Writing mod_perl Handlers and Scripts 1 Writing mod_perl Handlers and Scripts

1 Writing mod_perl Handlers and Scripts

29 Jan 2004 1

1.1 Description

1.1 Description|

This chapter covers the mod_perl coding specifiiierent from normal Perl coding. Most other perl
coding issues are covered in the perl manpages anliteicture

1.2 |Prerequisites

1.3 Wherethe Methods Live

mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the module:
containing them have to be loaded first. If you don’t do that mod_perl will complain that it can’t find the
methods inquesion. The modulevbdPer | : : Met hodLookup can be used to find out which modules

need to beised.

1.4 Method Handler s

In mod_perl 2.0 method handlers are declared usingghbod attribute:

package Bird
@SA = qw(Eagl e);

sub handl er : method {
my($class, $r) = @;

}

See theattributes manpage.
If O ass- >net hod syntax is used for Ber | * Handl er, the: net hod attribute is notequired.

META: need to port the method handleiecunentfrom mpl guide, may be keep it asepaate docu
ment Mearwhile refer tothatdocument thoughreplace thé&$ protaype with the: et hod attribute.

1.5 |Goodies T oolkit

1.5.1 [EnvironmentVariable$

mod_perl sets thiollowing environmentvariables

e $ENV{ MOD_PERL} - is set to the mod_perl version the server is running uadgr.

nmod_perl/1.99_03-dev

If SENV{ MOD_PERL} doesn’t exist, most likely you are not running unaed_perl.

2 29 Jan 2004

Writing mod_perl Handlers and Scripts 1.5.2 Threaded MPM or not?

die "l refuse to work w thout nod_perl!" unless exists $ENV{MOD PERL};

However to check which version is used it’ s better to use the following technique:

use nod_perl;
use constant MP2 => ($nod_perl::VERSION >= 1.99);
die "I want nod_perl 2.0!" unless MP2;

o SENV{ GATEWAY | NTERFACE} - issetto CA - Perl/ 1. 1 for compatibility with mod_perl 1.0.
Thisvariable is deprecated in mod_perl 2.0. Use SENV{ MOD_PERL} instead.

mod_per| passes (exports) the following shell environment variables (if they are set) :
® PATH - Executables search path.
® TZ-TimeZone.

Any of these environment variables can be accessed via YENV.

1.5.2 [Threaded MPM or not?

If the code needs to behave differently depending on whether it's running under one of the threaded
MPMSs, or not, the class method Apache: : MPM >i s_t hr eaded can be used. For example:

use Apache:: MPM ();
if (Apache:: MPM >i s_t hreaded) {
require APR : CS;
ny $tid = APR :CS::thread_current();
print “current thread id: $tid (pid: 3)";

}
el se {

print "current process id: 3";
}

This code prints the current thread id if running under a threaded MPM, otherwise it prints the processid.

1.5.3 Writing MPM-specific Codg

If you write a CPAN module it's a bad idea to write code that won't run under all MPMs, and developers
should strive to write a code that works with all mpms. However it's perfectly fine to perform different
things under different mpms.

If you don’t develop CPAN modules, it's perfectly fine to develop your project to be run under a specific
MPM.

use Apache:: MPM ();
ny $nmpm = | ¢ Apache: : MPM >show,
if ($npmeq "prefork’) {

prefork-specific code

}
elsif ($mpmeq "worker’) {
wor ker-specific code

29 Jan 2004 3

1.6 Code Developing Nuances

}

elsif ($mpmeqg "winnt’) {
wi nnt - speci fic code

}

el se {
others...
}

1.6 |Code Developing Nuances

1.6.1 |Auto-Reloading Modified Modules with Apache::Reload

META: need to port Apache::Reload notes from the guide here. but the: gist

Per | Modul e Apache: : Rel oad

Per || ni t Handl er Apache: : Rel oad

#Per | PreConnect i onHandl er Apache: : Rel oad

Per| Set Var Rel oadAl |l O f

Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"

Use:

Per | I ni t Handl er Apache: : Rel oad

if you need to debug HTTprotocol handlersUse:

Per | PreConnecti onHandl er Apache: : Rel oad
for anyhandlers.

