General Documentation Table of Contents:

General Documentation

Here you can findlocumertation conceriing mod_perl in
general, but also not strictly mod_ perl relai@@rmation
that is still very useful for working with mod_perl. Most of
theinformation here applies to mod_perl 1.0 and 2.0.

Lastmodified Thu Jan 29 08:38:57 20@&MT

29 Jan 2004

Table of Contents:

Part | : Perl

k| 1. PerlRefeencg
This document was born because some users r@&ladant to learn Perl, prior to jumping into
mod_perl. | will try to cover some of the most frequent pure dRegions being asked at the list.

Part |1: Packaging and Testing

» [2.Prepamng mod perl modules faCPAN
This document provides informaion for CPAN modulesdevebpers whose modules require
mod_perl.

k[3. Running andevebping Tests with the Apache:: Testamavork|
The title isself-explangory :)

Part I11: HTTP
» [4. Tssuing Correct HT TPleaders

To make caching of dynamaocumentspossble, which can give you aonsicerable perfomance
gain, setting a number of HTTP headers is of a witgdotance This document explains which
headers you need to pafteriion to, and how to work with them.

Part IV: Server Administration

kP [5. mod perl for ISPs. mod perl and Virtsts
mod_perl hosting by ISPs: fantasy or reality? This section covers some topics that migimtére of
estto users looking for ISPs to host their mod_perl-based website, and ISPs looking for a way to
provide such services.

k[6. Choosng anOpemting System andHardvarg
Before you use th&echhiquesdocumentedon this site to tune servers and write code you need to
consider the demands which will be placed onhhelvare and theopemtng system. There is no
point ininvesing a lot of time and money iconfiguration and coding only to find that your server's
performanceis poor because you did not choosidableplatform in the first place.

k| 7. Controling andMonitoring the Server
Coverstechmiquesto restart mod_perl enabled Apache, SUID scripinitoring, and othemainte-
nancechores, as well as some specific setups.

Part V: mod_per| Advocacy

k| 8. mod perPAdvocacy
Having a hard time getting mod_perl into yauganizaion? We have collected sonaggumentsyou
can use to convince your boss why t¢inganization wants mod_perl.

k[9. Popular Perl Complaints aiMi/thg

This docunent tries to explain the myths about Perl amgetturn the FUD certain bodies try to
spread.

2 29 Jan 2004

General Documentation Table of Contents:

Part VI: OS Specific Decumentation

k 10. OS-specific Info
Documents concerning OS-specific issues.

29 Jan 2004 3

1 Perl Reference

1 Perl Reference

4 29 Jan 2004

Perl Reference 1.1 Description

1.1 Description|

This document was born because some users are reluctant to learn Perl, prior to jJumping into mod_perl. |
will try to cover some of the most frequent pure Perl questions being asked at the list.

Before you decide to skip this chapter make sure you know al the information provided here. The rest of
the Guide assumes that you have read this chapter and understood it.

1.2 |perldoc’s Rarely Known But Very Useful Options

First of all, | want to stress that you cannot become a Perl hacker without knowing how to read Perl docu-
mentation and search through it. Books are good, but an easily accessible and searchable Perl reference at
your fingertips is a great time saver. It always has the up-to-date information for the version of perl you're
using.

Of course you can use online Perl documentation at the Web. The two maor sites are
|http://www.perldoc.com| and |http://theoryx5.uwinnipeg.ca/ CPAN/perl/]

The per | doc utility provides you with access to the documentation installed on your system. To find out
what Perl manpages are available execute:

% per | doc perl

To find what functions perl has, execute:
% per| doc perl func

To learn the syntax and to find examples of a specific function, you would execute (e.g. for open()):
% per | doc -f open

Note: In perl5.005 03 and earlier, there is a bug in this and the - q options of per| doc. It won't call
pod2man, but will display the section in POD format instead. Despite this bug it’s still readable and very
useful.

The Perl FAQ (perlfag manpage) is in several sections. To search through the sections for open you
would execute:

% per | doc -q open
Thiswill show you all the matching Question and Answer sections, still in POD format.

To read the perldoc manpage you would execute:

% per | doc perl doc

29 Jan 2004 5

http://www.perldoc.com/
http://theoryx5.uwinnipeg.ca/CPAN/perl/

1.3 Tracing Warnings Reports

1.3 [Tracing Warnings Reportg

Sometimes it’s very hard to understand what a warning is complaining about. Y ou see the source code, but
you cannot understand why some specific snippet produces that warning. The mystery often results from
the fact that the code can be called from different placesif it’slocated inside a subroutine.

Hereisan example:

war ni ngs. pl

#! /usr/ bin/perl -w

use strict;

correct();
incorrect();

sub correct{
print_val ue("Perl");

}

sub incorrect {
print_val ue();

}

sub print_val ue{
ny $var = shift;
print "My value is $var\n";

}

In the code above, print_value() prints the passed value. Subroutine correct() passes the value to print, but
in subroutine incorrect() we forgot to passit. When we run the script:

% . / war ni ngs. pl

we get the warning:
Use of uninitialized value at ./warnings.pl |ine 16.

Perl complains about an undefined variable $var at the line that attempts to print its value:
print "My value is $var\n";

But how do we know why it is undefined? The reason here obvioudly is that the calling function didn’t
pass the argument. But how do we know who was the caller? In our example there are two possible
callers, in the general case there can be many of them, perhaps located in other files.

We can use the caller() function, which tells who has called us, but even that might not be enough: it's
possible to have a longer sequence of called subroutines, and not just two. For example, here it is sub
third() which is at fault, and putting sub caller() in sub second() would not help us very much:

6 29 Jan 2004

Perl Reference 1.3 Tracing Warnings Reports

sub third{
second();

sub second{
ny $var = shift;
first($var)

sub first{
ny $var = shift;
print "Var = $var\n"

}

The solution is quite simple. What we need isafull calls stack trace to the call that triggered the warning.

The Car p module comes to our aid with its cluck() function. Let’s modify the script by adding a couple of
lines. Therest of the script is unchanged.

war ni ngs2. pl

#! /usr/ bin/perl -w

use strict;
use Carp ();
local $SIG__WARN } = \&Carp::cluck

correct();
incorrect();

sub correct{
print_val ue("Perl");

}

sub incorrect{
print_val ue();

}

sub print_val ue{
ny $var = shift;
print "My value is $var\n";

}

Now when we execute it, we see:

Use of uninitialized value at ./warnings2.pl line 19
main::print_value() called at ./warnings2.pl line 14
main::incorrect() called at ./warnings2.pl line 7

Take a moment to understand the calls stack trace. The deepest calls are printed first. So the second line
tells us that the warning was triggered in print_value(); the third, that print_value() was called by subrou-
ting, incorrect().

script => incorrect() => print_val ue()

29 Jan 2004 7

1.4 Variables Globally, Lexically Scoped And Fully Qualified

Wegointoi ncorrect () andindeed seethat we forgot to pass the variable. Of course when you write a
subroutine like pri nt _val ue it would be a good idea to check the passed arguments before starting
execution. We omitted that step to contrive an easily debugged example.

Sure, you say, | could find that problem by simple inspection of the code!

WEéll, you're right. But | promise you that your task would be quite complicated and time consuming if
your code has some thousands of lines. In addition, under mod_perl, certain uses of the eval operator and
"here documents’ are known to throw off Perl’s line numbering, so the messages reporting warnings and
errors can have incorrect line numbers. (See Finding the Line Which Triggered the Error or Warning for
more information).

Getting the trace helps alot.

1.4 Vari ablesGlobally, Lexically Scoped And FullyQuali-
fled

META: this material is new and requires polishing so read with care.

You will hear alot about namespaces, symbol tables and lexical scoping in Perl discussions, but little of it
will make any sense without afew key facts:

1.4.1|Symbols, Symbol Tables afhckages Typeglobs

There are two important types of symbol: package global and lexical. We will talk about lexical symbols
later, for now we will talk only about package global symbols, which we will refer to simply as global
symbols.

The names of pieces of your code (subroutine names) and the names of your global variables are symbols.
Global symbols reside in one symbol table or another. The code itself and the data do not; the symbols are
the names of pointers which point (indirectly) to the memory areas which contain the code and data. (Note
for C/C++ programmers. we use the term ‘pointer’ in a general sense of one piece of data referring to
another piece of data not in a specific sense asused in C or C++.)

There is one symbol table for each package, (which is why global symbols are really package global
symbaols).

Y ou are always working in one package or another.

Like in C, where the first function you write must be called main(), the first statement of your first Perl
script is in package mai n: : which is the default package. Unless you say otherwise by using the
package statement, your symbols are al in package nai n: : . You should be aware straight away that
files and packages are not related. You can have any number of packages in a single file; and a single
package can be in one file or spread over many files. However it is very common to have a single package
inasinglefile. To declare a package you write:

8 29 Jan 2004

Perl Reference 1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

package nypackagenane;

From the following line you are in package mypackagenarmne and any symbols you declare reside in that
package. When you create a symbol (variable, subroutine etc.) Perl uses the name of the package in which
you are currently working as a prefix to create the fully qualified name of the symbol.

When you create a symbol, Perl creates a symbol table entry for that symbol in the current package's
symbol table (by default mai n: :). Each symbol table entry is called a typeglob. Each typeglob can hold
information on a scalar, an array, a hash, a subroutine (code), afilehandle, a directory handle and aformat,
each of which al have the same name. So you see now that there are two indirections for aglobal variable:
the symboal, (the thing’s name), points to its typeglob and the typeglob for the thing's type (scalar, array,
etc.) points to the data. If we had a scalar and an array with the same name their name would point to the
same typeglob, but for each type of data the typeglob points to somewhere different and so the scalar's
data and the array’s data are completely separate and independent, they just happen to have the same
name.

Most of the time, only one part of atypeglob is used (yes, it's a bit wasteful). Y ou will by now know that
you distinguish between them by using what the authors of the Camel book call a funny character. So if
we have ascalar called ‘| i ne’ wewould refer to it in code as $l i ne, and if we had an array of the same
name, that would be written, @ i ne. Both would point to the same typeglob (which would be called
*| i ne), but because of the funny character (also known as decoration) perl won't confuse the two. Of
course we might confuse ourselves, so some programmers don’t ever use the same name for more than
one type of variable.

Every global symbol is in some package's symbol table. To refer to a global symbol we could write the
fully qualified name, e.g. $rmai n: : | i ne. If we are in the same package as the symbol we can omit the
package name, e.g. $| i ne (unlessyou usethestri ct pragmaand then you will have to predeclare the
variable using the var s pragma). We can also omit the package name if we have imported the symbol
into our current package’'s namespace. If we want to refer to a symbol that is in another package and
which we haven't imported we must use the fully qualified name, e.g. $ot her pkg: : box.

Most of the time you do not need to use the fully qualified symbol name because most of the time you will
refer to package variables from within the package. This is very like C++ class variables. You can work
entirely within package mai n: : and never even know you are using a package, nor that the symbols have
package names. In a way, this is a pity because you may fail to learn about packages and they are
extremely useful.

The exception is when you import the variable from another package. This creates an alias for the variable
in the current package, so that you can access it without using the fully qualified name.

Whilst global variables are useful for sharing data and are necessary in some contexts it is usually wisest
to minimize their use and use lexical variables, discussed next, instead.

Note that when you create a variable, the low-level business of alocating memory to store the information
is handled automatically by Perl. The intepreter keeps track of the chunks of memory to which the pointers
are pointing and takes care of undefining variables. When all references to a variable have ceased to exist
then the perl garbage collector is free to take back the memory used ready for recycling. However perl
almost never returns back memory it has already used to the operating system during the lifetime of the

29 Jan 2004 9

1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

process.

1.4.1.1 |Lexical Variables and Symbolg

The symbols for lexical variables (i.e. those declared using the keyword ny) are the only symbols which
do not live in a symbol table. Because of this, they are not available from outside the block in which they
are declared. Thereis no typeglob associated with alexical variable and alexical variable can refer only to
ascalar, an array, a hash or a code reference. (Since perl-5.6 it can also refer to afile glob).

If you need access to the data from outside the package then you can return it from a subroutine, or you
can create a global variable (i.e. one which has a package prefix) which points or refers to it and return
that. The pointer or reference must be global so that you can refer to it by a fully qualified name. But just
likein Ctry to avoid having global variables. Using OO methods generally solves this problem, by provid-
ing methods to get and set the desired value within the object that can be lexically scoped inside the
package and passed by reference.

The phrase "lexical variable" is a bit of a misnomer, we are really talking about "lexical symbols’. The
data can be referenced by a global symbol too, and in such cases when the lexical symbol goes out of
scope the data will still be accessible through the global symbol. Thisis perfectly legitimate and cannot be
compared to the terrible mistake of taking a pointer to an automatic C variable and returning it from a
function--when the pointer is dereferenced there will be a segmentation fault. (Note for C/C++ program-
mers. having a function return a pointer to an auto variable is a disaster in C or C++; the perl equivalent,
returning areference to alexical variable created in afunction is normal and useful.)

® ny() vs.use vars:

With use vars(), you are making an entry in the symbol table, and you are telling the compiler that
you are going to be referencing that entry without an explicit package name.

With my(), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler figures out at
conpi | e tine which my() variables (i.e. lexical variables) are the same as each other, and once
you hit execute time you cannot go looking those variables up in the symbol table.

® ny() vs.local ():

local() creates a temporal-limited package-based scalar, array, hash, or glob -- when the scope of
definition is exited at runtime, the previous value (if any) is restored. References to such a variable
are *also* global... only the value changes. (Aside: that iswhat causes variable suicide. :)

my() creates a lexically-limited non-package-based scalar, array, or hash -- when the scope of defini-
tion is exited at compile-time, the variable ceases to be accessible. Any references to such a variable
at runtime turn into unique anonymous variables on each scope exit.

10 29 Jan 2004

Perl Reference 1.5 my() Scoped Variable in Nested Subroutines

1.4.2 |Additional reading referenceq

For more information see: [Using global variables and sharing them between modules/packaged and an
article by Mark-Jason Dominus about how Perl handles variables and namespaces, and the difference
betweenuse vars() andny() -http://www.plover.com/~mjd/perl/FAQs/Namespaces.html|.

1.5 |my() Scoped Variablein Nested Subroutines

Before we proceed let's make the assumption that we want to develop the code under the stri ct
pragma. We will use lexically scoped variables (with help of the my() operator) whenever it’s possible.

1.5.1 [The Poison|

Let'slook at this code:

nest ed. pl

#! [usr/ bi n/ perl
use strict;

sub print_power_of _2 {
ny $x = shift;

sub power _of 2 {
return $x ** 2;

}

ny $result = power_of _2();
print "$x"2 = $result\n”;
}

print_power _of _2(5);
print_power _of _2(6);

Don't let the weird subroutine names fool you, the print_power_of 2() subroutine should print the square
of the number passed to it. Let’ s run the code and see whether it works:

% . / nest ed. pl

572
672

25
25

Ouch, something is wrong. May be thereisabug in Perl and it doesn’t work correctly with the number 67
Let'stry againusing 5and 7:

print_power _of _2(5);
print_power _of _2(7);

29 Jan 2004 11

http://www.plover.com/~mjd/perl/FAQs/Namespaces.html

1.5.2 The Diagnosis

And runit;
% . / nest ed. pl

572
"2

25
25

Wow, does it works only for 5? How about using 3 and 5:

print_power _of 2(3);
print_power _of 2(5);

and theresult is;

% . / nest ed. pl

372
572

9
9

Now we start to understand--only the first call to the print_power_of 2() function works correctly. Which
makes us think that our code has some kind of memory for the results of the first execution, or it ignores
the arguments in subsegquent executions.

1.5.2 [The Diagnosig

Let’ sfollow the guidelines and use the - wflag. Now execute the code:

% . / nest ed. pl

Variable "$x" will not stay shared at ./nested.pl line 9.
572 = 25
672 = 25

We have never seen such a warning message before and we don’t quite understand what it means. The
di agnosti cs pragmawill certainly help us. Let’'s prepend this pragma before the st ri ct pragmain
our code:

#! /usr/ bin/perl -w

use di agnosti cs;
use strict;

And execute it:
% . / nest ed. pl
Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

(W An inner (nested) naned subroutine is referencing a |l exica
vari able defined in an outer subroutine.

When the inner subroutine is called, it will probably see the val ue of
the outer subroutine’s variable as it was before and during the

12 29 Jan 2004

Perl Reference 1.5.3 The Remedy

first call to the outer subroutine; in this case, after the first
call to the outer subroutine is conplete, the inner and outer
subroutines will no |l onger share a common value for the variable. 1In
other words, the variable will no |onger be shared

Furthernore, if the outer subroutine is anonynous and references a
| exical variable outside itself, then the outer and inner subroutines
wi Il never share the given variable

Thi s probl em can usually be solved by meking the inner subroutine
anonynous, using the sub {} syntax. Wen inner anonynous subs that
reference variables in outer subroutines are called or referenced,
they are automatically rebound to the current val ues of such

vari abl es.
572 = 25
672 = 25

WEéll, now everything is clear. We have the inner subroutine power of 2() and the outer subroutine
print_power_of 2() in our code.

When the inner power_of 2() subroutine is called for the first time, it sees the value of the outer
print_power_of 2() subroutine's $x variable. On subsequent calls the inner subroutine's $x variable
won’'t be updated, no matter what new values are given to $x in the outer subroutine. There are two copies
of the $x variable, no longer a single one shared by the two routines.

1.5.3 [The Remedy|

The di agnost i cs pragma suggests that the problem can be solved by making the inner subroutine
anonymous.

An anonymous subroutine can act as a closure with respect to lexically scoped variables. Basicaly this
means that if you define a subroutine in a particular lexical context at a particular moment, then it will run
in that same context later, even if called from outside that context. The upshot of this is that when the
subroutine runs, you get the same copies of the lexically scoped variables which were visible when the
subroutine was defined. So you can pass arguments to a function when you define it, as well as when you
invokeit.

Let’srewrite the code to use this technique:
anonynous. p
#1/ usr/ bi n/ perl

use strict;

sub print_power_of_2 {
my $x = shift;

ny $func_ref = sub {

return $x ** 2;

h

29 Jan 2004 13

1.6 Understanding Closures -- the Easy Way

ny $result = &func_ref();
print "$x"2 = $resul t\n";
}

print_power _of _2(5);
print_power _of _2(6);

Now $f unc_r ef contains areference to an anonymous subroutine, which we later use when we need to
get the power of two. Since it is anonymous, the subroutine will automatically be rebound to the new
value of the outer scoped variable $x, and the results will now be as expected.

Let’ s verify:
% . / anonynous. pl

572
672

25
36

So we can see that the problem is solved.

1.6 |Under standing Closur es -- the Easy Way

In Perl, a closure is just a subroutine that refers to one or more lexical variables declared outside the
subroutine itself and must therefore create a distinct clone of the environment on the way out.

And both named subroutines and anonymous subroutines can be closures.

Here' s how to tell if asubroutineis aclosure or not:

for (1..5) {
push @, sub { "hi there" };
}
for (1..5) {
{
ny $b;
push @, sub { $b."hi there" };
}
}

print "anon nornmal:\n", join "\t\n", @, "\n";
print "anon closure:\n",join "\t\n", @, "\n";

which generates:

anon nornal :

CODE(0x80568€e4)
CODE(0x80568€e4)
CODE(0x80568€e4)
CODE(0x80568€e4)
CODE(0x80568€e4)

anon cl osure:
CODE(0x804b4c0)

14 29 Jan 2004

Perl Reference 1.6 Understanding Closures -- the Easy Way

CODE(0x8056b54)
CODE(0x8056bb4)
CODE(0x80594d8)
CODE(0x8059538)

Note how each code reference from the non-closure is identical, but the closure form must generate
distinct coderefsto point at the distinct instances of the closure.

And now the same with named subroutines;

for (1..5) {
sub a { "hi there" };
push @, \&a;

}

for (1..5) {

my $b;
sub b { $b."hi there" };
push @, \&b;
}
}

print "normal:\n", join "\t\n",@,"\n";
print "closure:\n",join "\t\n", @,"\n";

which generates:

anon nornal :

CODE(0x80568c0)
CODE(0x80568c0)
CODE(0x80568c0)
CODE(0x80568c0)
CODE(0x80568c0)

anon cl osure:

CODE(0x8056998)
CODE(0x8056998)
CODE(0x8056998)
CODE(0x8056998)
CODE(0x8056998)

We can see that both versions has generated the same code reference. For the subroutine a it's easy, since
it doesn’t include any lexical variables defined outside it in the same lexical scope.

Asfor the subroutine b, it’sindeed a closure, but Perl won’t recompileit since it's a named subroutine (see
the perlsub manpage). It's something that we don’'t want to happen in our code unless we want it for this
special effect, similar to static variablesin C.

This is the underpinnings of that famous "won't stay shared" message. A my variable in a named subrou-
tine context is generating identical code references and therefore it ignores any future changes to the
lexical variables outside of it.

29 Jan 2004 15

1.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior

1.6.1 Mike Guy’' s Explanation of the Inner Subroutine Behavior|

16

From nmjtg@us.camac.uk (MJ.T. Quy)

Newsgr oups: conp. | ang. perl.m sc

Subj ect: Re: Lexical scope and enmbedded subroutines.
Date: 6 Jan 1998 18:22:39 GVI

Message- | D <68t spf $9f 0$1@ yr a. csx. cam ac. uk>

In article <68sc4k$3p2$1@r okaw. wa. con», Aaron Harsh <ajh@tk. conp
wr ot e:

Before | read this thread (and perlsub to get the details) | would
have assuned the original code was fine.

Thi s behavior brings up the followi ng questions:
o |I's Perl’s behavior sone sort of speed optinization?

V V.V VYV

No, but see bel ow.

> o Did the Perl gods just decide that scheme-like behavior was |ess
> inmportant than the pseduo-static variables described in perlsub?

Thi s subj ect has been kicked about at sone |length on perl5-porters.
The current behavi our was chosen as the best of a bad job. In the
context of Perl, it’s not obvious what "scheme-|ike behavior" neans.
So it isn't an option. See below for details.

> o Does anyone else find Perl’s behavior counter-intuitive?
Everyone finds it counterintuitive. The fact that it only generates
a warning rather than a hard error is part of the Perl Gods policy of
hurling thunderbolts at those so irreverent as not to use -w.

> o Did programming in schenme destroy my ability to judge a decent
> | anguage

> feature?

You're still interested in Perl, so it can't have rotted your brain
conpletely.

> o0 Have | m srenenbered how schene handl es these situations?
Probabl y not.

> o0 Do Perl programmers really care how much Perl acts |ike scheme?
Sorne do.

> o0 Should |I have stopped this message two or three questions ago?
Yes.

The problemto be solved can be stated as

"When a subroutine refers to a variable which is instantiated nore
than once (i.e. the variable is declared in a for loop, or in a

29 Jan 2004

Perl Reference 1.7 When Y ou Cannot Get Rid of The Inner Subroutine

subroutine), which instance of that variable shoul d be used?"

The basic problemis that Perl isn't Schene (or Pascal or any of the
ot her conparators that have been used).

In alnmost all lexically scoped | anguages (i.e. those in the Al gol 60
tradition), named subroutines are also lexically scoped. So the scope
of the subroutine is necessarily contained in the scope of any
external variable referred to inside the subroutine. So there’'s an
obvi ous answer to the "which instance?" problem

But in Perl, naned subroutines are globally scoped. (But in sone
future Perl, you'll be able to wite

nmy sub lex { ... }

to get lexical scoping.) So the solution adopted by other |anguages
can't be used

The next suggestion nost people come up with is "Wiy not use the nost
recently instantiated variable?". This Does The Right Thing in many
cases, but fails when recursion or other conplications are invol ved.

Consi der:
sub outer {

i nner();

outer();

ny $trouble

i nner();

sub inner { $trouble };
outer();

i nner();

}

Whi ch instance of $trouble is to be used for each call of inner()?
And why?

The consensus was that an inconplete solution was unacceptable, so the
sinple rule "Use the first instance" was adopted instead

And it is nore efficient than possible alternative rules. But that’'s
not why it was done

M ke Quy

1.7 When You Cannot Get Rid of The Inner Subroutine

First you might wonder, why in the world will someone need to define an inner subroutine? Well, for
example to reduce some of Perl’s script startup overhead you might decide to write a daemon that will
compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest and do
it much faster since compilation has already taken place.

29 Jan 2004 17

1.7 When Y ou Cannot Get Rid of The Inner Subroutine

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you execute it?
Or let’s put it the other way: after it was executed for the first time and it stays compiled in the daemon’s
memory, how do you call it again? If you could get all developers to code their scripts so each has a
subroutine called run() that will actually execute the code in the script then we' ve solved half the problem.

But how does the daemon know to refer to some specific script if they all runinthe mai n: : name space?
One solution might be to ask the developers to declare a package in each and every script, and for the
package name to be derived from the script name. However, since there is a chance that there will be more
than one script with the same name but residing in different directories, then in order to prevent names-
pace collisions the directory has to be a part of the package name too. And don't forget that the script may
be moved from one directory to ancther, so you will have to make sure that the package name is corrected
every time the script gets moved.

But why enforce these strange rules on developers, when we can arrange for our daemon to do this work?
For every script that the daemon is about to execute for the first time, the script should be wrapped inside
the package whose name is constructed from the mangled path to the script and a subroutine called run().
For example if the daemon is about to execute the script /tmp/hello.pl:

#! [usr/ bi n/ perl
print "Hello\n";

Prior to running it, the daemon will change the code to be:

wr apped_hel | 0. pl

package cache::tnp::hello_2epl;

sub run{
#1/ usr/ bi n/ perl
print "Hello\n";

}

The package name is constructed from the prefix cache: :, each directory separation slash is replaced
with : :, and non aphanumeric characters are encoded so that for example . (a dot) becomes 2e (an
underscore followed by the ASCII code for adot in hex representation).

% perl -e "printf "9%",ord(".")’

prints: 2e. The underscore is the same you see in URL encoding except the %character is used instead
(Y2E), but since %has a special meaning in Perl (prefix of hash variable) it couldn’t be used.

Now when the daemon is requested to execute the script /tmp/hello.pl, al it has to do is to build the
package name as before based on the location of the script and call its run() subroutine:

use cache::tnp::hello_2epl;
cache::tnp::hello_2epl::run();

18 29 Jan 2004

Perl Reference 1.7.1 Remediesfor Inner Subroutines

We have just written a partial prototype of the daemon we wanted. The only outstanding problem is how
to pass the path to the script to the daemon. This detail isleft as an exercise for the reader.

If you are familiar with the Apache: : Regi st ry module, you know that it works in ailmost the same
way. It uses a different package prefix and the generic function is caled handler() and not run(). The
scripts to run are passed through the HT TP protocol’ s headers.

Now you understand that there are cases where your normal subroutines can become inner, since if your
script was asimple:

#1/ usr/ bi n/ perl
sub hello { print "Hello" }
hel l o();

Wrapped into arun() subroutine it becomes:

package cache: : sinpl e_2epl

sub run{
#1/ usr/ bi n/ perl
sub hello { print "Hello" }
hel l o();

}

Therefore, hello() is an inner subroutine and if you have used my() scoped variables defined and altered
outside and used inside hello(), it won't work as you expect starting from the second call, as was explained
in the previous section.

1.7.1 |Remedies for Inner Subroutines

First of al there is nothing to worry about, as long as you don’t forget to turn the warnings On. If you do
happen to have the "Imy() Scoped Variable in Nested Subroutineq' problem, Perl will always alert you.

Given that you have a script that has this problem, what are the ways to solve it? There have been many
suggested in the past, and we discuss some of them here.

We will use the following code to show the different solutions.

mul tirun. pl

#! / usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){

print "run: [tine $_]\n";
run();

29 Jan 2004 19

1.7.1 Remediesfor Inner Subroutines

}

sub run{
ny $counter = O;

i ncrement _counter();
i ncrement _counter();

sub increnent _counter{
$count er ++;
print "Counter is equal to $counter !\n";

}

} # end of sub run

This code executes the run() subroutine three times, which in turn initializes the $count er variableto 0,
every time it is executed and then calls the inner subroutine increment_counter() twice. Sub incre-
ment_counter() prints $count er’s value after incrementing it. One might expect to see the following
output:

run: [time 1]
Counter is equal to 1!
Counter is equal to 2!
run: [time 2]
Counter is equal to 1!
Counter is equal to 2!
run: [time 3]
Counter is equal to 1!
Counter is equal to 2!

But as we have aready learned from the previous sections, this is not what we are going to see. Indeed,
when we run the script we see:

% ./ mul tirun. pl

Vari abl e "$counter” will not stay shared at ./nested.pl |ine 18.
run: [time 1]
Counter is equal to
Counter is equal to 2!
run: [time 2]

Counter is equal to 3!
Counter is equal to 4!
run: [time 3]

Counter is equal to 5!
Counter is equal to 6 !

[EnY

Apparently, the $count er variableisnot reinitialized on each execution of run(), it retainsits value from
the previous execution, and increment_counter() increments that. Actually that is not quite what happens.
On each execution of run() a new $count er variable is initialized to zero but increment_counter()
remains bound to the $count er variable from thefirst call to run().

20 29 Jan 2004

Perl Reference

1.7.1 Remediesfor Inner Subroutines

The simplest of the work-rounds is to use package-scoped variables. These can be declared using our or,
on older versions of Perl, thevar s pragma. Note that whereas using ny declaration also implicitly initial-
izes variables to undefined the our declaration does not, and so you will probably need to add explicit
initialisation for variables that lacked it.

mul tirunl. pl

#!/ usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){

print "run: [tine $_]\n";

run();

}

sub run {

our $counter = O;

i ncrenent _counter();
i ncrenent _counter();

sub increnment _counter{

$count er ++;

print "Counter is equal

}

} # end of sub run

to $counter !'\n";

If you run this and the other solutions offered below, the expected output will be generated:

% ./ multirunl. pl

run: [time 1]
Counter is equal
Counter is equal
run: [time 2]
Counter is equal
Counter is equal
run: [time 3]
Counter is equal
Counter is equal

to
to

to
to

to
to

1
2

By the way, the warning we saw before has gone, and so has the problem, since there is no my () (lexi-
cally defined) variable used in the nested subroutine.

In the above example we know $count er isjust a simple small scalar. In the general case variables
could reference external resource handles or large data structures. In that situation the fact that the variable
would not be released immediately when run() completes could be a problem. To avoid this you can put
| ocal in front of the our declaration of all variables other than simple scalars. This has the effect of
restoring the variable to its previous value (usually undefined) upon exit from the current scope. As a
side-effect | ocal aso initializes the variables to undef . So, if you recall that thing | said about adding

29 Jan 2004

21

1.7.1 Remediesfor Inner Subroutines

explicit initialization when you replace ny by our, well, you can forget it again if you replace my with
| ocal our.

Be warned that | ocal will not release circular data structures. If the original CGI script relied upon
process termination to clean up after it then it will leak memory as aregistry script.

A varient of the package variable approach is not to declare your variables, but instead to use explicit
package qualifiers. This has the advantage on old versions of Perl that there is no need to load the var s
module, but it adds a significant typing overhead. Another downside is that you become dependant on the
"used only once" warning to detect typos in variable names. The explicit package name approach is not
really suitable for registry scripts because it pollutes the mai n: : namespace rather than staying properly
within the namespace that has been allocated. Finally, note that the overhead of loading the var s module
only has to be paid once per Perl interpreter.

mul tirun2. pl

#! /usr/bin/perl -w
use strict;

for (1..3){
print "run: [time $_]\n";
run();

}

sub run {
$mai n: : counter = O;

i ncrenent _counter();
i ncrenent _counter();

sub increnment _counter{
$mai n: : count er ++
print "Counter is equal to $nmin::counter !\n";

}

} # end of sub run

You can also pass the variable to the subroutine by value and make the subroutine return it after it was
updated. This adds time and memory overheads, so it may not be good idea if the variable can be very
large, or if speed of execution isan issue.

Don’t rely on the fact that the variable is small during the development of the application, it can grow
quite big in situations you don’t expect. For example, avery smple HTML form text entry field can return
a few megabytes of data if one of your users is bored and wants to test how good your code is. It's not
uncommon to see users copy-and-paste 10Mb core dump files into a form'’s text fields and then submit it
for your script to process.

mul tirun3. pl

#! [usr/ bi n/ perl

22 29 Jan 2004

Perl Reference

use strict;
use war ni ngs;

for (1..3){
print “run: [tinme $_]\n"
run();

}

sub run {
ny $counter = 0

i ncrenment _count er ($count er)
i ncrenment _count er ($count er)

$count er
$count er

sub increnent_counter{
ny $counter = shift;

$count er ++;
print "Counter is equal to $counter

return $counter

}

} # end of sub run

)

)

"n";

)

1.7.1 Remediesfor Inner Subroutines

Finally, you can use references to do the job. The version of increment_counter() below accepts a refer-
ence to the $count er variable and increments its value after first dereferencing it. When you use arefer-
ence, the variable you use inside the function is physically the same bit of memory as the one outside the
function. Thistechnigque is often used to enable a called function to modify variablesin a calling function.

mul tirund. pl

#! / usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){
print "run: [time $_]\n";
run();

}

sub run {
ny $counter =0

i ncrement _count er (\ $counter);
i ncrement _count er (\ $counter);

sub increnment _counter{
ny $r_counter = shift;

$$r _counter ++

29 Jan 2004

23

1.7.1 Remediesfor Inner Subroutines

print "Counter is equal to $$r_counter !'\n";

}

} # end of sub run

Here is yet another and more obscure reference usage. We modify the value of $count er inside the
subroutine by using the fact that variables in @ are aliases for the actual scalar parameters. Thus if you
caled a function with two arguments, those would be stored in $ [0] and $ [1] . In particular, if an
element $_[0] isupdated, the corresponding argument is updated (or an error occursiif it is not updatable
as would be the case of calling the function with aliteral, e.g. increment_counter (5)).

mul tirun5. pl

#! / usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){
print "run: [time $_]\n";
run();

}

sub run {
ny $counter =0

i ncrement _count er ($counter);
i ncrenment _count er ($counter);

sub increnment _counter{

$_[0] ++;

print "Counter is equal to $_[0] !\n";
}

} # end of sub run
The approach given above should be properly documented of course.

Here is a solution that avoids the problem entirely by splitting the code into two files; the first isreally just
awrapper and loader, the second file contains the heart of the code. This second file must go into a direc-
tory in your @ NC. Some people like to put the library in the same directory as the script but this assumes
that the current working directory will be equal to the directory where the script is located and also that
@ NCwill contain’ .’ , neither of which are assumptions you should expect to hold in all cases.

Note that the name chosen for the library must be unique throughout the entire server and indeed every
server on which you many ever install the script. This solution is probably more trouble than it isworth - it
isonly oncluded because it was mentioned in previous versions of this guide.

24 29 Jan 2004

Perl Reference 1.7.1 Remediesfor Inner Subroutines

mul tiruné. pl

#! [usr/ bi n/ perl

use strict;
use war ni ngs;

require 'nmultirun6-lib. pl

for (1..3){
print “run: [tine $_]\n"
run();

}
Separate file:

mul tirun6-1ib. pl

use strict;
use war ni ngs;

ny $counter;

sub run {
$counter = 0;

i ncrement _counter();
i ncrement _counter();

}

sub i ncrenment _counter{
$count er ++;
print "Counter is equal to $counter !\n";

}
1

An dternative verion of the above, that mitigates some of the disadvantages, is to use a Perl5-style
Exporter module rather than a Perl4-style library. The globa uniqueness requirement still applies to the
module name, but at least thisis a problem Perl programmers should aready be familiar with when creat-
ing modules.

mul tirun?. pl

#!/ usr/ bi n/ perl

use strict;
use war ni ngs;
use My::Miltirun?,

for (1..3){
print “run: [tine $_]\n"
run();

}

29 Jan 2004 25

1.8 use(), require(), do(), %INC and @INC Explained

Separatefile:

My/ Mul tirun7. pm

package My:: Ml tirun7,
use strict;

use war ni ngs;

use base qw Exporter);
our @XPORT = gw(run);

ny $counter;

sub run {
$counter = O;

i ncrement _counter();
i ncrement _counter();

}

sub i ncrenent _counter{
$count er ++;
print "Counter is equal to $counter !\n";

}

1
Now you have at least five workarounds to choose from (not counting numbers 2 and 6).

For more information please refer to perlref and perlsub manpages.

1.8 juse(), require(), do(), % INC and @INC Explained
1.8.1 [The @ NC array

@ NC is a specia Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains alist of directories to search for executables, @ NC contains alist of directories from which Perl
modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from the @ NC
variable and searches them for the file it was requested to load. If the file that you want to load is not
located in one of the listed directories, you have to tell Perl where to find the file. Y ou can either provide a
path relative to one of the directoriesin @ NC, or you can provide the full path to thefile.

1.8.2 [The %I NC hash|

% NCisanother special Perl variable that is used to cache the names of the files and the modules that were
successfully loaded and compiled by use(), require() or do() statements. Before attempting to load afile or
a module with use() or require(), Perl checks whether it's already in the %84 NC hash. If it's there, the
loading and therefore the compilation are not performed at all. Otherwise the file is loaded into memory
and an attempt is made to compile it. do() does unconditional loading--no lookup in the %4 NC hash is

26 29 Jan 2004

Perl Reference 1.8.2 The %INC hash

made.

If the file is successfully loaded and compiled, a new key-value pair is added to % NC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned, and if
it was found in any of the @ NC directories except " . " the valueisthe full path to it in the file system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @ NC on my system:
Y% perl -e 'print join "\n", @NC
/usr/1ib/perl5/5.00503/i386-1inux
/usr/l1ib/perl5/5.00503

/fusr/libl/perl5/site_perl/5.005/i386-1inux
/usr/libl/perl5/site_perl/5.005

Noticethe. (current directory) isthelast directory in thelist.

Now let’sload the module st ri ct . pmand see the contents of %4 NC:
% perl -e "use strict; print map {"$_ => $INC{$_}\n"} keys % NC
strict.pm=> /usr/lib/perl5/5. 00503/strict.pm

Sincestri ct. pmwas found in /usr/lib/per15/5.00503/ directory and /usr/lib/per15/5.00503/ is a part of
@ NC, % NCincludesthe full path asthe valuefor thekey stri ct. pm

Now let’s create the simplest modulein/ t np/ t est . pm

It does nothing, but returns atrue value when loaded. Now let’sload it in different ways.

