User’s guide Table of Contents:

User’sguide

All you need to know about using mod_perl 2.0

Lastmodified Thu Jan 29 08:29:29 20@MT

29 Jan 2004 1

Table of Contents:

Part |: Introduction

k| 1. Getting Your Feet Wet wittmod petl
This chapter gives you the bare miniminformation to get you started with mod_perl 2.0. For most
people it'ssufficientto get going.

k[2. Overview of mod pef.qd
This chapter should give you a general idea about what mod_perl 2.0 is and how it differs from
mod_perl 1.0. This chapter presents the new features of Apache 2.0, Perl 5.6.0 -- 5.8.0 iafid their
enceon mod_perl 2.0. The new MPM models from Apache 2.0 are discussed.

k[3. Notes on the design and goalsmuid perl-2.D
Notes on the design and goals of mod_perl-2.0.

Part Il: Installation

k| 4. Installing mod per?.q
This chapter provides an in-depth mod_perligdialation covemage

k| 5. mod perl 2.0 Servé&onfiguration|
This chapter provides an in-depth mod_perléffiguration details.

k[6. Apache ServeaConfiguration Customiz&on in Per|
This chapter explains how to create custom Apaciméiguration diredivesin Perl.

Part 111: Coding

b [7. Writing mod_perl Handlers ar®tripts$
This chapter covers the mod_perl coding specifiiferent from normal Perl coding. Most other
perl coding issues are covered in the perl manpages arldeiature

k| 8. CookingRecipek
As the chapter’s title implies, here you will find ready-to-go mod_perl 2.0 recipes.

Part 1V: Porting

k| 9. Porting Apache:: Perl Modules from mod perl 1.9.tp
This document describes the various options for porting a mod_perl 1.0 Apache module so that it
runs on a Apache 2.0 / mod_perl 2.0 server. It's also helpful to those whdestalping mod_perl
2.0 handlers.

k[10. ARefeenceto mod perl 1.0 to mod perl 2Migration.
This chapter is aeferencefor porting code andonfiguration files from mod_perl 1.0 to mod_perl
2.0.

Part V: mod_per| Handlers

2 29 Jan 2004

User’sguide Table of Contents:

k| 11. Introducing mod perl Handlerg
This chapter provides an introduction into mod_perl handlers.

b [12. Server Life Cycle Handlerg
This chapter discusses server life cycle and the mod_perl handlers participating init.

k[13. Protocol Handlerg
This chapter explains how to implement Protocol (Connection) Handlersin mod_perl.

k| 14. HTTP Handlerg
This chapter explains how to implement the HTTP protocol handlersin mod_perl.

k[15. Input and Output Filterd
This chapter discusses mod_perl’ sinput and output filter handlers.

k| 16. General Handlers | ssueq
This chapter discusses issues relevant too any kind of handlers.

Part VI: Performance

k[17. Preventive Measures for Performance Enhancement|
This chapter explains what should or should not be done in order to keep the performance high

k| 18. Performance Considerations Under Different MPM4
This chapter discusses how to choose the right MPM to use (on platforms that have such a choice),
and how to get the best performance out of it.

Part VII: Troubleshooting

k[19. Troubleshooting mod perl problemg
Freguently encountered problems (warnings and fatal errors) and their troubleshooting.

[20. User Help
This chapter isfor those needing help using mod_perl and related software.

29 Jan 2004 3

1 Getting Y our Feet Wet with mod_perl

1 Getting Your Feet Wet with mod_perl

4 29 Jan 2004

Getting Your Feet Wet with mod_perl 1.1 Description

1.1 Description|

This chapter gives you the bare minimimfiormaion to get you started with mod_perl 2.0. For most
people it'ssufficientto getgoing.

1.2 [Installation|

If you are a Win32 user, please refer to\tfi@32 instalation document

First,dowrloadthe mod_perl 2.8ource.

Before installing mod_perl, you need check that you havegntbd perl 2.0prereaiisites installed.
Apache and the right Perl version have to be built and instaé&me you can proceed withuilding
mod_perl.

In this chapter we assume that httpd and all helper files were installedbi@ieiE/httpd/prefork, if your
distribution doesn't install all the files under the same tree, please retfee tmmpletenstalation instrug|

Now, configuremod_perl:

%tar -xvzf nod_perl-2.x.xx.tar.gz
% cd nodperl-2.0
% per| Makefile. PL MP_APXS=$HOVWE/ htt pd/ pr ef or k/ bi n/ apxs MP_I NST_APACHE2=1

where MP_APXS is the full path to the@pxs executable, normally found in the saitieedory as the
ht t pd executable, but could be put idifferentpath asvell.

Finally, build, test and instathod_perl:

% nmake && make test && nmmke install

Becomeroot before doingrake i nst al | if installing system-wide.

If somehing goes wrong or you need to enable optional features please rier dompletenstalation |

instrudions

1.3 |Configuration

If you are a Win32 user, please refer to\ttie32 configuration document

Enable mod_perl built as DSO, by addindntipd.conf:

LoadModul e perl| _nodul e nodul es/ nod_per| . so

Next, tell Perl where to find mod_pelliBraries:

29 Jan 2004 5

1.4 Server Launch and Shutdown

Per | Modul e Apache2

There are many other configuration options which you can find in the[configuration manuall

If you want to run mod_perl 1.0 code on mod_perl 2.0 server enable the compatibility layer:

Per | Mbdul e Apache: : conpat

For more information see: [Migrating from mod perl 1.0 to mod perl 2.0l

1.4 |Server Launch and Shutdown|

Apache is normally launched with apachect | :

% $HOVE/ ht t pd/ pr ef or k/ bi n/ apachect| start

and shut down with:

% $HOVE/ ht t pd/ pr ef or k/ bi n/ apachect| stop

Check $HOME/httpd/prefork/logs/error_log to see that the server has started and it’s aright one. It should
say something similar to:

[Thu May 29 12:22:12 2003] [notice] Apache/2.0.46-dev (Unix)
mod_perl/1.99_10-dev Perl/v5.9.0 nod_ssl/2.0.46-dev OpenSSL/0.9.7
DAV/ 2 configured -- resunmi ng nornmal operations

1.5 |Registry Scripts

To enable registry scripts add to httpd.conf:

Alias /perl/ [hone/httpd/ httpd-2.0/perl/
<Location /perl/>
Set Handl er perl -script
Per | ResponseHandl er ModPerl :: Regi stry
Per| Opti ons +Par seHeader s
Opti ons +ExecCd
</ Locat i on>

and now assuming that we have the following script:
#! [usr/ bi n/ perl

print "Content-type: text/plain\n\n";
print "mod_perl 2.0 rocks!\n";

saved in /home/httpd/httpd-2.0/perl/rock.pl. Make the script executable and readable by everybody:

% chrmod a+rx / hone/ httpd/ httpd-2. 0/ perl/rock. pl

6 29 Jan 2004

Getting Y our Feet Wet with mod_perl 1.6 Handler Modules

Of course the path to the script should be readable by the server too. In the real world you probably want
to have atighter permissions, but for the purpose of testing that things are working thisisjust fine.

Now restart the server and issue a request tohttp://localhost/per|/rock.plland you should get the response:

nmod_per|l 2.0 rocks!
If that didn’t work check the error_log file.

For more information on the registry scripts refer to the ModPer | : : Regi st ry manapage. (XXX: on
day there will atutorial on registry, should port it from 1.0’ s docs).

1.6 Handler M oduleg

Finally check that you can run mod_perl handlers. Let’s write a response handler similar to the registry
script from the previous section:

#f i1 e: MyApache/ Rocks. pm
package MyApache: : Rocks;

use strict;
use war ni ngs;

use Apache:: Request Rec ();
use Apache: : Request| O ();

use Apache:: Const -conpile => gw CK)

sub handl er {
ny $r = shift;

$r->content _type('text/plain');
print "nmod_perl 2.0 rocks!\n";

return Apache:: K
}
1

Save the code in the file MyApache/Rocks.pm, somewhere where mod_perl can find it. For example let's
put it under /home/httpd/httpd-2.0/perl/MyApache/Rockspm, and we tell mod perl that
/home/httpd/httpd-2.0/perl/ isin @ NC, via a startup file which includes just:

use lib gw(/home/ httpd/ httpd-2.0/perl);
1

and loaded from httpd.conf:

Per| Requi re /hone/ httpd/ httpd-2.0/perl/startup.pl

29 Jan 2004 7

http://localhost/perl/rock.pl

1.7 Troubleshooting

Now we carconfigure our module irhttpd.conf:

<Location /rocks>

Set Handl er perl-script

Per | ResponseHandl er M/Apache: : Rocks
</ Locati on>

Now restart the server and issue a requdistpa’/localhost/rockg and you should get thhesponse:

mod_perl 2.0 rocks!

If that didn’t work check therror_log file.

1.7 [Troubleshooting

If after reading the complefiastalation andlconfiguration chagergyou are still havingprodems take a
look at thetroubleshooing sections If the problem persist, please report them usingfdhewing guide]

1.8 M aintainer s

Maintaineris the person(s) you should contact with updatesedions andpatches.

® Stas Bekman <stas (aason.org>

1.9 |Authors

® Stas Bekman <stas (aason.org>

Only the major authors are listed above. €amtributors see the Changédite.

8 29 Jan 2004

http://localhost/rocks

Overview of mod_perl 2.0 2 Overview of mod_perl 2.0

2 Overview of mod_perl 2.0

29 Jan 2004 9

2.1 Description

2.1 |Description|

This chapter should give you a general idea about what mod_perl 2.0 is and how it differs from mod_perl
1.0. This chapter presents the new features of Apache 2.0, Perl 5.6.0 -- 5.8.0 antflulesice on
mod_perl 2.0. The new MPM models from Apache 2.0d&éeussed.

2.2 Version Naming Conventions

In order to keep things simple, here and in the rest aldbemertation we refer to mod_perl 1.x series as
mod_perl 1.0 and to 2.0.x series as mod_perlSr@ilarly we call Apache 1.3.x series as Apache 1.3 and
2.0.x as Apache 2.0. There is also Apache 2.1, whicdéy@bpmenttrack towards Apach2.2.

2.3 Why mod perl, The Next Gener ation|

mod_perl wasntroducedin early 1996, both Perl and Apache have changed a great deal since that time.
mod_perl has adjusted to both along the way over the past 4 and a half years or so using the same code
base. Over this course of time, the mod_perl sources have become more adiffinolteto mairtain, in

large part to provideompaitbility between the mangifferent flavors of Apache and Perl. Andpmpat-

bility across these versions and flavors is a rddfiecult goal for mod_perl to reach that a typical Apache

or Perl module, since mod_perl reaches a bit deeper into the corners of Apache amerRad than
most.Discusionsof the idea to rewrite mod_perl as version 2.0 started in 1998, but never made it much
further than an idea. When Apache 2i@vebpment was undemay it became clear that a rewrite of
mod_perl would be required to adjust to the new Apacbkiedure andAPI.

