HTTP Handlers 1 HTTP Handlers

1 HTTP Handlers

29 Jan 2004 1

1.1 Description

1.1 Description|

This chapter explains how to implement the HTTP protocol handlersin mod_perl.

1.2 HTTP Request Handler Skeleton|

All HTTP Request handlers have the following structure:

package MyApache: : MyHandl er Nane;

| oad nodul es that are going to be used
use ...;

conpile (or inport) constants
use Apache:: Const -conpile => gwm OK);

sub handl er {
ny $r = shift;

handl er code cones here
return Apache::OK; # or another status constant

}
1

First, the package is declared. Next, the modules that are going to be used are loaded and constants
compiled.

The handler itself coming next and usually it receives the only argument: the Apache: : Request Rec
object. If the handler is declared as a method handler :

sub handl er : nethod {
ny($class, $r) = @;

the handler receives two arguments: the class name and the Apache: : Request Rec object.

The handler ends with areturn code and thefile is ended with 1; to return true when it gets loaded.

1.3 HTTP Request Cycle Phases

Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be ailmost identical
to the mod_perl 1.0's model. The only difference is in the response phase which now includes filtering.
Also the Per | Handl er directive has been renamed to Per | ResponseHandl er to better match the
corresponding Apache phase name (response).

The following diagram depicts the HTTP request life cycle and highlights which handlers are available to
mod_perl 2.0:

2 29 Jan 2004

HTTP Handlers 1.3 HTTP Request Cycle Phases

Apache/mod _perl 2.0

HTTFP Request \
Lifecycle HTTP Y PostReadRequest

FEequest
Cycle / | Trans

‘ / |+ HeaderParser

f0 7 1 Access

- authen
Pl ‘ 4+ Authz
cleanup #7771 Type
Log _%-‘.—_-_—:::: —
< Y
Response > >
=
: . Docu-
Connection Request Request Connection ment
Input Input cutput output
Filters Filters Filters Filters

From the diagram it can be seen that an HT TP request is processes by 11 phases, executed in the following
order:

PerIPostReadRequestHandler (PerlinitHandler)
PerITransHandler

PerIMapT oStorageHandler

PerIHeader Par serHandler (PerllnitHandler)
PerlAccessHandler

PerlAuthenHandler

PerlAuthzHandler

PerITypeHandler

PerlFixupHandler

©oOoNOORrWDN R

29 Jan 2004 3

1.3.1 PerlPostReadRequestHandler

10. PerlResponseHandler
11. PerlLogHandler
12. PerICleanupHandler

It's possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens. In that case Apache skips to the logging phase (mod_perl executes all registered Perl LogHan-
dler handlers) and finally the cleanup phase happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it's sent to the client.
We will talk about filtersin detail later in this chapter.

Before discussing each handler in detail remember that if you use the stacked handlers feature al handlers
in the chain will be run as long as they return Apache::OK or Apache::DECLINED . Because stacked
handlers is a special case. So don't be surprised if you’'ve returned Apache::OK and the next handler
was still executed. Thisis afeature, not abug.

Now let’ s discuss each of the mentioned handlers in detail.

1.3.1 [PerlPostRea&equestHandlgr

The post_read request phase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

This phase is usualy used to do processing that must happen once per request. For example
Apache::Reload isusualy invoked at this phase to reload modified Perl modules.

This phaseis of type RUN_ALL

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Now, let’slook at an example. Consider the following registry script:
touch.pl

use strict;
use warnings;

use Apache::ServerUtil ();
use File::Spec::Functions qw(catfile);

my $r = shift;
$r->content_type('text/plain’);

my $conf_file = catfile Apache::Server::server_root_relative($r->pool, 'conf’),
"httpd.conf";

printf “$conf_file is %0.2f minutes old", 60*24*(-M $conf_file);

4 29 Jan 2004

HTTP Handlers 1.3.1 PerlPostReadRequestHandler

This registry script is supposed to print when the last time httpd.conf has been modified, compared to the
start of the request process time. If you run this script several times you might be surprised that it reports
the same value al the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won't be reported correctly.

This happens because the -M operator reports the difference between file's modification time and the
value of a specia Perl variable $"T . When we run scripts from the command line, this variable is always
set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like
-M, -C and -A are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we
need to reset $MT to the request’s start time, before -M is used. We can change the script itself, but what if
we need to do the same change for severa other scripts and handlers? A simple Perl PostRead -
RequestHandler handler, which will be executed as the very first thing of each requests, comes handy
here:

file:MyApache/TimeReset.pm

package MyApache::TimeReset;

use strict;
use warnings;

use Apache::RequestRec ();
use Apache::Const -compile =>'OK’;
sub handler {
my $r = shift;
$°T = $r->request_time;
return Apache::OK;
}
1
We could do:
$T = time();

But to make things more efficient we use $r->request_time since the request object $r aready
stores the request’ s start time, so we get it without performing an additional system call.

