
 

 

 

 

 

 

 

 

 

 

1   HTTP Handlers 

129 Jan 2004

1  HTTP HandlersHTTP Handlers



1.1  Description
This chapter explains how to implement the HTTP protocol handlers in mod_perl.

1.2  HTTP Request Handler Skeleton
All HTTP Request handlers have the following structure:

  package MyApache::MyHandlerName;
  
  # load modules that are going to be used
  use ...;
  
  # compile (or import) constants
  use Apache::Const -compile => qw(OK);
  
  sub handler {
      my $r = shift;
      
      # handler code comes here
      
      return Apache::OK; # or another status constant
  }
  1;

First, the package is declared. Next, the modules that are going to be used are loaded and constants 
compiled.

The handler itself coming next and usually it receives the only argument: the Apache::RequestRec
object. If the handler is declared as a method handler :

  sub handler : method {
      my($class, $r) = @_;

the handler receives two arguments: the class name and the Apache::RequestRec object.

The handler ends with a return code and the file is ended with 1; to return true when it gets loaded.

1.3  HTTP Request Cycle Phases
Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be almost identical
to the mod_perl 1.0’s model. The only difference is in the response phase which now includes filtering.
Also the PerlHandler directive has been renamed to PerlResponseHandler to better match the 
corresponding Apache phase name (response).

The following diagram depicts the HTTP request life cycle and highlights which handlers are available to
mod_perl 2.0:

29 Jan 20042

1.1  Description



From the diagram it can be seen that an HTTP request is processes by 11 phases, executed in the following 
order:

1.  PerlPostReadRequestHandler (PerlInitHandler) 
2.  PerlTransHandler 
3.  PerlMapToStorageHandler 
4.  PerlHeaderParserHandler (PerlInitHandler) 
5.  PerlAccessHandler 
6.  PerlAuthenHandler 
7.  PerlAuthzHandler 
8.  PerlTypeHandler 
9.  PerlFixupHandler 

329 Jan 2004

1.3  HTTP Request Cycle PhasesHTTP Handlers



10.  PerlResponseHandler 
11.  PerlLogHandler 
12.  PerlCleanupHandler

It’s possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens. In that case Apache skips to the logging phase (mod_perl executes all registered Perl LogHan-
dler  handlers) and finally the cleanup phase happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it’s sent to the client.
We will talk about filters in detail later in this chapter.

Before discussing each handler in detail remember that if you use the stacked handlers feature all handlers
in the chain will be run as long as they return Apache::OK  or Apache::DECLINED . Because stacked
handlers is a special case. So don’t be surprised if you’ve returned Apache::OK  and the next handler
was still executed. This is a feature, not a bug.

Now let’s discuss each of the mentioned handlers in detail.

1.3.1  PerlPostReadRequestHandler

The post_read_request phase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

This phase is usually used to do processing that must happen once per request. For example 
Apache::Reload  is usually invoked at this phase to reload modified Perl modules.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Now, let’s look at an example. Consider the following registry script:

  touch.pl
  --------
  use strict;
  use warnings;
  
  use Apache::ServerUtil ();
  use File::Spec::Functions qw(catfile);
  
  my $r = shift;
  $r->content_type(’text/plain’);
  
  my $conf_file = catfile Apache::Server::server_root_relative($r->pool, ’conf’),
      "httpd.conf";
  
  printf "$conf_file is %0.2f minutes old", 60*24*(-M $conf_file);

29 Jan 20044

1.3.1  PerlPostReadRequestHandler



This registry script is supposed to print when the last time httpd.conf has been modified, compared to the
start of the request process time. If you run this script several times you might be surprised that it reports
the same value all the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won’t be reported correctly.

This happens because the -M operator reports the difference between file’s modification time and the
value of a special Perl variable $^T . When we run scripts from the command line, this variable is always
set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like 
-M, -C  and -A  are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we
need to reset $^T  to the request’s start time, before -M is used. We can change the script itself, but what if
we need to do the same change for several other scripts and handlers? A simple Perl PostRead -
RequestHandler  handler, which will be executed as the very first thing of each requests, comes handy 
here:

  file:MyApache/TimeReset.pm
  --------------------------
  package MyApache::TimeReset;
  
  use strict;
  use warnings;
  
  use Apache::RequestRec ();
  
  use Apache::Const -compile => ’OK’;
  
  sub handler {
      my $r = shift;
      $^T = $r->request_time;
      return Apache::OK;
  }
  1;

We could do:

  $^T = time();

But to make things more efficient we use $r->request_time  since the request object $r  already
stores the request’s start time, so we get it without performing an additional system call.

To enable it just add to httpd.conf:

  PerlPostReadRequestHandler MyApache::TimeReset

either to the global section, or to the <Virtu al Host > section if you want this handler to be run only for
a specific virtual host.