Of the many changebappeing in Apache 2.0, the one which has the msignificant impact on
mod_perl is thentrodudion of threads to the overall design. Threads have been a part of Apache on the
win32 side since the Apache port wiasroduced The mod_perl port to win32 happened in version
1.00b1, released in June of 1997. This port enabled mod_perl to compile and run in a threaded windows
environment with one major caveat: only owencurentmod_perl request could be handled at any given
time. This was due to the fact that Perl did mitoduce thread-safdnterpretersuntil version 5.6.0,
released in March of 2000. Contrary to popular belief, the "threads suppptémentedin Perl 5.005
(released July 1998), did not make Perl threadis&denally. Well before that version, Perl had the notion

of "Multiplicity”, which allowed multiple interpreter instances in the same process. However, these
instances were not thread safe, thatasicurentcallbacksinto multiple interpreterswere notsupported.

It just so happens that the release of Perl 5.6.0 was nearly at the same time as the first alpha version of
Apache 2.0. Thelevebpmentof mod_perl 2.0 waandeway before those releases, but as both Perl 5.6.0

and Apache 2.0 wenmeachng stabiity, mod_perl 2.0 wabeconing more of a reality. Iraddtion to the
adjustmentsfor threads and Apache 2.0 API changes, this rewrite of mod_perlojgpanunity to clean

up the source tree. This includes botimovng the oldbackvard compaibility bandaids antbuilding a

smarter, stronger and fastenplemenrtation based on lessons learned over the 4.5 years since mod_perl
wasintroduced

10 29 Jan 2004

Overview of mod_perl 2.0 2.4 What'snew in Apache 2.0

The new version includes a mechanism for an automatic building of the Perl interface to Apache API,
which allowed us to easily adjust mod_perl 2.0 to ever changing Apache 2.0 API, during its development
period. Another important feature isthe Apache: : Test framework, which was originally developed for
mod_perl 2.0, but then was adopted by Apache 2.0 developers to test the core server features and third
party modules. Moreover the tests written using the Apache: : Test framework could be run with
Apache 1.0 and 2.0, assuming that both supported the same features.

There are multiple other interesting changes that have aready happened to mod_perl in version 2.0 and
more will be developed in the future. Some of these are discussed in this chapter, others can be found in
the rest of the mod_perl 2.0 documentation.

2.4 \What’'snew in Apache 2.0

Apache 2.0 has introduced numerous new features and enhancements. Here are the most important new
features:

® Apache Portable Runtime (APR)

Apache 1.3 has been ported to a very large number of platforms including various flavors of unix,
win32, 0s/2, the list goes on. However, in 1.3 there was no clear-cut, pre-designed portability layer
for third-party modules to take advantage of. APR provides this API layer in avery clean way. APR
assists a great deal with mod_perl portability. Combined with the portablity of Perl, mod_perl 2.0
needs only to implement a portable build system, the rest comes "for free". A Perl interface is
provided for certain areas of APR, such as the shared memory abstraction, but the majority of APR is
used by mod_perl "under the covers'.

The APR uses the concept of memory pools, which significantly simplifies the memory management
code and reduces the possibility of having memory leaks, which always haunt C programmers.

e |/O Filtering

Filtering of Perl modules output has been possible for years since tied filehandle support was added
to Perl. There are several modules, such as Apache: : Fi |l ter and Apache: : Qut put Chai n
which have been written to provide mechanisms for filtering the STDOUT stream. There are severa
of these modules because no one's approach has quite been able to offer the ease of use one would
expect, which is due simply to limitations of the Perl tied filehandle design. Another problem is that
these filters can only filter the output of other Perl modules. C modules in Apache 1.3 send data
directly to the client and there is no clean way to capture this stream. Apache 2.0 has solved this
problem by introducing a filtering API. With the baseline 1/0 stream tied to this filter mechansim,
any module can filter the output of any other module, with any number of filters in between. Using
this new feature things like SSL, data (de-)compression and other data manipulations are done very
eadily.

® Multi Processing Model modules (MPMs).

In Apache 1.3 concurrent requests were handled by multiple processes, and the logic to manage these
processes lived in one place, http_main.c, 7700 some odd lines of code. If Apache 1.3 is compiled on

29 Jan 2004 11

2.4 What'snew in Apache 2.0

12

a Win32 system large parts of this source file are redefined to handle requests using threads. Now
suppose you want to change the way Apache 1.3 processes requests, say, into a DCE RPC listener. Thisis
possible only by dlicing and dicing http_main.cinto more pieces or by redefining the stan
dalone main function, with a - DSTANDALONE_MAI N=your _functi on compile time flag.
Neither of which is aclean, modular mechanism.

Apache-2.0 solves this problem by introducing Multi Procesgng Model modules better known as
MPMs. The task of managing incoming requests is left to the MPMs, shrinking http_main.cto less
than 500 lines of code. Now it's possible to write different processing modules specific to various
platforms. For example the Apache 2.0 on Windows is much more efficient now, since it uses
mpm_winnwvhich deploys the native Windows features.

Hereisapartia list of major MPMs available as of thiswriting.
O prefork

The prefork MPM emulates Apache 1.3's preforking model, where each request is handled by a
different forked child process.

O worker

The worker MPM implements a hybrid multi-process multi-threaded approach based on the
pthreadsstandard. It uses one acceptor thread, multiple worker threads.

O mpmt_os2, netware, winnt and beos

These MPMs also implement the hybrid multi-process/multi-threaded model, with each based
on native OS thread implementations.

O perchild

The perchild MPM is similar to the worker MPM, but is extended with a mechanism which
allows mapping of requests to virtual hosts to a process running under the user id and group
configured for that host. This provides a robust replacement for the suexeanechanism.

META: as of thiswriting this mpm is not working

On platforms that support more than one MPM, it's possible to switch the used MPMs as the need
change. For example on Unix it’'s possible to start with a preforked module. Then when the demand is
growing and the code matures, it's possible to migrate to a more efficient threaded MPM, assuming
that the code base is capable of running in thelthreaded environmentl

New Hook Scheme

In Apache 1.3, modules were registered using the modulestructure, normally static to mod_foo.c
This structure contains pointers to the command table, configuration creation and merging functions,
response handler table and function pointers for all of the other hooks, such as child_init and
check_user_idin Apache 2.0, this structure has been pruned down to the first three items mentioned
and a new function pointer added called regiger_hooks It is the job of regiger_hooksto register

29 Jan 2004

Overview of mod_perl 2.0 2.4 What's new in Apache 2.0

functions for all other hooks (such ahild_init and check user id). Not only is hookregidration
now dynamic, it is alspossble for modules taegiger more than onéunction per hook, unlike 1.3.
The new hooknechanismalso makes ipossble to sortregigeredfunctions, unlike 1.3 withfunction
pointers hardwvired into the modulestrudure, and each modulstrudure into a linked list. Order in
1.3 depended on this list, which wasssble to order using compile-time and startup-ticomfigura-
tion, but that was left to the user. Whereas in 2.0atttk hook functions accept an ordgsreference
parangter, those commonly usedte:

O FIRST
O MIDDLE
O LAST

For mod_perl, dynamimegidration provides a cleaner way to bypass Bex | * Handl er configu-
ration diredives By simply adding thisonfiguration:

Per | Modul e Apache: : Foo

Apache: : Foo canregiger hooks itself at servestartup:

Apache: : Hook- >add(Per | Aut henHandl er => \ &ut henti cat e,
Apache: : Hook: : M DDLE) ;

Apache: : Hook- >add(Per | LogHandl er => \ &l ogger,
Apache: : Hook: : LAST) ;

META: Not implementedyet (API will change?)

However, this means that Peibrodines regideredvia this meclanism will be called forevery
request. It will be left to thagubrodine to decide if it was to handle or decline the given phase. As
there isovelheadin enteing the Perl runtime, it will most likely be to yoadvarnageto continue
using Per | * Handl er configuration diredives to reduce thiovethead If it is the case that your
Per | *Handl er should be invoked for every request, the hoegidration mectanism will save
someconfiguration keystrokes.

® Protocol Modules

Apache 1.3 ishardwired to speak only on@rotacol, HTTP. Apache 2.0 has moved to more of a
"serverframeanvork” archtedure making itpossble to plugin handlers foprotacols other than HTTP.
Theprotocol module design also abstracts trangort layer sgprotacols such as SSL can be hooked
into the server withoutequiing modificaions to the Apache source code. This allows Apache to be
extended much further than in the past, makimmpésble to add support foprotocols such as FTP,
SMTP, RPC flavors and the like. The maittvaragebeing thaprotocol plugins can takadvarnage

of Apache’sportability, process/threaghanagenent configuration mechanismand pluginAPI.

® Parsed Configuration Tree

Whenconfiguration files are read by Apache 1.3, it hands off the parsed text to moahfiguration
diredive handlers and discards that takierwards With Apache 2.0, theonfiguration files are first
parsed into a trestrudure, which is then walked to pass data down to the modules. This tree is then
left in memory with an API foaccesig it at request time. The tree can be quite useful for other

29 Jan 2004 13

2.5 What'snew in Perl 5.6.0 - 5.8.0

modules. For example, in 1.3, mod_info hasits own configuration parser and parses the configuration
files each time you accessit. With 2.0 there is already a parse tree in memory, which mod_info can then
walk to output its information.

If a mod_perl 1.0 module wants access to configuration information, there are two approaches. A
module can "subclass' directive handlers, saving a copy of the data for itself, then returning
DECLINE_CMD so the other modules ae adso handed the info. Or, the
$Apache: : Server:: SaveConfi g variable can be set to save <Perl> configuration in the
%Apache: : ReadConfi g: : namespace. Both methods are rather kludgy, version 2.0 provides a
|Perl interface to the Apache configuration treg

All these new features boost the Apache performance, scalability and flexibility. The APR helps the
overal performance by doing lots of platform specific optimizations in the APR internals, and giving the
developer the API which was already gresatly optimized.

Apache 2.0 now includes special modules that can boost performance. For example the mod_mmap_static
modul e loads webpages into the virtual memory and serves them directly avoiding the overhead of open()
and read() system callsto pull them in from the filesystem.

The 1/0 layering is helping performance too, since now modules don’t need to waste memory and CPU
cycles to manually store the data in shared memory or pnotes in order to pass the data to another module,
€.g., in order to provide response’ s gzip compression.

And of course a not least important impact of these features is the simplification and added flexibility for
the core and third party Apache module developers.

2.5 What’snew in Perl 5.6.0 - 5.8.0

As we have mentioned earlier Perl 5.6.0 is the minimum requirement for mod_perl 2.0. Though as we will
see later certain new features work only with Perl 5.8.0 and higher.

