CGl to mod_perl Porting. mod_perl Coding guidelines. 1 CGI to mod_perl Porting. mod_perl Coding guidelines.

1 CGI to mod_perl Porting. mod_perl Codingguide-
lines.

29 Jan 2004 1

1.1 Description

1.1 Description|

This chapter igelevantto both writing a new CGI script or perl handler from scratch raigtaing an
application from plain CGI tomod_perl.

It also addresses tlsituation where the CGI script being ported does the job, but is too dirty to be altered
easily to run as a mod_perl prograiypache: : Per | Run mode)

If you are at the porting stage, you can use this chapterefe@ncefor possble prodemsyou might
encounter when running axising CGI script in the newnode.

If your projectschedle is tight, | would suggestonvering to mod_perl in thdollowing steps: Initially,
run all the scripts in theApache: : Perl Run mode. Then as time allows, move them into
Apache: : Regi st ry mode. Later if you need Apache Perl Agctionality you can always aditl

If you are about to write a new CGI script from scratch, it would be a good idea to learrpasshiée
mod_perl related pitfalls and to avoid them in the fifate.

If you don’'t need mod_cgiompaibility, it's a good idea to start writing using the mod_perl API in first
place. This will make youapplicaion a little bit moreefficient and it will be easier to use the full
mod_perl feature set, which extends the core faadionality with Apache specififunctions andover
riddenPerl corduncdionsthat wereeimplementedto work better in mod_peénvironment

1.2 |Beforeyou start to code

It can be a good idea to tighten up some of yourregramming pradices since mod_perl doesntler-
atesloppyprogramming.

This chapter relies on a certain level of Herbwledge Please read through tRerl Refeencechapter
and make sure you know theateial covered there. This will allow me tmncerrate on pure mod_perl
issues and make them mgneminentto theexpeiencedPerlprogranmer, which wouldothemwise be lost
in the sea of Pebaclgroundnotes.

Additional resources:
® Perl Module Mechanics

This page describes tmeechaits of creaing, compiling, releasng, andmaintaining Perl modules.
|http://world.std.com/~swmcd/steven/perl/module medsanml

Theinformation is veryrelevantto a mod_pertievebper.
e TheEagle Book

"Writing Apache Modules with Perl and C" is a "must havedk!

2 29 Jan 2004

http://world.std.com/~swmcd/steven/perl/module_mechanics.html

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.3 Exposing Apache::Registry secrets

See the details at |http://www.modperl.com| .

® " Programming Per|" Book
" Perl Cookbook" Book
® "Object Oriented Perl" Book

1.3 [Exposing Apache::Registry secr ets

Let’'s start with some simple code and see what can go wrong with it, detect bugs and debug them, discuss
possible pitfalls and how to avoid them.

| will use asimple CGI script, that initializes a$count er to 0, and prints its value to the browser while
incrementing it.

counter. pl

#! /usr/bin/perl -w
use strict;

print "Content-type: text/plain\r\n\r\n";
my $counter = 0; # Explicit initialization technically redundant

for (1..5) {
i ncrement _counter();

}

sub increnment _counter{
$count er ++;
print "Counter is equal to $counter !\r\n";

}
Y ou would expect to see the output:

Counter is equal to
Counter is equal to
Counter is equal to
Counter is equal to
Counter is equal to

b wWNPRF

And that’s what you see when you execute this script the first time. But let’s reload it a few times... See,
suddenly after a few reloads the counter doesn’t start its count from 1 any more. We continue to reload
and see that it keeps on growing, but not steadily starting aimost randomly at 10, 10, 10, 15, 20... Weird...

Counter is equal to
Counter is equal to
Counter is equal to
Counter is equal to !
Counter is equal to 10

© 0o~NO®

29 Jan 2004 3

http://www.modperl.com/

1.3.1 TheFirst Mystery

We saw two anomalies in this very simple script: Unexpected increment of our counter over 5 and incon-
sistent growth over reloads. Let’s investigate this script.

1.3.1 [The First Mystery

First let’s peek into theer r or _| og file. Since we have enabled the warnings what we seeis:

Variabl e "$counter” will not stay shared
at /home/ httpd/ perl/conference/counter.pl line 13.

The Variable "$counter” will not stay shared warning is generated when the script contains a named
nested subroutine (a named - as opposed to anonymous - subroutine defined inside another subroutine)
that refers to a lexically scoped variable defined outside this nested subroutine. This effect is explained in
my() Scoped Variable in Nested Subroutines.

Do you see a nested named subroutine in my script? | don't! What's going on? Maybe it’'s a bug? But
wait, maybe the perl interpreter sees the script in a different way, maybe the code goes through some
changes before it actually gets executed? The easiest way to check what's actually happening is to run the
script with a debugger.

But since we must debug it when it's being executed by the webserver, a norma debugger won’t help,
because the debugger has to be invoked from within the webserver. Luckily Doug MacEachern wrote the
Apache: : DB module and we will use this to debug my script. While Apache: : DB allows you to debug
the code interactively, we will do it non-interactively.

Modify theht t pd. conf filein the following way:

Per| Set Env PERLDB_OPTS " NonSt op=1 Li nel nfo=/tnp/db. out AutoTrace=1 franme=2"
Per | Modul e Apache: : DB
<Location /perl>
Per | Fi xupHandl er Apache: : DB
Set Handl er perl-script
Per | Handl er Apache:: Registry
Opti ons ExecCAd
Per | SendHeader On
</ Locati on>

Restart the server and issue a request to counter.pl as before. On the surface nothing has changed--we still
see the correct output as before, but two things happened in the background:

Firstly, the file /tmp/db.out was written, with a complete trace of the code that was executed.

Secondly, if you have loaded the Car p module aready, error_log now contains the real code that was
actually executed. This is produced as a side effect of reporting the Variable "$counter" will not stay
shared at... warning that we saw earlier. To load the Carp module, you can add:

use Carp;

4 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.3.1 TheFirst Mystery

in your startup.pl file or in the executed code.

Here is the code that was actually executed:

package Apache::ROOT::perl::conference::.counter_2epl;
use Apache gw(exit);
sub handler {

BEGIN {
W =1,
3
W =1,

use strict;
print "Content-type: text/plain\r\n\r\n";
my $counter = 0; # Explicit initialization technically redundant

for (1..5) {
increment_counter();

}

sub increment_counter{
$counter++;
print "Counter is equal to $counter \r\n";
}
}

The code in the error_log wasn't indented. I’ ve indented it for you to stress that the code was wrapped
inside the handler() subroutine.

What do we learn from this?

Well firstly that every CGI script is cached under a package whose name is formed from the
Apache::ROOT:: prefix and the relative part of the script's URL (perl::confer -
ence ::counter_2epl) by replacing all occurrences of / with :: and . with 2e. That's how
mod_perl knows what script should be fetched from the cache--each script is just a package with a single
subroutine named handler

If we wereto add use diag nostics to the script we would also see areference in the error text to an
inner (nested) subroutine--incre ment_counter isactually a nested subroutine.

With mod_perl, each subroutine in every Apache::Registry script is nested inside the handler
subroutine.

It's important to understand that the inner subroutine effect happens only with code that
Apache::Registry wraps with a declaration of the handler subroutine. If you put all your code
into modules, which the main script use() s, this effect doesn’t occur.

Do not use Perl4-style libraries. Subroutinesin such libraries will only be available to the first script in any
given interpreter thread to require() alibrary of any given name. This can lead to confusing sporadic
failures.

29 Jan 2004 5

1.3.1 TheFirst Mystery

The easiest and the fastest way to solve the nested subroutines problem is to switch every lexically scoped
variable foe which you get the warning for to a package variable. The handl er subroutines are never
called re-entrantly and each resides in a package to itself. Most of the usual disadvantates of package
scoped variables are, therefore, not a concern. Note, however, that whereas explicit initialization is not
always necessary for lexical variables it is usually necessary for these package variables as they persist in
subsequent executions of the handler and unlike lexical variables, don’t get automatically destroyed at the
end of each handler.

counter. pl:

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\r\n\r\n";

In Perl <5.6 our() did not exist, so:
use vars gw $counter);
our $counter = 0; # Explicit initialization now necessary

for (1..5) {
i ncrement _counter();

}
sub increnent _counter{
$count er ++;
print "Counter is equal to $counter !\r\n";

}

If the variable contains a reference it may hold onto lots of unecessary memory (or worse) if the reference
is left to hang about until the next call to the same handler. For such variables you should use | ocal so
that the value is removed when the handl er subroutine exits.

ny $query = CA ->new;
becomes:

| ocal our $query = Cd ->new,

All thisisvery interesting but as a genera rule of thumb, unless the script is very short, | tend to write all
the code in external libraries, and to have only a few lines in the main script. Generally the main script
simply calls the main function of my library. Usually | cal itinit() or run(). | don't worry about
nested subroutine effects anymore (unless | create them myself ;).

The section 'Remedies for Inner Subroutines discusses many other possible workarounds for this
problem.

Y ou shouldn’t be intimidated by thisissue at al, since Perl is your friend. Just keep the warnings mode On
and Perl will gladly tell you whenever you have this effect, by saying:

Vari abl e "$counter” will not stay shared at ...[snipped]

6 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.3.2 The Second Mystery

Just don't forget to check your error_log file, before going into production!

By the way, the above example was pretty boring. In my first days of using mod_perl, | wrote a ssimple
user registration program. I'll give avery simple representation of this program.

use C4d;

$q = Cd ->new,

ny $nane = $g->paran(’ nane’);
print_response();

sub print_response{
print "Content-type: text/plain\r\n\r\n";
print "Thank you, $nane!";

}

My boss and | checked the program at the development server and it worked OK. So we decided to put it
in production. Everything was OK, but my boss decided to keep on checking by submitting variations of
his profile. Imagine the surprise when after submitting his name (let's say "The Boss' :), he saw the
response "Thank you, Stas Bekman!".

What happened is that | tried the production system as well. | was new to mod_perl stuff, and was so
excited with the speed improvement that | didn’t notice the nested subroutine problem. It hit me. At first |
thought that maybe Apache had started to confuse connections, returning responses from other people’s
requests. | was wrong of course.

Why didn’t we notice this when we were trying the software on our development server? Keep reading
and you will understand why.

1.3.2 [The Second Mystery|

Let’s return to our original example and proceed with the second mystery we noticed. Why did we see
inconsistent results over numerous reloads?

That's very simple. Every time a server gets a request to process, it hands it over one of the children,
generaly in around robin fashion. So if you have 10 httpd children alive, the first 10 reloads might seem
to be correct because the effect we've just talked about starts to appear from the second re-invocation.
Subsequent reloads then return unexpected results.

Moreover, requests can appear at random and children don’t always run the same scripts. At any given
moment one of the children could have served the same script more times than any other, and another may
never have run it. That's why we saw the strange behavior.

Now you see why we didn’t notice the problem with the user registration system in the example. First, we
didn't look at the er r or _| og. (Asamatter of fact we did, but there were so many warnings in there that
we couldn’t tell what were the important ones and what were not). Second, we had too many server chil-
dren running to notice the problem.

29 Jan 2004 7

1.4 Sometimesit Works, Sometimesit Doesn’t

A workaround is to run the server as asingle process. Y ou achieve this by invoking the server with the - X
parameter (htt pd - X). Since there are no other servers (children) running, you will see the problem on
the second reload.

But before that, let theer r or _| og help you detect most of the possible errors--most of the warnings can
become errors, so you should make sure to check every warning that is detected by perl, and probably you
should write your code in such a way that no warnings appear inthe error _| og. If your error _| og
file is filled up with hundreds of lines on every script invocation, you will have difficulty noticing and
locating real problems--and on a production server you' Il soon run out of disk space if your siteis popular.

Of course none of the warnings will be reported if the warning mechanism is not turned On. Refer to the
section "Tracing Warnings Reports' to learn about warnings in general and to the 'Warningd' section to
learn how to turn them on and off under mod_perl.

1.4 |[Sometimesit Works, Sometimes it Doesn’t

When you start running your scripts under mod_perl, you might find yourself in a situation where a script
seems to work, but sometimes it screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable and solvable. Y ou have to test your script under a server running in
single process mode (ht t pd - X).

Generally the problem is the result of using global variables. Because global variables don’'t change from
one script invocation to another unless you change them, you can find your scripts do strange things.

Let’ slook at three real world examples:

1.4.1 |An Easy Break-in|

The first example is amazing--Web Services. Imagine that you enter some site where you have an account,
perhaps a free email account. Having read your own mail you decide to take alook at someone else's.

You type in the username you want to peek at and a dummy password and try to enter the account. On
some services thiswill work!!!

You say, why in the world does this happen? The answer is simple: Glabal Variables. You have entered
the account of someone who happened to be served by the same server child as you. Because of sloppy
programming, a global variable was not reset at the beginning of the program and voila, you can easily
peek into someone else's email! Hereis an example of sloppy code:

use vars ($authenti cated);
ny $g = new C4d;
nmy $usernanme = $qg- >paran(’ usernane’);
ny $passwd = $g->paran(’ passwd’);
aut hent i cat e($user name, $passwd) ;

failed, break out
unl ess ($aut henti cat ed) {

print "Wong passwd";

exit;

}

8 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.4.2 Thinking mod_cgi

user is OK, fetch user’s data
show_user ($user nane) ;

sub aut henti cat e{
ny ($usernane, $passwd) = @;
sonme checking
$aut henticated = 1 if SOVE_USER PASSWD CHECK | S CX;

}

Do you see the catch? With the code above, | can type in any valid username and any dummy password
and enter that user’s account, provided she has successfully entered her account before me using the same
child process! Since $aut hent i cat ed is globa--if it becomes 1 once, it'll stay 1 for the remainder of
the child'slifel!! The solutionistrivial--reset $aut hent i cat ed to O at the beginning of the program.

A cleaner solution of courseis not to rely on global variables, but rely on the return value from the func-
tion.

nmy $q = CA ->new;
ny $username = $q- >paran{’ usernane’);
ny $passwd = $g->paran(’ passwd’);
ny $aut henti cated = authenti cat e($user nane, $passwd) ;
failed, break out
unl ess ($aut henti cat ed) {
print "Wong passwd";
exit;
}
user is OK fetch user’s data
show_user ($user nane) ;

sub aut henti cat e{
ny ($usernane, $passwd) = @ ;
some checki ng
return (SOVE_USER PASSWD CHECK IS OK) ? 1 : O;

}

Of course this exampleis trivial--but believe me it happens!

1.4.2 [Thinking mod cqgj|

Just another little one liner that can spoil your day, assuming you forgot to reset the $al | owed variable.
It works perfectly OK in plain mod_cgi:

$allowed = 1 if $usernane eq 'adm n’

But using mod_perl, and if your system administrator with superuser access rights has previously used the
system, anybody who is lucky enough to be served later by the same child which served your administra-
tor will happen to gain the same rights.