%cd /tnp
% perl -e 'use test; print map {"$_ => SINC[$_}\n"} keys % NC

test.pm=> test.pm

Since the file was found relative to . (the current directory), the relative path isinserted as the value. If we
alter @ NC, by adding /tmp to the end:

%cd /tnp

% perl -e 'BEG N{push @NC, "/tnmp"} use test; \

print map {"$_ => $SINCS$_}\n"} keys % NC

test.pm=> test.pm

Here we still get the relative path, since the module was found first relative to " . " . The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the " . " directory
won't match,

29 Jan 2004 27

1.8.2 The %INC hash

% cd /

% perl -e 'BEG N{push @NC, "/tnp"} use test; \
print map {"$_ => $INC{$_}\n"} keys % NC
test.pm=> /tnp/test. pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for matching before
". " and therefore we will get the full path aswell:

%cd /tnp
% perl -e 'BEG N{unshift @NC, "/tnp"} use test; \
print map {"$_ => $SINCS$_}\n"} keys % NC
test.pm=> /tnp/test. pm

The code:

BEA N{unshift @NC, "/tnmp"}
can be replaced with the more elegant:
use lib "/tm";
Which is amost equivaent to our BEG N block and is the recommended approach.

These approaches to modifying @ NC can be labor intensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts from development to a production server.

Thereisamodule called Fi ndBi n which solves this problem in the plain Perl world, but unfortunately it
won't work under mod_perl, since it's a module and as any module it's loaded only once. So the first
script using it will have all the settings correct, but the rest of the scripts will not if located in a different
directory from the first.

For the sake of completeness, 1’1l present this module anyway.

If you use this module, you don’'t need to write a hard coded path. The following snippet does all the work
for you (thefileis/tmp/load.pl):

#! [usr/ bi n/ perl

use FindBin ();

use lib "$FindBin::Bin";

use test;

print "test.pm=> $INC{’'test.pm}\n";

In the above example $Fi ndBi n: : Bi n is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/new_dir in the code above $Fi ndBi n: : Bi n equals/tmp/new_dir.

28 29 Jan 2004

Perl Reference 1.8.3 Modules, Libraries and Program Files

% /t np/ | oad. pl

test.pm=> /tnp/test. pm
Thisisjust likeuse 1i b except that no hard coded path is required.

Y ou can use this workaround to make it work under mod_perl.

do ' FindBin. pm ;

unshift @NC, "$FindBin::Bin";

require test;

#maybe test::inport(...) here if need to inport stuff

This has a dlight overhead because it will load from disk and recompile the Fi ndBi n module on each
request. So it may not be worth it.

1.8.3 [Modules, Libraries and Program Filed

Before we proceed, let’ s define what we mean by module, library and programfile.

® Libraries
These are files which contain Perl subroutines and other code.

When these are used to break up a large program into manageable chunks they don't generaly
include a package declaration; when they are used as subroutine libraries they often do have a
package declaration.

Their last statement returnstrue, asimple 1; statement ensures that.
They can be named in any way desired, but generally their extensionis .pl.
Examples:

config. pl

No package so defaults to main::
$dir = "/home/ httpd/cgi-bin";

$cgi = "/cgi-bin";
1;

nmysubs. pl

No package so defaults to main::
sub print_header{
print "Content-type: text/plain\r\n\r\n";

}
1

29 Jan 2004 29

1.8.3 Modules, Libraries and Program Files

package web ;
Call like this: web::print_with_class(’'loud ,"Don’t shout!");
sub print_with_cl ass{
ny($class, $text) = @ ;
print qgq{$t ext </ span>};
1;
® Modules
A file which contains perl subroutines and other code.
It generally declares a package name at the beginning of it.

Modules are generally used either as function libraries (which .pl files are still but less commonly
used for), or as object libraries where amodule is used to define a class and its methods.

Its last statement returns true.
The naming convention requires it to have a.pm extension.

Example:

MyModul e. pm

package My:: Modul e;
$My: : Modul e: : VERSION = 0. 01;

sub new{ return bless {}, shift;}
END { print "Quitting\n"}

1;
® Program Files

Many Perl programs exist as asingle file. Under Linux and other Unix-like operating systems the file
often has no suffix since the operating system can determine that it is a perl script from the first line
(shebang line) or if it's Apache that executes the code, there is a variety of ways to tell how and when
the file should be executed. Under Windows a suffix is normally used, for example. pl or. pl x.

The program file will normaly r equi re() any libraries and use() any modules it requires for
execution.

It will contain Perl code but won't usually have any package names.

Its last statement may return anything or nothing.

30 29 Jan 2004

Perl Reference 1.8.4 require()

184

require() reads afile containing Perl code and compilesit. Before attempting to load the file it looks up the
argument in %4 NC to see whether it has already been loaded. If it has, require() just returns without doing
athing. Otherwise an attempt will be made to load and compile thefile.

require() hasto find thefileit has to load. If the argument isafull path to thefile, it just triesto read it. For
example:

require "/hone/ httpd/perl/nylibs.pl";

If the path is relative, require() will attempt to search for the file in al the directories listed in @ NC. For
example:

require "nylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @ NC the
first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statement will always return TRUE. That’s why the suggestionisto put "1; " at the end of file.

Although you should use the real filename for most files, if the file is ajmodulg, you may use the following
convention instead:

require My:: Mdul e;
Thisisequa to:
requi re "M/ Mdul e. pnt;

If require() fails to load the file, either because it couldn’t find the file in question or the code failed to
compile, or it didn’t return TRUE, then the program would die(). To prevent this the require() statement
can be enclosed into an eval() exception-handling block, asin this example:

require. pl

#!/usr/bin/perl -w

eval { require "/filel/that/does/not/exists"};

if (3@ {

print “Failed to | oad, because : $@

}
print "\ nHello\n";

When we execute the program:

29 Jan 2004 31

1.85 use()

% ./require. pl

Failed to | oad, because : Can’'t locate /filel/that/does/not/exists in
@NC (@NC contains: /usr/lib/perl5/5.00503/i386-1inux
Jusr/1lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-Iinux
lusr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

Hell o

We see that the program didn’t dig(), because Hello was printed. This trick is useful when you want to
check whether a user has some module installed, but if she hasn't it’s not critical, perhaps the program can
run without this module with reduced functionality.

If we remove the eval() part and try again:
require. pl

#! /usr/bin/perl -w

require "/filel/that/does/not/exists";
print "\nHello\n";

% . /requirel. pl
Can't locate /file/that/does/not/exists in @NC (@ NC cont ai ns:
/fusr/1ib/perl5/5.00503/i386-1inux /usr/lib/perl5/5.00503

/usr/libl/perl5/site_perl/5.005/i386-1inux
/usr/libl/perl5/site_perl/5.005 .) at requirel.pl line 3.

The program just die()sin the last example, which iswhat you want in most cases.

For more information refer to the perlfunc manpage.

185

use(), just like require(), loads and compiles files containing Perl code, but it works with[moduled only and
is executed at compiletime.

The only way to pass a module to load is by its module name and not its filename. If the module is located
in MyCaode.pm, the correct way to use() it is:

use MyCode

and not:

use "MCode. pnt

use() trand ates the passed argument into afile name replacing : : with the operating system’s path separa-
tor (normally /) and appending .pm at the end. So My: : Modul e becomes My/Module.pm.

32 29 Jan 2004

Perl Reference 1.8.6 do()

use() is exactly equivalent to:

BEA N { require Mdul e; Mdul e->i nport(LIST); }

Internally it calls require() to do the loading and compilation chores. When require() finishes its job,
import() is called unless () isthe second argument. The following pairs are equivalent:

use MyModul e;
BEGA N {requi re MyMddul e; MyMddul e->i nport; }

use MyModul e g foo bar);
BEGA N {requi re MyModul e; MyMdul e->i nport ("foo","bar"); }

use MyModule ();
BEG N {require MyMdul e; }

The first pair exports the default tags. This happens if the module sets @XPORT to a list of tags to be
exported by default. The module’ s manpage normally describes what tags are exported by default.

The second pair exports only the tags passed as arguments.
Thethird pair describes the case where the caller does not want any symbols to be imported.

i mport () isnotabuiltin function, it'sjust an ordinary static method cal into the "My Modul e" package
to tell the module to import the list of features back into the current package. See the Exporter manpage
for more information.

When you write your own modules, always remember that it's better to use @EXPORT_CK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the namespace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When functions and variables aren't exported you can ill access them using their full names, like
$My: : Modul e: : bar or $My: : Modul e: : foo() . By convention you can use a leading underscore
on namesto informally indicate that they are internal and not for public use.

There's a corresponding "no" command that un-imports symbols imported by use, i.e, it cals
Modul e- >uni nport (LI ST) instead of i mport ().

1.8.6

While do() behaves amost identically to require(), it reloads the file unconditionally. It doesn't check
2% NC to see whether the file was already |oaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the file but
cannot compile it, it returns undef and puts an error message in $@ If the file is successfully compiled,
do() returns the value of the last expression evaluated.

29 Jan 2004 33

1.9 Using Global Variables and Sharing Them Between Modules/Packages

1.9 |Using Global Variables and Sharing Them Between
M odules/Packages

It helps when you code your application in a structured way, using the perl packages, but as you probably
know once you start using packages it's much harder to share the variables between the various packag-
ings. A configuration package comes to mind as a good example of the package that will want its variables
to be accessible from the other modules.

Of course using the Object Oriented (OO) programming is the best way to provide an access to variables
through the access methods. But if you are not yet ready for OO techniques you can still benefit from
using the technigues we are going to talk about.

1.9.1 Making Variables Global|

When you first wrote $x in your code you created a (package) global variable. It is visible everywhere in
your program, although if used in a package other than the package in which it was declared (mai n: : by
default), it must be referred to with its fully qualified name, unless you have imported this variable with
import(). This will work only if you do not use st ri ct pragma; but you have to use this pragma if you
want to run your scripts under mod_perl. Read The strict pragmacto find out why.

1.9.2 [Making Variables Global With strict Pragma On|

First you use:

use strict;
Then you use:
use vars gw $scal ar %hash @rray);

This declares the named variables as package globals in the current package. They may be referred to
within the same file and package with their unqualified names; and in different files/packages with their
fully qualified names.

With perl5.6 you can use the our operator instead:

our ($scal ar, % ash, @rray);

If you want to share package global variables between packages, hereiswhat you can do.

1.9.3 [Using Exporter.pm to Share Global Variabled

Assume that you want to share the CE . pmobject (I will use $q) between your modules. For example,
you createitinscri pt. pl , but you want it to bevisiblein My: : HTM.. First, you make $q global.

34 29 Jan 2004

Perl Reference 1.9.3 Using Exporter.pm to Share Global Variables

script.pl:

use vars qw($q);
use C4;

use lib quw(.):
use My::HTML gw($q); # MY/HTML.pmis in the same dir as script.pl
$q = Cd ->new,

My: : HTML: : pri nt nyheader () ;

Note that we have imported $g from My: : HTML. And My: : HTML does the export of $q:

package My:: HTM;
use strict;

BEG N {
use Exporter ();

@y HTM.: : | SA

@y : HTM.: : EXPORT
@y : HTM.: : EXPORT_OK

gw Exporter);
aw() ;
aw($q) ;

}
use vars gw($q);
sub print nyheader {
Whatever you want to do with $qg... e.g.

print $qg->header();
}
1;

So the $q is shared between the My: : HTM. package and scri pt . pl . It will work vice versaas well, if
you create the object in My: : HTML but useitinscri pt . pl . You have true sharing, since if you change
$qginscript. pl,itwill bechangedin My: : HTM. aswell.

What if you need to share $q between more than two packages? For example you want My::Doc to share
$q aswell.

You leave My: : HTML. untouched, and modify script.pl to include:
use My::Doc gw $q);

Then you add the same Export er code that we used in My: : HTM., into My: : Doc, so that it aso
exports $q.

One possible pitfall is when you want to use My: : Doc in both My: : HTML and script.pl. Only if you add

use My::Doc gw $q);

29 Jan 2004 35

1.9.3 Using Exporter.pm to Share Global Variables

into My: : HTML will $q be shared. Otherwise My: : Doc will not share $q any more. To make things
clear here isthe code:

script.pl:

use vars qw $q);
use Cd;

use lib gw.);

use My:: HTML gw($q); # MY/ HTML.pmis in the sanme dir as script.pl
use My::Doc gqw($q); # Ditto

$q = new Cd ;

My:: HTM.: : pri nt myheader () ;

package My:: HTM;
use strict;

BEG N {
use Exporter ();

@y HTM.: : | SA gw Exporter);

@W: : HTML: : EXPORT = gw);
@4: : HTM.: : EXPORT_OK = gqw($q);
}
use vars aqw $q) ;

use My::Doc qgw($q);

sub print nyheader {
Whatever you want to do with $qg... e.g.
print $qg->header();

My::Doc::printtitle(’ Guide');

package My:: Doc;
use strict;

BEGA N {
use Exporter ();

@y::Doc::1SA gw Exporter);

@W: : Doc: : EXPORT = gw();
@W::Doc:: EXPORT_OK = gw $q);
}
use vars qw($q);
sub printtitle{
ny $title = shift || ' None’;

36 29 Jan 2004

Perl Reference 1.9.4 Using the Perl Aliasing Feature to Share Global Variables

print $g->h1($title);
}
1;

1.9.4 |Using the Perl Aliasing Feature to Share Global Variables

As the title says you can import a variable into a script or module without using Export er. pm | have
found it useful to keep all the configuration variables in one module My: : Conf i g. But then | have to
export all the variablesin order to use them in other modules, which is bad for two reasons; polluting other
packages name spaces with extra tags which increases the memory requirements; and adding the over-
head of keeping track of what variables should be exported from the configuration module and what
imported, for some particular package. | solve this problem by keeping all the variables in one hash %
and exporting that. Here is an example of My: : Confi g:

package My:: Confi g;

use strict;

use vars gw %) ;

% = (
Al the configs go here
scal ar _var => 5,

array_var => [gw(foo bar)],

hash_var => {
foo => ' Foo’,
bar => ' BARRR ,
},
)
1;

Now in packages that want to use the configuration variables | have either to use the fully qualified names
like $My: : Confi g: : t est, which | dislike or import them as described in the previous section. But
hey, since we have only one variable to handle, we can make things even simpler and save the loading of
the Exporter. pm package. We will use the Perl aliasing feature for exporting and saving the

keystrokes:

package My:: HTM;
use strict;
use lib gw.);
G obal Configuration now aliased to global %
use My::Config (); # My/Config.pmin the sane dir as script.pl
use vars qw %) ;
*¢ = \%W:: Config::c;

Now you can access the variables fromthe My::Config
print $c{scal ar_var};
print $c{array_var}[0];
print $c{hash_var}{foo};

29 Jan 2004 37

1.9.5 Using Non-Hardcoded Configuration Module Names

Of course $c is global everywhere you use it as described above, and if you change it somewhere it will
affect any other packages you have aliased $My: : Confi g: : ¢ to.

Note that aliases work either with global or | ocal () vars- you cannot write:
nmy *c = \%wW::Config::c; # ERROR!

Which isan error. But you can write:
local *c = \%W::Config::c

For more information about aliasing, refer to the Camel book, second edition, pages 51-52.

1.9.5 [Using Non-Hardcoded Configuration Module Nameg

Y ou have just seen how to use a configuration module for configuration centralization and an easy access
to the information stored in this module. However, there is somewhat of a chicken-and-egg problem--how
to let your other modules know the name of this file? Hardcoding the name is brittle--if you have only a
single project it should be fine, but if you have more projects which use different configurations and you
will want to reuse their code you will have to find all instances of the hardcoded name and replace it.

Another solution could be to have the same name for a configuration module, like My: : Confi g but
putting a different copy of it into different locations. But this won't work under mod_perl because of the
namespace collision. Y ou cannot load different modules which uses the same name, only the first one will
be loaded.

Luckily, there is another solution which alows us to stay flexible. Per | Set Var comes to rescue. Just
like with environment variables, you can set server’s global Perl variables which can be retrieved from any
modul e and script. Those statements are placed into the httpd.conf file. For example

Per | Set Var FooBaseDir / hone/ htt pd/ f oo
Per | Set Var FooConfi ghMbdul e Foo:: Config

Now we require() the file where the above configuration will be used.

Per | Requi re / hone/ httpd/ perl/startup.pl

In the startup.pl we might have the following code:

retrieve the configuration nodule path

use Apache;

ny $s Apache- >server;

ny $base_dir $s->dir_confi g(’ FooBaseDir') |]

ny $conf| g_nodul e = $s->dir_config(’ FooConflngduI e) ||

di e "FooBaseDi r and FooConfighbdul e aren’t set in httpd. conf "
unl ess $base_dir and $confi g_nodul e;

build the real path to the config nodul e
ny $path = "$base_dir/$config_nodul e*;
$path =~ s|::|/]|;

$path .= ".pnt;

38 29 Jan 2004

Perl Reference 1.10 The Scope of the Special Perl Variables

we have sonething |ike "/home/httpd/foo/ Foo/ Config. pnt

now we can pull in the configurati on nodul e
require $path;

Now we know the module name and it's loaded, so for example if we need to use some variables stored in
this modul e to open a database connection, we will do:

Apache: : DBl - >connect _on_ini t

("DBI: nysql : ${$config_nodul e.’:: DB_NAVE }:: ${$config_nodule.’:: SERVER }",
${$config_nodule.’::USER },
${$confi g_nodul e.’ :: USER_PASSWD },

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commit executes imediately

}
)
Where variable like:
${$confi g _nodul e.’ :: USER }
In our example are redlly:
$Foo: : Confi g:: USER

If you want to access these variable from within your code at the run time, instead accessing to the server
object $c, use the request object $r :

ny $r = shift;
ny $base_dir
ny $config_nodul e

$r->dir_config(’ FooBaseDir’) |
$r->dir_config(’ FooConfighbdule’') ||

1.10 [The Scope of the Special Per| Variables

Specia Perl variables like $| (buffering), $MT (script’s start time), $"W (warnings mode), $/ (input
record separator), $\ (output record separator) and many more are all true global variables; they do not
belong to any particular package (not even mai n: :) and are universally available. This means that if you
change them, you change them anywhere across the entire program; furthermore you cannot scope them
with my(). However you can local()ise them which means that any changes you apply will only last until
the end of the enclosing scope. In the mod_perl situation where the child server doesn’'t usualy exit, if in
one of your scripts you modify a global variable it will be changed for the rest of the process' life and will
affect all the scripts executed by the same process. Therefore localizing these variables is highly recom-
mended, I’ d say mandatory.

We will demonstrate the case on the input record separator variable. If you undefine this variable, the
diamond operator (readline) will suck in the whole file at once if you have enough memory. Remembering
this you should never write code like the example below.

29 Jan 2004 39

1.11 Compiled Regular Expressions

$/ = undef; # BAD
open IN, "file"

slurp it all into a variable
$all _the_file = <IN>;

The proper way isto have alocal() keyword before the special variable is changed, like this:

local $/ = undef;
open IN, "file"

slurp it all inside a variable
$all _the_file = <I N>;

But there is a catch. local() will propagate the changed value to the code below it. The modified value will
be in effect until the script terminates, unlessit is changed again somewhere elsein the script.

A cleaner approach is to enclose the whole of the code that is affected by the modified variable in a block,
like this:

{

local $/ = undef;
open IN, "file"
slurp it all inside a variable
$all _the_file = <IN>;
}

That way when Perl leaves the block it restores the original value of the $/ variable, and you don’t need
to worry elsewhere in your program about its value being changed here.

Note that if you call a subroutine after you've set a global variable but within the enclosing block, the
global variable will be visible with its new value inside the subroutine.

1.11 |Compiled Regular Expressions

When using aregular expression that contains an interpolated Perl variable, if it is known that the variable
(or variables) will not change during the execution of the program, a standard optimization technique is to
add the / o modifier to the regex pattern. This directs the compiler to build the internal table once, for the
entire lifetime of the script, rather than every time the pattern is executed. Consider:

ny $pat = '~oo$; # likely to be input froman HTM. formfield
foreach(@ist) {

print if /$pat/o;
}

Thisisusually abig win in loops over lists, or when using the gr ep() or map() operators.

Inlong-lived mod_perl scripts, however, the variable may change with each invocation and this can pose a
problem. The first invocation of a fresh httpd child will compile the regex and perform the search
correctly. However, al subsequent uses by that child will continue to match the original pattern, regardless
of the current contents of the Perl variables the pattern is supposed to depend on. Y our script will appear
to be broken.

40 29 Jan 2004

Perl Reference 1.11 Compiled Regular Expressions

There are two solutions to this problem:

The first isto use eval q//, to force the code to be evauated each time. Just make sure that the eval
block covers the entire loop of processing, and not just the pattern match itself.

The above code fragment would be rewritten as:

ny $pat = ' ~foo$’;
eval q{
foreach(@ist) {
print if /$pat/o;
}
}

Just saying:

foreach(@ist) {
eval g{ print if /$pat/o; };
}

means that we recompile the regex for every element in the list even though the regex doesn’t change.

Y ou can use this approach if you require more than one pattern match operator in a given section of code.
If the section contains only one operator (beitanni/ or s/ / /), you can rely on the property of the null
pattern, that reuses the last pattern seen. This leads to the second solution, which also eliminates the use of
eval.

The above code fragment becomes:
ny $pat = ' ~foo$’;
"sonet hing" =~ /$pat/; # dummy match (MJST NOT FAIL!)
foreach(@ist) {
print if //;
}

The only gotcha is that the dummy match that boots the regular expression engine must absolutely, posi-
tively succeed, otherwise the pattern will not be cached, and the / / will match everything. If you can’t
count on fixed text to ensure the match succeeds, you have two possibilities.

If you can guarantee that the pattern variable contains no meta-characters (things like *, +, ~, $...), you can
use the dummy match;

$pat =~ /\@pat\E/; # guaranteed if no neta-characters present

If there is a possibility that the pattern can contain meta-characters, you should search for the pattern or the
non-searchable \377 character asfollows:

"\ 377" =~ [$pat |\ 377%/; # guaranteed if neta-characters present

Another approach:

29 Jan 2004 41

1.12 Exception Handling for mod_perl

It depends on the complexity of the regex to which you apply this technique. One common usage where a
compiled regex is usually more efficient isto "match any one of a group of patterns' over and over again.

Maybe with a helper routine, it's easier to remember. Here is one slightly modified from Jeffery Friedl’s
example in his book "Mastering Regular Expressions’.

HRHH R H
Bui | d_Mat chMany_Functi on
-- Ilnput: list of patterns

-- Qutput: A code ref which matches its $_[0]
agai nst ANY of the patterns given in the
"I nput", efficiently.
#
sub Bui |l d_Mat chMany_Function {
my @R=@;
ny $expr = join ||, map { "\$_[0] =~ m\$R[$_]/0" } (O0..%$#R);

ny $matchsub = eval "sub { $expr }";
die "Failed in building regex @R $@ if $@
$mat chsub;

}
Example usage:

@one_browsers = qw(Mdzilla Lynx MSIE Am gaVoyager |wp |ibww);
$Known_Br owser =Bui | d_Mat chMany_Functi on(@one_br owsers);

whi | e (<ACCESS LOG>) {
...
$browser = get browser field($);
if (! &Known_Browser ($browser)) {
print STDERR "Unknown Browser: $browser\n";

}
...
}

And of course you can use the gr() operator which makes the code even more efficient:

ny $pat = ’~foo$;
ny $re = qr($pat);
foreach(@ist) {
print if /$relo;
}

The gr() operator compiles the pattern for each request and then use the compiled version in the actual
match.

1.12 [Exception Handling for mod per|

Here are some guidelines for clean(er) exception handling in mod_perl, athough the technique presented
can be applied to all of your Perl programming.

42 29 Jan 2004

Perl Reference 1.12.1 Trapping Exceptionsin Perl

The reasoning behind this document is the current broken status of $SI G DI E__} in the perl core -
see both the perl5-porters and the mod_perl mailing list archives for details on this discussion. (It's broken
in at least Perl v5.6.0 and probably in later versions as well). In short summary, $SIG{ _DIE_} isalittle
bit too global, and catches exceptions even when you want to catch them yourself, using an eval {}

block.

1.12.1 [Trapping Exceptionsin Perl|

To trap an exception in Perl we use the eval {} construct. Many people initially make the mistake that
this is the same as the eval EXPR construct, which compiles and executes code at run time, but that’s
not the case. eval {} compiles at compile time, just like the rest of your code, and has next to zero
run-time penalty. For the hardcore C programmers among you, it uses the set j mp/ | ongj np POSIX
routines internaly, just like C++ exceptions.

When in an eval block, if the code being executed dig()’'s for any reason, an exception is thrown. This
exception can be caught by examining the $@variable immediately after the eval block; if $@is true then
an exception occurred and $@contains the exception in the form of a string. The full construct looks like
this:

eval {
Some code here
}; # Note inportant sem -colon there
if ($@Q # $@contains the exception that was thrown

{
Do sonething with the exception
}
el se # optional
{
No exception was thrown
}

Most of the time when you see these exception handlers there is no else block, because it tends to be OK if
the code didn’t throw an exception.

Perl’ s exception handling is similar to that of other languages, though it may not seem so at first sight:

Per | O her | anguage
eval { try {
execute here /| execute here
raise our own exception: /'l raise our own exception:
die "OCops" if /error/; i f(error==1){throw Exception. Qops;}
execute nore /| execute nore
P }
if($@ { catch {
handl e exceptions switch(Exception.id) {
if($@=~ /Fail/l) { Fail : fprintf(stderr, "Failed\n") ;
print "Failed\n" ; break ;
}
elsif($@=~ /Oops/) { Qops : throw Exception ;

Pass it up the chain
dieif $@=~ /Qops/;

29 Jan 2004 43

1.12.2 Alternative Exception Handling Techniques

}
el se { defaul t :
handl e all other }
exceptions here }
} /1 If we got here all is OK or handl ed
}
el se { # optional
all is well
}
all is well or has been handl ed

1.12.2 |Alternative Exception Handling Techniqueg

An often suggested method for handling global exceptions in mod_perl, and other perl programs in
general, isa __ DIE__ handler, which can be set up by either assigning a function name as a string to
$SI G __DI E__} (not particularly recommended, because of the possible namespace clashes) or assign-
ing acodereferenceto $SI G{ __DI E__} . The usual way of doing so isto use an anonymous subroutine:

$SIG__DIE__} =sub { print "Eek - we died with:\n", $_[0]; };

The current problem with thisisthat $SI G{ __DI E__} isaglobal setting in your script, so while you can
potentially hide away your exceptions in some external module, the execution of $SIG{ _ DIE_} is
fairly magical, and interferes not just with your code, but with all code in every module you import.
Beyond the magic involved, $SI G __ DI E__} actualy interferes with perl’s normal exception handling
mechanism, theeval {} construct. Witness:

$SIG__DIE_} = sub { print "handler\n"; };
eval {
print "In eval\n";
die "Failed for sone reason\n";
3
if (8@ {
print "Caught exception: $@;
}
The code unfortunately prints out:

In eval
handl er

Which isn't quite what you would expect, especidly if that $SI G{__DI E__} handler is hidden away
deep in some other module that you didn’t know about. There are work arounds however. One isto local-
ize$SI G __DI E__} inevery exception trap you write:

eval {
local $SIG__DIE_};

44 29 Jan 2004

Perl Reference 1.12.3 Better Exception Handling

Obvioudly this just doesn't scale - you don’t want to be doing that for every exception trap in your code,
and it's a dow down. A second work around is to check in your handler if you are trying to catch this
exception:

$SIG__DE__} = sub {
die $_[0] if $S;
print "handl er\n";

3
However thiswon't work under Apache: : Regi stry - you'reawaysin an eva block there!

$7Sisn't totaly reliable in certain Perl versions. e.g. 5.005_03 and 5.6.1 both do the wrong thing with it
in certain situations. Instead, you use can use the caller() function to figure out if we are called in the
eval () context:

$SIG_DIE _} = sub {
ny $in_eval = 0;
for(my $stack = 1; nmy $sub = (CORE: :caller($stack))[3]; $stack++) {
$in_eval =1 if $sub =~ /M (eval\)/;
}

ny_di e_handler(@) unless $in_eval;
b

The other problem with $SI G{ __DI E__} alsorelatesto its global nature. Because you might have more
than one application running under mod_perl, you can't be sure which has set a $SIG __ D E_}
handler when and for what. This can become extremely confusing when you start scaling up from a set of
simple registry scripts that might rely on CGI::Carp for globa exception handling (which uses
$SI G __DI E__} to trap exceptions) to having many applications installed with a variety of exception
handling mechanismsin place.

Y ou should warn people about this danger of $SI { __ DI E__} and inform them of better ways to code.
The following material is an attempt to do just that.

1.12.3 [Better Exception Handling|

The eval {} construct in itself is a fairly weak way to handle exceptions as strings. There's no way to
pass more information in your exception, so you have to handle your exception in more than one place - a
the location the error occurred, in order to construct a sensible error message, and again in your exception
handler to de-construct that string into something meaningful (unless of course all you want your excep-
tion handler to do is dump the error to the browser). The other problem is that you have no way of auto-
matically detecting where the exception occurred using eval {} construct. Ina$SI G __ DI E__} block
you always have the use of the caller() function to detect where the error occurred. But we can fix that...

A little known fact about exceptions in perl 5.005 is that you can call die with an object. The exception
handler receives that object in $@ Thisis how you are advised to handle exceptions now, asit provides an
extremely flexible and scalable exceptions solution, potentialy providing almost all of the power Java
exceptions.

29 Jan 2004 45

1.12.3 Better Exception Handling

[As afootnote here, the only thing that is really missing here from Java exceptions is a guaranteed Finally
clause, although its possible to get about 98.62% of the way towards providing that using eval {} .]

1.12.3.1 |A Little Housekeeping

First though, before we delve into the details, a little housekeeping is in order. Most, if not all, mod_perl
programs consist of a main routine that is entered, and then dispatches itself to a routine depending on the
parameters passed and/or the form values. In a normal C program this is your main() function, in a
mod_perl handler this is your handler() function/method. The exception to this rule seems to be
Apache::Registry scripts, although the techniques described here can be easily adapted.

In order for you to be able to use exception handling to its best advantage you need to change your script
to have some sort of global exception handling. This is much more trivia than it sounds. If you're using
Apache: : Regi st ry to emulate CGI you might consider wrapping your entire script in one big eval
block, but | would discourage that. A better method would be to modularize your script into discrete func-
tion calls, one of which should be a dispatch routine:

#!/usr/ bin/perl -w
Apache:: Registry script

eval {
di spatch();

H
if ($@ {

handl e exception
}

sub dispatch {

}

This is easier with an ordinary nod_perl handler as it is natural to
have separate functions, rather than a | ong run-on script:

MyHandl er. pm

sub handl er {
ny $r = shift;

eval ({
di spatch($r);
b
it (3@ {
handl e exception
}
}

sub dispatch {
ny $r = shift;

}

Now t hat the skeleton code is setup, let’s create an exception cl ass,
maki ng use of Perl 5.005's ability to throw exception objects.

46 29 Jan 2004

Perl Reference 1.12.4 Catching Uncaught Exceptions

1.12.3.2 |An Exception Clasg

Thisisarealy simple exception class, that does nothing but contain information. A better implementation
would probably also handle its own exception conditions, but that would be more complex, requiring sepa-
rate packages for each exception type.

My/ Excepti on. pm

package My:: Excepti on;

sub AUTOLQAD ({
no strict 'refs’, 'subs’;
if (SAUTOLOAD =~ /.*:: ([A-Z]\w)$/) {
ny $exception = $1;
*{$AUTOLOAD} =
sub {
shift;
ny ($package, $filenane, $line) = caller;
push @, caller => {
package => $package,
filename => $fil enane,
line => $line,
3
bless { @ }, "My::Exception:: $exception";

got o} &{ SAUTOLQAD} ;
}
el se {
die "No such exception class: $AUTOLQAD\ n";
}
}
1;

OK, so thisis al highly magical, but what does it do? It creates a simple package that we can import and
use asfollows:

use My:: Excepti on;
die My:: Exception->SonmeException(foo => "bar");

The exception class tracks exactly where we died from using the caller() mechanism, it also caches excep-
tion classes so that AUTOLOAD is only called the first time (in a given process) an exception of a particular
type isthrown (particularly relevant under mod_perl).

1.12.4 |Catching Uncaught Exceptiong

What about exceptions that are thrown outside of your control? We can fix this using one of two possible
methods. The first is to override die globally using the old magical $SI G{ __DI E__}, and the second, is
the cleaner non-magical method of overriding the global die() method to your own die() method that
throws an exception that makes sense to your application.

29 Jan 2004 47

1.12.4 Catching Uncaught Exceptions

1.12.4.1 Using $SIG{_ DIE_ }|

Overloadingusing $SI { __DI E__} inthiscaseisrather smple, here’s some code:

$SIG__DE_} = sub {
if(lref($_[0])) {
$err = My::Exception->UnCaught (text => join(’’, @));
}

die $err;

I

All this does is catch your exception and re-throw it. It's not as dangerous as we stated earlier that
$SI G __ DI E__} can be, because we're actualy re-throwing the exception, rather than catching it and
stopping there. Even though $SIG{__DIE__} is a global handler, because we are simply re-throwing the
exception we can let other applications outside of our control simply catch the exception and not worry
about it.

There's only one dight buggette left, and that’s if some external code die()’ing catches the exception and
triesto do string comparisons on the exception, asin:

eval {
. # sone code
di e "FATAL ERROR!'\ n";

}
if (3@ {
if ($@=~ /"FATAL ERROR/) {
die $@
}
}

In order to deal with this, we can overload stringification for our My: : Except i on: : UnCaught class:

{
package My:: Exception:: UnCaught;
use overload """’ => \&str;
sub str {
shift->{text};
}
}

We can now let other code happily continue. Note that there is a bug in Perl 5.6 which may affect people
here: Stringification does not occur when an object is operated on by aregular expression (viathe =~ oper-
ator). A work around is to explicitly stringify using qq double quotes, however that doesn’t help the poor
soul who is using other applications. This bug has been fixed in later versions of Perl.

1.12.4.2 [Overriding the Cor e dig() Function|

So what if we don’t want to touch $SI G{ __DI E__} at all? We can overcome this by overriding the core
die function. This is dlightly more complex than implementing a $SI G{ __DI E__} handler, but is far
less magical, and is the right thing to do, according to the perl5-porters mailing list.

48 29 Jan 2004

Perl Reference 1.12.5 A Single UnCaught Exception Class

Overriding core functions has to be done from an external package/module. So we're going to add that to
our My: : Except i on module. Here' sthe relevant parts:

use vars qw @ SA @EXPORT/ ;
use Exporter;

@EXPORT = qw/ di e/ ;
@ SA = ' Exporter’;

sub die (@; # prototype to match CORE: :die

sub inport {
ny $pkg = shift;
$pkg- >export (' CORE: : GLOBAL', 'die’);
Exporter: :inport ($pkg, @);

}
sub die (@ {
if ('ref($_[0])) {
CORE: : di e My:: Exception->UnCaught (text => join("’, @));
}
CORE::die $ [0]; # only use first elenent because its an object
}

That wasn't so bad, was it? We're relying on Exporter’s export() function to do the hard work for us,
exporting the die() function into the CORE: : GLOBAL namespace. If we don’'t want to overload dig()
everywhere this can ill be an extremely useful technique. By just using Exporter’'s default import()
method we can export our new die() method into any package of our choosing. This allows us to short-cut
the long calling convention and simply dig() with a string, and let the system handle the actual construc-
tion into an object for us.

Along with the above overloaded stringification, we now have a complete exception system (well, mostly
complete. Exception die-hards would argue that there’'s no "finally" clause, and no exception stack, but
that’ s another topic for another time).

1.12.5 |A Single UnCaught Exception Clasg

Until the Perl core gets its own base exception class (which will likely happen for Perl 6, but not sooner),
it isvitally important that you decide upon a single base exception class for al of the applications that you
install on your server, and a single exception handling technique. The problem comes when you have
multiple applications all doing exception handling and all expecting a certain type of "UnCaught" excep-
tion class. Witness the following application:

package Foo;

eval {
do sonet hi ng
}
it (3@ {
if ($@>isa(’ Foo::Exception::Bar’)) {
handl e "Bar" exception

}

29 Jan 2004 49

1.12.6 Some Uses

elsif ($@>i sa(’ Foo:: Exception:: UnCaught')) {
handl e uncaught exceptions

}
}

All will work well until someone installs application "TrapMe" on the same machine, which installs its
own UnCaught exception handler, overloading CORE::GLOBAL ::die or installing a $SIG{ _DIE_ }
handler. This is actually a case where using $SIG{__ DIE__} might actualy be preferable, because you
can change your handler() routine to look like this:

sub handl er {
ny $r = shift;

local $SIG__D E_};
Foo:: Exception->Init(); # sets $SIG__D E_}

eval {

di spatch($r);
3
if ($@ {

handl e exception
}

sub dispatch {
ny $r = shift;

}

In this case the very nature of $SIG{__DIE_} being a lexical variable has helped us, something we
couldn’t fix with overloading CORE::GLOBAL ::die. However there is still a gotcha. If someone has over-
loaded die() in one of the applications installed on your mod_perl machine, you get the same problems
till. So in short: Watch out, and check the source code of anything you install to make sure it follows your
exception handling technique, or just uses dig() with strings.

1.12.6 [Some Useq

I’m going to come right out and say now: | abuse this system horribly! | throw exceptions all over my
code, not because I've hit an "exceptional" bit of code, but because | want to get straight back out of the
current call stack, without having to have every single level of function call check error codes. One way |
use thisisto return Apache return codes:

paranoid security check
die My:: Exception->Ret Code(code => 204);

Returns a 204 error code (HTTP_NO_CONTENT), which is caught at my top level exception handler:
if ($@>isa(’ My:: Exception::RetCode’)) {

return $@ >{code};
}

50 29 Jan 2004

Perl Reference 1.12.7 Conclusions

That last return statement isin my handler() method, so that’s the return code that Apache actually sends. |
have other exception handlersin place for sending Basic Authentication headers and Redirect headers out.
| also have a generic My: : Excepti on: : K class, which gives me a way to back out completely from
where | am, but register that as an OK thing to do.

Why do | go to these extents? After all, code like slashcode (the code behind |http://slashdot.org) doesn’t
need this sort of thing, so why should my web site? Well it's just a matter of scalability and programmer
style really. There's a lot of literature out there about exception handling, so | suggest doing some
research.

1.12.7 [Conclusiong

Here I've demonstrated a simple and scalable (and useful) exception handling mechanism, that fits
perfectly with your current code, and provides the programmer with an excellent means to determine what
has happened in his code. Some users might be worried about the overhead of such code. However in use
I’ve found accessing the database to be a much more significant overhead, and thisis used in some code
delivering to thousands of users.

For similar exception handling techniques, see the section '|Other Implementationg'.