These are the important changes in the recent Perl versions that had an impact on mod_perl. For a
complete list of changes see the corresponding to the used version perldelta manpages
(http://perldoc.com/per|5.8.0/pod/per156del ta.html}, [http: //perldoc.com/per|5.8.0/pod/per| 561del ta. html|

and |nttp: //perldoc.conVper15.8.0/pod/perldel ta.html)).

The 5.6 Perl generation has introduced the following features:

® The beginnings of support for running multiple interpreters concurrently in different threads. In
conjunction with the perl_clone() API call, which can be used to selectively duplicate the state of any
given interpreter, it is possible to compile a piece of code once in an interpreter, clone that interpreter
one or more times, and run all the resulting interpreters in distinct threads. See the perlembed
(http://perldoc.conVperl5.6.1/pod/perlembed.html) and perl561delta
(http://perldoc.conVper|5.6.1/pod/perI561del ta.html) manpages.

14 29 Jan 2004

http://perldoc.com/perl5.8.0/pod/perl56delta.html
http://perldoc.com/perl5.8.0/pod/perl561delta.html
http://perldoc.com/perl5.8.0/pod/perldelta.html
http://perldoc.com/perl5.6.1/pod/perlembed.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html

Overview of mod_perl 2.0 2.5 What'snew in Perl 5.6.0 - 5.8.0

The core support for declaring subroutine attributes, which is used by mod perl 2.0's method
handlers. See the attributes manpage.

The warnings pragma, which allows to force the code to be super clean, viathe setting:
use warni ngs FATAL => "all’;

which will abort any code that generates warnings. This pragma also allows a fine control over what
warnings should be reported. See the perllexwarn
(http://perldoc.conVper|5.6.1/pod/per [lexwar n.html)) manpage.

Certain CORE: : functions now can be overridden via CORE: : GLOBAL: : namespace. For example
mod_perl now can override CORE: : exit () via CORE:: GLOBAL: : exit. See the perlsub
(http://perldoc.comVper5.6.1/pod/per|sub.html) manpage.

The XSLoader extension asasimpler alternative to DynalLoader . See the XS_oader manpage.

The large file support. If you have filesystems that support "large files' (files larger than 2 gigabytes),
you may now aso be able to create and access them from Perl. See the perl56ldelta
(http://perldoc.comVper|5.6.1/pod/per|561delta.html) manpage.

Multiple performance enhancements were made. See the perl561delta
(http://perldoc.comVper|5.6.1/pod/per|561delta.html) manpage.

Numerous memory leaks were fixed. See the per|561delta
(http://perldoc.comVper|5.6.1/pod/per|561del ta.html) manpage.

Improved security features: more potentially unsafe operations taint their results for improved secu-
rity. See the perlsec (http://perldoc.comVper]5.6./pod/perlsec.html) and perl561delta
(http: //perldoc.conVper|5.6.1/pod/per|561delta.html)) manpages.

Available on new platforms: GNU/Hurd, Rhapsody/Darwin, EPOC.

Overall multiple bugs and problems very fixed in the Perl 5.6.1, so if you plan on running the 5.6 genera-
tion, you should run at least 5.6.1. It is possible that when this tutorial is printed 5.6.2 will be out.

The Perl 5.8.0 has introduced the following features:

The introduced in 5.6.0 experimental PerllO layer has been stabilized and become the default 10
layer in 5.8.0. Now the 10 stream can be filtered through multiple layers. See the perlapio

(http://perldoc.com/per15.8.0/pod/perlapio.html)) and perliol
(http: /7perTdoc.comVper15.8.0/pod/perTiol.htrmi) manpages.

For example this allows mod_perl to inter-operate with the APR 10 layer and even use the APR IO
layer in Perl code. Seethe APR: : Per | | Omanpage.

Another example of using the new feature is the extension of the open() functionality to create
anonymous temporary filesvia

29 Jan 2004 15

http://perldoc.com/perl5.6.1/pod/perllexwarn.html
http://perldoc.com/perl5.6.1/pod/perlsub.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.6.1/pod/perlsec.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.8.0/pod/perlapio.html
http://perldoc.com/perl5.8.0/pod/perliol.html

2.6 What'snew in mod_perl 2.0

open ny $fh, "+>", undef or die $!;

That is aliteral undef (), not an undefined value. See the open() entry in the perlfunc manpage
(http: //perldoc.comyper!5.8.0/pod/func/open.html).

® Moreoverridable viaCORE: : GLOBAL: : keywords. See the perlsub
(http://perldoc.com/per|5.8.0/pod/per|sub.html) manpage.

® The signa handling in Perl has been notoriously unsafe because signals have been able to arrive at
inopportune moments leaving Perl in inconsistent state. Now Perl delays signal handling until it is
safe.

® File:: Tenp was added to allow a creation of temporary files and directories in an easy, portable,
and secure way. See the File:: Temp manpage.

e A new command-line option, -t is available. It is the little brother of - T: instead of dying on taint
violations, lexical warnings are given. Thisis only meant as a temporary debugging aid while secur-
ing the code of old legacy applications. This is not a substitute for - T. See the perlrun
(http://perldoc.comyper|5.8.0/pod/perIrun.html)) manpage.

A new specia variable ${ * TAI NT} was introduced. It indicates whether taint mode is enabled. See
the perlvar (http://perldoc.conmVper|5.8.0/pod/perlvar.html)) manpage.

e Threadsimplementation is much improved since 5.6.
® A much better support for Unicode.

® Numerous bugs and memory leaks fixed. For example now you can localize the tied Apache: : DBI
filehandles without leaking memory.

® Available on new platforms: AtheOS, Mac OS Classic, Mac OS X, MinGW, NCR MP-RAS,
NonStop-UX, NetWare and UTS. The following platforms are again supported: BeOS, DY NIX/ptx,
POSIX-BC, VM/ESA, z/OS (0S/390).

2.6 What’snew in mod perl 2.0

The new features introduced by Apache 2.0 and Perl 5.6 and 5.8 generations provide the base of the new
mod_perl 2.0 features. In addition mod_perl 2.0 re-implements itself from scratch providing such new
features as new build and testing framework. Let’ s look at the major changes since mod_perl 1.0.

2.6.1 [ThreadsSuppor}

In order to adapt to the Apache 2.0 threads architecture (for threaded MPMs), mod_perl 2.0 needs to use
thread-safe Perl interpreters, also known as "ithreads' (Interpreter Threads). This mechanism can be
enabled at compile time and ensures that each Perl interpreter usesits private Per | | nt er pr et er struc-
ture for storing its symbol tables, stacks and other Perl runtime mechanisms. When this separation is
engaged any number of threads in the same process can safely perform concurrent callbacks into Perl. This
of course requires each thread to have itsown Per | | nt er pr et er object, or at least that each instance

16 29 Jan 2004

http://perldoc.com/perl5.8.0/pod/func/open.html
http://perldoc.com/perl5.8.0/pod/perlsub.html
http://perldoc.com/perl5.8.0/pod/perlrun.html
http://perldoc.com/perl5.8.0/pod/perlvar.html

Overview of mod_perl 2.0 2.6.2 Thread-environment |ssues

isonly accessed by one thread at any given time.

The first mod_perl generation has only asingle Per | | nt er pr et er, which is constructed by the parent
process, then inherited across the forks to child processes. mod perl 2.0 has a configurable number of
Per | | nt er pret ers and two classes of interpreters, parent and clone. A parent islike that in mod_perl
1.0, where the main interpreter created at startup time compiles any pre-loaded Perl code. A clone is
created from the parent using the Perl API perl_clone()

(http: //Amww.perldoc.conVper5.8.0/pod/perlapi.htmi#Cloning-an-interpreter) function. At request time,
parent interpreters are only used for making more clones, as the clones are the interpreters which actually
handle requests. Care is taken by Perl to copy only mutable data, which means that no runtime locking is
required and read-only data such as the syntax tree is shared from the parent, which should reduce the
overall mod_perl memory footprint.

Rather than create a Per | | nt er pert er per-thread by default, mod_perl creates a pool of interpreters.
The pool mechanism helps cut down memory usage a great deal. As already mentioned, the syntax treeis
shared between all cloned interpreters. If your server is serving more than mod_perl requests, having a
smaller number of Perlinterpreters than the number of threads will clearly cut down on memory usage.
Finally and perhaps the biggest win is memory re-use: as calls are made into Perl subroutines, memory
allocations are made for variables when they are used for the first time. Subsequent use of variables may
allocate more memory, e.g. if a scalar variable needs to hold a longer string than it did before, or an array
has new elements added. As an optimization, Perl hangs onto these allocations, even though their values
"go out of scope”. mod_perl 2.0 has a much better control over which PerlInterpreters are used for incom-
ing requests. The interpreters are stored in two linked lists, one for available interpreters and another for
busy ones. When needed to handle arequest, oneinterpreter is taken from the head of the available list and
put back into the head of the same list when done. This means if for example you have 10 interpreters
configured to be cloned at startup time, but no more than 5 are ever used concurrently, those 5 continue to
reuse Perl’s allocations, while the other 5 remain much smaller, but ready to go if the need arises.

Various attributes of the pools are configurable usingthreads mode specific directived

The interpreters pool mechanism has been abstracted into an APl known as "tipool"”, Thread Item Pool.
This pool can be used to manage any data structure, in which you wish to have a smaller number than the
number of configured threads. For example a replacement for Apache: : DBI based on the tipool will
allow to reuse database connections between multiple threads of the same process.

2.6.2 [Thread-environment | ssueg

While mod_perl itself is thread-safe, you may have issues with the thread-safety of your code. For more
information refer to[Threads Coding Issues Under mod_perl}

Another issue is that "global" variables are only global to the interpreter in which they are created. It's
possible to share variables between several threads running in the same process. For more information see:
|Shared Variableg

29 Jan 2004 17

http://www.perldoc.com/perl5.8.0/pod/perlapi.html#Cloning-an-interpreter

2.6.3 Perl Interface to the APR and Apache APIs

2.6.3 |Perl Interface to the APR and Apache API g

Aswe have mentioned earlier, Apache 2.0 usestwo APIs:

e the Apache Portable APR (APR) API, which implements a portable and efficient APl to handle
generically work with files, sockets, threads, processes, shared memory, etc.

® the Apache API, which handles issues specific to the web server.

In mod_perl 1.0, the Perl interface back into the Apache API and data structures was done piecemeal. As
functions and structure members were found to be useful or new features were added to the Apache API,
the XS code was written for them here and there.

mod_perl 2.0 generates the majority of XS code and provides thin wrappers were needed to make the API
more Perlish. As part of this goal, nearly the entire APR and Apache API, along with their public data
structures are covered from the get-go. Certain functions and structures which are considered "private" to
Apache or otherwise un-useful to Perl aren’'t glued. Most of the API behaves just asit did in mod_perl 1.0,
so users of the APl will not notice the difference, other than the addition of many new methods. Where
API has changed a special [back compatibility modulg can be used.

