Real World Scenarios 1 Real World Scenarios

1 Real World Scenaios

29 Jan 2004 1

1.1 Description

1.1 Description|

This chapter provides step by staptalation guide for the various setups discusse@lmosng the Right
Straegy.

1.2 |JAssumptions

I will assume for this section that you daeniliar with plain (not mod_perl enabled) Apache,dtsnpia-
tion andconfiguration. In all configuration and codeexanples| will uselocalhost or www.example.com as
ahoshame For the testing on a local machihagalhost would be just fine. If you are using the real name
of your machine make sure to replasgw.example.com with the name of youmachine.

1.3 |Standalone mod per|l Enabled Apache Server

1.3.1 [Installation in 10lineq

Thelnstalation is very simple. This example shoimstalation on the Linuxopeiating system.

% cd /usr/src
% | wp-downl oad http://ww. apache. or g/ di st/ apache_x. x. x. tar.gz
% | wp- downl oad http://perl.apache.org/dist/nmd_perl-x.xx.tar.gz
% tar xzvf apache_x.x.x.tar.gz
% tar xzvf nod_perl-x.xx.tar.gz
% cd nod_per| - x. xx
% per| Makefile. PL APACHE_SRC-. ./ apache_x.x.x/src \
DO HTTPD=1 USE_APACI =1 EVERYTH NG=1
% make && nake test && make install
% cd ../apache_x. x. X
% meke install

That'sall!

Notes: Replace x.xx and x.x.x with the real version numbers of mod_perl and Apaphévely. Thez
flag tells Gnut ar to unconpressthe archive as well as extract the files. You might negukuser
permisionsto do the make instadteps.

1.3.2[Installation in 10 paragraphs

If you have thd wp- downl oad utility installed, you can use it twowroad the sources of bothack
ages

% | wp- downl oad http://ww. apache. or g/ di st/ apache_x. x. x. tar.gz
% | wp-downl oad http://perl.apache.org/dist/nmod_perl-x.xx.tar.gz

| wp- downl oad is a part of the LWP module (from thé bwww package), and you will need to have it
installed in order for mod_perlisake test step tgpass.

2 29 Jan 2004

Real World Scenarios 1.3.2 Installation in 10 paragraphs

Extract both sources. Usually | open all the sourcesin /usr/src/, but your mileage may vary. So move the
sources and chdi r to the directory that you want to put the sources in. If you have a non-GNU t ar

utility it will be unable to decompress so you will have to unpack in two steps: first uncompress the pack-
ages with:

gzip -d apache_x.x.x.tar.gz
gzip -d nod_perl-x.xx.tar.gz

then un-tar them with:

tar xvf apache_x.x.x.tar
tar xvf nod_perl-x.xx.tar

Y ou can probably use gunzip instead of gzip -d if you prefer.
% cd /usr/src

% tar xzvf apache_x.x.x.tar.gz
% tar xzvf nmod_perl-x.xx.tar.gz

chdi r tothemod_perl source directory:

% cd nod_per| - x. xx

Now build the Makefile. For your first installation and most basic work the parameters in the example
below are the only ones you will need. APACHE _SRC tells the Makefile.PL where to find the Apache src
directory. If you have followed my suggestion and have extracted both sources under the directory
lusr/src, then issue the command:

% per| Makefile. PL APACHE_SRC-. ./ apache_x.x.x/src \
DO _HTTPD=1 USE_APACI =1 EVERYTHI NG=1

There are many additional optional parameters. Y ou can find some of them later in this section and in the
Server Configuration section.

Whilerunning per| Makefile.PL ... theprocesswill check for prerequisites and tell you if some-
thing is missing. If you are missing some of the perl packages or other software, you will have to install
them before you proceed.

Next make the project. The command nake builds the mod_perl extension and also calls make in the
Apache source directory to build ht't pd. Then we run the test suite, and finaly install the mod_perl
modules in their proper places.

% make && nake test && make install

Note that if nake fails, neither neke test nor make install will be executed. If make test
fails, make i nstal | will be not executed.

Now change to the Apache source directory and run make i nstal | . Thiswill install Apache's headers,
default configuration files, build the Apache directory tree and put ht t pd init.

29 Jan 2004 3

1.3.3 Configuration

% cd ../apache_x.x.x
% make install

When you execute the above command, the Apache installation process will tell you how to start a freshly
built webserver (you need to know the path of apachectl , more about that later) and where to find the
configuration files. Write down both, since you will need this information very soon. On my machine the
two important paths are:

lusr/local/apache/bin/apachectl
lusr/local/apache/conf/httpd.conf

Now the build and installation processes are compl ete.

1.3.3 |Configuration|

First, a simple configuration. Configure Apache as you usually would (set Port , User , Group , Error -
Log, other file paths etc).

Start the server and make sure it works, then shut it down. The apachectl utility can be used to start
and stop the server:

% /usr/local/apache/bin/apachectl start
% /usr/local/apache/bin/apachectl stop

Now we will configure Apache to run perl CGI scripts under the Apache::Registry handler.

Y ou can put configuration directives in a separate file and tell httpd.conf to include it, but for now we will
simply add them to the main configuration file. We will add the mod_perl configuration directives to the
end of httpd.conf. In fact you can place them anywhere in the file, but they are easier to find at the end.

For the moment we will assume that you will put all the scripts which you want to be executed by the
mod_perl enabled server under the directory /home/httpd/perl. We will aiasthis directory to the URI /perl

Add the following configuration directives to httpd.conf:
Alias /perl/ /nome/httpd/perl/

PerIModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
PerlSendHeader On
allow from all
</Location>

Now create afour-line test script in /home/httpd/perl/:

4 29 Jan 2004

Real World Scenarios 1.3.3 Configuration

#! /usr/bin/perl -w

use strict;

print "Content-type: text/htm\r\n\r\n";
print "It worked!!!\n";

Note that the server is probably running as a user with a restricted set of privileges, perhaps as user
nobody or ww. Look for the User directivein httpd.conf to find the userid of the server.

Make sure that you have read and execute permissions for test.pl.
% chrmod u+rx /hone/ httpd/ perl/test. pl

Test that the script works from the command line, by executing it:
% / hone/ htt pd/ perl/test. pl

Y ou should see:
Content-type: text/htm

It worked!!!

Assuming that the server’s userid is nobody, make the script owned by this user. We already made it
executable and readable by user.

% chown nobody /hore/ httpd/ perl/test.pl
Now it istime to test that mod_perl enabled Apache can execute the script.

Start the server (apachect!| start’). Check in logserror_log to see that the server has indeed
started--verify the correct date and time of the log entry.

To get Apache to execute the script we simply fetch its URI. Assuming that your httpd.conf has been
configured with the directive Port 80, start your favorite browser and fetch the following URI:

http: //ww. exanpl e. conif perl/test. pl

If you have the loop-back device (127.0.0.1) configured, you can use the URI:
http://1ocal host/perl/test.pl

In either case, you should see:
I't worked!!!

If your server islistening on a port other than 80, for example 8000, then fetch the URI:

http: // www. exanpl e. com 8000/ per|/test. pl

29 Jan 2004 5

1.4 One Plain and One mod_perl enabled Apache Servers

or whatever is appropriate.

If something went wrong, go through the installation process again, and make sure you didn't make a
mistake. If that doesn’'t help, read the | NSTALL pod document (per | pod | NSTALL) in the mod_perl
distribution directory.

Now that your mod_perl server is working, copy some of your Perl CGI scripts into the directory
/home/httpd/perl/ or below it.

If your programming techniques are good, chances are that your scripts will work with no modifications at
all. With the mod_perl enabled server you will see them working very much faster.

If your programming techniques are sloppy, some of your scripts will not work and they may exhibit
strange behaviour. Depending on the degree of sloppiness they may need anything from minor tweaking to
amajor rewrite to make them work properly. (See Sometimes My Script Works, Sometimes It Does Not)

The above setup is very basic, but as with Perl, you can start to benefit from mod_perl from the very first
moment you try it. As you become more familiar with mod_perl you will want to start writing Apache
handlers and make more use of its power.

1.4 |One Plain and Onemod perl enabled Apache Servers

Since we are going to run two Apache servers we will need two complete (and different) sets of configura-
tion, log and other files. In this scenario we'll use a dedicated root directory for each server, which is a
personal choice. You can choose to have both servers living under the same roof, but it might lead to a
mess, since it requires a slightly more complicated configuration. This decision might be nice since you
will be able to share some directories like include (which contains Apache headers), but in fact this can
become a problem later, when you decide to upgrade one server but not the other. You will have to solve
this problem then, so why not to avoid it in first place.