The obviousfix is:

29 Jan 2004 9

1.5 Script’s name space

$al | owed = $usernane eq 'adnmin’ ? 1 : O;

1.4.3 |Regular Expression Memory,

Another good example is usage of the / o regular expression modifier, which compiles a regular expres-
sion once, on its first execution, and never compiles it again. This problem can be difficult to detect, as
after restarting the server each request you make will be served by a different child process, and thus the
regex pattern for that child will be compiled afresh. Only when you make a request that happens to be
served by a child which has aready cached the regex will you see the problem. Generally you miss that.
When you press reload, you see that it works (with a new, fresh child). Eventually it doesn’t, because you
get achild that has already cached the regex and won’t recompile because of the/ o modifier.

An example of such a case would be:
ny $pat = $g->paran(" keyword");
foreach(@ist) {
print if /$pat/o;
}
To make sure you don’t miss these bugs always test your CGlI in single process mode.

To solvethis particular / o modifier problem refer to Compiled Regular Expressions.

1.5 [Script’s name space

Scripts under Apache: : Regi st ry do not run in package mai n, they run in a unique name space based
on the requested URI. For example, if your URI is /perl/test. pl the package will be called
Apache: : ROOT: : perl ::test_2epl.

1.6 @INC and mod perl

The basic Perl @ NC behaviour is explained in section use(), require(), do(), %INC and @INC Explained.

When running under mod_perl, once the server is up @ NC is frozen and cannot be updated. The only
opportunity to temporarily modify @ NC is while the script or the module are loaded and compiled for the
first time. After that its value is reset to the original one. The only way to change @ NC permanently isto
modify it at Apache startup.

Two waysto ater @ NC at server startup:

® |nthe configuration file. For example add:

Per| Set Env PERL5LI B / hone/ htt pd/ per |

or

10 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7 Reloading Modules and Required Files

Per| Set Env PERL5LI B / hone/ htt pd/ perl :/home/ htt pd/ mynodul es
Note that this setting will be ignored if you have the Per | Tai nt Check mode turned on.

® |nthe startup file directly ater the @ NC. For example

startup. pl

use lib gw(/honme/ httpd/ perl /hone/httpd/ mynodul es);
1;

and load the startup file from the configuration file by:

Per| Requi re /path/to/startup.pl

1.7 Reloading M odules and Required Files

Y ou might want to read the "use(), require(), do(), %INC and @INC Explained" before you proceed with
this section.

When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your browser.
Since the script isn't cached in memory, the next time you call it the server starts up a new perl process,
which recompiles it from scratch. The effects of any modifications you've applied are immediately
present.

The situation is different with Apache: : Regi st ry, since the whole idea is to get maximum perfor-
mance from the server. By default, the server won't spend time checking whether any included library
modules have been changed. It assumes that they weren't, thus saving a few milliseconds to stat() the
source file (multiplied by however many modules/libraries you use() and/or require() in your script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do not use() or require() other perl modules or packages, there is nothing to worry about. If,
however, you are developing a script that includes other modules, the files you use() or require() aren’t
checked for modification and you need to do something about that.

So how do we get our mod_perl-enabled server to recognize changes in library modules? Well, there are a
couple of techniques:

1.7.1 [Restarting the servey|

The simplest approach is to restart the server each time you apply some change to your code. See Server
Restarting techniques.

After restarting the server about 100 times, you will tire of it and you will look for other solutions.

29 Jan 2004 11

1.7.2 Using Apache::StatINC for the Development Process

1.7.2 [Using Apache:: Statl NC for the Development Procesq

Help comes from the Apache: : St at | NC module. When Perl pulls a file via require(), it stores the full
pathname as a value in the global hash % NC with the file name as the key. Apache: : St at | NC looks
through %8 NC and immediately rel oads any files that have been updated on disk.

To enable thismodule just add two linesto ht t pd. conf .

Per| Modul e Apache: : Stat| NC
Per || ni t Handl er Apache:: Stat| NC

To be sure it really works, turn on debug mode on your development box by adding Per | Set Var
St at | NCDebug On to your config file. Y ou end up with something like this:

Per| Modul e Apache: : Stat| NC
<Location /perl>
Set Handl er perl-script
Per | Handl er Apache:: Registry
Opti ons ExecCAd
Per | SendHeader On
Per | I ni t Handl er Apache:: Statl NC
Per | Set Var St at | NCDebug On
</ Locat i on>

Be aware that only the modules located in @ NC are reloaded on change, and you can change @ NC only
before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in with require() after server startup will
have any effect on @ NC.

When you write:
use lib gw(fool/bar);

@ NC is changed only for the time the code is being parsed and compiled. When that’s done, @ NC is
reset to itsoriginal value.

To make sure that you have set @NC correctly, configure /perl-status location, fetch
[http://www.example.com/perl-status?ind and look at the bottom of the page, where the contents of @ NC
will be shown.

Notice the following trap:

While". " isin @ NC, perl knows to require() files with pathnames given relative to the current (script)
directory. After the script has been parsed, the server doesn’'t remember the path!

So you can end up with abroken entry in %4 NClikethis:

12 29 Jan 2004

http://www.example.com/perl-status?inc

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.3 Using Apache::Reload

$I NC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--modify @ NC at server startup, or use afull path in the
require() call.

1.7.3 [Using Apache::Reload |

Apache: : Rel oad comes as a drop-in replacement for Apache: : St at | NC. It provides extra func-
tionality and better flexibility.

If you want Apache: : Rel oad to check al the loaded modules on each request, you just add to
httpd.conf:

Per | I ni t Handl er Apache: : Rel oad

If you want to reload only specific modules when these get changed, you have two waysto do that.

1.7.3.1 [Register Modules Implicitly|

Thefirst way isto turn Off the Rel oadAl | variable, which is On by default

Per || ni t Handl er Apache: : Rel oad
Per| Set Var Rel oadAll O f

and add:

use Apache: : Rel oad;

to every module that you want to be reloaded on change.

1.7.3.2 [Register Modules Explicitly|

The second way isto explicitly specify modulesto be reloaded in httpd.conf:

Per || ni t Handl er Apache: : Rel oad
Per | Set Var Rel oadMbdul es "My:: Foo My:: Bar Foo::Bar:: Test"

Note that these are split on whitespace, but the module list must be in quotes, otherwise Apache tries to
parse the parameter list.

Y ou can register groups of modules using the metacharacter (*).

Per | Set Var Rel oadModul es "Foo::* Bar::*"

In the above example al modules starting with Foo:: and Bar:: will become registered. This features
allows you to assign the whole project modules tree in one pattern.

29 Jan 2004 13

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

1.7.3.3 |Special " Touch" Filg

You can aso set afile that you can touch(1) that causes the reloads to be performed. If you set this, and
don't touch(1) the file, the reloads don’t happen (no matter how have you registered the modules to be
reloaded).

Per | Set Var Rel oadTouchFile /tnp/rel oad_nodul es
Now when you’ re happy with your changes, ssimply go to the command line and type:

% t ouch /tnp/rel oad_nodul es

This feature is very convenient in a production server environment, but compared to a full restart, the
benefits of preloaded modules memory sharing are lost, since each child will get it's own copy of the
reloaded modules.

1734

This module might have a problem with reloading single modules that contain multiple packages that all
use pseudo-hashes.

Also if you have modules loaded from directories which are not in @ NC, Apache: : Rel oad will fail to
find the files, due the fact that @ NC is reset to its original value even if it gets temporary modified in the
script. The solution is to extend @ NC at the server startup to include directories you load the files from
which aren'tin @ NC.

For example, if you have a script which loads MyTest.pm from /home/stas/mypr oject:

use |lib gw(/home/ stas/ myproject);
require MyTest;

Apache: : Rel oad won't find thisfile, unless you alter @ NC in startup.pl (or httpd.conf):

startup. pl

use lib gw/hone/stas/ myproject);

and restart the server. Now the problem is solved.

1.7.3.5 |Availability]

This module is available from CPAN.

1.7.4 |Configuration Files: Writing, Dynamically Updating and |

Checking all the modulesin %8 NC on every request can add alarge overhead to server response times, and
you certainly would not want the Apache: : St at | NC module to be enabled in your production site's
configuration. But sometimes you want a configuration file reloaded when it is updated, without restarting

14 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

the server.

Thisis an especially important feature if for example you have a person that is allowed to modify some of
the tool configuration, but for security reasonsit’s undesirable for him to telnet to the server to restart it.

1.7.4.1 \Writing Configuration Fileg

Since we are talking about configuration files, | would like to show you some good and bad approaches to
configuration file writing.

If you have a configuration file of just a few variables, it doesn’t really matter how you do it. But gener-
aly thisis not the case. Configuration files tend to grow as a project grows. It's very relevant to projects
that generate HTML files, since they tend to demand many easily configurable parameters, like headers,
footers, colors and so on.

So let’ s start with the approach that is most often taken by CGI scripts writers. All configuration variables
are defined in a separatefile.

For example:
$cgi _dir = "/hone/ httpd/perl";
$cgi _url = "/perl"”;
$docs_dir = "/ home/ httpd/ docs"
$docs_url = "/";
$img_dir = "/home/ httpd/ docs/i mages"”;
$img_url = "/images";

many nore config parans here ..

$col or _hint = “#777777",
$col or_warn = "#990066"
$col or _normal = "#000000"

Theuse strict; pragmademands that all the variables be declared. When we want to use these vari-
ablesin amod_perl script we must declare them with use var s in the script. (Under Perl v5.6.0 our ()
hasreplaced use vars.)

So we start the script with:

use strict;

use vars gw($cgi _dir $cgi _url $docs_dir $docs_url
many nore config paranms here

$col or _hint $col or_warn $col or _norma

)

It is anightmare to maintain such a script, especialy if not all the features have been coded yet. Y ou have
to keep adding and removing variable names. But that’ s not a big deal.

Since we want our code clean, we start the configuration file withuse strict; aswdl, sowe haveto
list the variableswith use var s pragmahereaswell. A second list of variablesto maintain.

29 Jan 2004 15

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

If you have many scripts, you may get collisions between configuration files. One of the best solutions is
to declare packages, with unique names of course. For example for our configuration file we might declare
the following package name:

package My:: Confi g;

The moment you add a package declaration and think that you are done, you realize that the nightmare has
just begun. When you have declared the package, you cannot just require() the file and use the variables,
since they now belong to a different package. So you have either to modify al your scripts to use a fully
qualified notation like $My: : Confi g: : cgi _url instead of just $cgi _ur| or to import the needed
variables into any script that is going to use them.

Since you don't want to do the extra typing to make the variables fully qualified, you'd go for importing
approach. But your configuration package has to export them first. That means that you have to list all the
variables again and now you have to keep at least three variable lists updated when you make some
changes in the naming of the configuration variables. And that’s when you have only one script that uses
the configuration file, in the general case you have many of them. So now our example configuration file
looks like this:

package My:: Confi g;
use strict;

BEG N {
use Exporter ();

@4: : HTM.: : | SA

@y : . HTM.: : EXPORT
@ : . HTM.: : EXPORT_OK

gw(Exporter);
aw() ;
gw($cgi _dir $cgi _url $docs_dir $docs_url
many nore config parans here
$col or _hint $col or_warn $col or _nornal);

}

use vars gw($cgi _dir $cgi _url $docs_dir $docs_url
many nore config parans here
$col or _hint $col or _warn $col or _nor nal

);

$cgi _dir = "/home/ httpd/perl";
$cgi _url = "/perl";
$docs_dir = "/hone/ httpd/ docs";
$docs_url = "/";
$inmg_dir = "/home/ httpd/ docs/i mages";
$ing_url = "/inmages";

many nore config parans here ...
$col or _hint "HTTTTTT7"

$col or _warn
$col or _nor nal

"#990066";
"#000000";

And in the code:

16 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use strict;
use My::Config gw($cgi _dir $cgi _url $docs_dir $docs_url
many nore config parans here
$col or_hint $col or _warn $col or _nor nal
)

use vars gwW $cgi _dir $cgi _url $docs_dir $docs_url
many nore config parans here
$col or _hint $col or _warn $col or _nor nal

)

This approach is especially bad in the context of mod_perl, since exported variables add a memory over-
head. The more variables exported the more memory you use. If we multiply this overhead by the number
of servers we are going to run, we get a pretty big number which could be used to run a few more servers
instead.

As a matter of fact things aren’t so bad. You can group your variables, and call the groups by special
names called tags, which can later be used as arguments to the import() or use() calls. You are probably
familiar with:

use CA gw:standard :htm);
We can implement this quite easily, with the help of export_ok_tags() from Expor t er . For example:
BEG N {

use Exporter ();
use vars gw @ SA @XPORT @XPORT_OK %EXPORT_TAGS);

@ SA = gw Exporter);
@EXPORT = qw);
@EXPORT_K =agwm);

YEXPORT_TAGS (
vars => [gw($f name $l nane)],
subs => [gwmreread_conf untaint_path)],
)
Exporter::export_ok_tags(’vars’);
Exporter::export_ok_tags(’subs’);
}

Y ou export subroutines exactly like variables, since what's actually being exported is a symbol. The defi-
nition of these subroutines is not shown here.

Notice that we didn't use export_tags(), as it exports the variables automatically without the user asking
for them in first place, which is considered bad style. If a module automatically exports variables with
export_tags() you can stop this by not exporting at all:

use My::Config ();
In your code you can now write:

use My::Config gw(:subs :vars);

29 Jan 2004 17

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Groups of group tags:

The: al | tag from CA . pmisagroup tag of all other groups. It will require alittle more effort to imple-
ment, but you can always save time by looking at the solution in CG@ . pnis code. It's just a matter of a
little code to expand all the groups recursively.

After going through the pain of maintaining a list of variables in a big project with a huge configuration
file (more than 100 variables) and many files actually using them, | came up with a much simpler solution:
keeping all the variablesin a single hash, which is built from references to other anonymous scalars, arrays
and hashes.

Now my configuration file looks like this:

package My:: Confi g;
use strict;

BEG N {
use Exporter ();

@y::Config::1SA

@y: : Config:: EXPORT

@y: : Config:: EXPORT_OK
}

gw Exporter);
aqw() ;
qw(%) ;

use vars qw %) ;

% = (
dir => {
cgi => "/hone/httpd/perl",
docs => "/hone/ httpd/docs",
img => "/hone/httpd/docs/imges",

H
url => {
cgi => "/perl",
docs => "/",
img => "/imges",
H

color => {
hi nt = "#777777",
war n => "#990066",
normal => "#000000",

},
E

Good perl style suggests keeping a comma at the end of lists. That's because additional items tend to be
added to the end of the list. If you keep that last comma in place, you don’t have to remember to add one
when you add a hew item.