1.12.8 [The My::Exception classin its entirety|

package My:: Excepti on;

use vars gw @ SA @XPORT $AUTOLQAD ;
use Exporter;

@ SA = ' Exporter’;

@EXPORT = qw/ di e/ ;

sub die (@;
sub inmport {
nmy $pkg = shift;
allow "use My:: Exception '"die’ ;" to nean inport locally only

$pkg- >export (' CORE: : GLOBAL’, 'die’) unless @;
Exporter::inport($pkg, @);

}
sub die (@ {
if ('ref($_[0])) {
CORE: : di e My:: Exception->UnCaught (text => join("’', @));
}
CORE: :die $_[0];
}
{
package My:: Exception:: UnCaught;
use overload '""' => sub { shift->{text} } ;
}
sub AUTOLQAD ({
no strict 'refs’, 'subs’;

29 Jan 2004 51

http://slashdot.org/

1.12.9 Other Implementations

}

1;

if (SAUTOLOAD =~ /.*:: ([A-Z]\w)$/) {
ny $exception = $1;
*{ $AUTOLOAD} =
sub {
shift;
ny ($package, $filenanme, $line) = caller;
push @, caller => {
package => $package,
filename => $fil enane,
line => $line,

}
bless { @ }, "My::Exception:: $exception";
3

goto & $AUTOLOAD};
}
el se {

CORE: : di e "No such exception class: $AUTOLOAD\ n";
}

1.12.9 |Other I mplementationg

Some users might find it very useful to have the more C++/Javalike interface of try/catch functions. These
are available in several forms that all work in dlightly different ways. See the documentation for each
module for details:

52

Error.pm

Graham Barr’s excellent OO styled "try, throw, catch™ module (from CPAN). This should be consid-
ered your best option for structured exception handling because it is well known and well supported
and used by alot of other applications.

Exception::Class and Devel::StackTrace
by Dave Rolsky both available from CPAN of course.

Exception: : d ass isabit cleaner than the AUTOLQOAD method from above as it can catch typos
in exception class names, whereas the method above will automatically create a new class for you. In
addition, it lets you create actual class hierarchies for your exceptions, which can be useful if you
want to create exception classes that provide extra methods or data. For example, an exception class
for database errors could provide a method for returning the SQL and bound parametersin use at the
time of the error.

Try.pm

Tony Olekshy’s. Adds an unwind stack and some other interesting features. Not on the CPAN. Avail-
able at [http://www .avrasoft.com/perl/rfc/try-1136.zip

29 Jan 2004

http://www.avrasoft.com/perl/rfc/try-1136.zip

Perl Reference 1.13 Customized _ DIE__ hanlder

1.13 |Customized DIE hanlder

Aswe saw in the previous sections it's a bad idea to do:

require Carp;
$SIG_D E__} = \&Carp::confess;

since it breaks the error propogations within eval {} blocks,. But starting from perl 5.6.x you can use
another solution to trace errors. For example you get an error:

"exit" is not exported by the GLOB(0x88414cc) nodule at (eval 397) line 1

and you have no clue where it comes from, you can override the exit() function and plug the tracer inside:

require Carp;
use subs gw CORE: : GLOBAL: : di e);
*CORE: : GLOBAL: : die = sub {
if ($_[0] =~ /"exit" is not exported/){
local *CORE:: GLOBAL::die = sub { CORE::die(@) };
Carp::confess(@); # Carp uses die() internally!
} else {
CORE: :die(@); # could wite &ORE.:die to forward @
}

b
Now we can test that it works properly without breaking the eval {} blocks error propogation:
eval { foo(); }; warn $@if $@
print "\n";
eval { poo(); }; warn $@if $@

sub foo{ bar(); }
sub bar{ die gg{"exit" is not exported}}

sub poo{ tar(); }
sub tar{ die "normal exit"}

prints:

$ perl -w test
Subroutine die redefined at test |ine 5.
"exit" is not exported at test line 6
main::_ ANON__('"exit" is not exported') called at test line 17
main::bar() called at test line 16
main::foo() called at test line 12
eval {...} called at test line 12

normal exit at test line 5.

the’local’ in:

29 Jan 2004 53

1.14 Maintainers

local *CORE:: GLOBAL::die = sub { CORE::die(@) };

isimportant, so you won't lose the overloaded CORE: : GLOBAL: : di e.

1.14 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.15 |Authors

® Stas Bekman <stas (at) stason.org>

® Matt Sergeant <matt (at) sergeant.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004

Preparing mod_perl modules for CPAN 2 Preparing mod_perl modules for CPAN

2 Preparing mod_perl modulesfor CPAN

29 Jan 2004 55

2.1 Description

2.1 |Description|

This document provides information for CPAN modules devel opers whose modules require mod_perl.

2.2 |Defining M akefile.PL Prerequisitesthat Require
mod per|

If there are any prerequisites that need to be defined in Makeile.PL, but require a mod_perl environment
to successfully get loaded, the following workaround can be used. The following example will specify two
prerequisites: Cd . pmand Apache: : DBI , the latter can be loaded only under mod_perl whereas the
former can be loaded from the command line.

file: Makefile.PL

use ExtUtils:: MakeMaker;

set prerequisites
nmy %rereq = (

Cd o=> 2.71,
)

Manual |y test whether Apache:: DBl is installed and add it to the
PREREQ PMif it’s not installed, so CPAN.pmwi || automatically fetch
#it. If Apache::DBl is already installed it will fail to get |oaded by
MakeMaker because it requires the nod_perl environment to | oad.
eval { require Apache:: DBl };
if ($3@&& $@!'~ /Can’t | ocate object nethod/) {

$prereq{’ Apache::DBI’'} = 0.87;

}

WiteMakefil e(
NAME => ' Apache: : Super Duper’ ,
VERSI ON_FROM => ' Super Duper. pm ,
PREREQ PM => \%prereq,
... the rest

)E

Notice that Can'’t locate objectnethodis a part of the error generated when Apache: : DBl isinstalled
but is attempted to be loaded outside of mod_perl, e.g. at the command line, which is the case with Make
file.PL.

2.3 \Writing the Test Suite

The Apache: : Test framework provides an easy way to test modules which require mod_perl (or
Apachein general), beit 1.0 or 2.0 generation. Here is|the complete guide to the Apache: : Test frame

56 29 Jan 2004

Preparing mod_perl modules for CPAN 2.4 Maintainers

2.4 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

2.5 |Authorg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 57

3 Running and Developing Tests with the Apache:: Test Framework

3 Running and Developing Testswith the
Apache::Test Framework

58 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.1 Description

3.1 |Description|

Thetitle is self-explanatory :)

The Apache: : Test framework was designed for creating test suits for products running on Apache
httpd webserver (not necessarily mod_perl). Originally designed for the mod_perl Apache module, it was
extended to be used for any Apache module.

This chapter istalking about the Apache: : Test framework, and in particular explains how to:

1. run existing tests
2. setup atesting environment for a new proj ect
3. develop new tests

For other Apache: : Test resources, see the|Referenceqsection at the end of this document.

3.2 Basics of Perl Modules Testing

The tests themselves are written in Perl. The framework provides an extensive functionality which makes
the tests writing a simple and therefore enjoyable process.

If you have ever written or looked at the tests most Perl modules come with, Apache: : Test uses the
same concept. The script t/TEST is running all the files ending with .t it finds in the t/ directory. When
executed atypical test prints the following:

1..3 # going to run 3 tests
ok 1 # the first test has passed
ok 2 # the second test has passed

not ok 3 # the third test has failed
Every ok or not ok isfollowed by the number which tells which sub-test has succeeded or failed.

t/TEST usesthe Test : : Har ness module which intercepts the STDOUT stream, parses it and at the end
of the tests print the results of the tests running: how many tests and sub-tests were run, how many
succeeded, skipped or failed.

Some tests may be skipped by printing:
1..0 # all tests inthis file are going to be skipped.

Usually atest may be skipped when some feature is optional and/or prerequisites are not installed on the
system, but thisis not critical for the usefulness of the test. Once you test that you cannot proceed with the
testsand it’s not a must pass test, you just skip it.

By default print() statements in the test script are filtered out by Test : : Har ness. if you want the test to
print what it does (if you decide to debug some test) use - ver bose option. So for example if your test
does this:

29 Jan 2004 59

3.3 Prerequisites

print "# testing : feature foo\n";
print "# expected: $expected\n";
print "# received: $received\n";
ok $expected eq $received;

in the normal mode, you won't see any of these prints. But if you run the test with t/ TEST -verbose, you
will see something like this:

testing : feature foo
expected: 2

received: 2

ok 2

When you develop the test you should always put the debug statements there, and once the test works for
you do not comment out or delete these debug statements. This is because if some user reports afailurein
some test, you can ask him to run the failing test in the verbose mode and send you back the report. It’'ll be
much easier to understand what the problem isif you get these debug printings from the user.

In the section several helper functions which make the tests writing easier are discussed.

For more details about the Test : : Har ness module please refer to its manpage. Also see the Test
manpage about Perl’ stest suite.

3.3 [Prerequisites

In order to use Apache: : Test it hasto beinstalled first.

Install Apache: : Test using the familiar procedure:
% cd Apache- Test

% per| Makefile.PL
% make && nake test && make install

If youinstall mod_perl 2.0, you get Apache: : Test installed aswell.

3.4 Running Tests

It's much easier to copy-cat things, than creating from scratch. 1t’s much easier to develop tests, when you
have some existing system that you can test, see how it works and build your own testing environment in a
similar fashion. Therefore let’sfirst look at how the existing test enviroments work.

You can look at the modperl-2.0's or httpd-test’s (perl-framework) testing environments which both use
Apache: : Test for their test suites.

60 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.4.1 Testing Options

3.4.1 [Testing Optiong

Run:

%t/ TEST -help

to get the list of options you can use during testing. Most options are covered further in this document.

3.4.2 Basic Testing

Running tests is just like for any CPAN Perl module; first we generate the Makdile file and build every-
thing with make

% per| Makefile.PL [options]
% nmake

Now we can do the testing. Y ou can run the tests in two ways. Thefirst oneis usual:

% nmake test

but it adds quite an overhead, since it has to check that everything is up to date (the usual make source
change control). Therefore you have to run it only once after nake and for re-running the tests it's faster
to run the tests directly via

%t/ TEST

When nake test ort/TEST arerun, al tests found in the t directory (files ending with .t are recog-
nized as tests) will be run.

3.4.3 |Individual Testing

To run a single test, simple specify it at the command line. For example to run the test file t/proto-
col/echo.f execute:

%t/ TEST protocol/echo

Notice that you don't have to add the t/ prefix and .t extension for the test filenames if you specify them
explicitly, but you can have these aswell. Therefore the following are all valid commands:

%t/ TEST protocol / echo.t
%t/ TEST t/protocol/echo
%t/ TEST t/protocol/echo.t

The server will be stopped if it was already running and a new one will be started before running the
t/protocol/echo.ttest. At the end of the test the server will be shut down.

When you run specific tests you may want to run them in the verbose mode, and depending on how the
test was written, you may get more debug information under this mode. This mode is turned on with
-verboseoption:

29 Jan 2004 61

3.4.4 Repetitive Testing

% t/ TEST -verbose protocol/echo

Y ou can run groups of tests at once. This command:

% ./t/TEST nmodul es protocol/echo

will run all the testsin t/modules/ directory, followed by t/protocol/echo.t test.

3.4.4 [Repetitive Testing

By default when you run the test without -run-tests option, the server will be started before the testing and
stopped at the end. If during a debugging process you need to re-run tests without a need to restart the
server, you can start the server once:

%t/ TEST -start-httpd

and then run the test(s) with -run-tests option many times:
%t/ TEST -run-tests

without waiting for the server to restart.

When you are done with tests, stop the server with:
%t/ TEST -stop-httpd

When the server is started you can modify .t files and rerun the tests without restarting the server.
However if you modify response handlers, you must restart the server for changes to take an effect.
However the changes are done in the perl code only, it’s possible to orrange for Apache::Test to[handle the
[code rel oad without restarting the server]

The -start-httpd option always stops the server first if any is running.

Normally when t/TEST is run without specifying the tests to run, the tests will be sorted aphabetically. If
tests are explicitly passed as arguments to t/ TEST they will be run in a specified order.

3.4.5 [Paralld Testing

Sometimes you need to run more than one Apache: : Test framework instances at the same time. In this
case you have to use different ports for each instance. Y ou can specify explicitly which port to use, using
the -port configuration option. For example to run the server on port 34343:

%t/ TEST -start-httpd -port=34343

or by setting an evironment variable APACHE TEST PORT to the desired value before starting the
server.

62 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.4.6 Verbose Mode

Specifying the port explicitly may not be the most convenient option if you happen to run many instances
of the Apache: : Test framework. The -port=select option comes to help. This option will automati-
cally pick for the next available port. For exampleif you run:

%t/ TEST -start-httpd -port=sel ect

and there is already one server from a different test suite which uses the default port 8529, the new server
will try to use a higher port.

There is one problem that remains to be resolved though. It’'s possible that two or more servers running
-port=select will still decide to use the same port, because when the server is configured it only tests
whether the port is available but doesn’t call bind() immediately. Thefore there is a race condition here,
which needs to be resolved. Currently the workaround is to start the instances of the Apache: : Test

framework with a slight delay between each other. Depending on the speed of you machine, 4-5 seconds
can be a good choice. that's approximately the time it takes to configure and start the server on a quite
slow machine.

3.4.6 Verbose Modg

In case something goes wrong you should run the tests in the verbose mode:

% t/ TEST -verbose

In this case the test may print useful information, like what values it expects and what values it receives,
given that the test is written to report these. In the silent mode (without - ver bose) these printouts are
filtered out by Test : : Har ness. When running in the verbose mode usualy it's a good idea to run only
problematic tests to minimize the size of the generated output.

When debugging problems it helps to keep the error_log file open in another console, and see the debug
output in the real time viatail(1):

%tail -f t/logs/error_|og

Of course this file gets created only when the server starts, so you cannot run tail (1) on it before the server
starts. Every timet/ TEST - cl ean isrun, t/logs/error_log gets deleted, therefore you have to run the
tail(1) command again, when the server is started.

3.4.7 |Colored Trace Modg

If your termina supports colored text you may want to set the environment variable
APACHE TEST_COLORto 1 to enable the colored tracing when running in the non-batch mode, which
makesiit easier to tell the reported errors and warnings, from the rest of the notifications.

29 Jan 2004 63

3.4.8 Contralling the Apache::Test’s Signal to Noise Ratio

3.4.8 |Controlling the Apache:: Test’s Signal to Noise Ratig

In addition to controlling the verbosity of the test scripts, you can control the amount of information
printed by the Apache: : Test framework itself. Similar to Apache’s log levels, Apache: : Test uses
these levels for controlling its signal to noise ratio:

energ alert crit error warning notice info debug
where emerg is the for the most important messages and debug for the least important ones.

Currently the default level is info, therefore any messages which fall into the info category and above
(notice, warning, etc). This tracing level is unrelated to the Apache’s LogLevel mechanism, which
Apache-Test setsto debug in t/conf/httpd.conf and you can override it t/conf/extra.conf.in.

Let’ s assume you have the following code snippet:
use Apache: : Test Tr ace;
warni ng "careful, perl on the prem ses";
debug "that's just silly";

If you want to get only warning messages and above, use:

%t/ TEST -trace=warning ...

now only the warning message

careful, perl on the premi ses

will be printed. If you want to see the debug messages you can change the default level using -trace
option:

%t/ TEST -trace=debug ...
now the last example will print both messages.

By default the messages are printed to STDERR, but can be redirected to a file. Refer to the
Apache: : Test Tr ace manpage for more information.

Finally you can use methods: emrerg(), alert(), crit(), error(), warning(), notice(),
i nfo() and debug() inyour client and server side code. This if useful for example if you have some
debug tracing that you don’t want to be printed during the normal make t est. However if some users
have a problem you can ask them to run the test suite with the trace level of 'debug’ and voila they can
send you the extra debug output. Moreveor al these functions use Dat a: : Dunper to dump arguments
which are references to perl structures. So for example your code may ook like:

use Apache:: Test Tr ace;

ny $data = { foo => bar };
debug "ny data", $data;

64 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.4.9 Stress Testing

and only when run with - t r ace=debug it’ll output.

nmy data
$VARL = {
"foo’ => 'bar’

I

Normally it will not print anything.

3.4.9 |Stress Testing
3.4.9.1 [The Problem)|

When we try to test a stateless machine (i.e. all tests are independent), running all tests once ensures that
al tested things properly work. However when a state machine is tested (i.e. where a run of one test may
influence another test) it's not enough to run al the tests once to know that the tested features actually
work. It's quite possible that if the same tests are run in a different order and/or repeated a few times,
some tests may fail. This usually happens when some tests don’t restore the system under test to its pris-
tine state at the end of the run, which may influence other tests which rely on the fact that they start on
pristine state, when in fact it’s not true anymore. In fact it's possible that a single test may fail when run
twice or three times in a sequence.

3.4.9.2 [The Solution|

To reduce the possibility of such dependency errors, it's important to run random testing repeated many
times with many different pseudo-random engine initialization seeds. Of course if no failures get spotted
that doesn't mean that there are no tests inter-dependencies, unless all possible combinations were run
(exhaustive approach). Therefore it’s possible that some problems may still be seen in production, but this
testing greatly minimizes such a possibility.

The Apache: : Test framework provides afew options useful for stress testing.
® -times

You can run the tests N times by using the -times option. For example to run al the tests 3 times
specify:

%t/ TEST -tines=3

® -order

It's possible that certain tests aren’t cleaning up after themselves and modify the state of the server,
which may influence other tests. But since normally all the tests are run in the same order, the poten-
tial problem may not be discovered until the code is used in production, where the real world testing
hits the problem. Therefore in order to try to detect as many problems as possible during the testing
process, it's may be useful to run testsin different orders.

29 Jan 2004 65

3.4.9 Stress Testing

Thisis of course mostly useful in conjunction with -times=N option.

Assuming that we have tests a, b and c:

O

-order=rotate

rotate thetests: a, b, ¢, a, b, ¢
-order =r epeat

repeat thetests: a,a, b, b, ¢, c
-order=random

run in the random order, e.g.: a,¢, ¢, b,a b

In this mode the seed picked by srand() is printed to STDOUT, so it then can be used to rerun the
testsin exactly the same order (remember to log the output).

-order=SEED

used to initialize the pseudo-random algorithm, which allows to reproduce the same sequence of
tests. For exampleif we run:

% t/ TEST -order=random -ti nes=5
and the seed 234559 is used, we can repeat the same order of tests, by running:

%t/ TEST -order=234559 -tines=5

Alternatively, the environment variable APACHE_TEST _SEED can be set to the value of a seed
when -order=randomis used. e.g. under bash(1):

% APACHE_TEST_SEED=234559 t/ TEST -order=random -ti mes=5
or with any shell program if you havetheenv(1) utility:

$ env APACHE_TEST_SEED=234559 t/TEST - order =random -ti nes=5

3.4.9.3 |Resolving Sequence Problems

When this kind of testing is used and afailure is detected there are two problems:

66

1. First is to be able to reproduce the problem so if we think we fixed it, we could verify the fix. This

one is easy, just remember the sequence of tests run till the failed test and rerun the same sequence
once again after the problem has been fixed.

Second is to be able to understand the cause of the problem. If during the random test the failure has
happened after running 400 tests, how can we possibly know which previously running tests has
caused to the failure of the test 401. Chances are that most of the tests were clean and don’t have
inter-dependency problem. Therefore it'd be very helpful if we could reduce the long sequence to a

29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.4.9 Stress Testing

minimum. Preferably 1 or 2 tests. That's when we can try to understand the cause of the detected
problem.

3.4.9.4 [Apache: : Test Snoke Solution|

Apache: : Test Snoke attempts to solve both problems. When it's run, at the end of each iteration it
reports the minimal sequence of tests causing a failure. This doesn’t aways succeed, but works in many

cases.

You should create a small script to drive Apache: : Test Snoke, usually /SVIOKE.PL. If you don’t
haveit aready, create it:

#file:t/ SMXKE. PL

use

strict;
war ni ngs FATAL => "all’;

Fi ndBi n;
lib "$FindBin::Bin/../Apache-Test/lib";
lib "$FindBin::Bin/../lib";

Apache: : Test Smoke ();

Apache: : Test Snoke- >new(@GARGV) - >r un;

Usually Makefile.PL converts it into t/SMIOKE while adjusting the perl path, but you can create t/SMOKE
infirst place aswell.

t/SMOKE performs the following operations:

1. Runs the tests randomly until the first failure is detected. Or non-randomly if the option -order is set
to repeat or rotate.

2. Then it tries to reduce that sequence of tests to a minimum, and this sequence still causes to the same
failure.

3. It reports all the successful reductions as it goes to STDOUT and report file of the format:
smoke-report-<date>.txt.

In addition the systems build parameters are logged into the report file, so the detected problems
could be reproduced.

4. Goto 1 and run again using a new random seed, which potentially should detect different failures.

Currently for each reduction path, the following reduction algorithms are applied:

1. Binary search: first try the upper half then the lower.

29 Jan 2004 67

3.4.10 RunTime Configuration Overriding

2. Random window: randomize the left item, then the right item and return the items between these two
points.

Y ou can get the usage information by executing:

% t/ SMXKE - hel p

By default you don’t need to supply any arguments to run it, simply execute:

% t / SMOKE

If you want to work on certain tests you can specify them in the same way you do with t/TEST:

% t/ SMOKE f oo/ bar fool/tar

If you aready have a sequence of tests that you want to reduce (perhaps because a previous run of the
smoke testing didn’t reduce the sequence enough to be able to diagnose the problem), you can request to
dojust that:

%t/ SMOXKE -order=rotate -tinmes=1 foo/bar fool/tar

-order=rotate is used just to override the default -order=random, since in this case we want to preserve
the order. We also specify -times=1 for the same reason (override the default which is 50).

You can override the number of srand() iterations to perform (read: how many times to randomize the
sequence), the number of times to repeat the tests (the default is 10) and the path to the file to use for
reports:

%t/ SMOXKE -times=5 -iterations=20 -report=../nyreport.txt

Finally, any other options passed will be forwardedtot / TEST asis.

3.4.10 [RunTime Configuration Overriding

After the server is configured during make t est orwitht/ TEST -confi g, it's possible to explicitly
override certain configuration parameters. The override-able parameters are listed when executing:

% t/ TEST - hel p
Probably the most useful parameters are:
® -preamble

configuration directives to add at the beginning of httpd.conf. For example to turn the tracing on:
%t/ TEST -preanble "Perl Trace all"

® -postamble

68 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.4.11 Request Generation and Response Options

configuration directives to add at the end of httpd.conf. For example to load a certain Perl module:
%t/ TEST -postanbl e "Perl Modul e MyDebughode”
® -user
run as user nobody:
%t/ TEST -user nobody
® -port
run on a different port:
%t/ TEST -port 8799
® -servername
run on adifferent server:
%t/ TEST -servernanme test.exanple.com
® -httpd
configure an httpd other than the default (that apxs figures out):
% t/TEST -httpd ~/httpd-2.0/httpd
® -apxs
switch to another apxs:
%t/ TEST -apxs ~/ httpd-2.0-prefork/bin/apxs

For acomplete list of override-able configuration parameters see the output of t / TEST - hel p.

3.4.11 |Request Generation and Response Optiong

We have mentioned already the most useful run-time options. Here are some other options that you may
find useful during testing.

® -ping
Ping the server to see whether it runs
%t/ TEST -ping
Ping the server and wait until the server starts, report waiting time.

%t/ TEST - pi ng=bl ock

29 Jan 2004 69

3.4.11 Request Generation and Response Options

70

This can be useful in conjunction with -run-tests option during debugging:

%t/ TEST -ping=bl ock -run-tests

normally, -run-tests will immediately quit if it detects that the server is not running, but with
-ping=block in effect, it'll wait indefinitely for the server to start up.

-head

Issue a HEAD request. For example to request /server-info:
%t/ TEST -head /server-info

-get

Request the body of a certain URL via GET.
%t/ TEST -get /server-info

If no URL is specified/ is used.

ALso you can issue a GET reguest but to get only headers as a response (e.g. useful to just check
Cont ent - | engt h)

%t/ TEST -head -get /server-info

GET URL with authentication credentials;

%t/ TEST -get /server-info -usernane dougm - password dom nati on
(please keep the password secret!)
-post
Generate a POST request.

Read content to POST from string:

%t/ TEST -post /Test Apache__post -content 'nane=dougn&conpany=coval ent’

Read content to POST from STDI N:

%t/ TEST -post /TestApache__post -content - < foo.txt

Generate a content body of 1024 bytesin length:

%t/ TEST - post /Test Apache__post -content x1024

The same but print only the response headers, e.g. useful to just check Cont ent - | engt h:

29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.5 Setting Up Testing Environment

%t/ TEST - post -head / Test Apache__post -content x1024
® -header
Add headers to (-get|-post|-head) request:
%t/ TEST -get -header X-Test=10 -header X-Host=exanple.com/server-info
® -sd
Run all tests through mod_ssl:
%t/ TEST -ssl
e -httpll
Run all testswith HTTP/1.1 (KeepAl i ve) requests:
%t/ TEST -httpll
® -proxy
Run all tests through mod_proxy:

%t/ TEST - proxy

The debugging options -debug and -breakpoint are covered in the[Debugging Testq section.

For acomplete list of available switches seethe output of t / TEST - hel p.

3.4.12 [Batch Modg

When running in the batch mode and redirecting STDOUT, this state is automagically detected and the no
color mode is turned on, under which the program generates a minimal output to make the log files useful.
If this doesn’'t work and you still get al the mess printed during the interactive run, set the
APACHE TEST_NO _COLOR=1 environment variable.

3.5 [Setting Up Testing Environment

We will assume that you setup your testing environment even before you have started coding the project,
which isavery smart thing to do. Of courseit’ll take you more time upfront, but it’ Il will save you alot of
time during the project developing and debugging stages. The |extreme programming methodology| says
that tests should be written before starting the code devel opment.

29 Jan 2004 71

3.5.1 Know Your Target Environment

3.5.1 [Know Your Target Environment

In the following demonstration and mostly through the whole document we assume that the test suite is
written for a module running under mod_perl 2.0. Y ou may need to adjust the code and the configuration
files to the mod_perl 1.0 syntax, if you work with that generation of mod_perl. If your test suite needs to
work with both mod_perl generations refer to the porting to mod_perl 2.0 chapter. Of course it’'s quite
possible that what you test doesn’t have mod_perl at al, in which case, again, you will need to make
adjustments to work in the given environment.

3.5.2 [Basic Testing Environment|

So the first thing is to create a package and all the helper files, so later on we can distribute it on CPAN.
We are going to develop an Apache: : Amazi ng module as an example.

% h2xs - AXn Apache: : Amazi ng

Witing Apache/ Anmazi ng/ Amazi ng. pm

Witing Apache/ Anmazi ng/ Makefil e. PL

Witing Apache/ Amazi ng/ READVE

Witing Apache/ Anmazi ng/test. pl

Witing Apache/ Amazi ng/ Changes

Witing Apache/ Amazi ng/ MANI FEST

h2xs isanifty utility that gets installed together with Perl and helps us to create some of the files we will
need later.

However we are going to use a little bit different files layout, therefore we are going to move things
around a bit.

We want our module to live in the Apache-Amazing directory, so we do:

% v Apache/ Amazi ng Apache- Amazi ng
% rmdi r Apache

From now on the Apache-Amazing directory is our working directory.
% cd Apache- Amazi ng

We don’'t need the test.pl. as we are going to create a whole testing environment:
%rmtest.pl

We want our package to reside under the lib directory, so later we will be able to do live testing, without
rerunning make every time we change the code:

%nkdir lib

% nkdir |ib/Apache
% nmv Amazi ng. pm | i b/ Apache

72 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.5.2 Basic Testing Environment

Now we adjust the lib/Apache/Amazing.pmto look like this:
#file:libl/ Apache/ Amazi ng. pm
package Apache:: Amazi ng;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();

$Apache: : Amazi ng: : VERSION = ' 0. 01’ ;
use Apache:: Const -conpile => "K' ;
sub handl er {
ny $r = shift;
$r->content _type('text/plain’);
$r->print("Amazing!");
return Apache:: CK;
}
1.

__END__
pod docunentati on goes here. ..

The only thing it does is setting the text/plain header and responding with "Amazing!".
Next adjust or create the Makefile.PL file:

#file: Makefile.PL

require 5.6.1;

use ExtUtil s:: MakeMaker ;

use lib gw(../blib/lib lib);

use Apache:: Test MM gw(test clean); #enable 'make test’

prerequisites
my %equire =

(
"Apache:: Test" => "", # any version will do

)
my @cripts = gwmt/TEST);

accept the configs fromcommand |ine
Apache: : Test MM : filter_args();
Apache: : Test MM : generate_script(’t/TEST);

WiteMakefil e(

NAMVE => ' Apache: : Amazi ng’,

VERSI ON_FROM => ' | i b/ Apache/ Amazi ng. pnm ,
PREREQ PM => \% equire,

cl ean => {

29 Jan 2004 73

3.5.2 Basic Testing Environment

FILES => "@ clean_files() }",
1,
($] >= 5.005 ?
(ABSTRACT_FROM => ' | i b/ Apache/ Amazi ng. pmi
AUTHOR => ' Stas Bekman <stas (at) stason.org>
) 0
)

sub clean_files {
return [@cripts];
}

Apache: : Test MMwill do alot of thing for us, such as building a complete Makefile with proper 'test’
and 'clean’ targets, automatically converting .PL and conf/*.in files and more.

As you see we specify a prerequisites hash with Apache:: Test in it, so if the package gets distributed on
CPAN, CPAN. pmshell will know to fetch and install this required package.

Next we create the test suite, which will reside in the t directory:

% nkdi r t

First we create t/TEST.PL which will be automatically converted into t/TEST during perl Makefile.PL
stage:

#file:t/ TEST. PL

use strict;
use warni ngs FATAL => "al |’

use lib gw(lib);
use Apache:: Test RunPerl ();

Apache: : Test RunPer | - >new >r un(@GARGV) ;

Assuming that Apache: : Test isaready installed on your system and Perl can find it. If not you should
tell Perl where to find it. For example you could add:

use |lib gw(Apache-Test/lib);
to t/TEST.PL, if Apache: : Test islocated in aparallel directory.

Asyou can see we didn’t write the real path to the Perl executable, but #! per | . When t/TEST is created
the correct path will be placed there automatically.

Next we need to prepare extra Apache configuration bits, which will reside in t/conf:

74 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.5.2 Basic Testing Environment

% nkdir t/conf

We create the t/conf/extra.conf.in file which will be automatically converted into t/conf/extra.conf before
the server starts. If the file has any placeholders like @ ocunent r oot @ these will be replaced with the
real values specific for the used server. In our case we put the following configuration bitsinto thisfile:

#file:t/conf/extra.conf.in
this file will be Include-d by @erverRoot @httpd. conf

where Apache:: Amazi ng can be found
Perl Switches -1 @erverRoot@../lib
prel oad the nodul e
Per | Modul e Apache: : Amazi ng
<Location /test/amazi ng>

Set Handl er nodper |

Per | ResponseHandl er Apache: : Anmazi ng
</ Locati on>

As you can see we just add a simple <Location> container and tell Apache that the namespace
ftest/amazing should be handled by Apache: : Amazi ng module running as a mod_perl handler. Notice
that:

Set Handl er nodper |

ismod_perl 2.0 configuration, if you are running under mod_perl 1.0 use:

Set Handl er perl -script
which also works for mod_perl 2.0.

Now we can create asimple test:
#file:t/basic.t

use strict;
use warni ngs FATAL => "all’;

use Apache: : Anazi ng;

use Apache:: Test;

use Apache:: TestUtil;

use Apache:: Test Request ' GET_BODY' ;

plan tests => 2;
ok 1; # sinple |oad test

ny $url = '/test/amazing ;
ny $data = GET_BODY $url;

ok t_cmp(
"Amazi ng!",
$dat a,
"basic test",

)E

29 Jan 2004 75

3.5.2 Basic Testing Environment

Now create the README file,

% touch README

Don't forget to put in the relevant information about your module, or arrange for ExtU tils ::Make -
Maker ::WriteMake file () todo thisfor you with:

#file:Makefile.PL

WriteMakefile(
#...
dist =>{
PREOP => 'pod2text lib/Apache/Amazing.pm > $(DISTVNAME)/README’,

h
#...
);

in this case README will be created from the documenation POD sectionsin lib/Apache/Amazing.pm, but
the file has to exists for make dist to succeed.

and finally we adjust or create the MANIFEST file, so we can prepare a complete distribution. Therefore
we list al the files that should enter the distribution including the MANIFEST file itself:

#file:MANIFEST

lib/Apache/Amazing.pm
t/TEST.PL

t/basic.t
t/conf/extra.conf.in
Makefile.PL

Changes

README

MANIFEST

That's it. Now we can build the package. But we need to know the location of the apxs utility from the
installed httpd server. We passits path as an option to Makefile.PL:

% perl Makefile.PL -apxs ~/httpd/prefork/bin/apxs
% make
% make test

All tests successful.
Files=1, Tests=2, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

To install the package run:

% make install

Now we are ready to distribute the package on CPAN:

76 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.5.3 Extending Configuration Setup

% nmake di st

will create the package which can be immediately uploaded to CPAN. In this example the generated
source package with all the required files will be called: Apache-Amazing-0.01.tar.gz.

The only thing that we haven't done and hope that you will do is to write the POD sections for the
Apache: : Amazi hg module, explaining how amazingly it works and how amazingly it can be deployed
by other users.

3.5.3 [Extending Configuration Setup

Sometimes you need to add extra httpd.conf configuration and perl startup specific to your project that
uses Apache: : Test . This can be accomplished by creating the desired files with an extension .in in the
t/conf/ directory and running:

pani c% t/ TEST -config

which for each file with the extension .in will create a new file, without this extension, convert any
template placeholders into real values and link it from the main httpd.conf. The latter happens only if the
file have the following extensions:

e _conf.in
will add to t/conf/httpd.conf:
I ncl ude foo. conf
e plin
will add to t/conf/httpd.conf:
Per| Requi re foo. pl
® other
other fileswith .in extension will be processed as well, but not linked from httpd.conf.
Files whose name matches the following pattern:
/\.last\.(conf|pl).in$/
will be included very last in httpd.conf.

As mentioned before the converted files are created, any special token in them are getting replaced with
the appropriate values. For example the token @er ver Root @will be replaced with the value defined by
the Ser ver Root directive, so you can write afile that does the following:

#file:nmy-extra.conf.in

Perl Switches -1 @erverRoot@../lib

29 Jan 2004 7

3.5.4 Specia Configuration Files

and assuming that the ServeRootis ~/modperl-2.0/t/when my-extra.confvill be created, it'll look like:
#file:nmy-extra. conf

Per| Switches -1~/ nodperl-2.0/t/../1lib

The valid tokens are defined in ¥%Apache: : Test Confi g: : Usage and aso can be seen in the output
of t / TEST - hel p’sconfiguration optionssection. The tokens are case insensitive.

3.5.4 |Special Configuration Fileg

Some of the files in the t/conf directory have a special meaning, since the Apache: : Test framework
uses them for the minimal configuration setup. But they can be overriden:

e if the file t/conf/httpd.conf.irexists, it will be used instead of the default template (in Apache/Test
Corfig.pm).

e if the file t/conf/extra.conf.irexists, it will be used to generate t/conf/extra.confvith @ ar i abl e@
substitutions.

e if thefilet/conf/extra.conéxists, it will be included by httpd.conf

e if the file t/conf/modperl_extra.pixists, it will be included by httpd.confas a mod_perl file (PerlRe-
quire).

3.5.5 [nheriting from System-wide httpd.conf|

Apache: : Test tries to find a global httpd.conffile and inherit its configuration when autogenerating
t/conf/httpd.confFor example it picks LoadModul e directives.

It's possible to explicitly specify which file to inherit from using the - ht t pd_conf option. For example
during the build:

% per| Makefile.PL -httpd_conf /path/to/httpd. conf

or during the configuration:

%t/ TEST -conf -httpd_conf /path/to/httpd.conf

Certain projects need to have a control of what gets inherited. For example if your global httpd.conf
includes adirective:

LoadMobdul e apreqg_nodul e "/ hone/j oe/ apache2/ nodul es/ nod_apr eq. so”

And you want to run the test suite for Apache: : Request 2.0, inheriting the above directive will load
the pre-installed mod_apreq.s@and not the newly built one, which is wrong. In such cases it’s possible to
tell the test suite which modules shouldn’t be inheritated. In our example Apache- Request has the
following codein t/ TEST.PL

78 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.6 Apache:Test Framework’s Architecture

use base ' Apache: : Test Run’
$Apache: : Test Trace: : Level = ’'debug’
mai n: : - >new >r un(GARGY)

sub pre_configure {
ny $self = shift;
Don't load an installed nmod_apreq
Apache: : Test Confi g: : aut oconfi g_ski p_nodul e_add(’ nod_apreq.c’);

}

it subclasses Apache: : Test Run and overrides the pre_configure method, which excludes the module
mod_apreq.c from the list of inherited modules (notice that the extension is .c).

3.6 |Apache:.: Test Framework’s Architecture

In the previous section we have written a basic test, which doesn’t do much. In the following sections we
will explain how to write more elaborate tests.

When you write the test for Apache, unless you want to test some static resource, like fetching a file,
usually you have to write a response handler and the corresponding test that will generate a request which
will exercise this response handler and verify that the response is as expected. From now we may call
these two parts as client and server parts of the test, or request and response parts of the test.

In some cases the response part of the test runs the test inside itself, so all it requires from the request part
of the test, is to generate the request and print out a complete response without doing anything else. In
such cases Apache: : Test can auto-generate the client part of the test for you.

3.6.1 |Developing Response-only Part of a Test|

If you write only aresponse part of the test, Apache: : Test will automatically generate the correspond-
ing test part that will generated the response. In this case your test should print "ok 1’, 'not ok 2’ responses
as usual tests do. The autogenerated request part will receive the response and print them out automatically
completing the Test : : Har ness expectations.

The corresponding request part of the test is named just like the response part, using the following transla-
tion:

$response_test =~ s|t/[]+ Test([A]+)/(.*).pnB|t/\LSI\E $2. t |
so for exampl e t/response/ TestApache/write.pm becomes: t/apache/write.t.

If we look at the autogenerated test t/apache/write.t, we can see that it starts with the warning that it has
been autogenerated, so you won't attempt to change it. Then you can see the trace of the calls that gener-
ated this test, in case you want to figure out how the test was generated. And finaly the test loads the
Apache: : Test Request module, imports the GET shortcut and prints the response’s body if it was
successful. Otherwise it dies to flag the problem with the server side. The latter is done because there is
nothing on the client side, that tells the testing framework that things went wrong. Without it the test will
be skipped, and that’s not what we want.