In mod_perl 2.0 the APR API residesin the APR: : namespace, and obviously the Apache: : namespace
is mapped to the Apache API.

And in the case of APR, it is possible to use APR modul es outside of Apache, for example:

% perl -MApache2 -MAPR -MAPR : UUID -le ’print APR :UU D >new >f or mat’
b059a4b2- d11d- b211- bc23- d644b8ce0981

The mod_perl 2.0 generator is a custom suite of modules specifically tuned for gluing Apache and allows
for complete control over everything, providing many possibilities none of xsubpp, SMG or Inline.pm are
designed to do. Advantages to generating the glue code include:

® Not tied tightly to xsubpp

® Easy adjustment to Apache 2.0 API/structure changes

® FEasy adjustment to Perl changes (e.g., Perl 6)

® Ability to "discover" hookable third-party C modules.

® Cleanly take advantage of featuresin newer Perls

® Optimizations can happen across-the-board with one-shot
® Possibleto AUTOLOAD XSUBs

® Documentation can be generated from code

18 29 Jan 2004

Overview of mod_perl 2.0 2.7 Integration with 2.0 Filtering

e Code can be generated from documentation

2.7 |Integration with 2.0 Filtering

The mod_perl 2.0 interface to the Apache filter APl comes in two flavors. First, smilar to the C API,
where bucket brigades need to be manipulated. Second, streaming filtering, is much simpler than the C
API, since it hides most of the details underneath. For a full discussion on filters and implementation
examples refer to the|lnput and Output Filterd chapter.

2.7.1 [Other New Featureg

In addition to the already mentioned new features, the following are of a major importance:

® Apache 2.0 protocol modules are supported. Later we will see an example of a protocol module
running on top of mod_perl 2.0.

e mod_perl 2.0 provides a very smply to use interface to the Apache filtering API. We will present a
filter module example later on.

o A feature-full and flexible Apache: : Test framework was developed especialy for mod_perl
testing. While used to test the core mod_perl features, it is used by third-party module writers to
easily test their modules. Moreover Apache: : Test was adopted by Apache and currently used to
test both Apache 1.3, 2.0 and other ASF projects. Anything that runs top of Apache can be tested
with Apache: : Test, bethe target written in Perl, C, PHP, etc.

® The support of the new MPMs model makes mod_perl 2.0 can scale better on wider range of plat-
forms. For example if you've happened to try mod_perl 1.0 on Win32 you probably know that the
requests had to be serialized, i.e. only a single request could be processed at a time, rendering the
Win32 platform unusable with mod_perl as a heavy production service. Thanks to the new Apache
MPM design, now mod_perl 2.0 can be used efficiently on Win32 platforms using its native win32
MPM.

2.7.2 |Optimizationg

The rewrite of mod_perl gives us the chances to build a smarter, stronger and faster implementation based
on lessons learned over the 4.5 years since mod_perl was introduced. There are optimizations which can
be made in the mod_perl source code, some which can be made in the Perl space by optimizing its syntax
tree and some a combination of both. In this section we'll take a brief look at some of the optimizations
that are being considered.

The details of these optimizations from the most part are hidden from mod_perl users, the exception being
that some will only be turned on with configuration directives. A few of which include:

e "Compiled" Per | *Handl ers

29 Jan 2004 19

2.8 Maintainers

e |nlined Apache: : *. xs cals

® Use of Apache poolsfor memory allocations

2.8

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

2.9

® Doug MacEachern <dougm (at) covalent.net>
® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

20

Maintainer s

Author S

29 Jan 2004

Notes on the design and goals of mod_perl-2.0 3 Notes on the design and goals of mod_perl-2.0

3 Noteson the design and goals of mod_perl-2.0

29 Jan 2004 21

3.1 Description

3.1 |Description|

Notes on the design and goals of mod_perl-2.0.

We try to keep this doc in sync with the development, so some items discussed here were already imple-
mented, while others are only planned. If you find some inconsistencies in this document please let the list
know.

3.2 [Introduction|

Inversion 2.0 of mod_perl, the basic concept of 1.0 still applies:

Provi de conpl ete access to the Apache C API
via the Perl programmi ng | anguage.

Rather than "porting” mod_perl-1.0 to Apache 2.0, mod_perl-2.0 is being implemented as a complete
re-write from scratch.

For a more detailed introduction and functionality overview, see[Overview}

3.3 |Interpreter Management

In order to support mod_perl in a multi-threaded environment, mod_perl-2.0 will take advantage of Perl’s
ithreadsfeature, new to Perl version 5.6.0. This feature encapsulates the Perl runtime inside a thread-safe
Perlinterpreter structure. Each thread which needs to serve a mod_perl request will need its own Perlin-
terpreterinstance.

Rather than create a one-to-one mapping of Perlinterpreter per-thread, a configurable pool of interpreters
is managed by mod_perl. This approach will cut down on memory usage simply by maintaining a minimal
number of intepreters. It will aso allow re-use of allocations made within each interpreter by recycling
those which have aready been used. This was not possible in the 1.3.x model, where each child has its
own interpreter and no control over which child Apache dispatches the request to.

The interpreter pool is only enabled if Perl is built with -Dusethreads otherwise, mod_perl will behave just
as 1.0, using asingle interpreter, which is only useful when Apache is configured with the prefork mpm.

When the server is started, a Perl interpreter is constructed, compiling any code specified in the configura-
tion, just as 1.0 does. This interpreter is referred to as the "parent” interpreter. Then, for the number of
PerlinterpStart configured, a (thread-safe) clone of the parent interpreter is made (via perl_clone()) and
added to the pool of interpreters. This clone copies any writeable data (e.g. the symbol table) and shares
the compiled syntax tree. From my measurements of a startup.plincluding a few random modules:

22 29 Jan 2004

Notes on the design and goals of mod_perl-2.0 3.3 Interpreter Management

use CGI ();

use POSIX ();

use 10 ();

use SelfLoader ();
use AutoLoader ();
use B::Deparse ();
use B::Terse ();
use B ();

use B::C ();

The parent adds 6M size to the process, each clone adds less than half that size, ~2.3M, thanks to the
shared syntax tree.

NOTE: These measurements were made prior to finding memory leaks related to perl_clong() in 5.6.0 and
the GVSHARED optimization.

At request time, If any Perl*Handlers are configured, an available interpreter is selected from the pool. As
there is a conn_rec and request_rec per thread, a pointer is saved in either the conn_rec->pool or
request_rec->pool, which will be used for the lifetime of that request. For handlers that are called when
threads are not running (PerlChild{Init,Exit}Handler), the parent interpreter is used. Severa
configuration directives control the interpreter pool management:

® PerlinterpStart
The number of intepretersto clone at startup time.
® PerllnterpMax

If al running interpreters are in use, mod_perl will clone new interpreters to handle the request, up
until this number of interpretersis reached. when Perlin terp Max is reached, mod_perl will block
(viaCOND_WAIT()) until one becomes available (signaled via COND_SIGNAL())

® PerlinterpMinSpare

The minimum number of available interpreters this parameter will clone interpreters up to Perlin -
terp Max, before arequest comesin.

® PerlinterpMaxSpare

mod_perl will throttle down the number of interpreters to this number as those in use become avail-
able

® PerllnterpMaxRequests

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh one.

® PerllnterpScope

29 Jan 2004 23

3.3.1 TlIPool

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be
pulled from the interpreter pool. The interpreter is then only available to the thread that selected it,
until it is released back into the interpreter pool. By default, an interpreter will be held for the lifetime
of the request, equivalent to this configuration:

PerlinterpScope request

For example, if a PerlAc cessHan dler is configured, an interpreter will be selected before it is
run and not released until after the logging phase.

Intepreters will be shared across subrequests by default, however, it is possible to configure the
intepreter scope to be per-subrequest on a per-directory basis:

PerlinterpScope subrequest

With this configuration, an autoindex generated page for example would select an interpreter for each
item in thelisting that is configured with a Perl* Handler.

It is aso possible to configure the scope to be per-handler:

PerlinterpScope handler

With this configuration, an interpreter will be selected before PerlAc cessHan dlers are run, and
putback immediately afterwards, before Apache moves onto the authentication phase. If a Perl -
Fix upHandler is configured further down the chain, another interpreter will be selected and again
putback afterwards, before Perl Respon se Handler isrun.

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and provide arequest_rec record. In this case,
the default scope is that of the request. Should a mod_perl handler want to maintain state for the life-
time of an ftp connection, it is possible to do so on a per-virtualhost basis:

PerlinterpScope connection

3.3.1 [TIPoal

The interpreter pool isimplemented in terms of a"TIPool" (Thread Item Poal), a generic api which can be
reused for other data such as database connections. A Perl interface will be provided for the TIPool mech-
anism, which, for example, will make it possible to share a pool of DBI connections.

3.3.2 \Virtual Hostg

The interpreter management has been implemented in a way such that each <Virtu al Host > can have
its own parent Perl interpreter and/or MIP (Mod_perl Interpreter Pool). It is also possible to disable
mod_perl for agiven virtual host.

24 29 Jan 2004

Notes on the design and goals of mod_perl-2.0 3.4 Hook Code and Callbacks

3.3.3 |[Further Enhancementq

e Theinterpreter pool management could be moved into its own thread.

® A "garbage collector”, which could aso run in its own thread, examining the padlists of idle inter-
preters and deciding to release and/or report large strings, array/hash sizes, etc., that Perl is keeping
around as an optimization.

3.4 Hook Code and Callbacks

The code for hooking mod_perl in the various phases, including Per | * Handl er directives is generated
by the ModPer | : : Code module. Access to all hooks will be provided by mod_perl in both the tradi-
tional Per | * Handl er configuration fashion and via dynamic registration methods (the ap_hook_* func-
tions).

When a mod_perl hook is called for a given phase, the glue code has an index into the array of handlers,
so it knows to return DECLINED right away if no handlers are configured, without entering the Perl
runtime as 1.0 did. The handlers are also now stored in an apr_array_header_t, which is much lighter and
faster than using a Perl AV, as 1.0 did. And more importantly, keeps us out of the Perl runtime until we're
sure we need to be there.

Per | *Handl er sare now "compiled", that is, the various forms of:
Per | ResponseHandl er MyMbdul e- >handl er
defaults to MyModul e:: handl er or MyModul e- >handl er
Per | ResponseHandl er MyMbdul e

Per | ResponseHandl er $M/Obj ect - >handl er
Per | ResponseHandl er *sub { print "foo\n"; return K}’

are only parsed once, unlike 1.0 which parsed every time the handler was used. There will aso be an
option to parse the handlers at startup time. Note: this feature is currently not enabled with threads, as each
clone needs its own copy of Perl structures.