To enableit just add to httpd.conf:

PerlPostReadRequestHandler MyApache:: TimeReset

either to the global section, or to the <Virtu al Host > section if you want this handler to be run only for
aspecific virtual host.

29 Jan 2004 5

1.3.2 PerlTransHandler

1.3.2 [PerlTransHandler|

Thetrandate phase is used to perform ttrandation of a request’'s URI into acorrespondng filename
If no custom handler is provided, the serveswrdard trandation rules (e.g.,Al i as diredives
mod_rewrite, etc.) will continue to be usedPAr | Tr ansHandl er handler can alter the defatians
lation mechanismor completelyoverideit.

In addiion to doing thdrandation, this stage can be used to maodify the URI itself and the request method.
This is also a good place ttegiger new handlers for thimllowing phases based on th&l.

This phase is of typRUN_FI RST.

The handler'sconfiguration scope isSRV, because at this phase the request has not yetaseerated
with aparticular filenameor diredory.

There are many useful things that can be performed at this stage. Let’s look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-sitgigiaally

made of static pages, and now you have moved to a dynamigeagetion chances are that you don’t

want to change the old URIs, because you don’t want to break links for those who link to your site. If the
URI:

http://exanpl e. com news/ 20021031/ 09/ i ndex. ht m

is now handledby:

http://exanpl e. coni perl/ news. pl ?dat e=20021031& d=09&page=i ndex. ht m
thefollowing handler can do thewriting work trangarentto news.pl, so you can still use the former URI
mapping:

file:MyApache/ RewriteURl.pm

package MyApache:: RewiteUR

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Const -conpile => gw DECLI NED);

sub handl er {
my $r = shift;

ny ($date, $id, $page) = $r->uri =~ nl M news/ (\d+)/(\d+)/(.*)]|
$r->uri ("/perl/news.pl");
$r->ar gs("dat e=$dat e& d=$i d&page=$page") ;

return Apache: : DECLI NED

=

6 29 Jan 2004

HTTP Handlers 1.3.3 PerlMapToStorageHandler META: add something here

The handler matches the URI and assigns a new URI via $r->uri() and the query string via
$r->args() . It then returns Apache::DECLINED , so the next translation handler will get invoked, if
more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

To configure this module simply add to httpd.conf:

PerlTransHandler +MyApache::RewriteURI

1.3.3 |PerIMapToStorageHandler META: add something herg

This phaseis of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

1.3.4 |PerlHeader ParserHandler|

The header_parser phase is the first phase to happen after the request has been mapped to its <Loca -
tion > (or an equivalent container). At this phase the handler can examine the request headers and to take
a specia action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

This phaseis of type RUN_ALL

The handler’ s configuration scopeis DIR.

This phase is very similar to|Perl PostRead RequestHandler | with the only difference that it's run
after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can take any |Perl PostRead RequestHandler | and
turn it into [Perl Header Parser Handler | by simply changing the directive name in httpd.conf and
moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a specia directive|PerlinitHandler | which if found outside resource containers behaves as
|Perl PostRead RequestHandler | otherwise as|Perl Header Parser Handler |

You already know that Apache handles the HEAD GET, POSTand severa other HTTP methods. But did
you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages:. they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the
EMAIL method. We can enable this protocol extension and push the real content handler during the
[Perl_Header Parser Handler |phase:

<Location /email>
PerlHeaderParserHandler MyApache::SendEmail
</Location>

29 Jan 2004 7

1.3.4 PerlHeaderParserHandler

and hereisthe MyApache: : SendEmai | handler:

file: MApache/ SendEnuai | . pm

package MyApache: : SendEnai |

use
use

use
use
use

use

use
use

sub

sub

sub

}

sub

strict;
war ni ngs;

Apache: : Request Rec ();

Apache: : Request 1 O ();

Apache: : Request Wil ();

Apache: : Const -conpile => gw DECLI NED OK);

constant METHOD => "EMAIL";
constant SMIP_HOSTNAME => "l ocal host";

handl er {
ny $r = shift;

return Apache:: DECLI NED unl ess $r->net hod eq METHOD,
Apache: : Server:: nmet hod_regi ster($r->pool, METHOD);
$r->handl er("perl-script");

$r - >push_handl er s(Per| ResponseHandl er => \ &end_enai | _handl er);

return Apache:: K

send_emai | _handl er {

ny $r = shift;
ny %eaders = map {$_ => $r->headers_in->get($_)} gw(To From Subject);
ny $content = content($r);

ny $status = send_enmil (\ %headers, \$content)

$r->content _type('text/plain’);
$r->print($status ? "ACK' : "NACK")
return Apache:: K

content {

ny $r = shift;

$r->setup_client_bl ock;

return '’ unless $r->shoul d_client_bl ock;

my $len = $r->headers_i n->get (' content-length’);
ny $buf;

$r->get _client_bl ock($buf, $len);

return $buf;

send_emai | {

29 Jan 2004

HTTP Handlers 1.3.4 PerlHeaderParserHandler

my($rh_headers, $r_body) = @_;

require MIME::Lite;
MIME::Lite->send("smtp", SMTP_HOSTNAME, Timeout => 60);

my $msg = MIME::Lite->new(%$rh_headers, Data => $$r_body);
#warn $msg->as_string;
$msg->send;

}

1

Let's get the lesinteresing code out of the way. THeanction content() grabs the request body. Tinec-
tion send_email() sends the email over SMTP. You should adjust the cdistaRt HOSNNAMEBEO point
to youroutgdng SMTP server. You can replace thimction with your own if you prefer to usediffer-
entmethod to sendmail.

