

1 Protecting Your Site

129 Jan 2004

1 Protecting Your SiteProtecting Your Site

1.1 Description
Securing your site should be your first priority, because of the consequences a break-in might have. We
discuss the various authentication and authorization techniques available, a very interesting use of
mod_perl.

1.2 The Importance of Your site’s Security
Let’s face it, your site or service can easily become a target for Internet "terrorists". It can be because of
something you said, the success of your site, or for no obvious reason whatever. If your site security is
compromised, all your data can be deleted or important information can be stolen. You may risk legal
action or the sack if this happens.

Your site can be paralyzed through a _simple_ denial of service (DoS) attack.

Whatever you do, as long as you are connected to the network your site will be vulnerable. Cut the
connections, turn off your machine and put it into a safe. Now it is protected--but useless.

So what can you do?

Let’s first get acquainted with some security related terminology:

Authentication

When you want to make sure that a user is who he claims to be, you generally ask her for a username
and a password. Once you have both, you can check them against your database of username/pass-
word pairs. If they match, the user has passed the Authentication stage. From now on if you keep the
session open all you need to do is to remember the username.

Authorization

You might want to allow user foo to have access to some resource, but restrict her from accessing
another resource, which in turn is accessible only for user bar. The process of checking access rights
is called Authorization. For Authorization all you need is an authenticated username or some other
attribute which you can authorize against. For example, you can authorize against IP number, allow-
ing only your local users to use some service. But be warned that IP numbers or session_ids can be
spoofed (forged), and that is why you should not do Authorization without Authentication.

Actually you’ve been familiar with both these concepts for a while.

When you telnet to your account on some machine you go through a login process (Authentication).

When you try to read some file from your file systems, the kernel checks the permissions on this file
(Authorization). You may hear about Access control which is another name for the same thing.

29 Jan 20042

1.1 Description

1.3 Illustrated Security Scenarios
I am going to present some real world security requirements and their implementations.

1.3.1 Non authenticated access for internal IPs, Authenticated for
external IPs

An Extranet is very similar to an Intranet, but at least partly accessible from outside your organization. If
you run an Extranet you might want to let your internal users have unrestricted access to your web server.
If these same users call from outside your organization you might want to make sure that they are in fact
your employees.

These requirements are achieved very simply by putting the IP patterns of the organization in a Perl
Access Handler in an .htaccess file. This sets the REMOTE_USER environment variable to the orga-
nization’s generic username. Scripts can test the REMOTE_USER environment variable to determine
whether to allow unrestricted access or else to require authentication.

Once a user passes the authentication stage, either bypassing it because of his IP address or after entering a
correct login/password pair, the REMOTE_USER variable is set. Then we can talk about authorization.

Let’s see the implementation of the authentication stage. First we modify httpd.conf:

 PerlModule My::Auth

 <Location /private>
 PerlAccessHandler My::Auth::access_handler
 PerlSetVar Intranet "10.10.10.1 => userA, 10.10.10.2 => userB"
 PerlAuthenHandler My::Auth::authen_handler
 AuthName realm
 AuthType Basic
 Require valid-user
 Order deny, allow
 Deny from all
 </Location>

Now the code of My/Auth.pm:

 sub access_handler {

 my $r = shift;

 unless ($r->some_auth_required) {
 $r->log_reason("No authentication has been configured");
 return FORBIDDEN;
 }
 # get list of IP addresses
 my %ips = split /\s*(?:=>|,)\s*/, $r->dir_config("Intranet");

 if (my $user = $ips{$r->connection->remote_ip}) {

 # update connection record

329 Jan 2004

1.3 Illustrated Security ScenariosProtecting Your Site

 $r->connection->user($user);

 # do not ask for a password
 $r->set_handlers(PerlAuthenHandler => [\&OK]);
 }
 return OK;
 }

 sub authen_handler {

 my $r = shift;

 # get user’s authentication credentials
 my ($res, $sent_pw) = $r->get_basic_auth_pw;
 return $res if $res != OK;
 my $user = $r->connection->user;

 # authenticate through DBI
 my $reason = authen_dbi($r, $user, $sent_pw);

 if ($reason) {
 $r->note_basic_auth_failure;
 $r->log_reason($reason, $r->uri);
 return AUTH_REQUIRED;
 }
 return OK;

 }

 sub authen_dbi{
 my ($r, $user, $sent_pw) = @_;

 # validate username/passwd

 return 0 if (*PASSED*) # replace with real code!!!

 return "Failed for X reason";

 }
 # don’t forget 1;
 1;

You can implement your own authen_dbi() routine, or you can replace authen_handler() with
an existing authentication handler such as Apache::AuthenDBI.

If one of the IP addresses is matched, access_handler() sets REMOTE_USER to be either userA or
userB.

If neither IP address is matched, PerlAuthenHandler will not be set to OK, and the Authentication
stage will ask the user for a login and password.

29 Jan 20044

1.3.1 Non authenticated access for internal IPs, Authenticated for external IPs

1.4 Authentication code snippets

1.4.1 Forcing re-authentication

To force an authenticated user to reauthenticate just send the following header to the browser:

 WWW-Authenticate: Basic realm="My Realm"
 HTTP/1.0 401 Unauthorized

This will pop-up (in Netscape at least) a window saying Authorization Failed. Retry? with OK and a
Cancel buttons. When that window pops up you know that the password has been discarded. If the user
hits the Cancel button the username will also be discarded. If she hits the OK button, the authentication
window will be brought up again with the previous username already in place.