529 Jan 2004

1.3.1  PerlPostReadRequestHandlerHTTP Handlers



1.3.2  PerlTransHandler

The translate phase is used to perform the translation of a request’s URI into an corresponding filename.
If no custom handler is provided, the server’s standard translation rules (e.g., Alias directives,
mod_rewrite, etc.) will continue to be used. A PerlTransHandler handler can alter the default trans-
lation mechanism or completely override it.

In addition to doing the translation, this stage can be used to modify the URI itself and the request method.
This is also a good place to register new handlers for the following phases based on the URI.

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

There are many useful things that can be performed at this stage. Let’s look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-site was originally
made of static pages, and now you have moved to a dynamic page generation chances are that you don’t
want to change the old URIs, because you don’t want to break links for those who link to your site. If the 
URI:

  http://example.com/news/20021031/09/index.html

is now handled by:

  http://example.com/perl/news.pl?date=20021031&id=09&page=index.html

the following handler can do the rewriting work transparent to news.pl, so you can still use the former URI 
mapping:

  file:MyApache/RewriteURI.pm
  ---------------------------
  package MyApache::RewriteURI;
  
  use strict;
  use warnings;
  
  use Apache::RequestRec ();
  
  use Apache::Const -compile => qw(DECLINED);
  
  sub handler {
      my $r = shift;
  
      my ($date, $id, $page) = $r->uri =~ m|^/news/(\d+)/(\d+)/(.*)|;
      $r->uri("/perl/news.pl");
      $r->args("date=$date&id=$id&page=$page");
  
      return Apache::DECLINED;
  }
  1;

29 Jan 20046

1.3.2  PerlTransHandler



The handler matches the URI and assigns a new URI via $r->uri()  and the query string via 
$r->args() . It then returns Apache::DECLINED , so the next translation handler will get invoked, if
more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

To configure this module simply add to httpd.conf:

  PerlTransHandler +MyApache::RewriteURI

1.3.3  PerlMapToStorageHandler META: add something here

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

1.3.4  PerlHeaderParserHandler

The header_parser phase is the first phase to happen after the request has been mapped to its <Loca -
tion > (or an equivalent container). At this phase the handler can examine the request headers and to take
a special action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR .

This phase is very similar to Perl PostRead RequestHandler , with the only difference that it’s run
after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can take any Perl PostRead RequestHandler  and
turn it into Perl Header Parser Handler  by simply changing the directive name in httpd.conf and
moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a special directive PerlInitHandler  which if found outside resource containers behaves as 
Perl PostRead RequestHandler , otherwise as Perl Header Parser Handler .

You already know that Apache handles the HEAD, GET, POST and several other HTTP methods. But did
you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages: they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the 
EMAIL method. We can enable this protocol extension and push the real content handler during the 
Perl Header Parser Handler  phase:

  <Location /email>
      PerlHeaderParserHandler MyApache::SendEmail
  </Location>

729 Jan 2004

1.3.3  PerlMapToStorageHandler META: add something hereHTTP Handlers



and here is the MyApache::SendEmail handler:

  file:MyApache/SendEmail.pm
  --------------------------
  package MyApache::SendEmail;
  
  use strict;
  use warnings;
  
  use Apache::RequestRec ();
  use Apache::RequestIO ();
  use Apache::RequestUtil ();
  
  use Apache::Const -compile => qw(DECLINED OK);
  
  use constant METHOD        => ’EMAIL’;
  use constant SMTP_HOSTNAME => "localhost";
  
  sub handler {
      my $r = shift;
  
      return Apache::DECLINED unless $r->method eq METHOD;
  
      Apache::Server::method_register($r->pool, METHOD);
      $r->handler("perl-script");
      $r->push_handlers(PerlResponseHandler => \&send_email_handler);
  
      return Apache::OK;
  }
  
  sub send_email_handler {
      my $r = shift;
  
      my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
      my $content = content($r);
  
      my $status = send_email(\%headers, \$content);
  
      $r->content_type(’text/plain’);
      $r->print($status ? "ACK" : "NACK");
      return Apache::OK;
  }

  
  sub content {
      my $r = shift;
  
      $r->setup_client_block;
      return ’’ unless $r->should_client_block;
      my $len = $r->headers_in->get(’content-length’);
      my $buf;
      $r->get_client_block($buf, $len);
  
      return $buf;
  }
  
  sub send_email {

29 Jan 20048

1.3.4  PerlHeaderParserHandler



      my($rh_headers, $r_body) = @_;
  
      require MIME::Lite;
      MIME::Lite->send("smtp", SMTP_HOSTNAME, Timeout => 60);
  
      my $msg = MIME::Lite->new(%$rh_headers, Data => $$r_body);
      #warn $msg->as_string;
      $msg->send;
  }
  
  1;

Let’s get the less interesting code out of the way. The function content() grabs the request body. The func-
tion send_email() sends the email over SMTP. You should adjust the constant SMTP_HOSTNAME to point
to your outgoing SMTP server. You can replace this function with your own if you prefer to use a differ-
ent method to send email.