Now to the morenteresing functions The function handler() returnsimmediately and passes the
control to the next handler if the request method is not eqEW®&IL (set in theMETHORoNstant):

return Apache::DECLINED unless $r->method eq METHOD;

Next it tells Apache that this new method is a valid one and thatetthecript handler will do the
procesisg. Finally it pushes théunction send_email_handler() to the Perl Respon seHan-
dler list of handlers:

Apache::Server::method_register($r->pool, METHOD);

$r->handler("perl-script");
$r->push_handlers(PerlResponseHandler => \&send_email_handler);

Thefunction terminatesthe header_parser phdse
return Apache::OK;

All other phases run as usual, so you can reuse any dioI&ol hooks, such asutheticaion and fixup
phases.

When the response phase stagsd_email_handler() is invoked,assunng that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email header
To, From andSubject , and the body of thmessage:

my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
my $content = $r->content;

Then send themail:
my $status = send_email(\%headers, \$content);

Finally return to the client a simple resporeegknowkeddgng that email has been sent and finish the
response phase lgturring Apache::OK :

29 Jan 2004 9

1.3.5 PerlinitHandler

$r->content_type('text/plain’);
$r->print($status ? "ACK" : "NACK");
return Apache::OK;

Of course you will want to add extra validations if you want to use this code in production. Thisisjust a
proof of concept implementation.

As aready mentioned when you extend an HT TP protocol you need to have a client that knows how to use
the extension. So here is a simple client that uses LWP::User Agent to issue an EMAIL method request
over HTTP protocol:

file:send_http_email.pl

#!/usr/bin/perl

use strict;
use warnings;

require LWP::UserAgent;
my $url = "http://localhost:8000/email/";

my %headers = (
From =>’example@example.com’,
To =>’example@example.com’,
Subject => '3 weeks in Tibet’,

);

my $content = <<EOlI,

| didn’t have an email software,

but could use HTTP so I'm sending it over HTTP
EOI

my $headers = HTTP::Headers->new(%headers);

my $req = HTTP::Request->new("EMAIL", $url, $headers, $content);
my $res = LWP::UserAgent->new->request($req);

print $res->is_success ? $res->content : "failed";

most of the code isjust a custom data. The code that does something consists of four lines at the very end.
Create HTTP::Headers and HTTP::Request object. Issue the request and get the response. Finaly
print the response’ s content if it was successful or just "failed" if not.

Now save the client code in the file send_http_email.pl, adjust the To field, make the file executable and
execute it, after you have restarted the server. Y ou should receive an email shortly to the address set in the
To field.

1.3.5 [PerlinitHandler|

When configured inside any container directive, except <Virtu al Host >, this handler is an dlias for
|Perl Header Parser Handler |described earlier. Otherwise it acts as an alias for [Perl PostRead - |
[RequestHandler |described earlier.

10 29 Jan 2004

HTTP Handlers 1.3.6 PerlAccessHandler

It isthe first handler to be invoked when serving a request.
This phaseis of type RUN_ALL

The best example here would be to use Apache::Reload which takes the benefit of this directive.
Usualy Apache::Reload isconfigured as:

PerlinitHandler Apache::Reload
PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "MyApache::*"

which during the current HTTP request will monitor and reload all MyApache::* modules that have
been modified since the last HTTP request. However if we move the global configuration into a<Loca -
tion > container:

<Location /devel>
PerlinitHandler Apache::Reload
PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "MyApache::*"
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
Options +ExecCGl

</Location>

Apache::Reload will reload the modified modules, only when a request to the /devel namespace is
issued, because[PerlInitHandler |playstherole of |Perl Header Parser Handler |here.

1.3.6 |PerlAccessHandler|

The access checker phase is the first of three handlers that are involved in what's known as AAA:
Authentication and Authorization, and Access control.

This phase can be used to restrict access from a certain |P address, time of the day or any other rule not
connected to the user’ sidentity.

This phaseis of type RUN_ALL
The handler’ s configuration scopeis DIR.

The concept behind access checker handler is very simple, return Apache::FORBID DENIf the accessis
not allowed, otherwise return Apache::OK .