In the Perl API you would use the note_basic_auth_failure() method to force reauthentication.

This may not work! The browser’s behaviour is in no way guaranteed.

1.4.2 OK, AUTH_REQUIRED and FORBIDDEN in Authentication
handlers

When your authentication handler returns OK, it means that user has correctly authenticated and now
$r->connection->user will have the username set for subsequent requests. For
Apache::Registry and friends, where the environment variable settings weren’t erased, an equivalent
$ENV{REMOTE_USER} variable will be available.

The password is available only through the Perl API with the help of the get_basic_auth_pw() method.

If there is a failure, unless it’s the first time, the AUTH_REQUIRED flag will tell the browser to pop up an
authentication window, to try again. For example:

 my($status, $sent_pw) = $r->get_basic_auth_pw;
 unless($r->connection->user and $sent_pw) {
 $r->note_basic_auth_failure;
 $r->log_reason("Both a username and password must be provided");
 return AUTH_REQUIRED;
 }

Let’s say that you have a mod_perl authentication handler, where the user’s credentials are checked
against a database. It returns either OK or AUTH_REQUIRED. One of the possible authentication failure
case might happen when the username/password are correct, but the user’s account has been suspended
temporarily.

If this is the case you would like to make the user aware of this, by displaying a page, instead of having
the browser pop up the authentication dialog again. You will also refuse authentication, of course.

529 Jan 2004

1.4 Authentication code snippetsProtecting Your Site

The solution is to return FORBIDDEN, but before that you should set a custom error page for this specific
handler, with help of $r->custom_response. It looks something like this:

 use Apache::Constants qw(:common);
 $r->custom_response(SERVER_ERROR, "/errors/suspended_account.html");

 return FORBIDDEN if $suspended;

1.5 Apache::Auth* modules
PerlAuthenHandler’s

 Apache::AuthAny Authenticate with any username/password
 Apache::AuthenCache Cache authentication credentials
 Apache::AuthCookie Authen + Authz via cookies
 Apache::AuthenDBI Authenticate via Perl’s DBI
 Apache::AuthExpire Expire Basic auth credentials
 Apache::AuthenGSS Generic Security Service (RFC 2078)
 Apache::AuthenIMAP Authentication via an IMAP server
 Apache::AuthenPasswdSrv External authentication server
 Apache::AuthenPasswd Authenticate against /etc/passwd
 Apache::AuthLDAP LDAP authentication module
 Apache::AuthPerLDAP LDAP authentication module (PerLDAP)
 Apache::AuthenNIS NIS authentication
 Apache::AuthNISPlus NIS Plus authentication/authorization
 Apache::AuthenRaduis Authentication via a Radius server
 Apache::AuthenSmb Authenticate against NT server
 Apache::AuthenURL Authenticate via another URL
 Apache::DBILogin Authenticate to backend database
 Apache::DCELogin Obtain a DCE login context
 Apache::PHLogin Authenticate via a PH database
 Apache::TicketAccess Ticket based access/authentication

PerlAuthzHandler’s

 Apache::AuthCookie Authen + Authz via cookies
 Apache::AuthzAge Authorize based on age
 Apache::AuthzDCE DFS/DCE ACL based access control
 Apache::AuthzDBI Group authorization via Perl’s DBI
 Apache::AuthzGender Authorize based on gender
 Apache::AuthzNIS NIS authorization
 Apache::AuthzPasswd Authorize against /etc/passwd
 Apache::AuthzSSL Authorize based on client cert
 Apache::RoleAuthz Role-based authorization

PerlAccessHandler’s

 Apache::AccessLimitNum Limit user access by number of requests
 Apache::BlockAgent Block access from certain agents
 Apache::DayLimit Limit access based on day of week
 Apache::IPThrottle Limit bandwith consumption by IP
 Apache::RobotLimit Limit access of robots
 Apache::SpeedLimit Control client request rate

29 Jan 20046

1.5 Apache::Auth* modules

1.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.7 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

729 Jan 2004

1.6 MaintainersProtecting Your Site

Table of Contents:
................. 11 Protecting Your Site
................... 21.1 Description
............ 21.2 The Importance of Your site’s Security
............... 31.3 Illustrated Security Scenarios
.... 31.3.1 Non authenticated access for internal IPs, Authenticated for external IPs
............... 51.4 Authentication code snippets
............... 51.4.1 Forcing re-authentication
.... 51.4.2 OK, AUTH_REQUIRED and FORBIDDEN in Authentication handlers
................ 61.5 Apache::Auth* modules
................... 71.6 Maintainers
................... 71.7 Authors

i29 Jan 2004

Table of Contents:Protecting Your Site

	1€€Protecting Your Site
	1.1€€Description
	1.2€€The Importance of Your site's Security
	1.3€€Illustrated Security Scenarios
	1.3.1€€Non authenticated access for internal IPs, Authenticated for external IPs

	1.4€€Authentication code snippets
	1.4.1€€Forcing re-authentication
	1.4.2€€OK, AUTH_REQUIRED and FORBIDDEN in Authentication handlers

	1.5€€Apache::Auth* modules
	1.6€€Maintainers
	1.7€€Authors

