Protocol Handlers 1 Protocol Handlers

1 Protocol Handlers

29 Jan 2004 1

1.1 Description

1.1 |Description|

This chapter explains how to implement Protocol (Connection) Handlersin mod_perl.

1.2 |Connection Cycle Phases

As we saw earlier, each child server (be it a thread or a process) is engaged in processing connections.
Each connection may be served by different connection protocols, e.g., HTTP, POP3, SMTP, etc. Each
connection may include more than one request, e.g., several HTTP requests can be served over a single

connection, when several images are requested for the same webpage.

The following diagram depicts the connection life cycle and highlights which handlers are available to

mod_perl 2.0:
Client <
Eequest Responge
PreConnection = ProcessConnection
/
Connection | Connection
Input | output
Filters | Filters
Apache/mod perl 2.0 Connection Processing\é—

29 Jan 2004

Protocol Handlers 1.2.1 PerlPreConnectionHandler

When aconnetion is issued by a client, it's first run throu§lerl Pre Connection Handler and then
passed to th@erl Pro cess Connection Handler , whichgeneatesthe response. Wheperl Pro -

cess Connection Handler is reading data from the client, it can be filtered donnetion input

filters. Thegeneatedresponse can be also filtered thougimnetion output filters. Filters are usually

used fomadifying the data flowing though them, but can be used for other purposes as well (e.g., logging
interestng information). For example théollowing diagram shows theonnetion cycle mapped to the

time scale:

Interactive l"mm"mmk k Eumm"mm"mﬂ
Protocol connection input filters :
Data Flow T i bk S L i O o s R b
/I\\ \\ /N /\\
EPreConnection?ﬁ% FrocegzConnection 5

connection output filters :

R B L I B o

The arrows show the program control.aadtion, the black-headed arrows also show the data flow. This
diagram matches dnteradive protacol, where a client sengbmehing to the server, the server filters the
input, processes it and send it out through output filters. This cycle is repeated till the client or the server
don't tell each other to go away or abort domnedion. Before the cycle starts anggideredpre_connec

tion handlers areun.

Now let’'s discuss each of tHeerl Pre Connection Handler andPerl Pro cess Connection -
Handler handlers irdetail.

1.2.1 [PerlPreConnedionHandler|

The pre_connection phase happens just after the server acceptsotimetion, but before it is handed off
to aprotocol module to be served. It gives modulesagpotunity to modify theconnetion as soon as
possble and insert filters if needed. The core server uses this phase to setopribé¢ion record based
on the type oftonnetion that is being used. mod_perl itself uses this phasediger the connetion
input and outpulfilters.

In mod_perl 1.0 during codievebpmentApache::Reload was used tautanaically reloadmodified
since the last request Perl modules. It was invoked dypowj read_request , the first HTTP
request’s phase. In mod_perl 2@ connection is theearliestphase, so if we want to make sure that all

29 Jan 2004 3

1.2.1 PerlPreConnectionHandler

modified Perl modules are reloaded for gmptacols and its phases, it's the best to set the scope of the
Perlinterpreterto thelifetime of theconnedtion via:

Per | I nt er pScope connection

and invoke theApache: : Rel oad handler during there connection phase. However thidevebp-

menttime advartage can become disadrartagein produdion--for example if aconnetion, handled by
HTTP protacol, is configuredasKeepAl i ve and there are several requests coming on the sanmee

tion and only one handled by mod_perl and the others by the default images handler, ititerpreter
won't beavailableto other threads while the images are beeyed.

This phase is of typRUN_ALL.

The handler’'sonfiguration scope isSRV, because it's not known yet which resource the request will be
mappedo.

A pre_connection handler accepts@nnetion record at itargunent
sub handl er {
ny $¢c = shift;
...
return Apache:: K
}

[META: There is anotheargumentpassed (the actual client socket), but it currentlyradef]

Here is a usefupre_connection phase example: providefacility to block remote clients by their IP,
before too many resources were consumed. This is almost as gofickaskhblocking, as it's executed
before Apache has started to do any workilat

MyApache: : Bl ockl P2 retrieves client's remote IP and looks it up in the black list (which should
certainly live outside the code, e.g. dom file, bhaattodedlist is good enough for owxample).

#fil e: MyApache/ Bl ockl P2. pm
package MyApache: : Bl ockl P2;

use strict;
use war ni ngs;

use Apache:: Connection ();
use Apache:: Const -conpile => gw(FORBI DDEN OK) ;
ny Y%ad_ips = map {$_ => 1} gw(127.0.0.1 10.0.0.4);

sub handl er {
ny Apache: : Connection $c = shift;

ny $ip = $c->renote_ip

if (exists $bad_ips{$ip}) {
warn "IP $ip is blocked\n";
return Apache: : FORBI DDEN,;

4 29 Jan 2004

Protocol Handlers 1.2.2 PerlProcessConnectionHandler

}

return Apache: : OK;
}

1
This all happens during the pre_connection phase:
Per | PreConnecti onHandl er MyApache: : Bl ockl P2

If a client connects from a blacklisted 1P, Apache will simply abort the connection without sending any
reply to the client, and move on to serving the next request.