The following example handler denies requests made from IPs on the blacklist.

file:MyApache/BlockByIP.pm

package MyApache::BlockByIP;

use strict;
use warnings;

use Apache::RequestRec ();

29 Jan 2004 11

1.3.7 PerlAuthenHandler

use Apache:: Connection ();
use Apache:: Const -conpile => gw FORBI DDEN K);
ny Y%ad_ips = map {$_ => 1} gw(127.0.0.1 10.0.0.4);

sub handl er {
ny $r = shift;

return exists $bad_i ps{$r->connecti on->renote_ip}
? Apache: : FORBI DDEN
. Apache: : OK;
}

1

The handler retrieves the connection’s | P address, looks it up in the hash of blacklisted | Ps and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler smply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base location /per| add:

<Location /perl/>
Set Handl er perl -script
Per | ResponseHandl er ModPer| :: Registry
Per | AccessHandl er MyApache: : Bl ockByl P
Opti ons +ExecCd

</ Locat i on>

It's important to notice that Per | AccessHandl er can be configured for any subsection of the site, no
matter whether it's served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server simply add to httpd.conf:

<Location />
Per | AccessHandl er MyApache: : Bl ockByl P
</ Locati on>

1.3.7 |PerlAuthenHandler|

The check_user_id (authen) phaseis called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated with Aut hNane, Aut hType and at least one
requi r e directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should return Apache:: OK. Otherwise the handler returns
Apache: : HTTP_UNAUTHORI ZED to indicate that the user has not authenticated successfully. When
Apache sends the HTTP header with this code, the browser will normally pop up a dialog box that
prompts the user for login information.

12 29 Jan 2004

HTTP Handlers 1.3.7 PerlAuthenHandler

This phaseis of type RUN_FI RST.
The handler’ s configuration scopeis DI R.

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space eguals to the
secret length, specified by the constant SECRET _LENGTH.

file: MyApache/ Secr et Lengt hAut h. pm

package MyApache: : Secr et Lengt hAut h;

use strict;
use war ni ngs;

use Apache:: Access ();
use Apache:: RequestUtil ();

use Apache:: Const -conpile => gw OK DECLI NED HTTP_UNAUTHORI ZED) ;
use Apache: : Access();
use constant SECRET_LENGIH => 14;

sub handl er {
my $r = shift;

ny ($status, $password) = $r->get_basic_auth_pw;
return $status unless $status == Apache:: K;

return Apache:: K
i f SECRET_LENGTH == length join " ", $r->user, $password;

$r->not e_basi c_aut h_fail ure;
return Apache: : HTTP_UNAUTHORI ZED;
}

1

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set to Apache: : OK only when the user has supplied the username and the password credentials. If the
status is different, we just let Apache handle this situation for us, which will usually challenge the client so
it'll supply the credentials.

Note that get _basi ¢_aut h_pw() does afew things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use
get basic_aut h_pw(). Firgt, is checks the value of the configured Aut hType for the request,
making sure it is Basi c. Then it makes sure that the Authorization (or Proxy-Authorization) header is
formatted for Basi ¢ authentication. Finally, after isolating the user and password from the header, it
populates the ap_auth_type dlot in the request record with Basi c¢. For the first and last parts of this
process, mod_perl offers an API. $r - >aut h_t ype returns the configured authentication type for the
current request - whatever was set via the Aut hType configuration directive. $r - >ap_aut h_t ype
populates the ap_auth_type slot in the request record, which should be done after it has been confirmed

29 Jan 2004 13

1.3.7 PerlAuthenHandler

that the request is indeed using Basi c authentication. (Note $r->ap_auth_type was
$r - >connect i on- >aut h_t ype inthemod_perl 1.0 API.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTH long (14 in our example). So for example the pair mod_perl/rules authenticates
correctly, whereas secret/password does not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it's fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note basic auth failure() and returns
Apache: : HTTP_UNAUTHORI ZED, which sets the proper HTTP response headers that tell the client that
its user that the authentication has failed and the credentials should be supplied again.

It's not enough to enable this handler for the authentication to work. Y ou have to tell Apache what authen-
tication scheme to use (Basi ¢ or Di gest), which is specified by the Aut hType directive, and you
should also supply the Aut hNane -- the authentication realm, which is really just a string that the client
usually uses as atitle in the pop-up box, where the username and the password are inserted. Finadly the
Requi r e directive is needed to specify which usernames are allowed to authenticate. If you set it to
val i d- user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts from /perl/:

<Location /perl/>
Set Handl er perl-script
Per | ResponseHandl er MbdPerl :: Registry
Per | Aut henHandl er MyApache: : Secr et Lengt hAut h
Opti ons +ExecCd

Aut hType Basi c

Aut hNarme "The Gate"

Requi re val i d-user
</ Locati on>

Just like Per | AccessHandl er and other mod_perl handlers, Per | Aut henHandl er can be config-
ured for any subsection of the site, no matter whether it's served by a mod_perl response handler or not.
For example to use the authentication handler from the last example for any requests to the site, simply
use:

<Location />
Per | Aut henHandl er MyApache: : Secr et Lengt hAut h
Aut hType Basi c
Aut hNarme "The Gate"
Requi re val i d-user
</ Locati on>

14 29 Jan 2004

HTTP Handlers 1.3.8 PerlAuthzHandler

1.3.8 [PerlAuthzHandler|

The auth_checker (authz) phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only caled when the requested resource is password protected, similar to the auth phase. The handler is
expected to return Apache: : DECLI NED to defer the decision, Apache: : K to indicate its acceptance
of the user’'s authorization, or Apache: : HTTP_UNAUTHORI ZED to indicate that the user is not autho-
rized to access the requested document.