Now to the more interesting functions. The function handler()  returns immediately and passes the
control to the next handler if the request method is not equal to EMAIL (set in the METHOD constant):

      return Apache::DECLINED unless $r->method eq METHOD;

Next it tells Apache that this new method is a valid one and that the perl-script  handler will do the 
processing. Finally it pushes the function send_email_handler()  to the Perl Respon se Han-
dler  list of handlers:

      Apache::Server::method_register($r->pool, METHOD);
      $r->handler("perl-script");
      $r->push_handlers(PerlResponseHandler => \&send_email_handler);

The function terminates the header_parser phase by:

      return Apache::OK;

All other phases run as usual, so you can reuse any HTTP protocol hooks, such as authentication and fixup
phases. 

When the response phase starts send_email_handler()  is invoked, assuming that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email headers 
To, From and Subject , and the body of the message:

      my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
      my $content = $r->content;

Then send the email:

      my $status = send_email(\%headers, \$content);

Finally return to the client a simple response acknowledging that email has been sent and finish the
response phase by returning Apache::OK :

929 Jan 2004

1.3.4  PerlHeaderParserHandlerHTTP Handlers



      $r->content_type(’text/plain’);
      $r->print($status ? "ACK" : "NACK");
      return Apache::OK;

Of course you will want to add extra validations if you want to use this code in production. This is just a
proof of concept implementation.

As already mentioned when you extend an HTTP protocol you need to have a client that knows how to use
the extension. So here is a simple client that uses LWP::User Agent  to issue an EMAIL method request
over HTTP protocol:

  file:send_http_email.pl
  -----------------------
  #!/usr/bin/perl
  
  use strict;
  use warnings;
  
  require LWP::UserAgent;
  
  my $url = "http://localhost:8000/email/";
  
  my %headers = (
      From    => ’example@example.com’,
      To      => ’example@example.com’,
      Subject => ’3 weeks in Tibet’,
  );
  
  my $content = <<EOI;
  I didn’t have an email software,
  but could use HTTP so I’m sending it over HTTP
  EOI
  
  my $headers = HTTP::Headers->new(%headers);
  my $req = HTTP::Request->new("EMAIL", $url, $headers, $content);
  my $res = LWP::UserAgent->new->request($req);
  print $res->is_success ? $res->content : "failed";

most of the code is just a custom data. The code that does something consists of four lines at the very end.
Create HTTP::Headers  and HTTP::Request  object. Issue the request and get the response. Finally
print the response’s content if it was successful or just "failed" if not.

Now save the client code in the file send_http_email.pl, adjust the To field, make the file executable and
execute it, after you have restarted the server. You should receive an email shortly to the address set in the 
To field.

1.3.5  PerlInitHandler

When configured inside any container directive, except <Virtu al Host >, this handler is an alias for 
Perl Header Parser Handler  described earlier. Otherwise it acts as an alias for Perl PostRead -
RequestHandler  described earlier.

29 Jan 200410

1.3.5  PerlInitHandler



It is the first handler to be invoked when serving a request.

This phase is of type RUN_ALL.

The best example here would be to use Apache::Reload  which takes the benefit of this directive.
Usually Apache::Reload  is configured as:

  PerlInitHandler Apache::Reload
  PerlSetVar ReloadAll Off
  PerlSetVar ReloadModules "MyApache::*"

which during the current HTTP request will monitor and reload all MyApache::*  modules that have
been modified since the last HTTP request. However if we move the global configuration into a <Loca -
tion > container:

  <Location /devel>
      PerlInitHandler Apache::Reload
      PerlSetVar ReloadAll Off
      PerlSetVar ReloadModules "MyApache::*"
      SetHandler perl-script
      PerlResponseHandler ModPerl::Registry
      Options +ExecCGI
  </Location>

Apache::Reload  will reload the modified modules, only when a request to the /devel namespace is
issued, because PerlInitHandler  plays the role of Perl Header Parser Handler  here.

1.3.6  PerlAccessHandler

The access_checker phase is the first of three handlers that are involved in what’s known as AAA: 
Authentication and Authorization, and Access control.

This phase can be used to restrict access from a certain IP address, time of the day or any other rule not
connected to the user’s identity.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR .

The concept behind access checker handler is very simple, return Apache::FORBID DEN if the access is
not allowed, otherwise return Apache::OK .