So now the script looks like this:

18 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use strict;

use My::Config gwm %) ;

use vars gqw %€)

print "Content-type: text/plain\ir\nir\n";
print "My url docs root: $c{url}{docs}\n";

Do you see the difference? The whole mess has gone, there is only one variable to worry about.

There is one small downside to taking this approach: auto-vivification. For example, if we wrote
$c{url }{doc} by mistake, perl would silently create this element for us with the value undef. When we
use strict; Perl will tell us about any misspelling of this kind for a simple scalar, but this check is
not performed for hash elements. This puts the onus of responsibility back on us since we must take
greater care. A possible solution to thisis to use pseudo-hashes, but they are still considered experimental
so we won't cover them here.

The benefits of the hash approach are significant and we can make do even better. | would like to get rid
of the Expor t er stuff completely. | remove all the exporting code so my config file now looks like:

package My:: Confi g;
use strict;
use vars qw %) ;

% = (
dir => {
cgi => "/hone/httpd/perl",
docs => "/hone/ httpd/docs",
img => "/home/httpd/docs/imges",

H
url => {
cgi => "/perl",
docs => "/",
img => "/imges",
H

color => {
hi nt = "#777777",
war n => "#990066",
normal => "#000000",

}s

E

And the code:

use strict;

use My:: Config ();

print "Content-type: text/plain\ir\n\ir\n";

print "My url docs root: $My::Config::c{url}{docs}\n";

Since we gtill want to save lots of typing, and since now we need to use a fully qualified notation like
$My:: Config::c{url}{docs}, let's use the magica Perl diasing feature. I'll modify the code to
be:

29 Jan 2004 19

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use strict;

use My:: Config ();

use vars gw %) ;

*¢ = \%W:: Config::c;

print "Content-type: text/plain\r\nir\n";
print "My url docs root: $c{url}{docs}\n";

| have adliased the *c glob with \%W: : Config::c, a reference to a hash. From now on,
%V : : Confi g:: c and % arethe same hash and you can read from or modify either of them.

Just one last little point. Sometimes you see a lot of redundancy in the configuration variables, for
example:

$cgi _dir = "/hone/httpd/perl";
$docs_dir = "/home/ httpd/ docs";
$ing_dir = "/hone/httpd/docs/images";

Now if you want to move the base path " / hone/ ht t pd" into anew place, it demands lots of typing. Of
course the solution is:

$base = "/hone/ httpd";

$cgi _dir = "$base/perl”;
$docs_dir = "$base/ docs";
$img_dir = "$docs_dir/imges";

You cannot do the same trick with a hash, since you cannot refer to its values before the definition is
finished. So this wouldn’t work:

% =
(
base => "/ hone/ httpd",
dir => {
cgi => "$c{base}/perl",
docs => "$c{base}/docs",
img => "$c{base}{docs}/images",
3

)

But nothing stops us from adding additional variables, which are lexically scoped with my(). The follow-
ing codeis correct.

ny $base = "/hone/ httpd";

% =
(
dir => {
cgi => "S$base/perl",
docs => "$base/ docs",
img => "$base/docs/i mages",
}s
E

You have just learned how to make configuration files easily maintainable, and how to save memory by
avoiding the export of variablesinto a script’s namespace.

20 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

1.7.4.2 [Reloading Configuration Fileq

First, lets look at a simple case, when we just have to look after a simple configuration file like the one
below. Imagine a script that tells you who is the patch pumpkin of the current Perl release.

Sidenote: Pumpkin A humorous term for the token (notional or real) that gives its possessor (the "pump-
king" or the "pumpkineer") exclusive access to something, e.g. applying patches to a master copy of some
source (for which the token is called the "patch pumpkin™).

use CAd ();
use strict;
ny $fname = "Larry";
ny $l name = "Wall";

ny $q = CA ->new;

print $g->header(-type=>text/htm’);
print $g->p("$fnanme $l nane hol ds the patch punpkin”
"for this Perl release.");

The script has a hardcoded value for the name. It's very simple: initialize the CGI object, print the proper
HTTP header and tell the world who is the current patch pumpkin.

When the patch pumpkin changes we don’t want to modify the script. Therefore, we put the $f nanme and
$l nane variablesinto a configuration file.

$f nane
$l nane
1;

" Qurusany"
" Sar at hy";

Please note that there is no package declaration in the above file, so the code will be evaluated in the
caler's package or in the mai n: : package if none was declared. This means that the variables $f nane
and $I name will override (or initialize if they weren't yet) the variables with the same names in the
caller's namespace. This works for global variables only--you cannot update variables defined lexicaly
(with my()) using thistechnique.

You have started the server and everything is working properly. After a while you decide to modify the
configuration. How do you let your running server know that the configuration was modified without
restarting it? Remember we are in production and server restarting can be quite expensive for us. One of
the simplest solutions is to poll the file's modification time by calling stat() before the script starts to do
real work. If we see that the file was updated, we force a reconfiguration of the variables located in this
file. We will cal the function that rel oads the configuration reread_conf() and have it accept a single argu-
ment, which is the relative path to the configuration file.

Apache: : Regi st ry calsachdir() to the script’s directory before it starts the script’s execution. So if
your CGI script isinvoked under the Apache: : Regi st ry handler you can put the configuration filein
the same directory as the script. Alternatively you can put the file in a directory below that and use a path
relative to the script directory. Y ou have to make sure that the file will be found, somehow. Be aware that
do() searchesthe librariesin the directoriesin @ NC.

29 Jan 2004 21

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use vars gw ¥\vODI Fl ED) ;
sub reread_conf{
ny $file = shift;
return unl ess defined $file;
return unless -e $file and -r _
ny $nod = -M _;
unl ess (exists $MODI FI ED{$fil e} and $MODI FI ED{$fil e} == $nod) {
ny $result;
unl ess ($result = do $file) {
warn "couldn’t parse $file: $@ if $@
warn "couldn't do $file: $!" unl ess defined $result;
warn "couldn't run $file" unl ess $resul t;

}
$MODI FI ED{ $fi |l e} = $nmod; # Update the MODI FI CATI ON tines

} # end of reread_conf

Notice that we use the == comparison operator when checking file's modification timestamp, because all
we want to know whether the file was changed or not.

When the require(), use() and do() operators successfully return, the file that was passed as an argument is
inserted into %8 NC (the key is the name of the file and the value the path to it). Specifically, when Perl
sees require() or use() in the code, it first tests % NC to see whether the file is aready there and thus
loaded. If the test returns true, Perl saves the overhead of code re-reading and re-compiling; however
calling do() will (re)load regardless.

You generaly don't notice with plain perl scripts, but in mod_perl it's used al the time; after the first
request served by a process al the files loaded by require() stay in memory. If the file is preloaded at
server startup, even the first request doesn’'t have the loading overhead.

We use do() to reload the code in this file and not require() because while do() behaves almost identically
to require(), it reloads the file unconditionally. If do() cannot read thefile, it returnsundef and sets$! to
report the error. If do() can read the file but cannot compileit, it returnsundef and sets an error message
in $@ If the file is successfully compiled, do() returns the value of the last expression evaluated.

The configuration file can be broken if someone has incorrectly modified it. We don’t want the whole
service that uses that file to be broken, just because of that. We trap the possible failure to do() the file and
ignore the changes, by the resetting the modification time. If do() fails to load the file it might be a good
ideato send an email to the system administrator about the problem.

Notice however, that since do() updates %8 NC like require() does, if you are using Apache: : St at | NC
it will attempt to reload this file before the reread_conf() call. So if the file wouldn’t compile, the request
will be aborted. Apache: : St at | NC shouldn’t be used in production (because it slows things down by
stat()’ing all the fileslisted in %4 NC) so this shouldn’t be a problem.

Note that we assume that the entire purpose of this function is to reload the configuration if it was
changed. This is fail-safe, because if something goes wrong we just return without modifying the server
configuration. The script should not be used to initialize the variables on its first invocation. To do that,
you would need to replace each occurrence of return() and warn() with die(). If you do that, take alook at
the section "Redirecting Errorsto the Client instead of error_log".

22 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

| used the above approach when | had a huge configuration file that was loaded only at server startup, and
another little configuration file that included only a few variables that could be updated by hand or through
the web interface. Those variables were initialized in the main configuration file. If the webmaster breaks
the syntax of this dynamic file while updating it by hand, it won't affect the main (write-protected) config-
uration file and so stop the proper execution of the programs. Soon we will see a simple web interface
which alows us to modify the configuration file without actually breaking it.

A sample script using the presented subroutine would be:

use vars gw %0ODI FI ED $f name $I nane) ;
use CAd ();
use strict;

my $q = CA ->new,

print $g->header(-type=>"text/plain’);

ny $config file = "./config.pl";

reread_conf ($config_file);

print $g->p("$fnane $l nane hol ds the patch punpkin"
"for this Perl release.");

sub reread_conf{
my $file = shift;
return unl ess defined $file;
return unless -e $file and -r _
ny $nod = -M _;
unl ess ($MODI FI ED{$fil e} and $MODI FI ED{$fil e} == $nod) {
my $result;
unl ess ($result = do $file) {
warn "couldn’t parse $file: $@ if $@
warn "couldn't do $file: $!'" unl ess defined $result;
warn "couldn't run $file" unl ess $result;

}
$MODI FI ED{ $fil e} = $npd; # Update the MODI FI CATION tines

} # end of reread_conf

Remember that you should be using (stat $file)[9] instead of - M $fi | e if you are modifying
the $MT variable. In some of my scripts, | reset $" T to the time of the script invocation with " $2T =
time()". That way | can perform - Mand the similar (- A, - C) file status tests relative to the script invo-
cation time, and not the time the process was started.

If your configuration file is more sophisticated and it declares a package and exports variables, the above
code will work just as well. Even if you think that you will have to import() variables again, when do()
recompiles the script the originally imported variables get updated with the values from the reloaded code.

1.7.4.3 [Dynamically updating configur ation fileg

The CGl script below allows a system administrator to dynamically update a configuration file through the
web interface. Combining this with the code we have just seen to reload the modified files, you get a
system which is dynamically reconfigurable without needing to restart the server. Configuration can be
performed from any machine having just aweb interface (a simple browser connected to the Internet).

29 Jan 2004 23

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Let's say you have aconfiguration file like this:
package Mai nConfi g;

use strict;
use vars qw %) ;

% = (
nanme = "Larry Vall",
rel ease => "5.000",
comments => "Adding nore ways to do the sanme thing :)",

ot her => "More config val ues",
hash => { foo => "ouch",
bar => "geez",
b
array => [gw a b c)],

)

Y ou want to make the variables nane, r el ease and comment s dynamically configurable. Y ou want to
have a web interface with an input form that alows you to modify these variables. Once modified you
want to update the configuration file and propagate the changes to all the currently running processes.
Quite asimple task.

Let's ook at the main stages of the implementation. Create a form with preset current values of the vari-
ables. Let the administrator modify it and submit the changes. Validate the submitted information
(numeric fields should carry numbers, literals-words, etc). Update the configuration file. Update the
modified value in the memory of the current process. Present the form as before but with updated fields if
any.

The only part that seems to be complicated to implement is a configuration file update, for a couple of
reasons. If updating the file breaks it, the whole service won't work. If the file is very big and includes
comments and complex data structures, parsing the file can be quite a challenge.

So let’s simplify the task. If al we want is to update a few variables, why don’t we create atiny configura-
tion file with just those variables? It can be modified through the web interface and overwritten each time
there is something to be changed. This way we don’'t have to parse the file before updating it. If the main
configuration file is changed we don't care, we don’t depend on it any more.

The dynamically updated variables are duplicated, they will be in the main file and in the dynamic file.
We do this to simplify maintenance. When a new release is installed the dynamic configuration file won't
exist at all. It will be created only after the first update. As we just saw, the only change in the main code
isto add a snippet to load thisfile if it exists and was changed.

This additional code must be executed after the main configuration file has been loaded. That way the
updated variables will override the default values in the main file.

24 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines.

META: extend on the comments;

remenber to run this code in taint node

use strict;

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use vars gwm $q % $dynam c_config_file %ars_to_change %alidation_rules);

use CAd ();

use lib gw.);
use MainConfig ();:
*c¢ = \%wai nConfig::c;

$dynanmi c_config_file = "./config.pl";

load the dynamic configuration file if

it exists, and override the

default values fromthe main configuration file
do $dynamic_config file if -e $dynam c_config_file and -r _

fields that can be changed and their titles

%ars_to_change =

(

" nane’ => "Patch Punmpkin’s Nane",
"release’ => "Current Perl Rel ease",
"coments’ => "Rel ease Comments",

)

%alidation_rules =

(

' narne’ => sub { $_[0] =
"release’ =>sub { $ [0] =
coments’ => sub { 1;

)

$q = CA - >new,

print $g->header (-type=>"text/htm '),

$g->start_htm ();

nmy Y%updates = ();

~ [A\W s\ .]+$/; b
~ [™M\d+\ L [\d_]+%/; 1,

1

We always rewite the dynamic config file, so we want all the
vars to be passed, but to save time we will only do checking

of vars that were changed. The rest will be retrieved from

the 'prev_foo' val ues.
foreach (keys %ars_to_change) {
copy var so we can nodify it

ny $new val = $g->paran($_) || '’;

strip a possible ~Mchar (DCS/WN)

$new val =~ s/\cM/g;

push to hash if was changed
$updat es{$_} = $new_val

if defined $g->param("prev_".$_)
and $new val ne $qg->paran{“"prev_".$_);

29 Jan 2004

25

1.7.

26

4

#* H R H

H*HH K HH

#

Configuration Files: Writing, Dynamically Updating and Reloading

Note that we cannot trust the previous values of the variables
since they were presented to the user as hidden form vari abl es,
and the user can mangle those. W don’t care: it cannot do any
damage, as we verify each variable by rules which we define.