29 Jan 2004 79

3.6.1 Developing Response-only Part of a Test

use Apache:: Test Request ' GET_BODY_ASSERT' ;
print GET_BODY_ASSERT "/ Test Apache__write";

Asyou can see the request URI is autogenerated from the response test name:
$response_test =~ s|.*/([M]+)/(.*).pnB|/$1__$2]|;
So t/response/ TestApache/write.pm becomes: /TestApache _ write.

Now a simple response test may look like this:
#file:t/response/ Test Apache/wite. pm
package Test Apache::wite;

use strict;
use warni ngs FATAL => ’all’;

use constant BUFSIZ => 512; #small for testing
use Apache:: Const -conpile => 'K ;

sub handl er {
ny $r = shift;
$r->content _type('text/plain’);

$r->wite("1..2\n");
$r->wite("ok 1")
$r->wite("not ok 2")
Apache: : OK;
}
1;

[F] Apache: : Const ismod_perl 2.0's package, if you test under 1.0, use the Apache: : Const ant s
module instead [/F].

The configuration part for thistest will be autogenerated by the Apache: : Test framework and added to
the autogenerated file t/conf/httpd.conf when make test ort/ TEST -confi gure isrun. Inour case
the following configuration section will be added:
<Location / Test Apache__wite>
Set Handl er nodper |

Per | ResponseHandl er Test Apache::wite
</ Locati on>

Y ou should remember to run:

%t/ TEST -configure

so the configuration file will be re-generated when new tests are added.

80 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.6.2 Developing Response and Request Parts of a Test

Also notice that if you manually add configuration the <Locat i on> pathcan’'tinclude’ :’ charactersin
the first segment, due to Apache security protection on WinFU platforms. So please make sure that you
don’t create entries like:

<Location / Foo: : bar/>
Youcaninclude’ :’ charactersin the further segments, so thisis OK:
<Location /tests/Foo::bar/>

Of courseif your code is not intended to run on WinFU you can ignore this detail.

3.6.2 |[Developing Response and Request Parts of a Tes

But in most cases you want to write a two parts test where the client (request) parts generates various
requests and tests the responses.

It's possible that the client part tests a static file or some other feature that doesn’t require a dynamic
response. In this case, only the request part of the test should be written.

If you need to write the complete test, with two parts, you proceed just like in the previous section, but
now you write the client part of the test by yourself. It's quite easy, al you have to do is to generate
requests and check the response. So atypical test will look like this:

#file:t/apache/cool .t

use strict;
use warni ngs FATAL => "al |’

use Apache:: Test;
use Apache:: TestUti |
use Apache:: Test Request ' GET_BCODY ;

plan tests => 1; # plan one test.
Apache: : Test Request : : modul e(’ default’);

ny $config = Apache:: Test::config();
ny $host port = Apache:: Test Request: : host port ($config) ||
t _debug("connecting to $hostport");

ny $received

GET_BODY "/ Test Apache__cool ";
ny $expected = " "

coaLt

ok t_cmp(
$expect ed,
$recei ved,
"testing TestApache::cool",

E

29 Jan 2004 81

3.6.2 Developing Response and Request Parts of a Test

Seethe Apache: : Test Uti | manpage for more info on the t_cmp() function (e.g. it works with regexs
aswell).

And the corresponding response part:
#file:t/responsel/ Test Apache/ cool . pm
package Test Apache: : cool

use strict;
use warni ngs FATAL => "all’

use Apache:: Const -conpile => 'K

sub handl er {
my $r = shift;
$r->content _type('text/plain’);

$r->wite("COOL");

Apache: : OK;
}
1

Again, remember to run t/TEST -clean before running the new test so the configuration will be created for
it.

As you can see the test generates a request to /TestApache _cool, and expects it to return "COOL". If we
run the test:

% ./t/TEST t/apache/ coo

We see:

apache/ coolok
Al'l tests successful.
Files=1, Tests=1, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

But if werun it in the debug (verbose) mode, we can actually see what we are testing, what was expected
and what was received:

apache/cool1..1

connecting to | ocal host: 8529

testing : testing TestApache:: coo

expected: COCL

received: COOL

ok 1

ok

Al'l tests successful.

Files=1, Tests=1, 1 wallclock secs (0.49 cusr + 0.03 csys = 0.52 CPU

So in case in our simple test we have received something different from COOL or nothing at all, we can
immediately see what’s the problem.

82 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.6.3 Developing Test Response Handlersin C

The name of the request part of the test is very important. If Apache: : Test cannot find the correspond-
ing test for the response part it'll automatically generate one and in this case it's probably not what you
want. Therefore when you choose the filename for the test, make sure to pick the same Apache: : Test
will pick. So if the response part is named: t/response/TestApache/cool.pm the request part should be
named t/apache/cool.t. See the regular expression that does that in the previous section.

3.6.3 |[Developing Test Response Handlersin C

If you need to exercise some C APl and you don't have a Perl glue for it, you can still use
Apache: : Test for the testing. It alows you to write response handlers in C and makes it easy to inte-
grate these with other Perl tests and use Perl for request part which will exercise the C module.

The C modules look just like standard Apache C modules, with a couple of differencesto:
® a
help them fit into the test suite
e D
alow them to compile nicely with Apache 1.x or 2.x.

The httpd-test ASF project is a good example to look at. The C modules are located under:
httpd-test/per|-framework/c-modules/. Look at c-modules/echo post/echo post.c for a nice simple
example. nod_echo_post smply echos datathat is POSTed to it.

The differences between vairous tests may be summarized as follows:

o |f thefirstlineis:
#def i ne HTTPD_TEST_REQUI RE_APACHE 1
or

#def i ne HTTPD_TEST_REQUI RE_APACHE 2

then the test will be skipped unless the version matches. If a module is compatible with the version of
Apache used then it will be automatically compiled by t/TEST with - DAPACHEL or - DAPACHE2 so
you can conditionally compile it to suit different httpd versions.

In additon to the single-digit form,

#def i ne HTTPD_TEST_REQUI RE_APACHE 2. 0. 48

and

#defi ne HTTPD_TEST_REQUI RE_APACHE 2.1

29 Jan 2004 83

3.6.4 Request and Response Methods

are aso supported, allowing for conditional compilation based on criteria similar to
have _min_apache version().

e |f thereis a section bounded by:
#i f CONFI G_FOR_HTTPD_TEST
#endi f
in the .c file then that section will be inserted verbatim into t/conf/httpd.conf by t/TEST.

There is a certain amount of magic which hopefully allows most modules to be compiled for Apache 1.3
or Apache 2.0 without any conditional stuff. Replace XXX with the module name, for example echo_post
or random_chunk:

® You should:
#i ncl ude "apache_httpd_test.h"

which should be preceded by an:

#define APACHE_HTTPD_TEST_HANDLER XXX_handl er

apache_httpd_test.h pullsin alot of required includes and defines some constants and types that are
not defined for Apache 1.3.

® The handler function should be:
static int XXX_handl er(request_rec *r);
® At the end of the file should be an:
APACHE_HTTPD_TEST_MODULE(XXX)

where XXX is the same as that in APACHE_HTTPD_TEST_HANDLER. Thiswill generate the hooks
and stuff.

3.6.4 |Request and Response Methodd

If you have LWP (libwww-perl) installed its LWP: : User Agent serves as an user agent in tests, other-
wise Apache: : Test C i ent triesto emulate partial LWP functionality. So most of the LWP documen-
tation applies here, but the Apache: : Test framework provides shortcuts that hide many details, making
the test writing a simple and swift task. Before using these shortcuts Apache: : Test Request should
be loaded, and its import() method will fetch the shortcuts into the caller namespace:

use Apache:: Test Request;

Request generation methods issue a request and return a response object (HTTP: : Response if LWP is
available). They are documented in the HTTP: : Request : : Conmon manpage. The following methods
are available:

84 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.6.4 Request and Response Methods

e GET

Issues the GET request. For example, issue arequest and retrieve the response content:

$url = "$l ocati on?f oo=1&bar =2";
$res = GET S$url;
$str = $res->content;

To set request headers, supply them after the $ur | , e.g.:

$res = CET $url, 'Content-type’ => 'text/htm’;

e HEAD
Issues the HEAD request. For example issue a request and check that the response’s Content-type is
text/plain:
$url = "$l ocati on?f oo=18&bar =2";

$res = HEAD $url ;
ok $res->content_type() eq 'text/plain;

® POST

Issues the POST request. For example:

$content = ' PARAMEYB3’ ;
$res = PCOST $l ocation, content => $content;

The second argument to POST can be a reference to an array or a hash with key/value pairs to
emulate HTML <form> POSTing.

e PUT
I ssues the PUT request.
® OPTIONS
META: ?7?7?
These are two specia methods added by the Apache: : Test framework:
e UPLOAD

This special method allows to upload a file or a string which will look as an uploaded file to the
server. To upload afile use:

UPLOAD $l ocation, filenanme => $fil enane;

Y ou can add extra request headers as well:

29 Jan 2004 85

3.6.4 Request and Response Methods

UPLOAD $l ocation, filenane => $fil enane, ' X-Header-Test’ => 'Test’;

To upload a string as afile, use:
UPLQOAD $l ocation, content => 'sone data’;
e UPLOAD_BODY
Retrieves the content from the response resulted from doing UPLOAD. It's equal to:
ny $body = UPLOAD(@) ->content;
For example, this code retrieves the content of the response resulted from file upload request:
ny $str = UPLOAD BODY $l ocation, filenane => $fil enane;

Once the response object is returned, various response object methods can be applied to it. Probably the
most useful ones are:

$content = $res->content;
to retrieve the content fo the respose and:
$content _type = $res->header(’ Content-type’');
to retrieve specific headers.
Refer to the HTTP: : Response manpage for a complete reference of these and other methods.

A few response retrieval shortcuts can be used to retrieve the wanted parts of the response. To apply these
simply add the shortcut name to one of the request shortcuts listed earlier. For example instead of retriev-
ing the content part of the response via:

$res = GET $url;
$str = $res->content;
simply use:

$str = GET_BODY $url;
e RC
returns the response code, equivalent to:
$r es->code;

For example to test whether some URL is bogus:

use Apache:: Const ' NOT_FOUND ;
ok GET_RC('/bogus_url’) == NOT_FOUND;

86 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.6.4 Request and Response Methods

Y ou usually need to import and use Apache: : Const constants for the response code comparisons,
rather then using codes’ corresponding numerical values directly. You can import groups of code as
well. For example:

use Apache:: Const ':comon’ ;

Refer to the Apache: : Const manpage for a complete reference. Also you may need to use APR
and mod_perl constants, which reside in APR: : Const and MbdPer | : : Const modules respec-
tively.

e OK
tests whether the response was successful, equivalent to:
$res->i s_success;
For example:
ok GET_XK '/foo0’;
e STR
returns the response (both, headers and body) as a string and is equivalent to:
$res->as_string;
Mostly useful for debugging, for example:

use Apache:: TestUil;
t _debug POST_STR '/test.pl’', content => 'foo0’;

e HEAD
returns the headers part of the response as a multi-line string.

For example, this code dumps all the response headers:

use Apache:: TestUil;
t _debug GET_HEAD ’'/index. htm’;

e BODY
returns the response body and is equivalent to:
$res->content;

For example, this code validates that the response’ s body is the one that was expected:

use Apache::TestUil;
ok GET_BODY('/index.htm’') eq $expect;

e BODY_ASSERT

29 Jan 2004 87

3.6.5 Other Request Generation helpers

Same as the BODY shortcut, but will assert if the request has failed. So for example if the test’s output
is generated on the server side, the client side may only need to print out what the server has sent and

we want it to report that the test has failed if the request has failed:

use Apache:: TestUil;
print GET_BODY_ASSERT "/foo0"

3.6.5 |Other Request Generation helpers

META: these methods need documentation

Request part:

Apache: : Test Request ::schenme(' http’); #force http for t/TEST -ssl
Apache: : Test Request : : modul e($nodul e) ;

ny $config = Apache:: Test::config();

ny $hostport = Apache:: Test Request:: hostport ($config);

Getting the request object? Apache:: TestRequest::user_agent()

3.6.6 [Starting Multiple Servers

By default the Apache: : Test framework sets up only asingle server to test against.

In some cases you need to have more than one server. If this is the situation, you have to override the
maxclients configuration directive, whose default is 1. Usually thisisdoneint / TEST. PL by subclassing
the parent test run class and overriding the new_test_config() method. For example if the parent classis

Apache: : Test RunPer |, you can changeyourt / TEST. PL to be:

use strict;
use warni ngs FATAL => "all’;

use lib "../lib"; # test against the source lib for easier dev
use lib map {("../blib/$_", "../7../blib/$_")} gw(lib arch);

use Apache:: Test RunPerl ();
package MyTest;
our @ SA = gw(Apache: : Test RunPerl);
subcl ass new test_config to add sone config vars which will be
replaced in generated httpd. conf
sub new_ test_config {
ny $self = shift;

$sel f->{conf_opts}->{maxclients} = 2;

return $sel f->SUPER: : new_t est _confi g;

}
MyTest - >new >r un(GARGV) ;

88

29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.6.7 Multiple User Agents

3.6.7 Multiple User Agents

By default the Apache: : Test framework uses a single user agent which talks to the server (thisis the
LWP user agent, if you have LWP installed). You amost never use this agent directly in the tests, but via
various wrappers. However if you need a second user agent you can clone these. For example:

my $ua2 = Apache:: Test Request: : user _agent () ->cl one;

3.6.8 [Hitting the Same | nterpreter (Server Thread/Process | nstance)|

When a single instance of the server thread/process is running, all the tests go through the same server.
However if the Apache: : Test framework was configured to to run a few instances, two subsequent
sub-tests may not hit the same server instance. In certain tests (e.g. testing the closure effect or the BEG N
blocks) it's important to make sure that a sequence of sub-tests are run against the same server instance.
The Apache: : Test framework supportsthisinternally.

Here is an example from ModPer | : : Regi st ry closure tests. Using the counter closure problem under
ModPer| : : Regi stry:

#file:cgi-bin/closure.pl

#l perl -w
print "Content-type: text/plain\r\nir\n";

this is a closure (when conpiled inside handler()):
ny $counter = 0
counter();

sub counter {
#V\ar n " $$n ’
print ++$counter;

}

If this script get invoked twice in a row and we make sure that it gets executed by the same server
instance, the first timeit'll return 1 and the second time 2. So here is the gist of the request part that makes
sure that its two subsequent requests hit the same server instance:

#file:closure.t
ny $url = "/sanme_interp/cgi-bin/closure.pl";
ny $sane_interp = Apache:: Test Request::sane_interp_tie($url);

should be no closure effect, always returns 1

ny $first = req($sane_interp, $url);
ny $second = req($sane_interp, $url);
ok t_cmp(

1

$first & & $second && ($second - $first)
"the closure problemis there",

);
sub req {

29 Jan 2004 89

3.7 Writing Tests

ny($sane_interp, $url) = @;

ny $res = Apache:: Test Request::sane_i nterp_do($sane_i nterp,
\ &GET, $url);

return $res ? $res->content : undef;

}

In this test we generate two requests to cgi-bin/closure.pl and expect the returned value to increment for
each new request, because of the closure problem generated by ModPer | : : Regi st ry. Since we don't
know whether some other test has called this script already, we simply check whether the substraction of
the two subsequent requests’ outputs gives avaue of 1.

Thetest starts by requesting the server to tie a single instance to all requests made with a certain identifier.
This is done using the same _interp_tie() function which returns a unique server instance's indentifier.
From now on any requests made through same_interp_do() and supplying this indentifier as the first argu-
ment will be served by the same server instance. The second argument to same_interp_do() is the method
to use for generating the request and the third is the URL to use. Extra arguments can be supplied if
needed by the request generation method (e.g. headers).

This technique works for testing purposes where we know that we have just a few server instances. What
happens internally is when same_interp_tig() is called the server instance that served it returns its unique
UUID, so when we want to hit the same server instance in subsequent requests we generate the same
request until we learn that we are being served by the server instance that we want. This magic is done by
using a fixup handler which returns OK only if it sees that its unique id matches. As you understand this
technique would be very inefficient in production with many server instances.

3.7 Writing Tests

All the communications between tests and Test : : Har ness which executes them is done via STDOUT.
|.e. whatever tests want to report they do by printing something to STDOUT. If atest wants to print some
debug comment it should do it starting on a separate line, and each debug line should start with #. The
t_debug() function from the Apache: : Test Ut i | package should be used for that purpose.

3.7.1 [Defining How Many Sub-Tests Are to Be Run|

Before sub-tests of a certain test can be run it has to declare how many sub-testsit is going to run. In some
cases the test may decide to skip some of its sub-tests or not to run any at al. Therefore the first thing the
test hasto printis:

1..Mn

where M isapositive integer. So if the test plans to run 5 sub-tests it should do:

print "1..5\n";

In Apache: : Test thisisdone asfollows:

90 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.2 Skipping aWhole Test

use Apache: : Test;
plan tests => b5;

3.7.2 [Skipping a Whole Test|

Sometimes when the test cannot be run, because certain prerequisites are missing. To tell
Test : : Har ness that the wholetest is to be skipped do:

print "1..0 # skipped because of foo is mssing\n";

The optional comment after # ski pped will be used as a reason for test's skipping. Under
Apache: : Test the optional last argument to the plan() function can be used to define prerequisites and
skip the test:

use Apache:: Test;
plan tests => 5, $test_ski pping_prerequisites;

Thislast argument can be:
® aSCALAR
the test is skipped if the scalar has afalse value. For example:
plan tests => 5, 0;
But thiswon't hint the reason for skipping therefore it’s better to use have() :

plan tests => 5,
have ' LW,

{ "not Wn32" => sub { $"O eq 'MSWnNn32'} };
® an ARRAY reference

have module() is called for each value in this array. The test is skipped if have module() returns
false (which happens when at least one C or Perl module from the list cannot be found). For example:

plan tests => 5, [gwW nod_i ndex nod_mine)];

® a CODE reference

the tests will be skipped if the function returns afalse value. For example:

plan tests => 5, \&have_|l wp;
the test will be skipped if LWP is not available
Thereis anumber of useful functions whose return value can be used as alast argument for plan():

® have module()

29 Jan 2004 91

3.7.2 Skipping aWhole Test

92

have modul&() tests for presense of Perl modules or C modules mod_*. It accepts alist of modules or
areference to the list. If at least one of the modules is not found it returns a false value, otherwise it
returns atrue value. For example:

plan tests => 5, have_nodul e gw(Chatbot::Eliza CAd nod_proxy);

will skip the whole test unless both Perl modules Chat bot : : El i za and CA and the C module
mod_proxy.c are available.

have_min_module version()
Used to require a minimum version of amodule
For example:
plan tests => 5, have_m n_nodul e_version(Cd => 2.81);
requires CA . pmversion 2.81 or higher.
Currently works only for perl modules.
have()
have() called as alast argument of plan() can impose multiple requirements at once.

have()’'s arguments can include scalars, which are passed to have_module(), and hash references. If
hash references are used, the keys, are strings, containing a reason for afailure to satisfy this particu-
lar entry, the valuees are the condition, which are satisfaction if they return true. If the value is a
scalar it's used as is. If the value is a code reference, it gets executed at the time of check and its
return value is used to check the condition. If the condition check fails, the provided (in a key) reason
isused to tell user why the test was skipped.

For example:
plan tests => 5,
have ' LW,
{ "perl >=5.8.0is required" => ($] >= 5.008) },
{ "not Wn32" => sub { $"0O eq ' MSWnN32' },
"foo is disabled" => \& s_foo_enabl ed,
},
‘cgid;

In this example, we require the presense of the LWP Perl module, nod_cgi d, that we run under perl
>= 5.7.3 on Win32, and that i s_f oo_enabl ed returns true. If any of the requirements from this
list fail, the test will be skipped and each failed requiremnt will print areason for itsfailure.

have perl()

have perl('foo’) checks whether the value of $Conf i g{f oo} or $Conf i g{ usef oo} isequd to
"define’ . For example:

29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.2 Skipping aWhole Test

plan tests => 2, have_perl ’'ithreads’

if Perl wasn’'t compiled with - Dusei t hr eads the condition will be false and the test will be
skipped.

Also it checksfor Perl extensions. For example:
plan tests => 5, have_perl ’iolayers’
testswhether Per | | Oisavailable.
® have min_perl version()
Used to require a minimum version of Perl.

For example:

plan tests => 5, have_ni n_perl _version("5.008001");
requires Perl 5.8.1 or higher.
® have threads()

have_threads checks whether whether threads are supported by both Apache and Perl.
plan tests => 2, have_t hreads;

® under_construction()

thisisjust a shortcut to skip the test while printing:

"skipped: this test is under construction”;

For example:
plan tests => 2, under_construction

® have lwp()
Tests whether the Perl module LWP isinstalled.
® have httpll()

Triesto tell LWP that sub-tests need to be run under HTTP 1.1 protocol. Failsif the installed version
of LWP s not capable of doing that.

® have cgi()

tests whether mod_cgi or mod_cgid is available.

29 Jan 2004 93

3.7.3 Skipping Numerous Tests

® have apacheg()

tests for a specific generation of httpd. For example:

plan tests => 2, have_apache 2;

will skip the test if not run under the 2nd Apache generation (httpd-2.x.xx).

plan tests => 2, have_apache 1;
will skip thetest if not run under the 1st Apache generation (apache-1.3.xx).
® have min_apache version

Used to require a minimum version of Apache. For example:

pl an tests => 5, have_ni n_apache_version("2.0.40");
requires Apache 2.0.40 or higher.
® have apache version
Used to require a specific version of Apache.

For example:

pl an tests => 5, have_apache_version("2.0.40");

requires Apache 2.0.40.

3.7.3 [Skipping Numerous Testq

Just like you can tell Apache: : Test to run only specific tests, you can tell it to run all but afew tests.

If al filesin adirectory t/foo should be skipped, create:

#file:t/foolall.t

Alternatively you can specify which tests should be skipped from a single file t/SKIP. Thisfile includes a
list of tests to be skipped. Y ou can include comments starting with # and you can use the * wildcharacter
for multiply files matching.

For exampleif in mod_perl 2.0 test suite we create the following file:

94 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.4 Reporting a Success or a Failure of Sub-tests

#file:t/SKIP

skip all files in protoco
protoco

skip basic cgi test
nodul es/ cgi . t

skip all filter/input_* files
filter/input*.t

In our example the first pattern specifies the directory name protocol, since we want to skip al testsin it.
But since the skipping is done based on matching the skip patterns from t/SKIP against a list of potential
tests to be run, some other tests may be skipped as well if they match the pattern. Therefore it's safer to
use a pattern like this:

protocol /*.t

The second pattern skips a single test modules/cgi.t. Note that you shouldn’t specify the leading t/. The .t
extension is optional, so you can tell:

skip basic cgi test
nmodul es/ cg

Thelast pattern tells Apache: : Test to skip all the tests starting with filter/input.

3.7.4 [Reporting a Success or a Failure of Sub-testq

After printing the number of planned sub-tests, and assuming that the test is not skipped, the tests is
running its sub-tests and each sub-test is expected to report its success or failure by printing ok or not ok
respectively followed by its sequential number and a new line. For example:

print "ok 1\n";
print "not ok 2\n";
print "ok 3\n";

In Apache: : Test thisis done using the ok() function which prints ok if its argument is a true value,
otherwise it prints not ok. In addition it keeps track of how many times it was called, and every time it
prints an incremental number, therefore you can move sub-tests around without needing to remember to
adjust sub-test’s sequential number, since now you don’t need them at all. For example this test snippet:

use Apache:: Test;

use Apache:: TestUti |

pl an tests => 3;

ok "success"

t _debug("expecting to fail next test");
ok "";

ok O;

will print:

29 Jan 2004 95

3.7.5 Skipping Sub-tests

1..3

ok 1

expecting to fail next test
not ok 2

not ok 3

Most of the sub-tests perform one of the following things:
® test whether some variableis defined:
ok defined $object;
® test whether some variable isatrue value:
ok $val ue;
or afalsevalue:
ok !$val ue;
® test whether areceived from somewhere value is equal to an expected value:

$expect ed "a good val ue";
$recei ved get _val ue();
ok defined $received & $received eq $expect ed;

3.7.5 [Skipping Sub-testy

If the standard output line contains the substring # Skip (with variations in spacing and case) after ok or ok
NUMBER, it is counted as a skipped test. Test : : Har ness reports the text after # Skip\St\s+ as a
reason for skipping. So you can count a sub-test as a skipped as follows:

print "ok 3 # Skip for sonme reason\n";

or using the Apache: : Test 'sskip() function which works similarly to ok():
skip $shoul d_skip, $test_ne

so if $shoul d_ski p istrue, the test will be reported as skipped. The second argument is the one that’s
sent to ok(), so if $shoul d_ski p istrue, anormal ok() sub-test is run. The following example represent
four possible outcomes of using the skip() function:

ski p_subtest 1.t

use Apache:: Test;
pl an tests => 4;

1;
0;

ny $ok
ny $not _ok

ny $shoul d_skip = “"foo is m ssing"
skip $shoul d_skip, $ok;
skip $shoul d_skip, $not_ok

96 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.5 Skipping Sub-tests

$shoul d_skip = '’;
skip $shoul d_skip, $ok;
ski p $shoul d_ski p, $not_ok;

now we run the test:

% ./t/TEST -run-tests -verbose skip_subtest_1

ski p_subtest _1....1..4

ok 1 # skip foo is mssing

ok 2 # skip foo is mssing

ok 3

not ok 4

Failed test 4 in skip_subtest_1.t at line 13

Failed 1/1 test scripts, 0.00% okay. 1/4 subtests failed, 75.00% okay.

As you can see since $shoul d_ski p had a true value, the first two sub-tests were explicitly skipped
(using $shoul d_ski p as a reason), so the second argument to skip didn’t matter. In the last two
sub-tests $shoul d_ski p had a false value therefore the second argument was passed to the ok() func-
tion. Basically the following code:

$shoul d_skip = "7 ;

ski p $shoul d_ski p, $ok;
skip $shoul d_ski p, $not_ok;

isequivalent to:

ok $ok;
ok $not_ok;

However if you want to uset _cnp() or some other function call in the arguments to ok () that won't
quite work since the function will be always called no matter whether the first argument will evaluate to a
true or afalse value. For example, if you had a function:

ok t_cnp($expected, $received, $comment);
and now you want to run this sub-test if module HTTP: : Dat e isavailable, changing it to:

ny $shoul d_skip = eval { require HTTP::Date } ? "" : "m ssing HITP:: Date";
skip $shoul d_skip, t_cnp($expected, $received, $comrent);

will still runt _cnp() evenif HTTP: : Dat e is not available. Therefore it’s probably better to code it in
thisway:

if (eval {require HITP::Date}) {
ok t_cnp($expected, $received, $comment);

}
el se {

skip "Skip HTTP::Date not found";
}

29 Jan 2004 97

3.7.6 Running only Selected Sub-tests

3.7.6 |Running only Selected Sub-testq

Apache: : Test aso alowsto write testsin such away that only selected sub-tests will be run. The test
simply needs to switch from using ok() to sok(). Where the argument to sok() is a CODE reference or a
BLOCK whose return value will be passed to ok(). If sub-tests are specified on the command line only
those will be run/passed to ok(), the rest will be skipped. If no sub-tests are specified, sok() works just like
ok(). For example, you can write this test:

#file:skip_subtest_2.t

use Apache:: Test;
pl an tests => 4;

sok {1};

sok {0};

sok sub {'true’'};
sok sub {''};

and then ask to run only sub-tests 1 and 3 and to skip the rest.

% ./t/TEST -verbose skip_subtest 2 1 3
ski p_subtest_2....1..4

ok 1

ok 2 # skip skipping this subtest

ok 3

ok 4 # skip skipping this subtest

ok, 2/4 skipped: skipping this subtest
Al'l tests successful, 2 subtests skipped

Only the sub-tests 1 and 3 get executed.

A range of sub-teststo run can be given using the Perl’ s range operand:

% ./t/TEST -verbose skip_subtest 2 2..4

ski p_subtest _2....1..4

ok 1 # skip askipping this subtest

not ok 2

Failed test 2

ok 3

not ok 4

Failed test 4

Failed 1/1 test scripts, 0.00% okay. 2/4 subtests failed, 50.00% okay.

In thisrun, only the first sub-test gets executed.

3.7.7 [Todo Sub-tests

In a safe fashion to skipping specific sub-tests, it’'s possible to declare some sub-tests as todo. This distinc-
tion is useful when we know that some sub-test is failing but for some reason we want to flag it as a todo
sub-test and not as a broken test. Test : : Har ness recognizes todo sub-tests if the standard output line
contains the substring # TODO after not ok or not ok NUMBER and is counted as a todo sub-test. The text
afterwards is the explanation of the thing that has to be done before this sub-test will succeed. For
example:

98 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.8 Making it Easy to Debug

print "not ok 42 # TODO not i npl enented\n";

In Apache: : Test this can be done with passing a reference to alist of sub-tests numbers that should be
marked as todo sub-test:

plan tests => 7, todo => [3, 6];

In this example sub-tests 3 and 6 will be marked as todo sub-tests.

3.7.8 [Making it Easy to Debug

Ideally we want all the tests to pass, reporting minimum noise or none at all. But when some sub-tests fail
we want to know the reason for their failure. If you are a developer you can dive into the code and easily
find out what’ s the problem, but when you have a user who has a problem with the test suite it'll make his
and your life much easier if you make it easy for the user to report you the exact problem.

Usually this is done by printing the comment of what the sub-test does, what is the expected value and
what’ s the received value. Thisis agood example of debug friendly sub-test:

#fil e: debug_coments.t

use Apache:: Test;
use Apache:: TestUtil;
plan tests => 1;

t _debug("testing feature foo");

$expected = "a good val ue";

$received = "a bad val ue";

t _debug("expected: $expected");

t _debug("recei ved: $received");

ok defined $received & $recei ved eq $expect ed;

If in thisexample $r ecei ved gets assigned a bad value string, the test will print the following:

% t/ TEST debug_conments
debug_comments....FAILED test 1

No debug help here, since in a non-verbose mode the debug comments aren’t printed. If we run the same
test using the verbose mode, enabled with - ver bose:

%t/ TEST -verbose debug_coments
debug_coments....1..1

testing feature foo

expected: a good val ue

received: a bad val ue

not ok 1

we can see exactly what' s the problem, by visual examinination of the expected and received values.

It’strue that adding afew print statements for each sub tests is cumbersome, and adds a lot of noise, when
you could just tell:

29 Jan 2004 99

3.7.9 Tie-ing STDOUT to a Response Handler Object

ok "a good value" eq "a bad val ue"
but no fear, Apache: : Test Uti | comesto help. The functiont_cmp() does all the work for you:

use Apache:: Test;
use Apache:: TestUtil;

ok t_cnp(
"a good val ue"
"a bad val ue",
"testing feature foo");

t_cmp() will handle undef "ined values as well, so you can do:

ny $expect ed;
ok t_cmp(undef, $expected, "should be undef");

Finally you can uset_cmp() for regex comparisons. This feature is mostly useful when there may be more
than one valid expected value, which can be described with regex. For example this can be useful to
inspect the value of $@when eval() is expected to fail:

eval {foo();}

if (3@ {
ok t_cmp(qr/”expecting foo/, $@ "func eval");
}

which isthe same as;

eval {foo();}
if (3@ {

t _debug("func eval");

ok $@=~ /"expecting foo/ ? 1 : O;
}

3.7.9 [Tie-ing STDOUT to a Response Handler Object]

It's possible to run the sub-tests in the response handler, and simply return them as a response to the client
which in turn will print them out. Unfortunately in this case you cannot use ok() and other functions, since
they print and don't return the results, therefore you have to do it manually. For example:

sub handl er {
ny $r = shift;

$r->print("1..2\n");
$r->print("ok 1\n");
$r->print("not ok 2\n");

return Apache:: X
}

now the client should print the response to STDOUT for Test : : Har ness processing.

100 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.9 Tie-ing STDOUT to a Response Handler Object

If the response handler is configured as:

Set Handl er perl-script

STDOUT is aready tied to the request object $r . Therefore you can now rewrite the handler as:

use Apache:: Test;
sub handl er {
ny $r = shift;

Apache: : Test::test_pmrefresh();
pl an tests => 2;

ok "true";

ok ""

return Apache:: OK;
}

However to be on the safe side you also have to call Apache::Test::test pm_refresh() allowing plan() and
friends to be called more than once per-process.

Under different settings STDOUT is not tied to the request object. If the first argument to plan() is an
object, such as an Apache: : Request Rec object, STDOUT will be tied to it. The Test . pmglobal
state will also be refreshed by calling Apache: : Test::test _pm refresh. For example:

use Apache: : Test;
sub handl er {

ny $r = shift;

plan $r, tests => 2;
ok "true";

ok "";

return Apache: : OK;
}

Yet another aternative to handling the test framework printing inside response handler is to use
Apache: : Test ToSt ri ng class.

The Apache: : Test ToSt ri ng classisused to capture Test . pmoutput into a string. Example:
use Apache:: Test;
sub handl er {
ny $r = shift;
Apache: : Test ToStri ng->start;
pl an tests => 2;
ok "true";

Ok nn

ny $out put = Apache:: Test ToStri ng->fini sh;

29 Jan 2004 101

3.7.10 Helper Functions

$r->print ($out put);

return Apache: : K
}

In this example Apache: : Test ToSt ri ng intercepts and buffers al the output from Test . pmand
can be retrieved with its finish() method. Which then can be printed to the client in one shot. Internally it
calls Apache::Test::test_pm_refresh() to make sure plan(), ok() and other functions() will work correctly
more than one test is running under the same interpreter.

3.7.10 Helper Functiong

Apache: : Test Ut i | provides other helper functions, useful for writing tests, not mentioned in this
tutorial:

t_cnp()

t _debug()

t _append_file()

t_wite_file()

t_open_file()

t_nkdir()

t_rmree()

t_is_equal ()

t_wite_perl _script()
t_wite_shell _script()

t _chown()
t_server_log_error_is_expected()
t _server_log warn_is_expected()
t_client_log error_is_expected()>
t_client_log warn_is_expected()>

Seethe Apache: : Test Ut i | manpage for moreinformation.

3.7.11 |Auto Configuration|

If the test is comprised only from the request part, you have to manually configure the targets you are
going to use. Thisisusually done in t/conf/extra.conf.in.

If your tests are comprised from the request and response parts, Apache: : Test automatically adds the
configuration section for each response handler it finds. For example for the response handler:

package Test Response::nice
sone code
1;

it will put into t/conf/httpd.conf:
<Location / Test Response__ni ce>
Set Handl er nodper |

Per | ResponseHandl er Test Response: : nice
</ Locati on>

102 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.11 Auto Configuration

If you want to add some extra configuration directives, usethe DATA _ section, asin this example:

package Test Response::nice
sone code

1;

__DATA

Per | Set Var Foo Bar

These directives will be wrapped into the <Locat i on> section and placed into t/conf/httpd.conf:

<Location / Test Response__ni ce>
Set Handl er nodper |
Per | ResponseHandl er Test Response: : ni ce
Per | Set Var Foo Bar

</ Locati on>

This autoconfiguration feature was added to:

simplify (less lines) test configuration.
® ensure unique namespace for <Location ...>'s.

force <L ocation ...> names to be consistent.

prevent clashes within main configuration.

3.7.11.1 [For cing Configur ation Sectionsinto the Top L evel|

If some directives are supposed to go to the base configuration, i.e. not to be automatically wrapped into
<Locat i on> block, you should use a special <Base>..</ Base> block:

__DATA _
<Base>
Per | Set Var Config ServerConfig
<Base>
Per | Set Var Confi g Local Config

Now the autogenerated section will ook like this:

Per| Set Var Config ServerConfig

<Location / Test Response__ni ce>
Set Handl er nodperl
Per | ResponseHandl er Test Response: : ni ce
Per| Set Var Config Local Config

</ Locati on>

As you can see the <Base>..</ Base> block has gone. As you can imagine this block was added to
support our virtue of laziness, since most tests don’t need to add directives to the base configuration and
we want to keep the configuration sectionsin tests to a minimum and let Perl do the rest of the job for us.

29 Jan 2004 103

3.7.11 Auto Configuration

3.7.11.2 [Bypassing Auto-Configur ation|

In more complicated cases, usualy when virtual hosts containers are involved, the auto-configuration
might stand in away and you will simply want to bypass it. If that's the case, put the configuration inside
the <NoAuto Config >..</NoAuto Config > container. For example:

<NoAutoConfig>
<VirtualHost TestPreConnection::note>
PerlPreConnectionHandler TestPreConnection::note

<Location /TestPreConnection__note>
SetHandler modperl
PerlResponseHandler TestPreConnection::note::response
</Location>
</VirtualHost>
</NoAutoConfig>

Notice, that the internal sections will be still parsed, tokens @var@will be substituted and Virtu al -
Host sections will be rewritten with an automatically assigned port number and Server Name

3.7.11.3 |Virtual Hostg

Apache::Test automatically assigns an unused port for the virtual host configuration. Just make sure
that you use the package name in the place where you usually specify a hostname: port value. For example
for the following package:

#file:MyApacheTest/Foo.pm

#

es

package MyApacheTest::Foo;

1

__END__

<VirtualHost MyApacheTest::Foo>
<Location /test_foo>

</Location>
</VirtualHost>

After running:

% t/TEST -conf

Check the auto-generated t/conf/httpd.conf and you will find what port was assigned. Of course it can
change when more tests which require a special virtual host are used.

Now in the request script, you can figure out what port that virtual host was assigned, using the package
name. For example:

104 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework

#file:test _foo.t
use Apache: : Test Request ;
ny $nodul e = "MyApacheTest : : Foo; "

ny $config = Apache:: Test::conf | a();
Apache: : Test Request : : modul e($rmodul €) ;

ny $hostport = Apache:: Test Request: : host port ($config);

print GET_BODY_ASSERT "http://$hostport/test_foo";

3.7.11.4 |Running Pre-Configuration Cod¢g

3.7.11 Auto Configuration

Sometimes you need to setup things for the test. This usually includes creating directories and files, and
populating the latter with some data, which will be used at request time. Instead of performing that opera-
tion in the client script every time atest isrun, it's usually better to do it once when the server is config-
ured. If you wish to run such a code, all you have to do is to add a specia subroutine
APACHE_TEST_CONFI GURE in the response package (assuming that that response package exists).
When server is configured (t / TEST - conf) it scans al the response packages for that subroutine and if

found runsiit.

APACHE_TEST_CONFI GURE accepts two arguments: the package name of the file this subroutine is

defined in and the Apache: : Test Conf i g configuration object.

