Apache Server Configuration Customization in Perl 1 Apache Server Configuration Customization in Perl

1 Apache ServerConfiguration Customizaion in Perl

29 Jan 2004 1

1.1 Description

1.1 Description|

This chapter explains how to create custom Apacmdiguration diredivesin Perl.

1.2 [Incentives

mod_perl provides several ways to pass custonfiguration information to themodules.

The simplest way to pass custamiormation from theconfiguration file to the Perl module is to use the
Per | Set Var andPer | AddVar diredives Forexample:

Per| Set Var Secret "Matrix is us"

and in the mod_perl code this value can be retrieged

ny $secret = $r->dir_config("Secret");

Anotheraltemdive is to add custornsonfiguration diredives There are several reasons ¢boosng this
approach:

e \When the expected value is not a simafgunent but must be supplied using a certain syntax,
Apache can verify at startup time that this syntax is valid and abort the server start up if the syntax is
invalid.

® Customconfiguration diredives are faster because their values are parsed at the startup time, whereas
Per | Set Var andPer | AddVar values are parsed at the requise.

® |t's possble that some other modules haaecdertally chosen to use the same key names but for
absdutely different needs. So the two now can’t be used together. Of coursedilison can be
avoided if a unique to your module prefix is used in the key namesxgople:

Per | Set Var ApacheFooSecret "Matrix is us"

Finally, modules can beonfiguredin pure Perl usingPer | > Secti ons or a startugfile, by simply
modifying the globalvariablesin the module’s package. This approach couldihadesirable because it
requires a use of globals, which we all try to reduce. A bigger problem with this approach is that you can’t
havedifferent settings fordifferent sections of the site (since there is only one version of a glainial

ablg, somehing that theprevioustwo approaches easichieve.

1.3 |Creating and Using Custom Configuration Dir ectives

In mod_perl 2.0, adding newonfiguration diredives is a piece of cake, because it requires no XS code
andMakefile.PL, needed in case of mod_perl 1.0. In mod_perl 2.0, cudtmdives areimplementedin
purePerl.

2 29 Jan 2004

Apache Server Configuration Customization in Perl

1.3 Creating and Using Custom Configuration Directives

Here is a very basic module that declares two new configuration directives. MyPar anet er, which
accepts one or more arguments, and MyQx her Par anet er which accepts a single argument.

#file: MyApache/ MyPar anet ers. pm

package MyApache:: MyPar anet ers;

use strict;
use warni ngs FATAL => "all’;
use Apache:: Test;
use Apache:: TestUil;
use Apache:: Const -conpile => qw(OR_ALL | TERATE);
use Apache:: CndParns ();
use Apache:: Mdule ();
our @\PACHE_MODULE_COMVANDS = (
{
nane => ' MyParaneter’,
func => PACKAGE__ . '::MParaneter’,
req_override => Apache:: OR_ALL,
args_how => Apache: : | TERATE,
errmnsg => ' MyParaneter Entryl [Entry2 ...
},
{
nanme => ' M/Q her Par anet er’,
},
)
sub MyParaneter {
ny($sel f, $parns, @rgs) = @Q;
$sel f->{WParaneter} = \@rgs;
}
1

And here is how to useit in httpd.conf:

first load the nodul e so Apache will
Per| LoadModul e MyApache: : MyPar anet er s

MyPar arret er one two three
MyQ her Par anet er Foo
<Location /perl>
MyPar anet er el even twenty
MyQ her Par anet er Bar
</ Locati on>

[EntryN]",

recogni ze the new directives

The following sections discuss this and more advanced modulesin detail.

A minimal configuration module is comprised of two groups of elements:

29 Jan 2004

1.3.1 @APACHE_MODULE_COMMANDS

e A global array @GAPACHE MODULE COVMANDS for declaring the new directives and their
behavior.

® A subroutine per each new directive, which is called when thedirectiveis seen

1.3.1|@APACHE MODULE COMVANDS

@APACHE_MODULE_COMVANDS is a global array of hash references. Each hash represents a separate
new configuration directive. In our example we had:

our @\PACHE_MODULE_COMVANDS = (

{
name => ' MParaneter’,
func => PACKAGE__ . ’'::MParaneter’,
reqg_override => Apache:: OR ALL,
ar gs_how => Apache: : | TERATE,
errmsg =>'MParaneter Entryl [Entry2 ... [EntryN]’,
},
{
name => " M/Q her Par anet er’,
b

)

This structure declares two new directives: MyPar anet er and MyQt her Par anet er. You have to
declare at least the name of the new directive, which is how we have declared the MyQt her Par anet er
directive. mod_perl will fill in the rest of the configuration using the defaults described next.

These are the attributes that can be used to define the directives behavior: jnamg, [fund |[args how,
[req overridgandlerrmsgl They are discussed in the following sections.

1.3.1.1

This is the only required attribute. And it declares the name of the new directive as it'll be used in
httpd.conf.

1.3.1.2

The func attribute expects a reference to a function or a function name. This function is called by httpd
every time it encounters the directive that is described by this entry while parsing the configuration file.
Therefore it's invoked once for every instance of the directive at the server startup, and once per request
per instance in the .htaccessfile.

This function accepts two or more arguments, [depending on the args_how attribute’s valug

This attribute is optional. If not supplied, mod_perl will try to use a function in the current package whose
name is the same as of the directive in question. In our example with Myt her Par anet er , mod_perl
will use:

4 29 Jan 2004

Apache Server Configuration Customization in Perl 1.3.1 @APACHE_MODULE_COMMANDS

__PACKAGE__ . '::M/OtherParaneter’

as a name of subrodine and itantidpatesthat it exists in thgpackage.