This phaseis of type RUN_FI RST.
The handler’ s configuration scopeis Dl R.

Here is the MyApache: : Secr et Resour ceAut hz handler which grants access to certain resources
only to certain users who have already properly authenticated:

fil e: MyApache/ Secr et Resour ceAut hz. pm

package MyApache: : Secr et Resour ceAut hz;

use strict;
use war ni ngs;

use Apache:: Access ();
use Apache:: RequestUtil ();

use Apache:: Const -conpile => gw(OK HTTP_UNAUTHORI ZED) ;
use Apache:: Access ();

my Y%rotected = (
"adnmin' =>['stas'],
"report’ => [gw(stas boss)],
)

sub handl er {
ny $r = shift;

ny $user = $r->user;
if ($user) {
ny($section) = $r->uri =~ n~/ conpany/ (\w+)/];
if (defined $section && exists $protected{$section}) {
nmy $users = $protected{P$section};
return Apache: :OK if grep { $_ eq $user } @users;

}
el se {

return Apache:: CK;
}

29 Jan 2004 15

1.3.9 PerlTypeHandler

$r->note_basic_auth_failure;
return Apache::HTTP_UNAUTHORIZED;

}

1

This authorization handler is very similar to the authentication handler from the previous section, Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under
/company/admin/ can be accessed only by the user stas, /company/report/ can be accessed by users stas
and boss, whereas any other resources under /company/ can be accessed by everybody who has reached so
far. If for some reason we don't get the username, we or the user is not authorized to access the resource
the handler does the same thing as it does when the authentication fails, i.e, cals:

$r->note_basic_auth_failure;
return Apache::HTTP_UNAUTHORIZED;

The configuration is similar to the one in [the previous section, this time we just add the PerlAu -
thzHan dler setting. The rest doesn’t change.

Alias /company/ /home/httpd/httpd-2.0/perl/

<Location /company/>
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlAuthenHandler MyApache::SecretLengthAuth
PerlAuthzHandler MyApache::SecretResourceAuthz
Options +ExecCGl

AuthType Basic

AuthName "The Secret Gate"

Require valid-user
</Location>

And if you want to run the authentication and authorization for the whole site, smply add:

<Location />
PerlAuthenHandler MyApache::SecretLengthAuth
PerlAuthzHandler MyApache::SecretResourceAuthz
AuthType Basic
AuthName "The Secret Gate"
Require valid-user

</Location>

1.3.9 [PerlTypeHandler|

The type _checker phase is used to set the response MIME type (Content-type) and sometimes other
bits of document type information like the document language.

For example mod_autoin dex , which performs automatic directory indexing, uses this phase to map the
filename extensions to the corresponding icons which will be later used in the listing of files.

16 29 Jan 2004

HTTP Handlers 1.3.10 PerlFixupHandler

Of course |later phases may override the mime type set in this phase.
This phaseis of type RUN_FI RST.
The handler’ s configuration scopeis DI R

The most important thing to remember when overriding the default type_checker handler, which is usually
the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’'t work. mod_mime does that based on Set Handl er and
AddHandl er directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

$r->handl er (" perl-script’);
$r - >set _handl er s(Per| ResponseHandl er => \ &andl er);

or:

$r - >handl er (’ nodper|');
$r - >set _handl er s(Per| ResponseHandl er => \ &andl er);

depending on which type of response handler is wanted.

Writing a Perl| TypeHandl er handler which sets the content-type value and returns
Apache: : DECLI NED so that the default handler will do the rest of the work, is not a good idea, because
mod_mime will probably override this and other settings.

Thereforeit’ sthe easiest to leave this stage alone and do any desired settings in the fixups phase.

1.3.10 [PerlFixupHandler|

The fixups phase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this phase nod_env populates the environment with
variables configured with SetEnv and PassEnv directives.

Thisphaseis of type RUN_ALL.
The handler’ s configuration scopeis Dl R.