The following example handler denies requests made from IPs on the blacklist.

  file:MyApache/BlockByIP.pm
  --------------------------
  package MyApache::BlockByIP;
  
  use strict;
  use warnings;
  
  use Apache::RequestRec ();

1129 Jan 2004

1.3.6  PerlAccessHandlerHTTP Handlers



  use Apache::Connection ();
  
  use Apache::Const -compile => qw(FORBIDDEN OK);
  
  my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);
  
  sub handler {
      my $r = shift;
  
      return exists $bad_ips{$r->connection->remote_ip}
          ? Apache::FORBIDDEN
          : Apache::OK;
  }
  
  1;

The handler retrieves the connection’s IP address, looks it up in the hash of blacklisted IPs and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler simply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base location /perl add:

  <Location /perl/>
      SetHandler perl-script
      PerlResponseHandler ModPerl::Registry
      PerlAccessHandler MyApache::BlockByIP
      Options +ExecCGI
  </Location>

It’s important to notice that PerlAccessHandler can be configured for any subsection of the site, no
matter whether it’s served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server simply add to httpd.conf:

  <Location />
      PerlAccessHandler MyApache::BlockByIP
  </Location>

1.3.7  PerlAuthenHandler

The check_user_id (authen) phase is called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated with AuthName, AuthType and at least one 
require directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should return Apache::OK. Otherwise the handler returns 
Apache::HTTP_UNAUTHORIZED to indicate that the user has not authenticated successfully. When
Apache sends the HTTP header with this code, the browser will normally pop up a dialog box that
prompts the user for login information.

29 Jan 200412

1.3.7  PerlAuthenHandler



This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space equals to the
secret length, specified by the constant SECRET_LENGTH.

  file:MyApache/SecretLengthAuth.pm
  ---------------------------------
  package MyApache::SecretLengthAuth;
  
  use strict;
  use warnings;
  
  use Apache::Access ();
  use Apache::RequestUtil ();
  
  use Apache::Const -compile => qw(OK DECLINED HTTP_UNAUTHORIZED);

  use Apache::Access();
  
  use constant SECRET_LENGTH => 14;
  
  sub handler {
      my $r = shift;
  
      my ($status, $password) = $r->get_basic_auth_pw;
      return $status unless $status == Apache::OK;
  
      return Apache::OK 
          if SECRET_LENGTH == length join " ", $r->user, $password;
  
      $r->note_basic_auth_failure;
      return Apache::HTTP_UNAUTHORIZED;
  }
  
  1;

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set to Apache::OK only when the user has supplied the username and the password credentials. If the
status is different, we just let Apache handle this situation for us, which will usually challenge the client so
it’ll supply the credentials.

Note that get_basic_auth_pw() does a few things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use 
get_basic_auth_pw(). First, is checks the value of the configured AuthType for the request,
making sure it is Basic. Then it makes sure that the Authorization (or Proxy-Authorization) header is 
formatted for Basic authentication. Finally, after isolating the user and password from the header, it 
populates the ap_auth_type slot in the request record with Basic. For the first and last parts of this
process, mod_perl offers an API. $r->auth_type returns the configured authentication type for the
current request - whatever was set via the AuthType configuration directive. $r->ap_auth_type 
populates the ap_auth_type slot in the request record, which should be done after it has been confirmed

1329 Jan 2004

1.3.7  PerlAuthenHandlerHTTP Handlers



that the request is indeed using Basic authentication. (Note: $r->ap_auth_type was 
$r->connection->auth_type in the mod_perl 1.0 API.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTH long (14 in our example). So for example the pair mod_perl/rules authenticates
correctly, whereas secret/password does not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it’s fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note_basic_auth_failure() and returns 
Apache::HTTP_UNAUTHORIZED, which sets the proper HTTP response headers that tell the client that
its user that the authentication has failed and the credentials should be supplied again.

It’s not enough to enable this handler for the authentication to work. You have to tell Apache what authen-
tication scheme to use (Basic or Digest), which is specified by the AuthType directive, and you
should also supply the AuthName -- the authentication realm, which is really just a string that the client
usually uses as a title in the pop-up box, where the username and the password are inserted. Finally the 
Require directive is needed to specify which usernames are allowed to authenticate. If you set it to 
valid-user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts from /perl/:

  <Location /perl/>
      SetHandler perl-script
      PerlResponseHandler ModPerl::Registry
      PerlAuthenHandler MyApache::SecretLengthAuth
      Options +ExecCGI
  
      AuthType Basic
      AuthName "The Gate"
      Require valid-user
  </Location>

Just like PerlAccessHandler and other mod_perl handlers, PerlAuthenHandler can be config-
ured for any subsection of the site, no matter whether it’s served by a mod_perl response handler or not.
For example to use the authentication handler from the last example for any requests to the site, simply 
use:

  <Location />
      PerlAuthenHandler MyApache::SecretLengthAuth
      AuthType Basic
      AuthName "The Gate"
      Require valid-user
  </Location>

