

1 Apache::PerlSections - Default Handler for Perl
sections

129 Jan 2004

1 Apache::PerlSections - Default Handler for Perl sectionsApache::PerlSections - Default Handler for Perl sections

1.1 Synopsis
 <Perl >
 @PerlModule = qw(Mail::Send Devel::Peek);

 #run the server as whoever starts it
 $User = getpwuid(>) || >;
 $Group = getgrgid()) ||);

 $ServerAdmin = $User;

 </Perl>

1.2 Description
With <Perl >...</Perl> sections, it is possible to configure your server entirely in Perl.

<Perl > sections can contain any and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears.

Block sections such as <Location>..</Location> are represented in a %Location hash, e.g.:

 <Perl>
 $Location{"/~dougm/"} = {
 AuthUserFile => ’/tmp/htpasswd’,
 AuthType => ’Basic’,
 AuthName => ’test’,
 DirectoryIndex => [qw(index.html index.htm)],
 Limit => {
 METHODS => ’GET POST’,
 require => ’user dougm’,
 },
 };
 </Perl>

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off the @list) or use an array reference to handle any number greater than the
minimum for that directive:

 push @Redirect, "/foo", "http://www.foo.com/";

 push @Redirect, "/imdb", "http://www.imdb.com/";

 push @Redirect, [qw(temp "/here" "http://www.there.com")];

Other section counterparts include %VirtualHost, %Directory and %Files.

To pass all environment variables to the children with a single configuration directive, rather than listing
each one via PassEnv or PerlPassEnv, a <Perl > section could read in a file and:

29 Jan 20042

1.1 Synopsis

 push @PerlPassEnv, [$key => $val];

or

 Apache->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. See eg/httpd.conf.pl and eg/perl_sections.txt in the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’t exactly the same (e.g. the ServerName directive) it’s not quite that simple.

<Perl > sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem of the ServerName directive you might
have this <Perl > section:

 <Perl >
 $ServerName = ‘hostname‘;
 </Perl>

For example if you want to allow personal directories on all machines except the ones whose names start
with secure:

 <Perl >
 $ServerName = ‘hostname‘;
 if ($ServerName !~ /^secure/) {
 $UserDir = "public.html";
 }
 else {
 $UserDir = "DISABLED";
 }
 </Perl>

1.3 Configuration Variables
There are a few variables that can be set to change the default behaviour of <Perl > sections.

1.3.1 $Apache::Server::SaveConfig

By default, the namespace in which <Perl > sections are evaluated is cleared after each block closes. By
setting it to a true value, the content of those namespaces will be preserved and will be available for
inspection by modules like Apache::Status.

329 Jan 2004

1.3 Configuration VariablesApache::PerlSections - Default Handler for Perl sections

1.3.2 $Apache::Server::StrictPerlSections

By default, compilation and run-time errors within <Perl > sections will cause a warning to be printed
in the error_log. By setting this variable to a true value, code in the sections will be evaluated as if "use
strict" was in usage, and all warning and errors will cause the server to abort startup and report the first
error.

1.4 Advanced API
mod_perl 2.0 now introduces the same general concept of handlers to <Perl > sections. Apache::Perl-
Sections simply being the default handler for them.

To specify a different handler for a given perl section, an extra handler argument must be given to the
section:

 <Perl handler="My::PerlSection::Handler" somearg="test1">
 $foo = 1;
 $bar = 2;
 </Perl>

And in My/PerlSection/Handler.pm:

 sub My::Handler::handler : handler {
 my($self, $parms, $args) = @_;
 #do your thing!
 }

So, when that given <Perl > block in encountered, the code within will first be evaluated, then the
handler routine will be invoked with 3 arguments

$self is self-explanatory

$parms is the Apache::CmdParms for this Container, for example, you might want to call
$parms->server() to get the current server.

$args is an APR::Table object of the section arguments, the 2 guaranteed ones will be:

 $args->{’handler’} = ’My::PerlSection::Handler’;

 $args->{’package’} = ’Apache::ReadConfig’;

Other name="value" pairs given on the <Perl > line will also be included.

At this point, it’s up to the handler routing to inspect the namespace of the $args->{’package’} and
chooses what to do.

The most likely thing to do is to feed configuration data back into apache. To do that, use
Apache::Server->add_config("directive"), for example:

29 Jan 20044

1.4 Advanced API

 $parms->server->add_config("Alias /foo /bar");

Would create a new alias. The source code of Apache::PerlSections is a good place to look for a
practical example.

1.5 Bugs

1.5.1 <Perl> directive missing closing ’>’

httpd-2.0.47 and earlier had a bug in the configuration parser which caused the startup failure with the
following error:

 Starting httpd:
 Syntax error on line ... of /etc/httpd/conf/httpd.conf:
 <Perl> directive missing closing ’>’ [FAILED]

This has been fixed in httpd-2.0.48. If you can’t upgrade to this or a higher version, please add a space
before the closing ’>’ of the opening tag as a workaround. So if you had:

 <Perl>
 # some code
 </Perl>

change it to be:

 <Perl >
 # some code
 </Perl>

1.6 See Also
mod_perl 2.0 documentation.

1.7 Copyright
mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 1.1.

1.8 Authors
The mod_perl development team and numerous contributors.

529 Jan 2004

1.5 BugsApache::PerlSections - Default Handler for Perl sections

Table of Contents:
......... 11 Apache::PerlSections - Default Handler for Perl sections
................... 21.1 Synopsis
................... 21.2 Description
................ 31.3 Configuration Variables
........... 31.3.1 $Apache::Server::SaveConfig
......... 41.3.2 $Apache::Server::StrictPerlSections
.................. 41.4 Advanced API
.................... 51.5 Bugs
............ 51.5.1 <Perl> directive missing closing ’>’
................... 51.6 See Also
................... 51.7 Copyright
................... 51.8 Authors

i29 Jan 2004

Table of Contents:Apache::PerlSections - Default Handler for Perl sections

	1€€Apache::PerlSections - Default Handler for Perl sections
	1.1€€Synopsis
	1.2€€Description
	1.3€€Configuration Variables
	1.3.1€€$Apache::Server::SaveConfig
	1.3.2€€$Apache::Server::StrictPerlSections

	1.4€€Advanced API
	1.5€€Bugs
	1.5.1€€<Perl> directive missing closing '>'

	1.6€€See Also
	1.7€€Copyright
	1.8€€Authors