Process if there is sonething to process. WIIl be not called if
it’s invoked a first tine to display the formor when the form
was submitted but the values weren't nodified (we know t hat by
conparing with the previous values of the variables, which are
the hidden fields in the form

process and update the values if valid
process_change_confi g(%updates) if %updates;

print the update form
conf_nodification_form));

update the config file but first validate that the values are correct ones

HHHBHBHIRH B H R R R R
sub process_change_confi g{

nmy %updates = @;

we will list here all the nmalformatted vars

nmy %al formatted =

()

print $g->b("Trying to validate these val ues
");
foreach (keys %updates) {

print "<DT>$_

</ B> => <PRE>$updat es{$_} </ PRE>";

now we have to handl e each var to be changed very carefully
since this file goes imediately into production!
$mal formatted{$_} = del ete $updates{$_}

unl ess $validation_rul es{$_}->($updates{$_});

} # end of foreach (keys %updates)

print warnings if there are any invalid changes

print $q->hr,

$9->p($g- >b(gg{ Var ni ng! These vari abl es were changed
but found nal fornmed, thus the original

val ues will be preserved.})
)
join(",
",
map { $q9->b($vars_to_change{$_}) . " : $malformatted{$_}\n"

} keys %l f or mat t ed)

if %l formatted;

Now conplete the vars that weren't changed fromthe

$q- >paran(’ prev_

var’') val ues

map { $updates{$_} = $g->paran(’prev_'.$_) unless exists $updates{$_}
} keys %ars_t o_change;

Now we have all
config file

the data that should be witten into the dynanic

29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

escape single quotes "'" while creating a file
ny $content = join "“\n",

map { $updates{$_} =~ s/ (['\\])/\\$1/g;

"$c{’ . $_ . "} = " . $updates{$_} . "';\n"
} keys %updat es;

now add '1;’ to make require() happy
$content .= "\nl;";

keep the dummy result in $res so it won’t conplain
eval {nmy $res = S$content};
if (3@ {
print qg{Warning! Sonething went wong with config file
generation! <P> The error was :
<PRE>$@/ PRE>};
return;

}
print $qg->hr;

overwite the dynamc config file
use Synbol ();
ny $fh = Synbol ::gensyn();
open $fh, ">$dynamic_config_file.bak"

or die "Can't open $dynamic_config file.bak for witing :$!' \n";
flock $fh,2; # exclusive |ock
seek $fh,0,0; # rewind to the start
truncate $fh, 0; # the file mght shrink!

print $fh $content;

cl ose $fh;

OK, now we nmake a real file
renanme "$dynam c_config file.bak", $dynam c_config file
or die "Failed to renane: $'";

rerun it to update variables in the current process! Note that
it won't update the variables in other processes. Special

code that watches the timestanps on the config file will do this
work for each process. Since the next invocation will update the
configurati on anyway, why do we need to load it here? The reason
is sinple: we are going to fill the forms input fields with

t he updat ed dat a.

do $dynami c_config_file;

HOH K HHF R

} # end sub process_change_config

HHHBHBHIHH B H SRR H R AR
sub conf_nodification_forn

print $g->center ($q->h3("Update Forni));
print $q->hr,
$9->p(qq{This formallows you to dynanically update the current

configuration. You don\'t need to restart the server in
order for changes to take an effect}

)

set the previous settings in the fornis hidden fields, so we

29 Jan 2004 27

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

know whet her we have to do sone changes or not
map {$g->paran("prev_$_",$c{$_}) } keys %Wars_to_change;

rows for the table, go into the form
my @onfigs = ();

prepare one textfield entries
push @onfi gs,

map {
$qg- >t d(
$g->b(" $vars_to_change{$_}:"),
),
$g- >t d(
$g- >t extfiel d(-name = $_,

-defaul t => $c{$_},
-override =>1,
-size => 20,
-maxl ength => 50,
)

)

} aw(nane rel ease);

prepare multiline textarea entries
push @onfigs,

map {
$g- >t d(
$g->b(" $vars_to_change{$_}:"),
),
$g- >t d(
$g- >t ext ar ea(- nane = $_,

-default => $c{$_},
-override => 1,

-rows => 10,
-colums => 50,
-wrap => "HARD",

)
).

} gw(coments);

print $g->startform(’ POST , $g->url),"\n",

$g- >center ($q->tabl e(map {$g->Tr($_),"\n",} @onfigs),
$g->submit (', Update!’),"\n",
),

map ({$g9->hidden("prev_".$_, $g->paranm(“prev_".$_))."\n" }

keys %ars_to_change), # hidden previous val ues
$q->br, "\ n",
$g- >endf orm "\ n",
$g->hr, "\ n",
$g->end_htm ;

} # end sub conf_nodification_form

Once updated the script generates afile like:

28

29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.8 Name collisions with Modules and libs

$c{release} = '5.6";

$c{nane} = ’'Curusany Sarathy’;
$c{coments} = 'Perl rules the world!’;
1;

1.7.5 [Reloading handlerg

If you want to reload a perlhandler on each invocation, the following trick will do it:

Per| Handl er "sub { do 'MWTest.pm; MTest::handl er(shift) }"

do() reloads My Test . pmon every request.

1.8 IName collisonswith M odules and libg

This section requires an in-depth understanding of use(), require(), do(), %INC and @INC .

To make things clear before we go into details: each child process has its own %4 NC hash which is used to
store information about its compiled modules. The keys of the hash are the names of the modules and files
passed as arguments to require() and use(). The values are the full or relative paths to these modules and

files.

Suppose we haverny- 1 i b. pl and MyModul e. pmboth located at / home/ ht t pd/ per |/ ny/ .

® /home/ httpd/ perl/nyl/ isin @ NCat server startup.

require "nmy-lib.pl";

use MyMbdul e. pm

print $INC{"ny-lib.pl"},"\n";
print $INC{"M/Mdule.pni},"\n";

prints:

[hone/ htt pd/ perl /ny/ my-1ib. pl
/ horre/ ht t pd/ per |/ my/ MyModul e. pm

Addinguse li b:
use lib gw.);
require "my-lib.pl";
use MyModul e. pm
print $IN{"ny-lib.pl"},"\n";
print $I NC["M/Modul e. pnt'}, "\ n";

prints:

29 Jan 2004

29

1.8 Name collisions with Modules and libs

ny-1ib. pl
M/Modul e. pm

e /hone/ httpd/ perl/my/ isn'tin @ NC at server startup.

require "my-lib.pl";

use MyModul e. pm

print $SINK"ny-lib.pl"},"\n";
print $INC["M/Mdul e. pni'}, "\ n";

wouldn’t work, since perl cannot find the modules.
Addinguse |i b:

use lib gw.);

require "nmy-lib.pl";

use MyModul e. pm

print $INC{"ny-lib.pl"},"\n";
print $INC{"M/Mdule.pni},"\n";

prints:
nmy-1ib. pl
MyModul e. pm

Let'slook at three scripts with faults related to name space. For the following discussion we will consider
just oneindividua child process.

® Scenariol

30

First, You can't have two identical module names running on the same server! Only the first one
found in a use() or require() statement will be compiled into the package, the request for the other
module will be skipped, since the server will think that it's already compiled. Thisisadirect result of
using %8 NC, which has keys egual to the names of the modules. Two identical names will refer to the
same key in the hash. (Refer to the section ’Looking inside the server’ to find out how you can know
what isloaded and where.)

So if you have two different Foo modules in two different directories and two scriptsscri pt 1. pl
andscri pt 2. pl, placed like this:

./tool 1/ Foo. pm
./tool 1/t ool 1. pl
./tool 2/ Foo. pm
./tool 2/t ool 2. pl

Where some sample code could be:

./tool 1/t ool 1. pl

use Foo;
print "Content-type: text/plain\r\n\r\n";
print "I'm Script nunmber One\n";

foo();

29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines.

./tool 1/ Foo. pm

sub foof

print "l'm Tool Nunber One!\n";

}
1

./tool 2/tool 2. pl

use Foo;

print "Content-type: text/plain\r\n\r\n";
print "I'm Script nunmber Two\n";

foo();

./tool 2/ Foo. pm

sub foo{

print ""m Tool Nunber Two!\n";

}
1

1.8 Name collisions with Modules and libs

Both scripts call use Foo; . Only the first one called will know about Foo. When you call the
second script it will not know about Foo at all--it’s like you' ve forgotten to write use Foo; . Run
the server in single server mode to detect this kind of bug immediately.

Y ou will seethe following in the error_log file:

Undef i ned subroutine

&Apache: : ROOT: : perl::tool 2::tool 2_2epl::foo called at

[horre/ htt pd/ per |/t ool 2/t ool 2. pl

® Scenario?2

If the files do not declare a package, the above is true for libraries (i.e. my-lib.pl") you require() as

well:

Suppose that you have a directory structure like this:

./tool 1/ confi g. pl
./tool 1/t ool 1. pl
./tool 2/ config. pl
./tool 2/t ool 2. pl

and both scripts contain:

use lib gw(.);
require "config.pl";

while ./tool I/config.pl can be something like this:

$foo = O;
1

29 Jan 2004

31

1.8 Name collisions with Modules and libs

and ./tool2/config.pl:

$foo = 1;
1,

The second scenario is not different from the first, there is amost no difference between use() and
require() if you don’'t have to import some symbols into a calling script. Only the first script served
will actually do the require(), for the same reason as the example above. %4 NC already includes the
key "config.pl"!

® Scenario 3

It isinteresting that the following scenario will fail too!
./tool/config.pl

./tool/tool 1. pl
./tool/tool 2. pl

wheret ool 1. pl andt ool 2. pl both require() thesameconfi g. pl .
There are three solutions for this:
e Solution 1

The first two faulty scenarios can be solved by placing your library modules in a subdirectory struc-
ture so that they have different path prefixes. The file system layout will be something like:

./tool 1/ Tool 1/ Foo. pm

./tool 1/t ool 1. pl

./ tool 2/ Tool 2/ Foo. pm
./tool 2/t ool 2. pl

And modify the scripts:

use Tool 1: : Foo;
use Tool 2: : Foo;

For require() (scenario number 2) use the following:
./tool 1/tool 1-1i b/ confi g. pl
./tool 1/t ool 1. pl

./tool 2/tool 2-1i b/ config. pl
./tool 2/t ool 2. pl

And each script contains respectively:

use lib gw.);
require "tool 1-1ib/config.pl"

use lib gw.);
require "tool 2-1ib/config.pl"

32 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.8 Name collisions with Modules and libs

This solution isn't good, since while it might work for you now, if you add another script that wants
to use the same module or config.pl file, it would fail aswe saw in the third scenario.

Let’s see some better solutions.
e Solution 2

Another option isto use afull path to the script, so it will be used as akey in %INC

require "/full/path/to/the/config.pl";

This solution solves the problem of the first two scenarios. | was surprised that it worked for the third
scenario as well!

With this solution you lose some portability. If you move the tool around in the file system you will
have to change the base directory or write some additional script that will automatically update the
hardcoded path after it was moved. Of course you will have to remember to invokeit.

e Solution 3
Make sure you read al of this solution.

Declare a package name in the required files! It should be unique in relation to the rest of the package
names you use. %INCwill then use the unique package name for the key. It's a good idea to use at
least two-level package names for your private modules, e.g. MyProject ::Carp and not Carp,
since the latter will collide with an existing standard package. Even though a package may not exist
in the standard distribution now, a package may come along in alater distribution which collides with
aname you'’ ve chosen. Using atwo part package name will help avoid this problem.

Even a better approach is to use three level naming, like Compayy Name:Project -
Name:Module , which is most unlikely to have conflicts with later Perl releases. Foresee problems
like this and save yourself future trouble.

What are the implications of package declaration?

Without package declarations, it is very convenient to use() or require() files because all the variables
and subroutines are part of the main:: package. Any of them can be used as if they are part of the
main script. With package declarations things are more awkward. You have to use the
Package::func tion () method to call a subroutine from Package and to access a global vari-
able $foo inside the same package you have to write $Package::foo

Lexicaly defined variables, those declared with my() inside Package will be inaccessible from
outside the package.

Y ou can leave your scripts unchanged if you import the names of the global variables and subroutines
into the namespace of package main:: likethis:

29 Jan 2004 33

1.8 Name collisions with Modules and libs

use Mdul e gw(: nysubs sub_b $varl :nyvars);

Y ou can export both subroutines and global variables. Note however that this method has the disad-
vantage of consuming more memory for the current process.

Seeper | doc Exporter for information about exporting other variables and symbols.

This completely covers the third scenario. When you use different module names in package declara-
tions, as explained above, you cover the first two as well.

® A Hack

The following solution should be used only as a short term bandaid. You can force reloading of the
modules by either fiddling with 24 NC or replacing use() and require() calls with do().

If you delete the module entry from the %8 NC hash, before calling require() or use() the module will
be loaded and compiled again. For example:

./ project/runA pl

BEG N {
del ete $I NC{"MyConfig. pni'};
}

use lib gw.);

use MyConfi g;

print "Content-type: text/plain\n\n";
print "Script An";

print "lInside project: ", project_nanme();

Apply the samefix to runB.pl.

Another aternative isto force module reload via do():

./ project/runA. pl

use lib gw.);

do "MyConfig. pnt;

print "Content-type: text/plain\n\n";

print "Script B\n";

print "lInside project: ", project_nane();
Apply the samefix to runB.pl.

If you needed to import() something from the loaded module, call the import() method explicitly. For
exampleif you had:

use MyConfig gw(foo bar);

now the code will look as;

34 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.9 More package name related issues

do "MyConfig. pn';
MyConfi g->i nport (gw(foo bar));

Both presented solutions are ineffective, since the modules in question will be reloaded on each
reguest, lowing down the response times. Therefore use these only when a very quick fix is needed
and provide one of the more robust solutions discussed in the previous sections.

Seedsotheper | nodl i b and per | nod manpages.

From the above discussion it should be clear that you cannot run development and production versions of
the tools using the same apache server! You have to run a separate server for each. They can be on the
same machine, but the servers will use different ports.

1.9 Mor e package namerelated issues

If you have the following:

Per | Handl er Apache: : Wrk: : Foo
Per | Handl er Apache: : Work: : Foo: : Bar

And you make a request that pulls in Apache/ Wrk/ Foo/ Bar. pm first, then the
Apache: : Wrk: : Foo package gets defined, so mod perl does not try to pull in
Apache/ Wor k/ Foo. pm

1.10| END and DATA tokens

Apache: : Regi st ry scriptscannot contain __ END _ or __ DATA _ tokens.

Why? Because Apache: : Regi st ry scripts are being wrapped into a subroutine called handl er, like
the script at URI / per | /test. pl :

print "Content-type: text/plain\ir\n\ir\n";
print "H";

When the script is being executed under Apache: : Regi st ry handler, it actually becomes:

package Apache:: ROOT: : perl::test_2epl;

use Apache gw(exit);

sub handl er {
print "Content-type: text/plain\r\n\r\n";
print "H";

}

Soif you happentoputan __ END tag, like:
print "Content-type: text/plain\r\n\ir\n";
print "H";

__END__
Sone text that wouldn't be nornally executed

29 Jan 2004 35

1.11 Output from system calls

it will be turned into:

package Apache:: ROOT: : perl::test_2epl;
use Apache gwexit);
sub handl er {
print "Content-type: text/plain\r\n\ir\n";
print "H";
__END__
Sone text that wouldn't be nornmally executed

}
and you try to execute this script, you will receive the following error:

M ssing right bracket at line 4, at end of line
Perl cuts everything after the _ END__ tag. The same appliestothe _ DATA _ tag.