29 Jan 200414

1.3.7  PerlAuthenHandler



1.3.8  PerlAuthzHandler

The auth_checker (authz) phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only called when the requested resource is password protected, similar to the auth phase. The handler is
expected to return Apache::DECLINED to defer the decision, Apache::OK to indicate its acceptance
of the user’s authorization, or Apache::HTTP_UNAUTHORIZED to indicate that the user is not autho-
rized to access the requested document.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Here is the MyApache::SecretResourceAuthz handler which grants access to certain resources
only to certain users who have already properly authenticated:

  file:MyApache/SecretResourceAuthz.pm
  ------------------------------------
  package MyApache::SecretResourceAuthz;
  
  use strict;
  use warnings;
  
  use Apache::Access ();
  use Apache::RequestUtil ();
  
  use Apache::Const -compile => qw(OK HTTP_UNAUTHORIZED);

  use Apache::Access ();
  
  my %protected = (
      ’admin’  => [’stas’],
      ’report’ => [qw(stas boss)],
  );
  
  sub handler {
      my $r = shift;
  
      my $user = $r->user;
      if ($user) {
          my($section) = $r->uri =~ m|^/company/(\w+)/|;
          if (defined $section && exists $protected{$section}) {
              my $users = $protected{$section};
              return Apache::OK if grep { $_ eq $user } @$users;
          }
          else {
              return Apache::OK;
          }
      }
  

1529 Jan 2004

1.3.8  PerlAuthzHandlerHTTP Handlers



      $r->note_basic_auth_failure;
      return Apache::HTTP_UNAUTHORIZED;
  }
  
  1;

This authorization handler is very similar to the authentication handler from the previous section. Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under 
/company/admin/ can be accessed only by the user stas, /company/report/ can be accessed by users stas
and boss, whereas any other resources under /company/ can be accessed by everybody who has reached so
far. If for some reason we don’t get the username, we or the user is not authorized to access the resource
the handler does the same thing as it does when the authentication fails, i.e, calls:

      $r->note_basic_auth_failure;
      return Apache::HTTP_UNAUTHORIZED;

The configuration is similar to the one in the previous section, this time we just add the PerlAu -
thzHan dler  setting. The rest doesn’t change.

  Alias /company/ /home/httpd/httpd-2.0/perl/
  <Location /company/>
      SetHandler perl-script
      PerlResponseHandler ModPerl::Registry
      PerlAuthenHandler MyApache::SecretLengthAuth
      PerlAuthzHandler  MyApache::SecretResourceAuthz
      Options +ExecCGI
  
      AuthType Basic
      AuthName "The Secret Gate"
      Require valid-user
  </Location>

And if you want to run the authentication and authorization for the whole site, simply add:

  <Location />
      PerlAuthenHandler MyApache::SecretLengthAuth
      PerlAuthzHandler  MyApache::SecretResourceAuthz
      AuthType Basic
      AuthName "The Secret Gate"
      Require valid-user
  </Location>

1.3.9  PerlTypeHandler

The type_checker phase is used to set the response MIME type (Content-type ) and sometimes other
bits of document type information like the document language.

For example mod_autoin dex , which performs automatic directory indexing, uses this phase to map the 
filename extensions to the corresponding icons which will be later used in the listing of files.

29 Jan 200416

1.3.9  PerlTypeHandler



Of course later phases may override the mime type set in this phase.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

The most important thing to remember when overriding the default type_checker handler, which is usually
the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’t work. mod_mime does that based on SetHandler and 
AddHandler directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

  $r->handler(’perl-script’);
  $r->set_handlers(PerlResponseHandler => \&handler);

or:

  $r->handler(’modperl’);
  $r->set_handlers(PerlResponseHandler => \&handler);

depending on which type of response handler is wanted.

Writing a PerlTypeHandler handler which sets the content-type value and returns 
Apache::DECLINED so that the default handler will do the rest of the work, is not a good idea, because
mod_mime will probably override this and other settings.

Therefore it’s the easiest to leave this stage alone and do any desired settings in the fixups phase.

1.3.10  PerlFixupHandler

The fixups phase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this phase mod_env populates the environment with 
variables configured with SetEnv and PassEnv directives.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’s URI.

  file:MyApache/FileExtDispatch.pm
  --------------------------------
  package MyApache::FileExtDispatch;
  
  use strict;
  use warnings;
  
  use Apache::RequestIO ();
  use Apache::RequestRec ();
  

1729 Jan 2004

1.3.10  PerlFixupHandlerHTTP Handlers



  use Apache::Const -compile => ’OK’;
  
  use constant HANDLER  => 0;
  use constant CALLBACK => 1;
  
  my %exts = (
      cgi => [’perl-script’,     \&cgi_handler],
      pl  => [’modperl’,         \&pl_handler ],
      tt  => [’perl-script’,     \&tt_handler ],
      txt => [’default-handler’, undef        ],
  );
  
  sub handler {
      my $r = shift;
  
      my($ext) = $r->uri =~ /\.(\w+)$/;
      $ext = ’txt’ unless defined $ext and exists $exts{$ext};
  