1.2.2 |PerlProcessConnectionHandl er|

The process_connection phase is used to process incoming connections. Only protocol modules should
assign handlers for this phase, as it gives them an opportunity to replace the standard HTTP processing
with processing for some other protocols (e.g., POP3, FTP, etc.).

This phaseis of type RUN_FI RST.

The handler’s configuration scope is SRV. Therefore the only way to run protocol servers different than
the core HTTP isinside dedicated virtual hosts.

A process_connection handler accepts a connection record object asits only argument, a socket object can
be retrieved from the connection record object.

sub handl er {
my ($c) = @;
ny $socket = $c->client_socket;
...
return Apache: : OK;
}

Now let's look at the following two examples of connection handlers. The first using the connection
socket to read and write the data and the second using bucket brigades to accomplish the same and allow
for connection filtersto do their work.

1.2.2.1 (Socket-based Protocol M odul€g

To demonstrate the workings of a protocol module, we'll take alook at the MyApache: : EchoSocket
module, which simply echoes the data read back to the client. In this module we will use the implementa-
tion that works directly with the connection socket and therefore bypasses connection filtersif any.

A protocol handler is configured using the Per | Pr ocessConnect i onHandl er directive and we will
usetheLi st en and <Vi r t ual Host > directivesto bind to the non-standard port 8010:

29 Jan 2004 5

1.2.2 PerlProcessConnectionHandler

Li sten 8010
<Virtual Host _default_ :8010>

Per | Modul e MyApache: : EchoSocket
Per | ProcessConnecti onHandl er MyApache: : EchoSocket

</ Vi r t ual Host >

MyApache: : EchoSocket isthen enabled when starting Apache:

pani c% ht t pd
And we give it awhirl:

pani c% tel net | ocal host 8010
Trying 127.0.0.1...

Connected to | ocal host (127.0.0.1).

Escape character is ""]'.
Hel l o
Hel l o

fCo BaR
fCo BaR

Connection cl osed by foreign host.

Hereis the code;

file: MApache/ EchoSocket. pm

package MyApache: : EchoSocket ;

use strict;
use warni ngs FATAL => "all’

use Apache:: Connection ();
use APR : Socket ();

use Apache:: Const -conpile => "K' ;

use constant BUFF_LEN => 1024;

sub handl er {
ny $c = shift;

ny $socket = $c->client_socket;

ny $buff;
while (1) {
ny $rlen = BUFF_LEN,

$socket ->recv($buff, $rlen);

last if $rlen <= 0 or $buff

ny $wen = $rlen;

$socket - >send($buff, $w en);

last if $wen !'= $rlen;

=~ ["[\r\n] +$/;

29 Jan 2004

Protocol Handlers 1.2.2 PerlProcessConnectionHandler

Apache: : CK;
}
1;

The example handler starts with the standard package declaration and of course, use stri ct; . Aswith
al Perl *Handl er s, the subroutine name defaults to handler. However, in the case of a protocol
handler, the first argument is not a request _rec, but a conn_rec blessed into the
Apache: : Connecti on class. We have direct access to the client socket via Apache: : Connec-
ti on’sclient_socket method. This returns an object blessed into the APR: : Socket class.

Inside the read/send loop, the handler attempts to read BUFF_LEN bytes from the client socket into the
$buf f buffer. The $rl en parameter will be set to the number of bytes actualy read. The
APR: : Socket : : recv() method returns an APR status value, but we need only to check the read
length to break out of the loop if it is less than or equal to O bytes. The handler also breaks the loop after
processing an input including nothing but new lines characters, which is how we abort the connection in
the interactive mode.

If the handler receives some data, it sends it unmodified back to the client with the
APR: : Socket : : send() method. When the loop is finished the handler returns Apache: : CK, telling
Apache to terminate the connection. As mentioned earlier since this handler is working directly with the
connection socket, no filters can be applied.

1.2.2.2 [Bucket Brigades-based Protocol Modul€g

Now let's look at the same module, but this time implemented by manipulating bucket brigades, and
which runs its output through a connection output filter that turns all uppercase characters into their lower-
case equivalents.

The following configuration defines a virtual host listening on port 8011 and which enables the
My Apache: : EchoBB connection handler, which will run its output through
MyApache: : EchoBB: : | ower case_filter filter:

Li sten 8011
<Virtual Host _default _:8011>
Per | Modul e MyApache: : EchoBB
Per | ProcessConnecti onHandl er MyApache: : EchoBB
Per | Qut put Fi | t er Handl er MyApache: : EchoBB: : | ower case_filter

</ Vi r t ual Host >

As before we start the httpd server:
pani c% htt pd

And try the new connection handler in action:

29 Jan 2004 7

1.2.2 PerlProcessConnectionHandler

pani c% tel net |ocal host 8011
Trying 127.0.0.1..

Connected to | ocal host (127.0.0.1).
Escape character is '"]'.