Here is an example of a package that uses such a subroutine:
package TestDirective:: perl nodul e;

use strict;
use warni ngs FATAL => ’all’

use Apache::Test ();

use Apache:: RequestRec ();

use Apache:: Request! O ();

use File::Spec::Functions gwcatfile);

use Apache:: Const -conpile => " K ;

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);
$r - >put s($ApacheTest : : Per| Modul eTest:: MAG C | |

Apache: : OK;
sub APACHE_TEST_CONFI GURE {
ny ($class, $self) = @;

ny $vars = $sel f->{vars};

ny $target _dir = catfile $vars->{docunentroot}, 'testdirective’;

29 Jan 2004

105

3.7.11 Auto Configuration

ny $magi c = _ PACKAGE _;

ny $content = <<ECF;
package ApacheTest:: Per| Modul eTest ;
\ $ApacheTest : : Per| Modul eTest:: MAG C = ' $magi ¢’ ;
1;
EOF

ny $file = catfile $target _dir,
" perl nodul e-vh’, ' ApacheTest’, ’'Perl Modul eTest. pmi ;
$self->witefile($file, $content, 1);
}
1;

In this example's function a directory is created. Then afile with some perl code as a content is created.

3.7.11.5 (Controlling the Configur ation Or der|

Sometimes it’s important in which order the configuration section of each response package is inserted.
Apache: : Test controls the insertion order using a specia token APACHE_TEST_CONFI G_CORDER.
To decide on the configuration insertion order, Apache: : Test scans all response packages and tries to
match the following pattern:

| APACHE_TEST_CONFI G_ORDER\ s+([+-] 2\ d+) /

SO you can assign any integer number (positive or negative). If the match fails, it's assumed that the
token's value is 0. Next a simple numerical search is performed and those configuration sections with
lower token value are inserted first.

It's not specified how sections with the same token value are ordered. This usually depends on the order
the files were read from the disk, which may vary from machine to machine and shouldn’t be relied upon.

As dready mentioned by default all configuration sections have a token whose value is 0, meaning that
their ordering is unimportant. Now if you want to make sure that some section is inserted first, assign to it
anegative number, e.g.:

APACHE_TEST_CONFI G_ORDER - 150

Now if a new test is added and it has to be the first, add to this new test a token with a negative value
whose absolute value is higher than - 150, e.g.:

APACHE_TEST_CONFI G_ORDER - 151
or

APACHE_TEST_CONFI G_ORDER - 500

Decide how big the gaps should be by thinking ahead. Thisis similar to the Basic language line numbering
;) In any case, you can aways adjust other tests token if you need to squeeze a number between two
consequent integers.

106 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.7.12 Threaded versus Non-threaded Perl Test’s Compatibility

If on the other hand you want to ensure that some test is configured last, use the highest positive number,
eg.:

APACHE_TEST_CONFI G_ORDER 100

If some other test needs to be configured just before the one we just inserted, assign a token with a lower
value, eg.:

APACHE_TEST_CONFI G_ORDER 99

3.7.12 [Threaded versus Non-threaded Per| Test’s Compatibility]

Since the tests are supposed to run properly under non-threaded and threaded perl, you have to worry to
enclose the threaded perl specific configuration bitsin:

<| f Def i ne PERL_USElI THREADS>
. configuration bits
</ | f Define>

Apache: : Test will start the server with -DPERL_USEITHREADS if the Perl isithreaded.

For example Per | Opt i ons +Par ent isvalid only for the threaded perl, therefore you have to write:

<| f Def i ne PERL_USElI THREADS>
a new interpreter poo
Per| Opti ons +Parent

</|f Define>

Just like the configuration, the test’s code has to work for both versions as well. Therefore you should
wrap the code specific to the threaded perl into:

if (have_perl ’ithreads’){
ithread specific code

}

which is essentially does alookup in $Config{ useithreads} .

3.7.13 |Retrieving the Server Configuration Data|

The server configuration data can be retrieved and used in the tests via the configuration object:

use Apache:: Test;
ny $cfg = Apache::Test::config();

3.7.13.1 [Module M agic Number]

The following code retrieves the major and minor MMN numbers.

29 Jan 2004 107

3.8 Debugging Tests

ny $cfg = Apache::Test::config();

ny $info = $cfg->{httpd_info};

ny $maj or = $i nfo->{ MODULE_MAG C_NUVBER NAJOR} ;
ny $minor = $i nfo->{ MODULE_MAG C_NUVBER M NOR};

print "maj or=$mgj or, m nor=%$m nor\n";
For example for MMN 20011218: 0, this code prints:

maj or =20011218, mi nor=0

3.8 [Debugging Tests

Sometimes your tests won't run properly or even worse will segfault. There are cases where it's possible
to debug broken tests with simple print statements but usually it's very time consuming and ineffective.
Thereforeit’sagood ideato get yourself familiar with Perl and C debuggers, and this knowledge will save
you alot of time and grief in along run.

3.8.1 [Under C debugger|

mod_perl-2.0 provides built in "make test’ debug facility. So in case you get a core dump during make
test, or just for fun, run in one shell:

%t/ TEST -debug

in another shell:

%t/ TEST -run-tests

then the -debug shell will have a (gdb) prompt, type wher e for stacktrace:

(gdb) where

You can change the default debugger by supplying the name of the debugger as an argument to -debug.
E.g. to run the server under ddd:

% ./t/TEST -debug=ddd
META: list supported debuggers

If you debug mod_perl internals you can set the breakpoints using the -breakpoint option, which can be
repeated as many times as needed. When you set at least one breakpoint, the server will start running till it
meets the ap _run_pre_config breakpoint. At this point we can set the breakpoint for the mod_perl code,
something we cannot do earlier if mod_perl was built as DSO. For example:

% ./t/TEST -debug - breakpoi nt =nodper| _cnd_swi tches \
- br eakpoi nt =nodper | _cnd_opti ons

108 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.8.2 Under Perl debugger

will set the modperl_cmd_switchemd modperl_cmd_optionsreakpoints and run the debugger.

If you want to tell the debugger to jump to the start of the mod_perl code you may run:

% ./t/TEST -debug - breakpoi nt =nodper| _hook_init

In fact -breakpoint automatically turns on the debug mode, so you can run:

% ./t/TEST - breakpoi nt =nodper| _hook_init

3.8.2 [Under Perl debugger|

When the Perl code misbehavesit’s the best to run it under the Perl debugger. Normally started as:

% per| -debug program pl

the flow control gets passed to the Perl debugger, which alows you to run the program in single steps and
examine its states and variables after every executed statement. Of course you can set up breakpoints and
watches to skip irrelevant code sections and watch after certain variables. The perlddoug and the perldeb
tut manpages are covering the Perl debugger in fine details.

The Apache: : Test framework extends the Perl debugger and plugs in LWP's debug features, so you
can debug the requests. Let’ s take test apache/readrom mod_perl 2.0 and present the features as we go:

META: to be completed

run .t test under the perl debugger
% t/ TEST -debug perl t/nodul es/access.t

run .t test under the perl debugger (nonstop mode, output to t/logs/perldb.out)
%t/ TEST -debug perl =nostop t/nodul es/ access.t

turn on -v and LWP trace (1 is the default) mode in Apache:: TestRequest

%t/ TEST -debug | wp t/nodul es/access.t

turn on -v and LWP trace mode (level 2) in Apache:: TestRequest

% t/ TEST -debug | wp=2 t/nodul es/ access.t

383

To get Start the server under strace(1):

%t/ TEST -debug strace

29 Jan 2004 109

3.9 Using Apache::Test to Speed up Project Development

The output goes to t/logs/strace.log.

Now in asecond terminal run:

%t/ TEST -run-tests
Beware that t/logs/strace.log is going to be very big.

META: can we provide strace(1) optsif we want to see only certain syscalls?

3.9 Using Apache:: Test to Speed up Project Development

When developing a project, as the code is written or modified it is desirable to test it at the same time. If
you write tests as you code, or even before you code, Apache::Test can speed up the modify-test code
development cycle. The idea is to start the server once and then run the tests without restarting it, and
make the server reload the modified modules behind the scenes. This of course works only if you modify
plain perl modules. If you develop XS/C components, you have no choice but to restart the server before
you want to test the modified code.

First of al, your perl modules need to reside under the lib directory, the same way they reside in blib/lib.
In the section [Basic Testing Environment] we' ve already arranged for that. If Amazing.pm resides in the
top-level directory, it's not possible to perform ' r equi re Apache: : Amazi ng’ . Only after running
make, the file will be moved to blib/lib/Apache/Amazing.pm, which is when we can load it. But you don't
want to run mak e every time you change the file. It's both annoying and error-prone, since at times you'd
do some change, try to verify it and it will appear to be wrong, and you will try to understand why,
whereas in reality you just forgot to run make and the server was testing against the old unmodified
versioninbl i b/ | i b. Of you course if you always run make t est it'll aways do the right thing, but
it's not the most effecient way to undertake when you want to test a specific test and you do it every few
seconds.

The following scenario will make you a much happier Perl developer.

First, we need to instruct Apache::Test to modify @ NC, which we could do in t/conf/modper|_extra.pl or
t/conf/extra.conf.in, but the problem is that you may not want to keep that change in the released package.
There is a better way, if the environment variable APACHE_TEST LI VE_DEV is set to a true vaue,
Apache: : Test will automatically add the lib/ directory if it exists. Executing:

% APACHE_TEST LI VE_DEV=1 t/TEST -confi gure

will add code to add /path/to/Apache-Amazing/lib to @ NC in t/conf/modper|_inc.pl. This technique is
convenient since you don’t need to modify your code to include that directory.

Second, we need to configure mod_perl to use Apache: : Rel oad to automatically reload the module
when it’s changed, by adding following configuration directives to t/conf/extra.conf.in:;

Per | Modul e Apache: : Rel oad

Per || ni t Handl er Apache: : Rel oad

Per| Set Var Rel oadAll O f

Per| Set Var Rel oadMbdul es " Apache: : Amazi ng"

110 29 Jan 2004

Running and Developing Tests with the Apache:: Test Framework 3.10 Writing Tests Methodology

(For more information about Apache: : Rel oad, depending on the used mod_perl generation, refer to
the mod_perl 1.0 documentation or the Apache: : Rel oad manpage for mod_perl 2.0.)

now we execute:

% APACHE_TEST LI VE_DEV=1 t/TEST -configure

which will generate t/conf/extra.conf and start the server:

%t/ TEST -start

from now on, we can modify Apache/Amazing.pm and repeatedly run:

%t/ TEST -run basic

without restarting the server.

3.10 \Writing Tests M ethodology

META: to be completed

3.10.1 When Tests Should Be Written|

o A New featureis Added

Every time anew feature is added new tests should be added to cover the new feature.
® A BugisReported

Every time a bug gets reported, before you even attempt to fix the bug, write a test that exposes the
bug. Thiswill make much easier for you to test whether your fix actually fixes the bug.

Now fix the bug and make sure that test passes ok.

It's possible that a few tests can be written to expose the same bug. Write them all -- the more tests
you have the less chances are that there is a bug in your code.

If the person reporting the bug is a programmer you may try to ask her to write the test for you. But
usually if the report includes a simple code that reproduces the bug, it should probably be easy to
convert this code into a test.

3.11 [Other Webserver Regression Testing Framewor ks

o Puffin

Puffin is a web application regression testing system. It allows you to test any web application from
end to end based application asif it were a"black box" accepting inputs and returning outputs.

29 Jan 2004 111

3.12 References

It' s available fromhttp://puffin.sourceforge.net/|

3.12 |References

® more Apache-Test documentation

Testing mod_perl 2.0http://www.perl.com/pub/a/2003/05/22/testing.html|

Apache:: Test manpage
Apache-Test README

® extreme programming methodology

Extreme Programming: A Gentle Introduction: fhttp://www.extremeprogramming.org/}

Extreme Programming: fhttp://www.xprogramming.com/}

See also other sites linked from these URLs.

3.13 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

3.14 |[Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

112 29 Jan 2004

http://puffin.sourceforge.net/
http://www.perl.com/pub/a/2003/05/22/testing.html
http://www.extremeprogramming.org/
http://www.xprogramming.com/

Issuing Correct HTTP Headers 4 |ssuing Correct HTTP Headers

4 |ssuing Correct HTTP Headers

29 Jan 2004 113

4.1 Description

4.1 Description|

To make caching of dynamic documents possible, which can give you a considerable performance gain,
setting a number of HTTP headers is of a vital importance. This document explains which headers you
need to pay attention to, and how to work with them.

As there is always more than one way to do it, I'm tempted to believe one must be the best. Hardly ever
am | right.

4.2 The Origin of this Chapter

This chapter has been contributed to the documentation by Andreas Koenig. Y ou will find the references
and other related info at the bottom of this page. It was previoudly distributed from CPAN, but this docu-
mentation is now its officia resting-place.

If you have any questions regarding this specific document only, please refer to Andreas, since he is the
guru on this subject. On any other matter please contact the mod_perl mailing list.

4.3 Why Header g

Dynamic Content is dynamic, after all, so why would anybody care about HTTP headers? Header compo-
sition is a task often neglected in the CGI world. Because pages are generated dynamically, you might
expect that pages without a Last - Modi fi ed header are fine, and that an | f - Modi fi ed- Si nce
header in the browser’ s request can be ignored. This laissez-faire principle gets in the way when you try to
establish a server that is entirely driven by dynamic components and the number of hitsis significant.

If the number of hitsis not significant, don’'t bother to read this document.

If the number of hits is significant, you might want to consider what cache-friendliness means (you may
also want to read and how you can cooperate with caches to increase the performance of your site.
Especialy if you use Squid in accelerator mode (helpful hints for Squid, see[[]), you will have a strong
motivation to cooperate with it. This document may help you to do it correctly.

4.4 \Which Header s

The HTTP standard (v 1.1 is specified in[[3]} v 1.0 in[[2]) describes lots of headers. In this document, we
only discuss those headers which are most relevant to caching.

I have grouped the headers into three groups: date headers, content headers, and the special Vary header.

114 29 Jan 2004

Issuing Correct HTTP Headers 4.4.1 Date Related Headers

4.4.1 |Date Related Header g
4411

Section 14.18 of the HTTP standard deals with the circumstances under which you must or must not send
aDat e header. For almost everything a normal mod_perl user is doing, a Dat e header needs to be gener-
ated. But the mod_perl programmer doesn’t have to worry about this header since the Apache server guar-
antees that this header is sent.

Inhttp_protocol . c the Dat e header is set according to $r - >r equest _ti me. A mod_perl script
can read, but not change, $r - >r equest _ti ne.

4.4.1.2 [Last-M odified|

Section 14.29 of the HTTP standard deals with this. The Last - Modi fi ed header is mostly used as a
so-called weak validator. Here are two sentences from the HT TP specs:

A validator that does not always change when the resource
changes is a "weak validator."

One can think of a strong validator as one that changes
whenever the bits of an entity changes, while a weak val ue
changes whenever the meaning of an entity changes.

Thistells us that we should consider the semantics of the page we are generating and not the date when we
are running. The question is, when did the meaning of this page change last time? Let’ simagine the docu-
ment in guestion is a text-to-gif renderer that takes as input a font to use, background and foreground
colours, and a string to render. Although the actual image is created on-the-fly, the semantics of the page
are determined when the script was last changed, right?

Actually, a few more things are relevant: the semantics also change a little when you update one of the
fonts that may be used or when you update your | mageMagi ck or equivalent program. It's something
you should consider, if you want to get it right.

If you have a page which comprises severa components, you should ask al the components when they
changed their semantic behaviour last time. Then pick the oldest of those times.

mod_per| offers you two convenient methods to deal with this header: update_mtime() and set_last_modi-
fied(). These methods and severa others are unavailable in the normal mod_perl environment but are
silently imported when you use Apache: : Fi | e. Refer to the Apache: : Fi | e manpage for more info.

update_mtime() takes a UNIX time as its argument and sets Apache’s request structure finfo.st_mtime to
thisvalue. It does so only when the argument is greater than aprevioudly storedf i nf o. st _nti ne.

set_last_modified() sets the outgoing header Last - Mbdi fi ed to the string that corresponds to the
stored finfo.st_mtime. By passing a UNIX time to set_last_modified(), mod_perl cals update_mtime()
with this argument first.

29 Jan 2004 115

4.4.1 Date Related Headers

use Apache: : Fil e;
use Date: : Parse;
Date::Parse parses RCS format, Apache:: Uil ::parsedate doesn't
$Mime || =

Dat e: : Parse: :str2ti me(substr q$Date: 2002/07/31 14:41:49 $, 6);
$r->set_|ast_nodified($Mine);

4.4.1.3 [Expires and Cache-Control|

Section 14.21 of the HTTP standard deals with the Expi r es header. The purpose of the Expi res
header is to determine a point in time after which the document should be considered out of date (stale).
Don't confuse this with the very different meaning of the Last - Modi fi ed header. The Expi res
header is useful to avoid unnecessary validation from now on until the document expires and it helps the
recipients to clean up their stored documents. A sentence from the HT TP standard:

The presence of an Expires field does not inply that the
original resource will change or cease to exist at, before, or
after that tinme.

So think before you set up a time when you believe a resource should be regarded as stale. Most of the
time | can determine an expected lifetime from "now", that is the time of the request. | would not recom-
mend hardcoding the date of Expiry, because when you forget that you did it, and the date arrives, you
will serve "aready expired" documents that cannot be cached at all by anybody. If you believe aresource
will never expire, read this quote from the HT TP specs:

To mark a response as "never expires,"” an origin server sends an
Expires date approxi mately one year fromthe tinme the response is
sent. HITP/ 1.1 servers SHOULD NOT send Expires dates nore than one
year in the future.

Now the code for the mod_perl programmer who wants to expire a document half a year from now:

$r- >header _out (’ Expires’,
HTTP: : Date::tine2str(tinme + 180*24*60*60));

A very handy aternative to this computation is available in HTTP 1.1, the cache control mechanism.
Instead of setting the Expi r es header you can specify adeltavaluein aCache- Cont r ol header. You
can do that by executing just:

$r - >header _out (' Cache-Control ', "max-age=" . 180*24*60*60);

which is, of course much cheaper than the first example because perl computes the value only once at
compile time and optimizes it into a constant.

As this aternative is only available in HTTP 1.1 and old cache servers may not understand this header, it
is advisable to send both headers. In this case the Cache- Cont r ol header takes precedence, so the
Expi r es header isignored on HTTP 1.1 compliant servers. Or you could go with an if/else clause:

116 29 Jan 2004

Issuing Correct HTTP Headers 4.4.2 Content Related Headers

if ($r->protocol =~ /(\d\.\d)/ && $1 >= 1.1){
$r - >header _out (' Cache-Control’, "nax-age=" . 180*24*60*60);
} else {

$r - >header _out (' Expires’
HTTP: : Date::tine2str(tinme + 180*24*60*60))
}

If you restart your Apache server regularly, I'd save the Expi r es header in a global variable. Oh, well,
thisis probably over-engineered now.
To avoid caching altogether call:
$r->no_cache(1);
which sets the headers:

Pragma: no-cache
Cache-control : no-cache

which should work in major browsers.

Don't set Expi r es with $r - >header _out if you use $r - >no_cache, because header_out() takes
precedence. The problem that remainsis that there are broken browsers which ignore Expi r es headers.

4.4.2 |Content Related Header g
4.4.2.1 [Content-Typd

You are most probably familiar with Cont ent - Type. Sections 3.7, 7.2.1 and 14.17 of the HTTP specs
cover the details. mod_perl hasthecont ent _t ype() method to deal with this header, for example:

$r->cont ent _type("i mage/ png")

Cont ent - Type should be included in al messages according to the specs, and Apache will generate one
if you don't. It will be whatever is specified in the relevant Def aul t Type configuration directive or
t ext/ pl ai nif noneisactive.

4.4.2.2 [Content-L ength|

According to section 14.13 of the HTTP specifications, the Cont ent - Lengt h header is the number of
octets in the body of a message. If it can be determined prior to sending, it can be very useful for several
reasons to include it. The most important reason why it is good to include it is that keepalive requests only
work with responses that contain a Cont ent - Lengt h header. In mod_perl you can say

$r- >header _out (' Content-Length’, $length);

If you use Apache: : Fi | e, you get the additional set _cont ent _| engt h() method for the Apache
classwhich isabit more efficient than the above. Y ou can then say:

29 Jan 2004 117

4.4.2 Content Related Headers

$r->set _content _| engt h($l engt h);

The Cont ent - Lengt h header can have an important impact on caches by invalidating cache entries as
the following extract from the specification explains:

The response to a HEAD request MAY be cacheable in the sense that

the information contained in the response MAY be used to update a
previously cached entity fromthat resource. |If the new field val ues
indicate that the cached entity differs fromthe current entity (as
woul d be indicated by a change in Content-Length, Content-NMD5, ETag
or Last-Modified), then the cache MIST treat the cache entry as

stal e.

So be careful never to send awrong Cont ent - Lengt h, eitherina GET or in aHEAD request.

4423

AnEntity Tag isavalidator which can be used instead of, or in addition to, the Last - Modi fi ed
header. An entity tag is a quoted string which can be used to identify different versions of a particular
resource. An entity tag can be added to the response headers like so:

$r - >header _out ("ETag", "\ "$VERSI OM"") ;

Note: mod_perl offers the Apache: : set _et ag() method if you have loaded Apache: : File. Itis
strongly recommended that you do not use this method unless you know what you are doing.
set _etag() isexpecting to be used in conjunction with a static request for a file on disk that has been
stat()ed in the course of the current request. It is inappropriate and "dangerous' to use it for dynamic
content.

By sending an entity tag you promise the recipient that you will not send the same ETag for the same
resource again unless the content is "equal’ to what you are sending now (see below for what equality
means).

The pros and cons of using entity tags are discussed in section 13.3 of the HTTP specs. For us mod_perl
programmers that discussion can be summed up as follows:

There are strong and weak validators. Strong validators change whenever a single bit changes in the
response. Weak validators change when the meaning of the response changes. Strong validators are
needed for caches to allow for sub-range requests. Weak validators allow a more efficient caching of
equivalent objects. Algorithms like MD5 or SHA are good strong validators, but what we usually want,
when we want to take advantage of caching, is agood weak validator.

A Last - Modi f i ed time, when used as a validator in a request, can be strong or weak, depending on a
couple of rules. Please refer to section 13.3.3 of the HTTP standard to understand these rules. This is
mostly relevant for range requests as this citation of section 14.27 explains.

If the client has no entity tag for an entity, but does have a
Last-Modified date, it MAY use that date in a |If-Range header.

118 29 Jan 2004

Issuing Correct HTTP Headers 4.4.3 Content Negotiation

But it is not limited to range requests. Section 13.3.1 succinctly states that:

The Last-Mdified entity-header field value is often used as a
cache val i dator

Thefact that aLast - Modi f i ed date may be used as a strong validator can be pretty disturbing if we are
in fact changing our output dlightly without changing the semantics of the output. To prevent these kinds
of misunderstanding between us and the cache servers in the response chain, we can send a weak validator
inan ETag header. Thisis possible because the specs say:

If a client wishes to performa sub-range retrieval on a value for
which it has only a Last-Mdified tine and no opaque validator, it
MAY do this only if the Last-Mddified time is strong in the sense
descri bed here

In other words: by sending them an ETag that is marked as weak we prevent them from using the
Last-Modified header as a strong validator.

An ETag value is marked as a weak validator by preceding the string W to the quoted string, otherwise it
isstrong. In perl this would mean something like this:

$r - >header _out (' ETag’, "W\ " $VERSI ON\" ") ;

Consider carefully which string you choose to act as a validator. Y ou are on your own with this decision
because...

only the service author knows the semantics of a resource
wel | enough to select an appropriate cache validation
mechani sm and the specification of any validator conparison
function nore conplex than byte-equality woul d open up a can
of worms. Thus, conparisons of any other headers (except
Last-Modified, for conpatibility with HTTP/1.0) are never used
for purposes of validating a cache entry.

If you are composing a message from multiple components, it may be necessary to combine some kind of
version information for all these components into a single string.

If you are producing relatively large documents, or content that does not change frequently, you most
likely will prefer a strong entity tag, thus giving caches a chance to transfer the document in chunks.
(Anybody in the mood to add a chapter about ranges to this document?)

4.4.3 |Content Negotiation|

Content negotiation is a particularly wonderful feature that was introduced with HTTP 1.1. Unfortunately
it isnot yet widely supported. Probably the most popular usage scenario of content negotiation is language
negotiation. A user specifies in the browser preferences the languages they understand and how well they
understand them. The browser includes these settings in an Accept - Language header when it sends
the request to the server and the server then chooses from several available representations of the docu-
ment the one that best fits the user’ s preferences. Content negotiation is not limited to language. Citing the
Specs:

29 Jan 2004 119

4.5 Requests

HTTP/ 1.1 includes the follow ng request-header fields for enabling
server-driven negotiation through description of user agent
capabilities and user preferences: Accept (section 14.1), Accept-
Charset (section 14.2), Accept-Encoding (section 14.3), Accept-
Language (section 14.4), and User-Agent (section 14.43). However, an
origin server is not limted to these di mensions and MAY vary the
response based on any aspect of the request, including information
outside the request-header fields or within extension header fields
not defined by this specification

4431

In order to signal to the recipient that content negotiation has been used to determine the best available
representation for a given regquest, the server must include a Var y header. This tells the recipient which
request headers have been used to determine it. So an answer may be generated like this:

$r->header _out (' Vary', join"
gw(accept accept-|anguage accept-encodi ng user-agent));

The header of avery cool page may greet the user with something like

Hal | o Kraut, Dein NutScrape versteht zwar PNG aber | eider
kein GZI P

but it has the side effect of being expensive for a caching proxy. As of this writing, Squid (version
2.1PATCH2) does not cache resources that come with a Vary header at all. So unless you find a clever
workaround, you won’'t enjoy your Squid accelerator for these documents :-(

4.5 Reguests

Section 13.11 of the specifications states that the only two cacheable methods are GET and HEAD.

4.5.1 HEAD

Among the above recommended headers, the date-related ones (Date, Last-Modified, and
Expi res/Cache- Control) are usualy easy to produce and thus should be computed for HEAD
requests just the same as for GET requests.

The Cont ent - Type and Cont ent - Lengt h headers should be exactly the same as would be supplied
to the corresponding GET request. But as it can be expensive to compute them, they can just as well be
omitted, since there is nothing in the specs that forces you to compute them.

What is important for the mod_perl programmer is that the response to a HEAD request must not contain a
message-body. The code in your mod_perl handler might look like this:

conpute the headers that are easy to conpute

if ($r->header_only){ # currently equivalent to $r->nethod eq "HEAD"'
$r->send_htt p_header;
return

}

120 29 Jan 2004

Issuing Correct HTTP Headers 4.5.2 POST

If you are running a Squid accelerator, it will be able to handle the whole HEAD request for you, but under
some circumstances it may not be allowed to do so.

45.2

The response to a POST request is not cacheable due to an underspecification in the HTTP standards.
Section 13.4 does not forbid caching of responses to POST requests but no other part of the HTTP stan-
dard explains how caching of POST requests could be implemented, so we are in a vacuum here and all
existing caching servers therefore refuse to implement caching of POST requests. This may change if
somebody does the groundwork of defining the semantics for cache operations on POST. Note that some
browsers with their more aggressive caching do implement caching of POST requests.

Note: If you are running a Squid accelerator, you should be aware that it accelerates outgoing traffic, but
does not bundle incoming traffic. If you have long POST requests, Squid doesn’t buy you anything. So
always consider using a GET instead of a POST if possible.

4.5.3

A normal GET iswhat we usually write our mod_perl programs for. Nothing special about it. We send our
headers followed by the body.

But there is a certain case that needs a workaround to achieve better cacheability. We need to deal with the
"?"intherel_path part of the requested URI. Section 13.9 specifies that

. caches MJST NOT treat responses to such URIs as fresh unl ess
the server provides an explicit expiration tinme. This specifically
means that responses fromHTTP/ 1.0 servers for such URI's SHOULD NOT
be taken froma cache

You're tempted to believe that if we are using HTTP 1.1 and send an explicit expiration time we're on the
safe side? Unfortunately reality is a little bit different. It has been a bad habit for quite a long time to
misconfigure cache servers such that they treat all GET requests containing a question mark as
uncacheable. People even used to mark everything as uncacheable that contained the string cgi - bi n.

To work around this bug in the HEAD requests, | have stopped calling my CGI directoriescgi - bi n and |
have written the following handler that lets me work with CGl-like query strings without rewriting the
software (such as Apache: : Request and CA . pm that deals with them.

sub handl er {

ny(sr) = @;
nmy $uri = $r->uri;
if (ny($ul,$u2) = $uri =~ 171 ~ ([*?]1+?) ; (["?]*) $/x) {

$r->uri ($ul);
$r->args($u2);
} elsif (my($ul, $u2) = $uri =~ M (.*?2)9B[Bb](.*)$/) {
protect against old proxies that escape vol ens nol ens
(see HTTP standard section 5.1.2)
$r->uri ($ul);
$u2 =~ s/ 98B/ ;/gi;
$u2 =~ s/®6/;/gi; # &

29 Jan 2004 121

4.5.4 Conditional GET

$u2 =~ s/ 98D/ =/gi;
$r->args($u2);
}
DECLI NED;
}

This handler must beinstalled asa Per | Post ReadRequest Handl er .

The handler takes any request that contains one or more semicolons but no question mark such that the
first semicolon isinterpreted as a question mark and everything after that as the query string. Y ou can now
exchange the request:

http://exanpl e. conf quer y?BGCOLOR=bl ue; FGCOLOR=r ed
with:
http://exanpl e. coni query; BGCOLOR=b| ue; FGCOLOR=r ed

Thus it allows the co-existence of queries from ordinary forms that are being processed by a browser and
predefined requests for the same resource. It has one minor bug: Apache doesn’t allow percent-escaped
dlashesin such a query string. So instead of:

http://exanpl e. coni query; BGCOLOR=bl ue; FGCOLOR=r ed; FONT=%2Ff ont %2Fbl a

you have to use:

http://exanpl e. conf query; BGCOLOR=bl ue; FGCOLOR=r ed; FONT=/ f ont / bl a

4.5.4 |Conditional GET|

A rather challenging request mod_perl programmers can get is the conditional GET, which typically
means a request with an I1f-Modified-Since header. The HT TP specifications have thisto say:

The semantics of the GET nethod change to a "conditional GET"
if the request message includes an |f-Mdified-Since,

I f-Unnodi fied-Since, |f-Match, |f-None-Match, or I|f-Range
header field. A conditional GET method requests that the
entity be transferred only under the circunmstances described
by the conditional header field(s). The conditional GET nethod
is intended to reduce unnecessary network usage by all ow ng
cached entities to be refreshed without requiring nmultiple
requests or transferring data already held by the client.

So how can we reduce the unnecessary network usage in such a case? mod_perl makes it easy for you by
offering Apache'smeet s_condi ti ons() . You have to set up your Last - Modi fi ed (and possibly
ETag) header before calling this method. If the return value of this method is anything other than OK, you
should return that value from your handler and you' re done. Apache handles the rest for you. The follow-
ing example is taken from[[5]t

122 29 Jan 2004

Issuing Correct HTTP Headers 4.6 Avoiding Dealing with Headers

if((ny $rc = $r->neets_conditions) !'= OK) {
return $rc;
}

#else ... go and send the response body ...

If you have a Squid accelerator running, it will often handle the conditionals for you and you can enjoy its
extremely fast responses for such requests by reading the access.log. Just grep for TCP_I M5_HI T/ 304.
But as with a HEAD request there are circumstances under which it may not be allowed to do so. That is
why the origin server (which is the server you' re programming) needs to handle conditional GETs as well
even if a Squid accelerator is running.

4.6 |Avoiding Dealing with Header s

There is another approach to dynamic content that is possible with mod_perl. This approach is appropriate
if the content changes relatively infrequently, if you expect lots of requests to retrieve the same content
before it changes again and if it is much cheaper to test whether the content needs refreshing than it is to
refreshit.

InthiscaseaPer | Fi xupHandl er can beinstalled for the relevant location. It tests whether the content
isup to date. If so, it returns DECLI NED and | ets the Apache core serve the content from a file. Otherwise,
it regenerates the content into the file, updates the $r - >f i nf o status and again returns DECL| NED so
that Apache serves the updated file. Updating $r - >f i nf o can be achieved by calling

$r->filename($file); # force update of finfo

even if this seems redundant because the filename is already equal to $f i | e. Setting the filename has the
side effect of doing ast at () on the file. Thisisimportant because otherwise Apache would use the out
of datef i nf o when generating the response header.

4.7 |References

471

Stas Bekman: mod_perl Guide

47.2

T. Berners-Lee et a.: Hypertext Transfer Protocol -- HTTP/1.0, RFC 1945.

473

R. Fidding et a.: Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616.

29 Jan 2004 123

4.8 Other resources

474

Martin Hamilton: Cachebusting - cause and prevention, draft-hamilton-cachebusting-01. Also available
online at |http://vancouver-webpages.com/CacheNow/|

4.7.5

Lincoln Stein, Doug MacEachern: Writing Apache Modules with Perl and C, O'Reilly, 1-56592-567-X.
Selected chapters available online at |http://www.modperl.com/] .

4.8 |Other resour ces

® Prevent the browser from Caching a page|http://www.pacificnet.net/~johnr/meta.html|

This pageis an explanation of using the Meta tag to prevent caching, by browser or proxy, of an indi-
vidual page wherein the page in question has data that may be of a sensitive nature asin a"form page
for submittal" and the creator of the page wants to make sure that the page does not get submitted
twice. Please naotice that some of the information on this page is a little bit outdated, but it's still a
good resource for those who cannot generate their own HTTP headers.

® \Web Caching and Content Delivery Resources|http://www.web-caching.com/|

4.9 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

4.10 |Author s

e Andreas Koenig <andreas.koenig (at) anima.de>

Only the mgjor authors are listed above. For contributors see the Changesfile.

124 29 Jan 2004

http://vancouver-webpages.com/CacheNow/
http://www.modperl.com/
http://www.pacificnet.net/~johnr/meta.html
http://www.web-caching.com/

mod_perl for ISPs. mod_perl and Virtual Hosts 5 mod_perl for ISPs. mod_perl and Virtual Hosts

5 mod_perl for ISPs. mod_perl and Virtual Hosts

29 Jan 2004 125

5.1 Description

5.1 |Description|

mod_perl hosting by ISPs: fantasy or reality? This section covers some topics that might be of interest to
users looking for 1SPs to host their mod_perl-based website, and |SPs looking for a way to provide such
Services.

Today, it isaredlity: there are a number of 1SPs hosting mod_perl, although the number of these is not as
big as we would have liked it to be. To see a list of ISPs that can provide mod_perl hosting, see ISPs
supporting mod_perl.

Note: At this moment this document talks about mod_perl 1.0. mod_perl 2.0 coupled with the perchild
mpm (http://httpd.apache.org/docs-2.0/mod/perchild.ntml) will alow different users run mod_perl
handlers under different uid/gid. This solves the problem of secure co-existing of more than one mod_perl
user on the same httpd server.

5.2 |SPsproviding mod perl services - afantasy or areality

® You installed mod_perl on your box at home, and you fell in love with it. So now you want to

convert your CGI scripts (which currently are running on your favorite |SPs machine) to run under
mod_perl. Then you discover that your ISP has never heard of mod_perl, or he refuses to install it for
you.

You are an old sailor in the | SP business, you have seen it all, you know how many |SPs are out there
and you know that the sales margins are too low to keep you happy. Y ou are looking for some new
service almost no one else provides, to attract more clients to become your users and hopefully to
have a bigger slice of the action than your competitors.

If you are a user asking for a mod_perl service or an ISP considering to provide this service, this section
should make things clear for both of you.

An ISP has three choices:

1. ISPs probably cannot let users run scripts under mod_perl on the main server. There are many

126

reasons for this;

Scripts might leak memory, due to sloppy programming. There will not be enough memory to run as
many servers as required, and clientswill be not satisfied with the service because it will be slower.

The question of file permissions is a very important issue: any user who is alowed to write and run a
CGl script can at least read (if not write) any other files that belong to the same user and/or group the
web server is running as. Note that it's impossible to run SUEXEC and cgi wr ap extensions under
mod_perl 1.0.

Another issue is the security of the database connections. If you use Apache: : DBI , by hacking the
Apache: : DBl code you can pick a connection from the pool of cached connections even if it was
opened by someone else and your scripts are running on the same web server.

29 Jan 2004

http://httpd.apache.org/docs-2.0/mod/perchild.html

mod_perl for ISPs. mod_perl and Virtual Hosts 5.2 1SPs providing mod_perl services - afantasy or areality

Y et another security issue is a potential compromise of the systems via user’s code running on the
webservers. One of the possible solutions here is to use chroot(1) or jail(8) mechanisms which allow
to run subsystems isolated from the main system. So if a subsystem gets compromised the whole
system is still safe.

There are many more things to be aware of so at thistime you have to say No.

Of course as an ISP you can run mod_perl internally, without allowing your users to map their scripts
so that they will run under mod_perl. If as apart of your service you provide scripts such as guest books,
counters etc. which are not available for user modification, you can till can have these scripts
running very fast.

2. But, hey why can't | let my users run their own servers, so | can wash my hands of them and don't
have to worry about how dirty and sloppy their code is (assuming that the users are running their
servers under their own usernames, to prevent them from stealing code and data from each other).

This option isfine as long as you are not concerned about your new systems resource requirements. If
you have even very limited experience with mod_perl, you know that mod_perl enabled Apache
servers while freeing up your CPU and allowing you to run scripts very much faster, have huge
memory demands (5-20 times that of plain Apache).

The size depends on the code length, the sloppiness of the programming, possible memory leaks the
code might have and all that multiplied by the number of children each server spawns. A very smple
example: a server, serving an average number of scripts, demanding 10Mb of memory which spawns
10 children, already raises your memory requirements by 100Mb (the real requirement is actually
much smaller if your OS alows code sharing between processes and programmers exploit these
features in their code). Now multiply the average required size by the number of server users you
intend to have and you will get the total memory requirement.

Since 1SPs never say No, you'd better take the inverse approach - think of the largest memory size
you can afford then divide it by one user’s requirements as | have shown in this example, and you
will know how many mod_perl users you can afford :)

But you cannot tell how much memory your users may use? Their requirements from a single server
can be very modest, but do you know how many servers they will run? After all, they have full control of
httpd.conf - and it has to be thisway, since thisis essential for the user running mod_perl.

All this rumbling about memory leads to a single question: is it possible to prevent users from using
more than X memory? Or another variation of the question: assuming you have as much memory as
you want, can you charge users for their average memory usage?