      $r->handler($exts{$ext}->[HANDLER]);
  
      if (defined $exts{$ext}->[CALLBACK]) {
          $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
      }
  
      return Apache::OK;
  }
  
  sub cgi_handler { content_handler($_[0], ’cgi’) }
  sub pl_handler  { content_handler($_[0], ’pl’)  }
  sub tt_handler  { content_handler($_[0], ’tt’)  }

  
  sub content_handler {
      my($r, $type) = @_;
  
      $r->content_type(’text/plain’);
      $r->print("A handler of type ’$type’ was called");
  
      return Apache::OK;
  }
  
  1;

In the example we have used the following mapping.

  my %exts = (
      cgi => [’perl-script’,     \&cgi_handler],
      pl  => [’modperl’,         \&pl_handler ],
      tt  => [’perl-script’,     \&tt_handler ],
      txt => [’default-handler’, undef        ],
  );

So that .cgi requests will be handled by the perl-script handler and the cgi_handler() callback, 
.pl requests by modperl and pl_handler(), .tt (template toolkit) by perl-script and the 
tt_handler(), finally .txt request by the default-handler handler, which requires no callback.

29 Jan 200418

1.3.10  PerlFixupHandler



Moreover the handler assumes that if the request’s URI has no file extension or it does, but it’s not in its
mapping, the default-handler will be used, as if the txt extension was used.

After doing the mapping, the handler assigns the handler:

      $r->handler($exts{$ext}->[HANDLER]);

and the callback if needed:

      if (defined $exts{$ext}->[CALLBACK]) {
          $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
      }

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real 
things.

Here is how this handler is configured:

  Alias /dispatch/ /home/httpd/httpd-2.0/htdocs/
  <Location /dispatch/>
      PerlFixupHandler MyApache::FileExtDispatch
  </Location>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings 
dynamically at run-time.

1.3.11  PerlResponseHandler

The handler (response) phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

This is the only phase that requires two directives under mod_perl. For example:

  <Location /perl>
     SetHandler perl-script
     PerlResponseHandler MyApache::WorldDomination
  </Location>

SetHandler set to perl-script or modperl tells Apache that mod_perl is going to handle the
response generation. PerlResponseHandler tells mod_perl which callback is going to do the job.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Most of the Apache:: modules on CPAN are dealing with this phase. In fact most of the developers
spend the majority of their time working on handlers that generate response content.

1929 Jan 2004

1.3.11  PerlResponseHandlerHTTP Handlers



Let’s write a simple response handler, that just generates some content. This time let’s do something more 
interesting than printing "Hello world". Let’s write a handler that prints itself:

  file:MyApache/Deparse.pm
  ------------------------
  package MyApache::Deparse;
  
  use strict;
  use warnings;
  
  use Apache::RequestRec ();
  use Apache::RequestIO ();
  use B::Deparse ();
  
  use Apache::Const -compile => ’OK’;
  
  sub handler {
      my $r = shift;
  
      $r->content_type(’text/plain’);
      $r->print(’sub handler ’, B::Deparse->new->coderef2text(\&handler));
  
      return Apache::OK;
  }
  1;

To enable this handler add to httpd.conf:

  <Location /deparse>
      SetHandler modperl
      PerlResponseHandler MyApache::Deparse
  </Location>

Now when the server is restarted and we issue a request to http://localhost/deparse we get the following 
response:

  sub handler {
      package MyApache::Deparse;
      my $r = shift @_;
      $r->content_type(’text/plain’);
      $r->print(’sub handler ’, ’B::Deparse’->new->coderef2text(\&handler));
      return 0;
  }

If you compare it to the source code, it’s pretty much the same code. B::Deparse is fun to play with!

1.3.12  PerlLogHandler

The log_transaction phase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

29 Jan 200420

1.3.12  PerlLogHandler

http://localhost/deparse


By this phase all the information about the request and the response is known, therefore the logging
handlers usually record this information in various ways (e.g., logging to a flat file or a database).