From now on we will refer to these two servers as httpd _docs (plain Apache) and httpd_perl
(Apache/mod_perl). We will use /usr/local as our root directory.

First let's prepare the sources. We will assume that all the sources go into the /usr/src directory. Since you
will probably want to tune each copy of Apache separately, it is better to use two separate copies of the
Apache source for this configuration. For example you might want only the httpd_docs server to be built
with the mod_rewrite module.

Having two independent source trees will prove helpful unless you use dynamically shared objects (DSO)
which is covered later in this chapter.

M ake two subdirectories:

% nkdir /usr/src/httpd_docs
% nkdir /usr/src/httpd_perl

6 29 Jan 2004

Real World Scenarios 1.4.1 Configuration and Compilation of the Sources.

Next put a set of the Apache sources into the /usr/src/httpd _docs directory (replace the directory /tmp with
the path to the downloaded file and x. x. x with the version of Apache that you have downloaded):

% cd /usr/src/httpd_docs
% gzip -dc /tnp/apache_x.x.x.tar.gz | tar xvf -

or if you have GNU tar:

% tar xvzf /tnp/apache_x.x.x.tar.gz

Just to check we have extracted in the right way:

%ls -1
drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x. x. x/

Now prepare the httpd_perl server sources:

% cd /usr/src/httpd_per
% gzip -dc /tnp/apache_x.x.x.tar.gz | tar xvf -
% gzip -dc /tnp/ modperl-x.xx.tar.gz | tar xvf -

%ls -1
drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x. x. x/
drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 nodperl - x. xx/

We are going to use a default Apache directory layout, and place each server directories under its dedi-
cated directory. The two directories are as you have already guessed:

[usr/local/httpd_perl/
/usr/local /httpd_docs/

The next step is to configure and compile the sources: Below are the procedures to compile both servers,
using the directory layout | have just suggested.

1.4.1 |Configuration and Compilation of the Sources,

As usual we use x.x.x instead of real version numbers so this document will never become obsolete. But
the most important thing -- it's not misleading. It’s quite possible that since the moment this document
was written anew version has come out and you will be not aware of thisfact if you will not check for it.

1.4.1.1 |Building the httpd docs Ser ver|

® Sources Configuration:

% cd /usr/src/httpd_docs/apache_x. x. X

% make cl ean

% ./configure --prefix=/usr/local/httpd_docs \
--enabl e-nodul e=rewite --enabl e-modul e=proxy

We need the mod_rewrite and mod_proxy modules as we will see later, so wetell ./configure to build
themin.

29 Jan 2004 7

1.4.1 Configuration and Compilation of the Sources.

You might want to add - - | ayout to see the resulting directories layout without actually running
the configuration process.

® Source Compilation and Installation

% make
% make install

Renamehtt pdtohtt p_docs:

% mv /usr/local/httpd_docs/bin/httpd \
/usr/local /httpd_docs/bin/httpd_docs

Now modify the apachect! utility to point to the renamed httpd via your favorite text editor or by
using perl:

% perl -pi -e 's|bin/httpd|bin/httpd_docs|’ \
lusr/local /httpd_docs/ bi n/ apachect|

Another approach would be to use the --target option while configuring the source, which makes the last
two commands unnecessary.

% ./configure --prefix=/usr/local/httpd_docs \
--target=httpd_docs \
--enabl e-nodul e=rewite --enabl e- modul e=pr oxy
% make && neke install

Since we told .configure that we want the executable to be caled httpd docs (via
--target=htt pd_docs) -- it performs all the naming adjustment for us.

The only thing that you might find unusual, is that apachectl will be now called httpd docsctl and the
configuration file httpd.conf now will be called httpd _docs.conf.

We will leave the decision making about the preferred configuration and installation way to the reader. In
the rest of the guide we will continue using the regular names resulted from using the standard configura-
tion and the manual executable name adjustment as described at the beginning of this section .

1.4.1.2 Building the httpd perl Server|

Now we proceed with the sources configuration and installation of the httpd_per| server. First make sure
the sources are clean:

% cd /usr/src/httpd_perl/apache_x. x. x
% make cl ean

% cd /usr/src/httpd_perl/nmod_perl -x. xx
% make cl ean

It is important to make clean since some of the versions are not binary compatible (e.g apache 1.3.3 vs
1.3.4) so any "third-party” C modules need to be re-compiled against the latest header files.

8 29 Jan 2004

Real World Scenarios 1.4.1 Configuration and Compilation of the Sources.

% cd /usr/src/httpd_perl/mod_perl-x.xx

% /usr/bin/perl Makefile.PL \
APACHE_SRC-=../apache_x.x.x/src\
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1\
APACHE_PREFIX=/usr/local/httpd_perl \
APACI_ARGS="--prefix=/usr/local/httpd_perl’

If you need to pass any other configuration options to Apache's config ure , add them after the --prefix
option. e.q:

APACI_ARGS="--prefix=/usr/local/httpd_perl \
--enable-module=status’

Notice that all APACI_ARGS (above) must be passed as one long line if you work with t?csh !!!
However with (ba)?sh it works correctly the way it is shown above, breaking the long lines with '\ *.
As of tcsh version 6.08.0, when it passes the APACI_ARGSarguments to config ure it does not alter
the newlines, but it strips the backslashes, thus breaking the configuration process.

Notice that just like in httpd_docs configuration you can use --target=httpd_perl instead of speci-
fying each directory separately. Note that this option has to be the very last argument in APACI_ARGS
otherwise 'maketest’ triesto run’httpd_perl’ , which fails.

[META: It's very important to use the same compiler you build the perl with. See the section 'What
Compiler Should Be Used to Build mod_perl’ for more information.

[META: --- Hmm, what's the option that overrides the compiler when building Apache from mod_perl.
Check also whether mod_perl supplies the right compiler (the one used for building itself) -- if it does
there is no need for the above note. |

Now, build, test and install the httpd_perl

% make && make test && make install

Upon installation Apache puts a stripped version of httpd at /usr/local/httpd_perl/bin/httpd. The original
version which includes debugging symbols (if you need to run a debugger on this executable) is located at
lusr/src/httpd_perl/apache x.x.x/src/httpd.

You may have noticed that we did not run make install in the Apache source directory. When
USE_APACIis enabled, APACHE_PREFIXwill specify the --prefix option for Apache's config -
ure utility, which gives the instalation path for Apache. When this option is used, mod_perl’s make
install will aso make install for Apache, installing the httpd binary, the support tools, and the
configuration, log and document trees. If this option is not used you will have to explicitly run make
install in the Apache source directory.

If make test fails, look into /usr/src/httpd_perl/mod_perl-x.xx/t/logs and read the error_log file. Also
see make test fails.

29 Jan 2004 9

1.4.2 Configuration of the servers

While doing perl Makefile.PL ... mod perl might complain by warning you about a missing
library | i bgdbm Thisisacrucial warning. See Missing or Misconfigured libgdbm.so for more info.

Now renamehtt pdtoht t pd_per| :

% mv /usr/local/httpd_perl/bin/httpd \
/usr/local/httpd_perl/bin/httpd_perl

Update the apachectl utility to drive the renamed httpd:

Y% perl -p -i -e 's|bin/httpd|bin/httpd_perl|’ \
/usr/local/httpd_perl/bin/apachectl

1.4.2 |Configuration of the serverg

Now when we have completed the building process, the last stage before running the serversis to config-
ure them.

1.4.2.1 [Basic httpd docs Server Configur ation|

Configuring of the ht t pd_docs server is avery easy task. Starting from version 1.3.4 of Apache, there
is only one file to edit. Open /usr/local/httpd _docs/conf/httpd.conf in your favorite text editor and config-
ure it as you usually would, except make sure that you configure the log file directory
(/usr/local/httpd_docs/logs and so on) and the other paths according to the layout you have decided to use.

Start the server with:

/usr/1ocal/httpd_docs/ bi n/ apachect| start

1.4.2.2 Basic httpd perl Server Configuration|

Edit the /usr/local/httpd_perl/conf/httpd.conf. As with the ht t pd_docs server configuration, make sure
that Err or Log and other file location directives are set to point to the right places, according to the
chosen directory layout.