If the answer to either of the above questions is Yes, you are al set and your clients will prize your
name for letting them run mod_perl! There are tools to restrict resource usage (see for example the man
pagesforul imt (3),getrlimt(2),setrlimt(2) andsysconf(3), thelast three have
the corresponding Perl modules: BSD: : Resour ce and Apache: : Resour ce).

29 Jan 2004 127

5.2 ISPs providing mod_perl services - afantasy or areality

[ReaderMETA]: If you have experience with other resource limiting techniques please share it with
us. Thank you!

If you have chosen this option, you have to provide your client with:

® Shutdown and startup scripts installed together with the rest of your daemon startup scripts (e.g
/etc/re.d directory), so that when you reboot your machine the user’s server will be correctly
shutdown and will be back online the moment your system starts up. Also make sure to start
each server under the username the server belongsto, or you are going to be in big trouble!

® Proxy services (in forward or httpd accelerator mode) for the user’s virtua host. Since the user
will have to run their server on an unprivileged port (>1024), you will have to forward all
requestsfromuser . gi ven. vi rt ual . host nane: 80 (whichis
user. gi ven. vi rtual . host nane without the default port 80) to
your . machi ne. i p: port _assi gned_t o_user . You will also have to tell the users to
code their scripts so that any sdf referencing URLs are of the form
user. gi ven. virtual . host nane.

Letting the user run amod_perl server immediately adds a requirement for the user to be ableto
restart and configure their own server. Only root can bind to port 80, thisiswhy your users have
to use port numbers greater than 1024.

Another solution would be to use a setuid startup script, but think twice before you go with it,
sinceif users can modify the scripts they will get aroot access. For more information refer to the
section "{SUID Start-up Scripty'.

e Another problem you will have to solve is how to assign ports between users. Since users can
pick any port above 1024 to run their server, you will have to lay down some rules here so that
multiple servers do not conflict.

A simple example will demonstrate the importance of this problem: | am a malicious user or |
am just ariva of some fellow who runs his server on your ISP. All | need to do is to find out
what port my rival’s server is listening to (e.g. using net st at (8)) and configure my own
server to listen on the same port. Although | am unable to bind to this port, imagine what will
happen when you reboot your system and my startup script happens to be run before my rival’s
one! | get the port first, now all requests will be redirected to my server. I'll leave to your imagi-
nation what nasty things might happen then.

Of course the ugly things will quickly be revealed, but not before the damage has been done.

Luckily there are special tools that can ensure that users that aren’t authorized to bind to certain
ports (above 1024) won't be able to do so. One such atool is caled cbs and its documentation
can be found at |http: //www.epita.fr/~flav/cbs/doc/htmi}

Basically you can preassign each user a port, without them having to worry about finding a free one,
aswell asenforce MaxCl i ent s and similar values by implementing the following scenario:

128 29 Jan 2004

http://www.epita.fr/~flav/cbs/doc/html

mod_perl for ISPs. mod_perl and Virtual Hosts 5.2.1 Virtua Servers Technologies

For each user have two configuration files, the main file, httpd.conf (non-writable by user) and the
user’s file, username.httpd.conf where they can specify their own configuration parameters and over-
ride the ones defined in httpd.conf. Here is what the main configuration file looks like:

ht t pd. conf

G obal /default settings, the user may override sone of these

Included so that user can set his own configuration
I ncl ude usernane. httpd. conf

User-specific settings which will override any potentially
dangerous configuration directives in usernane. httpd. conf

user nane. htt pd. conf

Settings that your user would |ike to add/override
i ke <Location> and Perl|l Modul e directives, etc.

Apache reads the global/default settings first. Then it reads the Include’'d username.httpd.conf file
with whatever settings the user has chosen, and finally it reads the user-specific settings that we don’t
want the user to override, such as the port number. Even if the user changes the port number in his
username.httpd.conf file, Apache reads our settings last, so they take precedence. Note that you can
use Perl sections to make the configuration much easier.

3. A much better, but costly solution is co-location. Let the user hook his (or your) stand-alone machine
into your network, and forget about this user. Of course either the user or you will have to undertake
al the system administration chores and it will cost your client more money.

Who are the people who seek mod_perl support? They are people who run serious projects/busi-
nesses. Money is not usually an obstacle. They can afford a stand alone box, thus achieving their goal
of autonomy whilst keeping their ISP happy.

5.2.1 Virtual Servers Technologieq

Aswe have just seen one of the obstacles of using mod_perl in ISP environments, is the problem of isolat-
ing customers using the same machine from each other. A number of virtual servers (don't confuse with
virtual hosts) technologies (both commercial and Open Source) exist today. Here are some of them:

® TheUser-modeLinux Kernel

|http://user-mode-linux.sourcef orge.net/|

User-Mode Linux is a safe, secure way of running Linux versions and Linux processes. Run buggy
software, experiment with new Linux kernels or distributions, and poke around in the internals of
Linux, all without risking your main Linux setup.

29 Jan 2004 129

http://user-mode-linux.sourceforge.net/

5.3 Virtual Hostsin the guide

5.3 Virtual Hostsin the guide

User-Mode Linux gives you a virtua machine that may have more hardware and software virtual
resources than your actual, physical computer. Disk storage for the virtual machine is entirely
contained inside a single file on your physical machine. Y ou can assign your virtual machine only the
hardware access you want it to have. With properly limited access, nothing you do on the virtual
machine can change or damage your real computer, or its software.

So if you want to completely protect one user from another and yourself from your users this might
be yet another alternative to the solutions suggested at the beginning of this chapter.

VMWar e Technology

Allows running a few instances of the same or different OSs on the same machine. This technology
comesin two flavors:

Open source: |http://savannah.nongnu.org/proj ects/plex86/|

Commercial: |ttp://www.vmware.com/|

So you may want to run a separate OS for each of your clients

freeV SD Technology

freeVSD (http://www.freevsd.org), an open source project sponsored by Idaya Ltd. The software
enables ISPs to securely partition their physical servers into many virtual servers, each capable of
running popular hosting applications such as Apache, Sendmail and MySQL .

S/390 IBM server

Quoting from: [http://www.s390.ibm.com/linux/vif/]

"The S/390 Virtual Image Facility enables you to run tens to hundreds of Linux server images on a
single /390 server. It isideally suited for those who want to move Linux and/or UNIX workloads
deployed on multiple servers onto a single §/390 server, while maintaining the same number of
distinct server images. This provides centralized management and operation of the multiple image
environment, reducing complexity, easing administration and lowering costs."

In two words, this a great solution to huge ISPs, asit allows you to run hundreds of mod_perl servers
while having only one box to maintain. The drawback isthe price:)

Check out this scalable mailing list thread for more details from those who know:
|http://archive.devel ooper.com/scal abl e@arctic.org/msg00235.htmil|

If you are about to use Virtual Hosts you might want to read these sections:

130

29 Jan 2004

http://savannah.nongnu.org/projects/plex86/
http://www.vmware.com/
http://www.freevsd.org/
http://www.s390.ibm.com/linux/vif/
http://archive.develooper.com/scalable@arctic.org/msg00235.html

mod_perl for ISPs. mod_perl and Virtual Hosts 5.4 Maintainers

Apache Configuration in Perl

Easing the Chores of Configuring Virtual Hosts with mod_macro

Is There aWay to Provide a Different startup.pl File for Each Individual Virtual Host
Is There aWay to Modify @INC on a Per-Virtual-Host or Per-Location Basis.

A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host

5.4 Maintainer g

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

5.5 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 131

6 Choosing an Operating System and Hardware

6 Choosing an Operating System and Hardware

132 29 Jan 2004

Choosing an Operating System and Hardware 6.1 Description

6.1 |[Description|

Before you use the techniques documented on this site to tune servers and write code you need to consider
the demands which will be placed on the hardware and the operating system. There is no point in investing
alot of time and money in configuration and coding only to find that your server’s performance is poor
because you did not choose a suitable platform in the first place.

While the tips below could apply to many web servers, they are aimed primarily at administrators of
mod_perl enabled Apache server.

Because hardware platforms and operating systems are developing rapidly (even while you are reading
this document), this discussion must be in general terms.

6.2 |[Choosing an Oper ating System|

First let’ s talk about Operating Systems (OSs).

Most of the time | prefer to use Linux or something from the *BSD family. Although | am persondly a
Linux devotee, | do not want to start yet another OS war.

I will try to talk about what characteristics and features you should be looking for to support an
Apache/mod_perl server, then when you know what you want from your OS, you can go out and find it.
Visit the Web sites of the operating systems you are interested in. You can gauge user’s opinions by
searching the relevant discussions in newsgroups and mailing list archives. Deja - and
eGroups - |http://egroups.com| are good examples. | will leave this fan research to the reader.

6.2.1 [Stability and Robustnesg

Probably the most important features in an OS are stability and robustness. You are in an Internet busi-
ness. You do not keep normal 9am to 5pm working hours like many conventional businesses you know.
Y ou are open 24 hours aday. Y ou cannot afford to be off-line, for your customers will go shop at another
service like yours (unless you have a monopoly :). If the OS of your choice crashes every day, first do a
little investigation. There might be a ssimple reason which you can find and fix. There are OSs which
won’t work unless you reboot them twice aday. You don’t want to use the OS of this kind, no matter how
good the OS' vendor sales department. Do not follow flushy advertisements, follow developers advices
instead.

Generally, people who have used the OS for some time can tell you alot about its stability. Ask them. Try
to find people who are doing similar things to what you are planning to do, they may even be using the
same software. There are often compatibility issues to resolve. You may need to become familiar with
patching and compiling your OS. It's easy.

29 Jan 2004 133

http://deja.com/
http://egroups.com/

6.2.2 Memory Management

6.2.2 [Memory Management

Y ou want an OS with a good memory management, some OSs are well known as memory hogs. The same
code can use twice as much memory on one OS compared to another. If the size of the mod_perl process
is 10Mb and you have tens of these running, it definitely adds up!

6.2.3 [Memory L eakd

Some OSs and/or their libraries (e.g. C runtime libraries) suffer from memory leaks. A leak is when some
process requests a chunk of memory for temporary storage, but then does not subsequently release it. The
chunk of memory is not then available for any purpose until the process which requested it dies. We
cannot afford such leaks. A single mod_perl process sometimes serves thousands of requests before it
terminates. So if aleak occurs on every request, the memory demands could become huge. Of course our
code can be the cause of the memory leaks as well (check out the Apache: : Leak module on CPAN).
Certainly, we can reduce the number of requests to be served over the process' life, but that can degrade
performance.

6.2.4 [Sharing Memory|

We want an OS with good memory sharing capabilities. As we have seen, if we preload the modules and
scripts at server startup, they are shared between the spawned children (at least for a part of a process’ life
- memory pages can become "dirty" and cease to be shared). This feature can reduce memory consumption
alot!

6.2.5 |Cost and Support

If we are in a big business we probably do not mind paying another $1000 for some fancy OS with
bundled support. But if our resources are low, we will look for cheaper and free OSs. Free does not mean
bad, it can be quite the opposite. Free OSs can have the best support we can find. Some do. It is very easy
to understand - most of the people are not rich and will try to use a cheaper or free OS first if it does the
work for them. Since it really fits their needs, many people keep using it and eventually know it well
enough to be able to provide support for othersin trouble. Why would they do this for free? One reason is
for the spirit of the first days of the Internet, when there was no commercia Internet and people helped
each other, because someone helped them in first place. | was there, | was touched by that spirit and | am
keen to keep that spirit alive.

But, let’s get back to our world. We are living in material world, and our bosses pay us to keep the
systems running. So if you feel that you cannot provide the support yourself and you do not trust the avail-
able free resources, you must pay for an OS backed by a company, and blame them for any problem. Y our
boss wants to be able to sue someone if the project has a problem caused by the external product that is
being used in the project. If you buy a product and the company selling it claims support, you have
someone to sue or at least to put the blame on.

134 29 Jan 2004

Choosing an Operating System and Hardware 6.2.6 Discontinued Products

If we go with Open Source and it fails we do not have someone to sue... wrong--in the last years many
companies have realized how good the Open Source products are and started to provide an official support
for these products. So your boss cannot just dismiss your suggestion of using an Open Source Operating
System. Y ou can get a paid support just like with any other commercial OS vendor.

Also remember that the less money you spend on OS and Software, the more you will be able to spend on
faster and stronger hardware.

6.2.6 [Discontinued Products

The OSsin this hazard group tend to be developed by a single company or organization.

You might find yourself in a position where you have invested a lot of time and money into developing
some proprietary software that is bundled with the OS you chose (say writing a mod_perl handler which
takes advantage of some proprietary features of the OS and which will not run on any other OS). Things
are under control, the performance is great and you sing with happiness on your way to work. Then, one
day, the company which supplies your beloved OS goes bankrupt (not unlikely nowadays), or they
produce a newer incompatible version and they will not support the old one (happens al the time). You
are stuck with their early masterpiece, no support and no source code! What are you going to do? Invest
more money into porting the software to another OS...

Everyone can be hit by this mini-disaster so it is better to check the background of the company when
making your choice. Even so you never know what will happen tomorrow - in 1980, a company called
Tektronix did something similar to one of the Guide reviewers with its microprocessor development
system. The guy just had to buy another system. He didn’t buy it from Tektronix, of course. The second
system never really worked very well and the firm he bought it from went bust before they ever got around
to fixing it. Soin 1982 he wrote his own microprocessor development system software. It didn’t take long,
it worksfine, and he's still using it 18 years later.

Free and Open Source OSs are probably less susceptible to this kind of problem. Development is usualy
distributed between many companies and developers, so if a person who developed areally important part
of the kernel lost interest in continuing, someone else will pick the falling flag and carry on. Of course if
tomorrow some better project shows up, developers might migrate there and finally drop the devel opment:
but in practice people are often given support on older versions and helped to migrate to current versions.
Development tends to be more incremental than revolutionary, so upgrades are less traumatic, and there is
usually plenty of notice of the forthcoming changes so that you have time to plan for them.

Of course with the Open Source OSs you can have the source! So you can always have a go yourself, but
do not under-estimate the amounts of work involved. There are many, many man-years of work in an OS.

6.2.7 [OS Released

Actively developed OSs generally try to keep pace with the latest technology developments, and continu-
ally optimize the kernel and other parts of the OS to become better and faster. Nowadays, Internet and
networking in general are the hottest topics for system developers. Sometimes a smple OS upgrade to the
latest stable version can save you an expensive hardware upgrade. Also, remember that when you buy new
hardware, chances are that the latest software will make the most of it.

29 Jan 2004 135

6.3 Choosing Hardware

If a new product supports an old one by virtue of backwards compatibility with previous products of the
same family, you might not reap all the benefits of the new product’s features. Perhaps you get almost the
same functionality for much less money if you were to buy an older model of the same product.

6.3 |[Choosing Har dwar €

Sometimes the most expensive machine is not the one which provides the best performance. Your
demands on the platform hardware are based on many aspects and affect many components. Let’s discuss
some of them.

In the discussion we use terms that may be unfamiliar to some readers:

136

Cluster - a group of machines connected together to perform one big or many small computational
tasks in a reasonable time. Clustering can also be used to provide 'fail-over’ where if one machine
fails its processes are transferred to another without interruption of service. And you may be able to
take one of the machines down for maintenance (or an upgrade) and keep your service running - the
main server will simply not dispatch the requests to the machine that was taken down.

Load balancing - users are given the name of one of your machines but perhaps it cannot stand the
heavy load. Y ou can use a clustering approach to distribute the load over a number of machines. The
central server, which users access initially when they type the name of your service, works as a
dispatcher. It just redirects requests to other machines. Sometimes the central server also collects the
results and returns them to the users. Y ou can get the advantages of clustering too.

There are many load balancing techniques. (See High-Availahility Linux Project for more info.)

NIC - Network Interface Card. A hardware component that allows to connect your machine to the
network. It performs packets sending and receiving, newer cards can encrypt and decrypt packets and
perform digital signing and verifying of the such. These are coming in different speeds categories
varying from 10Mbps to 10Gbps and faster. The most used type of the NIC card is the one that
implements the Ethernet networking protocol.

RAM - Random Access Memory. It's the memory that you have in your computer. (Comes in units
of 8Mb, 16Mb, 64Mb, 256Mb, etc.)

RAID - Redundant Array of Inexpensive Disks.

An array of physical disks, usually treated by the operating system as one single disk, and often
forced to appear that way by the hardware. The reason for using RAID is often simply to achieve a
high data transfer rate, but it may also be to get adequate disk capacity or high reliability. Redun-
dancy means that the system is capable of continued operation even if a disk fails. There are various
types of RAID array and several different approaches to implementing them. Some systems provide
protection against failure of more than one drive and some (* hot-swappable’) systems alow adriveto
be replaced without even stopping the OS. See for example the Linux ‘HOWTO' documents
Disk-HOWTO, Module-HOWTO and Parallel-Processing-HOWTO.

29 Jan 2004

Choosing an Operating System and Hardware 6.3.1 Machine Strength Demands According to Expected Site Traffic

6.3.1 [Machine Strength Demands According to Expected Site Traffig

If you are building a fan site and you want to amaze your friends with amod_perl guest book, any old 486
machine could do it. If you are in a serious business, it is very important to build a scalable server. If your
service is successful and becomes popular, the traffic could double every few days, and you should be
ready to add more resources to keep up with the demand. While we can define the webserver scalability
more precisely, the important thing is to make sure that you can add more power to your webserver(s)
without investing much additional money in software development (you will need alittle software effort to
connect your servers, if you add more of them). This means that you should choose hardware and OSs that
can talk to other machines and become a part of a cluster.

On the other hand if you prepare for a lot of traffic and buy a monster to do the work for you, what
happens if your service doesn’t prove to be as successful as you thought it would be? Then you’ ve spent
too much money, and meanwhile faster processors and other hardware components have been released, so
you lose.

Wisdom and prophecy, that's all it takes:)

6.3.1.1 [Single Strong M achine vs Many Weaker M achineq

Let's start with a claim that a four years old processor is still very powerful and can be put to a good use.
Now let’s say that for a given amount of money you can probably buy either one new very strong machine
or about ten older but very cheap machines. | claim that with ten old machines connected into a cluster and
by deploying load balancing you will be able to serve about five times more requests than with one single
new machine.

Why is that? Because generally the performance improvement on a new machine is margina while the
price is much higher. Ten machines will do faster disk /O than one single machine, even if the new disk is
quite a hit faster. Yes, you have more administration overhead, but there is a chance you will have it
anyway, for in a short time the new machine you have just bought might not stand the load. Then you will
have to purchase more equipment and think about how to implement load balancing and web server file
system distribution anyway.

Why I'm so convinced? Look at the busiest services on the Internet: search engines, web-email servers
and the like -- most of them use a clustering approach. Y ou may not always natice it, because they hide
the real implementation behind proxy servers.

6.3.2 | nternet Connection|

Y ou have the best hardware you can get, but the service is still crawling. Make sure you have afast Inter-
net connection. Not as fast as your ISP claimsiit to be, but fast as it should be. The ISP might have avery
good connection to the Internet, but put many clients on the same line. If these are heavy clients, your
traffic will have to share the same line and your throughput will suffer. Think about a dedicated connec-
tion and make sure it istruly dedicated. Don't trust the ISP, check it!

29 Jan 2004 137

6.3.3 /O Performance

The idea of having a connection to The Internet is alittle misleading. Many Web hosting and co-location
companies have large amounts of bandwidth, but still have poor connectivity. The public exchanges, such
as MAE-East and MAE-West, frequently become overloaded, yet many 1SPs depend on these exchanges.

Private peering means that providers can exchange traffic much quicker.

Also, if your Web siteis of global interest, check that the ISP has good global connectivity. If the Web site
is going to be visited mostly by people in a certain country or region, your server should probably be
located there.

Bad connectivity can directly influence your machine' s performance. Here is a story one of the developers
told on the mod_perl mailing list:

VWhat rel ationship has 10% packet | oss on one upstream provi der got
to do with nachine nenmory ?

Yes.. a lot. For a nightmare week, the box was | ocated downstream of
a provider who was struggling with sone serious bandw dth probl ens
of his own... people were connecting to the site via this link, and
packet | oss was such that retransnmits and tcp stalls were keeping
httpd heavi es around for much | onger than normal.. instead of

bl asting out the data at high or even nbdem speeds, they woul d be
stuck at 1k/sec or stalled out... people would press stop and
refresh, httpds would take 300 seconds to timeout on wites to
no-one.. it was a nightmare. Those problens didn't go away till
moved the box to a place closer to sonme decent backbones

Note that with a proxy, this only keeps a |lightweight httpd tied up,
assum ng the page is small enough to fit in the buffers. |If you are
a busy internet site you always have sone slow clients. This is a
difficult thing to sinmulate in benchmark testing, though

6.3.3 |I|/O Performanceg

If your service is I/O bound (does a lot of read/write operations to disk) you need a very fast disk, espe-
cidly if the you need a relational database, which are the main I/O stream creators. So you should not
spend the money on Video card and monitor! A cheap card and a 14" monochrome monitor are perfectly
adequate for a Web server, you will probably access it by t el net or ssh most of the time. Look for
disks with the best price/performance ratio. Of course, ask around and avoid disks that have a reputation
for headcrashes and other disasters.

Y ou must think about RAID or similar systems if you have an enormous data set to serve (what is an enor-
mous data set nowadays? Gigabytes, Terabytes?) or you expect areally big web traffic.

Ok, you have a fast disk, what’s next? You need a fast disk controller. There may be one embedded on
your computer’ s motherboard. If the controller is not fast enough you should buy afaster one. Don't forget
that it may be necessary to disable the original controller.

138 29 Jan 2004

Choosing an Operating System and Hardware 6.3.4 Memory

6.34

Memory should be well tested. Many memory test programs are practically useless. Running a busy
system for a few weeks without ever shutting it down is a pretty good memory test. If you increase the
amount of RAM on awell-tested box, use well-tested RAM.

How much RAM do you need? Nowadays, the chances are that you will hear: "Memory is cheap, the more
you buy the better". But how much is enough? The answer is pretty straightforward: you do not want your
machine to swap. When the CPU needs to write something into memory, but memory is already full, it
takes the least frequently used memory pages and swaps them out to disk. This means you have to bear the
time penalty of writing the data to disk. If another process then references some of the data which happens
to be on one of the pages that has just been swapped out, the CPU swaps it back in again, probably swap-
ping out some other data that will be needed very shortly by some other process. Carried to the extreme,
the CPU and disk start to thrash hopelessly in circles, without getting any real work done. The less RAM
there is, the more often this scenario arises. Worse, you can exhaust swap space as well, and then your
troubles really start...

How do you make a decision? Y ou know the highest rate at which your server expects to serve pages and
how long it takes on average to serve one. Now you can calculate how many server processes you need. If
you know the maximum size your servers can grow to, you know how much memory you need. If your
OS supportsjmemory sharing, you can make best use of this feature by preloading the modules and scripts
at server startup, and so you will need less memory than you have calculated.

Do not forget that other essential system processes need memory as well, so you should plan not only for
the Web server, but also take into account the other players. Remember that requests can be queued, so
you can afford to let your client wait for a few moments until a server is available to serve it. Most of the
time your server will not have the maximum load, but you should be ready to bear the peaks. Y ou need to
reserve at least 20% of free memory for peak situations. Many sites have crashed a few moments after a
big scoop about them was posted and an unexpected number of requests suddenly came in. (Thisis called
the Slashdot effect, which was born at |http://slashdot.org]). If you are about to announce something cool,
be aware of the possible consequences.

6.3.5

Make sure that the CPU is operating within its specifications. Many boxes are shipped with incorrect
settings for CPU clock speed, power supply voltage etc. Sometimes a cooling fan is not fitted. It may be
ineffective because a cable assembly fouls the fan blades. Like faulty RAM, an overheating processor can
cause all kinds of strange and unpredictable things to happen. Some CPUs are known to have bugs which
can be serious in certain circumstances. Try not to get one of them.

6.3.6 [Bottleneckd

Y ou might use the most expensive components, but still get bad performance. Why? Let me introduce an
annoying word: bottleneck.

29 Jan 2004 139

http://slashdot.org/

6.4 Maintainers

A machine is an aggregate of many components. Almost any one of them may become a bottleneck.

If you have a fast processor but a small amount of RAM, the RAM will probably be the bottleneck. The
processor will be under-utilized, usually it will be waiting for the kernel to swap the memory pagesin and
out, because memory istoo small to hold the busiest pages.

If you have alot of memory, afast processor, afast disk, but a slow disk controller, the disk controller will
be the bottleneck. The performance will still be bad, and you will have wasted money.

Use afast NIC that does not create a bottleneck. They are cheap. If the NIC is slow, the whole service is
slow. This is a most important component, since webservers are much more often network-bound than
they are disk-bound!

6.3.6.1 [Solving Har dwar e Requir ement Conflictg

It may happen that the combination of software components which you find yourself using gives rise to
conflicting requirements for the optimization of tuning parameters. If you can separate the components
onto different machines you may find that this approach (akind of clustering) solves the problem, at much
less cost than buying faster hardware, because you can tune the machines individually to suit the tasks
they should perform.

For example if you need to run a relational database engine and mod_perl server, it can be wise to put the
two on different machines, since while RDBMS need a very fast disk, mod_perl processes need lots of
memory. So by placing the two on different machines it's easy to optimize each machine at separate and
satisfy the each software components requirements in the best way.

6.3.7 [Conclusion|

To use your money optimally you have to understand the hardware very well, so you will know what to
pick. Otherwise, you should hire a knowledgeable hardware consultant and employ them on a regular
basis, since your needs will probably change as time goes by and your hardware will likewise be forced to
adapt as well.

6.4 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

6.5 |Authorg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

140 29 Jan 2004

Controlling and Monitoring the Server 7 Controlling and Monitoring the Server

7 Controlling and Monitoring the Server

29 Jan 2004 141

7.1 Description

7.1 |Description|

Covers techniques to restart mod_perl enabled Apache, SUID scripts, monitoring, and other maintenance
chores, as well as some specific setups.

7.2 |Restarting Techniques

All of these techniques require that you know the server processid (PID). The easiest way to find the PID
isto look it up in the httpd.pid file. It's easy to discover where to look, by looking in the httpd.conf file.
Open thefile and locate the entry Pi dFi | e. Hereisthe line from one of my own httpd.conf files:

PidFile /usr/local/var/httpd_perl/run/httpd.pid
Asyou see, with my configuration the file is /usr/local /var/httpd_per|/run/httpd.pid.

Another way isto use the ps and gr ep utilities. Assuming that the binary is called httpd_perl, we would
do:

% ps auxc | grep httpd_perl

or maybe:
% ps -ef | grep httpd_perl

This will produce alist of al the ht t pd_per| (parent and children) processes. Y ou are looking for the
parent process. If you run your server as root, you will easily locate it since it belongs to root. If you run
the server as some other user (when you don’t have root access, the processes will belong to that user
unless defined differently in httpd.conf. It's till easy to find which is the parent--usualy it's the process
with the smallest PID.

You will see several ht t pd processes running on your system, but you should never need to send signals
to any of them except the parent, whose pid is in the PidFile. There are three signals that you can send to
the parent: SI GTERM SI GHUP, and SI GUSR1.

Some folks prefer to specify signals using numerical values, rather than using symbols. If you are looking
for these, check out your ki | | (1) man page. My page points to /usr/include/linux/signal.h, the relevant
entries are:

#defi ne Sl GHUP 1 /* hangup, generated when term nal disconnects */
#define SI&KILL 9 /* last resort */

#define SI GTERM 15 /* software termnation signal */

#define Sl GUSRL 30 /* user defined signal 1 */

Note that to send these signals from the command line the SI G prefix must be omitted and under some
operating systems they will need to be preceded by a minus sign, eg. kill -15or kill -TERM
followed by the PID.

142 29 Jan 2004

Controlling and Monitoring the Server 7.3 Server Stopping and Restarting

7.3 |Server Stopping and Restarting

We will concentrate here on the implications of sending TERM HUP, and USR1 signals (as arguments to
kill(1)) to a mod_perl enabled server. See |http://www.apache.org/docs/stopping.html| for documentation
on the implications of sending these signalsto a plain Apache server.

® TERM Signal: Stop Now

Sending the TERMsignal to the parent causes it to immediately attempt to kill off all its children. Any
requests in progress are terminated, and no further requests are served. This process may take quite a
few seconds to complete. To stop a child, the parent sends it a SI GHUP signal. If that fails it sends
another. If that fails it sends the SI GTERMsignal, and as a last resort it sends the SI GKI LL signal.
For each failed attempt to kill achild it makes an entry inthe error_log.

When all the child processes were terminated, the parent itself exits and any open log files are closed.
This is when all the accumulated END blocks, apart from the ones located in scripts running under
Apache: : Regi stry or Apache:: Perl Run handlers. In the latter case, END blocks are
executed after each request is served.

e HUP Signal: Restart Now

Sending the HUP signal to the parent causes it to kill off its children as if the TERMsignal had been
sent, i.e. any requests in progress are terminated; but the parent does not exit. Instead, the parent
re-reads its configuration files, spawns a new set of child processes and continues to serve requests. It
isamost equivalent to stopping and then restarting the server.

If the configuration files contain errors when restart is signaled, the parent will exit, so it isimportant
to check the configuration files for errors before issuing a restart. How to perform the check will be
covered shortly;

Sometimes using this approach to restart mod_perl enabled Apache may cause the processes memory
incremental growth after each restart. This happens when Perl code loaded in memory is not
completely torn down, leading to a memory leak.

® USRI Signal: Gracefully Restart Now

The USR1 signal causes the parent process to advise the children to exit after serving their current
requests, or to exit immediately if they’'re not serving a regquest. The parent re-reads its configuration
files and re-opens its log files. As each child dies off the parent replaces it with a child from the new
generation (the new children use the new configuration) and it begins serving new requests immedi-
ately.

The only difference between USR1 and HUP is that USR1 alows the children to complete any current
requests prior to killing them off and there is no interruption in the services compared to the killing
with HUP signal, where it might take a few seconds for a restart to get completed and there is no rea
service at thistime.

29 Jan 2004 143

http://www.apache.org/docs/stopping.html

7.4 Speeding up the Apache Termination and Restart

By default, if a server isrestarted (using ki |1 -USRL ‘cat | ogs/httpd. pid* or with the HUP
signal), Perl scripts and modules are not reloaded. To reload Per | Requi r es, Per | Modul es, other
use() 'd modules and flush the Apache: : Regi st ry cache, usethis directive in httpd.conf:

Per| FreshRestart On

Make sure you read Evil things might happen when using PerlFreshRestart.

7.4 |Speeding up the Apache Termination and Restart

We've already mentioned that restart or termination can sometimes take quite a long time, (e.g. tens of
seconds), for amod_perl server. The reason for that is a call to the per| _destruct () Perl APl func-
tion during the child exit phase. This will cause proper execution of END blocks found during server
startup and will invoke the DESTROY method on global objects which are till dive.

It is aso possible that this operation may take a long time to finish, causing a long delay during a restart.
Sometimes this will be followed by a series of messages appearing in the server error_log file, warning
that certain child processes did not exit as expected. This happens when after a few attempts advising the
child process to quit, the child is till in the middle of perl_destruct(), and a lethal KI LL signal is sent,
aborting any operation the child has happened to execute and brutally killing it.

If your code does not contain any END blocks or DESTROY methods which need to be run during child
server shutdown, or may have these, but it’ s insignificant to execute them, this destruction can be avoided
by setting the PERL_DESTRUCT _LEVEL environment variable to - 1. For example add this setting to the
httpd.conf file:

Per | Set Env PERL_DESTRUCT_LEVEL -1

What constitutes a significant cleanup? Any change of state outside of the current process that would not
be handled by the operating system itself. So committing database transactions and removing the lock on
some resource are significant operations, but closing an ordinary fileisn't.

7.5 |Using apachectl to Control the Server

The Apache distribution comes with a script to control the server. It's called apachect| and it is
installed into the same location as the httpd executable. We will assume for the sake of our examples that
it'sin/usr/l ocal /sbin/httpd_perl/apachectl:

To start httpd_perl:

% /usr/ 1 ocal /sbin/httpd_perl/apachect| start

To stop httpd_perl:

% /usr/ 1 ocal /sbin/httpd_perl/apachect!l stop

144 29 Jan 2004

Controlling and Monitoring the Server 7.6 Safe Code Updates on a Live Production Server

Torestart httpd_perl (if it is running, send SI GHUP; if it is not already running just start it):
% [usr/ | ocal /shin/httpd_perl/apachect| restart
Do agraceful restart by sending a SI GUSRL, or start if not running:
% /usr/ 1 ocal /sbin/httpd_perl/apachect!| graceful
To do aconfiguration test:
% /usr/ | ocal /sbin/httpd_perl/apachect| configtest
Replaceht t pd_per| withhtt pd_docs inthe above callsto control theht t pd_docs server.
There are other optionsfor apachect | , usethe hel p option to seethem all.

It'simportant to remember that apachect | usesthe PID file, which is specified by the Pl DFI LE direc-
tive in httpd.conf. If you delete the PID file by hand while the server is running, apachect | will be
unable to stop or restart the server.

7.6 |Safe Code Updateson a Live Production Server

You have prepared a new version of code, uploaded it into a production server, restarted it and it doesn’t
work. What could be worse than that? Y ou also cannot go back, because you have overwritten the good
working code.

It's quite easy to prevent it, just don’t overwrite the previous working files!

Personally | do all updates on the live server with the following sequence. Assume that the server root
directory is /home/httpd/perl/rel. When I'm about to update the files | create a new directory
/home/httpd/perl/beta, copy the old files from /home/httpd/perl/rel and update it with the new files. Then |
do some last sanity checks (check file permissions are [read+executable], and run per| - c¢ on the new
modules to make sure there no errors in them). When | think I’'m ready | do:

% cd / hore/ htt pd/ perl
%m rel old & nmv beta rel && stop && sleep 3 && restart && err

Let me explain what this does.

Firstly, note that | put al the commands on one line, separated by &&, and only then pressthe Ent er key.
As | am working remotely, this ensures that if | suddenly lose my connection (sadly this happens some-
times) | won't leave the server down if only the st op command squeezed in. && also ensures that if any
command fails, the rest won't be executed. | am using aliases (which | have already defined) to make the
typing easier:

29 Jan 2004 145

7.6 Safe Code Updates on a Live Production Server

% alias | grep apachectl

graceful /usr/local/apache/bin/apachect!| graceful
rehup /usr/local / apache/ sbin/ apachect!| restart
restart /usr/local/apache/bin/apachect!| restart
start /usr/ | ocal / apache/ bi n/ apachect| start
stop /usr/ | ocal / apache/ bi n/ apachect| stop

%alias err
tail -f /usr/local/apache/logs/error_|og

Taking the line apart piece by piece:
m/ rel old &&
back up the working directory to old
mv/ beta rel &&
put the new onein its place
stop &&
stop the server
sleep 3 &&
give it afew seconds to shut down (it might take even longer)

restart &&

restart theserver

err
view of thetail of theerror_log filein order to see that everything is OK

apachect | generates the status messages a little too early (e.g. when you issue apachect| stop it
says the server has been stopped, while in fact it's still running) so don't rely on it, rely on the
error _| og fileinstead.

Also noticethat | user est art and not just st art . | do this because of Apache’s potentially long stop-
ping times (it depends on what you do with it of coursel). If you use st art and Apache hasn't yet
released the port it’s listening to, the start would fail and er r or _| og would tell you that the port isin
use, eg.:

Address already in use: make_sock: could not bind to port 8080

Butif youuser est art, it will wait for the server to quit and then will cleanly restart it.

Now what happens if the new modules are broken? First of al, | see immediately an indication of the
problems reported in the err or _I og file, which I tail -f immediately after a restart command. If
there’'saproblem, | just put everything back asit was before:

146 29 Jan 2004

Controlling and Monitoring the Server 7.7 An Intentional Disabling of Live Scripts

%m rel bad & mv old rel && stop && sleep 3 && restart && err

Usually everything will be fine, and | have had only about 10 seconds of downtime, which is pretty good!

7.7 |JAn Intentional Disabling of Live Scriptg

What happens if you really must take down the server or disable the scripts? This situation might happen
when you need to do some maintenance work on your database server. If you have to take your database
down then any scripts that use it will fail.

If you do nothing, the user will see either the grey An Error has happened message or perhaps a
customized error message if you have added code to trap and customize the errors. See Redirecting Errors
to the Client instead of to the error_log for the latter case.

A much friendlier approach is to confess to your users that you are doing some maintenance work and
plead for patience, promising (keep the promise!) that the service will become fully functiona in X
minutes. There are afew ways to do this:

Thefirst doesn’t require messing with the server. It works when you have to disable a script running under
Apache: : Regi st ry andrelies on the fact that it checks whether the file was modified before using the
cached version. Obviously it won't work under other handlers because these serve the compiled version of
the code and don’t check to see if there was a change in the code on the disk.

So if you want to disable an Apache: : Regi st ry script, prepare alittle script like this:

/ hone/ htt p/ perl/ mai nt enance. pl

#!/usr/bin/perl -Tw

use strict;

use Cd;

ny $g = new C4d;

print $g->header, $g->p(

"Sorry, the service is tenporarily down for nmintenance.
It will be back in ten to fifteen m nutes.

Pl ease, bear with us.

Thank you!");

So if you now have to disable a script for example/ home/ ht t p/ per |/ chat . pl , just do this:

% mv [home/ http/perl/chat.pl /hone/http/perl/chat.pl.orig
%Il n -s /honel/ http/perl/maintenance. pl /home/http/perl/chat. pl

Of course you server configuration should allow symbolic links for this trick to work. Make sure you have
the directive

Opti ons Fol | owSynLi nks

29 Jan 2004 147

7.7 An Intentional Disabling of Live Scripts

inthe<Locat i on> or <Di r ect or y> section of your httpd.conf.

When you're done, it's easy to restore the previous setup. Just do this:

% nmv [hone/ http/perl/chat.pl.orig /hone/http/perl/chat.pl
which overwrites the symbolic link.

Now make sure that the script will have the current timestamp:

% t ouch /hore/ http/perl/chat.p
Apache will automatically detect the change and will use the moved script instead.

The second approach is to change the server configuration and configure a whole directory to be handled
by aMy: : Mai nt enance handler (which you must write). For example if you write something like this:

My/ Mai nt enance. pm

package My:: Mai ntenance;

use strict;

use Apache:: Constants gw : conmon);
sub handl er {

ny $r = shift;

print $r->send_http_header("text/plain");

print qaq{
We apol ogi ze, but this service is tenporarily stopped for
mai ntenance. It will be back inten to fifteen mnutes
Pl ease, bear with us. Thank you

3

return oK

}
1

and put it in a directory that is in the server’'s @ NC, to disable all the scripts in Location / per | you
would replace:

<Location /perl>
Set Handl er perl-script
Per| Handl er My:: Handl er
[sni p]

</ Locat i on>

with

<Location /perl>
Set Handl er perl -script
Per | Handl er My:: Mai nt enance
[sni p]

</ Locati on>

148 29 Jan 2004

Controlling and Monitoring the Server 7.8 SUID Start-up Scripts

Now restart the server. Your users will be happy to go and read |http://slashdot.orgl for ten minutes,
knowing that you are working on a much better version of the service.