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Imagine a situation where you have to log requests into individual files, one per user. Assuming that all
requests start with /users/username/, so it’s easy to categorize requests by the second URI path compo-
nent. Here is the log handler that does that:

  file:MyApache/LogPerUser.pm
  ---------------------------
  package MyApache::LogPerUser;
  
  use strict;
  use warnings;
  
  use Apache::RequestRec ();
  use Apache::Connection ();
  use Fcntl qw(:flock);
  
  use Apache::Const -compile => qw(OK DECLINED);
  
  sub handler {
      my $r = shift;
  
      my($username) = $r->uri =~ m|^/users/([^/]+)|;
      return Apache::DECLINED unless defined $username;
  
      my $entry = sprintf qq(%s [%s] "%s" %d %d\n),
          $r->connection->remote_ip, scalar(localtime),
          $r->uri, $r->status, $r->bytes_sent;
  
      my $log_path = Apache::Server::server_root_relative($r->pool, 
          "logs/$username.log");
      open my $fh, ">>$log_path" or die "can’t open $log_path: $!";
      flock $fh, LOCK_EX;
      print $fh $entry;
      close $fh;
  
      return Apache::OK;
  }
  1;

First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it
simply returns Apache::DECLINED, letting other log handlers to do the logging. Though it could return 
Apache::OK since all other log handlers will be run anyway.

Next it builds the log entry, similar to the default access_log entry. It’s comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

2129 Jan 2004

1.3.12  PerlLogHandlerHTTP Handlers



Finally the handler appends this entry to the log file for the user the request was issued for. Usually it’s
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before 
performing the writing.

To configure the handler simply enable the module with the PerlLogHandler directive, inside the
wanted section, which was /users/ in our example:

  <Location /users/>
      SetHandler perl-script
      PerlResponseHandler ModPerl::Registry
      PerlLogHandler MyApache::LogPerUser
      Options +ExecCGI
  </Location>

After restarting the server and issuing requests to the following URIs:

  http://localhost/users/stas/test.pl
  http://localhost/users/eric/test.pl
  http://localhost/users/stas/date.pl

The MyApache::LogPerUser handler will append to logs/stas.log:

  127.0.0.1 [Sat Aug 31 01:50:38 2002] "/users/stas/test.pl" 200 8
  127.0.0.1 [Sat Aug 31 01:50:40 2002] "/users/stas/date.pl" 200 44

and to logs/eric.log:

  127.0.0.1 [Sat Aug 31 01:50:39 2002] "/users/eric/test.pl" 200 8

It’s important to notice that PerlLogHandler can be configured for any subsection of the site, no
matter whether it’s served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server, simply add to httpd.conf:

  <Location />
      PerlLogHandler MyApache::LogPerUser
  </Location>

Since the PerlLogHandler phase is of type RUN_ALL, all other logging handlers will be called as 
well.

1.3.13  PerlCleanupHandler

There is no cleanup Apache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase instead of PerlLogHandler if the
logging operation is time consuming. This approach allows to free the client as soon as the response is 
sent.

29 Jan 200422

1.3.13  PerlCleanupHandler



This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

There are two ways to register and run cleanup handlers:

1.  Using the PerlCleanupHandler phase 

  PerlCleanupHandler MyApache::Cleanup

or:

  $r->push_handlers(PerlCleanupHandler => \&cleanup);

This method is identical to all other handlers.

In this technique the cleanup() callback accepts $r as its only argument.

2.  Using cleanup_register() acting on the request object’s pool 

Since a request object pool is destroyed at the end of each request, we can register a cleanup callback
which will be executed just before the pool is destroyed. For example:

    $r->pool->cleanup_register(\&cleanup, $arg);

The important difference from using the PerlCleanupHandler handler, is that here you can pass
an optional arbitrary argument to the callback function, and no $r argument is passed by default. 
Therefore if you need to pass any data other than $r you may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
running ls -l and stores the output in temporary file, which is then used by $r->sendfile to send
the file’s contents. We use push_handlers() to push PerlCleanupHandler to unlink the file at
the end of the request.

  #file:MyApache/Cleanup1.pm
  #-------------------------
  package MyApache::Cleanup1;
  
  use strict;
  use warnings FATAL => ’all’;
  
  use File::Spec::Functions qw(catfile);
  
  use Apache::RequestRec ();
  use Apache::RequestIO ();
  use Apache::RequestUtil ();
  
  use Apache::Const -compile => qw(OK DECLINED);
  use APR::Const    -compile => ’SUCCESS’;
  
  my $file = catfile "/tmp", "data";
  
  sub handler {

2329 Jan 2004

1.3.13  PerlCleanupHandlerHTTP Handlers



      my $r = shift;
  
      $r->content_type(’text/plain’);
  
      local @ENV{qw(PATH BASH_ENV)};
      qx(/bin/ls -l > $file);
  
      my $status = $r->sendfile($file);
      die "sendfile has failed" unless $status == APR::SUCCESS;
  
      $r->push_handlers(PerlCleanupHandler => \&cleanup);
  
      return Apache::OK;
  }
  
  sub cleanup {
      my $r = shift;
  
      die "Can’t find file: $file" unless -e $file;
      unlink $file or die "failed to unlink $file";

      return Apache::OK;
  }
  1;

Next we add the following configuration:

  <Location /cleanup1>
      SetHandler modperl
      PerlResponseHandler MyApache::Cleanup1
  </Location>