A "method handler" is now specified using the ‘ method’ sub attribute, e.g.
sub handler : method {};

instead of 1.0's

sub handler ($3%) {}

3.5 [Perl interface to the Apache API and Data Structur e

In 1.0, the Perl interface back into the Apache API and data structures was done piecemeal. As functions
and structure members were found to be useful or new features were added to the Apache API, the xs code
was written for them here and there.

29 Jan 2004 25

3.5 Perl interface to the Apache API and Data Structures

The goal for 2.0 is to generate the majority of xs code and provide thin wrappers where needed to make
the APl more Perlish. As part of this goal, nearly the entire APR and Apache API, along with their public
data structures is covered from the get-go. Certain functions and structures which are considered "private"

to Apache or otherwise un-useful to Perl don't get glued.

The Apache header tree is parsed into Perl data structures which live in the generated Apache::Func -

tionTable and Apache::Struc

type:

AP_DECLARE(int) ap_meets_conditions(request_rec *r);

is parsed into the following Perl structure:

{

return_type’ =>'int’,
‘args’ => [
{
'name’ =>'r’,
‘type’ => 'request_rec *'
}
1,
h

‘name’ =>'ap_meets_conditions’

and the following structure:
typedef struct {
uid_t uid;
gid_t gid;
} ap_unix_identity_t;
is parsed into:

{

‘type’ =>'ap_unix_identity_t’

‘elts’ => [
{
‘name’ =>"uid’,
'type’ =>"uid_t’
12
{
‘name’ =>"gid’,
‘type’ =>'gid_t’
}
1,
}

Similar is done for the mod_perl
ModPerl::Struc ~ tureTable

Three files are used to drive these Perl structures into the generated xs code:

26

source tree, building ModPerl::Func

modules. For example, the following function proto-

and

29 Jan 2004

Notes on the design and goals of mod_perl-2.0 3.5.1 Advantagesto generating XS code

® |ib/ModPerl/function.map

Specifies which functions are made available to Perl, dong with which modules and classes they
reside in. Many functions will map directly to Perl, for example the following C code:

static int handler (request_rec *r) {
int rc = ap_neets_conditions(r);

maps to Perl like so:

sub handl er {
nmy $r = shift;
nmy $rc = $r->neets_conditions;

The function map is also used to dispatch Apache/APR functions to thin wrappers, rewrite arguments
and rename functions which make the APl more Perlish where applicable. For example, C code such
as.

char uui d_buf [APR_UUI D_FORMATTED LENGTH+1];

apr_uui d_t uuid;

apr _uui d_get (&uui d)

apr _uui d_f ormat (uui d_buf, &uuid);

printf("uui d=%\n", uuid_buf);

is remapped to a nore Perlish convention:

printf "uui d=%\n", APR: :UU D >new >f or mat;

® |ib/ModPerl/structure.map

Specifies which structures and members of each are made available to Perl, along with which
modules and classes they residein.

® |ib/ModPerl/type.map

Thisfile defines how Apache/APR types are mapped to Perl types and vice-versa. For example:

apr_int32_t => SvlV
apr_int64_t => SvNV
server_rec => SVRV (Perl object blessed into the Apache:: Server cl ass)

3.5.1 |Advantages to generating XS codeg

e Not tied tightly to xsubpp
® FEasy adjustment to Apache 2.0 API/structure changes

® FEasy adjustment to Perl changes (e.g., Perl 6)

29 Jan 2004 27

3.6 Filter Hooks

e Ability to "discover" hookable third-party C modules.

e Cleanly take advantage of featuresin newer Perls

® QOptimizations can happen across-the-board with one-shot
® Possibleto AUTOLOAD XSUBs

® Documentation can be generated from code

® Code can be generated from documentation

3.5.2 [Lvalue methodg

A new feature to Perl 5.6.0 is lvalue subroutines, where the return value of a subroutine can be directly
modified. For example, rather than the following code to modify the uri:

$r->uri ($new_uri);
the same result can be accomplished with the following syntax:
$r->uri = $new_uri;

mod_perl-2.0 will support Ivalue subroutines for all methods which access Apache and APR data struc-
tures.

3.6 |Filter Hookg

mod_perl 2.0 provides two interfaces to filtering, a direct mapping to buckets and bucket brigades and a
simpler, stream-oriented interface. Thisis discussed in the|Chapter on filterg

3.7 IDirective Handler s

mod_perl 1.0 provides a mechanism for Perl modules to implement first-class directive handlers, but
requires an XS file to be generated and compiled. The 2.0 version provides the same functionality, but
does not require the generated XS module (i.e. everything isimplemented in pure Perl).

3.8 [<Per|> Configuration Sections

The ability to write configuration in Perl carries over from 1.0, but but implemented much different inter-
nally. The mapping of a Perl symbol table fits cleanly into the new ap_directive t API, unlike the hoop
jumping required in mod_perl 1.0.

28 29 Jan 2004

Notes on the design and goals of mod_perl-2.0 3.9 Protocol Module Support

3.9 [Protocol Module Support

[Protocol modulg support is provided out-of-the-box, as the hooks and API are covered by the generated
code blankets. Any functionality for assisting protocol modules should be folded back into Apache if
possible.

3.10 mod perl MPM

It will be possible to write an MPM (Multi-Processing Module) in Perl. mod_perl will provide a
mod_perl_mpm.c framework which fits into the server/mpm standard convention. The rest of the function-
ality needed to write an MPM in Perl will be covered by the generated xs code blanket.

3.11 Build System|

The biggest mess in 1.0 is mod_perl’s Makefile.PL, the majority of logic has been broken down and
moved to the Apache: : Bui | d module. The Makefile.PL will construct an Apache: : Bui | d object
which will have al the info it needs to generate scripts and Makefiles that apache-2.0 needs. Regardless of
what that scheme may be or change to, it will be easy to adapt to with build logic/variables/etc., divorced
from the actual Makefiles and configure scripts. In fact, the new build will stay as far away from the
Apache build system as possible. The module library (libmodperl.so or libmodperl.a) is built with aslittle
help from Apache as possible, using only the | NCLUDEDI R provided by apxs.

The new build system will also "discover" XS modules, rather than hard-coding the XS module names.
This allows for switchabilty between static and dynamic builds, no matter where the xs modules live in the
source tree. This also allows for third-party xs modules to be unpacked inside the mod_per| tree and built
static without modification to the mod_perl Makefiles.

For platforms such as Win32, the build files are generated similar to how unix-flavor Makefiles are.

3.12 [Test Framework

Similar to 1.0, mod_perl-2.0 provides a’ make test’ target to exercise as many areas of the APl and module
features as possible.

The test framework in 1.0, like several other areas of mod_perl, was cobbled together over the years.
mod_perl 2.0 provides a test framework that is usable not only for mod perl, but for third-party
Apache: : * modules and Apacheitself. See Apache: : Test.

3.13 |[CGI Emulation|

As a side-effect of embedding Perl inside Apache and caching compiled code, mod_perl has been popular
as a CGl accelerator. In order to provide a CGl-like environment, mod_perl must manage areas of the
runtime which have alonger lifetime than when running under mod_cgi. For example, the &NV environ-
ment variable table, END blocks, @ NC include paths, etc.

29 Jan 2004 29

3.14 Apache:* Library

CGI emulation is supported in mod_perl 2.0, but done so in a way that it is encapsulated in its own
handler. Rather than 1.0 which uses the same response handler, regardless if the module requires CGlI
emulation or not. With an ithreads enabled Perl, it's also possible to provide more robust namespace
protection.

Notice that ModPer | : : Regi stry isusedinstead of 1.0's Apache: : Regi st ry, and similar for other
registry groups. ModPer | : : Regi st ryCooker makes it easy to write your own customizable registry
handler.

3.14 |Apache::* Library

The mgjority of the standard Apache: : * modulesin 1.0 are supported in 2.0. The main goa being that
the non-core CGI emulation components of these modules are broken into small, re-usable pieces to
subclass Apache::Registry like behavior.

3.15 [Perl Enhancements

Most of the following items were projected for inclusion in perl 5.8.0, but that didn’t happen. While these
enhancements do not preclude the design of mod_perl-2.0, they could make an impact if they were imple-
mented/accepted into the Perl development track.

3.15.1 [GVSHARED)

(Note: Thisitem wasn't implemented in Perl 5.8.0)

As mentioned, the perl_clone() APl will create a thread-safe interpreter clone, which is a copy of all
mutable data and a shared syntax tree. The copying includes subroutines, each of which take up around
255 bytes, including the symbol table entry. Multiply that number times, say 1200, is around 300K, times
10 interpreter clones, we have 3Mb, times 20 clones, 6Mb, and so on. Pure perl subroutines must be
copied, as the structure includes the PADLI ST of lexical variables used within that subroutine. However,
for XSUBs, there is no PADLIST, which means that in the general case, perl_clone() will copy the
subroutine, but the structure will never be written to at runtime. Other common global variables, such as
@EXPORT and YEXPORT_OK are built at compile time and never modified during runtime.

Clearly it would be a big win if XSUBs and such global variables were not copied. However, we do not
want to introduce locking of these structures for performance reasons. Perl already supports the concept of
aread-only variable, aflag which is checked whenever a Perl variable will be written to. A patch has been
submitted to the Perl development track to support a feature known as GvSHARED. This mechanism
allows XSUBs and global variables to be marked as shared, so perl_clone() will not copy these structures,
but rather point to them.

30 29 Jan 2004

Notes on the design and goals of mod_perl-2.0 3.15.2 Shared SYPVX

3.15.2 [Shared SYPVX|

The string slot of a Perl scalar is known as the SvPVX. As Perl typically manages the string a variable
points to, it must make a copy of it. However, it is often the case that these strings are never written to. It
would be possible to implement copy-on-write strings in the Perl core with little performance overhead.

3.15.3 |Compile-time method lookupg

A known disadvantage to Perl method calls is that they are slower than direct function calls. It is possible
to resolve method calls at compile time, rather than runtime, making method calls just as fast as subroutine
calls. However, there is certain information required for method look ups that are only known at runtime.
To work around this, compile-time hints can be used, for example:

ny Apache:: Request $r = shift;

Tells the Perl compiler to expect an object in the Apache: : Request class to be assigned to $r. A
patch has aready been submitted to use this information so method calls can be resolved at compile time.
However, the implementation does not take into account sub-classing of the typed object. Since the
mod_perl API consists mainly of methods, it would be advantageous to re-visit the patch to find an accept-
able solution.

3.15.4 Memory management hookg

Perl has its own memory management system, implemented in terms of malloc and free. As an optimiza-
tion, Perl will hang onto allocations made for variables, for example, the string ot of a scaar variable. If
a variable is assigned, for example, a 5k chunk of HTML, Perl will not release that memory unless the
variable is explicitly undefed. It would be possible to maodify Perl in such a way that the management of
these strings are pluggable, and Perl could be made to allocate from an APR memory pool. Such afeature
would maintain the optimization Perl attempts (to avoid malloc/free), but would greatly reduce the process
size as pool resources are able to be re-used elsewhere.