Also, remember that whatever applies to Apache: : Regi stry scripts, in most cases applies to
Apache: : Per | Run scripts.

1.11 [Output from system calls

The output of systen(), exec(), and open(PI PE, "| progrant) calls will not be sent to the
browser unless your Perl was configured with sf i o.

Y ou can use backticks as a possible workaround:

print ‘command here';

But you' re throwing performance out the window either way. It's best not to fork at al if you can avoid it.
See the "Forking or Executing subprocesses from mod_perl" section to learn about implications of
forking.

Also read about Apache::SubProcess for overridden system() and exec() implementations that work with
mod_perl.

1.12 |Using format() and write()

The interface to filehandles which are linked to variables with Perl’ stig() function is not yet complete. The
format() and write() functions are missing. If you configure Perl with sfi o, write() and format() should
work just fine.

Otherwise you could use sprintf() to replace format(): ##. ## becomes %2. 2f and ####. ## becomes
%, 2f .

Pad all strings with (" " x 80) before using, and set their length with: %.25s for a max 25 char string. Or
prefix the string with (" " x 80) for right-justifying.

36 29 Jan 2004

CGlI to mod_perl Porting. mod_perl Coding guidelines. 1.13 Terminating requests and processes, the exit() and child_terminate() functions

Another alternativeisto use the Text : : Ref or mmodule.

1.13 [Terminating requests and processes, the exit() and
ichild terminate() functions

Perl’s exi t () built-in function (all versions prior to 5.6) cannot be used in mod_perl scripts. Calling it
causes the mod _perl process to exit (which defeats the purpose of using mod perl). The
Apache: : exi t () function should be used instead. Starting from Perl version 5.6 mod_perl will over-
ride exit() behind the scenes, using CORE: : GLOBAL.: : , anew magical package.

You might start your scripts by overriding the exit() subroutine (if you use Apache: : exi t () directly,
you will have a problem testing the script from the shell, unless you put use Apache (); into your
code.) | use the following code:

use constant | S _MODPERL => $ENV{ MOD PERL};

use subs gw(exit);

Select the correct exit function

*exit = | S_MODPERL ? \&Apache::exit : sub { CORE :exit };

Now the correct exi t () isaways chosen, whether the script is running under mod_perl, ordinary CGI or
from the shell. Notice that since we are using the constant pragma, there is no runtime overhead to select
one of the code references, since | S_MODPERL constant is folded, that block is optimized away at
compile time outside of mod_perl.

Note that if you run the script under Apache: : Regi stry, The Apache function exi t () overrides
the Perl core built-in function. While you see exit() listed in the @EXPORT_(X list of the Apache
package, Apache: : Regi st ry does something you don’t see and imports this function for you. This
means that if your script is running under the Apache: : Regi st ry handler you don't have to worry
about exit(). The same appliesto Apache: : Per | Run.

If you use CORE: : exi t () in scripts running under mod_perl, the child will exit, but neither a proper
exit nor logging will happen on theway. CORE: : exi t () cutsoff the server’slegs.

Note that Apache: : exi t (Apache: : Const ant s: : DONE) will cause the server to exit gracefully,
completing the logging functions and protocol requirements etc. (Apache::Constants::DONE == -2,
Apache::Constants::OK ==0.)

If you need to shut down the child cleanly after the request was completed, use the
$r->chi | d_t er m nat e method. You can cal it anywhere in the code, and not just at the "end". This
sets the value of the MaxRequest sPer Chi | d configuration variable to 1 and clears the keepal i ve
flag. After the request is serviced, the current connection is broken, because of the keepal i ve flag, and
the parent tells the child to cleanly quit, because MaxRequest sPer Chi | d is smaller than the number
of requests served.

Inan Apache: : Regi st ry script you would do:

29 Jan 2004 37

1.14 die() and mod_perl

Apache- >request - >chi | d_t erm nate;

or in httpd.conf:

Per | Fi xupHandl er "sub { shift->child_terninate }"

Y ou would want to use the latter example only if you wanted the child to terminate every time the regis-
tered handler is called. Probably thisis not what you want.

Even if you don't need to call child_terminate() at the end of the request if you want the process to quit
afterwards, here is an example of assigning the postprocessing handler. Y ou might do this if you wanted to
execute your own code a moment before the process quits.

ny $r = shift;
$r - >post _connection(\&exit_child);
sub exit_chil d{
some logic here if needed
$r->child_terninate;

}

The above is the code that is used by the Apache: : Si zeLi mi t module which terminates processes
that grow bigger than avalue you choose.

Apache::GTopLimit (based on libgtop and GTop. pn) is a similar module. It does the same thing, plus
you can configure it to terminate processes when their shared memory shrinks below some specified size.

1.14 |die() and mod perl|

When you write:

open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script would die() if it is unable to open the file, by aborting the script
execution, printing the death reason and quitting the Perl interpreter.

You will hardly find a properly written Perl script that doesn’t have at least one dig() statement in it, if it
has to cope with system calls and the like.

A CGI script running under mod_cgi exits on its completion. The Perl interperter exits as well. So it
doesn't really matter whether the interpreter quits because the script died by natural death (when the last
statement was executed) or was aborted by a dig() statement.

In mod_perl we don’t want the interpreter to quit. We already know that when the script completes its
chores the interpeter won't quit. There is no reason why it should quit when the script has stopped because
of dig(). Asaresult calling die() won't quit the process.

And this is how it works--when the dig() gets triggered, it's mod perl’s $SI G __ DI E__} handler that
logs the error message and calls Apache::exit() instead of CORE::dig(). Thus the script stops, but the
process doesn't quit.

38 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.15 Return Codes

Here is an example of such trapping code, although it isn’t the real code:

$SIG_DIE__} = sub { print STDERR @; Apache::exit(); }

1.15 [Return Codes

Apache: : Regi st ry normally assumes a return code of OK (200). If you want to send another return
code, use $r - >st at us() :

use Apache:: Constants gw NOT_FOUND) ;
$r - >st at us(NOT_FOUND) ;

Of course if you do that, you don’t have to call $r - >send_ht t p_header () (assuming that you have
Per| SendHeader O f).

1.16 [Testing the Code from the Shell

Your CGlI scriptswill not yet run from the command line unlessyouuse Cd : : Swi t ch or C3 . pmand
have Perl 5.004 or later. They must not make any direct calls to Apache' s Perl API methods.

1.17 [I/O isdifferent

If you are using Perl 5.004 or later, most CGI scripts can run under mod_perl untouched.

If you're using 5.003, Perl’s built-inr ead() and pri nt () functions do not work as they do under CGlI.
If you'reusing CA . pm use$quer y- >pri nt instead of plainol’ print ().

1.18 [STDIN, STDOUT and STDERR streams

In mod_perl both STDI N and STDOUT are tied to the socket the request came from. Because the C level
STDOUT is not hooked up to the client, you can re-open the STDOUT filehandler using tie(). For
example if you want to dup an STDOUT filehandler and for the code to work with mod_perl and without
it, the following example will do:

use constant |S_MODPERL => $ENV{ MOD_PERL};
if (1 S_MODPERL) ({
tie *QUT, ’'Apache’;
} else {
open (QUT, ">-");
}

Note that OUT was picked just as an example -- there is nothing special about it. If you are looking to redi-
rect the STDOUT stream into a scalar, see the|Redirecting STDOUT into a String section.

STDERRIstied to the file defined by the Er r or Log directive.

29 Jan 2004 39

1.19 Redirecting STDOUT into a Scalar

1.19 |Redirecting STDOUT into a Scalar

Sometimes you have a situation where a black box functions prints the output to STDOUT and you want to
get this output into a scalar. Thisis just as valid under mod_perl, where you want the STDOUT to be tied
to the Apache object. So that's where the | O : St ri ng package comes to help. You can re-tig() the
STDOUT (or any other filehandler to a string) by doing asimple select() onthel G : St ri ng object and
at the end to re-tie() the STDOUT back to its original stream:

ny $str;
ny $str_fh = 1G:String->new($str);
ny $old_fh = select($str_fh);

some function that prints to currently selected file handler.
print_stuff()

reset default fh to previous value
select ($old_fh) if defined $old_fh;

1.20 |Apache::print() and CORE::print()

Under mod_perl CORE: : pri nt () will redirect its data to Apache: : print () since the STDOUT
filehandle is tied to the Apache module. This allows us to run CGI scripts unmodified under
Apache: : Regi st ry by chaining the output of one content handler to the input of the other handler.

Apache: : print () behavesmostly like the built-in print() function. In addition it sets a timeout so that
if the client connection is broken the handler won't wait forever trying to print data downstream to the
client.

There is aso an optimization built into Apache: : pri nt (). If any of the arguments to the method are
scalar references to strings, they are automatically dereferenced for you. This avoids needless copying of
large strings when passing them to subroutines. For example:

$l ong_string = "A" x 10000000;
$r->print(\$l ong_string);

If you still want to print the reference you can always call:
$r->print(\\$foo);
or by forcing it into ascalar context:

print (scal ar ($f 00));

1.21 |Global Variables Persistence

Since the child process generally doesn’'t exit before it has serviced severa requests, global variables
persist inside the same process from request to request. This means that you must never rely on the value
of the global variable if it wasn't initialized at the beginning of the request processing. See "Variables
globally, lexically scoped and fully qualified" for more information.

40 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.22 Generating correct HTTP Headers

You should avoid using global variables unless it's impossible without them, because it will make code
development harder and you will have to make certain that all the variables are initialized before they are
used. Use my() scoped variables wherever you can.

Y ou should be especialy careful with Perl Specia Variables which cannot be lexically scoped. You have
tousel ocal () instead.

Here is an example with Perl hash variables, which store the iteration state in the hash variable and that
state persists between requests unless explicitly reset. Consider the following registry script:

#file:hash_iteration. pl

Heoom e e e eee e
our %ash;
O%ash = map {$_ => 11} '"a ..’ ¢’ unless %ash;

print "Content-type: text/plain\n\n";
for (my ($k, $v) = each %hash) {
print "$k $v\n";
| ast;

}

That script prints different values on the first 3 invocations and prints nothing on the 4th, and then repeats
the loop. (when you run with httpd -X). There are 3 hash key/value pairs in the global variable %hash.

In order to get the iteration state to its initial state at the beginning of each request, you need to reset the
iterator as explained in the manpage for theeach() operator. So adding:

keys %hash;

before using %hash solves the problem for the current example.

1.22 |Generating correct HTTP Header s

A HTTP response header consists of at least two fields. HTTP response and MIME type header
Cont ent -t ype:

HTTP/ 1.0 200 K
Content - Type: text/plain

After adding one more new line, you can start printing the content. A more complete response includes the
date timestamp and server type, for example:

HTTP/ 1.0 200 K

Dat e: Tue, 28 Dec 1999 18:47:58 GVI

Server: Apache/1.3.10-dev (Unix) nod_perl/1.21 01-dev
Cont ent - Type: text/plain

To notify that the server was configured with KeepAlive Off, you need to tell the client that the connection
was closed, with:

29 Jan 2004 41

1.22 Generating correct HTTP Headers

Connection: close

There can be other headers as well, like caching control and others specified by the HTTP protocol. Y ou
can code the response header with asingle print():

print gqg{HTTP/ 1.1 200 OK
Date: Tue, 28 Dec 1999 18:49:41 GMIr
Server: Apache/ 1. 3.10-dev (Unix) nod_perl/1.21_01-dev
Connection: close
Content-type: text/plain

b
or with a"here" style print:
print <<ECT;
HTTP/ 1.1 200 K
Dat e: Tue, 28 Dec 1999 18:49:41 GVI
Server: Apache/1.3.10-dev (Unix) nod_perl/1.21 01-dev
Connecti on: cl ose

Content-type: text/plain

EOT

Notice the double new line a the end. But you have to prepare a timestamp string
(Apache: : Util::ht _time() doesjust this) and to know what server you are running under. You
needed to send only the response MIME type (Cont ent - t ype) under mod_cgi, so why would you want
to do this manually under mod_perl?

Actually sometimes you do want to set some headers manually, but not every time. So mod_perl gives you
the default set of headers, just like in the example above. And if you want to override or add more headers
you can do that aswell. Let’s see how to do that.

When writing your own handlers and scripts with the Perl Apache API the proper way to send the HTTP
header is with the send_http_header() method. If you need to add or override methods you can use the
header_out() method:

$r - >header _out (" Server" => "Apache Next Generation 10.0");
$r - >header _out ("Date" => "Tue, 28 Dec 1999 18:49:41 GvI");

When you have prepared al the headers you send them with:
$r->send_htt p_header;

Some headers have special aiases:
$r->content _type('text/plain');

isthe same as;

42 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.22 Generating correct HTTP Headers

$r->header _out ("Content-type" => "text/plain");

A typical handler looks like this:

$r->content _type('text/plain’);
$r->send_ht t p_header;
return K if $r->header_only;

If the client issues an HTTP HEAD request rather than the usual GET, to be compliant with the HTTP
protocol we should not send the document body, but only the HTTP header. When Apache receives a
HEAD request, header_only() returns true. If we see that this has happened, we return from the handler
immediately with an OK status code.

Generally, you don’t need the explicit content type setting, since Apache does this for you, by looking up
the MIME type of the request and by matching the extension of the URI in the MIME tables (from the
mime.types file). So if the request URI is /welcome.html, the t ext / ht m content-type will be picked.
However for CGI scripts or URIs that cannot be mapped by a known extension, you should set the appro-
priate type by using content_type() method.

The situation is alittle bit different with Apache: : Regi st ry and similar handlers. If you take a basic
CGil script like this:

print "Content-type: text/plain\r\nir\n";
print "Hello world";

it wouldn’t work, because the HTTP header will not be sent out. By default, mod_perl does not send any
headersitself. Y ou may wish to change this by adding

Per | SendHeader On

in the Apache: : Regi st ry <Locat i on> section of your configuration. Now, the response line and
common headers will be sent as they are by mod_cgi. Just as with mod_cgi, Per | SendHeader will not
send the MIME type and a terminating double newline. Y our script must send that itself, e.g.:

print "Content-type: text/htm\r\n\r\n";

According to HTTP specs, you should send "\cM\cJ', "\015\012" or "\OXOD\OXOA" string. The "\r\n" isthe
way to do that on UNIX and MS-DOS/Windows machines. However, on a Mac "\r\n" eq "\012\015",
exactly the other way around.