Thefirst thing to do isto set aPor t directive - it should be different from that used by the plain Apache
server (Port 80) since we cannot bind two servers to the same port number on the same machine. Here
we will use 8080. Some developers use port 81, but you can bind to ports below 1024 only if the server
has root permissions. If you are running on a multiuser machine, there is a chance that someone aready
uses that port, or will start using it in the future, which could cause problems. If you are the only user on
your machine, basically you can pick any unused port number. Many organizations use firewalls which
may block some of the ports, so port number choice can be a controversial topic. From my experience the
most popular port numbers are: 80, 81, 8000 and 8080. Personally, | prefer the port 8080. Of course
with the two server scenario you can hide the nonstandard port number from firewalls and users, by using
either mod_proxy’s Pr oxyPass directive or aproxy server like Squid.

For more details see Publishing Port Numbers other than 80, [Running One Webserver and Squid in httpd |
[Accelerator Modd |Running Two Webservers and Squid in httpd Accelerator Modd and|Using mod proxy}

10 29 Jan 2004

Real World Scenarios 1.5 Running Two webservers and Squid in httpd Accelerator Mode

Now we proceed to the mod_perl specific directives. It will be a good idea to add them all at the end of
ht t pd. conf, since you are going to fiddle with them alot in the early stages.

First, you need to specify the location where all mod_perl scripts will be located.

Add the following configuration directive:

nmod_perl scripts will be called from
Alias /perl/ [usr/local/httpd_perl/perl/

From now on, all requests for URIs starting with /perl will be executed under mod_perl and will be
mapped to the filesin /usr/local/httpd_perl/perl/.

Now we configure the /perl location.
Per | Modul e Apache: : Regi stry

<Location /perl >
#Al | onQverri de None
Set Handl er perl-script
Per| Handl er Apache:: Regi stry
Opti ons ExecCd
allow fromall
Per| SendHeader On
</ Locati on>

This configuration causes any script that is called with a path prefixed with /per| to be executed under the
Apache: : Regi st ry module and as a CGI (hence the Exec Cd --if you omit this option the script will
be printed to the user's browser as plain text or will possibly trigger a 'Save-A$ window). The
Apache: : Regi st ry module lets you run your (carefully written) Perl CGI scripts virtually unchanged
under mod_perl. The Per| Modul e directive is the equivalent of Perl’s require(). We load the
Apache: : Regi st ry module before we use it by giving the Per | Handl er Apache: : Regi stry
directive.

Per | SendHeader On tells the server to send an HTTP header to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

Thisisonly avery basic configuration. The Server Configuration section covers the rest of the details.

Now start the server with:

/usr/local/httpd_perl/bin/apachect!l start

1.5 |Running Two webservers and Squid in httpdAccelera-
tor Mode

While | have detailed the mod_perl server installation, you are on your own with installing the Squid
server (See Getting Helped for more details). | run Linux, so | downloaded the RPM package, installed it,
configured the /etc/squid/squid.conf, fired off the server and all was set.

29 Jan 2004 11

1.5 Running Two webservers and Squid in httpd Accelerator Mode

Basically once you have Squid installed, you just need to modify the default squi d. conf as | will
explain below, then you are ready to run it.

The configuration that I'm going to present works with Squid server version 2.3.STABLE2. It's possible
that some directives will change in future versions.

First, let’ stake alook at what we have already running and what we want from squid.

Previously we have had the ht t pd_docs and htt pd_per| servers listening on ports 80 and 8080.
Now we want squid to listen on port 80, to forward requests for static objects (plain HTML pages, images
and so on) to the port which the httpd_docs server listens to, and dynamic requests to httpd_perl’s port.
And of course collecting the generated responses, which will be delivered to the client by Squid. As
mentioned before this mode is known as httpd-accelerator mode in proxy dialect.

Therefore we have to reconfigure the httpd_docs server to listen to port 81 instead, since port 80 will be
taken by Squid. Remember that in our scenario both copies of Apache will reside on the same machine as

Squid.

A proxy server makes all the magic behind it transparent to users. Both Apache servers return the data to
Squid (unless it was already cached by Squid). The client never sees the other ports and never knows that
there might be more than one server running. Do not confuse this scenario with mod_rewr i t e, where a
server redirects the request somewhere according to the rewrite rules and forgets all about it. (i.e. works as
aone way dispatcher, which dispatches the jobs but is not responsible for.)

Squid can be used as a straightforward proxy server. |SPs and other companies generally use it to cut
down the incoming traffic by caching the most popular requests. However we want to run it in ht t pd
accel erat or node. Twodirectives (htt pd_accel _host andhtt pd_accel _port) enablethis
mode. We will see more details shortly.

If you are currently using Squid in the regular proxy mode, you can extend its functionality by running
both modes concurrently. To accomplish this, you can extend the existing Squid configuration with httpd
accelerator mode’' srelated directives or you can just create one from scratch.

Let’'s go through the changes we should make to the default configuration file. Since the file with default
settings (/etc/squid/squid.conf) is huge (about 60KB) and we will not alter 95% of its default settings, my
suggestion isto write anew oneincluding only the modified directives.

We want to enable the redirect feature, to be able to serve requests by more than one server (in our case
we have two: the httpd_docs and httpd_perl servers). So we specify htt pd_accel _host as virtual.
This assumes that your server has multiple interfaces - Squid will bind to all of them.

htt pd_accel _host virtual

Then we define the default port the requests will be sent to, unless redirected. We assume that most
requests will be for static documents (also it's easier to define redirect rules for the mod_perl server
because of the URI that starts with perl or similar). We have our httpd_docs listening on port 81.

12 29 Jan 2004

Real World Scenarios 1.5 Running Two webservers and Squid in httpd Accelerator Mode

httpd_accel _port 81

And as described before, squid listens to port 80.

http_port 80

Wedonot usei cp (i cp isused for cache sharing between neighboring machines, which is more relevant
in the proxy mode).

icp_port O

hi erarchy_stopli st defines a list of words which, if found in a URL, causes the object to be
handled directly by the cache. Since we told Squid in the previous directive that we aren’t going to share
the cache between neighboring machines this directive is irrelevant. In case that you do use this feature,
make sure to set this directive to something like:

hi erarchy_stoplist /cgi-bin /perl
where the /cgi-bin and /per| are aliases for the |ocations which handle the dynamic requests.

Now we tell Squid not to cache dynamically generated pages.

acl QUERY url path_regex /cgi-bin /perl
no_cache deny QUERY

Please note that the last two directives are controversial ones. If you want your scripts to be more compli-
ant with the HTTP standards, according to the HT TP specification the headers of your scripts should carry
the Caching Directives: Last - Modi fi ed and Expi r es.

What are they for? If you set the headers correctly, there is no need to tell the Squid accelerator NOT to
try to cache anything. Squid will not bother your mod perl servers a second time if a request is (a)
cacheable and (b) still in the cache. Many mod_perl applications will produce identical results on identical
requests if not much time has elapsed between the requests. So your Squid might have a hit ratio of 50%,
which means that the mod_perl servers will have only haf as much work to do as they did before you
installed Squid (or mod_proxy).

Even if you insert auser-1D and date in your page, caching can save resources when you set the expiration
time to 1 second. A user might double click where a single click would do, thus sending two requests in
paralel. Squid could serve the second request.

But thisis only possible if you set the headers correctly. Refer to the chapter Correct Headers - A quick
guide for mod_perl users to learn more about generating the proper caching headers under mod_perl. In
case where only the scripts under /perl/caching-unfriendly are not caching friendly fix the above setting to
be:

acl QUERY url path_regex /cgi-bin /perl/caching-unfriendly
no_cache deny QUERY

29 Jan 2004 13

1.5 Running Two webservers and Squid in httpd Accelerator Mode

But if you are lazy, or just have too many things to deal with, you can leave the above directives the way
we described. Just keep in mind that one day you will want to reread this section and the headers genera-
tion tutorial to squeeze even more power from your servers without investing money in more memory and
better hardware.

While testing you might want to enable the debugging options and watch the log files in the directory
Ivar/log/squid/. But make sure to turn debugging off in your production server. Below we show it
commented out, which makes it disabled, since it's disabled by default. Debug option 28 enables the
debugging of the access control routes, for other debug codes see the documentation embedded in the
default configuration file that comes with squid.

debug_options 28

We need to provide a way for Squid to dispatch requests to the correct servers. Static object requests
should be redirected to httpd_docs unless they are aready cached, while requests for dynamic documents
should go to the httpd_perl server. The configuration below tells Squid to fire off 10 redirect daemons at
the specified path of the redirect daemon and (as suggested by Squid’'s documentation) disables rewriting
of any Host : headersin redirected requests. The redirection daemon script is listed below.

redi rect _program /usr/1ib/squid/redirect. pl
redirect _children 10
redirect_rewites_host_header off

The maximum allowed request size is in kilobytes, which is mainly useful during PUT and POST requests.
A user who attempts to send a request with a body larger than this limit receives an "Invalid Request”
error message. If you set this parameter to a zero, there will be no limit imposed. If you are using POST to
upload files, then set thisto the largest file' s size plus afew extra KB.

request _body_nax_si ze 1000 KB

Then we have access permissions, which we will not explain. Y ou might want to read the documentation,
S0 asto avoid any security problems.

