Server Life Cycle Handlers 1 Server Life Cycle Handlers

1 Server Life Cycle Handlers

29 Jan 2004 1

1.1 Description

1.1 |Description|

This chapter discusses server life cycle and the mod_perl hapdidgpaing in it.

1.2 |Server Life Cycle

The following diagram depicts the Apache 2.0 server life cycle ldgtlights which handlers aravait
ableto mod_perPR.0:

EApache/mod perl 2.0
Server Lifecycle

StartUp OpenLogs
and \/ Eegtart
Contig PostConfig
Create processes/threads (+ChildInit)

JTonnectio

Jonnectiog
Loop

Server Shutdown (+ChildExit)

Jonnectio
Loop

Apache 2.0 starts by parsing thenfiguration file. After theconfiguration file is parsed, th®erlOpen -
LogsHandler handlers are executed if any. After that it's a turnPefl Post ConfigHan dler
handlers to be run. When tipest_config phase is finished the seniemmediately restarts, to make sure

2 29 Jan 2004

Server Life Cycle Handlers 1.2.1 Startup Phases Demonstration Module

that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes and a mixture of both. For example the worker MPM
spawns a humber of processes, each running a number of threads. When each child process is started
Per | Chi | dI ni t handlers are executed. Notice that they are run for each starting process, not athread.

From that moment on each working thread processes connections until it's killed by the server or the
server is shutdown.

1.2.1 [Startup Phase®emorstration Modulg

Let’slook at the following example that demonstrates all the startup phases:

file:MyApache/ St artuplLog. pm

package MyApache:: StartuplLog

use strict;
use war ni ngs;

use Apache::Log ();
use Apache:: ServerWil ();

use File::Spec:: Functions;
use Apache:: Const -conpile => 'K

my $log file = catfile "logs", "startup_l og"
ny $log_fh;

sub open_l ogs {
ny($conf _pool, $log _pool, $tenp_pool, $s) = @;
my $l og_path = Apache:: Server::server_root_relative($conf_pool, $log file);

$s->warn("opening the log file: $log_path");
open $log fh, ">>3log_path" or die "can't open $log_path: $'";
ny $oldfh = select($log fh); $| = 1; sel ect(S$ol dfh);

say("process $% is born to reproduce");
return Apache:: X

sub post_config {
ny($conf _pool, $log _pool, $tenp_pool, $s) = @;
say("configuration is conpleted");
return Apache:: X

sub child_init {
my($chil d_pool, $s) = @;
say("process $$ is born to serve");
return Apache:: K

29 Jan 2004 3

1.2.1 Startup Phases Demonstration Module

sub child_exit {
ny($chi | d_pool

say("process $$ now exits");
return Apache: : K

sub

}

END

}

1

say

ny($cal |l er)
if (defined $log_fh) {

}

{

$s) =

@;

= (caller(1))[3] =~ /([":]

printf $log_fh "[%]
scalar(localtinme), $caller, $ [0];

el se {
when the log file is not open
warn _ PACKAGE

{

- % 11s: %\n

" says: $_[0]\n

say("process $$ i s shutdown\n")

And the httpd.conf configuration section:

<l f Modul e prefork.c>
Start Servers
M nSpar eServers
MaxSpar eSer vers

Maxd i ents
MaxRequest sPer Chi | d
</ | f Modul e>

Per | Modul e
Per | OpenLogsHandl er

Per | Post Confi gHandl er

Per | Chi | dl ni t Handl er
Per | Chi | dExi t Handl er

4
4
4
10
0

MyApache: : St art upLog

MyApache: : St art upLog:
MyApache: : St art upLog:
MyApache: : St art upLog:
MyApache: : St art upLog:

+)$/;

open_I ogs
post _config
child_init
child_exit

When we perform a server startup followed by a shutdown, the logs/startup_log is created if it didn’t exist
aready (it shares the same directory with error_log and other standard log files), and each stage appends
to it itslog information. So when we perform:

% bi n/ apachect |

start && bin/apachectl sto

the following is getting logged to logs/startup_log:

[Thu
[Thu
[Thu

[Thu
[Thu
[Thu

29
29
29

29
29
29

13:
13:
13:

13:
13:
13:

11:
11:
11:

11:
11:
11:

08
08
09

10
10
11

2003]
2003]
2003]

2003]
2003]
2003]

open_| ogs
post_confi g:
END :

open_| ogs
post _confi g:
child_init

p

process 21823
configuration
process 21823

process 21825
configuration
process 21830

is
is
is
is
is
is

born to reproduce
conpl et ed
shut down

born to reproduce

conpl et ed
born to serve

29 Jan 2004

Server Life Cycle Handlers 1.2.2 PerlOpenLogsHandler

[Thu May 29 13:11:11 2003] - child_init : process 21831 is born to serve
[Thu May 29 13:11:11 2003] - child_init : process 21832 is born to serve
[Thu May 29 13:11:11 2003] - child_init : process 21833 is born to serve
[Thu May 29 13:11:12 2003] - child_exit : process 21833 now exits

[Thu May 29 13:11:12 2003] - child_exit : process 21832 now exits

[Thu May 29 13:11:12 2003] - child_exit : process 21831 now exits

[Thu May 29 13:11:12 2003] - child_exit : process 21830 now exits

[Thu May 29 13:11:12 2003] - END . process 21825 is shutdown

First of al, we can clearly see that Apache always restart itself after the first post_config phase is over.
The logs show that the post_config phase is preceded by the open _logs phase. Only after Apache has
restarted itself and has completed the open_logs and post_config phase again the child_init phaseisrun for
each child process. In our example we have had the setting St ar t Ser ver s=4, therefore you can see
four child processes were started.