Note, that in most UNIX CGI scripts, developers use a simpler "\n\n" and not "\r\n\r\n". There are occa-
sions where sending "\n" without "\r" can cause problems, make it a habit to always send "\r\n" every time.

If you use an OS which uses the EBCDIC as character set (e.g. BS2000-Posix), you should use this
method to send the Content-type header:

shift->send_http_header('text/htm");

29 Jan 2004 43

1.22 Generating correct HTTP Headers

The Per | SendHeader On directive tells mod_perl to intercept anything that looks like a header line
(such as Content-Type: text/plain) and automatically turn it into a correctly formatted
HTTP/1.0 header, the same way it happens with CGI scripts running under mod_cgi. This allows you to
keep your CGI scripts unmodified.

You can use $ENV{ PERL_SEND HEADER} to find out whether Per | SendHeader isOnor O f. You
useit in your module like this:

i f ($ENV{ PERL_SEND HEADER}) {
print "Content-type: text/htm\r\n\r\n";

}

el se {
ny $r = Apache->request;
$r->content _type(’'text/htm’);
$r->send_htt p_header;

}

Note that you can always use the code in the else part of the above example, no matter whether the
Per | SendHeader directiveis On or Off.

If you use CA . pnis header () function to generate HTTP headers, you do not need to activate this
directive because CE . pmdetects mod_perl and callssend_ht t p_header () for you.

There is no free lunch--you get the mod_cgi behavior at the expense of the small but finite overhead of
parsing the text that is sent. Note that mod_perl makes the assumption that individual headers are not split
across print statements.

The Apache: : print () routine has to gather up the headers that your script outputs, in order to pass
them to $r - >send_ht t p_header . This happens in src/ nodul es/ per |/ Apache. xs (print)
and Apache/ Apache. pm(send_cgi header). There is a shortcut in there, namely the assumption
that each print statement contains one or more complete headers. If for example you generate a
Set - Cooki e header by multiplepri nt () statements, likethis:

print "Content-type: text/plain\n";

print "Set-Cookie: iscookietext)\;

print "expires=Wednesday, 09-Nov-1999 00: 00:00 GvIn; "
print "path=\/\; "

print "domai n=\.myserver.com;

print "\r\n\r\n";

print "hello";

Your generated Set - Cooki e header is split over a number of print() statements and gets lost. The above
example wouldn’'t work! Try thisinstead:

ny $cookie = "Set-Cookie: iscookietext\; "

$cooki e .= "expi res=\ednesday, 09-Nov-1999 00: 00: 00 GwI\;
$cookie .= "path=\/\;
$cooki e .= "domai n=\. nmyserver.conm ; "

print "Content-type: text/plain\n",
print "$cookie\r\n\r\n";
print "hello";

44 29 Jan 2004

CGI to mod_perl Porting. mod_perl Coding guidelines. 1.22 Generating correct HTTP Headers

Of course using a specia purpose cookie generator modules, like Apache: : Cooki e, Cd : : Cooki e
etc isan even cleaner solution.

Sometimes when you call a script you see an ugly "Content-Type: text/html" displayed at the top of the
page, and of course the rest of the HTML code won't be rendered correctly by the browser. As you have
seen above, this generally happens when your code has aready sent the header so you see the duplicate
header rendered into the browser’s page. This might happen when you call the CA . pm$qg- >header
method or mod_perl’s $r - >send_ht t p_header .

If you have a complicated application where the header might be generated from many different places,
depending on the calling logic, you might want to write a special subroutine that sends a header, and keeps
track of whether the header has been already sent. Of course you can use a global variable to flag that the
header has already been sent:

use strict;
use vars gw $header _pri nted};
$header _printed = 0;

print_header("text/plain");
print "It worked!\n";
print_header("text/plain");

sub print_header {
ny $type = shift || "text/htm";
unl ess ($header _printed) {
$header _printed = 1
ny $r = Apache->request;
$r->content _type(S$type);
$r->send_htt p_header;
}
}

$header _pri nt ed isthe variable that flags whether the header was sent or not and it gets initialized to
false (0) at the beginning of each code invocation. Note that the second invocation of print_header() within
the same code, will do nothing, since $header _pr i nt ed will become true after print_header() will be
executed for the first time.

A solution that is alittle bit more memory friendly isto use afully qualified variable instead:

use strict;
$mai n: : header _printed = 0;

print_header("text/plain");
print "It worked!\n";
print_header("text/plain");

sub print_header {
ny $type = shift || "text/htm";
unl ess ($main:: header _printed) {
$mai n: : header _printed = 1
ny $r = Apache->request;

29 Jan 2004 45

1.22 Generating correct HTTP Headers

$r->content _type($type)
$r->send_http_header;
}
}

We just removed the global variable predeclaration, which allowed usto use $header pri nt ed under
"use strict" andreplaced $header _pri nt ed with $mai n: : header _pri nt ed;

Y ou may become tempted to use a more elegant Perl solution--the nested subroutine effect which seemsto
be a natural approach to take here. Unfortunately it will not work. If the process was starting fresh for each
script or handler, like with plain mod_cgi scripts, it would work just fine:

use strict;

print_header("text/plain");
print "It worked!\n";
print_header("text/plain");

{
ny $header printed = 0;
sub print_header {
ny $type = shift || "text/htm";
unl ess ($header _printed) {
$header _printed = 1
ny $r = Apache->request;
$r->content _type(S$type);
$r->send_htt p_header;

}
}
}

In this code $header _pri nt ed is declared as lexicaly scoped (with my()) outside the subroutine
print_header() and modified inside of it. Curly braces define the block which limits the scope of the lexi-
cally variable.

This means that once print_header() setsit to 1, it will stay 1 aslong as the code is running. So all subse-
guent calls to this subroutine will just return without doing a thing. This would serve our purpose, but
unfortunately it will work only for the first time the script is invoked within a process. When the script is
executed for the second or subsequent times and is served by the same process--the header will not be
printed anymore, since print_header() will remember that the value of $header _pri nt ed is equa to
1--it won’'t be reinitialized, since the subroutine won't be recompiled.

Why can't we use a lexical without hitting the nested subroutine effect? Because when we' ve discussed
[Apache::Registry secretqwe have seen that the code is wrapped in ahandl er routine, effectively turning
any subroutines within the file a script resides in into nested subroutines. Hence we are forced to use a
global in this situation.

Let’s make our smart method more elaborate with respect to the Per | SendHeader directive, so that it
always does the right thing. It's especialy important if you write an application that you are going to
distribute, hopefully under one of the Open Source or GPL licenses.

46 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.23 NPH (Non Parsed Headers) scripts

Y ou can continue to improve this subroutine even further to handle additional headers, such as cookies.

See also Correct Headers--A quick guide for mod_perl users

1.23 INPH (Non Par sed Header s) scripts

To run aNon Parsed Header CGlI script under mod_perl, simply add to your code:

local $| = 1;

And if you normally set Per | SendHeader On, add thisto your server’s configuration file:

<Files */nph-*>
Per | SendHeader O f
</Fil es>

1.24 BEGIN blocks

Perl executes BEG N blocks as soon as possible, at the time of compiling the code. The same is true under
mod_perl. However, since mod_perl normally only compiles scripts and modules once, either in the parent
server or once per-child, BEG N blocks in that code will only be run once. As the per | nod manpage
explains, once a BEG N block has run, it is immediately undefined. In the mod_perl environment, this
means that BEA N blocks will not be run during the response to an incoming request unless that request
happens to be the one that causes the compilation of the code.

BEQ N blocksin modules and files pulled in viar equi re() oruse() will be executed:
® Only once, if pulled in by the parent process.
® Once per-child processif not pulled in by the parent process.

® An additiona time, once per child process if the module is pulled in off disk again via
Apache: : St at | NC.

® An additional time, in the parent process on each restart if Per | Fr eshRest art isOn.
e Unpredictableif you fiddle with %4 NC yourself.
BEGQ Nblocksin Apache: : Regi st ry scriptswill be executed, as above plus:
e Only once, if pulled in by the parent process via
Apache: : Regi strylLoader.

® Once per-child processif not pulled in by the parent process.

29 Jan 2004 47

1.25 END blocks

® An additional time, once per child process, each time the script file changes on disk.

® An additiona time, in the parent process on each restart if pulled in by the parent process via
Apache::Registry Loader and Perl FreshRestart isOn.

Make sure you read Evil things might happen when using PerlFreshRestart.

1.25 [END blockg

As the perimod manpage explains, an ENDsubroutine is executed as late as possible, that is, when the
interpreter exits. In the mod_perl environment, the interpreter does not exit until the server shuts down.
However, mod_perl does make a special case for Apache::Registry scripts.

Normally, ENDblocks are executed by Perl during its perl_run() function. This is called once each
time the Perl program is executed, i.e. under mod_cgi, once per invocation of the CGI script. However,
mod_perl only calls perl_run() once, during server startup. Any ENDblocks encountered during main
server startup, i.e. those pulled in by Perl Require , PerlIMod ule and the startup file, are suspended.

Except during the cleanup phase, any END blocks encountered during compilation of
Apache::Registry scripts (including those defined in the packages use() ’d by the script), including
subsequent invocations when the script is cached in memory, are called after the script has completed.

All other END blocks encountered during other Perl*Handler call-backs, e.g. PerlChil -
dinitHandler , will be suspended while the process is running and called during child_exit()
when the process is shutting down. Module authors might wish to use $r->regis ter _cleanup() as
an alternative to ENDblocks if this behavior is not desirable. $r->regis ter _cleanup() iscdled a
the CleanUp processing phase of each request and thus can be used to emulate plain perl’s END{} block
behavior.

The last paragraph is very important for handling the case of " User Pressed the Stop Button'.

If you only want something to run once in the parent on shutdown or restart you can use $r->regis -
ter _cleanup() inthe startup.pl.

#PerlRequire startup.pl

warn "parent pid is $$\n";

Apache->server->register_cleanup
(sub { warn "server cleanup in $$\n"});

Thisis usually useful when some server wide cleanup should be performed when the server is stopped or
restarted.

1.26 CHECK And INIT Blockg

These blocks run when compilation is complete, but before the program starts. CHECKcan mean "check-
point” or "double-check” or even just "stop”. INIT stands for "initialization". The difference is subtle;
CHECHKblocks are run just after the compilation ends, INIT just before the runtime begins. (Hence the -c

command-line flag to perl runs CHECHKblocks but not INIT blocks.)

48 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.27 Command Line Switches (-w, -T, €tc)

Perl only calls these blocks during perl_parse(), which mod_perl calls once at startup time. Therefore
CHECK and | NI T blocks don’t work for the same reason these don'’t:

% perl -e 'eval qgq(CHECK { print "ok\n" })’
% perl -e "eval qq(INIT { print "ok\n" })

1.27 |[Command Line Switches (-w, -T, etc)

Normally when you run perl from the command line, you have the shell invoke it with #! / bi n/ per |
(sometimes referred to as the shebang line). In scripts running under mod_cgi, you may use perl execution
switch arguments as described in the per | r un manpage, such as-w, - T or - d. Since scripts running
under mod_perl don’t need the shebang line, al switches except - w are ignored by mod_perl. This feature
was added for a backward compatibility with CGI scripts.

Most command line switches have a special variable equivalent which allows them to be set/unset in code.
Consult the per | var manpage for more details.

1.27.1

There are three ways to enable warnings:
® Globally to all Processes
Setting:
Per| Warn On
inht t pd. conf will turn warnings On in any script.

Y ou can then fine tune your code, turning warnings Of f and On by using the war ni ngs pragmain
your scripts (or by setting the $" Wwvariable, if you prefer to be compatible with older, pre-5.6, perls).

® [ocallytoascript

#1/usr/ bin/perl -w

will turn warnings On for the scope of the script. You can turn them OfF f and On in the script with
no war ni ngs; anduse war ni ngs; asnoted above.

e | ocally toablock

This code turns warnings mode On for the scope of the block.

{
use war ni ngs;
some code

}

back to the previous node here

29 Jan 2004 49

1.27.2 Taint Mode

Thisturnsit O f :

{
no war ni ngs;
sone code

}

back to the previous node here

This turns O f only the warnings from the listed categories : (warnings categories are explicited in
theper | di ag manpage.)

{
no warni ngs gw(uninitialized unopened);
sone code

}

back to the previous node here

If you want to turn warnings On for the scope of the whole file, you can do this by adding:
use war ni ngs;

at the beginning of thefile.

While having warning mode turned On is essential for a development server, you should turn it globally
O f in a production server, since, for example, if every served request generates only one warning, and
your server serves millions of requests per day, your log file will eat up all of your disk space and your
system will die.

1.27.2 [Taint Modg

Perl’s - T switch enables Taint mode. (META: Link to security chapter). If you aren’t forcing all your
scripts to run under Tai nt mode you are looking for trouble from malicious users. (See the perlsec
manpage for more information. Also read the re pragma’ s manpage.)

If you have some scripts that won’t run under Taint mode, run only the ones that run under mod_perl with
Taint mode enabled and the rest on another server with Taint mode disabled -- this can be either a
mod_cgi in the front-end server or another back-end mod_perl server. You can use the mod_rewrite
module and redirect requests based on the file extensions. For example you can use .tcgi for the taint-clean
scripts, and cgi for the rest.

When you have this setup you can start working toward cleaning the rest of the scripts, to make them run
under the Taint mode. Just because you have a few dirty scripts doesn’t mean that you should jeopardize
your whole service.

Since the - T switch doesn’t have an equivalent perl variable, mod_perl provides the Per | Tai nt Check
directive to turn on taint checks. In ht t pd. conf , enable this mode with:

Per | Tai nt Check On

50 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.28 The strict pragma

Now any code compiled inside httpd will be taint checked.

If you use the - T switch, Perl will warn you that you should use the Per | Tai nt Check configuration
directive and will otherwiseignoreit.

1.27.3 [Other switcheq

Finally, if you still need to set additional perl startup flags such as - d and - D, you can use an environment
variable PERL5OPT. Switches in this variable are treated as if they were on every Perl command line.

Only the - [DI MJdmn] switches are allowed.
When the Per | Tai nt Check variable isturned on, the value of PERL5OPT will be ignored.
[META: verify]

See aso Apache::PerlRun.

1.28 [Thestrict pragma

It's_absolutely mandatory (at least for development) to start all your scripts with:

use strict;
If needed, you can always turn off the'strict’ pragma or a part of it inside the block, e.g:
{

no strict 'refs’
. sone code

}

It's more important to have the st ri ct pragma enabled under mod_perl than anywhere else. While it's
not required by the language, its use cannot be too strongly recommended. It will save you a great deal of
time. And, of course, clean scriptswill still run under mod_cgi (plain CGI)!

1.29 |Passing ENV variablesto CGl

To pass an environment variable from httpd.conf, add to it:

Per| Set Env key va
Per | PassEnv key

eg.

