

1 mod_perl internals: mod_perl-specific functionality
flow

129 Jan 2004

1 mod_perl internals: mod_perl-specific functionality flowmod_perl internals: mod_perl-specific functionality flow

1.1 Description
This document attempts to help understand the code flow for certain features. This should help to debug
problems and add new features.

This document auguments mod_perl internals: Apache 2.0 Integration and discusses the internals of the
mod_perl-specific features.

Make sure to read also: Debugging mod_perl C Internals.

META: these notes are a bit out of sync with the latest cvs, but will be updated once the innovation dust
settles down.

1.2 Perl Interpreters
How and when Perl interpreters are created:

1. modperl_hook_init is invoked by one of two paths: Either normally, during the open_logs phase, or
during the configuration parsing if a directive needs perl at the early stage (e.g. PerlLoadModule).

 ap_hook_open_logs() -> # normal mod_perl startup
 load_module() -> modperl_run() -> # early startup caused by PerlLoadModule

2. modperl_hook_init() -> modperl_init():

 o modperl_startup()
 - parent perl is created and started ("-e0"),
 - top level PerlRequire and PerlModule are run

 o modperl_interp_init()
 - modperl_tipool_new() # create/init tipool
 - modperl_interp_new() # no new perls are created at this stage

 o modperl_init_vhost() # vhosts are booted, for each vhost run:
 if +Parent
 - modperl_startup() # vhost gets its own parent perl (not perl_clone()!)
 else
 - vhost’s PerlModule/PerlRequire directives are run if any
 if +(Parent|Clone)
 - modperl_interp_init() (new tipool, no new perls created)

3. Next the post_config hook is run. It immediately returns for non-threaded mpms. Otherwise that’s
where all the first clones are created (and later their are created on demand when there aren’t enough
in the pool and more are needed).

29 Jan 20042

1.1 Description

 o modperl_init_clones() creates pools of clones
 - modperl_tipool_init() (clones the PerlStartInterp number of perls)
 - interp_pool_grow()
 - modperl_interp_new()
 ~ this time perl_clone() is called
 ~ PL_ptr_table is scratched
 modperl_xs_dl_handles_clear

1.3 Filters
Apache filters work in the following way. First of all, a filter must be registered by its name, in addition
providing a pointer to a function that should be executed when the filter is called and the type of resources
it should be called on (e.g., only request’s body, the headers, both and others). Once registered, the filter
can be inserted into a chain of filters to be executed at run time.

For example in the pre_connection phase we can add connection phase filters, and using the
ap_hook_insert_filter we can call functions that add the current request’s filters. The filters are added
using their registered name and a special context variable, which is typed to (void *) so modules can store
anything they want there. You can add more than one filter with the same name to the same filter chain.

Here is how mod_perl uses this infrastructure:

There can be many filters inserted via mod_perl, but they all seen by Apache by four filter names:

 MODPERL_REQUEST_OUTPUT
 MODPERL_REQUEST_INPUT
 MODPERL_CONNECTION_OUTPUT
 MODPERL_CONNECTION_INPUT

XXX: which actually seems to be lowercased by Apache (saw it in gdb), (it handles these in the case
insensitive manner?). how does then modperl_filter_add_request works, as it compares *fname with M.

These four filter names are registered in modperl_register_hooks():

 ap_register_output_filter(MP_FILTER_REQUEST_OUTPUT_NAME,
 MP_FILTER_HANDLER(modperl_output_filter_handler),
 AP_FTYPE_RESOURCE);

 ap_register_input_filter(MP_FILTER_REQUEST_INPUT_NAME,
 MP_FILTER_HANDLER(modperl_input_filter_handler),
 AP_FTYPE_RESOURCE);

 ap_register_output_filter(MP_FILTER_CONNECTION_OUTPUT_NAME,
 MP_FILTER_HANDLER(modperl_output_filter_handler),
 AP_FTYPE_CONNECTION);

 ap_register_input_filter(MP_FILTER_CONNECTION_INPUT_NAME,
 MP_FILTER_HANDLER(modperl_input_filter_handler),
 AP_FTYPE_CONNECTION);

329 Jan 2004

1.3 Filtersmod_perl internals: mod_perl-specific functionality flow

At run time input filter handlers are always called by modperl_input_filter_handler() and output filter
handler by modperl_output_filter_handler(). For example if there are three MODPERL_CONNEC-
TION_INPUT filters in the filters chain, modperl_input_filter_handler() will be called three times.