1.3.1.3req overri de|

Theattribute defines the valid scope in which ttieedive can appear. There aseveralconstantavhich
map onto the correspondng Apache macros. These constants should be imported from the
Apache: : Const package.

For example, to use tl@R_ALL constant, which allowdiredivesto be defined anywhere, first, it needs
to beimported:

use Apache:: Const -conpile => gWm OR_ALL);

and then assigned to thex_override attribute:
req_override => Apache:: OR_ALL,

It's possble to combine several options using the ur@gitors For example, théollowing setting:
req_override => Apache:: RSRC_CONF | Apache:: ACCESS CONF

will allow the diredive to appear anywhere Hitpd.conf, but forbid it from ever being used intaccess
files:

This attribute is optional. If not supplied, the default valydgdche: : OR ALL[is used.

1314

Directives can receive zero, one or maaigunents In order to help Apachealidatethat the number of
argumentsis valid, theargs_how attribute should be set to the desired value. Similar tpetheverridd
attribute, theApache: : Const package provides special constants which map tocohespondng
Apache macros. There ggeverakonstantgo choosdrom.

In our example, theliredive MyPar anet er accepts one or moragunents therdore we have the
[Apache: : | TERATH constant:

args_how => Apache: : | TERATE,

This attribute is optional. If not supplied, the default valyégdche: : TAKEL|is used.

META: the default may change to use a constantespondng to thefunc protaype

1315

The errmsg attribute provides a short but succinct usstgéenentthatsummaizesthe argumentsthat the
diredive takes. It's used by Apache geneate a descrigive error message, when tb@edive is config
uredwith a wrong number adrguments

29 Jan 2004 5

1.3.1 @APACHE_MODULE_COMMANDS

In our example, the directive MyPar anet er accepts one or more arguments, therefore we have chosen
the following usage string:

errmsg => ' MyParaneter Entryl [Entry2 ... [EntryN]’,

This attribute is optional. If not supplied, the default value of will be astring based on the directive’ sjhamg
andfargs_howj attributes.

1316

Sometimes it is useful to pass information back to the directive handler callback. For instance, if you use
the func parameter to specify the same callback for two different directives you might want to know which
directive is being called currently. To do this, you can use the cmd_data parameter, which allows you to
store arbitrary strings for later retrieval from your directive handler. For instance:

our @\PACHE_MODULE _COWMANDS = (
{
nane => '<lLocation’,
func defaults to Redirect()
req_override => Apache: : RSRC_CONF,

ar gs_how => Apache: : RAW ARGS,

,

{
name => '<Locati oniat ch’,
func => Redirect,
req_override => Apache: : RSRC_CONF,
ar gs_how => Apache: : RAW ARGS,
cnd_dat a = '1,

H

)

Here, we are using the Locat i on() function to process both the Locat i on and Locat i onMat ch
directives. In the Locat i on() calback we can check the data in the cmd_data slot to see whether the
directive being processed is Locat i onMat ch and alter our logic accordingly. How? Through the
i nf o() method exposed by the Apache: : CrdPar s class.

use Apache:: CmdParnms ();
sub Location {
ny ($cfg, $parns, $data) = @;

see if we were called via LocationMtch
nmy $regex = $par ns- >i nfo;

continue al ong

}

In case you are wondering, Locat i on and Locat i onMat ch were chosen for a reason - this is exactly
how httpd core handles these two directives.

6 29 Jan 2004

Apache Server Configuration Customization in Perl 1.3.2 Directive Scope Definition Constants

1.3.2 [Directive Scope Definition Constantg

Thelreg_overridg attributespedfies the configuration scope in which it's valid to use a giveonfigura-
tion diredive. This attribute’s value can be any of azanbhnation of thefollowing constants:

(these constants are declaredhtipd-2.0/include/http_config.h.)

1.3.2.1 |[Apache: : OR NONH

Thediredive cannot beveriddenby any of theAl | owOver ri de options.

1.3.2.2 [Apache: : OR LIM T|

Thediredive can appear withidiredory sections, but not outside them. It is also allowed withtaccess
files, provided thatl | owOverri de Limt is setforthe curremtirecory.

1.3.2.3 |Apache: : OR_OPTI ONS§

The diredive can appear anywhere withinitpd.conf, as well as within.htaccess files provided that
Al'l owOverri de Opti ons is set for the currerdiredory.

1.3.2.4 [Apache: : OR FI LEI NFQ

The diredive can appear anywhere withhitpd.conf, as well as within.htaccess files provided that
Al l owOverride Fil el nfois setfor the curremiredory.

1.3.2.5 [Apache: : OR AUTHCFQ

Thediredive can appear withidiredory sections, but not outside them. It is also allowed withtaccess
files, provided that\l | owOverri de Aut hConfi g is set for the currertirecory.

1.3.2.6 |Apache: : OR | NDEXES

The diredive can appear anywhere withinitpd.conf, as well as within.htaccess files provided that
Al'l owOverri de | ndexes is set for the currerdiredory.

1.3.2.7 [Apache: : OR UNSET|

META: details? "unset diredive (in Allow)"

1.3.2.8 [Apache: : ACCESS CONF|

Thediredive can appear withidiredory sections. Théiredive is not allowed inhtaccessfiles.

29 Jan 2004 7

1.3.3 Directive Callback Subroutine

1.3.2.9 |Apache: : RSRC_CONH

The directive can appear in httpd.conf outside a directory section (<Di r ect ory>, <Locati on> or
<Fi | es>; also <Fi | esMat ch> and kin). The directiveis not allowed in .htaccess files.

1.3.2.10 |Apache: : OR EXEC ON READQ

Force directive to execute a command which would modify the configuration (like including another file,
or | FModul e).