Per | Set Env PERLDB_OPTS "NonSt op=1 Li nel nfo=/tnp/db. out AutoTrace=1"

29 Jan 2004 51

1.30 -M and other time() file tests under mod_perl

will set SENV{ PERLDB_OPTS}, and it will be accessible in every child.

%ENV is only set up for CGI emulation. If you are using the API, you should use $r - >subpr o-

cess_env, $r->notes or $r->pnot es for passing data around between handlers. “ENV is slow
because it must update the underlying C environment table. It also insecure since its use exposes the data
on systems which allow users to see the environment with ps.

In any case, “ENV and the tables used by those methods are all cleared after the request is served.

The Perl %ENV is cleared during startup, but the C environment is left intact. With a combo of forking
“env' and <Per | > sections you can do even do wildcards matching. For example, this passes all envi-
ronment variables that begin with the letter H:

<Per| >
| ocal $ENV{PATH} = '/usr/bin’;
local $_;

for (‘env') {
next unless /"~(H*)=/;
push @PassEnv, $1;

}

</ Perl >

See also Perl SetupEnv which can enable/disable environment variables settings.

1.30 -M and other time() filetestsunder mod per|

Under mod_perl, files that have been created after the server's (child) startup are reported as having a
negative age with - M(- C - A) test. Thisis obviousif you remember that you will get the negative result if
the server was started before the file was created. It's normal behavior with perl.

If you want to have - Mreport the time relative to the current request, you should reset the $M T variable
just as with any other perl script. Add:

I ocal $"T = tineg,
at the beginning of the script.

Another even simpler solution would be to specify a fixup handler, which will be executed before each
script isrun:
sub Apache: : Per| BaseTi ne: : handl er {
$AT = shift->request_time;
return Apache:: Constants: : DECLI NED;
}

and then in the httpd.conf:

52 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.31 Apache and syslog

Per | Fi xupHandl er Apache: : Per| BaseTi e

This technique is better performance-wise as it skips the time() system call, and uses the already available
time of the request has been started at via$r - >r equest _t i me method.

1.31 |Apache and syslog

When native syslog support is enabled, the stderr stream will be redirected to/ dev/ nul | !

It has nothing to do with mod_perl (plain Apache does the same). Doug wrote the Apache::LogSTDERR
modul e to work around this.

1.32 |Filetests operator g

Remember that with mod_perl you might get negative times when you use file test operatorslike - M-- last
modification time, - A -- last access time, - C -- last inode-change time, and others. - Mreturns the differ-
ence in time between the modification time of the file and the time the script was started. Because the * T
variable is not reset on each script invocation, and is equal to the time when the process was forked, you
might want to perform:

$AT = tine;
at the beginning of your scripts to simulate the regular perl script behaviour of file tests.

META: Aboveis near duplicate of "-M and other time() file tests under mod_perl" make alink instead

1.33 |Filehandlers and locks leakages

META: duplication at debug.pod: =head3 Safe Resource L ocking

When you write a script running under mod_cgi, you can get away with sloppy programming, like
opening afile and letting the interpreter close it for you when the script had finished its run:

open IN, "in.txt" or die "Cannot open in.txt for reading : $!'\n";
For mod_perl, before the end of the script you must ¢l ose() any files you opened!

close IN

If you forget to cl ose(), you might get file descriptor leakage and (if you f | ock() ed on this file
descriptor) also unlock problems.

Even if you do call close(), if for some reason the interpreter was stopped before the cl ose() cal, the
leakage will still happen. See for example Handling the *User pressed Stop button’ case. After along run
without restarting Apache your machine might run out of file descriptors, and worse, files might be left
locked and unusable.

29 Jan 2004 53

1.34 Code has been changed, but it seems the script is running the old code

What can you do? Use | G : Fi | e (and the other | G : * modules). This allows you to assign the file
handler to variable which can be my () (lexically) scoped. When this variable goes out of scope the file or
other file system entity will be properly closed (and unlocked if it was locked). Lexically scoped variables
will always go out of scope at the end of the script’s invocation even if it was aborted in the middle. If the
variable was defined inside some internal block, it will go out of scope at the end of the block. For
example:
{
ny $fh = 1G:File->new("filenane") or die $!;

read from $fh
} #...%fh is closed automatically at end of block, without |eaks.

As | have just mentioned, you don’'t have to create a specia block for this purpose. A script in afileis
effectively written in a block with the same scope as the file, so you can simply write:

ny $fh = 1O :File->new("filenane") or die $!;

read from $fh
...8fh is closed automatically at end of script, w thout |eaks.

Usinga{ BLOCK }) makessureisthat thefileisclosed the moment that the end of the block is reached.
An even faster and lighter techniqueisto use Synbol . pm

ny $fh = Synbol ::gensyn();
open $fh, "filenane" or die $!;

Use these approaches to ensure you have no leakages, but don't be too lazy to writecl ose() statements.
Make it a habit.

Under perl 5.6.0 we can do this instead:

open ny $fh, $filenane or die $! ;

1.34 (Code has been changed, but it seemsthe script is
running the old code

Filespulled in viause or r equi r e statements are not automatically reloaded when they change on disk.
See|Reloading Modules and Required Filed for more information.

1.35 [The Script IsToo Dirty, But It Does The Job And |
ICannot Afford To Rewritelt.

Y ou still can win from using mod_perl.

One approach is to replace the Apache: : Regi st ry handler with Apache: : Per | Run and define a
new location. The script can reside in the same directory on the disk.

54 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.36 Apache::PerlRun--a closer look

httpd. conf
Alias /cgi-perl/ [home/httpd/cgi/

<Location /cgi-perl>
#Al | onwOverri de None
Set Handl er perl -script
Per | Handl er Apache: : Perl Run
Opti ons ExecCd
allow fromall
Per | SendHeader On
</ Locati on>

See|Apache::PerlRun--a closer 100k

Another "bad", but workable method is to set MaxRequest sPer Chi | d to 1, which will force each
child to exit after serving only one request. You will get the preloaded modules, etc., but the script will be
compiled for each request, then be thrown away. This isn't good for "high-traffic" sites, as the parent
server will need to fork a new child each time one is killed. You can fiddle with MaxSt ar t Ser ver s
and M nSpar eServer s, so that the parent pre-spawns more servers than actually required and the
killed one will immediately be replaced with afresh one. Probably that’ s not what you want.

1.36 |Apache: ;. PerlRun--a closer ook

Apache: : Per| Run gives you the benefit of preloaded Perl and its modules. This module’s handler
emulates the CGI environment, allowing programmers to write scripts that run under CGI or mod_perl
without any change. Unlike Apache: : Regi st ry, the Apache: : Per | Run handler does not cache the
script inside a subroutine. Scripts will be "compiled” on each request. After the script has run, its name
space is flushed of all variables and subroutines. Still, you don’t have the overhead of loading the Perl
interpreter and the compilation time of the standard modules. If your script is very light, but uses lots of
standard modules, you will see no difference between Apache::Per|l Run and
Apache: : Regi stry!.

Be aware though, that if you use packages that use internal variables that have circular references, they
will be not flushed!!! Apache: : Per | Run only flushes your script’s name space, which does not include
any other required packages name spaces. If there's areferenceto amy () scoped variable that’s keeping
it from being destroyed after leaving the eval scope (of Apache: : Per | Run), that cleanup might not be
taken care of until the server is shutdown and per | _destruct () isrun, which always happens after
running command line scripts. Consider this example:

package Foo;
sub new { bless {} }
sub DESTROY {

war n " Foo- >DESTROY\ n";

}

eval << EOF ;

package mny_script;

ny $self = Foo->new;
#$sel f->{circle} = $self;

29 Jan 2004 55

1.37 Sharing variables between processes

ECF

print $@if $@
print "Done with script\n”;

When executed as a plain script you'll see:

Foo- >DESTROY
Done with script

Then, uncomment the line where $sel f makes acircular reference, and you'll see:

Done with script
Foo- >DESTROY

If you run this example with the circular reference enabled under mod perl you won't see
Foo- >DESTROY until server shutdown, or until your module properly takes care of things. Note that the
warn() call logs its messages to the error_log file, so you should expect the output there and not together
with STDOUT.

1.37 (Sharing variables between processes

META: to be completed

® CGloba variables initialized at server startup, through the Perl startup file, can be shared between
processes, until modified by some of the processes. e.g. when you write:

$My: : debug = 1;

al processes will read the same value. If one of the processes changes that value to 0, it will still be
equal to 1 for any other process, but not for the one which actually made the change. When a process
modifies a shared variable, it becomes the process’ private copy.

® | PC. : Shar eabl e can be used to share variables between children.
® |ibmm

® other methods?

1.38 |Preventing Apache::Constants Stringification

In mod_perl, you are going to use a certain humber of constants in your code, mainly exported from
Apache: : Const ant s. However, in some cases, Perl will not understand that the constant you' re trying
to cdl is redly a constant, but interprets it as a string. This is the case with the hash notation =>, which
automatically stringifies the key.

For example:

56 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.39 Transitioning from Apache::Registry to Apache handlers

$r->cust om response(FORBI DDEN => "Fi |l e size exceeds quota.");

This will not set a custom response for FORBI DDEN, but for the string " FORBI DDEN' , which clearly
isn’'t what is expected. You'll get an error like this:

[Tue Apr 23 19:46:14 2002] null: Argument "FORBIDDEN' isn't nuneric
in subroutine entry at ...

Therefore, you can avoid this by not using the hash notation for things that don’t requireit.

$r->cust om response(FORBI DDEN, "File size exceeds quota.");

There are other workarounds, which you should avoid using unless you really have to use hash notation:

nmy Y%ash = (
FORBI DDEN() => "this is forbidden’,
+AUTH REQUI RED => "You aren’t authorized to enter!",

)

Another important note is that you should be using the correct constants defined here, and not direct HTTP
codes. For example:

sub handl er {
return 200;
}
Is not correct. The correct useis:
use Apache:: Constants gw OK);

sub handl er {
return OK;

}
Also remember that OK | = HTTP_CK.

1.39 [Transitioning from Apache::Registry to Apache
handler g

Even if you are a CGI script die-hard at some point you might want to move a few or all your scripts to
Apache Perl handlers. Actually this is an easy task, since we saw already what Apache: : Regi stry
makes our scripts appear to Apache to be Perl handlers.

When you no longer need backward mod_cgi compatibility you can benefit from the Perl libraries
working only under mod_perl. We will see why in a moment.

Let's see an example. We will start with a mod_cgi compatible CGI script running under
Apache: : Regi stry, transpose it into a Perl content handler and then convert it to use
Apache: : Request and Apache: : Cooki e.

29 Jan 2004 57

1.39.1 Starting with mod_cgi Compatible Script

1.39.1 [Starting with mod cgi Compatible Script|

Thisisthe original script’s code we are going to work with:

58

cooki e_script.p

use strict;

use Cd;

use Cd :: Cooki e;

use vars gw $q $swi tch $status $sessionl D);
init();

print_header();
print_status();

HH# <--

subroutines --> ###

the init code
HUHHHHHHHHH

sub

init{

$q = new CG ;

$switch = $g->param("switch") 2 1 : 0O

$status = $sessionl D

#try to

retrieve the session ID

fetch existing cookies
nmy %ookies = Cd :: Cooki e->fetch;
$sessionl D = exists $cooki es{’ sessionl D}

? $cooki es{’ sessionl D }->val ue

0 = not

switch

runni ng

running, 1 =
?1: 0

status if asked to

$status = ($status+l) %2 if $switch

if ($status)(

}

}

preserve sessionlDif exists or create a new one

$sessi onl
el se {

del et
$sessi onl

D || = generate_sessionl D()

e the sessionlD
D='":

} # end of sub init

HHAHHHH BB HBHAHH

sub print_header{

prepare a cookie

ny $c = Cd :: Cooki e- >new

(' -nane
"-val ue’

=> 'sessionl D,
=> $sessionl D

'-expires’ =>"'+1lh");

print $qg->header

(-type

= "text/htnm’,

1.

1

if $status;

29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.39.1 Starting with mod_cgi Compatible Script

-cookie => $c);

} # end of sub print_header

print the current Session status and a formto toggle the status
HHHBHBHSERHHH IR RH
sub print_status{

print gg{ <HTM.><HEAD><TI TLE>Cooki e</ Tl TLE></ HEAD><BODY>} ;

print status
print "Status: ",
$st at us
? "Session is running with ID: $sessi onl D'
"No session is running";

change status form
ny $button_| abel = $status ? “Stop" : "“Start";
print qq{<HR>
<FORM>
<I NPUT TYPE=SUBM T NAME=swi tch VALUE=" $button_| abel ">
</ FOR

b
print qgf{</BODY></ HTM.>};
} # end of sub print_status

A dummy | D generator
Replace with a real session |D generator
HHHHHBH IR RH B H R AR R
sub generate_sessionl D {
return scal ar |ocaltine;
} # end of sub generate_sessionl D

The code is very simple. It creates a session if you've pressed the 'Start’ button or deletes it if you've
pressed the* Stop’ button. The session is stored and retrieved using the cookies technique.

Note that we have split the obviously simple and short code into three logical units, by putting the code
into three subroutines. init() to initialize globa variables and parse incoming data, print_header() to print
the HTTP headers including the cookie header, and finally print_status() to generate the output. Later we
will seethat thislogical separation will allow us an easy conversion to Perl content handler code.

We have used global variables for a few variables since we didn’t want to pass them from function to
function. In a big project you should be very restrictive about what variables should be allowed to be
global, if any at all. In any case, the init() subroutine makes sure all these variables are re-initialized for
each code reinvocation.

Note that we have used a very simple generate _sessionID() function that returns a date string (i.e.
Wed Apr 12 15:02:23 2000) as a session ID. You want to replace this one with code which generates a
unigue session every timeit was called. And it should be secure, i.e. users will not be able to forge one and
do nasty things.

29 Jan 2004 59

1.39.2 Converting into Perl Content Handler

1.39.2 |Converting into Perl Content Handler|

Now let's convert this script into a content handler. There are two parts to this task; the first one is to
configure Apache to run the new code as a Perl handler, the second one is to modify the code itself.

First we add the following snippet to httpd.conf:

Per | Modul e Test: : Cooki e
<Location /test/cookie>
Set Handl er perl -script
Per | Handl er Test: : Cooki e
</ Locati on>

After we restart the server, when there is arequest whose URI starts with /test/cookie, Apache will execute
the Test : : Cooki e: : handl er () subroutine as a content handler. We made sure to preload the
Test : : Cooki e module at server start-up, with the Per | Modul e directive.