3.15.5 [Opcode hookg

Perl aready has internal hooks for optimizing opcode trees (syntax tree). It would be quite possible for
extensions to add their own optimizations if these hooks were plugable, for example, optimizing calls to
print, so they directly call the Apache ap_rwrite function, rather than proxy viaatied filehandle.

Another optimization that was implemented is "inlined" XSUB calls. Perl has a generic opcode for calling
subroutines, one which does not know the number of arguments coming into and being passed out of a
subroutine. As the majority of mod_perl APl methods have known in/out argument lists, mod_perl imple-
ments a much faster version of the Perl pp_entersub routine.

29 Jan 2004 31

3.16 Maintainers

3.16

Maintainer is the person(s) you should contact with updates, corrections and patches.

Doug MacEachern <dougm (at) covalent.net>

3.17

® Doug MacEachern <dougm (at) covalent.net>

Only the mgjor authors are listed above. For contributors see the Changesfile.

32

Maintainer s

Authors

29 Jan 2004

Installing mod_perl 2.0 4 Installing mod_perl 2.0

4 |Installing mod_perl 2.0

29 Jan 2004 33

4.1 Description

4.1 Description|

This chapter provides an in-depth mod_perl 2.0 installation coverage.

4.2 Prerequisites

Before building mod_perl 2.0 you need to have its prerequisites installed. If you don’t have them, down-
load and install them first, using the information in the following sections. Otherwise proceed directly to
the mod_perl building instructions.

The mod_perl 2.0 prerequisites are:

® Apache

Apache 2.0 isrequired. mod_perl 2.0 does not work with Apache 1.3.

® Perl
o}

o

prefork MPM

Requires at least Perl version 5.6.0. But we strongly suggest to use at least version 5.6.1, since
5.6.0 is quite buggy. The only reason we support 5.6.0 is for development reasons (so the build
can be tested on systems having only 5.6.0) and those users who want to give it a try, without
first having the hasdle of updating their perl version.

You don't need to have threads-support enabled in Perl. If you do have it, it must be ithreads
and not 5005threads! If you have:

% per!5.8.0 -V:use5005t hr eads
use5005t hr eads=' defi ne’;

you must rebuild Perl without threads enabled or with - Duset hr eads. Remember that
threads-support slows things down and on some platformsit’s unstable (e.g., FreeBSD), so don’t
enableit unlessyou really need it.

threaded MPM s

Require at least Perl version 5.8.0 with ithreads support built-in. That means that it should
report:

% perl15.8.0 -V:useithreads -V:usemultiplicity
usei t hr eads=' defi ne’;
usemnul tiplicity= define’;

If that’ s not what you see rebuild Perl with - Duset hr eads.

threads.pm

29 Jan 2004

Installing mod_perl 2.0 4.2.1 Downloading Stable Release Sources

If you want to run applications that take benefit of Perl’s threads.pm Perl version 5.8.1 or higher
w/ithreads enabled is required. Perl 5.8.0"s threads.pm doesn’t work with mod_perl 2.0.

® CPAN Perl Modules

The mod_perl 2.0 test suite has severa requirements on its own. If you don't satisfy them, the tests
depending on these requirements will be skipped, which is OK, but you won't get to run these tests
and potential problems, which may exhibit themselves in your own code, could be missed. We don’t
require them from Makef i | e. PL, which could have been automated the requirements installation,
in order to have less dependencies to get mod_perl 2.0 installed.

Also if your code uses any of these modules, chances are that you will need to use at least the version
numbers listed here.

o CGl.pm 3.01
O Compress::Zlib 1.09

4.2.1 [Downloading Stable Release Sources

If you are going to install mod_perl on a production site, you want to use the officialy released stable
components. Since the latest stable versions change al the time you should check for the latest stable
version at the listed below URLs:

® Perl

Download from: |http://cpan.or g/sr /README.html|

This direct link which symlinks to the latest release should work too:
|http://cpan.org/src/stable.tar.g4

For the purpose of examples in this chapter we will use the package named perl-5.8.x.tar.gz, where x
should be replaced with the real version number.

® Apache

Download from: |nttp: //www.apache.or g/dist/httpd)|

For the purpose of examples in this chapter we will use the package named httpd-2.x.xx.tar.gz, where
x.xx should be replaced with the real version number.

4.2.2 |Getting Bleeding Edge CV'S Sourceq

If you really know what you are doing you can use the cvs versions of the components. Chances are that
you don’t want to them on a production site. Y ou have been warned!

® Perl

29 Jan 2004 35

http://cpan.org/src/README.html
http://cpan.org/src/stable.tar.gz
http://www.apache.org/dist/httpd/

4.2.3 Configuring and Installing Prerequisites

(--delete to ensure a clean state)
% rsync -acvz --delete --force \
rsync://ftp.linux.activestate.con perl-current/ perl-current

If you are re-building Perl after rsync-ing, make sure to cleanup first:

% nmake di stcl ean
beforerunning . / Conf i gur e.

You'll also want to install (at least) LWP if you want to fully test mod_perl. You can install LWP
with CPAN. pmshell:

% perl -MCPAN -e ’install ("LW")’
® Apache

To download the cvs version of httpd-2.0 and bring it to the same state of the distribution package,
execute the following commands:

% cvs -d :pserver:anoncvs@vs. apache. org:/ hone/ cvspublic |ogin

The password is "anoncvs'. Now extract the APACHE 2 0 BRANCH branch of httpd-2.0.xx. If you
don’t use this branch you will get httpd-2.1.xx which at this moment is not supported. Similarly you
need APR 0 9 BRANCH and APU 0 9 BRANCH cvs branches for apr and apr-util projects,
respectively.

% cvs -d :pserver:anoncvs@vs. apache. org: / home/ cvspublic co \
-r APACHE_2_0_BRANCH -d httpd-2.0 httpd-2.0

%cd httpd-2.0/srclib

% cvs -d :pserver:anoncvs@vs. apache. org: / home/ cvspublic co \
-r APR 0_9_BRANCH -d apr apr

% cvs -d :pserver:anoncvs@vs. apache. org: / home/ cvspublic co \
-r APU 0 _9 BRANCH -d apr-util apr-util

% cvs -d :pserver:anoncvs@vs. apache. org: / home/ cvspublic co \
-r APU 0_9 BRANCH -d apr-iconv apr-iconv

%cd ..

% ./ bui | dconf

Once extracted, whenever you want to sync with the latest httpd-2.0 version and rebuild, run:

%cd httpd-2.0
% cvs up -dP
% nmake distclean && ./buil dconf

4.2.3 |Configuring and I nstalling Prerequisiteq

If

36

you don’'t have the prerequisitesinstalled yet, install them now.

® Perl

29 Jan 2004

Installing mod_perl 2.0 4.3 Installing mod_perl from Binary Packages

% cd perl-5.8.x
% ./ Configure -des

If you[need the threads support] run:

% ./ Configure -des -Dusethreads

If you want to debug mod_perl segmentation faults, add the following ./Configure options:
-Doptinize="-g -Dusedevel
Now build it:
% make && make test && make install
® Apache
% cd httpd-2.x.xx

% ./configure --prefix=$HOVE/ httpd/ prefork --w th-nmpm=prefork
% make && make install

4.3 |Installing mod perl from Binary Packages

As of this writing only the binaries for the Win32 platform are available, kindly prepared and maintained
by Randy Kobes. See the documentation on Win32 binaries for details.

Some RPM packages can be found using rpmfind services, e.g.:

[http://www.rpmfind.net/linux/rpm2html/search.php?query=mod_perl& submit=SearchH.. However if you
have prablems using them, you have to contact those who have created them.

4.4 (Installing mod perl from Sour ce

Building from source is the best option, because it ensures a binary compatibility with Apache and Perl.
However it’s possible that your distribution provides a solid binary mod_perl 2.0 package.

For Win32 specific details, see the documentation on Win32 installation.

4.4.1 [Downloading the mod per| Sourceg

First download the mod_perl source.

® Stable Release

Download from: [http://perl.apache.or g/downl oad)|

This direct link which symlinks to the latest release should work too:
|http://perl.apache.org/dist/mod perl-2.0-current.tar.gz

29 Jan 2004 37

http://www.rpmfind.net/linux/rpm2html/search.php?query=mod_perl&submit=Search+
http://perl.apache.org/download/
http://perl.apache.org/dist/mod_perl-2.0-current.tar.gz

4.4.2 Configuring mod_per!

For the purpose of examples in this chapter we will use the package named mod_perl-2.x.xx.tar.gz,
where x.xx should be replaced with the real version number.

Open the package with:
%tar -xvzf nod_perl-2.x.xx.tar.gz
or an equivalent command.
® CVSBleeding-Edge Version
To download the cvs version of modperl-2.0 execute the following commands:
% cvs -d :pserver:anoncvs@vs. apache. org: / hone/ cvspublic | ogin
The password is "anoncvs'.
% cvs -d :pserver:anoncvs@vs. apache. org: / hone/ cvspublic co nodperl-2.0

Y ou can aso try the latest CV S snapshot:

|http://cvs.apache.org/snapshots'modperl-2.0/]

4.4.2 |Configuring mod perl|

Before you proceed make sure that Apache 2.0 has been built and installed. mod_perl cannot be built
before that.

Like any other Perl module, mod_perl is configured via the Makefile.PL file, but requires one or more
configuration options:

% cd nodperl -1.99 xx
% per| Makefile.PL <options>

where optionsis an optional list of (key,value) pairs.

The following sections give the details about all the available options, but let's mention first the most
important ones.

If you want to have mod_perl 1.0 and 2.0 installed under the same perl tree you need to enable

[VP_TNST_APACHE2}

% per| Makefile. PL MP_I NST_APACHE2=1 <ot her options>

It seems that most users use pre-packaged Apache installation, most of which tend to spread the Apache
files across many directories (i.e. not using --enable-layout=Apache, which puts al the files under the
same directory). If Apache 2.0 files are spread under different directories, you need to use at least the
option, which should be set to afull path to the apxs executable. For example:

38 29 Jan 2004

http://cvs.apache.org/snapshots/modperl-2.0/

Installing mod_perl 2.0 4.4.2 Configuring mod_per!

% per| Makefile.PL MP_I NST_APACHE2=1 MP_APXS=/ pat h/t o/ apxs

For example RedHat Linux system installs the ht t pd binary, the apxs and apr - conf i g scripts (the
latter two are needed to build mod_perl) all in different locations, therefore they configure mod_perl 2.0
as.

% per| Makefile.PL MP_I NST_APACHE2=1 MP_APXS=/ pat h/t o/ apxs \
MP_APR_CONFI G=/ anot her/ pat h/ t o/ apr-confi g <other options>

However a correctly built Apache shouldn’t require the [MP_APR_CONFI @ option, since [VP_APXY
should provide the location of this script.