Normally, Apache first parses the configuration tree and then executes the directives it has encountered
(e.g., Set Env). But there are directives that must be executed during the initial parsing, either because
they affect the configuration tree (e.g., | ncl ude may load extra configuration) or because they tell
Apache about new directives (e.g., | f Modul e or Per | LoadMbdul e, may load a module, which installs
handlers for new directives). These directives must have the Apache: : OR_EXEC_ON_READ turned on.

1.3.2.11 |Apache: : OR ALL|

The directive can appear anywhere. It isnot limited in any way.

1.3.3 |Directive Callback Subrouting

Depending on the value of thefargs_how attribute the callback subroutine, specified with theffund attribute,
will be called with two or more arguments. The first two arguments are always $sel f and $par nms. A
typical callback function which expects asingle value (Apache: : TAKEL) might look like the following:

sub MyParam {
my($sel f, $parms, $arg) = @;
$sel f->{MyParant = $arg;

}

In this function we store the passed single value in the configuration object, using the directive’s name
(assuming that it was MyPar an) as the key.

Let’slook at the subroutine argumentsin detail:
1. $sel f isthe current container’s configuration object.

This configuration object is a reference to a hash, in which you can store arbitrary key/value pairs.
When the directive callback function is invoked it may aready include several key/value pairs
inserted by other directive callbacks or during the[SERVER_CREATH and[DI R_CREATH functions,
which will be explained later.

Usually the calback function stores the passed argument(s), which later will be read by
[SERVER MERGHand|DI R_NMERGH, which will be explained later, and of course at request time.

8 29 Jan 2004

Apache Server Configuration Customization in Perl 1.3.4 Directive Syntax Definition Constants

Theconverion is use the name of tltiredive as the hash key, where the received values are stored.
The value can be a simple scalar, oeferenceto a more complestrudure So for example you can
store areferenceto an array, if there is more than one valusttwe.

This object can be later retrieved at request tirae
ny $dir_cfg = $sel f->get_config($s, $r->per_dir_config);
You can retrieve the serveonfiguration objectvia:
ny $srv_cfg = $sel f->get config($s);
if invoked inside the virtual host, the virtual hostanfiguration object will bereturned.

2. $par ns is anApache: : CndPar ns object from which you can retrieve various otl#ormation
about theconfiguration. For example to retrieve the serediject:

ny $s = $parns->server;

SeeApache: : CndPar ns for moreinformation.

3. The rest of thargunentswhose number depends on frgs hows value are covered
sectiof

1.3.4 |Directive Syntax Definition Constantg

The following values of thargs how attribute define how mangrgumentsand what kind ofirguments
diredives can accept. These values are constants that can be imported frékpatbiee: : Const
package. Foexample:

use Apache:: Const -conpile => gwm TAKELl TAKE23);

1.3.4.1 |[Apache: : NO ARGS

The diredive takes noarguments The callback will be invoked once each time tldgredive is encoun
tered Forexample:

sub MyParaneter {
ny($sel f, $parns) = @;
$sel f - >{ MyPar anet er } ++;

}
1.3.4.2 |Apache: : TAKE]]

The diredive takes a singleargument The callback will be invoked once each time tliredive is
encoutered and itsargumentwill be passed as the thiedgument Forexample:

sub MyParaneter {
ny($sel f, $parns, $arg) = @;
$sel f->{MWyParaneter} = $arg;

}

29 Jan 2004 9

1.3.4 Directive Syntax Definition Constants

1.3.4.3 |Apache: : TAKE2|

Thediredive takes twoarguments They are passed to tballbackas the third and fourtarguments For
example:

sub MyParaneter {
ny($sel f, $parns, $argl, $arg2) = @;
$sel f->{MyParaneter} = {$argl => $arg2};
}

1.3.4.4 [Apache: : TAKE3|

This is like|[Apache: : TAKEL]| and[Apache: : TAKE2} but thediredive takes threemandaory argu
ments Forexample:

sub MyParaneter {
ny($sel f, $parms, @rgs) = @;
$sel f->{MyParaneter} =\ @rgs;

}
1.3.4.5 |Apache: : TAKE1?2|

This diredive takes onemandaory argument and a second optional one. This can be used when the
secondargunenthas a default value that the user may wantwtride. Forexample:

sub MyParaneter {

ny($sel f, $parns, $argl, $arg2) = @;

$sel f->{MyParaneter} = {$argl => $arg2|| default’};
}

1.3.4.6 [Apache: : TAKE23|

[Apache: : TAKE23]is just likgApache: : TAKE1?2] except now there are twoandaory argumentsand
an optional thircbne.

1.3.4.7 [Apache: : TAKE123|

In the Apache: : TAKEL123 variant, the firsargunentis mandaory and the other two are optional. This
is useful forproviding defaults for twaarguments

1.3.4.8 |Apache: : | TERATH

Apache: : | TERATE is used when diredive can take amnlimited number ofargunents Thecallback

is invokedrepeaedly with a singleargument once for eaclkargunentin the list. It's done this way for
interoperability with the C API, which doesn’t have tflexible argumentpassing that Perl provides. For
example:

sub MyParaneter {

ny($sel f, $parns, $args) = @;

push @ $sel f->{M/Paraneter} }, $arg;
}

10 29 Jan 2004

Apache Server Configuration Customization in Perl 1.3.4 Directive Syntax Definition Constants

1.3.4.9 |Apache: : | TERATE2]

Apache: : | TERATEZ is used for directives that take a mandatory first argument followed by a list of
argumentsto be applied to the first. A familiar example isthe Add Ty pe directive, in which a series of file
extensions are applied to asingle MIME type:

AddType image/jpeg JPG JPEG JFIF jfif

Apache will invoke your callback once for each item in the list. Each time Apache runs your callback, it
passes the routine the constant first argument ("image/jpeg” in the example above), and the current item in
the list ("JPG" the first time around, "JPEG" the second time, and so on). In the example above, the
configuration processing routine will be run atotal of four times.

