the Smart Icing Systems Project.

2. Simon Fraser University, British Columbia Ca-
nada. Portions of FlightGear were used in simu-
lation to develop the needed control algorithms for
an autonomous aerial vehicle.

3. Iowa State University. A senior project intended to
retrofit some older sim hardware with FlightGear
based software.



4. University of Minnesota - Human Factors Re-
search Lab. FlightGear brings new life to an old
Agwagon single seat, single engine simulator.

5. Aeronautical Development Agency, Bangalore In-
dia. FlightGear is used as as the image generator
for a flight simulation facility for piloted evaluation
of ski-jump launch and arrested recovery of a
fighter aircraft from an aircraft carrier.

6. Veridian Engineering Division, Buffalo, NY.
FlightGear is used for the scenery and out-the-
window view for the Genesis 3000 flight simulator.

Reselling open source software has not been a good
revenue source for other companies, partly because of
the rapid version changes and partly because of the
low cost of bandwidth for the consumer. Yet, several
organizations are also considering making retail versions.
Can FlightGear be a viable profit center?

Suppose we separate the database of visual scenery
from everything else. That everything else is only few
megabytes, which easily fits into a corner of a CD and
will readily be downloaded whenever a new version
becomes available. As with many other GUI packages,
it will probably be repackaged by the distributions to
ensure a painless installation for the community. There
appears to be little benefit in making a product here,
especially since closed source flight simulator games are
available at under ���*� .

In contrast, the scenery is more than a gigabyte for each
continent, is unlikely to get any smaller, and represents
a significant download. The scenery is relatively stable
over time, old versions are usually useful with newer
releases of the binary software, and the upgrades only
add detail to an existing and viable database. There is
clearly an opportunity to retail a DVD (or a dozen CDs)
that contain the scenery. The marginal cost of adding
a few dozen binaries, for popular operating system
distributions and driver combinations, is probably trivial.
Thus, this retail package is likely to be fully functional.

Alternatively, suppose we consider the pilot’s viewpoint.
Most general aviation aircraft cruise at below 200 knots
and flight visibility is (in real life) usually below 20
miles for the lower altitudes that are accessible with
ordinary non-turbocharged piston engines. Even when
flying in a straight line, a maximum of 8000 square
miles of new terrain will come into view during each
hour of flight. Currently, the database uses about one
megabyte for 600 square miles, so a streaming rate of 12
megabytes/hour will be sufficient. The rate will be lower
when previously-downloaded scenery is in view.

This need not impact the core FlightGear source code.
The latitude and longitude of the aircraft are already
exported for use by independent programs, so the center
of interest is trivially available. Since the scenery is

stored in ���������0- pieces, an independent program need
only generate a list of the closest elements that have not
been fetched yet, and issue a wget to ensure that they
will be available before the aircraft gets close enough for
the pilot to see them.

A 56K modem is capable of 12 megabytes per hour
before compression. If streaming scenery can be deliv-
ered essentially through any internet connection, it might
remove the market need for retail scenery packages.
Multiplying this bandwidth by a worldwide community
of users will result in a sizeable traffic impact on the
distributing servers. Is the total still going to be low
enough to be supported for goodwill, or will free servers
gradually transition to monthly access fees and maybe
even deliver proprietary content?

Simulating Flight Training

FlightGear could also be helpful when learning to fly
aircraft. Flight training is carefully regulated by the
government, to ensure that aircraft generally stay in the
sky until their pilot intends for them to come down safely.
There are thus some real concerns which need to be
addressed before authorities can approve a system.

1. Do the controls feel, and operate, sufficiently like
the ones in the aircraft that a pilot can use them
without confusion? Are they easier to use and/or
do they obscure dangerous real-life effects?

2. Does the software provide a forward view that
is representative for the desired training environ-
ment?

3. Are the instruments drawn such that a pilot can
easily read and interpret them as usual? Do
they have the systematic errors that often cause
accidents?

4. Can all needed cockpit switches and knobs be
operated intuitively?

5. When operated in the limited envelope of flight
configurations that is applied to the training activ-
ity, does it match the manufacturer’s data for the
aircraft performance?

6. Are the weather settings accessible and intuitive to
the instructor? How about causing system failures
and broken instrumentation?