If however al Apache 2.0 files were installed under the same directory, mod_perl 2.0’s build only needs
to know the path to that directory, passed viathe[VP_AP_PREFI X option:

% per| Makefile.PL MP_I NST_APACHE2=1 MP_AP_PREFI X=$HOVE/ ht t pd/ pr ef or k

These and other options are discussed in the following sections.

4.4.2.1 [Boolean Build Optiong

The following options are boolean and can be set with MP_XXX=1 or unset with MP_XXX=0, where XXX
is the name of the option.

4.4.2.1.1 MP PROMPT DEEFAULT]

Accept default values for all would-be prompts.

4.4.2.1.2 MP GENERATE X9

Generate XS code from parsed source headers in xg/tables/$httpd_version. Default is 1, set to O to disable.

4.4.2.1.3 MP_USE DSQ

Build mod_perl asa DSO (mod_perl.so). Thisis the default. It'1l be turned off if MP_USE_STATI C=1 is
used.

4.4.2.1.4 MP USE STATIQ

Build static mod_perl (mod_perl.a). Thisisthe default. It'Il be turned off if MP_USE_DSO=1 is used.

MP_USE DSO and MP_USE STATI C are both enabled by default. So mod_perl is built once as
mod_perl.a and mod_perl.so, but afterwards you can choose which of the two to use.

META: The following is not implemented yet.

nmod_per|l and ends up with a src/nodul es/ perl/nod_perl.{so,a} and

src/ modul es/ perl/ldopts. to link nodperl static with httpd, we just
need some config.md magic to add ‘| dopts' and nod_perl.a to the build.
so one could then build httpd |ike so:

29 Jan 2004 39

4.4.2 Configuring mod_per!

In -s ~/apache/modperl-2.0/src/modules/perl $PWD/src/modules
Jconfigure --with-mpm=prefork --enable-perl=static ...

we not be configuring/building httpd for the user as 1.x attempted.

downside is one will need to have configured httpd first, so that
headers generated. so it will probably be more like:

.Jconfigure --with-mpm=prefork ...
(go build modperl)
.Jconfig.nice --enable-perl=static && make

we could of course provide a wrapper script todo this, but don’t want
to have this stuff buried and tangled like it is in 1.x

4.4.2.1.5 [MP_STATIC EXTS

Build Apache::*.xs asstatic extensions.

4.4.2.1.6 MP_USE_GTOP

Link with libgtop and enable libgtop reporting.

4.4.2.1.7 MP COMPAT 1X

MP_COMPAT _1X=br alack of it enables several mod_perl 1.0 back-compatibility features, which are
deprecated in mod_perl 2.0. It's enabled by default, but can be disabled with MP_COMPAT _1X=6@uring
the build process.

When this option is disabled, the following things will happen:

® Environment variable GATEWAY _INTERACE will be enabled only if PerlOp tions +Setu -
pEnv isenabled and its value would be the default:

CGl/1.1

and not;

CGl-Perl/1.1

The use of SENV{GATEWAY _INTERACE isdeprecated and the existance of SENV{MOD_PERL}
should be checked instead.

® Deprecated specia variable, $Apache:: T won't be available. Use ${"TAINT} instead.

® $ServerRoot and $Server Root/lib/perl won't be appended to @INC Instead use:

PerlSwitches -I/path/to/server -I/path/to/server/lib/perl

40 29 Jan 2004

Installing mod_perl 2.0 4.4.2 Configuring mod_per!

in httpd.conf or:

use Apache:: Server ();
use Apache:: ServerUtil ();
use Apache:: Process ();

ny $pool = Apache- >server->process->pool ;

push @NC, Apache:: Server::server_root_relative($pool, "");

push @NC, Apache:: Server::server_root_relative($pool, "lib/perl");
in startup.pl.

® Thefollowing deprecated configuration directives won't be recognized by Apache:

Per | SendHeader
Per | Set upEnv
Per | Handl er
Per | Tai nt Check
Per | Warn

Useltheir 2.0 equivalentginstead.

4.4.2.1.8 MP_DEBUQG

Turnon debugging (- g -1 per | d) and tracing.

4.4.2.1.9 MP MAINTAINER

Enable maintainer compile mode, which sets MP_DEBUG=1 and adds the following gcc flags:
- DAP_DEBUG - WAl | -Whni ssing-prototypes -Wtrict-prototypes \

- Whi ssi ng-decl arations \
- DAP_DEBUG - DAP_HAVE_DESI GNATED | NI TI ALI ZER

To use this mode Apache must be build with - - enabl e- mai nt ai ner - node.

4.4.2.1.10 MP_TRACE

Enable tracing

4.4.2.1.11 [MP INST APACHEZ

Install al the*.pm modules relative to the Apache2/ directory.

4.4.2.2 [Non-Boolean Build Optiong

set the non-boolen options with MP_XXX=value.

29 Jan 2004 41

4.4.2 Configuring mod_per!

4.4.2.2.1 MP_APXS

Path to apxs. For example if you've installed Apache 2.0 under /home/httpd/httpd-2.0 as DSO, the
default location would be /home/httpd/httpd-2.0/bin/apxs.

4.4.2.2.2 MP AP PREFIX|

Apache installation prefix, under which the include/ directory with Apache C header files can be found.
For exampleif you' ve have installed Apache 2.0 in directory \Apache2 on Win32, you should use:

MP_AP_PREFI X=\ Apache2

If Apacheis not installed yet, you can point to the Apache 2.0 source directory, but only after you' ve built
or configured Apachein it. For example:

MP_AP_PREFI X=/ hone/ st as/ apache. org/ httpd-2.0

Though in this case nake test won't automatically find ht t pd, therefore you should run t / TEST
instead and pass the location of apxs or ht't pd, e.g.:

%t/ TEST -apxs /hone/stas/ httpd/ prefork/bin/apxs
or

%t/ TEST -httpd /hone/stas/ httpd/ prefork/bin/httpd

4.42.2.3 [MP APR CONFIG|

If APR wasn't installed under the same file tree as httpd, you may need to tell the build process where it
can find the executable apr - confi g, which can then be used to figure out where the apr and aprutil
include/ and lib/ directories can be found.

4.4.2.2.4 MP_CCOPTY

Add to compiler flags, e.g.:

VP_CCOPTS=- W\ér r or

(Noticethat - Wr r or will work only with the Perl version 5.7 and higher.)

4.42.25 [MP_OPTIONS FILE]

Read build options from given file. e.g.:

MP_OPTI ONS_FI LE=~/. my_nod_perl| 2_opts

42 29 Jan 2004

Installing mod_perl 2.0 4.4.3 Re-using Configure Options

4.4.2.3 Imod perl-specific Compiler Optiong

4.4.2.3.1 || DMP_IOBUF S| ZE|

Change the default mod_perl’s 8K 10 buffer size, e.g. to 16K:

MP_CCOPTS=- DMP_| OBUFSI ZE=16384

4.4.2.4 Imod perl OptionsFilg

Options can aso be specified in the file makepl _args.mod_perl2 or .makepl_args.mod_perl2. The file can
be placed under $ENV{ HOVE} , the root of the source package or its parent directory. So if you unpack the
mod_perl source into /tmp/mod_perl-2.x/ and your home is /home/foo/, the file will be searched in:

/tnp/ nod_per| - 2. x/ makepl _ar gs. nod_per| 2
/ t np/ makepl _ar gs. nod_per| 2

/ home/ f oo/ makepl _ar gs. nod_per| 2

/tnp/ nod_per| -2. x/ . makepl _ar gs. nod_per| 2
/tnp/ . makepl _args. nod_per| 2

/ hone/ f oo/ . makepl _args. nod_per| 2

If the file specified in MP_OPTI ONS_FI LE isfound the makepl_args.mod_per!12 will be ignored.

Options specified on the command line override those from makepl_args.mod perl2 and those from
MP_OPTI ONS_FI LE.

If your termina supports colored text you may want to set the environment variable
APACHE TEST_COLORto 1 to enable the colored tracing which makes it easier to tell the reported errors
and warnings, from the rest of the notifications.

4.4.3 |Re-using Configure Optiong

Since mod_perl remembers what build options were used to build it if first place, you can use this knowl-
edge to rebuild itself using the same options. Simply chdi r (1) to the mod_perl source directory and
run:

% cd nodperl - 2. x. xx
% per| -MApache::Build -e rebuild

4.4.4 |Compiling mod perl|

Next stage isto build mod_perl:

% make

29 Jan 2004 43

4.5 If Something Goes Wrong

4.4.5 [Testing mod perl|

When mod_perl has been built, it's very important to test that everything works on your machine:

% nmake test

If something goes wrong with the test phase and want to figure out how to run individual tests and pass
various options to the test suite, see the corresponding sections of [the bug reporting guidelineg or the
Apache:: Test Framework tutorial.

4.4.6 |Installing mod perl|

Once the test suite has passed, it'satimeto install mod_perl.
% meke install
If you install mod_perl system wide, you probably need to become root prior to doing the installation:

% su
make install

4.5 |If Something Goes Wrong

If something goes wrong during the installation, try to repeat the installation process from scratch, while
verifying all the steps with this document.

If the problem persists|report the problem|

4.6 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

4.7 |Authors

® Stas Bekman <stas (at) stason.org>

® Doug MacEachern <dougm (at) covalent.net>

Only the mgjor authors are listed above. For contributors see the Changesfile.

44 29 Jan 2004

mod_perl 2.0 Server Configuration 5 mod_perl 2.0 Server Configuration

5 mod_perl 2.0 Server Configuration

29 Jan 2004 45

5.1 Description

5.1 |Description|

This chapter provides an in-depth mod_perl 2.0 configuration details.

5.2 mod perl configuration directives

Similar to mod_perl 1.0, in order to use mod_perl 2.0 a few configuration settings should be added to
httpd.conf. They are quite similar to 1.0 settings but some directives were renamed and new directives
were added.

5.3 Enabling mod perl|

To enable mod_perl built as DSO add to httpd.conf:

LoadModul e perl| _nodul e nodul es/ nod_perl . so

This setting specifies the location of the mod_perl module relative to the Ser ver Root setting, therefore
you should put it somewhere after Ser ver Root is specified.

If mod_perl has been statically linked it's automatically enabled.

For Win32 specific details, see the documentation on Win32 configuration.

5.4 |Accessing the mod perl 2.0 Modules

In order to prevent from inadvertently loading mod_perl 1.0 modules mod_perl 2.0 Perl modules are
installed into dedicated directories under Apache2/. The Apache2 module prepends the locations of the
mod_perl 2.0 libraries to @ NC, which are the same as the core @ NC, but with Apache2/ appended. This
module has to be loaded just after mod_perl has been enabled. This can be accomplished with:

use Apache2 ();

in the startup file. Only if you don’'t use a startup file you can add:

Per | Modul e Apache2

to httpd.conf, due to the order the Per | Requi r e and Per | Modul e directives are processed.