Hel | o

hel |l o

f o BaR
foo bar

Connection closed by forei gn host.
Asyou can see the response now was al in lower case, because of the output filter.

And here isthe implementation of the connection and the filter handlers.

file: MyApache/ EchoBB. pm

package MyApache: : EchoBB

use strict;
use warni ngs FATAL => "all’

use Apache:: Connection ();
use APR : Bucket ();

use APR :Brigade ();

use APR :Util ();

use APR : Const -conpile => qw SUCCESS EOF);
use Apache:: Const -conpile => qw OK MODE_GETLI NE)

sub handl er {
my $c = shift;

ny $bb_in
ny $bb_out
ny $last =

APR: : Bri gade- >new $c- >pool , $c->bucket _all oc);
APR: : Bri gade- >new $c- >pool , $c->bucket _all oc);

onu

while (1) {
nmy $rv = $c->input_filters->get_brigade($bb_i n, Apache:: MODE_GETLI NE)
if ($rv !'= APR : SUCCESS && $rv != APR : EOF) ({
ny $error = APR :strerror($rv);
warn _ PACKAGE _ . ": get_brigade: $error\n";
| ast;

}
last if $bb_in->enpty;

while (!$bb_in->enpty) {
ny $bucket = $bb_in->first;

$bucket - >r enove
if ($bucket->is_eos) {

$bb_out - >i nsert _tail ($bucket);
| ast;

8 29 Jan 2004

Protocol Handlers

}

ny $dat a;
ny $status = $bucket - >r ead($dat a) ;

return $status unless $status == APR : SUCCESS

if ($data) {
$last++ if $data =~ /"A[\r\n] +$/;
could do sonething with the data here
$bucket = APR : Bucket - >new($dat a) ;

}

$bb_out->insert _tail ($bucket);
}

my $b = APR : Bucket::flush_create($c->bucket _all oc)

$bb_out->insert _tail ($b);
$c->out put _filters->pass_brigade($bb_out);
last if $last;

}
$bb_i n->dest r oy;

Apache: : CK;
}

use base gw Apache::Filter)
use constant BUFF_LEN => 1024;

sub lowercase_filter : FilterConnectionHandl er {
ny $filter = shift;

while ($filter->read(nmy $buffer, BUFF_LEN)) {
$filter->print(lc $buffer);
}

return Apache:: OK
}

1

1.2.2 PerlProcessConnectionHandler

For the purpose of explaining how this connection handler works, we are going to simplify the handler.

The whole handler can be represented by the following pseudo-code:

while ($bb_in = get_brigade()) {
whil e ($bucket _in = $bb_i n->get_bucket()) {
ny $data = $bucket _i n->read();
do sonething with data
$bucket _out = new_bucket ($dat a);

$bb_out - >i nsert _tail ($bucket _out);

}
$bb_out->i nsert _tail ($f | ush_bucket);
pass_bri gade($bb_out);

29 Jan 2004

1.3 Maintainers

The handler receives the incoming data via bucket bridges, one at a time in a loop. It then process each
bridge, by retrieving the buckets contained in it, reading the data in, then creating new buckets using the
received data, and attaching them to the outgoing brigade. When all the buckets from the incoming bucket
brigade were transformed and attached to the outgoing bucket brigade, a flush bucket is created and added
as the last bucket, so when the outgoing bucket brigade is passed out to the outgoing connection filters, it
won't be buffered but sent to the client right away.

If you look at the complete handler, the loop is terminated when one of the following conditions occurs: an
error happens, the end of stream bucket has been seen (no more input at the connection) or when the
received data contains nothing but new line characters which we used to to tell the server to terminate the
connection.

Notice that this handler could be much simpler, since we don’t modify the data. We could simply pass the
whole brigade unmodified without even looking at the buckets. But from this example you can see how to
write a connection handler where you actually want to read and/or modify the data. To accomplish that
modification simply add a code that transforms the data which has been read from the bucket before it's
inserted to the outgoing brigade.

We will skip the filter discussion here, since we are going to talk in depth about filters in the dedicated to
filters sections. But al you need to know at this stage is that the data sent from the connection handler is
filtered by the outgoing filter and which transformsit to be all lowercase.

1.3 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.4 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

10 29 Jan 2004

Protocol Handlers Table of Contents:

Table of Contents:

1 |Protocol Handlers] . . .
1.1 Description. . . .
1.2 |Connection Cycle Phaseq
1.2.1 |PerlPreConnectionHandl er]
1.2.2 |Perl ProcessConnectionHandl erf
1.2.2.1 [Socket-based Protocol Modulg
1.2.2.2 Bucket Brigades-based Protocol Moduld
1.4 O |

NOTOoTWwWPNNN B

[oNe]

29 Jan 2004 i

	1€€Protocol Handlers
	1.1€€Description
	1.2€€Connection Cycle Phases
	1.2.1€€PerlPreConnectionHandler
	1.2.2€€PerlProcessConnectionHandler
	1.2.2.1€€Socket-based Protocol Module
	1.2.2.2€€Bucket Brigades-based Protocol Module

	1.3€€Maintainers
	1.4€€Authors