Though notice that we have startegtadice thefollowing style in ourmodules:
package Apache:: \Whatever;

use strict;
use warni ngs FATAL => "all’

FATAL => ’al |’ escdatesall warningsinto fatal errors. So whefjpache: : What ever is modified
and reloaded bjpache: : Rel oad the request is aborte@herdore if you follow this very healthy style
and want to us@pache: : Rel oad, flex thestricnessby changng it to:

use warni ngs FATAL => "all’
no war ni ngs ’'redefine’;

but youprobebly still want to get theedefine warnngs butdowngradethem to be non-fatal. THellow-
ing will do thetrick:

use warni ngs FATAL => ’all’

no warni ngs ’'redefine’;
use warni ngs ’'redefine’

4 29 Jan 2004

Writing mod_perl Handlers and Scripts 1.7 Integration with Apache Issues

Perl 5.8.0 allows to do all this in olire:

use warni ngs FATAL => "all’, NONFATAL => ’'redefine’;

but if your code may be used with older perl versions,protebly don’'t want to use this nefunctional-
ity.

Refer to theperllexwarn manpage for moraformétion.

1.7 |Integration with Apache | ssues

In thefollowing sections we discuss the specifics of Apduobieavor relevantto mod_perbevebpers

1.7.1 |[Sending HTTP Response Headers

Apache 2.0 doesn’t provide a method to force HTTP response headers sending (what used to be done by
send_ht t p_header () in Apache 1.3). HTTP response headers are sent as soon as the first bits of the
response body are seen by the special core output filtegehaatesthese headers. When the response
handler send the first chunks of body it may be cached by the moahtparal buffer or even by some of

the output filters. The response handler needs to flush in order to tell abrtipmentspartidpaing in

the sending of the response to pass thealdta

For example if the handler needs to performelaively long-runningopestion (e.g. a slow db lookup)
and the client may timeout if it receives nothing right away, you may want to start the handler by setting
the Content-Type headerfollowing by animmediateflush:

sub handl er {
ny $r = shift;
$r->content _type('text/htm’);
$r->rflush; # send the headers out

$r->print(long_operation());
return Apache: : CK;
}

If this doesn’t work, check whether you has@nfiguredany third-party output filters for the resource in
guesion. Improperly written filter may ignore the orders to flush tfeta.

META: add a link to the notes on how to write well-behaved filtetmatlers/filters

1.7.2 |[Sending HTTP Response Body|

In mod_perl 2.0 a response body can be sent only during the response phase. Any attempts to do that in
the earlier phases will fail with aapprgriateexplanaion logged into therror_log file.

This happens due to the Apache 2.0 HTarBhtedure specifics. One of the issues is that the HTTP
response filters are not setup before the respumsse.

29 Jan 2004 5

1.8 Perl Specificsin the mod_perl Environment

1.8 |Per| Specificsin themod perl Environment

In the following sections we discuss the specifics of Perl behavior under mod_perl.

1.8.1 |Request-localized Globalg

mod_perl 2.0 provides two types of Set Handl er handlers: nodper| and perl - scri pt. Remember
that the Set Handl er directive is only relevant for the response phase handlers, it neither needed nor
affects non-response phases.

Under the handler:

Set Handl er perl-script

several specia global Perl variables are saved before the handler is called and restored afterwards. This
includes: YENV, @ NC, $/ , STDOUT’s$| and END blocks array (PL_endav).

Under:

Set Handl er nodper |

nothing is restored, so you should be especialy careful to remember localize all specia Perl variables so
the local changes won't affect other handlers.

182

In the normal Perl code exit() is used to stop the program flow and exit the Perl interpreter. However
under mod_perl we only want the stop the program flow without killing the Perl interpreter.

Y ou should take no action if your code includes exit() calls and it's OK to continue using them. mod_perl
worries to override the exit() function with its own version which stops the program flow, and performs all
the necessary cleanups, but doesn’t kill the server. Thisis done by overriding:

*CORE: : GLOBAL: :exit = \&WdPer!|::Uil::exit;
so if you mess up with * CORE: : GLOBAL: : exi t yourself you better know what you are doing.

You can till call CORE: : exi t tokill the interpreter, again if you know what you are doing.

1.9 [Threads Coding | ssues Under mod per|

The following sections discuss threading issues when running mod_per| under athreaded MPM.

6 29 Jan 2004

Writing mod_perl Handlers and Scripts 1.9.1 Thread-environment Issues

1.9.1 [Thread-environment | ssueq

The "only" thing you have to worry about your code is that it's thread-safe and that you dduhaise
tionsthat affect all threads in the sapr@cess.

Perl 5.8.0 itself is thread-safe. That means dpatationslike push(), map(), chonmp(),=,/, +=, etc.
are thread-safeOpetions that involve system calls, may or may not be thread-safe. It all depends on
whether thaundetying C libraries used by the pduncions arethread-safe.

For example théunction| ocal ti nme() is not thread-safe when timaplemertation of ascti me(3) is
not thread-safe. Other usuafiyodematic functionsincluder eaddi r (), srand(), etc.