If you need to disable alocation handled by some module, the second approach would work just as well.

7.8 |SUID Start-up Scriptg

If you want to allow afew people in your team to start and stop the server you will have to give them the
root password, which is not a good thing to do. The less people know the password, the less problems are
likely to be encountered. But there is an easy solution for this problem available on UNIX platforms. It's
called a setuid executable.

7.8.1 |Introduction to SUID Executableq

The setuid executable has a setuid permissions bit set. This sets the process's effective user 1D to that of
the file upon execution. Y ou perform this setting with the following command:

% chnod u+s fil enane

Y ou probably have used setuid executables before without even knowing about it. For example when you
change your password you execute the passwd utility, which among other things modifies the
letc/passwd file. In order to change this file you need root permissions, the passwd utility has the setuid
bit set, therefore when you execute this utility, its effective ID is the same of the root user ID.

Y ou should avoid using setuid executables as a general practice. The less setuid executables you have the
less likely that someone will find a way to break into your system, by exploiting some bug you didn’t
know about.

When the executable is setuid to root, you have to make sure that it doesn’t have the group and world read
and write permissions. If wetake alook at the passwd utility we will see:

%Ils -1 /usr/bin/passwd
-r-s--x--x 1 root root 12244 Feb 8 00: 20 /usr/bi n/ passwd

Y ou achieve this with the following command:

% chnod 4511 fil enane

The first digit (4) stands for setuid bit, the second digit (5) is a compound of read (4) and executable (1)
permissions for the user, and the third and the fourth digits are setting the executable permissions for the
group and the world.

7.8.2 |Apache Startup SUID Script’s Security|

In our case, we want to allow setuid access only to a specific group of users, who all belong to the same
group. For the sake of our example we will use the group named apache. It's important that users who
aren't root or who don’t belong to the apache group will not be able to execute this script. Therefore we
perform the following commands:

29 Jan 2004 149

http://slashdot.org/

7.8.3 Sample Apache Startup SUID Script

% chgr p apache apachect|
% chnod 4510 apachectl

The execution order isimportant. If you swap the command execution order you will lose the setuid bit.

Now if welook at the file we see:

%Ils -1 apachectl
-r-s--x--- 1 root apache 32 May 13 21:52 apachect]|

Now we are all set... AImost...

When you start Apache, Apache and Perl modules are being loaded, code can be executed. Since al this
happens with root effective ID, any code executed as if the root user was doing that. Y ou should be very
careful because while you didn’t gave anyone the root password, all the users in the apache group have an
indirect root access. Which means that if Apache loads some module or executes some code that is
writable by some of these users, users can plant code that will allow them to gain a shell access to root
account and become areal root.

Of course if you don’t trust your team you shouldn’t use this solution in first place. You can try to check
that al the files Apache loads aren't writable by anyone but root, but there are too many of them, espe-
cialy inthe mod_perl case, where many Perl modules are loaded at the server startup.

By the way, don't let all this setuid stuff to confuse you -- when the parent process is loaded, the children
processes are spawned as non-root processes. This section has presented a way to alow non-root users to
start the server as root user, the rest is exactly the same as if you were executing the script as root in first
place.

7.8.3 |Sample Apache Startup SUID Script]

Now if you are still with us, here is an example of the setuid Apache startup script.

Note the line marked WORKAROUND, which fixes an obscure error when starting mod_perl enabled
Apache by setting the real UID to the effective UID. Without this workaround, a mismatch between the
real and the effective UID causes Perl to croak on the - e switch.

Note that you must be using a version of Perl that recognizes and emulates the suid bits in order for this to
work. This script will do different things depending on whether it is named start _httpd,
stop_httpdorrestart _htt pd. Youcanusesymbolic linksfor this purpose.

sui d_apache_ct|

#! /usr/bin/perl -T

These constants will need to be adjusted.
$PID FILE = '/ home/ ww/ | ogs/ httpd. pid’;
$HTTPD = '/ horme/ ww/ httpd -d /home/ www ;

These prevent taint warnings while running suid

$ENV{ PATH} =" / bi n: /usr/bin’;
$ENV{I FS} =" ;

150 29 Jan 2004

Controlling and Monitoring the Server 7.9 Preparing for Machine Reboot

This sets the real to the effective ID, and prevents
an obscure error when starting apache/ nod_per

$< = $>; # WORKAROUND

$(= $) =0; # set the group to root too

Do different things depending on our name
($name) = $0 =~ nf (["/]+)$];

if ($nane eq 'start_httpd) {
system $HTTPD and die "Unable to start HTTP"
print "HTTP started.\n";
exit O;

}

extract the process id and confirmthat it is numeric
$pid = ‘cat $PID_FILE;

$pid =~ /(\d+)/ or die "PID $pid not nuneric";

$pi d $1;

if ($nane eq 'stop_httpd) {
kill "TERM , $pid or die "Unable to signal HTTP";
print "HTTP stopped.\n";
exit O;

}

if ($name eq 'restart_httpd) {
kill "HUP ,$pid or die "Unable to signal HTTP"
print "HTTP restarted.\n";

exit O;

}

die "Script nust be naned start_httpd, stop_httpd, or restart_httpd.\n";

7.9 |Preparing for Machine Reboot

When you run your own development box, it's okay to start the webserver by hand when you need to. On
aproduction system it is possible that the machine the server is running on will have to be rebooted. When
the reboot is completed, who is going to remember to start the server? It's easy to forget this task, and
what happensif you aren’t around when the machine is rebooted?

After the server installation is complete, it’s important not to forget that you need to put a script to perform
the server startup and shutdown into the standard system location, for example /etc/rc.d under RedHat
Linux, or /etc/init.d/apache under Debian Slink Linux.

This is the directory which contains scripts to start and stop all the other daemons. The directory and file

names vary from one Operating System (OS) to another, and even between different distributions of the
same OS.

29 Jan 2004 151

7.9 Preparing for Machine Reboot

Generally the simplest solution is to copy the apachect | script to your startup directory or create a
symbolic link from the startup directory to the apachect | script. You will find apachect!| in the
same directory as the httpd executable after Apache installation. If you have more than one Apache server
you will need a separate script for each one, and of course you will have to rename them so that they can
co-exist in the same directories.

For example on a RedHat Linux machine with two servers, | have the following setup:

/etc/rc.d/init.d/ httpd_docs
/etc/rc.d/linit.d/ httpd_perl
/etc/rc.d/rc3.d/ S91lhttpd_docs -> ../init.d/ httpd_docs
/etc/rc.d/rc3.d/ S91lhttpd_perl -> ../init.d/ httpd_perl
/etc/rc.d/rc6.d/ Kl6httpd_docs -> ../init.d/ httpd_docs
/etc/rc.d/rc6.d/ Kl6httpd_perl -> ../init.d/ httpd_perl

The scripts themselves reside in the /etc/rc.d/init.d directory. There are symbolic links to these scripts in
other directories. The names are the same as the script names but they have numerical prefixes, which are
used for executing the scriptsin a particular order: the lower numbers are executed earlier.

When the system starts (level 3) we want the Apache to be started when almost all of the services are
running aready, therefore I've used 1. For example if the mod perl enabled Apache issues a
connect _on_i ni t () the SQL server should be started before Apache.

When the system shuts down (level 6), Apache should be stopped as one of the first processes, therefore
I’ve used K16. Again if the server does some cleanup processing during the shutdown event and requires
third party servicesto be running (e.g. SQL server) it should be stopped before these services.

Notice that it's normal for more than one symbolic link to have the same sequence number.

Under RedHat Linux and similar systems, when a machine is booted and its runlevel set to 3 (multiuser +
network), Linux goes into /etc/rc.d/rc3.d/ and executes the scripts the symbolic links point to with the
st art argument. When it sees 1httpd perl, it executes:

/etc/rc.d/init.d/ httpd_perl start

When the machine is shut down, the scripts are executed through links from the /etc/rc.d/rc6.d/ directory.
This time the scripts are called with the st op argument, like this:

/etc/rc.d/init.d/ httpd_perl stop

Most systems have GUI utilities to automate the creation of symbolic links. For example RedHat Linux
includes the cont r ol - panel utility, which amongst other things includes the RunLevel Manager.
(which can be invoked directly as either ntsysv(8) or tksysv(8)). This will help you to create the proper
symbolic links. Of course before you use it, you should put apachect | or similar scripts into the init.d
or equivalent directory. Or you can have a symbolic link to some other location instead.

The simplest approach is to use the chkconfig(8) utility which adds and removes the services for you. The
following example shows how to add an httpd_per| startup script to the system.

152 29 Jan 2004

Controlling and Monitoring the Server 7.9 Preparing for Machine Reboot

First move or copy the file into the directory /etc/rc.d/init.d:

% nv httpd _perl /etc/rc.d/init.d

Now open the script in your favorite editor and add the following lines after the main header of the script:

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: nod_perl enabled Apache Server

So now the beginning of the script looks like:

#1/bin/sh

#

Apache control script designed to allow an easy comrand |ine
interface to controlling Apache. Witten by Marc Sl enko,

1997/ 08/ 23

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: nmod_perl enabl ed Apache Server

H* H R

#
The exit codes returned are:
#

Adjust theline:

chkconfig: 2345 91 16

to your needs. The above setting says to says that the script should be started in levels 2, 3, 4, and 5, that
its start priority should be 91, and that its stop priority should be 16.

Now all you have to do isto ask chkconf i g to configure the startup scripts. Before we do that let’ s look
at what we have:

% find /etc/rc.d | grep httpd_perl

/etc/rc.d/init.d/ httpd_perl

Which means that we only have the startup script itself. Now we execute:

% chkconfig --add httpd_perl

and see what has changed:

29 Jan 2004 153

7.10 Monitoring the Server. A watchdog.

%find /etc/rc.d | grep httpd_perl
/etc/rc.d/linit.d/ httpd_perl
/etc/rc.d/rc0.d/ Kl6httpd_perl
/etc/rc.d/rcl. d/ Kl6httpd_perl
/etc/rc.d/rc2.d/ S91htt pd_perl
/etc/rc.d/rc3.d/ S91htt pd_perl
/etc/rc.d/rc4.d/ S91htt pd_perl

/etc/rc.d/rch.d/ S91htt pd_perl
/etc/rc.d/rc6.d/ Kl6httpd_perl

Asyou can see chkconf i g created al the symbolic links for us, using the startup and shutdown priori-
ties as specified in the line:

chkconfig: 2345 91 16

If for some reason you want to remove the service from the startup scripts, al you have to do is to tell
chkconfi g to remove thelinks:

% chkconfig --del httpd_perl
Now if we look at the files under the directory /etc/rc.d/ we see again only the script itself.
%find /etc/rc.d | grep httpd_perl

/etc/rc.d/linit.d/ httpd_perl

Of course you may keep the startup script in any other directory as long as you can link to it. For example
if you want to keep this file with all the Apache binaries in /usr/local/apache/bin, all you have to do is to
provide a symbolic link to thisfile:

%I n -s /usr/local/apache/bin/apachectl /etc/rc.d/init.d/ httpd_perl
and then:

% chkconfig --add httpd_perl

Note that in case of using symlinks the link name in /etc/rc.d/init.d is what matters and not the name of the
script the link points to.

7.10 Monitoring the Server. A watchdog.

With mod_perl many things can happen to your server. It is possible that the server might die when you
are not around. As with any other critical service you need to run some kind of watchdog.

One simple solution isto use a dightly modified apachect | script, which I’ ve named apache.watchdog.
Cdl it from the crontab every 30 minutes -- or even every minute -- to make sure the server is up al the
time.

154 29 Jan 2004

Controlling and Monitoring the Server 7.10 Monitoring the Server. A watchdog.

The crontab entry for 30 minutes intervals:

0,30 * * * * [path/to/the/apache. wat chdog >/dev/null 2>&1

The script:
#!/ bi n/ sh

this script is a watchdog to see whether the server is online
1t tries to restart the server, and if it’'s
down it sends an enmil alert to admin

admn’s enail
EMAI L=webrast er @xanpl e. com

the path to your PID file
PI DFI LE=/ usr/ | ocal / var/ httpd_perl/run/httpd. pid

the path to your httpd binary, including options if necessary
HTTPD=/ usr/ 1 ocal / sbin/ httpd_perl/httpd_perl

check for pidfile
if [-f $PIDFILE] ; then
Pl D=' cat $PI DFI LE'

if kill -0 $PID;, then
STATUS="httpd (pid $PI D) running"
RUNNI NG=1
el se
STATUS="httpd (pid $PI D?) not running"
RUNNI NG=0
fi
el se
STATUS="httpd (no pid file) not running"
RUNNI NG=0
fi

if [SRUNNING -eq 0]; then
echo "$0 $ARG httpd not running, trying to start"
if SHTTPD ; then
echo "$0 $ARG httpd started"
mail $EMAIL -s "$0 $ARG httpd started" > /dev/null 2>&1
el se
echo "$0 $ARG httpd could not be started"
mail $EMAIL -s \
"$0 $ARG httpd could not be started" > /dev/null 2>&1

fi
fi

Another approach, probably even more practical, is to use the cool LWP Perl package to test the server by
trying to fetch some document (script) served by the server. Why is it more practical? Because while the
server can be up as a process, it can be stuck and not working. Failing to get the document will trigger
restart, and "probably"” the problem will go away.

29 Jan 2004 155

7.10 Monitoring the Server. A watchdog.

Like before we set a cronjob to call this script every few minutes to fetch some very light script. The best
thing of course isto call it every minute. Why so often? If your server starts to spin and trash your disk
space with multiple error messages filling the error_log, in five minutes you might run out of free disk
space which might bring your system to its knees. Chances are that no other child will be able to serve
reguests, since the system will be too busy writing to the error_log file. Think big--if you are running a
heavy service (which is very fast since you are running under mod_perl) adding one more request every
minute will not be felt by the server at all.

So we end up with a crontab entry like this:

* * * % * [path/to/the/watchdog. pl >/dev/null 2>&1

And the watchdog itself:
#!/usr/bin/perl -wrl

untai nt
SENV{’' PATH } = '/bin:/usr/bin;
delete @GNV{' I FS', 'CDPATH , 'ENV', 'BASH ENV };

use strict;

use di agnosti cs;

use URI:: URL;

use LWP:: Medi aTypes gw(nmedi a_suffi x);

nmy $VERSION = ' 0.01’;
use vars gw($ua $proxy);
$proxy = '";

requi re LWP:: User Agent ;
use HITP: : St at us;

#it#### Confi g ########H

ny $test_script_url = http://ww.exanpl e.com 81/perl/test.pl’;

ny $nonitor_enail "root @ocal host’ ;

ny $restart_command "lusr/local/sbin/httpd_perl/apachect|l restart’;
ny $mai |l _program "lusr/lib/sendmail -t -n’;

R e e e e d s

$ua = new LWP:: User Agent;

$ua- >agent (" $0/ wat chdog " . $ua- >agent);

Uncoment the proxy if you access a machine from behind a firewall
$proxy = "http://ww proxy. cont;

$ua- >proxy(' http', $proxy) if $proxy;

1f it returns "1 it nmeans we are alive
exit 1 if checkurl ($test_script_url);

Houston, we have a problem
The server seenms to be down, try to restart it.
ny $status = system $restart_conmmand;

ny $nessage = ($status == 0)
? "Server was down and successfully restarted!"

156 29 Jan 2004

Controlling and Monitoring the Server 7.11 Running a Server in Single Process Mode

"Server is dowmn. Can't restart."

ny $subject = ($status == 0)
? "Attention! Webserver restarted"
"Attention! Webserver is down. can’'t restart"

emai|l the nonitoring person

ny $to = $nonitor_emil;

ny $from = $nonitor_email

send_mai | ($from $t o, $subj ect, $nmessage) ;

input: URL to check

output: 1 for success, 0 for failure
HAHHHBRHHBRHH BB HHHRH R

sub checkurl {

ny ($url) = @;

Fetch docunent
ny $res = $ua->request (HTTP: : Request - >new(GET => $url))

Check the result status
return 1 if is_success($res->code);

failed
return O;
} # end of sub checkurl

send enmi |l about the problem
RHBHHHHBHBHHBHBHBHHBHBH
sub send_mmi | {

ny($from $t o, $subj ect, $nessagebody) = @;

open MAIL, "|$mail _progrant
or die "Can’'t open a pipe to a $mail_program:$!'\n";

print MAIL <<_ END OF_ MAIL__;
To: $to
From $from
Subj ect: $subj ect
$nmessagebody

__END OF MAIL__

cl ose MAIL;
}

7.11 |Running a Server in Single Process M ode

Often while developing new code, you will want to run the server in single process mode. See Sometimes
it works Sometimes it does Not and Names collisions with Modules and libs. Running in single process
mode inhibits the server from "daemonizing", and this allows you to run it under the control of a debugger
more easily.

29 Jan 2004 157

7.12 Starting a Personal Server for Each Developer

% /usr/ | ocal /sbin/httpd_perl/httpd_perl -X

When you use the - X switch the server will run in the foreground of the shell, so you can kill it with
Ctrl-C.

Note that in - X (single-process) mode the server will run very slowly when fetching images.
Note for Netscape users:

If you use Netscape while your server is running in single-process mode, HTTP's KeepAl i ve feature
gets in the way. Netscape tries to open multiple connections and keep them open. Because there is only
one server process listening, each connection has to time out before the next succeeds. Turn off
KeepAl i ve in httpd.conf to avoid this effect while developing. If you use the image size parameters,
Netscape will be able to render the page without the images so you can press the browser’s STOP button
after afew seconds.

In addition you should know that when running with - X you will not see the control messages that the
parent server normally writes to the error_log ("server started”, "server stopped” etc). Sincehtt pd - X
causes the server to handle all requests itself, without forking any children, there is no controlling parent to
write the status messages.

7.12 |Starting a Personal Server for Each Developer

If you are the only developer working on the specific server:port you have no problems, since you have
complete control over the server. However, often you will have a group of developers who need to
develop mod_perl scripts and modules concurrently. This means that each developer will want to have
control over the server - to kill it, to run it in single server mode, to restart it, etc., as well as having control
over the location of the log files, configuration settings like MaxCl i ent s, and so on.

Y ou can work around this problem by preparing afew httpd.conf files and forcing each devel oper to use

httpd_perl -f /path/to/httpd.conf

but | approach it in a different way. | use the - Dpar anet er startup option of the server. | cal my
version of the server

% http_perl -Dstas

In httpd.conf | write;

Personal devel opment Server for stas

stas uses the server running on port 8000

<|fDefine stas>

Port 8000

PidFile /usr/local/var/httpd_perl/run/httpd.pid.stas
ErrorLog /usr/local/var/httpd_perl/logs/error_|og.stas
Ti meout 300

KeepAlive On

M nSpar eServers 2

MaxSpar eServers 2

158 29 Jan 2004

Controlling and Monitoring the Server 7.12 Starting a Personal Server for Each Developer

StartServers 1
MaxClients 3
MaxRequest sPer Chi | d 15
</|fDefine>

Personal devel opnent Server for userfoo

userfoo uses the server running on port 8001

<| f Define userfoo>

Port 8001

PidFile /usr/local/var/httpd_perl/run/httpd. pid. userfoo
ErrorLog /usr/local/var/httpd_perl/|ogs/error_|og.userfoo
Ti meout 300

KeepAlive Of

M nSpareServers 1

MaxSpar eServers 2

StartServers 1

MaxClients 5

MaxRequest sPer Child 0

</| f Define>

With this technique we have achieved full control over start/stop, number of children, a separate error log
file, and port selection for each server. This saves Stas from getting called every few minutes by Eric:
"Stas, I'm going to restart the server".

In the above technique, you need to discover the PID of your parent htt pd_per| process, which is
written in /usr/ Il ocal /var/ httpd_perl/run/httpd. pi d. stas (and the same for the user
eric). To make things even easier we change the apachectl script to do the work for us. We make a copy
for each developer called apachectl.user name and we change two lines in each script:

Pl DFI LE=/ usr /| ocal / var/ httpd_per|/run/ httpd. pi d. user nanme
HTTPD="/usr/ | ocal / sbin/ httpd_perl/httpd_perl -Dusernange’

So for the user stas we prepare a startup script called apachectl.stas and we change these two lines in the
standard apachect! script as it comes unmodified from Apache distribution.

Pl DFI LE=/ usr /| ocal / var/ htt pd_perl|/run/httpd. pi d. stas
HTTPD="/usr/ 1 ocal / sbin/ httpd_perl/httpd_perl| -Dstas’

So now when user stas wants to stop the server he will execute:
apachect!| .stas stop

And to start:
apachect! .stas start

Certainly therest of theapachect | arguments apply as before.

Y ou might think about having only one apachect | and know who is calling by checking the UID, but
since you have to be root to start the server it is not possible, unless you make the setuid bit on this script,
as we've explained in the beginning of this chapter. If you do so, you can have a single apachect |
script for al developers, after you modify it to automatically find out the UID of the user, who executes
the script and set the right paths.

29 Jan 2004 159

7.13 Wrapper to Emulate the Server Perl Environment

The last thing is to provide developers with an option to run in single process mode by:

/usr/local/sbin/httpd_perl/httpd_perl -Dstas -X

In addition to making life easier, we decided to use relative links everywhere in the static documents,
including the callsto CGls. You may ask how using relative links will get to the right server port. It's very
simple, weusenod_rewite.

To use mod_rewrite you have to configure your httpd_docs server with - - enabl e- nodul e=rewrite
and recompile, or use DSO and load the module in httpd.conf. In the httpd.conf of our htt pd_docs
server we have the following code:

Rewr i t eEngi ne on

stas’s server

port = 8000

RewiteCond % REQUEST _URI} ~/(perl|cgi-perl)

RewriteCond 9% REMOTE_ADDR} 123. 34.45.56

RewriteRule ~(.*) http://exanpl e. com 8000/ $1 [P, L]

eric’'s server

port = 8001

RewiteCond % REQUEST URI} ~/(perl|cgi-perl)

RewriteCond 9% REMOTE_ADDR} 123. 34.45.57

RewriteRul e "(.*) http://exanpl e.com 8001/ $1 [P, L]

all the rest
RewiteCond % REQUEST URI} ~/ (perl|cgi-perl)
RewiteRule ~(.*) http://exanpl e.com 81/ $1 [P]

The IP addresses are the addresses of the developer desktop machines (where they are running their web
browsers). So if an html file includes a relaive URI /perl/testpl or even
[http: //mww.example.comVperl/test.pl, clicking on the link will be internaly proxied to
[http://www.example.com:8000/perl/test.pl| if the click has been made at the user stas's desktop machine,
or to fhttp://www.example.com: 8001/per|/test.pl| for a request generated from the user eric’'s machine, per
our above URI rewrite example.

Another possibility isto use REMOTE USER variable if al the developers are forced to authenticate them-
selves before they can access the server. If you do, you will have to change the Rewr i t eRul esto match
REMOTE _USER in the above example.

We wish to stress again, that the above setup will work only with relative URIs in the HTML code. If you
choose to generate full URIs including non-80 port the requests originated from this HTML code will
bypass the light server listening to the default port 80, and go directly to the server:port of the full URI.

7.13 Wrapper to Emulate the Server Perl Environment

Often you will start off debugging your script by running it from your favorite shell program. Sometimes
you encounter a very weird situation when the script runs from the shell but dies when processed as a CGI
script by a web-server. The real problem often lies in the difference between the environment variables

160 29 Jan 2004

http://www.example.com/perl/test.pl
http://www.example.com:8000/perl/test.pl
http://www.example.com:8001/perl/test.pl

Controlling and Monitoring the Server 7.13 Wrapper to Emulate the Server Perl Environment

that is used by your web-server and the ones used by your shell program.

For example you may have a set of non-standard Perl directories, used for local Perl modules. Y ou haveto
tell the Perl interpreter where these directories are. If you don’t want to modify @ NC in all scripts and
modules, you can use a PERL5LI B environment variable, to tell Perl where the directories are. But then
you might forget to alter the mod_perl startup script to correct @ NC there as well. And if you forget this,
you can be quite puzzled why the scripts are running from the shell program, but not from the web.

Of course the error_log will help as well to find out what the problem is, but there can be other obscure
cases, where you do something different at the shell program and your scripts refuse to run under the
web-server.

Another example is when you have more than one version of Perl installed. You might cal the first
version of the Perl executable in the first script’s line (the shebang line), but to have the web-server
compiled with another Perl version. Since mod_perl ignores the path to the Perl executable at the first line
of the script, you can get quite confused the code won't do the same when processed as request, compared
to be executed from the command line. it will take a while before you realize that you test the scripts from
the shell program using the wrong Perl version.

The best debugging approach is to write a wrapper that emulates the exact environment of the server, first
deleting environment variables like PERL5LI B and then calling the same perl binary that it is being used
by the server. Next, set the environment identical to the server’s by copying the Perl run directives from
the server startup and configuration files or even require()’ing the startup file, if it doesn’t include
Apache: : modules stuff, unavailable under shell. Thiswill also alow you to remove completely the first
line of the script, since mod_perl doesn’t need it anyway and the wrapper knows how to call the script.

Here is an example of such a script. Note that we force the use of - Twwhen we call the real script. Since
when debugging we want to make sure that the code is working when the taint mode is on, and we want to
see al the warnings, to help Perl help us have a better code.

We have aso added the ability to pass parameters, which will not happen when you will issue a request to
script, but it can be helpful at times.

#!/usr/bin/perl -w
This is a wapper exanple

It sinulates the web server environnent by setting @NC and ot her
stuff, so what will run under this wapper will run under Wb and
vice versa.

#
Usage: wrap.pl sone_cgi.p
#
B

EG N {
we want to nmake a conplete emulation, so we nust reset all the
paths and add the standard Perl |ibs
@NC =
gw(/ usr/lib/perl5/5.00503/i386-1inux
[usr/lib/perl5/5.00503
lusr/libl/lperl5/site_perl/5.005/i386-Iinux

29 Jan 2004 161

7.14 Server Maintenance Chores

/usr/libl/perl5/site_perl/5.005

);
}

use strict;
use Fil e:: Basenane;

process the passed parans
ny $cgi = shift || ;
ny $parans = (@GARGV) ? join(" ", @ARGY)

die "Usage:\n\t$0 sone_cgi.pl\n" unless $cgi;

Set the environnent
my $PERLSLIB = join ":", @NC

if the path includes the directory
we extract it and chdir there
if (index($cgi,’/’) >=0) {
ny $dirnane = dirnanme($cgi)
chdir $dirnane or die "Can’t chdir to $dirnanme: $!' \n";

~ m $dirnane/ (. *)|;
$1;

$cg
$cg
}

run the cgi fromthe script’s directory
Note that we set Warning and Taint nodes ON!'!
system qqg{/usr/bin/perl -1$PERL5LIB -Tw $cgi $parans};

7.14 |Server Maintenance Choreg

It's not enough to have your server and service up and running. You have to maintain the server even
when everything seems to be fine. This includes security auditing, keeping an eye on the size of remaining
unused disk space, available RAM, the load of the system, etc.

If you forget about these chores one day (sooner or later) your system will crash either because it has run
out of free disk space, all the available CPU has been used and system has started heavily to swap or
someone has broken in. Unfortunately the scope of this guide is not covering the latter, since it will take
more than one book to profoundly cover thisissue, but the rest of the thing are quite easy to prevent if you
follow our advices.

Certainly, your particular system might have maintenance chores that aren’t covered here, but at least you
will be alerted that these chores are real and should be taken care of .

7.14.1 Handling Log Filed

There are two issues to solve with log files. First they should be rotated and compressed on the constant
basis, since they tend to use big parts of the disk space over time. Second these should be monitored for
possible sudden explosive growth rates, when something goes astray in your code running at the mod_perl
server and the process starts to log thousands of error messages in second without stopping, until all the

162 29 Jan 2004

Controlling and Monitoring the Server 7.14.1 Handling Log Files

disk space is used, and the server cannot work anymore.

7.14.1.1 |L og Rotation|

Thefirst issue is solved by having a process run by crontab at certain times (usually off hours, if this term
is still valid in the Internet era) and rotate the logs. The log rotation includes the current log file renaming,
server restart (which creates a fresh new log file), and renamed file compression and/or moving it on a
different disk.

For example if we want to rotate the access |og file we could do:
% mv access_| og access_| og. r enaned
% apachect| restart
% sleep 5; # allow all children to conplete requests and | oggi ng

nowit’'s safe to use access_| og. renaned
% nmv access_| og. renanmed /sone/ di rect ory/ on/ anot her/ di sk

Thisisthe script that we run from the crontab to rotate the log files:
#! /usr/ | ocal / bin/perl -Tw
This script does log rotation. Called fromcrontab.

use strict;
$ENV{ PATH} = / bi n: /usr/bin’;

configuration
nmy @ogfiles = gm access_l og error_| og);

umask O;

ny $server = "httpd_perl";

ny $logs dir = "/usr/local/var/$server/| ogs";

nmy $restart_conmmand = "/usr/local /sbin/ $server/apachect| restart";
ny $gzi p_exec = "/usr/bin/gzip";

ny ($sec, $m n, $hour, $nday, $non, $year) = local ti ne(tine);

ny $tinme = sprintf "99.4d. %9. 2d. %9. 2d- %0. 2d. %©. 2d. %©. 2d",

$year +1900, ++$non, $nday, $hour, $m n, $sec;
$N o= "UStine";

renanme log files
chdir $logs_dir;
@\RGV = @ogfiles;
while (<>) {

cl ose ARGV;
}

now restart the server so the logs will be restarted
system $restart_conmand;

allow all children to conplete requests and | oggi ng
sl eep 5;

29 Jan 2004 163

7.14.1 Handling Log Files

conpress log files
foreach (@ogfiles) {

system "$gzi p_exec $_. $tine";
}

Note: Setting $"1 sets the in-place edit flag to a dot followed by the time. We copy the names of the
logfiles into @GARGV, and open each in turn and immediately close them without doing any changes; but
because the in-place edit flag is set they are effectively renamed.

Asyou see the rotated files will include the date and the time in their filenames.

Here is a more generic set of scripts for log rotation. Cron job fires off setuid script called log-roller that
lookslikethis:

#!/usr/bin/perl -Tw
use strict;
use Fil e:: Basenane;

$ENV{ PATH} = "/usr/uchb:/bin:/usr/bin";
ny $ROOT = "/ WAV apache"; # nanes are relative to this

ny $CONF = "$ROOT/ conf/httpd.conf"; # master conf
ny SMDNIGHT = "M DNI GHT"; # nane of programin each |ogdir

ny ($user_id, $group_id, $pidfile); # will be set during parse of conf
die "not running as root" if $>

chdir $ROOT or die "Cannot chdir $ROOT: $!";

my % dni ght's
open CONF, "<$CONF" or die "Cannot open $CONF: $!"
whil e (<CONF>) {
if (/rUser (\w¥)/i) {
$user _id = get pwnan($1)
next ;
}
if (/AGoup (\w+)/i) {
$group_id = getgrnam $1);
next ;
}
if (/"PidFile (.*)/i) {
$pidfile = $1
next ;
}
next unless /"ErrorLog (.*)/i;
ny $midnight = (dirname $1)."/$M DNl GHT";
next unl ess -x $m dni ght;
$mi dni ght s{ $ni dni ght } ++
}
cl ose CONF

die "mssing User definition" unless defined $user_id;

die "missing Goup definition" unless defined $group_id;
die "mssing PidFile definition" unless defined $pidfile;

164 29 Jan 2004

Controlling and Monitoring the Server 7.14.1 Handling Log Files

open PID, $pidfile or die "Cannot open $pidfile: $!"

<PID> =~ /(\d+)/;

ny $httpd pid = $1;

cl ose PI D

die "mssing pid definition" unless defined $httpd_pid and $httpd_pid;
kill 0, $httpd_pid or die "cannot find pid $httpd_pid: $'";

for (sort keys % dni ghts) {
defined(nmy $pid = fork) or die "cannot fork: $!"
if ($pid) {
parent:
waitpid $pid, O;
} else {
ny $dir dirname $_;
($(,9)) ($group_id, $group_i d)
(%<, $>) (Suser _i d, $Suser _i d)
chdir $dir or die "cannot chdir $dir: $!'";
exec "./$M DNl GHT";
di e "cannot exec $M DNI GHT: $!'";
}
}

kill 1, $httpd_pid or die "Cannot SIGHUP $httpd_pid: $'*";

And then individual M DNI GHT scripts can look like this:

#! /usr/bin/perl -Tw
use strict;

die "bad guy" unl ess getpwii d($<) =~ /~(root| nobody) $/;
my @QOGFI LES = gw(access_|l og error_Ilog);
umask O;
$AM =" tie;
OARGV = @Q.OGFI LES
while (<>) {
cl ose ARGV,
}

Can you spot the security holes? Take your time... This code shouldn’t be used in hostile situations.

7.14.1.2 [Non-Scheduled Emer gency L og Rotation|

As we have mentioned before, there are times when the web server goes wild and starts to log lots of
messages to the error_log file non-stop. If no one monitors this, it possible that in a few minutes all the
free disk spaces will be filled and no process will be able to work normally. When this happens, the 1/0
the faulty server causesis so heavy that its sibling processes cannot serve requests.

Generally this not the case, but a few people have reported to encounter this problem. If you are one of
these people, you should run the monitoring program that checks the log file size and if it notices that the
file has grown too large, it should attempt to restart the server and probably trim the log file.

29 Jan 2004 165

7.15 Swapping Prevention

When we have used a quite old mod_perl version, sometimes we have had bursts of an error Callback
called exit showing up in our error_log. Thefile could grow to 300 Mbytesin afew minutes.

We will show you is an example of the script that should be executed from the crontab, to handle the situa-
tions like this. The cron job should run every few minutes or even every minute, since if you experience
this problem you know that log files fills up very fast. The example script will rotate when the error_log
will grow over 100K. Note that this script is useful when you have the normal scheduled log rotation facil-
ity working, remember that this one is an emergency solver and not to be used for routine log rotation.

emer gency_rotate. sh

#!/ bi n/ sh
S='Is -s /usr/local/apache/logs/error_log | awk '{print $1}'°
if ["$S" -gt 100000] ; then

mv /usr/local /apache/l ogs/error_log /usr/local /apache/l ogs/error_log.old
/etc/rc.d/init.d/ httpd restart
date | /bin/mail -s "error_log $S kB on inx" adm n@xanpl e. com

f

Of course you could write a more advanced script, using the timestamps and other whistles. This example
comes to illustrate how to solve the problem in question.

Another solution is to use an out of box tools that are written for this purpose. The daenont ool s
package (ftp://koobera.math.uic.edu/www/daemontools.ntml) includes a utility called mul ti | og. This
utility saves stdin stream to one or more log files. It optionally timestamps each line and, for each log,
includes or excludes lines matching specified patterns. It automatically rotates logs to limit the amount of
disk space used. If the disk fills up, it pauses and tries again, without losing any data.

The obvious caveat is that it doesn't restart the server, so while it tries to solve the log file handling
problem it doesn’t handle the originator of the problem. But since the I/O of the log writing process
Apache process will be quite heavy, the rest of the servers will work very slowly if at all, and a normal
watchdog should detect this abnormal situation and restart the Apache server.

7.15 |Swapping Prevention

Before | delve into swapping process details, let's refresh our knowledge of memory components and
memory management

The computer memory is called RAM, which stands for Random Access Memory. Reading and writing to
RAM is, by a few orders, faster than doing the same operations on a hard disk, the former uses
non-movable memory cells, while the latter uses rotating magnetic media.

On most operating systems swap memory is used as an extension for RAM and not as a duplication of it.
So if your OSis one of those, if you have 128MB of RAM and 256MB swap partition, you have atotal of
384MB of memory available. You should never count the extra memory when you decide on the
maximum number of processesto be run, and I will show why in the moment.

166 29 Jan 2004

ftp://koobera.math.uic.edu/www/daemontools.html

Controlling and Monitoring the Server 7.15 Swapping Prevention

The swapping memory can be built of a number of hard disk partitions and swap files formatted to be used
as swap memory. When you need more swap memory you can always extend it on demand as long as you
have some free disk space (for more information see the mkswapand swaponmanpages).

System memory is quantified in units called memory pages. Usually the size of a memory page is between
1KB and 8KB. So if you have 256MB of RAM installed on your machine and the page size is 4KB your
system has 64,000 main memory pages to work with and these pages are fast. If you have 256MB swap
partition the system can use yet another 64,000 memory pages, but they are much slower.

When the system is started all memory pages are available for use by the programs (processes).

Unless the program is realy small, the process running this program uses only a few segments of the
program, each segment mapped onto its own memory page. Therefore only a few memory pages are
required to be loaded into the memory.

When the process needs an additional program’s segment to be loaded into the memory, it asks the system
whether the page containing this segment is already loaded in the memory. If the page is not found--an
event know as a pagefault occurs, which requires the system to allocate a free memory page, go to the
disk, read and load the requested program’ s segment into the allocated memory page.

If a process needs to bring a new page into physical memory and there are no free physical pages avail-
able, the operating system must make room for this page by discarding another page from physical
memory.

If the page to be discarded from physical memory came from an image or data file and has not been
written to then the page does not need to be saved. Instead it can be discarded and if the process needs that
page again it can be brought back into memory from the image or datafile.

However, if the page has been modified, the operating system must preserve the contents of that page so
that it can be accessed at a later time. This type of page is known as a dirty pageand when it is removed
from memory it is saved in a specia sort of file called the swap file. This processis referred to as a swap
ping out

Accesses to the swap file are very long relative to the speed of the processor and physical memory and the
operating system must juggle the need to write pages to disk with the need to retain them in memory to be
used again.

In order to improve the swapping out process, to decrease the possibility that the page that has just been
swapped out, will be needed at the next moment, the LRU (least recently used) or a similar algorithm is
used.

To summarize the two swapping scenarios, read-only pages discarding incurs no overhead in contrast with
the discarding scenario of the data pages that have been written to, since in the latter case the pages have
to be written to a swap partition located on the slow disk. Therefore your machine's overall performance
will be much better if there will be less memory pages that can become dirty.

29 Jan 2004 167

7.15 Swapping Prevention

But the problem is, Perl is alanguage with no strong data types, which means that both the program code
and the program data are seen as a data pages by OS since both mapped to the same memory pages. There-
fore abig chunk of your Perl code becomes dirty when its variables are modified and when the pages need
to be discarded they have to be written to the swap partition.