Now when a request to /cleanup1 is made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the process id $$ to the file’s name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same process and the $$
trick won’t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes:

  sub unique_id {
      require Apache::MPM;
      require APR::OS;
      return Apache::MPM->is_threaded
          ? "$$." . ${ APR::OS::thread_current() }
          : $$;
  }

In the threaded environment it will return a string containing the process ID, followed by a thread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perl’s rand, some CPAN module or the APR’s APR::UUID:

29 Jan 200424

1.3.13  PerlCleanupHandler



  sub unique_id {
      require APR::UUID;
      return APR::UUID->new->format;
  }

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the $r->notes table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

  #file:MyApache/Cleanup2.pm
  #-------------------------
  package MyApache::Cleanup2;
  
  use strict;
  use warnings FATAL => ’all’;
  
  use File::Spec::Functions qw(catfile);
  
  use Apache::RequestRec ();
  use Apache::RequestIO ();
  use Apache::RequestUtil ();
  use APR::UUID ();
  use APR::Pool ();
  
  use Apache::Const -compile => qw(OK DECLINED);
  use APR::Const    -compile => ’SUCCESS’;
  
  my $file_base = catfile "/tmp", "data-";
  
  sub handler {
      my $r = shift;
  
      $r->content_type(’text/plain’);
      my $file = $file_base . APR::UUID->new->format;
  
      local @ENV{qw(PATH BASH_ENV)};
      qx(/bin/ls -l > $file);
  
      my $status = $r->sendfile($file);
      die "sendfile has failed" unless $status == APR::SUCCESS;
  
      $r->pool->cleanup_register(\&cleanup, $file);
  
      return Apache::OK;
  }
  
  sub cleanup {
      my $file = shift;

2529 Jan 2004

1.3.13  PerlCleanupHandlerHTTP Handlers



      die "Can’t find file: $file" unless -e $file;
      unlink $file or die "failed to unlink $file";
  
      return Apache::OK;
  }
  1;

Similarly to the first handler, we add the configuration:

  <Location /cleanup2>
      SetHandler modperl
      PerlResponseHandler MyApache::Cleanup2
  </Location>

And now when requesting /cleanup2 we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up as well.

1.4  Handling HEAD Requests
In order to avoid the overhead of sending the data to the client when the request is of type HEAD in
mod_perl 1.0 we used to return early from the handler:

  return OK if $r->header_only;

This logic is no longer needed in mod_perl 2.0, because Apache 2.0 automatically discards the response
body for HEAD requests. (You can also read the comment in for ap_http_header_filter() in 
modules/http/http_protocol.c in the Apache 2.0 source.)

1.5  Extending HTTP Protocol
Extending HTTP under mod_perl is a trivial task. Look at the example of adding a new method EMAIL
for details.

1.6  Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.7  Authors

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200426

1.4  Handling HEAD Requests



Table of Contents:
.................. 11   HTTP Handlers 
................... 21.1  Description
.............. 21.2  HTTP Request Handler Skeleton
............... 21.3  HTTP Request Cycle Phases
.............. 41.3.1  PerlPostReadRequestHandler
................ 61.3.2  PerlTransHandler
........ 71.3.3  PerlMapToStorageHandler META: add something here
.............. 71.3.4  PerlHeaderParserHandler
................. 101.3.5  PerlInitHandler
................ 111.3.6  PerlAccessHandler
................ 121.3.7  PerlAuthenHandler
................ 151.3.8  PerlAuthzHandler
................ 161.3.9  PerlTypeHandler
................ 171.3.10  PerlFixupHandler
............... 191.3.11  PerlResponseHandler
................ 201.3.12  PerlLogHandler
............... 221.3.13  PerlCleanupHandler
............... 261.4  Handling HEAD Requests
............... 261.5  Extending HTTP Protocol
.................. 261.6  Maintainers
................... 261.7  Authors

i29 Jan 2004

Table of  Contents:HTTP Handlers


	1€€HTTP Handlers
	1.1€€Description
	1.2€€HTTP Request Handler Skeleton
	1.3€€HTTP Request Cycle Phases
	1.3.1€€PerlPostReadRequestHandler
	1.3.2€€PerlTransHandler
	1.3.3€€PerlMapToStorageHandler META: add something here
	1.3.4€€PerlHeaderParserHandler
	1.3.5€€PerlInitHandler
	1.3.6€€PerlAccessHandler
	1.3.7€€PerlAuthenHandler
	1.3.8€€PerlAuthzHandler
	1.3.9€€PerlTypeHandler
	1.3.10€€PerlFixupHandler
	1.3.11€€PerlResponseHandler
	1.3.12€€PerlLogHandler
	1.3.13€€PerlCleanupHandler

	1.4€€Handling HEAD Requests
	1.5€€Extending HTTP Protocol
	1.6€€Maintainers
	1.7€€Authors