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl local host src 127.0.0. 1/ 255. 255. 255. 255
acl nyserver src 127.0.0. 1/ 255. 255. 255. 255
acl SSL_ports port 443 563

acl Safe_ports port 80 81 8080 81 443 563
acl CONNECT net hod CONNECT

http_access all ow manager | ocal host
http_access al |l ow manager nyserver
http_access deny nanager
http_access deny ! Safe_ports
http_access deny CONNECT ! SSL_ports
http_access allow all

Since Squid should be run as a non-root user, you need these if you are invoking the Squid as root. The
user squid is created when the Squid server isinstalled.

14 29 Jan 2004

Real World Scenarios 1.5 Running Two webservers and Squid in httpd Accelerator Mode

cache_effective_user squid
cache_effective_group squid

Now configure a memory size to be used for caching. The Squid documentation warns that the actual size
of Squid can grow to be three times larger than the value you set.

cache_mem 20 MB

We want to keep pools of allocated (but unused) memory available for future use if we have the memory
available of course. Otherwise turn it off.

memory_pools on

Now tighten the runtime permissions of the cache manager CGI script (cachemgr.cgi , which comes
bundled with squid) on your production server.

cachemgr_passwd disable shutdown

If you are not using this script to manage the Squid server from remote, you should disable it:

cachemgr_passwd disable all

Now the redirection daemon script (you should put it at the location you have specified in the redi -
rect _program parameter inthe config file above, and make it executable by the webserver of course):

#!/usr/local/bin/per! -p
BEGIN{ $|=1}
slwww.example.com(?::81)?/perl/|www.example.com:8080/perl/|o ;

Here is what the regular expression from above does; it matches all the URIs that include either the string
www.example.comyperl/ or the string www.example.com: 81/perl/ and replaces either of these strings with
www.example.com: 8080/perl. No matter whether the regular expression worked or not, the $_ variableis
automagically printed.

We can write the above code as the following code as well:
#!/usr/local/bin/perl
$|=1;
while (<>) {
redirect to mod_perl server (httpd_perl)
print($_), next
if sjlwww.example.com(:81)?/perl/jwww.example.com:8080/perl/|o;
send it unchanged to plain apache server (http_docs)
print;
}

The above redirector can be more complex of course, but you know Perl, right?

29 Jan 2004 15

1.5 Running Two webservers and Squid in httpd Accelerator Mode

A few notes regarding the redirector script:

Y ou must disable buffering. $| =1; doesthejob. If you do not disable buffering, STDOUT will be flushed
only when its buffer becomes full--and its default size is about 4096 characters. So if you have an average
URL of 70 chars, only after about 59 (4096/70) requests will the buffer be flushed, and the requests will
finally reach the server. Your users will not wait that long, unless you have hundreds requests per second
and then the buffer will be flushed very frequently becauseit’ll get full very fast.

If you think that thisis a very ineffective way to redirect, you should consider the following explanation.
The redirector runs as a daemon, it fires up N redirect daemons, so there is no problem with Perl inter-
preter loading. Exactly as with mod_perl, the perl interpreter isloaded all the time in memory and the code
has already been compiled, so the redirect is very fast (not much slower than if the redirector was written
in C). Squid keeps an open pipe to each redirect daemon, thus there is no overhead of the system calls.

Now it istimeto restart the server, at linux | do it with:

/etc/rc.d/init.d/ squid restart
Now the Squid server setup is complete.

Almost... When you try the new setup, you will be surprised and upset to discover port 81 showing up in
the URLSs of the static objects (like htmls). Hey, we did not want the user to see the port 81 and use it
instead of 80, since then it will bypass the squid server and the hard work we went through was just a
waste of time!

The solution is to make both squid and httpd_docs listen to the same port. This can be accomplished by
binding each one to a specific interfface (so they are listening to different sockets). Modify
httpd_docs/conf/httpd.conf:

Port 80
Bi ndAddress 127.0.0.1
Li sten 127.0.0.1:80

Now the httpd_docs server is listening only to requests coming from the local server. Y ou cannot access it
directly from the outside. Squid becomes a gateway that all the packets go through on the way to the
httpd_docs server.

Modify squid.conf:
http_port 80
tcp_out goi ng_address 127.0.0.1

htt pd_accel _host 127.0.0.1
htt pd_accel _port 80

Now restart the Squid and httpd_docs servers (it doesn’'t matter which one you start first), and voila-the
port number has gone.

Y ou must also have in the file /etc/hosts the following entry (chances are that it's already there):

16 29 Jan 2004

Real World Scenarios 1.5 Running Two webservers and Squid in httpd Accelerator Mode

127.0.0.1 | ocal host. | ocal domai n | ocal host

Now if your scripts are generating HTML including fully qualified self references, using 8080 or the other
port, you should fix them to generate links to point to port 80 (which means not using the port at al in the
URI). If you do not do this, users will bypass Squid and will make direct requests to the mod_perl server’'s
port. Aswe will seelater just like with httpd_docs, the httpd_perl server can be configured to listen only to
requests coming from the localhost (with Squid forwarding these requests from the outside) and therefore
users will not be able to bypass Squid.

To save you some keystrokes, here is the whole modified squi d. conf :

http_port 80
tcp_out goi ng_address 127.0.0.1
htt pd_accel _host 127.0.0.1
httpd_accel _port 80

icp_port O

acl QUERY url path_regex /cgi-bin /perl
no_cache deny QUERY

debug_options 28

redi rect _program /usr/lib/squid/redirect. pl
redirect_children 10
redirect_rewites_host_header off

request _body_nax_si ze 1000 KB

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl local host src 127.0.0. 1/ 255. 255. 255. 255
acl nyserver src 127.0.0. 1/ 255. 255. 255. 255
acl SSL_ports port 443 563

acl Safe_ports port 80 81 8080 81 443 563
acl CONNECT net hod CONNECT

http_access all ow manager | ocal host
http_access all ow manager nyserver
http_access deny nanager
http_access deny ! Safe_ports
http_access deny CONNECT ! SSL_ports
http_access allow all

cache_effective_user squid
cache_effective_group squid

cache_mem 20 MB
menory_pool s on

cachengr_passwd di sabl e shut down

29 Jan 2004 17

1.6 Running One Webserver and Squid in httpd Accelerator Mode

Note that al directives should start at the beginning of the line, so if you cut and paste from the text make
sure you remove the leading whitespace from each line.

1.6 |Running One Webserver and Squid in httpd Accelerator
M ode

When | was first told about Squid, | thought: "Hey, now | can drop theht t pd_docs server and have just
Squid and the ht t pd_per | servers'. Since al my static objects will be cached by squid, | do not need
thelight ht t pd_docs server.

But | was awrong. Why? Because | still have the overhead of loading the objects into Squid the first time.
If asite has many of them, unless a huge chunk of memory is devoted to Squid they won't all be cached
and the heavy mod_perl server will still have the task of serving static objects.

How do we measure the overhead? The difference between the two servers is in memory consumption,
everything else (e.g. I/0) should be equal. So you have to estimate the time needed to fetch each static
object for the first time at a peak period and thus the number of additional servers you need for serving the
static objects. This will allow you to calculate the additional memory requirements. | imagine that this
amount could be significant in some installations.

So on for production servers | have decided to stick with the Squid, httpd_docs and httpd_perl scenario,
where | can optimize and fine tune everything. But if in your case there is amost no static objects to serve,
the httpd_docs server is definitely redundant. And all you need are the mod_perl server and Squid to
buffer the output fromit.

If you want to proceed with this setup, install mod_perl enabled Apache and Squid. Then use a configura-
tion similar to the previous section, but now httpd docs is not there anymore. Also we do not need the
redirector anymore and we specify htt pd_accel _host as a name of the server and not vi rt ual .
Because we do not redirect there is no need to bind two servers on the same port so there are neither Bi nd
nor Li st en directivesin httpd.conf.

