

1 Server Life Cycle Handlers

129 Jan 2004

1 Server Life Cycle HandlersServer Life Cycle Handlers

1.1 Description
This chapter discusses server life cycle and the mod_perl handlers participating in it.

1.2 Server Life Cycle
The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are avail-
able to mod_perl 2.0:

Apache 2.0 starts by parsing the configuration file. After the configuration file is parsed, the PerlOpen -
LogsHan dler handlers are executed if any. After that it’s a turn of Perl Post ConfigHan dler
handlers to be run. When the post_config phase is finished the server immediately restarts, to make sure

29 Jan 20042

1.1 Description

that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes and a mixture of both. For example the worker MPM
spawns a number of processes, each running a number of threads. When each child process is started
PerlChildInit handlers are executed. Notice that they are run for each starting process, not a thread.

From that moment on each working thread processes connections until it’s killed by the server or the
server is shutdown.

1.2.1 Startup Phases Demonstration Module

Let’s look at the following example that demonstrates all the startup phases:

 file:MyApache/StartupLog.pm

 package MyApache::StartupLog;

 use strict;
 use warnings;

 use Apache::Log ();
 use Apache::ServerUtil ();

 use File::Spec::Functions;

 use Apache::Const -compile => ’OK’;

 my $log_file = catfile "logs", "startup_log";
 my $log_fh;

 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::Server::server_root_relative($conf_pool, $log_file);

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
 }

 sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
 }

 sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
 }

329 Jan 2004

1.2.1 Startup Phases Demonstration ModuleServer Life Cycle Handlers

 sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
 }

 sub say {
 my($caller) = (caller(1))[3] =~ /([^:]+)$/;
 if (defined $log_fh) {
 printf $log_fh "[%s] - %-11s: %s\n",
 scalar(localtime), $caller, $_[0];
 }
 else {
 # when the log file is not open
 warn __PACKAGE__ . " says: $_[0]\n";
 }
 }

 END {
 say("process $$ is shutdown\n");
 }

 1;

And the httpd.conf configuration section:

 <IfModule prefork.c>
 StartServers 4
 MinSpareServers 4
 MaxSpareServers 4
 MaxClients 10
 MaxRequestsPerChild 0
 </IfModule>

 PerlModule MyApache::StartupLog
 PerlOpenLogsHandler MyApache::StartupLog::open_logs
 PerlPostConfigHandler MyApache::StartupLog::post_config
 PerlChildInitHandler MyApache::StartupLog::child_init
 PerlChildExitHandler MyApache::StartupLog::child_exit

When we perform a server startup followed by a shutdown, the logs/startup_log is created if it didn’t exist
already (it shares the same directory with error_log and other standard log files), and each stage appends
to it its log information. So when we perform:

 % bin/apachectl start && bin/apachectl stop

the following is getting logged to logs/startup_log:

 [Thu May 29 13:11:08 2003] - open_logs : process 21823 is born to reproduce
 [Thu May 29 13:11:08 2003] - post_config: configuration is completed
 [Thu May 29 13:11:09 2003] - END : process 21823 is shutdown

 [Thu May 29 13:11:10 2003] - open_logs : process 21825 is born to reproduce
 [Thu May 29 13:11:10 2003] - post_config: configuration is completed
 [Thu May 29 13:11:11 2003] - child_init : process 21830 is born to serve

29 Jan 20044

1.2.1 Startup Phases Demonstration Module

 [Thu May 29 13:11:11 2003] - child_init : process 21831 is born to serve
 [Thu May 29 13:11:11 2003] - child_init : process 21832 is born to serve
 [Thu May 29 13:11:11 2003] - child_init : process 21833 is born to serve
 [Thu May 29 13:11:12 2003] - child_exit : process 21833 now exits
 [Thu May 29 13:11:12 2003] - child_exit : process 21832 now exits
 [Thu May 29 13:11:12 2003] - child_exit : process 21831 now exits
 [Thu May 29 13:11:12 2003] - child_exit : process 21830 now exits
 [Thu May 29 13:11:12 2003] - END : process 21825 is shutdown

First of all, we can clearly see that Apache always restart itself after the first post_config phase is over.
The logs show that the post_config phase is preceded by the open_logs phase. Only after Apache has
restarted itself and has completed the open_logs and post_config phase again the child_init phase is run for
each child process. In our example we have had the setting StartServers=4, therefore you can see
four child processes were started.