Now we are going to modify the script itself. We copy the content to the file Cookie.pm and place it into
one of the directorieslisted in @ NC. For example if /home/httpd/per| is a part of @ NC and since we want
to call this package Test : : Cooki e, we can put Cookie.pminto the /home/httpd/perl/Test/ directory.

So thisis the new code. Notice that all the subroutines were left unmodified from the original script, so to
make the differences clear we do not repeat them here.

Test / Cooki e. pm

package Test:: Cooki e;
use Apache:: Constants gw(: conmon)

use strict;
use C4;
use Cd :: Cooki e;
use vars gw $q $swi tch $status $sessionlD);
sub handl er{
ny $r = shift;
Apache- >request ($r) ;
init();
print_header();
print_status();

return K

}

#i## <-- subroutines --> ###
all subroutines as before

1

Asyou see there are two lines added to the beginning of the code:

60 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.39.2 Converting into Perl Content Handler

package Test: : Cooki €;
use Apache:: Constants gw : conmon);

The first one declares the package name and the second one imports some symbols commonly used in Perl
handlers to return status codes.

use strict;

use Cd;

use Cd :: Cooki e;

use vars gw $q $swi tch $status $sessionl D);

This code is left unchanged just as before.

sub handl er{
ny $r = shift;
Apache- >r equest ($r) ;

init();
print_header();
print_status();

return K

}

Each content handler (and any other handler) should begin with a subroutine called handler(). This subrou-
tine is called when a request’s URI starts with /test/cookie as per our configuration. Of course you can
choose a different name, for example execute(), but then you must explicitly use it in the configuration
directivesin the following way:
Per | Modul e Test: : Cooki e
<Location /test/cookie>
Set Handl er perl -script

Per | Handl er Test:: Cooki e:: execute
</ Locati on>

But we will use the default name, handler().

The handler() subroutine isjust like any other subroutine, but generally it has the following structure:

sub handl er {
ny $r = shift;

the code
status (OK, DECLINED or else)
return
}
First we get the request object by shifting it from @ and assigning it to the $r variable.

Second we write the code that does the processing of the request.

29 Jan 2004 61

1.39.3 Converting to use Apache Perl Modules

Third we return the status of the execution. There are many possible statuses, the most commonly used are
OK and DECLI NED, which tell the server whether they have completed the request phase that the handler
was assigned to do or not. If not, another handler must complete the processing. Apache: : Const ant s
imports these two and other some commonly used status codes.

So in our example all we had to do was to wrap the three calls.
init();
print_header();
print_status();

inside:
sub handl er{
ny $r = shift;
Apache- >r equest ($r) ;

return K

}
Thereisoneline we didn’t discuss:

Apache- >request ($r);

Since we use CA.pm it relies on the fact that $r was set in the Apache module
Apache: : Regi st ry did that behind the scenes. Since we don't use Apache: : Regi st ry here, we
have to do that ourselves.

The one last thing we should do isto add 1; at the end of the module, just like with any Perl module, so
Per | Modul e will not fail when it triesto load Test : : Cooki e.

So to summarize, we took the original script’s code and added the following eight lines:

package Test:: Cookie
use Apache:: Constants gw : conmon);

sub handl er{
ny $r = shift;
Apache- >r equest ($r);
return K

}
1

and now we have afully fledged Perl Content Handler.

1.39.3 |Converting to use Apache Perl Modules

So now we have a complete PerlHandler, let's convert it to use Apache Perl modules. This breaks the
backward compatibility, but gives us better performance, mainly because the internals of many of these
Perl modules are implemented in C, therefore we should get a significant improvement in speed. The
section "TMTOWTDI: Convenience and Performance" compares the three approaches.

62 29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.39.3 Converting to use Apache Perl Modules

What we are going to do is to replace CA . pmand Cd : : Cooki e with Apache: : Request and
Apache: : Cooki e respectively. The two modules are written in C with the XS interface to Perl, which
makes code much faster if it utilizes any of these modulesalot. Apache: : Request usesan APl similar
to the one CA uses, the same goes for Apache: : Cooki e and Cd : : Cooki e. This allows an easy
porting process. Basically we just replace:

use Cd;
$q = new CG3;
with:

use Apache:: Request ();
ny $g = Apache:: Request - >new $r);

and

use Cd:: Cookie ();
nmy $cooki e = CA:: Cooki e->new(...)

with

use Apache: : Cookie ()
ny $cooki e = Apache:: Cooki e->new($r, ...);

Thisisthe new codefor Test : : Cooki e2:

Test/ Cooki e2. pm

package Test:: Cooki e2
use Apache:: Constants gw : conmon);

use strict;

use Apache:: Request;

use Apache:: Cookie ();

use vars gwm($r $q $switch $status $sessionl D);

sub handl er {
$r = shift;
init();
print_header();
print_status();

return K

}

#i## <-- subroutines --> ###
the init code

HHH#HH R

sub init{

$g = Apache: : Request - >new($r);
$switch = $g->paranm("switch") ?2 1 : 0

29 Jan 2004 63

1.39.3 Converting to use Apache Perl Modules

fetch existing cookies
nmy %ooki es = Apache: : Cooki e->fetch
try to retrieve the session ID
$sessionl D = exists $cooki es{’ sessionl D }

? $cooki es{’ sessionl D }->val ue :

runni ng

0 = not running, 1 =
?1: 0

$status = $sessionl D

switch status if asked to
$status = ($status+l) %2 if $switch

if ($status)(
preserve sessionlDif exists or create a new one
$sessionl D || = generate_sessionl D() if $status;
} else {
del ete the sessionlD
$sessionlD = '’ ;

}

} # end of sub init

HHHBHBHIHHHHIHHBH
sub print_header{
prepare a cookie
ny $c = Apache: : Cooki e- >new

(%r,
- nanme => 'sessionl D,
-val ue => $sessi onl D,

-expires => '+1h’);

Add a Set-Cooki e header to the outgoing headers table
$c- >bake;

$r->send_http_header (' text/htnl");
} # end of sub print_header
print the current Session status and a formto toggle the status
HHHBHBHIRH B HIHH BT
sub print_status{

print qg{ <HTML><HEAD><TI TLE>Cooki e</ TI TLE></ HEAD><BCDY>} ;
print status
print "Status: ",

$st at us
? "Session is running with ID: $sessionl D'

"No session is running";

change status form

29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. 1.39.3 Converting to use Apache Perl Modules

ny $button_| abel = $status ? "“Stop" : "“Start";
print qq{<HR>
<FORM>
<I NPUT TYPE=SUBM T NAME=swi tch VALUE=" $button_l| abel ">
</ FOR

b
print qg{</BODY></ HTM.>};
} # end of sub print_status
replace with a real session |ID generator
HHBHHHHBHBHHHHBHBHHBHBHE

sub generate_sessionlD {
return scal ar localtine;

}

1

The only other changes are in the print_header() function, where instead of passing the cookie code to the
Cd ’'sheader() to return a proper HTTP header:

print $g->header
(-type = "text/htm"’,
-cookie => $c);
wedo it in two stages.
$c- >bake;
Adds aSet - Cooki e header to the outgoing headers table, and:

$r->send_http_header (' text/htm);

sends out the header itself. We have aso eliminated:

Apache- >request ($r);
since we don’t rely on CA . pmany more and in this case we don’t need it.
Therest of the code is unchanged.

Of course we add the following snippet to httpd.conf:

Per | Mbdul e Test: : Cooki e2
<Location /test/cookie2>
Set Handl er perl -script
Per | Handl er Test:: Cooki e2
</ Locati on>

So now the magic URI that will trigger the above code execution will be the one starting with /test/cookie2
. We save the code in the file /home/httpd/perl/Test/Cookie2.pm since we have called this package
Test : : Cooki e2.

29 Jan 2004 65

1.40 Maintainers

1.39.4 |Conclusion|

If your took care to write the original plain CGI script’s code in a clean and modular way, you can see that

the transition is avery simple one and doesn't take a lot of effort. Almost no code was modified.

1.40

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.41

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

66

Maintainer s

Authors

29 Jan 2004

CGl to mod_perl Porting. mod_perl Coding guidelines. Table of Contents:

Table of Contents:

1 [CGI tomod perl Porting. mod perl Coding guidelines. | 1
1.1 [Description. : 2
1.2 |Before you start to codd . . 2
1.3 |Exposing Apache::Reqgistry secrety 3

1.3.1 [The First Mystery| 4
1.3.2 [The Second Mystery| 7
1.4 |Sometimes it Works, Sometimes it Doesn 11 8
1.4.1 |An Easy Break-in 8
1.4.2 [Thinking mod_cgji| . 9
1.4.3 |Regular Expression Memory] . 10
1.5 |Script’ s name spaceq . 10
1.6 |@INC and mod perl| 10
1.7 |Reloading Modules and Required F|Ies| 11
1.7.1 |Restarting the servey|. 11
1.7.2 |Using Apache::StatINC for the Devel opment Processl 12
1.7.3 |Using Apache::Reload | 13
1.7.3.1 Reqgister Moduleslmplldtlyl 13
1.7.3.2 [Register Modules Explicitly| . 13
1.7.3.3 [Specia "Touch" Filg 14
1734 - : 14
1.7.3.5 [Availability] 14
174 |Conf|qurat|on Flles Writing, Dynammally Updatl ng and Reloadl nq 14
1.7.4.1 |Writing Configuration Fileq 15
1.7.4.2 [Reloading Configuration Fileq 21
1.7.4.3 [Dynamically updating configuration fileq 23
1.7.5 |Reloading handlery . . 29
1.8 [Name collisions with Modulesandllbsl 29
1.9 [More package name related issueq 35
110 END and DATA tokeng 35
1.11 [Output from system callg 36
1.12 [Using format() and write()| . . 36
1.13 [Terminating requests and processes, the exit() and Chl|d terml nate() functlonsl 37
1.14 [die() and mod perl]. 38
1.15 [Return Codeg .. 39
1.16 [Testing the Code from the Shel I| 39
1.17 [[Oisdifferent. . . 39
1.18 Im 39
1.19 [Redirecting STDOUT into a Scalar| 40
1.20 [Apache::print() and CORE::print()| 40
1.21 [Globa Variables Persistencqd . 40
1.22 [Generating correct HT TP Headerd 41
1.23 [NPH (Non Parsed Headers) scriptd 47
1.24 47
125 48

29 Jan 2004 i

Table of Contents:

1.26 [CHECK AndINITBIlockg 48
1.27 |Command Line Switches gw -T, etc§| S (¢ |
1.27.1 . e
1.27.2 . - 0
1.27.3 |Other switch g - 1

1.28 [The trict pragmd . -1
1.29 |Passi nﬁ ENV varlablesto CGI| - 1
1.30 fM and other time() filetestsunder mod petl] 52
131 |JApacheandsydog b3
1.32 | File tests o@eratorc S -
1 33 | Filehandlers and locks Ieak@@ &3
(Code has been changed, but it seems the script is running the old codg seemsthe (Code has been changed, but it seems the script is running the old codg t IS running the old cod .. 54

1 35 [The Script Is Too Dirty, But It Does The Job And | Cannot Afford To Rewrite It | 54
1.36 [Apache::PerlRun--a closer 100k 55
1.37 [Sharing variables between processes vanabl&s between o-:e" 56
1.38 [Preventing Apache::Constants Stringification : .o 56
1.39 | ransitioni nﬁ from Aﬁache R@lstri to AEache handle@ N - Y 4
1.39.1 [Starting with mod_cgi Compatible Script] 58
1.39.2 [Converting into Perl Content Handle 60
1.39.3 |Converting to use Apache Perl Modu E - 22
1.39.4 [Conclusi oﬂ S & o]
1.40 Mantanerd 66
141 [Authord 66

ii 29 Jan 2004

	1€€CGI to mod_perl Porting. mod_perl Coding guidelines.
	1.1€€Description
	1.2€€Before you start to code
	1.3€€Exposing Apache::Registry secrets
	1.3.1€€The First Mystery
	1.3.2€€The Second Mystery

	1.4€€Sometimes it Works, Sometimes it Doesn't
	1.4.1€€An Easy Break-in
	1.4.2€€Thinking mod_cgi
	1.4.3€€Regular Expression Memory

	1.5€€Script's name space
	1.6€€@INC and mod_perl
	1.7€€Reloading Modules and Required Files
	1.7.1€€Restarting the server
	1.7.2€€Using Apache::StatINC for the Development Process
	1.7.3€€Using Apache::Reload
	1.7.3.1€€Register Modules Implicitly
	1.7.3.2€€Register Modules Explicitly
	1.7.3.3€€Special "Touch" File
	1.7.3.4€€Caveats
	1.7.3.5€€Availability

	1.7.4€€Configuration Files: Writing, Dynamically Updating and Reloading
	1.7.4.1€€Writing Configuration Files
	1.7.4.2€€Reloading Configuration Files
	1.7.4.3€€Dynamically updating configuration files

	1.7.5€€Reloading handlers

	1.8€€Name collisions with Modules and libs
	1.9€€More package name related issues
	1.10€€__END__ and __DATA__ tokens
	1.11€€Output from system calls
	1.12€€Using format†‡ and write†‡
	1.13€€Terminating requests and processes, the exit†‡ and child_terminate†‡ functions
	1.14€€die†‡ and mod_perl
	1.15€€Return Codes
	1.16€€Testing the Code from the Shell
	1.17€€I/O is different
	1.18€€STDIN, STDOUT and STDERR streams
	1.19€€Redirecting STDOUT into a Scalar
	1.20€€Apache::print†‡ and CORE::print†‡
	1.21€€Global Variables Persistence
	1.22€€Generating correct HTTP Headers
	1.23€€NPH †Non Parsed Headers‡ scripts
	1.24€€BEGIN blocks
	1.25€€END blocks
	1.26€€CHECK And INIT Blocks
	1.27€€Command Line Switches †-w, -T, etc‡
	1.27.1€€Warnings
	1.27.2€€Taint Mode
	1.27.3€€Other switches

	1.28€€The strict pragma
	1.29€€Passing ENV variables to CGI
	1.30€€-M and other time†‡ file tests under mod_perl
	1.31€€Apache and syslog
	1.32€€File tests operators
	1.33€€Filehandlers and locks leakages
	1.34€€Code has been changed, but it seems the script is running the old code
	1.35€€The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.
	1.36€€Apache::PerlRun--a closer look
	1.37€€Sharing variables between processes
	1.38€€Preventing Apache::Constants Stringification
	1.39€€Transitioning from Apache::Registry to Apache handlers
	1.39.1€€Starting with mod_cgi Compatible Script
	1.39.2€€Converting into Perl Content Handler
	1.39.3€€Converting to use Apache Perl Modules
	1.39.4€€Conclusion

	1.40€€Maintainers
	1.41€€Authors