The modified configuration for this simplified setup (see the explanations in the previous section):
htt pd_accel _host put.your. host nane. here
htt pd_accel _port 8080
http_port 80
icp_port O

acl QUERY url path_regex /cgi-bin /per
no_cache deny QUERY

debug_options 28
redirect_program/usr/lib/squid/redirect.pl
redirect_children 10

redirect_rewites_host_header off

request _body_nax_si ze 1000 KB

18 29 Jan 2004

Real World Scenarios 1.7 mod_proxy

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl local host src 127.0.0. 1/ 255. 255. 255. 255
acl nyserver src 127.0.0. 1/ 255. 255. 255. 255
acl SSL_ports port 443 563

acl Safe_ports port 80 81 8080 81 443 563
acl CONNECT net hod CONNECT

http_access all ow manager | ocal host
http_access all ow manager nyserver
http_access deny manager
http_access deny ! Safe_ports
http_access deny CONNECT ! SSL_ports
http_access allow all

cache_effective_user squid
cache_effective_group squid

cache_mem 20 MB
menory_pool s on

cachengr_passwd di sabl e shut down

1.7 |/mod proxy

mod_proxy implements a proxy/cache for Apache. It implements proxying capability for FTP, CONNECT
(for SSL), HTTP/0.9, and HTTP/1.0. The module can be configured to connect to other proxy modules for
these and other protocols.

1.7.1 |Concepts and Configuration Directives

In the following explanation, we will use www.example.com as the main server users access when they
want to get some kind of service and backend.example.com as a machine that does the heavy work. The
main and the back-end are different servers, they may or may not coexist on the same machine.

The mod_proxy module is built into the server that answers requests to the www.example.com hostname.
For the matter of this discussion it doesn’t matter what functionality is built into the backend.example.com
server, obvioudly it'll be mod_perl for most of us.

1.7.1.1

You can use the Pr oxyPass configuration directive for mapping remote hosts into the space of the local
server; the local server does not act as a proxy in the conventional sense, but appears to be a mirror of the
remote server.

Let’s explore what this rule does:

29 Jan 2004 19

1.7.1 Concepts and Configuration Directives

ProxyPass /modperl/ http://backend.example.com/modperl/

When a user initiates a request to |http://www.example.com/modperl/foo.pl} the request will be redirected
to |http://backend.example.com/modperl/foo.pl, and sarting from this moment user will see
[http://backend.example.com/]in her location window, instead of [http://www.example.com/

Y ou have probably noticed many examples of this from real life Internet sites you' ve visited. Free-email
service providers and other similar heavy online services display the login or the main page from their
main server, and then when you log-in you see something like x11.example.com, then w59.example.com,
etc. These are the back-end serversthat do the actual work.

Obvioudly thisis not an ideal solution, but usually users don’t really care about what they see in the loca-
tion window. So you can get away with this approach. As I'll show in a minute there is a better solution
which removes this caveat and provides even more useful functionalities.

1.7.1.2 |ProxyPassRever s¢

This directive lets Apache adjust the URL in the Loca tion header on HTTP redirect responses. Thisis
essential for example, when Apache is used as a reverse proxy to avoid by-passing the reverse proxy
because of HTTP redirects on the back-end servers which stay behind the reverse proxy. Generally used in
conjunction with the Prox yPass directive to build a complete front-end proxy server.

ProxyPass /modperl/ http://backend.example.com/modperl/
ProxyPassReverse /modperl/ http://backend.example.com/modperl/

When a user initiates a request to |http://www.example.com/modperl/foo.pl} the request will be redirected

to |http://backend.example.com/modperl/foo.pl| but on the way back Prox yPass Reverse will correct
the location URL to become http://www.example.com/modperT/foo.pl] . This happens completely transpar-
ently. The end user will never know that something has happened to his request behind the scenes.

Note that this Prox yPassReverse directive can also be used in conjunction with the proxy
pass-through feature:

RewriteRule ... [P]

from mod_rewrite because its doesn’t depend on a corresponding Prox yPass directive.

1.7.1.3 (Security | ssueq

Whenever you use mod_proxy you need to make sure that your server will not become a proxy for free
riders. Allowing clients to issue proxy requests is controlled by the Prox yRequests directive. Its
default setting is off , which means proxy requests are handled only if generated internally (by Prox y-

Pass or RewriteRule...[P] directives) Do not use the Prox yRequests directive on your
reverse proxy Servers.

20 29 Jan 2004

http://www.example.com/modperl/foo.pl
http://backend.example.com/modperl/foo.pl
http://backend.example.com/
http://www.example.com/
http://www.example.com/modperl/foo.pl
http://backend.example.com/modperl/foo.pl
http://www.example.com/modperl/foo.pl

Real World Scenarios 1.7.2 Buffering Feature

1.7.2 Buffering Featurg

In addition to correcting the URI on its way back from the back-end server, mod _proxy also provides
buffering services which mod_perl and similar heavy modules benefit from. The buffering feature allows
mod_perl to pass the generated data to mod_proxy and move on to serve new requests, instead of waiting
for apossibly slow client to receive al the data.

Thisfigure depicts this feature:

[socket] wire ‘o’
[mod_perl] => [] => [nod_proxy] => __ => []\
[buffer]

From looking at this figure it's easy to see that the bottleneck is the socket buffer; it has to be able to
absorb all the data that mod_perl has generated in order to free the mod_perl process immediately;
mod_proxy will take the data as fast as mod_perl can deliver it, freeing the mod_per| server to service new
reguests as soon as possible while mod_proxy feeds the client at whatever rate the client requires.

Pr oxyRecei veBuf f er Si ze is the name of the parameter that specifies the size of the socket buffer.
Configuring:

Pr oxyRecei veBuf fer Si ze 16384

will create a buffer of 16KB in size. If mod_perl generates output which is less than 16KB, the process
will be immediately untied and allowed to serve new requests, if the output is bigger than 16KB, the
following process will take place:

1. Thefirst 16KB will enter the system buffer.
2. mod_proxy picksthefirst 8KB and sendsit down the wire.
3. mod_perl writes the next 8KB into the place of the 8KB of data that was just sent off by mod_proxy.

Stages 2 and 3 are repeated until mod_perl has no more data to send. When this happens, mod_perl can
serve a new request while stage 2 is repeated until all the data was picked from the system buffer and sent
down the wire.

Of course you want to set the buffer size as large as possible, since you want the heavy mod_perl
processes to be utilized in the most efficient way, so you don’t want them to waste their time waiting for a
client to receive the data, especially if a client has a slow downstream connection.

Asthe Pr oxyRecei veBuf f er Si ze name states, its buffering feature applies only to downstream data
(coming from the origin server to the proxy) and not upstream data. There is no buffering of data uploaded
from the client browser to the proxy, thus you cannot use this technique to prevent the heavy mod_perl
server from being tied up during a large POST such as afile upload. Falling back to mod_cgi seems to be
the best solution for these specific scripts whose major function is receiving large amounts of upstream
data.

29 Jan 2004 21

1.7.3 Setting the Buffering Limits on Various OSs

[META: check this: --]

Of course just like mod_perl, mod_proxy writes the data it proxy-passes into its outgoing socket buffer,
therefore the mod_proxy process gets released as soon as the last chunk of data is deposited into this
buffer, even if the client didn’t complete the download. Its the OS's problem to complete the transfer and
release the TCP socket used for this transfer.

Therefore if you don't use mod_proxy and mod_perl sends its data directly to the client, and you have a
big socket buffer, the mod_perl process will be released as soon as the last chunk of data enters the buffer.
Just like with mod_proxy, the OS will deal with completing the data transfer.

[based on this comment] yes, too (but receive and transmit buffer may be of different size, depending on
the OS)

The problem | don’t know is, does the call to close the socket wait, until al datais actually send success-
fully or not. If it doesn’t wait, you may not be noticed of any failure, but because the proxying Apache can
write as fast to the socket transmission buffer asit can read, it should be possible that the proxying Apache
copies all the data from the receive to the transmission buffer and after that releasing the receive buffer, so
the mod_perl Apache isfree to do other things, while the proxying Apache still wait until the client returns
the success of datatransmission. (The last, isthe part | am not sure on)

[/META]

Unfortunately you cannot set the socket buffer size as large as you want because there is a limit of the
available physical memory and OSs have their own upper limits on the possible buffer size.

This doesn’t mean that you cannot change the OS imposed limits, but to do that you have to know the
techniques for doing that. In the next section we will present a few OSs and the ways to increase their
socket buffer sizes.