For example:

sub MyParameter {

my($sel f, $parnms, $key, $val) = @;

push @ $sel f->{MParaneter}{$key} }, $val;
}

1.3.4.10 [Apache: : RAW ARGS

An of Apache: : RAW ARGS instructs Apache to turn off parsing altogether. Instead it simply
passes your callback function the line of text following the directive. Leading and trailing whitespace is
stripped from the text, but it is not otherwise processed. Y our callback can then do whatever processing it
wishes to perform.

This callback receives three arguments (similar to [Apache: : TAKEL), the third of which is a
string-valued scalar containing the text following the directive.

sub MyParaneter {
ny($sel f, $parms, $val) = @;
process $val

}

If this mode is used to implement a custom "container" directive, the attribute|req_overridg needs to OR
[Apache: : OR_ EXEC ON READ eg.

req_override => Apache:: OR_ALL | Apache:: OR_EXEC _ON READ,

META: complete the details, which are new to 2.0.

There is one other trick to making configuration containers work. In order to be recognized as a valid
directive, the [namdg attribute must contain the leading <. This token will be stripped by the code that
handles the custom directive callbacks to Apache. For example:

nane => ' <MyCont ai ner’,

29 Jan 2004 11

1.3.5 Enabling the New Configuration Directives

One other trick that is not required, but can provide some mordriesetinessis to provide a handler for
the container end token. In our example, the Apaxindiguration gears will never see thdMyCon -
tainer > token, as oyApache::RAW ARGS handler will read in that line and stop reading when it is
seen. However in order to catch cases in whichkthlyContainer > text appears without precedhg
<MyContainer > opening section, we need to turn the end token imtioeative that simply reports an
error and exits. Fogxample:

{
name =>'</MyContainer>’,
func =>_ PACKAGE__ . ":MyContainer_END",
errmsg =>"end of MyContainer without beginning?’,

args_how => Apache::NO_ARGS,
req_override => Apache::OR_ALL,
h

my $EndToken = "</MyContainer>",
sub MyContainer_END {
die "$EndToken outside a <MyContainer> container\n";

}

Now, should the servedmiristrator misplace the container end token, the server will not stariplair
ing with this errormessage:

Syntax error on line 54 of httpd.conf:
</MyContainer> outside a <MyContainer> container

1.3.4.11 |Apache: : FLAGQ

When Apache::FLAG is used, Apache will only allow tha&rgumentto be one of two value®)n or
Off . This string value will be converted into an intedeff, the flag isOn, O if it is Off . If the configura-
tion argumentis anything other tha®n or Off , Apache willcomplain:

Syntax error on line 73 of httpd.conf:
MyFlag must be On or Off

Forexample:

sub MyFlag {
my($self, $parms, $arg) = @_;
$self->{MyFlag} = $arg; # 1 or 0
}

1.3.5 [Enabling the New Configuration Directiveq

As seen in the first example, the module needs to be loaded before thbreiwes can be used. A
specialdiredive Perl Load Module is used for this purpose. Fexample:

PerlLoadModule MyApache::MyParameters

12 29 Jan 2004

Apache Server Configuration Customization in Perl 1.3.6 Creating and Merging Configuration Objects

Thisdirectiveis similar to Per | Modul e, but it require()’ s the Perl module immediately, causing an early
mod_perl startup. After loading the module it let's Apache know of the new directives and installs the
callbacks to be called when the corresponding directives are encountered.

1.3.6 [Creating and Merging Configuration Objectq

By default mod_perl creates a ssmple hash to store each container’s configuration values, which are popu-
lated by directive callbacks, invoked when the httpd.conf and the .htaccess files are parsed and the corre-
sponding directive are encountered. It's possible to pre-populate the hash entries when the data structure is
created, e.g., to provide reasonable default values for cases where they weren’t set in the configuration
file. To accomplish that the optional [SERVER CREATHand|DI R _CREATH functions can be supplied.

When a request is mapped to a container, Apache checks if that container has any ancestor containers. If
that’s the case, it allows mod_perl to call special merging functions, which decide whether configurations
in the parent containers should be inherited, appended or overridden in the child container. The custom
configuration module can supply custom merging functions [SERVER_MERGH and [DI R_MERGE, which
can override the default behavior. If these functions are not supplied the following default behavior takes
place: The child container inherits its parent configuration, unless it specifies its own and then it overrides
its parent configuration.

1.3.6.1 [SERVER_CREATH

SERVER _CREATE is caled once for the main server, and once more for each virtual host defined in
httpd.conf. It's called with two arguments: $cl ass, the package name it was created in and $par ns the
aready familiar Apache: : CmdPar ns object. The object is expected to return a reference to a blessed
hash, which will be used by configuration directives callbacks to set the values assigned in the configura-
tion file. But it's possible to preset some values here:

For example, in the following example the object assigns a default value, which can be overridden during
merge if athe directive was used to assign a custom value:

package MyApache:: MyPar anet ers;

use Apache:: Mdule ();
use Apache:: CndParns ();
our @\PACHE_MODULE_COMMANDS = (...);

sub SERVER_CREATE {
ny($cl ass, $parns) = @;
return bl ess {
name => _ PACKAGE _,
}, $cl ass;

}
To retrieve that value later, you can use:
use Apache: : Mbdule ();

nmy $srv_cfg = Apache:: Modul e- >get _confi g(’ MyApache: : MyParaneters’, $s);
print $srv_cfg->{nane};

29 Jan 2004 13

1.3.6 Creating and Merging Configuration Objects

If arequest is made to a resource inside a virtual host, $srv_cf g will contain the object of the virtua
host’ s server. To reach the main server’s configuration object use:

use Apache:: Module ();
use Apache:: Server ();
use Apache::ServerUtil ();

if ($s->is_virtual) {
nmy $base_srv_cfg = Apache:: Modul e- >get _confi g(’ MyApache: : MyPar aneters’,
Apache- >server);
print $base_srv_cfg->{nane};

}

If the function SERVER _CREATE is not supplied by the module, a function that returns a blessed into the
current package reference to a hash is used.