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’s URI.
file: MyApache/ Fi | eExt Di spat ch. pm

package MyApache: : Fi | eExt Di spat ch;

use strict;
use war ni ngs;

use Apache: : Request| O ();
use Apache: : Request Rec ();

29 Jan 2004 17

1.3.10 PerlFixupHandler

use Apache::Const -conpile => "K' ;
use constant HANDLER => O;
use constant CALLBACK => 1;
nmy %exts = (
cgi => [’ perl-script’, \ &gi _handl er],
pl => [’ nodperl’, \ &l _handl er],
tt => ['perl-script’, \ & t_handler],
txt => ['defaul t-handl er’, undef 1,
)
sub handl er {
ny $r = shift;
ny($ext) = $r->uri =~ /\.(\w) $/;
$ext = "txt’ unless defined $ext and exists $exts{$ext};
$r - >handl| er ($ext s{ $ext } - >[HANDLER]) ;
if (defined $exts{$ext}->[CALLBACK]) ({
$r->set _handl er s(Per| ResponseHandl er => $ext s{$ext}->[CALLBACK]) ;
}
return Apache: : OK;
}
sub cgi _handler { content_handler($_[0], 'cgi’) }
sub pl _handler { content_handler($_[0], "pl') }
sub tt_handler { content_handler($_[0], "tt') }
sub content _handl er {
ny($r, $type) = @;
$r->content _type('text/plain’);
$r->print("A handler of type '$type’ was called");
return Apache:: CK;
}
1;

In the example we have used the following mapping.

ny %exts = (
cgi => ['perl-script’, \ &gi _handl er],
pl => [’ nodperl’, \ &l _handler],
tt =>['perl-script’, \&t_handler],
txt => [’ defaul t-handler’, undef 1.
)i

So that .cgi requests will be handled by the per | - scri pt handler and thecgi _handl er () callback,
.pl requests by nodper| and pl _handl er (), .tt (template toolkit) by perl -script and the
tt_handl er (), finaly .txt request by thedef aul t - handl er handler, which requires no callback.

18

29 Jan 2004

HTTP Handlers 1.3.11 PerlResponseHandler

Moreover the handler assumes that if the request’s URI has no file extension or it does, but it's not in its
mapping, thedef aul t - handl er will be used, asif the txt extension was used.

After doing the mapping, the handler assigns the handler:

$r - >handl| er ($ext s{ $ext } - >[HANDLER]) ;

and the callback if needed:

if (defined $exts{$ext}->[CALLBACK]) {
$r - >set _handl er s(Per| ResponseHandl er => $ext s{$ext }->[CALLBACK]) ;

}

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real
things.

Here is how this handler is configured:

Alias /dispatch/ /hone/httpd/ httpd-2.0/htdocs/
<Location /dispatch/>

Per | Fi xupHandl er MyApache: : Fi | eExt Di spatch
</ Locati on>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings
dynamically at run-time.

1.3.11 |PerlResponseH andler|

The handler (response) phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

Thisisthe only phase that requires two directives under mod_perl. For example:
<Location /perl>
Set Handl er perl -scri pt
Per | ResponseHandl er MyApache: : Wr | dDomi nat i on
</ Locat i on>

Set Handl er set to perl -script or nodper ! tells Apache that mod_perl is going to handle the
response generation. Per | ResponseHand| er tells mod_perl which callback is going to do the job.

This phaseis of type RUN_FI RST.
The handler’ s configuration scopeis Dl R.

Most of the Apache: : modules on CPAN are dealing with this phase. In fact most of the developers
spend the mgjority of their time working on handlers that generate response content.

29 Jan 2004 19

1.3.12 PerlLogHandler

Let’swrite a simple response handler, that just generates some content. This time let’s do something more
interesting than printing "Hello world". Let’ s write a handler that prints itself:

file: MApache/ Deparse. pm

package MyApache: : Depar se;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();
use B::Deparse ();

use Apache:: Const -conpile => "K' ;

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);
$r->print(’sub handler ', B::Deparse->new >coder ef 2t ext (\ &andl er));

return Apache:: CK;
}
1;

To enable this handler add to httpd.conf:

<Location /deparse>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : Depar se
</ Locati on>

Now when the server is restarted and we issue a request to |http://localhost/depar sg we get the following
response:

sub handl er {
package MyApache: : Depar se;
ny $r = shift @;
$r->content _type('text/plain’);
$r->print(’sub handler ', 'B::Deparse’->new >coderef 2t ext (\ &andl er));
return O;

}

If you compare it to the source code, it’s pretty much the same code. B: : Depar se isfun to play with!

1.3.12 |PerlLogHandler|

The log_transaction phase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

20 29 Jan 2004

http://localhost/deparse

HTTP Handlers 1.3.12 PerlLogHandler

By this phase al the information about the request and the response is known, therefore the logging
handlers usually record thisinformation in various ways (e.g., logging to aflat file or a database).