To increase the physical memory limits you just have to add more memory.

1.7.3 [Setting the Buffering Limits on Various OSg

Aswejust saw there are afew kinds of parameters we might want to adjust for our needs.

1.7.3.1 |OBUFSIZE Sour ce Code Definition|

The first parameter is used by proxy_util.c:ap_proxy_send_fb() to loop over content being proxy passed in
8K B chunks (as of thiswriting), passing that on to the client. In other words it specifies the size of the data
that is sent down the wire.

This parameter is defined by the | OBUFSI ZE:

#define | OBUFSI ZE 8192

22 29 Jan 2004

Real World Scenarios 1.7.3 Setting the Buffering Limits on Various OSs

Y ou have no control over this setting in the server configuration file, therefore you might want to change it
in the source files, before you compile the server.

1.7.3.2 |ProxyReceiveBuffer Size Configuration Dir ective

Y ou can control the socket buffer size with the Pr oxyRecei veBuf f er Si ze directive:

ProxyRecei veBuf fer Si ze 16384

The above setting will set a buffer size of 16KB. If it is not set explicitly, or if it is set to O, then the default
buffer sizeis used. The number should be an integral multiple of 512.

Note that if you set the value of ProxyRecei veBuf f er Si ze larger than the OS limit, the default
value will be used.

Both the default and the maximum possible value of Pr oxyRecei veBuf f er Si ze depend on the
Operating System.

® Linux

For 2.2 kernels the maximum limit is in /proc/sys/net/core/rmem_max and the default value is in
/proc/sys/net/core/rmem default. If you want to increase RCVBUF size above 65535, the default
maximum value, you have to raise first the absolute limit in /proc/sys/net/core/rmem_max. To do that
at the run time, execute this command to raise it to 128K B:

% echo 131072 > /proc/sys/ net/core/rmem mx

You probably want to put this command into /etc/rc.d/rc.local so the change will take effect at
system reboot.

On Linux OS with kernel 2.2.5 the maximum and default values are either 32KB or 64KB. You can
also change the default and maximum values during kernel compilation; for that you should alter the
SK_RVEM DEFAULT and SK_RMEM NMAX definitions respectively. (Since kernel source files tend to
change, use grep(1) utility to find the files.)

® FreeBSD

Under FreeBSD it’'s possible to configure the kernel to have bigger socket buffers:
% sysct!l -w kern.ipc. maxsockbuf =2621440

® Solaris
Under Solaris this upper limit is specified by tcp_max_buf parameter and is 256K B.
® Other OSs

[ReaderMeta]: If you use an OS that is not listed here and know how to increase the socket buffer
size please let me know.

29 Jan 2004 23

1.8 Front-end Back-end Proxying with Virtual Hosts

When you tell the kernel to use bigger sockets you can set bigger values for ProxyReceiveBufferSze. e.g.
1048576 (1MB).

1.7.3.3 |[Hacking the Codeg

Some folks have patched the Apache’s 1.3.x source code to make the application buffer configurable as
well. After the patch there are two configuration directives available:

® ProxyReceiveBufferSize -- sets the socket buffer size
® ProxylnternalBufferSize -- sets the application buffer size

To patch the source, rename ap_breate() to ap _bcreate size() and add a size parameter, which defaults to
IOBUFSZE if 0is passed. Then add

#define ap_bcreate(p, flags) ap_bcreate(p,flags,0)
and add anew ap_bcreate() which callsap_bcreate size() for binary compatibility.

Actually the ProxyRecei veBufferSi ze should be called ProxySocket Buf f er Si ze. This
would also remove some of the confusion about what it actually does.

1.7.4 |Caching Featurg

META: complete the conf details

Apache does caching as well. It's relevant to mod_perl only if you produce proper headers, so your
scripts’ output can be cached. See the Apache documentation for more details on the configuration of this
capability.

1.7.5 [Build Procesq

To build mod_proxy into Apache just add --enable-modul e=proxy during the Apache ./configure stage.
Since you probably will need the mod_rewrite capability enable it as well with --enable-module=rewrite.

1.8 |[Front-end Back-end Proxying with Virtual Hosts

This section explains a configuration setup for proxying your back-end mod_perl servers when you need
to use Virtual Hosts.

Theterm Virtual Host refersto the practice of maintaining more than one server on one machine, as differ-
entiated by their apparent hostname. For example, it is often desirable for companies sharing a web server
to have their own domains, with web servers accessible as www.companyl.com and www.company2.com,
without requiring the user to know any extra path information.

24 29 Jan 2004

Real World Scenarios 1.8 Front-end Back-end Proxying with Virtual Hosts

The approach is to use a unique port number for each virtual host at the back-end server, so you can redi-
rect from the front-end server to localhost:1234, and name-based virtual servers on the front end, though
any technique on the front-end will do.

If you run the front-end and the back-end servers on the same machine you can prevent any direct outside
connections to the back-end server if you bind tightly to address 127. 0. 0. 1 (localhost) as you will see
in the following configuration example.

The front-end (light) server configuration:

<Vi rtual Host 10.10.10. 10>

Server Name www. exanpl e. com

Server Al i as exanpl e.com

Rewri t eEngi ne On

RewriteOptions 'inherit’

RewiteRule \.(gif|jpg|lpngltxt|htn)$ - [last]

RewriteRule A/ (.*)$ http://local host: 4077/ $1 [proxy]
</ Vi rt ual Host >

<Vi rtual Host 10.10.10. 10>
Server Nanme foo. exanpl e. com
Rewr i t eEngi ne On
RewriteOptions 'inherit’
RewriteRule \.(gif|jpg|png|txt|htm)$ - [last]
RewiteRule A/ (.*)$ http://Iocal host: 4078/ $1 [proxy]
</ Vi r t ual Host >

The above front-end configuration handles two virtual hosts; www.example.com and foo.example.com.
The two setups are ailmost identical.

The front-end server will handle files with the extensions .gif, .jpg, .png, .txt and .html internally, the rest
will be proxied to be handled by the back-end server.

The only difference between the two virtual hosts settings is that the former rewrites requests to port 4077
at the back-end machine and the | atter to port 4078.

If your server is configured to run traditional CGI scripts (under mod _cgi) as well as mod_perl CGlI
programs, then it would be beneficial to configure the front-end server to run the traditional CGI scripts
directly. This can be done by altering the gi f | j pg| png| t xt Rewriteruletoadd | cgi at the end if all
your mod_cgi scripts have the .cgi extension, or adding a new rule to handle all / cgi - bi n/ * locations
locally.

The back-end (heavy) server configuration:
Port 80
Per | Post ReadRequest Handl er My: : ProxyRenot eAddr
Li sten 4077
<Vi rtual Host | ocal host:4077>
Server Namre www. exanpl e. com

Docunent Root / hore/ ht t pd/ docs/ www. exanpl e. com
Di rectoryl ndex index.shtm index.htm

29 Jan 2004 25

1.9 Getting the Remote Server |P in the Back-end server in the Proxy Setup

</ Vi r t ual Host >

Li sten 4078

<Vi rtual Host | ocal host: 4078>
Server Name f oo. exanpl e. com
Docunent Root / hone/ ht t pd/ docs/ f 0o. exanpl e. com
Di rectoryl ndex index.shtm index.htmnl

</ Vi r t ual Host >

The back-end server knows to tell which virtual host the request is made to, by checking the port number
the request was proxied to and using the appropriate virtual host section to handleit.

We set "Port 80" so that any redirects don’'t get sent directly to the back-end port.

To get the real remote |P addresses from proxy, the[My::ProxyRemoteAddr handler is used based on the
nod_pr oxy_add_f orwar d Apache module. Prior to mod_perl 1.22 this setting must have been set
per-virtua host, since it wasn’t inherited by the virtual hosts.

The following configuration is yet another useful example showing the other way around. It specifies what
to be proxied and then the rest is served by the front end:

Rewr i t eEngi ne on

Rewr i t eLogLevel 0

RewriteRul e A (perl.*)$ http://127.0.0.1:8052/$1 [P, L]
NoCache *

ProxyPassReverse / http://ww. exanpl e.com

So we don't have to specify the rule for static objects to be served by the front-end as we did in the previ-
ous exampl e to handle files with the extensions .gif, .jpg, .png and .txt internally.

1.9 |Getting the Remote Server |P in the Back-end server in
the Proxy Setup

Ask Bjoern Hansen has written the nod_proxy_add_forward module for Apache. It sets the
X- Forwar ded- For field when doing a Pr oxyPass, similar to what Squid can do. Its location is spec-
ified in the download section.