1.3.6.2 [SERVER_MERGH

During the configuration parsing virtual hosts are given a chance to inherit the configuration from the
main host, append to or override it. The SERVER MERGE subroutine can be supplied to override the
default behavior, which smply overrides the main server’s configuration.

The custom subroutine accepts two arguments: $base, a blessed reference to the main server configura-
tion object, and $add, a blessed reference to a virtual host configuration object. It's expected to return a
blessed object after performing the merge of the two objects it has received. Here is the skeleton of a
merging function:

sub nerge {
ny($base, $add) = @;
my %wg = ();
code to nerge %base and %add
return bl ess \%mrg, ref($base);

}

The section[Merging at Work] provides an extensive example of a merging function.

1.3.6.3 DI R_CREATH

Similarly to [SERVER_CREATH, this optional function, is used to create an object for the directory
resource. If the function is not supplied mod_perl will use an empty hash variable as an object.

Just like[SERVER CREATH, it’s called once for the main server and one more time for each virtual host.
In addition it'll be called once more for each resource (<Locat i on>, <Di r ect or y> and others). All
this happens during the startup. At request time it might be called for each parsed .htaccess file and for
each resource defined init.

The DI R_CREATE function’s skeleton isidentical to SERVER CREATE. Here is an example:
package MyApache: : MyPar anet er s;

use Apache: : Modul e ();
use Apache:: CmdParms ();

14 29 Jan 2004

Apache Server Configuration Customization in Perl 1.4 Examples

our @WPACHE_MODULE_COMMANDS = (...);

sub DI R_CREATE {
ny($cl ass, $parns) = @;
return bless {
foo => '"bar’,
}, $class;

}

Toretrieve that value later, you can use:
use Apache:: Mdule ();

my $dir_cfg = Apache:: Modul e- >get _confi g(’ MyApache: : MyPar anet er s’
$s, $r->per_dir_config);
print $dir_cfg->{foo};

The only difference in the retrieving the directory configuration object. Here the third argument
$r->per _dir_confi gtellsApache: : Modul e to get the directory configuration object.

1.3.6.4 [DI R_NVERGH

Similarly to[SERVER _MERGH DI R MERGE merges the ancestor and the current node’ s directory config-
uration objects. At the server startup DI R_MERGE is called once for each virtual host. At request time, the
merging of the objects of resources, their sub-resources and the virtual host/main server merge happens.
Apache caches the products of merges, so you may see certain merges happening only once.

The section[Merging Order Conseguenced discusses in detail the merging order.

The section[Merging at Work] provides an extensive example of a merging function.

1.4 [Examples

1.4.1 Merging at Work|

In the following example we are going to demonstrate in details how merging works, by showing various
merging techniques.

Here is an example Perl module, which, when loaded, installs four custom directives into Apache.
#file: MyApache/ Cust onDi recti ves. pm
package MyApache: : CustonDi rectives

use strict;
use warni ngs FATAL => "all’

use Apache:: CndParns ();

use Apache: : Mdule ();
use Apache:: ServerWil ();

29 Jan 2004 15

1.4.1 Merging at Work

16

use

our

sub
sub
sub
sub

sub
sub

sub

sub

sub

Apache: : Const -conpile => gwm OK);

@\PACHE_MODULE_COMVANDS = (
{ nane => "' MPlus },

{ nane => ' MlList’ },

{ nane => ' MyAppend’ 1},

{ name => ' MOverride' 1},

My Pl us { set_val (' M\yPl us’, @) }
MyAppend { set_val (' MyAppend’, @) }
MyOverride { set_val (' MWOverride’', @) }
MyLi st { push_val (" MyList’, @) }

DI R_MERGE { nerge(@) 1}
SERVER MERGE { nerge(@) }

set _val {
ny($key, $self, $parns, $arg) = @;
$sel f->{$key} = S$arg;
unl ess ($parns->path) {
ny $srv_cfg = Apache:: Modul e- >get _confi g($sel f,
$par ms- >server) ;
$srv_cfg->{$key} = $arg;

push_val {
ny(key, Sself, S$parns, $arg) = @;

push @ $sel f->{$key} }, $arg;
unl ess ($parns->path) {
ny $srv_cfg = Apache:: Modul e- >get _confi g($sel f,
$par ns- >server);
push @ $srv_cfg->{$key} }, $arg;

nmerge {
nmy($base, $add) = @;

ny %wg = ();
for nmy $key (keys % bbase, %add) ({
next if exists $nrg{$key};
if ($key eq 'WMyPlus’) {
$nr g{ $key} = ($base->{$key}||0) + ($add->{$key}|]|0);
}

elsif ($key eq "'MyList’) {
push @ $nvg{s$key} },
@ $base->{$key}||[] }, @ S$add->{S$key}||[] };

}
el sif ($key eq ' MyAppend’) {
$nmrg{ $key} = join " ", grep defined, $base->{$key},
$add- >{ $key};
}
el se {

override node

29 Jan 2004

Apache Server Configuration Customization in Perl 1.4.1 Merging at Work

$nr g{ $key} = $base->{$key} if exists $base->{$key};
$nr g{ $key} = $add->{$key} if exists $add->{$key};
}
}
return bl ess \%mrg, ref($base);
}
1;
END

It's probably a good ideato specify al the attributes for the GAPACHE_MODULE _COVIVANDS entries, but
here for simplicity we have only assigned to the[namg directive, which is a must. Since all our directives
take a single argument, [Apache: : TAKEL] the default fargs how}, is what we need. We also allow the

directives to appear anywhere, so [Apache: : OR_ALL] the default for [req_overridg is good for us as
well.