Finally you can see that on server shutdown, the child_exit phaseisrun for each child process and the END
{} block is executed by the parent process only.

Apache also specifies the pre_config phase, which is executed before the configuration files are parsed,
but thisis of no use to mod_perl, because mod_perl isloaded only during the configuration phase.

Now let's discuss each of the mentioned startup handlers and their implementation in the
MyApache: : St art upLog modulein detail.

1.2.2 |PerlOpenlogsHandler|

The open_logs phase happens just before the post_config phase.

Handlers registered by Per | OpenLogsHandl er are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phaseis of type RUN_ALL.

The handler’ s configuration scopeis SRV.

As we have seen in the [MyApache: : StartuplLog: : open I ogs] handler, the open_logs phase
handlers accept four arguments: the configuration pool, the logging stream pool, the temporary pool and
the server object:

29 Jan 2004 5

1.2.3 PerlPostConfigHandler

sub open_l ogs {
ny($conf _pool, $log_pool, $tenp_pool, $s) = @;
ny $l og_path = Apache:: Server::server_root _rel ative($conf_pool, $log file);

$s->warn("opening the log file: $log_path");
open $log_fh, ">>$log_path" or die "can't open $log_path: $!";
ny $oldfh = select($log _fh); $| = 1; select($oldfh);

say("process $% is born to reproduce");
return Apache: : OK;

}

In our example the handler uses the function Apache: : Server::server _root _relative() to
set the full path to the log file, which is then opened for appending and set to unbuffered mode. Finaly it
logs the fact that it’s running in the parent process.

Asyou've seen in the example this handler is configured by adding to httpd.conf:

Per | OpenLogsHandl er MyApache: : StartuplLog: : open_Il ogs

1.2.3 |PerlPostConfigHandler|

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree
(viaApache: : Directive).

This phaseis of type RUN_ALL.

The handler’ s configuration scope is SRV.

Inour|MyApache: : St ar t upLog|example we used the post_config() handler:

sub post_config {
my($conf _pool, $l og_pool, $tenp_pool, $s) = @;
say("configuration is conpleted");
return Apache:: CK;

}

As you can seg, its arguments are identical to the open_logs phase's handler. In this example handler we
don’t do much but logging that the configuration was completed and returning right away.

Asyou've seen in the example this handler is configured by adding to httpd.conf:

Per | Post Confi gHandl er MyApache: : StartupLog: : post _config

6 29 Jan 2004

Server Life Cycle Handlers 1.2.4 PerlChildInitHandler

1.2.4 [PerIChildlnitHandler|

The child_init phase happens immediately after the child process is spawned. Each child process (hot a
thread!) will run the hooks of this phase only once in their life-time.

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For example Apache:: DBl pre-opens database connections during this phase and
Apache: : Resour ce setsthe process' resources limits.

This phaseis of type VO D.

The handler’s configuration scopeis SRV.

Inour|MyApache: : St ar t upLog|example we used the child_init() handler:

sub child_init {
ny($child_pool, $s) = @;
say("process $$ is born to serve");
return Apache: : OK;

}

The child_init() handler accepts two arguments: the child process pool and the server abject. The example
handler logs the pid of the child processit’s run in and returns.

Asyou've seen in the example this handler is configured by adding to httpd.conf:

Per| Chi | dl ni t Handl er MyApache: : StartuplLog::child_init

1.2.5 |PerlChildExitHandler]

Opposite to the child_init phase, the child_exit phase is executed before the child process exits. Natice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

Thisphaseis of type RUN_ALL.

The handler’ s configuration scopeis SRV.

Inour|MyApache: : St ar t upLog|example we used the child_exit() handler:

sub child_exit {
ny($child_pool, $s) = @;
say("process $$ now exits");
return Apache: : OK;

}

The child_exit() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child processit’s run in and returns.

29 Jan 2004 7

1.3 Maintainers

Asyou’'ve seen in the exampl e this handler is configured by adding to httpd.conf:

Per | Chi | dExi t Handl er

1.3

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.4

Only the mgjor authors are listed above. For contributors see the Changesfile.

MyApache: : StartuplLog: : child_exit

Maintainer s

Author S

29 Jan 2004

Server Life Cycle Handlers

Table of Contents:

1 | Server Life Cycle Handlers| .

1.1 [Description . .
1.2 [Server Life Cycld

1.2.1 [Startup Phases Demonstration Modulq .

1.2.2 |PerlOpenL ogsHandl er|
1.2.3 |PerlPostConfigHandl er]
1.2.4 [PerlChildInitHandl er|
1.2.5 [Perl ChildExitHandler|
1.3 [Maintainerd.
14

29 Jan 2004

Table of Contents:

OO NNOOOTWNDN B

	1€€Server Life Cycle Handlers
	1.1€€Description
	1.2€€Server Life Cycle
	1.2.1€€Startup Phases Demonstration Module
	1.2.2€€PerlOpenLogsHandler
	1.2.3€€PerlPostConfigHandler
	1.2.4€€PerlChildInitHandler
	1.2.5€€PerlChildExitHandler

	1.3€€Maintainers
	1.4€€Authors