Basically, this module adds an extra HTTP header to proxying requests. Y ou can access that header in the
mod_perl-enabled server, and set the |P address of the remote server. Y ou won't need to compile anything
into the back-end server.

19.1

Download the module and use its location as a value of the --activate-module argument for the ./configure
utility within the Apache source code, so the module can be found.

26 29 Jan 2004

Real World Scenarios 1.9.2 Usage

Jconfigure \

"--with-layout=Apache" \
"--activate-module=src/modules/extra/mod_proxy_add_forward.c" \
"--enable-module=proxy_add_forward" \

... other options ...

--enable-module=proxy_add_forward enables this module as you have guessed already.

19.2

If you are using Apache::Registry or Apache::PerlRun modules just put the following code
into startup.pl:

use Apache::Constants ();
sub My::ProxyRemoteAddr ($) {
my $r = shift;

we’ll only look at the X-Forwarded-For header if the requests
comes from our proxy at localhost
return Apache::Constants::OK
unless ($r->connection->remote_ip eq "127.0.0.1")
and $r->header_in("X-Forwarded-For’);

Select last value in the chain -- original client’s ip
if (my ($ip) = $r->headers_in->{’X-Forwarded-For’} =~ /([*\s]+)$/) {
$r->connection->remote_ip($ip);

}

return Apache::Constants::OK;

}
And in the mod_per!’s httpd.conf:

PerlPostReadRequestHandler My::ProxyRemoteAddr

and the right thing will happen transparently for your scripts. Otherwise if you write your own mod_perl
content handler, you can retrieve it directly in your code using asimilar code.

1.9.3

Different sites have different needs. If you use the header to set the IP address, Apache believesit. Thisis
reflected in the logging for example. Y ou really don’t want anyone but your own system to set the header,
which is why the recommended code above checks where the request really came from before changing
remote_ip

Generally you shouldn’'t trust the X-Forwarded-For header. You only want to rely on
X-Forwarded-For headers from proxies you control yourself. If you know how to spoof a cookie
you've probably got the general idea on making HTTP headers and can spoof the X-Forwarded-For
header as well. The only address you can count on as being areliable value is the one from r->connec -
tion ->remote_ip

29 Jan 2004 27

1.9.4 Cavesats

From that point on, the remote IP address is correct. You should be able to access
$ENV{ REMOTE_ADDR} environment variable as usual.

1.9.4

It was reported that Ben Laurie€'s Apache-SSL does not seem to put the IP addresses in the
X- Forwar ded- For header--it does not set up such a header a al. However, the
$ENV{ REMOTE_ADDR} environment variable it sets up contains the IP address of the original client
machine.

Prior to mod perl 1.22 there was a need to repeat the PerlPostReadRequestHandler My::ProxyRe-
moteAddr directive for each virtual host, since it wasn't inherited by the virtual hosts.

1.9.5 |Imod proxy add forward Module' s Order Precedence

Some users report that they cannot get this module to work as advertised. They verify that the module is
built in, but the front-end server is not generating the X- For war ded- For header when requests are
being proxied to the back-end server. As aresult, the back-end server has no ideawhat the remote IP is.

Asiit turns out, mod_proxy add_forward needs to be configured in Apache before mod proxy in order to
operate properly, since Apache gives highest precedence to the last defined module.

Moving the two build options required to enable mod_proxy add forward while configuring Apache
appears to have no effect on the default configuration order of modules, since in each case, the resulting
builds show mod_proxy add forward last in thelist (or first via/server-info).

One solution is to explicitly define the configuration order in the http.conf file, so that
mod_proxy_add forward appears before mod_proxy, and therefore gets executed after mod_proxy.
(Modules are being executed in reverse order, i.e. module that was Added first will be executed last.)

Obvioudly, this list would need to be tailored to match the build environment, but to ease this task just
insert an AddMbdul e directive before each entry reported by ht t pd -1 (and removing httpd_core.c, of
course):

Cl ear Mbdul eLi st

AddMbdul e nmod_env. c

[mor e nodul es sni pped]

AddMbdul e mod_proxy_add_forward. c
AddMbdul e nmod_proxy. c

AddMbdul e nmod_rewrite.c

AddMbdul e nmod_setenvif.c

Note that the above snippet is added to httpd.conf of the front-end server.

Another solution is to reorder the module list during configuration by using one or more
- - per mut e- nodul e arguments to the ./configure utility. (Try . / confi gure - - hel p toseeif your
version of Apache supports this option.) - - per mut e- nodul e=f oo: bar will swap the position of
mod_foo and mod_bar in thelist, - - per nmut e- mrodul e=BEGQ N: f oo will move mod_foo to the begin-
ning of the list, and - - per nmut e- nodul e=f oo: END will move mod_foo to the end. For example

28 29 Jan 2004

Real World Scenarios 1.10 HTTP Authentication With Two Servers Plus a Proxy

suppose your module list fromht t pd -1 lookslike:

http_core.c

[mor e nodul es sni pped]
nmod_proxy. c
nod_setenvif.c
nmod_proxy_add_forward. c

Y ou might add the following arguments to ./configure to move mod_proxy_add_forward to the position in
thelist just before mod_proxy:

./configure \
"--with-1ayout =Apache" \
"--activat e- nodul e=src/ nodul es/ extra/ nod_proxy_add_forward.c" \
"--enabl e- nodul e=proxy_add_f orward" \
. other options ...
"- - permut e- modul e=pr oxy: proxy_add_forward" \
"- - permut e- rodul e=set envi f: END"

With this change, the X- For war ded- For header is now being sent to the back-end server, and the
remote | P appears in the back-end server’s access log file.

1.10 HTTP Authentication With Two Servers Plus a Proxy

Assuming that you have a setup of one "front-end" server, which proxies the "back-end" (mod_perl)
server, if you need to perform authentication in the "back-end" server it should handle all authentication
itself. If Apache proxies correctly, it will pass through al authentication information, making the
"front-end" Apache somewhat "dumb", as it does nothing but pass through the information.

In the configuration file your Aut h configuration directivesneed to beinsidethe<Di rectory ...> ..
</ Di r ect or y> sections because if you use the section <Location ...> .. </Location> the
proxy server will take the authentication information for itself and not passit on.

The same appliesto mod_ssl and similar Apache SSL modules. If it gets plugged into a front-end server, it
will properly encode/decode all the SSL requests. So if your machine is secured from inside, your
back-end server can do secure transactions.

1.11 /mod rewrite Examples

Example code for using mod_rewrite with mod_perl application servers. Several examples were taken
from the mailing list.

1.11.1 |Rewriting Requests Based on File Extension|

In the mod_proxy + mod perl servers scenario, Pr oxyPass was used to redirect all requests to the
mod_perl server, by matching the beginning of the relative URI (e.g. /perl). What should you do if you
want everything, but files with extensions like .gif, .cgi and similar, to be proxypassed to the mod_perl
server. Thesefiles are to be served by the light Apache server which carries the mod_proxy module.

29 Jan 2004 29

1.11.2 Internet Exporer 5 favicon.ico 404

The following example rewrites everything to the mod_perl server. It locally handles all requests for files
with extensions gif, jpg, png, css, txt, cgi and relative URIs starting with /cgi-bin (e.g. if you want some
scripts to be executed under mod_cgi).

RewriteEngine On

handle GIF and JPG images and traditional CGI's directly
RewriteRule \.(gif|jpg|png|css|txt|cgi)$ - [last]

RewriteRule "/cgi-bin - [last]

pass off everything but images to the heavy-weight server via proxy
RewriteRule */(.*)$ http://localhost:4077/$1 [proxy]

That is, first, handle locally what you want to handle locally, then hand off everything el se to the back-end
guy.
Thisisthe configuration of the logging facilities.

RewriteLogLevel 1

RewriteLog "| /usr/local/apache_proxy/bin/rotatelogs \
/usr/local/apache-common/logs/r_log 86400"

It says: log all the rewrites thru the pipe to the rotatel ogs utility which will rotate the logs every 2
hours (86400 secs).

1.11.2 Internet Exporer 5 favicon.ico 404

Redirect all those |E5 requests for favicon.ico to a central image:

RewriteRule .*favicon.ico /wherever/favicon.ico [PT,NS]

1.11.3 [Hiding Extensions for Dynamic Pageq

A quick way to make dynamic pages |ook static:

RewriteRule Mwherever/([a-zA-Z]+).html /perl-bin/$1.cgi [PT]

1.11.4 (Serving Static Content L ocally and Rewriting Everything Elsg

Instead of keeping all your Perl scripts in /perl and your static content everywhere else, you could keep
your static content in special directories and keep your Perl scripts everywhere else. You can still use the
light/heavy apache separation approach described before, with afew minor modifications.