We use the same callback for the directives MyPl us, MyAppend and MyOverri de, which simply
assigns the specified value to the hash entry with the key of the same name as the directive.

The MyLi st directive's callback stores the value in the list, a reference to which is stored in the hash,
again using the name of the directive as the key. This approach is usually used when the directive is of
type [Apache: : | TERATH, so you may have more than one value of the same kind inside a single
container. But in our example we choose to have it of the type[Apache: : TAKEL]

In both callbacks in addition to storing the value in the current directory configuration, if the value is
configured in the main server or the virtual host (which is when $par ns- >pat h isfase), we also store
the data in the same way in the server configuration object. This is done in order to be able to query the
values assigned at the server and virtual host levels, when the request is made to one of the sub-resources.
We will show how to access that information in a moment.

Finally we use the same merge function for merging directory and server configuration objects. For the
key MyPl us (remember we have used the same key name as the name of the directive), the merging func-
tion performs, the obvious, summation of the ancestor’s merged value (base) and the current resource’s
value (add). MyAppend joins the values into a string, MyLi st joins the lists and finally MyOverri de
(the default) overrides the value with the current one if any. Notice that all four merging methods take into
account that the values in the ancestor or the current configuration object might be unset, which is the case
when the directive wasn't used by all ancestors or for the current resource.

At the end of the merging, a blessed reference to the merged hash is returned. The referenceis blessed into
the same class, as the base or the add objects, which is MyApache: : Cust onDi recti ves in our
example. That hash is used as the merged ancestor’ s object for a sub-resource of the resource that has just
undergone merging.

Next we supply the following httpd.conf configuration section, so we can demonstrate the features of this
example:

29 Jan 2004 17

1.4.1 Merging at Work

Per | LoadMbdul e MyApache: : Cust onDi recti ves
MyPlus 5

MyLi st "Mai nServer"

MyAppend " Mai nServer"

MyQverride "MainServer"

Li sten 8081

<Virtual Host _default_:8081>
MyPl us 2
MyLi st "VHost "

M/Append "VHost"
MyQverride "VHost"
<Location /customdirectives_test>

MyPl us 3
MyLi st "Dir"
MyAppend "Dir"

MyQverride "Dir"
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Cust onDi recti vesTest
</ Locati on>
<Location /customdirectives_test/subdir>
M/Plus 1
MyLi st "SubDir"
MyAppend " SubDir"
MyQverride "SubDir"
</ Locati on>
</ Vi r t ual Host >
<Location /customdirectives_test>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Cust onDi recti vesTest
</ Locati on>

Per | LoadMbdul e loads the Perl module MyApache: : Cust onDi r ect i ves and then installs a new
Apache module named MyApache: : Cust onDi r ecti ves, using the callbacks provided by the Perl
module. In our example functions SERVER CREATE and DI R_CREATE aren’t provided, so by default an
empty hash will be created to represent the configuration object for the merging functions. If we don't
provide merging functions, Apache will simply skip the merging. Though you must provide a callback
function for each directive you add.

After installing the new module, we add a virtual host container, containing two resources (which at other
times called locations, directories, sections, etc.), one being a sub-resource of the other, plus one another
resource which resides in the main server.

We assign different values in al four containers, but the last one. Here we refer to the four containers as
MainServer, VHost, Dir and SQubDir, and use these names as values for all configuration directives, but
My Pl us, to make it easier understand the outcome of various merging methods and the merging order. In
the last container used by <Locati on /custom directives_t est >, wedon't specify any direc-
tives so we can verify that al the values are inherited from the main server.

For al three resources we are going to use the same response handler, which will dump the values of
configuration objects that in its reach. As we will see that different resources will see see certain things
identically, while others differently. So here it the handler:

18 29 Jan 2004

Apache Server Configuration Customization in Perl

#file: MyApache/ CustonDi recti vesTest. pm

package MyApache: : CustonDirectivesTest;

use strict;
use warni ngs FATAL => "al |’
use Apache:: Request Rec ();
use Apache: : Request| O ();
use Apache:: Server ()
use Apache:: ServerUtil ()
use Apache: : Modul e ()
use Apache:: Const -conpile => gw CK)
sub get_config {
Apache: : Mbdul e- >get _confi g(’ MyApache: : Cust onDirecti ves’
}
sub handl er {
ny($r) = @;
nmy %ecs = ();

$r->content _type('text/plain');

ny $s = $r->server;
ny $dir_cfg get _confi g($s,
ny $srv_cfg get _config($s);

if ($s->is_virtual) {

1.4.1 Merging at Work

@);

$r->per_dir_config);

$secs{"1: Main Server"} = get_config(Apache->server)
$secs{"2: Virtual Host"} = $srv_cfg;
$secs{"3: Location"} = $dir_cfg;

}

el se {
$secs{"1: Main Server"} = $srv_cfg
$secs{"2: Location"} = $dir_cfg;

}

$r->printf("Processing by %.\n"
$s->is_virtual ? "virtua

for my $sec (sort keys Usecs) {
$r->print("\nSection $sec\n")

host "