7. Can the pilot conduct normal interactions with air
traffic control? Can the instructor easily determine
whether the pilot is complying with the control in-
structions and record errors for subsequent review?

8. Is the pilot’s manual for the simulator similar and
arrangement to that of an aircraft, such that it can
readily be used in flight?



9. Can all maneuvers be performed in the same way
as in an aircraft?

In that (partial) list of concerns, the quality of the actual
flight simulation (which is really what FlightGear is
offering) is a minor topic and and acceptable performance
is easily achieved. In contrast, a large package of
documentation must be added to the software to explain
and teach people how to use it correctly. This has led to
a separate project FGATD[9], whose goal is to initially
meet the lowest standard created by the United States
Federal Aviation Administration (FAA). Don’t expect it
to finish soon.

It is easy to suggest that the FAA is being unrealistic in
requiring this documentation, but they are responding to
important traits in human nature that won’t go away just
because they’re inconvenient.

For example, the things learnt first leave an almost
unshakeable impression and, at times of severe stress,
will over-rule later training. Thus, any false impressions
that are learned by a beginning student through using a
simulator will tend to remain hidden until a dangerous
and potentially lethal situation is encountered, at which
time the pilot may react wrongly and die. Pilots who use
a simulator on an ongoing basis to hone their skills will
get an excessively optimistic opinion of their skills, if the
simulator is too easy to fly or does not exhibit common
flaws. As a result, they will willingly fly into situations
that are in practice beyond their skill proficiency and be
at risk.

Clearly, a flight simulator (such as FlightGear) can only
safely be used for training when under the supervision of
a qualified instructor, who can judge whether the learning
experience is beneficial. The documentation materials
are essential to supporting that role.

What’s in the future?

As with any Open Source project, there are as many
possible futures as there are users and developers of the
code. Some areas to think about are:

The aerodynamic models are not (yet) accurate enough
for use in all flight situations, so they don’t reflect the
challenges and excitement of acrobatic maneuvering.
The models also don’t react like a Cessna 172, which is
not designed or certified for such maneuvers.

Surround projectors, head mounted displays, directional
sound and cockpit motion are rapidly converging into
consumer technologies. Maybe we can immerse the users
so well that they fly conservatively because they forget
that they’re not in real danger.

Recent radar and visual satellite surveys of the earth’s

surface have enough detail to be directly used as photore-
alistic scenery. But not until someone figures out how to
manipulate terabytes in real time, since the data volume
is about a million times larger than now.

The aircraft wake is invisible, can last five minutes,
descends slowly or spreads across the ground, is blown
around by the wind and is extremely dangerous to
following aircraft. A future extension to fgd could
keep track of the hundreds of miles of wake trails in a
given area and notify individual aircraft when they are
encountering invisible severe turbulence.

Replication and scalability is only starting to take hold
in the desktop environment. A room of several hundred
computers acting as X terminals for word processing can
reboot and, within a couple of minutes, all be running
FlightGear identically. They’re ready for the next class
of student pilots.

Conclusions

On the surface, FlightGear is a simple Open Source
project that builds on many existing projects in the com-
munity traditions. Due to the subject it addresses, many
issues and concerns are raised that rarely inconvenience
most other project teams. These elements are providing
the exciting challenges and variety of associated activities
that the developer team is enjoying.

References

[1] http://www.flightgear.org/

[2] http://plib.sourceforge.net/

[3] http://www.linuxbase.org/

[4] http://oss.sgi.com/projects/ogl-sample/ABI/

[5] http://www.gltron.org/

[6] http://jsbsim.sourceforge.net/

[7] http://www.terragear.org/

[8] http://atlas.sourceforge.net/

[9] http://fgatd.sourceforge.net/

About the authors:

Alexander Perry holds M.A. and Ph.D. degrees in engineering from

Cambridge University in England and currently works as a senior

research engineer for Quantum Magnetics in San Diego. He is one

of the FlightGear developers, a commercial and instrument rated pilot,

ground instructor and an aviation safety counselor in San Diego and

Imperial counties of California.

Curtis Olson holds a M.S. degree in computer science from the

University of Minnesota. He currently works as a simulation engineer

at the Human Factors Research Lab of the University of Minnesota

developing and support their research driving simulators. He is the

FlightGear project leader and also a major developer.