In the light Apache' s httpd.conf file, turn rewriting on:

RewriteEngine On

Now list all directories that contain only static objects. For example if the only relative to Documert -
Root directories are /images and style you can set the following rule:

30 29 Jan 2004

Real World Scenarios 1.11.5 Upgrading mod_perl Heavy Application Instances

RewriteRul e /(i mages|style) - [L]

The[L] (Last) means that the rewrite engine should stop if it has a match. This is hecessary because the
very last rewrite rule proxies everything to the heavy server:

RewriteRule A/ (.*) http://ww.exanpl e.com 8080/ $1 [P]

This line is the difference between a server for which static content is the default and one for which
dynamic (perlish) content is the default.

Y ou should also add the reverse rewrite rule as before;

ProxyPassReverse / http://ww. exanpl e. conl
so that the user doesn't see the port number : 8080 in the browser’ s location window.

It is possible to use | ocal host inthe Rew i t eRul e above if the heavy and light servers are on the
same machine. So if we sum up the above setup we get:

Rewr i t eEngi ne On

RewriteRul e ~/ (inmages|style) - [L]

RewriteRule ~/(.*) http://ww. exanpl e.com 8080/ $1 [P]
ProxyPassReverse / http://ww. exanpl e. conl

1.11.5 {Upgrading mod perl Heavy Application | nstanceg

When using a light’/heavy separation method one of the challenges of running a production environment is
being able to upgrade to newer versions of mod_perl or your own application. The following method can
be used without having to do a server restart.

Add the following rewrite rule to your httpd.conf file:

Rewri t eEngi ne On
RewriteMap maps txt:/etc/httpd. maps
RewiteRule ~(.*) http://${nmaps: appserver}$1l [proxy]

Create the file /etc/httpd.maps and add the following entry:
appserver foo.com 9999

Mod_rewrite rereads (or checks the mtime of) the file on every request so the change takes effect immedi-
ately. To seamlessly upgrade your application server to a new version, install a new version on a different
port. After checking for a quality installation, edit /etc/httpd.maps to point to the new server. After the file
iswritten the next request the server processes will be redirected to the new installation.

1.11.6 |Blocking IP Addresseq

The following rewrite code blocks I P addresses:

29 Jan 2004 31

1.12 Caching in mod_proxy

Rewr it eCond /web/site/var/bl ocked/ REMOTE _ADDR- % REMOTE_ADDR} - f
RewriteRule .* http://YOUR HOST- BLOCKED- FOR- EXCESSI VE- CONSUMPTI ON [redirect, | ast]

To block IP address 10.1.2.3, simply touch

/web/ sitelvar/bl ocked/ REMOTE_ADDR- 10. 1. 2. 3

This has an advantage over Apache parsing along file of addressesin that the OSis better at afile lookup.

1.12 |Caching in mod_proxy

Thisisnot really mod_perl related, so I’ll just stress one point. If you want the caching to work the follow-
ing HTTP headers should be supplied: Last - Mbdi fi ed, Cont ent - Lengt h and Expi r es.

1.13 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.14 |Authorsg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

32 29 Jan 2004

Real World Scenarios Table of Contents:

Table of Contents:

1 |Red World Scenarios| 1
1.1 [Description 2
12 [Assumptions] . . 2
13 IStandaI onemod perl Enabled Apache Serveﬂ 2

1.3.1 |[Installation in 10 lineq 2
1.3.2 |Insta||ation in 10 paragraphy . 2
1.3.3 [Configuration - 4
14 |One Plain and One mod | perl enabled Apache Servers| 6
1.4.1 |Configuration and Compilation of the Sources) . 7
1.4.1.1 [Building the httpd docs Server] 7
1.4.1.2 [Building the httpd perl Server| 8
1.4.2 |Configuration of the servery . 10
1.4.2.1 Basic httpd docs Server Conflquratl od 10
1.4.2.2 [Basic httpd perl Server Configuration . . 10

1.5 |Running Two webservers and Squid in httpd Accelerator Model 11
1.6 |Running One Webserver and Squid in httpd Accelerator Mode 18
1.7 [mod_proxy| : 19
171 IConcepts and Confrquratron Drrectrved 19
1.7.1.1 ProxyPas§ . . 19
1.7.1.2 IProxyPassReversel 20
1.7.1.3 [Security Issueq . 20
1.7.2 |Buffer|nq Featurel 21
1.7.3 |Setting the Buffering Limits on Varrous OSsI 22
1.7.3.1 [[OBUFSIZE Source Code Definition . 22
1.7.3.2 [ProxyReceiveBuiferSize Configuration Di rectrvel 23
1.7.3.3 [Hacking the Codg 24
174 |Cachi ng Featurel 24
1.7.5 [Build Process 24
1.8 IFront end Back-end Proxying wrth Vrrtual Hostsl 24
1.9 |Getti ng the Remote Server |P in the Back-end server in the Proxy Setupl 26
1.9.1 Build . 26
192 : 27
1.9.3 [Secuniny] 27
1.9.4 [Caveatd : 28
1.9.5 |mod proxy add forward M odule S Order Precedencel 28
1.10 |[HTTP Authentication With Two Servers Plus a Proxy| . 29
1.11 [mod rewrite Exampley . . 29
1.11.1 |Rewriting Requests Based on Frle Extensr ori 29
1.11.2 |Internet Exporer 5 favicon.ico 404 30
1.11.3 [Hiding Extensionsfor Dynamic Paged . 30
1.11.4 [Serving Static Content Locally and Rewriting Everythlnq Elsel 30
1.11.5 [Upgrading mod perl Heavy Application Instanceq . 31
1.11.6 |Blocking IP Addresseq . 31
1.12 [Caching in mod proxy] . 32

29 Jan 2004 i

Table of Contents:

113 [Mantanerd 32
114 [Authord32

ii 29 Jan 2004

	1€€Real World Scenarios
	1.1€€Description
	1.2€€Assumptions
	1.3€€Standalone mod_perl Enabled Apache Server
	1.3.1€€Installation in 10 lines
	1.3.2€€Installation in 10 paragraphs
	1.3.3€€Configuration

	1.4€€One Plain and One mod_perl enabled Apache Servers
	1.4.1€€Configuration and Compilation of the Sources.
	1.4.1.1€€Building the httpd_docs Server
	1.4.1.2€€Building the httpd_perl Server

	1.4.2€€Configuration of the servers
	1.4.2.1€€Basic httpd_docs Server Configuration
	1.4.2.2€€Basic httpd_perl Server Configuration

	1.5€€Running Two webservers and Squid in httpd Accelerator Mode
	1.6€€Running One Webserver and Squid in httpd Accelerator Mode
	1.7€€mod_proxy
	1.7.1€€Concepts and Configuration Directives
	1.7.1.1€€ProxyPass
	1.7.1.2€€ProxyPassReverse
	1.7.1.3€€Security Issues

	1.7.2€€Buffering Feature
	1.7.3€€Setting the Buffering Limits on Various OSs
	1.7.3.1€€IOBUFSIZE Source Code Definition
	1.7.3.2€€ProxyReceiveBufferSize Configuration Directive
	1.7.3.3€€Hacking the Code

	1.7.4€€Caching Feature
	1.7.5€€Build Process

	1.8€€Front-end Back-end Proxying with Virtual Hosts
	1.9€€Getting the Remote Server IP in the Back-end server in the Proxy Setup
	1.9.1€€Build
	1.9.2€€Usage
	1.9.3€€Security
	1.9.4€€Caveats
	1.9.5€€mod_proxy_add_forward Module's Order Precedence

	1.10€€HTTP Authentication With Two Servers Plus a Proxy
	1.11€€mod_rewrite Examples
	1.11.1€€Rewriting Requests Based on File Extension
	1.11.2€€Internet Exporer 5 favicon.ico 404
	1.11.3€€Hiding Extensions for Dynamic Pages
	1.11.4€€Serving Static Content Locally and Rewriting Everything Else
	1.11.5€€Upgrading mod_perl Heavy Application Instances
	1.11.6€€Blocking IP Addresses

	1.12€€Caching in mod_proxy
	1.13€€Maintainers
	1.14€€Authors