"mai n server");

for my $k (sort keys % $secs{$sec}||{} }) {

ny $v = exists $secs{$sec}-
? $secs{$sec}- >{ $k}
: " UNSET

$v =" . (join", ", map
if ref($v) eq ' ARRAY';

$r->printf("%10s : 9%\n",

}

return Apache:: K

29 Jan 2004

>{ $k}

{ag{"$_"}} @v) . "I’
$k, $v);

19

1.4.1 Merging at Work

}

1;
END__

The handler isrelatively simple. It retrieves the current resource (directory) and the server’s configuration
objects. If the server is a virtual hogt, it also retrieves the main server’s configuration object. Once these
objects are retrieved, we simply dump the contents of these objects, so we can verify that our merging
worked correctly. Of course we nicely format the data that we print, taking a specia care of array refer-
ences, which we know is the case with the key MyList, but we use a generic code, since Perl tells us when
areferenceisalist.

It'sashow time. First we issue arequest to aresource residing in the main server:
% GET http://1ocal host: 8002/ customdirectives_test/
Processing by nain server.

Section 1: Miin Server

My Append : Mai nServer
MyLi st © ["MainServer"]
MyQverride : MainServer
MyPl us 5

Section 2: Location

My Append : Mai nServer
MyLi st © ["MainServer"]
MyQverride : MainServer
My Pl us 5

Since we didn’'t have any directives in that resource’s configuration, we confirm that our merge worked
correctly and the directory configuration object contains the same data as its ancestor, the main server. In
this case the merge has simply inherited the values from its ancestor.

The next request is for the resource residing in the virtual host:
% GET http://1ocal host: 8081/ customdirectives_test/
Processing by virtual host.

Section 1. Miin Server

MyAppend : Mai nServer

MyLi st : ["MainServer"]
MyQverride : MinServer

My Pl us . 5

Section 2: Virtual Host

MyAppend : MainServer VHost

MyLi st : ["MainServer", "VHost"]
MyQverride : VHost

My Pl us 7

Section 3: Location

20 29 Jan 2004

Apache Server Configuration Customization in Perl 1.4.1 Merging at Work

MyAppend : MainServer VHost Dir

MyLi st : ["MainServer", "VHost", "Dir"]
MyQverride : Dir

My Pl us . 10

That's where the real fun starts. We can see that the merge worked correctly in the virtual host, and so it
did inside the <Locat i on> resource. It's easy to see that MyAppend and MyLi st are correct, the same
for MyOverri de. For MyPl us, we have to work harder and perform some math. Inside the virtual host
we have main(5)+vhost(2)=7, and inside the first resource vhost_merged(7)+resource(3)=10.

So far so good, the last request is made to the sub-resource of the resource we have requested previoudly:
% GET http://1ocal host: 8081/ customdirectives_test/subdir/
Processing by virtual host.

Section 1: Miin Server

My Append : Mai nServer

MyLi st © ["MainServer"]

MyQverride : MinServer

MyPl us 5

Section 2: Virtual Host

My Append : Mai nServer VHost

MyLi st © ["MainServer", "VHost"]
MyQverride : VHost

M/PI us 7

Section 3: Location

My Append : MainServer VHost Dir SubDir
MyLi st : ["MainServer", "VHost", "Dir", "SubDr"]
MyCverride : SubDr

M/PI us D11

No surprises here. By comparing the configuration sections and the outcome, it’s clear that the merging is
correct for most directives. The only harder verification isfor MyPI us, all we need to doisto add 1 to 10,
which was the result we saw in the previous request, or to do it from scratch, summing up all the ancestors
of this sub-resource: 5+2+3+1=11.

1.4.1.1 (Merging Entries Whose Values Are Refer enceq

When merging entries whose values are references and not scalars, it’'s important to make a deep copy and
not a shallow copy, when the references gets copied. In our example we merged two references to lists, by
explicitly extracting the values of each list:

push @ $nvg{s$key} },
@ $base->{S$key}||[] }, @ S$add->{$key}||[] };

While seemingly the following snippet is doing the same:

29 Jan 2004 21

1.4.1 Merging at Work

$nr g{ $key} = $base- >{ $key};
push @ $nrg{$key} }, @ $add->{$key}||[] };

it won't do what you expect if the same merge (with the same $base and $add arguments) is called
more than once, which is the case in certain cases. What happens in the latter implementation, is that the
first line makes both $nr g{ $key} and $base- >{ $key} point to the same reference. When the second
line expands the @ $nr g{ $key} 1}, it dso affects @ $base->{$key} }. Therefore when the
same mergeis called second time, the $base argument is not the same anymore.

Certainly we could workaround this prablem in the mod_perl core, by freezing the arguments before the
merge call and restoring them afterwards, but this will incur a performance hit. One simply has to remem-
ber that the arguments and the references they point to, should stay unmodified through the function call,
and then the right code can be supplied.

1.4.1.2 [Merging Order Conseguenceq

Sometimes the merging logic can be influenced by the order of merging. It's desirable that the logic will
work properly regardless of the merging order.

In Apache 1.3 the merging was happening in the following order:
(((base_srv -> vhost) -> section) -> subsection)
Whereas as of thiswriting Apache 2.0 performs:
((base_srv -> vhost) -> (section -> subsection))

A product of subsections merge (which happen during the request) is merged with the product of the
server and virtual host merge (which happens at the startup time). This change was done to improve the
configuration merging performance.