This leads us to two important conclusions about swapping and Perl.

® Running your system when there is no free main memory available hinders performance, because
processes memory pages should be discarded and then reread from disk again and again.

® Since a mgority of the running code is a Perl code, in addition to the overhead of reading the previ-
ously discarded pagesin, the overhead of saving the dirty pages to the swap partition is occurring.

When the system has to swap memory pages in and out, the system slows down, not serving the processes
as fast as before. This leads to an accumulation of processes waiting for their turn to run, which further
causes processing demands to go up, which in turn slows down the system even more as more memory is
required. This ever worsening spiral will lead the machine to halt, unless the resource demand suddenly
drops down and allows the processes to catch up with their tasks and go back to norma memory usage.

In addition it's important to know that for a better performance, most programs, particularly programs
written in Perl, on most modern OSs don’'t return memory pages while they are running. If some of the
memory gets freed it’s reused when needed by the process, without creating the additional overhead of
asking the system to allocate new memory pages. That’s why you will observe that Perl programs grow in
size as they run and almost never shrink.

When the process quits it returns its memory pages to the pool of freely available pages for other
processes to use.

This scenario is certainly educating, and it should be now obvious that your system that runs the web
server should never swap. It's absolutely normal for your desktop to start swapping. You will seeit imme-
diately since things will slow down and sometimes the system will freeze for a short periods. But as I've
just mentioned, you can stop starting new programs and can quit some, thus allowing the system to catch
up with the load and come back to use the RAM.

In the case of the web server you have much less control since it’s users who load your machine by issuing
reguests to your server. Therefore you should configure the server, so that the maximum number of possi-
ble processes will be small enough using the MaxC i ent s directive (For the technique for choosing the
right Maxd i ent s refer to the section ' Choosing MaxClients'). This will ensure that at peak hours the
system won't swap. Remember that swap space is an emergency pool, not a resource to be used routinely.
If you are low on memory and you badly need it, buy it or reduce the number of processes to prevent

swapping.

However sometimes, due to the faulty code, some process might start spinning in an unconstrained loop,
consuming all the available RAM and starting to heavily use swap memory. In such a situation it helps
when you have a big emergency pool (i.e. lots of swap memory). But you have to resolve this problem as
soon as possible since this pool won't last for along time. In the meanwhile the Apache: : Resour ce
module can be handy.

168 29 Jan 2004

Controlling and Monitoring the Server 7.16 Preventing mod_perl Processes From Going Wild

For swapping monitoring techniques see the section 'Apache::VMonitor -- Visua System and Apache
Server Monitor’.

7.16 |Preventing mod perl Processes From Going Wild

Sometimes people report that they had a problem with their code running under mod_perl that has caused
al the RAM or all the disk to be used. The following tips should help you prevent these problems, before
if at al they hit you.

7.16.1 |All RAM Consumed

Sometimes calling an undefined subroutine in a module can cause atight loop that consumes all the avail-
able memory. Here is a way to catch such errors. Define an UNI VERSAL : : AUTOLQAD subroutine in
your startup.pl, or in a <Perl></Perl> section in your httpd.conf file:

sub UNI VERSAL: : AUTCLOAD {

ny $class = shift;

warn "$class can’t \ $UNI VERSAL: : AUTOLOAD=$UNI VERSAL: : AUTOLOAD! \ n";
}

You can either put it in your startup.pl, or in a<Per | ></ Per | > section in your httpd.conf file. | do the
latter. Putting it in all your mod_perl modules would be redundant (and might give you compile-time
errors).

This will produce a nice error in error_log, giving the line number of the call and the name of the unde-
fined subroutine.

7.17 IMaintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

7.18 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 169

8 mod_perl Advocacy

8 mod_perl Advocacy

170 29 Jan 2004

mod_perl Advocacy 8.1 Description

8.1 |Description|

Having a hard time getting mod_perl into your organization? We have collected some arguments you can
use to convince your boss why the organization wants mod_perl.

Y ou can contact the mod_perl advocacy list if you have any more questions, or good arguments you have
used (any success-stories are also welcome to the docs-dev list).

Also see|Popular Perl Complaints and Mythd

8.2 [Thoughts about scalability and flexibility

Y our need for scalability and flexibility depends on what you need from your web site. If you only want a
simple guest book or database gateway with no feature headroom, you can get away with any
EASY_AND_FAST_TO_DEVELOP_TOOL (Exchange, MSIIS, Lotus Notes, etc).

Experience shows that you will soon want more functionality, at which point you’'ll discover the limita
tions of these "easy" tools. Gradually, your boss will ask for increasing functionality and at some point
you'll realize that the tool lacks flexibility and/or scalability. Then your boss will either buy another
EASY_AND_FAST TO DEVELOP WITH TOOLS and repeat the process (with different unforseen
problems), or you'll start investing time in learning how to use a powerful, flexible tool to make the
long-term development cycle easier.

If you and your company are serious about delivering flexible Internet functionality, do your homework.
Then urge your boss to invest a little extra time and resources in choosing the right tool for the job. The
extra quality and manageability of your site along with your ability to deliver new and improved function-
ality of high quality and in good time will prove the superiority of using solid flexible tools.

8.3 [The boss, the developer and advocacy

Each developer has a boss who participates in the decision-making process. Remember that the boss
considers input from sales people, developers, the media and associates before handing down large deci-
sions. Of course, results count! A sales brochure makes very little impact compared to a working demon-
stration, and demonstrations of company-specific and devel oper-specific results count for alot!

Personally, when | discovered mod_perl | did alot of testing and coding at home and at work. Once | had
a working heavy application, | came to my boss with two URLS - one for the plain CGI server and the
other for the mod_perl-enabled server. It took about 30 secs for my boss to say: ‘Go with it'. Of course
since then | have had to provide all the support for other developers, which iswhy | took timeto learnitin
first place (and why this guide was created!).

Chances are that if you've done your homework, learnt the tools and can deliver results, you'll have a
successful project. If you convince your boss to try atool that you don’t know very well, your results may
suffer. If your boss follows your development process closely and sees that your progress is much worse
than expected, you might be told to "forget it" and mod_perl might not get a second chance.

29 Jan 2004 1711

8.4 A summary of perl/CGI discussion at slashdot.org

Advocacy isagreat thing for the open-source software movement, but it's best done quietly until you have
confidence that you can show productivity. If you can demonstrate to your boss a heavy CGI which is
running much faster under mod_perl, that may be a strong argument for further evaluation. Y our company
may even sponsor a portion of your learning process.

Learn the technology by working on sample projects. Learn how to support yourself and learn how to get
support from the community; then advocate your ideas to your boss. Then you'll have the knowledge;
your company will have the benefit; and mod_perl will have the reputation it deserves.

8.4 |A summary of perl/CGI discussion at lashdot.org

WEell, there was a nice discussion of merits of Perl in CGI world. | took the time to summarize this thread,
so hereiswhat I’ ve got:

Perl Domination in CGI Programming?http://slashdot.org/askslashdot/99/10/20/1246241.shtml|

172

Perl is cool and fun to code with.
Perl is very fast to develop with.
Perl is even faster to develop with if you know what CPAN is.)

Math intensive code and other stuff which is faster in C/C++, can be plugged into Perl with
XS/SWIG and may be used transparently by Perl programmers.

Most CGI applications do text processing, at which Perl excels
Forking and loading (unless the code is shared) of C/C++ CGI programs produces an overhead.

Except for Intranets, bandwidth is usually a bigger bottleneck than Perl performance, athough this
might change in the future.

For database driven applications, the database itself is a bottleneck. Lots of posts talk about |atency
vs throughput.

mod_perl, FastCGl, Velocigen and PerlEx all give good performance gains over plain mod_cgi.
Other light aternatives to Perl and its derivatives which have been mentioned: PHP, Python.

There were almost no voices from users of M$ and similar technologies, | guess that’s because they
don't read |http://slashdot.org ;)

Many said that in many people’'sminds. 'CGI’ eq’ Perl’

29 Jan 2004

http://slashdot.org/askslashdot/99/10/20/1246241.shtml
http://slashdot.org/

mod_perl Advocacy 8.5 Maintainers

8.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

8.6 |JAuthors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 173

9 Popular Perl Complaints and Myths

9 Popular Perl Complaintsand Myths

174 29 Jan 2004

Popular Perl Complaints and Myths 9.1 Description

9.1 |Description|

This document tries to explain the myths about Perl and overturn the FUD certain bodies try to spread.

9.2 |Abbreviations

® M = Misconception or Myth

® R = Response

9.2.1 [Interpreted vs. Compiled

e M:

Each dynamic perl page hit needs to load the Perl interpreter and compile the script, then run it each
time a dynamic web page is hit. This dramatically decreases performance as well as makes Perl an
unscal able model since so much overhead is required to search each page.

R:

This myth was true years ago before the advent of mod_perl. mod_perl loads the interpreter once into
memory and never needs to load it again. Each perl program is only compiled once. The compiled
version isthen kept into memory and used each time the program is run. In this way there is no extra
overhead when hitting amod_perl page.

9.2.1.1 |Interpreted vs. Compiled (More Gory Details)|

® R:

Compiled code always has the potential to be faster than interpreted code. Ultimately, all interpreted
code needs to eventually be converted to native instructions at some point, and this is invariably has
to be done by a compiled application.

That said, an interpreted language CAN be faster than a comprable native application in certain situa-
tions, given certain, common programming practices. For example, the allocation and de-allocation
of memory can be arelatively expensive process in atightly scoped compiled language, wheras inter-
preted languages typically use garbage collectors which don’t need to do expensive deallocation in a
tight loop, instead waiting until additional memory is absolutely necessary, or for aless computation-
aly intensive period. Of course, using a garbage collector in C would eliminate this edge in this situa-
tion, but where using garbage collectorsin C is uncommon, Perl and most other interpreted languages
have built-in garbage collectors.

It is also important to point out that few people use the full potential of their modern CPU with a
single application. Modern CPUs are not only more than fast enough to run interpreted code, many
processors include instruction sets designed to increase the performance of interpreted code.

29 Jan 2004 175

9.2.2 Perl isoverly memory intensive making it unscalable

9.2.2 |Perl is overly memory intensive making it unscalablg

M:

Each child process needs the Perl interpreter and all code in memory. Even with mod_perl httpd
processes tend to be overly large, slowing performance, and requiring much more hardware.

R:

In mod_perl the interpreter is loaded into the parent process and shared between the children. Also,
when scripts are loaded into the parent and the parent forks a child httpd process, that child shares
those scripts with the parent. So while the child may take 6MB of memory, 5SMB of that might be
shared meaning it only really uses 1IMB per child. Even 5 MB of memory per child is not uncommon
for most web applications on other languages.

Also, most modern operating systems support the concept of shared libraries. Perl can be compiled as
a shared library, enabling the bulk of the perl interpreter to be shared between processes. Some
executable formats on some platforms (I believe ELF is one such format) are able to share entire
executable TEXT segments between unrelated processes.

9.2.2.1 More Tuning Advice|

Stas Bekman' s Performance Guide

9.2.3 [Not enough support, or tools to develop with Perl. (Myth)|

o R:

Of al web applications and languages, Perl arguable has the most support and tools. CPAN is a
central repository of Perl modules which are freely downloadable and usually well supported. There
are literally thousands of modules which make building web apps in Perl much easier. There are also
countless mailing lists of extremely responsive Perl experts who usually respond to questions within
an hour. There are aso a number of Perl development environments to make building Perl Web
applications easier. Just to name afew, thereis Apache: : ASP, Mason, enbPer | , ePer | , etc...

9.2.4 (If Perl scales so well, how come no large sites use it? (myth)|

o R:

176

Actualy, many large sites DO use Perl for the bulk of their web applications. Here are some, just as
an example: e-Toys, CitySearch, Internet Movie Database(|http://imdb.com|), Value Click (
[http://valueclick.com), Paramount Digital Entertainment, CMP (|http://cmpnet.com), HotBot
Mail/HotBot Homepages, and DejaNews to hame a few. Even Microsoft has taken interest in Perl

vialhttp://www.activestate.com/}

29 Jan 2004

http://imdb.com/
http://valueclick.com/
http://cmpnet.com/
http://www.activestate.com/

Popular Perl Complaints and Myths 9.2.5 Perl even with mod_perl, is always slower then C.

9.2.5 |Perl even with mod perl, is always slower then C|

® R:

The Perl engine is written in C. There is no point arguing that Perl is faster than C because anything
written in Perl could obviously be re-written in C. The same holds true for arguing that C is faster
than assembly. There are two issues to consider here. First of all, many times a web application
written in Perl CAN be faster than C thanks to the low level optimizations in the Perl compiler. In
other words, its easier to write poorly written C then well written Perl. Secondly its important to
weigh all factors when choosing alanguage to build aweb application in. Time to market is often one
of the highest priorities in creating a web application. Development in Perl can often be twice as fast
asin C. Thisis mostly due to the differences in the language themselves as well as the wealth of free
examples and modules which speed development significantly. Perl’s speedy development time can
be a huge competitive advantage.

9.2.6 [Java does away with the need for Perl |

o M:
Perl had its place in the past, but now there’ s Java and Java will kill Perl.
o R:

Java and Perl are actually more complimentary languages then competitive. Its widely accepted that
server side Java solutions such as JSer v, JSP and JRUN, are far slower then mod_perl solutions
(see next myth). Even so, Java is often used as the front end for server side Perl applications. Unlike
Perl, with Java you can create advanced client side applications. Combined with the strength of server
side Perl these client side Java applications can be made very powerful.

0.2.7 |Perl can’t create advanced client side applicationg

o R:

True. There are some client side Perl solutions like PerlScript in MSIE 5.0, but al client side Perl
requires the user to have the Perl interpreter on their local machine. Most users do not have a Perl
interpreter on their local machine. Most Perl programmers who need to create an advanced client side
application use Java as their client side programming language and Per| as the server side solution.

9.2.8 |ASP makes Per| obsolete as a web programming language,

o M:

With Perl you have to write individual programs for each set of pages. With ASP you can write
simple code directly within HTML pages. ASP is the Perl killer.

29 Jan 2004 177

9.3 Credits

9.3 |Creditg

R:

There are many solutions which allow you to embed Perl in web pagesjust like ASP. In fact, you can
actually use Perl IN ASP pages with PerlScript. Other solutions include: Mason, Apache: : ASP,
ePer 1, embPer| and XPP. Also, Microsoft and ActiveState have worked very hard to make Perl
run equally well on NT as Unix. Y ou can even create COM modules in Perl that can be used from within
ASP pages. Some other advantages Perl has over ASP. mod_perl is usually much faster then ASP,
Perl has much more example code and full programs which are freely downloadable, and Perl is cross
platform, able to run on Solaris, Linux, SCO, Digital Unix, Unix V, AlIX, OS2, VMS MacOS,
Win95-98 and NT to name afew.

Also, Benchmarks show that embedded Perl solutions outperform ASP/VB on IIS by severa orders
of magnitude. Perl is amuch easier language for some to learn, especially those with a background in
Cor C++.

Thanksto the mod_perl list for all of the good information and criticism. I d especially like to thank,

9.4 Maintainers

Stas Bekman <stas@stason.org>

Thornton Prime <thornton@cnation.com>

Chip Turner <chip@ns.zfx.com>

Clinton <clint@drtech.co.uk>

Joshua Chamas <joshua@chamas.com>

John Edstrom <edstrom@Poopsie.nmsc.orst.edu>
Rasmus Lerdorf <rasmus@lerdorf.on.ca>

Nedim Cholich <nedim@comstar.net>

Mike Perry <ihttp://www.Icorp.net/icorp/feedback.htm| >

Finaly, I’d like to thank Robert Santos <robert@cnation.com>, CyberNation’s lead Business Devel-
opment guy for inspiring this document.

Maintainer is the person(s) you should contact with updates, corrections and patches.

178

Contact the mod_perl docs list

29 Jan 2004

http://www.icorp.net/icorp/feedback.htm

Popular Perl Complaints and Myths 9.5 Authors

9.5 |Authors

® Adam Pisoni <adam@cnation.com>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 179

Popular Perl Complaints and Myths Tableof Contents:

Table of Contents:

|General Documentation| . 1
: 4
1 | Perl Referencel 4
1.1 [Description 5
12 Iperl docC’'s Rarely Known But Very Useful Optl onsl 5
1.3 [Tracing Warnings Reportd . 6
1.4 Variables Globally, Lexically Scoped And FuIIy Quallfled 8
1.4.1 |Symbols, Symbol Tables and Packages; Typeglobg 8
1.4.1.1 [Lexica Variables and Symbolg 10
1.4.2 |Additional reading referencey . . 11
1.5 Imy() Scoped Variable in Nested Subrouiti ned 11
1.5.1 [The Poison . 11
1.5.2 [The Diagnosig 12
153 m 13
1.6 |Understanding Closures -- the Easy Wayl . 14
1.6.1 |[Mike Guy’s Explanation of the Inner Subroutine Behawori 16
1.7 When Y ou Cannot Get Rid of The Inner Subrouting . 17
1.7.1 |Remedies for Inner Subroutineq . 19
1.8 Juse(), require(), do(), %INC and @INC Explameol 26
1.8.1 [The @INC array]. 26
1.8.2 [The %INC hashl . . 26
18.3 IM odules Libraries and Proqram Flled 29
1.8.4 [require() 31
1.85 - . 32
1.8.6 [do() . : 33
1.9 |Using Global Vanables and Shannq Them Between Modules/Packaqed 34
1.9.1 [Making Variables Global| . 34
1.9.2 [Making Variables Global With strict Praqma OnI 34
1.9.3 |Using Exporter.pm to Share Global Variableg 34
1.9.4 |Using the Perl Aliasing Feature to Share Global Vanabl%i 37
1.9.5 |Using Non-Hardcoded Configuration Module Nameg . 38
1.10 [The Scope of the Specid Perl Variable 39
1.11 [Compiled Regular Expressions| 40
1.12 [Exception Handling for mod perl| 42
1.12.1 [Trapping Exceptionsin Perl| . 43
1.12.2 |Alternative Exception Handling Technlqueﬂ 44
1.12.3 [Better Exception Handling 45
1.12.3.1 |A Little Housekeeping 46
1.12.3.2 |An Exception Clasq . a7
1.12.4 |Catching Uncaught Exceptiong 47
1.12.4.1 Usng $SIG{ DIE }] . 48
1.12.4.2 |Overriding the Core dig() Functi ori 48
1.12.5 [A Single UnCaught ExceptionClasd 49
1126 [SomeUsed. 5

29 Jan 2004 i

Table of Contents:

1.12.7 [Conclusiong . .
1128| The My: Excgtlon classmltsentlretyl .
1.12.9 [Other Implementationg -
1.13 |Custom|zed DIE hanld | S -
1.14 fMalntamerQ . . 54
1.15] uthor§ 54
Pr ar|n mod perl modul%for CPAN - 15
| Preparing mod perl modules for CPAN | mod perl modules for CPAN -
2 1 Descripiod 58
2.2 Defml ng Makefile.PL Prereqwst% that Reqw re modJ)erII b6
2.3 ertlnﬁ the Test Suth L b6
24fMa|ntamer§57
25 uthor§ .. N - Y
|Runn|n§ and Developing Testswnh theAQache Test Framework| 58
3 [Running and Developing Tests with the Apache:: Test Frameworkl 58
31| escription 59
3.2 |Basucs of Perl ModulesTestmg i
3.3 Prerequisited . . .)
34RummngTestd e
3.4.1 Y 1
342 BascTestind. 8
3.4.3 [Individual Testingg. el
344 |R@etitive Testinﬁ e 4
3.4.5 |Pardlle Testin e 4
3.4.6 [Verbose Mod 83
3.4.7 |Colored Trace Mod§ 63
348 ontrolllnﬁ the Aﬁache ‘Test’ sS@nal to N0|se Rat@ o4
3.4.9 [Stress Testi ng. 65
3.49.1 |ihe Problem 65
3.49.2 |I he Solutionf 65
3.4.9.3 [Resolving SequenceProblemd 66
3.4.9.4 [Apache: : Test Smoke Solutiod 67
3.4.10 |RunTi me Confiﬁurati on OverridinQ o8
3.4.11 [Request Generation and Response Optiong ¢
3.4.12 |Batch Mode 4
35 Settln Up Testing EnV| Setting Up Testing Environment]71
351 T 2
352 A
3.5.3 |[Extending Configuration Setuﬂ Y 4
354 @ecial Confiﬁuration Filg. Y ¢ <
3.5.5 |Inheriting from System-wide httﬁd.conﬂ Y £ <
3.6 |E§ache::T$t Framework’sArchitecturQ Y £
3.6.1 [Developing Response-only PartofaTestf. 19
36.2 =
363 8
3.6.4 . s
3.6.5 [Other Request Generationhelperd 88

ii 29 Jan 2004

Popular Perl Complaints and Myths Table of Contents:

3.6.6 [Starting MultipleServery 88
3.6.7 [Multi Ele User Aﬁentg .. A =12
3.6.8 [Hitting the Same I nterpreter (Server Thread/Process | nstance)l A =12
3.7 WritingTestd. . . R ¢
3.7.1 [Defining How Many Sub Tests Are to Be Runl . 0]
3.7.2 [Ski EEI n§ aWhoIeT@ .)
3.7.3 [Ski EEI n§ Numerous Testg . e
374 R@ortlnﬁ a Success or a Fallure of Sub testQ e 5]
3.7.5 [Ski EEI n§ Sub- tes@ . (5]
3.76 |Runn| ng only Selected Sub- testg o8
3.7.7 fodoSubtes§ . . . S o8
378 |MakingitEaytobebud 9
3.7.9 meing STDOUT toaResponseHandlerObjecty 100
3.7.10 Heper Functiond.1
3.7.11 [Auto Configuration . 04
37111 | orcing Configuration Sectlons into the Tog Level| 103
3.7.11.2 [Bypassing Auto-Configuration . 072}
3.7.11.3 [Virtual Hosts . 0
37114 |Runn| ng PreConflguratlon Codg e (0]5)
3.7.115 [Controlling the Configuration Orde] . . T [0
3.7.12 |Ihreaded versus Non-threaded Perl Test's Compati b|||tyI . (04
3.7.13 |Retr|ev|n§ the Server Confi juratl on Data e (0
3.7.13.1 [Module Magic Numb: e (01

3.8 |Debu§§| nﬁ Tes@ 01
3.8.1 |Under C debu@ﬁ@ e [0 <
3.8.2 [Under Perl debu§§§1 e (o]
3.83 | acing . 0
39 |Usr n§ Aﬁame: :Test to @eed u@ Proi ect Devel o@menﬂ10
3.10 R C B
3.10.1 O E 61
311 e A
3.12 I 4
3.13 [Mantanery12
3.14 [Authory. 112
IssuingCorrect HTTPHeadery 113
4 | ssuinﬁ Correct HTTP Heacers| <
4.1 Descripiod .. 14
4.2 [The Or@n of this Chéﬁteﬂ e I
43 WhyHeaderd.14
4.4 \Which Headerd I
4.4.1 [Date Related Header§ e I 1)
4.4.1.1 Datg - . I 15
4.4.1.2 |Last-Modified . I 15
4413 ExpresandCacheControl] 116
442 |Content Related Header§ S 4
4.4.2.1 [Content-Typd . T K
4422 [Content-LengtH 1ur

29 Jan 2004 iii

Table of Contents:

4423 Enfity Tagd .
4.4.3 [Content Negotiation
4431 Nay. . .

4.5 [Reques .

45.1 [HEAD)

4.5.2 [POST]

453 [GET]. . .
454M :

46

47|Referenc§ .
4.7.1[1]
4.7.2 [2]
4.7.3 [3]
4.7.4 [4]
4.75 [5]

48@

4.9 Maintaners

410

[mod_perl for |SPS mod_per| and V|rtual Hostg

5 [mod_perl for ISPs. mod_perl and Virtual Hosts] .
5.1 Descriptiod
5.2 [ISPs providing mod_perT services - afantasy or aredlity|

5.2.1 [Virtual Servers Technologied Lo
5.3 [Virtual Hosts in the guide
5.4 fMalntamerQ
5.5 [Authord .

|Choosi n'g an Operating System and Hardwarq .

6 | Choosing an Operating System and Hardware

6.1 -

.2 [Choosing an Operating Syste
6.2.1 [Stability and Robusiness
6.2.2 |M emori Manajemenﬂ .
6.2.3 |M emori Leak .
6.2.4 |Shar|n§ Memorﬂ
6.2.5 [Cost and Supporf] . .
6.2.6 :
6.2.7 [OS Released Lo

6.3 IChoos ng Hardwara

6.3.1 [Machine Strength Demands Accordl ng to Exgected Slte Trafflg

6.3.1.1 |Single Strong Machine vs Many Weaker Machineg

6.3.2 [Internet Connectioﬂ
6.3.3 [I/O Performancﬂ
6.3.4 [Memor
6.3.5 [CPU].
6.3.6 [B ottleneck§ ..
6.3.6.1 |SoIV| ng Hardware R@w rement Confllctg
6.3.7 [Conclusion Lo

118
119
120
120
120
121
121
122
123
123
123
123
123
124
124
124
124
124
125
125
126
126
129
130
131
131
132
132
133
133
133
134
134
134
134
135
135
136
137
137
137
138
139
139
139
140
140

29 Jan 2004

Popular Perl Complaints and Myths Table of Contents:

64}Maintainer§ [
6.5 uthor§ .. e [
|ControII|n§ and Monltorlnﬁthe Server| e N
7 [Controlling and Monitoring the Server]14
7 1 Description . . . O
7.2 Restartmﬁ Techn@u@ . e 142
7.3 [Server SIOEEI nﬁ and Restarti ng . e ¢
7.4 [Speeding up the Apache Termination and Restarﬂ 7
7.5 [Using apachectl to Control the Serv V.
7.6 [Safe Code Updateson aLiveProductionServe] 145
7.7 [AnIntentiond Disabling of LiveScript 147
7.8 |SUID Start-up Scri pt§ .. e e
7.8.1 [Introduction to SUID Executabl§ e e
7.8.2 Eache Startuﬁ SUID SCI‘IE'[S Securitill . ¢
7.8.3 SamEIeAEache Startu@ SUID Scri@]. e 15 0)

7.9 |Pr§_p'ari n§ for Machine Rebooﬂ S =Y
7.10 |M onitori n§ the Server. A Watchdoﬁ. e Y
7.11 |Running a Server in Single ProcessModg 157
7.12 [Starting a Personal Server for EachDevelope 158
7.13 ‘Wr@ﬁer to Emulate the Server Perl Envi ronmenﬂ 1e0
7.14 [Server MaintenanceChored 1e2
7141 HandlingLogFiled1e2
7.14.1.1 Lo§ Rotatloﬂ 163
7.14.1.2 |Non-Scheduled Emerﬁenci Lo§ Rotatloﬂ 165

7.15 | é@ﬁl n§ Preventloﬂ 166
7.16 [Preventing mod_perl Processes From GOI ng Wlla e (5]
7.16.1 |All RAM Consumg .. e (5]
717 fMalntal nerQ 169
7.18 uthor§ 51
|mod Eerl Advoca@ . e (0]
8 [mod pe Advocacy]10
8 1 Descriptiod . . N v
8.2 [Thoughts about scalability and flexibiliy17
8.3 [The boss, the devel o@er and advocaczl . . 4
8.4 [A_summary of perl/CGI discussion at Sashdot. org Y ¢
85 fMalntamerQ 173
8.6 uthor§ .. S <
[Popular Perl Comglamts and Mythg -
9 O
91D escriptod15
9.2 [Abbreviati on§ . e Y
9.2.1 [Interpreted vs. Compiled . . s
9.21.1 | nter@reted VS. Com@led ZMore Gori Detallsi‘15

9.2.2 |Per| is overli memori |nten5|ve maki n§ it unscalab Q 176
9.2.2.1 More Tuning Advice] . . -

9.2.3 [Not enou h support, or toolsto develo Wlth PerI M th 176
9.2.4 |If Perl scales so well, how come no large sitesuseit?(myth)l 176

29 Jan 2004 v

Table of Contents:

Vi

95|

9.25
9.2.6
9.2.7
9.2.8

Perl even with mod_perl, is always slower then C|.

Java does aw@ with the need for Perl | .
Perl can't create advanced client side éﬁ@l i cation§ L
[ASP makes Perl obsolete as a web programming language) .

9.3 |Credit§ .
9.4 fMaintai ner§
Author§ .

177
177
177
177
178
178
179

29 Jan 2004

	1€€Perl Reference
	1.1€€Description
	1.2€€perldoc's Rarely Known But Very Useful Options
	1.3€€Tracing Warnings Reports
	1.4€€Variables Globally, Lexically Scoped And Fully Qualified
	1.4.1€€Symbols, Symbol Tables and Packages; Typeglobs
	1.4.1.1€€Lexical Variables and Symbols

	1.4.2€€Additional reading references

	1.5€€my†‡ Scoped Variable in Nested Subroutines
	1.5.1€€The Poison
	1.5.2€€The Diagnosis
	1.5.3€€The Remedy

	1.6€€Understanding Closures -- the Easy Way
	1.6.1€€Mike Guy's Explanation of the Inner Subroutine Behavior

	1.7€€When You Cannot Get Rid of The Inner Subroutine
	1.7.1€€Remedies for Inner Subroutines

	1.8€€use†‡, require†‡, do†‡, %INC and @INC Explained
	1.8.1€€The @INC array
	1.8.2€€The %INC hash
	1.8.3€€Modules, Libraries and Program Files
	1.8.4€€require†‡
	1.8.5€€use†‡
	1.8.6€€do†‡

	1.9€€Using Global Variables and Sharing Them Between Modules/Packages
	1.9.1€€Making Variables Global
	1.9.2€€Making Variables Global With strict Pragma On
	1.9.3€€Using Exporter.pm to Share Global Variables
	1.9.4€€Using the Perl Aliasing Feature to Share Global Variables
	1.9.5€€Using Non-Hardcoded Configuration Module Names

	1.10€€The Scope of the Special Perl Variables
	1.11€€Compiled Regular Expressions
	1.12€€Exception Handling for mod_perl
	1.12.1€€Trapping Exceptions in Perl
	1.12.2€€Alternative Exception Handling Techniques
	1.12.3€€Better Exception Handling
	1.12.3.1€€A Little Housekeeping
	1.12.3.2€€An Exception Class

	1.12.4€€Catching Uncaught Exceptions
	1.12.4.1€€Using $SIG{__DIE__}
	1.12.4.2€€Overriding the Core die†‡ Function

	1.12.5€€A Single UnCaught Exception Class
	1.12.6€€Some Uses
	1.12.7€€Conclusions
	1.12.8€€The My::Exception class in its entirety
	1.12.9€€Other Implementations

	1.13€€Customized __DIE__ hanlder
	1.14€€Maintainers
	1.15€€Authors

	2€€Preparing mod_perl modules for CPAN
	2.1€€Description
	2.2€€Defining Makefile.PL Prerequisites that Require mod_perl
	2.3€€Writing the Test Suite
	2.4€€Maintainers
	2.5€€Authors

	3€€Running and Developing Tests with the Apache::Test Framework
	3.1€€Description
	3.2€€Basics of Perl Modules Testing
	3.3€€Prerequisites
	3.4€€Running Tests
	3.4.1€€Testing Options
	3.4.2€€Basic Testing
	3.4.3€€Individual Testing
	3.4.4€€Repetitive Testing
	3.4.5€€Parallel Testing
	3.4.6€€Verbose Mode
	3.4.7€€Colored Trace Mode
	3.4.8€€Controlling the Apache::Test's Signal to Noise Ratio
	3.4.9€€Stress Testing
	3.4.9.1€€The Problem
	3.4.9.2€€The Solution
	3.4.9.3€€Resolving Sequence Problems
	3.4.9.4€€Apache::TestSmoke Solution

	3.4.10€€RunTime Configuration Overriding
	3.4.11€€Request Generation and Response Options
	3.4.12€€Batch Mode

	3.5€€Setting Up Testing Environment
	3.5.1€€Know Your Target Environment
	3.5.2€€Basic Testing Environment
	3.5.3€€Extending Configuration Setup
	3.5.4€€Special Configuration Files
	3.5.5€€Inheriting from System-wide httpd.conf

	3.6€€Apache::Test Framework's Architecture
	3.6.1€€Developing Response-only Part of a Test
	3.6.2€€Developing Response and Request Parts of a Test
	3.6.3€€Developing Test Response Handlers in C
	3.6.4€€Request and Response Methods
	3.6.5€€Other Request Generation helpers
	3.6.6€€Starting Multiple Servers
	3.6.7€€Multiple User Agents
	3.6.8€€Hitting the Same Interpreter †Server Thread/Process Instance‡

	3.7€€Writing Tests
	3.7.1€€Defining How Many Sub-Tests Are to Be Run
	3.7.2€€Skipping a Whole Test
	3.7.3€€Skipping Numerous Tests
	3.7.4€€Reporting a Success or a Failure of Sub-tests
	3.7.5€€Skipping Sub-tests
	3.7.6€€Running only Selected Sub-tests
	3.7.7€€Todo Sub-tests
	3.7.8€€Making it Easy to Debug
	3.7.9€€Tie-ing STDOUT to a Response Handler Object
	3.7.10€€Helper Functions
	3.7.11€€Auto Configuration
	3.7.11.1€€Forcing Configuration Sections into the Top Level
	3.7.11.2€€Bypassing Auto-Configuration
	3.7.11.3€€Virtual Hosts
	3.7.11.4€€Running Pre-Configuration Code
	3.7.11.5€€Controlling the Configuration Order

	3.7.12€€Threaded versus Non-threaded Perl Test's Compatibility
	3.7.13€€Retrieving the Server Configuration Data
	3.7.13.1€€Module Magic Number

	3.8€€Debugging Tests
	3.8.1€€Under C debugger
	3.8.2€€Under Perl debugger
	3.8.3€€Tracing

	3.9€€Using Apache::Test to Speed up Project Development
	3.10€€Writing Tests Methodology
	3.10.1€€When Tests Should Be Written

	3.11€€Other Webserver Regression Testing Frameworks
	3.12€€References
	3.13€€Maintainers
	3.14€€Authors

	4€€Issuing Correct HTTP Headers
	4.1€€Description
	4.2€€The Origin of this Chapter
	4.3€€Why Headers
	4.4€€Which Headers
	4.4.1€€Date Related Headers
	4.4.1.1€€Date
	4.4.1.2€€Last-Modified
	4.4.1.3€€Expires and Cache-Control

	4.4.2€€Content Related Headers
	4.4.2.1€€Content-Type
	4.4.2.2€€Content-Length
	4.4.2.3€€Entity Tags

	4.4.3€€Content Negotiation
	4.4.3.1€€Vary

	4.5€€Requests
	4.5.1€€HEAD
	4.5.2€€POST
	4.5.3€€GET
	4.5.4€€Conditional GET

	4.6€€Avoiding Dealing with Headers
	4.7€€References
	4.7.1€€[1]
	4.7.2€€[2]
	4.7.3€€[3]
	4.7.4€€[4]
	4.7.5€€[5]

	4.8€€Other resources
	4.9€€Maintainers
	4.10€€Authors

	5€€mod_perl for ISPs. mod_perl and Virtual Hosts
	5.1€€Description
	5.2€€ISPs providing mod_perl services - a fantasy or a reality
	5.2.1€€Virtual Servers Technologies

	5.3€€Virtual Hosts in the guide
	5.4€€Maintainers
	5.5€€Authors

	6€€Choosing an Operating System and Hardware
	6.1€€Description
	6.2€€Choosing an Operating System
	6.2.1€€Stability and Robustness
	6.2.2€€Memory Management
	6.2.3€€Memory Leaks
	6.2.4€€Sharing Memory
	6.2.5€€Cost and Support
	6.2.6€€Discontinued Products
	6.2.7€€OS Releases

	6.3€€Choosing Hardware
	6.3.1€€Machine Strength Demands According to Expected Site Traffic
	6.3.1.1€€Single Strong Machine vs Many Weaker Machines

	6.3.2€€Internet Connection
	6.3.3€€I/O Performance
	6.3.4€€Memory
	6.3.5€€CPU
	6.3.6€€Bottlenecks
	6.3.6.1€€Solving Hardware Requirement Conflicts

	6.3.7€€Conclusion

	6.4€€Maintainers
	6.5€€Authors

	7€€Controlling and Monitoring the Server
	7.1€€Description
	7.2€€Restarting Techniques
	7.3€€Server Stopping and Restarting
	7.4€€Speeding up the Apache Termination and Restart
	7.5€€Using apachectl to Control the Server
	7.6€€Safe Code Updates on a Live Production Server
	7.7€€An Intentional Disabling of Live Scripts
	7.8€€SUID Start-up Scripts
	7.8.1€€Introduction to SUID Executables
	7.8.2€€Apache Startup SUID Script's Security
	7.8.3€€Sample Apache Startup SUID Script

	7.9€€Preparing for Machine Reboot
	7.10€€Monitoring the Server. A watchdog.
	7.11€€Running a Server in Single Process Mode
	7.12€€Starting a Personal Server for Each Developer
	7.13€€Wrapper to Emulate the Server Perl Environment
	7.14€€Server Maintenance Chores
	7.14.1€€Handling Log Files
	7.14.1.1€€Log Rotation
	7.14.1.2€€Non-Scheduled Emergency Log Rotation

	7.15€€Swapping Prevention
	7.16€€Preventing mod_perl Processes From Going Wild
	7.16.1€€All RAM Consumed

	7.17€€Maintainers
	7.18€€Authors

	8€€mod_perl Advocacy
	8.1€€Description
	8.2€€Thoughts about scalability and flexibility
	8.3€€The boss, the developer and advocacy
	8.4€€A summary of perl/CGI discussion at slashdot.org
	8.5€€Maintainers
	8.6€€Authors

	9€€Popular Perl Complaints and Myths
	9.1€€Description
	9.2€€Abbreviations
	9.2.1€€Interpreted vs. Compiled
	9.2.1.1€€Interpreted vs. Compiled †More Gory Details‡

	9.2.2€€Perl is overly memory intensive making it unscalable
	9.2.2.1€€More Tuning Advice:

	9.2.3€€Not enough support, or tools to develop with Perl. †Myth‡
	9.2.4€€If Perl scales so well, how come no large sites use it? †myth‡
	9.2.5€€Perl even with mod_perl, is always slower then C.
	9.2.6€€Java does away with the need for Perl.
	9.2.7€€Perl can't create advanced client side applications
	9.2.8€€ASP makes Perl obsolete as a web programming language.

	9.3€€Credits
	9.4€€Maintainers
	9.5€€Authors