This phaseis of type RUN_ALL.
The handler’ s configuration scopeis DI R

Imagine a situation where you have to log regquests into individual files, one per user. Assuming that all
requests start with /users/username/, so it's easy to categorize requests by the second URI path compo-
nent. Here is the log handler that does that:

file:MyApache/ LogPer User. pm

package MyApache: : LogPer User;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Connection ();
use Fcntl gw :flock);

use Apache:: Const -conpile => qw(OK DECLI NED) ;

sub handl er {
my $r = shift;

ny($usernanme) = $r->uri =~ m ~users/ ([*]+)];
return Apache:: DECLI NED unl ess defi ned $usernane;

ny $entry = sprintf qq(% [%] "%" % %\n),
$r->connection->renpte_i p, scalar(localtine),
$r->uri, $r->status, $r->bytes_sent;

ny $l og_path = Apache:: Server::server_root_rel ative($r->pool
"1 ogs/ $user nane. | 0g") ;

open ny $fh, ">>$log_path" or die "can't open $log_path: $!";

flock $fh, LOCK EX;

print $fh $entry;

cl ose $fh;

return Apache:: CK
}
1
First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it

simply returns Apache: : DECLI NED, letting other log handlers to do the logging. Though it could return
Apache: : OKsinceal other log handlers will be run anyway.

Next it builds the log entry, similar to the default access log entry. It's comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

29 Jan 2004 21

1.3.13 PerlCleanupHandler

Finally the handler appends this entry to the log file for the user the request was issued for. Usually it's
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before
performing the writing.

To configure the handler simply enable the module with the Per | LogHandl er directive, inside the
wanted section, which was /users/ in our example:

<Location /users/>
Set Handl er perl-script
Per | ResponseHandl er ModPerl :: Registry
Per | LogHandl er MyApache: : LogPer User
Opti ons +ExecCd

</ Locati on>

After restarting the server and issuing requests to the following URIs:
http://1ocal host/users/stas/test. pl

http://1ocal host/users/eric/test.pl
http://1ocal host/users/stas/date. pl

The MyApache: : LogPer User handler will append to logs/stas.|og:

127.0.0.1 [Sat Aug 31 01:50:38 2002] "/users/stas/test.pl" 200 8
127.0.0.1 [Sat Aug 31 01:50:40 2002] "/users/stas/date.pl" 200 44

and to logg/eric.log:

127.0.0.1 [Sat Aug 31 01:50:39 2002] "/users/eric/test.pl" 200 8

It's important to notice that Per | LogHandl er can be configured for any subsection of the site, no
matter whether it's served by amod_perl response handler or not. For example to run the handler from our
example for al requests to the server, smply add to httpd.conf:

<Location />
Per | LogHandl er MyApache: : LogPer User
</ Locati on>

Since the Per | LogHandl er phase is of type RUN_ALL, all other logging handlers will be called as
well.

1.3.13 |PerlCleanupHandler|

There is no cleanup Apache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase instead of [Per | LogHandl er|if the
logging operation is time consuming. This approach alows to free the client as soon as the response is
sent.

22 29 Jan 2004

HTTP Handlers 1.3.13 PerlCleanupHandler

This phaseis of type RUN_ALL.
The handler’ s configuration scopeis Dl R.
There are two ways to register and run cleanup handlers:

1. UsingthePer | C eanupHandl er phase
Per | C eanupHandl er MyApache: : d eanup
or.

$r - >push_handl er s(Per| d eanupHandl er => \ &l eanup) ;
Thismethod isidentical to al other handlers.
In thistechniquethe cl eanup() callback accepts $r asitsonly argument.
2. Usingcl eanup_regi st er () acting on therequest object’s pool

Since arequest object pool is destroyed at the end of each request, we can register a cleanup callback
which will be executed just before the pool is destroyed. For example:

$r - >pool - >cl eanup_regi ster (\ &l eanup, $arg);

The important difference from using the Per | CI eanupHandl er handler, isthat here you can pass
an optional arbitrary argument to the callback function, and no $r argument is passed by default.
Thereforeif you need to pass any data other than $r you may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
running | s -1 and stores the output in temporary file, which is then used by $r - >sendfi | e to send
the file's contents. We use push_handl er s() to push Per | Cl eanupHandl er to unlink the file at
the end of the request.

#file: MyApache/ d eanupl. pm
package MyApache: : C eanupl;

use strict;
use warni ngs FATAL => "all’;

use File::Spec::Functions gwcatfile);
use Apache:: RequestRec ();

use Apache:: Request! O ();

use Apache:: RequestUtil ();

use Apache:: Const -conpile => gqw(OK DECLI NED) ;
use APR: : Const -conpi l e => ' SUCCESS' ;

ny $file = catfile "/tnp", "data";

sub handl er {

29 Jan 2004 23

1.3.13 PerlCleanupHandler

ny $r = shift;
$r->content _type('text/plain');

| ocal @ENV{ qw(PATH BASH ENV) };
gx(/bin/ls -1 > $file);

ny $status = $r->sendfile($file);
die "sendfile has failed" unless $status == APR : SUCCESS;

$r - >push_handl er s(Per| O eanupHandl er => \ &cl eanup) ;

return Apache: : OK;