So for example, if you implement a directive MyExp which performs the exponential:
$nT g=$base** $add, and let’s say there directiveis used four times in httpd.conf:

WExp 5

<Virtual Host _default :8001>
WExp 4
<Location /section>

M/Exp 3

</ Locati on>

<Location /section/subsecti on>
MExp 2

</ Locati on>

The merged configuration for a request |http: //|ocal host: 8001/section/subsection|will see:

(5 ** 4) ** (3 ** 2) = 1.45519152283669e+25

under Apache 2.0, whereas under Apache 1.3 the result would be:

22 29 Jan 2004

http://localhost:8001/section/subsection

Apache Server Configuration Customization in Perl 1.5 Maintainers

((5 ** 4) ** 3) ** 2 = 5 06046447753906e+16

which is not quite the same.

Chances are that your merging rules work identically, regardless of the merging order. But you should be
aware of this behavior.

1.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.6 [Authors

® Stas Bekman <stas (at) stason.org>

Only the magjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 23

Apache Server Configuration Customization in Perl Table of Contents:

Table of Contents:

1 IApaChe Server Configuration Customization in Perl |

1-1 [Descriptiod.

1 3 ICreatl ng and Using Custom Conflquratlon Dlrectlved
131 Im

1.3.1.1 [hang| .

1.3.1.2 [func] .

1.3.1.3[req overri deI

1.3.1.4 [args_how

1.3.15 _ :

1316 [cnd_dat g

1.3.2 |Directive Scope Definition Constantsi
1.3.2.1 [Apache: : OR NONH .
1.3.2.2 [Apache: : OR LIMT] .
1.3.2.3 [Apache: : OR_ OPTI ONY
1.3.2.4 |Apache: : OR FI LEI NFQ .
1.3.2.5 [Apache: : OR AUTHCFQ
1.3.2.6 |[Apache: : OR | NDEXES
1.3.2.7 |Apache: : OR UNSET| . .
1.3.2.8 [Apache: : ACCESS CONH .
1.3.2.9 [Apache: : RSRC CONH
1.3.2.10 |Apache: : OR EXEC ON READ
1.3.2.11 |Apache: : OR ALL|

1.3.3 |Directive Callback Subrouting

1.3.4 |Directive Syntax Definition Constantq .
1.3.4.1 [Apache: : NO ARG
1.3.4.2 [Apache: : TAKE]L] .
1.3.4.3 [Apache: : TAKE2| .

=
QO OWWOWUOWWWWWOONNNNSNNNN~NOCOCGOUOOORARDMBANNDDNPE

1.3.4.4 |Apache: : TAKE3| . 1
1.3.45 |Apache: : TAKE12| 10
1.3.4.6 [Apache: : TAKE23| 10
1.3.4.7 |Apache: : TAKE123| 10
1.3.4.8 [Apache: : T TERATH . 10
1.3.4.9 [Apache: : [TERATE?Z] . 11
1.3.4.10 |Apache: : RAW ARGY. 11
1.3.4.11 |Apache: : FLAG . . 12
1.3.5 |Enabling the New Configuration Dlrectlved 12
1.3.6 |Creating and Merging Configuration Objectq 13
1.3.6.1 [SERVER CREATH . 13
1.3.6.2 [SERVER VERGH 14
1.3.6.3 : 14
1.3.6.4 [D'R_VERGE 15
1.4 [Examples : 15
14.1 |M erQ| nq at Workl 15

29 Jan 2004 i

Table of Contents:

1.4.1.1 Merging Entries Whose Values Are Referencg .
1.4.1.2 [Merging Order Consequenca . e e 22
15 fMalntal ner§ 23
16[Authory 23

ii 29 Jan 2004

	1€€Apache Server Configuration Customization in Perl
	1.1€€Description
	1.2€€Incentives
	1.3€€Creating and Using Custom Configuration Directives
	1.3.1€€@APACHE_MODULE_COMMANDS
	1.3.1.1€€name
	1.3.1.2€€func
	1.3.1.3€€req_override
	1.3.1.4€€args_how
	1.3.1.5€€errmsg
	1.3.1.6€€cmd_data

	1.3.2€€Directive Scope Definition Constants
	1.3.2.1€€Apache::OR_NONE
	1.3.2.2€€Apache::OR_LIMIT
	1.3.2.3€€Apache::OR_OPTIONS
	1.3.2.4€€Apache::OR_FILEINFO
	1.3.2.5€€Apache::OR_AUTHCFG
	1.3.2.6€€Apache::OR_INDEXES
	1.3.2.7€€Apache::OR_UNSET
	1.3.2.8€€Apache::ACCESS_CONF
	1.3.2.9€€Apache::RSRC_CONF
	1.3.2.10€€Apache::OR_EXEC_ON_READ
	1.3.2.11€€Apache::OR_ALL

	1.3.3€€Directive Callback Subroutine
	1.3.4€€Directive Syntax Definition Constants
	1.3.4.1€€Apache::NO_ARGS
	1.3.4.2€€Apache::TAKE1
	1.3.4.3€€Apache::TAKE2
	1.3.4.4€€Apache::TAKE3
	1.3.4.5€€Apache::TAKE12
	1.3.4.6€€Apache::TAKE23
	1.3.4.7€€Apache::TAKE123
	1.3.4.8€€Apache::ITERATE
	1.3.4.9€€Apache::ITERATE2
	1.3.4.10€€Apache::RAW_ARGS
	1.3.4.11€€Apache::FLAG

	1.3.5€€Enabling the New Configuration Directives
	1.3.6€€Creating and Merging Configuration Objects
	1.3.6.1€€SERVER_CREATE
	1.3.6.2€€SERVER_MERGE
	1.3.6.3€€DIR_CREATE
	1.3.6.4€€DIR_MERGE

	1.4€€Examples
	1.4.1€€Merging at Work
	1.4.1.1€€Merging Entries Whose Values Are References
	1.4.1.2€€Merging Order Consequences

	1.5€€Maintainers
	1.6€€Authors