The real Perl filter handler (callback) is stored in ctx->handler, which is retrieved by
modperl_{output|input}_filter_handler and run as a normal Perl handler by modperl_run_filter() via
modperl_callback():

 retrieve ctx->handler
 modperl_output_filter_handler -> modperl_run_filter -> modperl_callback

This trick allows to have more than one filter handler in the filters chain using the same Apache filter
name (the real filter’s name is stored in ctx->handler->name.

Now the only missing piece in the puzzle is how and when mod_perl filter handlers are inserted into the
filter chain. It happens in three stages.

1. When the configuration file is parsed, every time a PerlInputFilterHandler or a PerlOutputFilterHan-
dler directive is encountered, its argument (filter handler) is inserted into dcfg->handlers_per_dir[idx]
by modperl_cmd_input_filter_handlers() and modperl_cmd_output_filter_handlers(). idx is either
MP_INPUT_FILTER_HANDLER or MP_OUTPUT_FILTER_HANDLER. Since they are stored in
the dcfg struct, normal merging of parent and child directories applies.

2. Next, modperl_hook_post_config calls modperl_mgv_hash_handlers which works through
dcfg->handlers_per_dir[idx] and resolves the handlers (via modperl_mgv_resolve), so they are
resolved by the time filter handlers are added to the chain in the next step (e.g. the attributes are set if
any).

3. Now all is left is to add the filters to the appropriate chains at the appropriate time.

modperl_register_hooks() adds a pre_connection hook modperl_hook_pre_connection() which inserts
connection filters via:

 modperl_input_filter_add_connection();
 modperl_output_filter_add_connection();

modperl_hook_pre_connection() is called during the pre_connection phase.

modperl_register_hooks() directly registers the request filters via ap_hook_insert_filter():

 modperl_output_filter_add_request
 modperl_input_filter_add_request

functions registered with ap_hook_insert_filter(), will be called when the request record is created
and they are supposed to insert request filters if any.

All four functions perform a similar thing: loop through dcfg->handlers_per_dir[idx], where idx is
per filter type: MP_{INPUT|OUTPUT}_FILTER_HANDLER, pick the filters of the appropriate type
and insert them to filter chain using one of the two Apache functions that add filters. Since we have
connection and request filters there are four different combinations:

29 Jan 20044

1.3 Filters

 ap_add_input_filter(name, (void*)ctx, NULL, c);
 ap_add_output_filter(name, (void*)ctx, NULL, c);
 ap_add_input_filter(name, (void*)ctx, r, r->connection);
 ap_add_output_filter(name, (void*)ctx, r, r->connection);

Here the name is one of:

 MODPERL_REQUEST_OUTPUT
 MODPERL_REQUEST_INPUT
 MODPERL_CONNECTION_OUTPUT
 MODPERL_CONNECTION_INPUT

ctx, storing three things:

 SV *data;
 modperl_handler_t *handler;
 PerlInterpreter *perl;

we have mentioned ctx->handler already, that’s where the real Perl filter handler is stored. ctx->perl
stores the current perl interpreter (used only in the threaded environment).

the last two arguments are the request and connection records.

notice that dcfg->handlers_per_dir[idx] stores connection and request filters in the same array, so we
have only two arrays, one for input and one for output filters. We know to distinguish between
connection and request filters by looking at ctx->handler->attrs record, which is derived from the
handler subroutine’s attributes. Remember that we can have:

 sub Foo : FilterRequestHandler {}

and:

 sub Bar : FilterConnectionHandler {}

For example we can figure out what kind of handler is that via:

 if (ctx->handler->attrs & MP_FILTER_CONNECTION_HANDLER)) {
 /* Connection handler */
 }
 else if (ctx->handler->attrs & MP_FILTER_REQUEST_HANDLER)) {
 /* Request handler */
 }
 else {
 /* Unknown */
 }

1.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

529 Jan 2004

1.4 Maintainersmod_perl internals: mod_perl-specific functionality flow

Stas Bekman <stas (at) stason.org>

1.5 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 20046

1.5 Authors

Table of Contents:
......... 11 mod_perl internals: mod_perl-specific functionality flow
................... 21.1 Description
.................. 21.2 Perl Interpreters
.................... 31.3 Filters
................... 51.4 Maintainers
................... 61.5 Authors

i29 Jan 2004

Table of Contents:mod_perl internals: mod_perl-specific functionality flow

	1€€mod_perl internals: mod_perl-specific functionality flow
	1.1€€Description
	1.2€€Perl Interpreters
	1.3€€Filters
	1.4€€Maintainers
	1.5€€Authors