}

sub cl eanup {
ny $r = shift;
die "Can’t find file: $file" unless -e $file;
unlink $file or die "failed to unlink $file";
return Apache:: CK;

}

1

Next we add the following configuration:

<Location /cl eanupl>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : O eanupl
</ Locati on>

Now when a reguest to /cleanupl is made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the process id $$ to the file's name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same process and the $$
trick won’'t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes.

sub unique_id {
requi re Apache:: MPM
require APR: : CS;
return Apache:: MPM >i s_t hr eaded
?"$$." . ${ APR:OS::thread_current() }
D 8%
}

In the threaded environment it will return a string containing the process ID, followed by athread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perl’sr and, some CPAN module or the APR's APR: : UUI D:

24 29 Jan 2004

HTTP Handlers 1.3.13 PerlCleanupHandler

sub unique_id {
require APR:: UU D
return APR:: UU D- >new >f or mat ;

}

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the $r - >not es table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

#file: MyApache/ d eanup2. pm
package MyApache:: C eanup2;

use strict;
use warni ngs FATAL => "all’

use File::Spec::Functions gw(catfile);
use Apache:: RequestRec ();

use Apache:: Request!| O ();

use Apache:: RequestUtil ();

use APR : UUID ();

use APR : Pool ();

use Apache:: Const -conpile => gw OK DECLI NED);
use APR : Const -conpil e => ' SUCCESS' ;

nmy $file_base = catfile "/tnp", "data-";

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);
nmy $file = $file_base . APR : UU D >new >f or nat ;

| ocal @ENV{ gw(PATH BASH ENV) };
gx(/binfls -1 > $file);

ny $status = $r->sendfile($file);
die "sendfile has failed" unless $status == APR. : SUCCESS;

$r - >pool - >cl eanup_regi ster (\ &l eanup, $file);

return Apache:: OK;

sub cl eanup {
my $file = shift;

29 Jan 2004 25

1.4 Handling HEAD Reqguests

die "Can’t find file: $file" unless -e $file;
unlink $file or die "failed to unlink $file";

return Apache: : OK;
}
1;

Similarly to the first handler, we add the configuration:

<Location /cl eanup2>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : O eanup2
</ Locati on>

And now when reguesting /cleanup2 we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up aswell.

1.4 Handling HEAD Reguests

In order to avoid the overhead of sending the data to the client when the request is of type HEAD in
mod_perl 1.0 we used to return early from the handler:

return K i f $r->header_only;

This logic is no longer needed in mod_perl 2.0, because Apache 2.0 automatically discards the response
body for HEAD requests. (You can also read the comment in for ap_htt p_header filter() in
modules/http/http_protocol.c in the Apache 2.0 source.)

1.5 |[Extending HT TP Protocol

Extending HTTP under mod_perl is atrivial task. Look at [the example of adding a new method EMAI L|
for details.

1.6 M aintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.7 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

26 29 Jan 2004

HTTP Handlers

Table of Contents:

1|HTTP Handlersl
1.1 [Description
12 |HTTP Requ&st Handler Skel etori
1.3 HTTP Request CyclePhasey . .
1.3.1 |PerlPostReadRequestHandler] .
1.3.2 |Perl TransHandler]

1.3.3 |PerlMapT oStorageHandler M ETA add somethl nq herel)

1.3.4 |PerlHeaderParserHandl er]
135 :
1.3.6 |PerlAccessHandler| .
1.3.7 |PerlAuthenHandler| .
1.3.8 |PerlAuthzHandl er|
1.3.9 |Perl TypeHandl e
1.3.10 |PerlFixupHandler| .
1.3.11 |PerlResponseHandl er|
1.3.12 [PerlLogHandl e
1.3.13 |PerlCleanupHandler|
1.4 |[Handling HEAD Requesty
1.5 |Extending HT TP Protocol|
16
17

29 Jan 2004

Table of Contents:

O~N~NOBRNNDNBRE

NNNNNN R PR R R R R
OO0 ONOONOUONER

	1€€HTTP Handlers
	1.1€€Description
	1.2€€HTTP Request Handler Skeleton
	1.3€€HTTP Request Cycle Phases
	1.3.1€€PerlPostReadRequestHandler
	1.3.2€€PerlTransHandler
	1.3.3€€PerlMapToStorageHandler META: add something here
	1.3.4€€PerlHeaderParserHandler
	1.3.5€€PerlInitHandler
	1.3.6€€PerlAccessHandler
	1.3.7€€PerlAuthenHandler
	1.3.8€€PerlAuthzHandler
	1.3.9€€PerlTypeHandler
	1.3.10€€PerlFixupHandler
	1.3.11€€PerlResponseHandler
	1.3.12€€PerlLogHandler
	1.3.13€€PerlCleanupHandler

	1.4€€Handling HEAD Requests
	1.5€€Extending HTTP Protocol
	1.6€€Maintainers
	1.7€€Authors