Anotherimportantissue that shouldn’t be missed is what some people referttioead-locality. Certain
functions executed in a single thread affect the whole processtrardore all other threads running
inside that process. For example if yobdi r () in one thread, all other thread now see the current
working diredory of that thread thathdi r () 'ed to thatdiredory. Otherfunctions with similar effects
includeumask(), chr oot (), etc. Currently there is no cure for this problem. You have to find these
functionsin your code and replace them wahemaive soluionswhich don’t incur thigproblem.

For moreinformation refer to theperlthrtut (http://perldoc.comyper|5.8.0/pod/perIthrtut.html) manpage.

1.9.2 [Deploying Threads

This isactuwally quite unrdatedto mod_perl 2.0. You don’t have to know much about Perl threads, other
than[Thread-envionmentissuegto have your codproperly work under threaded MPkhod_perl.

If you want to spawn your own threads, first of all study how the new ithreads Perl model works, by
reading the perlthrtut, threads (http://search.cpan.org/search?query=threads) and threads::shared
(nttp://sear ch.cpan.or g/sear ch?quer y=threads%3A%3Ashared) manpages.

Artur Bergman wrote an article which explains how to port pure Perl modules tgpvamdely with Perl
ithreads. Issues witlthdi r () and otherfunctions that rely on shared procesdatasructures are
discussedhttp://www.per|.comVlpt/a/2002/06/11/thr eads.htmi]

1.9.3 [Shared Variableq

Globalvariablesare only global to thantempreterin which they are created. Othaterpretersfrom other
threads can't access thadriable Though it'spossble to makeexising variablesshared between several
threads running in the same process by usinduth@ion t hr eads: : shar ed: : share() . Newvari-
ablescan be shared by using tHeared attribute whercreaing them. This feature idocunentedin the
threads: : shared (http://search.cpan.or g/sear ch?query=threads%3A%3Ashared) manpage.

29 Jan 2004 7

http://perldoc.com/perl5.8.0/pod/perlthrtut.html
http://search.cpan.org/search?query=threads
http://search.cpan.org/search?query=threads%3A%3Ashared
http://www.perl.com/lpt/a/2002/06/11/threads.html
http://search.cpan.org/search?query=threads%3A%3Ashared

1.10 Maintainers

1.10

Maintainer is the person(s) you should contact with updates, corrections and patches.

1.11

Only the mgjor authors are listed above. For contributors see the Changesfile.

Maintainer s

Authors

29 Jan 2004

Writing mod_perl Handlers and Scripts Table of Contents:

Table of Contents:

1 [Writi nq mod perl Handlers and Scripts|

1.1 [Description

1.2 [Prerequisited .

13 IVVhere the M ethods L|ve|

1.4 [Method Handlerg

1.5 |Goodies Toolkif].
1.5.1 [Environment Variableq
1.5.2 [Threaded MPM or not?
1.5.3 |Writing MPM-specific Codg .

1.6 |Code Developing Nuance§ . .
1.6.1 |Auto-Reloading Modified Moduleswnh Apache Reload

1.7 |Integration with Apache Issueq .
1.7.1 [Sending HT TP Response Headerq .
1.7.2 |Sending HT TP Response Body]|

1.8 |Perl Specificsin the mod perl Environment]
1.8.1 |Request-localized Globalg
1.8.2 [exit() -

1.9 [Threads Cod| ng Issues Under mod jall
1.9.1 [Thread-environment Issueq
1.9.2 |Deploying Threadq
1.9.3 |Shared Variableg

110

1.11

OO NNNOOODOOUNOITUARADMWWNDNDNDNDNDDNPE

29 Jan 2004 i

	1€€Writing mod_perl Handlers and Scripts
	1.1€€Description
	1.2€€Prerequisites
	1.3€€Where the Methods Live
	1.4€€Method Handlers
	1.5€€Goodies Toolkit
	1.5.1€€Environment Variables
	1.5.2€€Threaded MPM or not?
	1.5.3€€Writing MPM-specific Code

	1.6€€Code Developing Nuances
	1.6.1€€Auto-Reloading Modified Modules with Apache::Reload

	1.7€€Integration with Apache Issues
	1.7.1€€Sending HTTP Response Headers
	1.7.2€€Sending HTTP Response Body

	1.8€€Perl Specifics in the mod_perl Environment
	1.8.1€€Request-localized Globals
	1.8.2€€exit†‡

	1.9€€Threads Coding Issues Under mod_perl
	1.9.1€€Thread-environment Issues
	1.9.2€€Deploying Threads
	1.9.3€€Shared Variables

	1.10€€Maintainers
	1.11€€Authors