Finally you can see that on server shutdown, the child_exit phase is run for each child process and the END
{} block is executed by the parent process only.

Apache also specifies the pre_config phase, which is executed before the configuration files are parsed,
but this is of no use to mod_perl, because mod_perl is loaded only during the configuration phase.

Now let’s discuss each of the mentioned startup handlers and their implementation in the
MyApache::StartupLog module in detail.

1.2.2 PerlOpenLogsHandler

The open_logs phase happens just before the post_config phase.

Handlers registered by PerlOpenLogsHandler are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

As we have seen in the MyApache::StartupLog::open_logs handler, the open_logs phase
handlers accept four arguments: the configuration pool, the logging stream pool, the temporary pool and
the server object:

529 Jan 2004

1.2.2 PerlOpenLogsHandlerServer Life Cycle Handlers

 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::Server::server_root_relative($conf_pool, $log_file);

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
 }

In our example the handler uses the function Apache::Server::server_root_relative() to
set the full path to the log file, which is then opened for appending and set to unbuffered mode. Finally it
logs the fact that it’s running in the parent process.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlOpenLogsHandler MyApache::StartupLog::open_logs

1.2.3 PerlPostConfigHandler

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree
(via Apache::Directive).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the post_config() handler:

 sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
 }

As you can see, its arguments are identical to the open_logs phase’s handler. In this example handler we
don’t do much but logging that the configuration was completed and returning right away.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlPostConfigHandler MyApache::StartupLog::post_config

29 Jan 20046

1.2.3 PerlPostConfigHandler

1.2.4 PerlChildInitHandler

The child_init phase happens immediately after the child process is spawned. Each child process (not a
thread!) will run the hooks of this phase only once in their life-time.

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For example Apache::DBI pre-opens database connections during this phase and
Apache::Resource sets the process’ resources limits.

This phase is of type VOID.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the child_init() handler:

 sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
 }

The child_init() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child process it’s run in and returns.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildInitHandler MyApache::StartupLog::child_init

1.2.5 PerlChildExitHandler

Opposite to the child_init phase, the child_exit phase is executed before the child process exits. Notice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the child_exit() handler:

 sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
 }

The child_exit() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child process it’s run in and returns.

729 Jan 2004

1.2.4 PerlChildInitHandlerServer Life Cycle Handlers

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildExitHandler MyApache::StartupLog::child_exit

1.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 20048

1.3 Maintainers

Table of Contents:
................ 11 Server Life Cycle Handlers
................... 21.1 Description
................. 21.2 Server Life Cycle
............ 31.2.1 Startup Phases Demonstration Module
............... 51.2.2 PerlOpenLogsHandler
............... 61.2.3 PerlPostConfigHandler
............... 71.2.4 PerlChildInitHandler
............... 71.2.5 PerlChildExitHandler
................... 81.3 Maintainers
................... 81.4 Authors

i29 Jan 2004

Table of Contents:Server Life Cycle Handlers

	1€€Server Life Cycle Handlers
	1.1€€Description
	1.2€€Server Life Cycle
	1.2.1€€Startup Phases Demonstration Module
	1.2.2€€PerlOpenLogsHandler
	1.2.3€€PerlPostConfigHandler
	1.2.4€€PerlChildInitHandler
	1.2.5€€PerlChildExitHandler

	1.3€€Maintainers
	1.4€€Authors