5.5 [Startup File

Next usually a startup file with Perl codeis loaded:

Per| Requi re "/ hone/ httpd/ httpd-2.0/perl/startup.pl"

46 29 Jan 2004

mod_perl 2.0 Server Configuration

5.5 Startup File

It's used to adjust Perl modules search paths in @ NC, pre-load commonly used modules, pre-compile
constants, etc. Hereis atypical startup.pl for mod_perl 2.0:

file:startup.pl

use

use

Apache2 ();

lib gw(/hone/ httpd/ perl);

enable if the nod_perl 1.0 conpatibility is needed
use Apache::compat ();

preload all np2 nodul es
use ModPerl :: Met hodLookup;
ModPer | :: Met hodLookup: : prel oad_al | _nodul es();

use
use
use
use
use
use
use
use
use

use

use
use

1;

ModPer|:: Uil (); #for CORE: :GLOBAL::exit

Apache: : Request Rec ();
Apache: : Request 1 O ();
Apache: : Request Uil ();

Apache: : Server ();

Apache: : Server Uil ();
Apache: : Connection ();

Apache: : Log ();
APR. : Table ();
ModPer | : : Registry ();

Apache: : Const -conpile =>"':common’;
APR: : Const -conpile =>"':common’;

In this file the Apache2 modules is loaded, so the 2.0 modules will be found. Afterwards @ NC in
adjusted to include non-standard directories with Perl modules:

use

l'ib gw(/hone/ httpd/ perl);

If you need to use the backwards compatibility layer load:

use

Apache: : conpat ();

Next we preload the commonly used mod_perl 2.0 modules and precompile common constants.

Finally as usual the startup.pl file must be terminated with 1; .

29 Jan 2004

47

5.6 Server Configuration Directives

5.6 [Server Configuration Directives

5.6.1 [Per | Requi r €

META: to be witten

5.6.2 [Per | Mbdul €

META: to be witten

5.6.3 [Per | LoadMbdul €|

META: to be witten
di scused sonewhere in docs::2.0::user::config::custom

5.6.4 [Per | Set Var |

META: to be witten

5.6.5 [Per | AddVar|

META: to be witten

5.6.6 [Per | Set Env|

META: to be witten

5.6.7 [Per | PassEnv|

META: to be witten

5.6.8 [<Per | > Sectiong

With <Per | >...</ Per | > sections, it is possible to configure your server entirely in Perl.

Please refer to the Apache:: Perl Sections manpage for more information.

META: adedicated chapter with examples?

5.6.9 [Per| Swi t ches|

Now you can pass any Perl’s command line switches in httpd.conf using the Per | Swi t ches directive.
For example to enable warnings and Taint checking add:

48 29 Jan 2004

mod_perl 2.0 Server Configuration 5.6.10 SetHandler

Per| Swi t ches -wT

As an dternative to using use | i b in startup.pl to adjust @ NC, nhow you can use the command line
switch - | to do that:

Per| Swi t ches -1/hone/ st as/ nodper |

You could also use - M i b=/ horre/ st as/ nodper | which is the exact equivalent asuse 1i b, but
it's broken on certain platforms/version (e.g. Darwin/5.6.0). use |i b is removing duplicated entries,
whereas- | does not.

5.6.10 [Set Handl er|

mod_perl 2.0 provides two types of Set Handl er handlers. nodper| and perl-script. The
Set Handl er directiveisonly relevant for response phase handlers. It doesn’t affect other phases.

5.6.10.1

Configured as:

Set Handl er nodper |

The bare mod_perl handler type, which just calls the Per | * Handl er 's callback function. If you don’t
need the features provided by the perl-script handler, with the nodper | handler, you can gain even more
performance. (This handler isn't availablein mod_perl 1.0.)

Unlessthe Per | * Handl er callback, running under the nrodper | handler, is configured with:
Per| Opti ons +Set upEnv
or cals:

$r->subpr ocess_env;

in avoid context (which has the same effect as Per | Qpt i ons +Set upEnv for the handler that called
it), only the following environment variables are accessible via YENV:

e MOD PERL (always)
e PATHand TZ (if you had them defined in the shell or httpd.conf)

Therefore if you don’t want to add the overhead of populating “ENV, when you simply want to pass some
configuration variables from httpd.conf, consider using Per | Set Var and Per | AddVar instead of
Per | Set Env and Per | PassEnv. In your code you can retrieve the values using the di r _confi g()

method. For example if you set in httpd.conf:

<Location /print_env2>
Set Handl er nodper |
Per | ResponseHandl er Apache: : Var Test
Per| Set Var Var Test Var Test Val ue

</ Locati on>

29 Jan 2004 49

5.6.10 SetHandler

thisvalue can beretrieved inside Apache: : Var Test : : handl er () with:

$r->dir_config(’ VarTest');

Alternatively use the Apache core directives Set Env and PassEnv, which always populate
r- >subpr ocess_env, but this doesn't happen until the Apache fixups phase, which could be too late
for your needs.

5.6.10.2 [per | - scri pt|

Configured as:

Set Handl er perl-script
Most mod_perl handlers use the perl-script handler. Among other thingsit does:

® Per| Options +d obal Request is in effect only during the PerlResponseHandler phase
unless:

Per| Options -d obal Request
is specified.
® Per| Options +Set upEnv isin effect unless:
Per| Opti ons - Set upEnv
is specified.

e STDI N and STDOUT get tied to the request object $r , which makes possible to read from STDI N
and print directly to STDOUT viaCORE: : pri nt (), instead of implicit callslike $r - >put s() .

® Severa specia global Perl variables are saved before the handler is caled and restored afterwards
(similar to mod_perl 1.0). This includes: YENV, @ NC, $/, STDOUT's $| and END blocks array
(PL_endav).

5.6.10.3

Let’s demonstrate the differences between the modper| and the perl -scri pt core handlers in the
following example, which represents a simple mod_perl response handler which prints out the environ-
ment variables as seen by it:

file:MyApache/ Print Envl. pm

package MyApache:: Print Envl;
use strict;

use Apache::RequestRec (); # for $r->content_type
use Apache::Request1 O (); # for print
use Apache:: Const -conpile =>":common’;

sub handl er {

50 29 Jan 2004

mod_perl 2.0 Server Configuration 5.6.10 SetHandler

ny $r = shift;

$r->content _type('text/plain');
for (sort keys %ENV){

print "$_ => $ENV{$_}\n";
}

return Apache: : OK;
}

1;
Thisisthe required configuration:

Per | Modul e MyApache: : Print Envl
<Location /print_envl>

Set Handl er perl -script

Per | ResponseHandl er MyApache: : Print Envl
</ Locati on>

Now issue a request to |http://localhost/print_envl] and you should see al the environment variables
printed out.

Here is the same response handler, adjusted to work with the nodper | core handler:

file:MyApache/ Print Env2. pm

package MyApache: : Print Env2;
use strict;

use Apache::RequestRec (); # for $r->content_type
use Apache::Request1 O (); # for $r->print

use Apache:: Const -conpile => ":common’;

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);

$r - >subprocess_env;

for (sort keys %ENV){
$r->print("$_ => $ENV{$ }\n");

}

return Apache: : CK;
}

1;

The configuration now will look as:
Per | Modul e MyApache: : Pri nt Env2
<Location /print_env2>

Set Handl er nodper|

Per | ResponseHandl er MyApache: : Pri nt Env2
</ Locati on>

29 Jan 2004 51

http://localhost/print_env1

5.6.11 PerlOptions

MyApache::Print Env2 cannot use print() and therefore uses $r->print() to generate a
response. Under the modperl core handler %ENVis not populated by default, therefore subpro -
cess _env() iscalledinavoid context. Alternatively we could configure this section to do:

PerlOptions +SetupEnv

If you issue a request to|http://localhost/print_env2, you should see all the environment variables printed
out as with|http://Tocalhost/print_envi]

5.6.11 [Per | Opti ons|

The directive PerlOp tions provides fine-grained configuration for what were compile-time only
options in the first mod_perl generation. It also provides control over what class of Perlin ter preter
isused for a<Virtu al Host > or location configured with <Loca tion >, <Direc tory >, €tc.

$r->is_perl_option_enabled($option) and $s->is_perl_option_enabled($option) can be used at run-time to
check whether a certain $option has been enabled. (META: probably need to add/move this to the
coding chapter)

Options are enabled by prepending + and disabled with - .

The available options are:

56.11.1

On by default, can be used to disable mod_perl for agiven Virtu al Host . For example:

<VirtualHost ...>
PerlOptions -Enable
</VirtualHost>

5.6.11.2

Share the parent Perl interpreter, but give the Virtu al Host its own interpreter pool. For example
should you wish to fine tune interpreter pools for a given virtua host:

<VirtualHost ...>
PerlOptions +Clone
PerlinterpStart 2
PerlinterpMax 2

</VirtualHost>

This might be worthwhile in the case where certain hosts have their own sets of large-ish modules, used
only in each host. By tuning each host to have its own pool, that host will continue to reuse the Perl alloca-
tionsin their specific modules.

When cloning a Perl interpreter, to inherit base Perl interpreter’s Perl Switches use:

52 29 Jan 2004

http://localhost/print_env2
http://localhost/print_env1

mod_perl 2.0 Server Configuration 5.6.11 PerlOptions

<VirtualHost ...>

PerlSwitches +inherit
</VirtualHost>

5.6.11.3

Create a new parent Perl interpreter for the given Virtu al Host and give it its own interpreter pool
(impliesthe Clone option).

A common problem with mod_perl 1.0 was the shared namespace between all code within the process.
Consider two devel opers using the same server and each wants to run a different version of a module with
the same name. This example will create two parent Perl interpreters, one for each <Virtu al Host >,
each with its own namespace and pointing to a different pathsin @INC

META: is-Mlib portable? (problems with -Mlib on Darwin/5.6.0?)

<VirtualHost ...>
ServerName devl
PerlOptions +Parent
PerlSwitches -Mlib=/home/dev1/lib/perl
PerlModule Apache2
</VirtualHost>

<VirtualHost ...>
ServerName dev2
PerlOptions +Parent
PerlSwitches -Mlib=/home/dev2/lib/perl
PerIModule Apache2
</VirtualHost>

Remember that +Parent gives you a completely new Perl interpreters pool, so all your modifications to
@INCand preloading of the modules should be done again. Consider using [PerlOptions +Clong if you
want to inherit from the parent Perl interpreter.

Or even for agiven location, for something like "dirty" cgi scripts:

<Location /cgi-bin>
PerlOptions +Parent
PerlinterpMaxRequests 1
PerlinterpStart 1
PerlinterpMax 1
PerlResponseHandler ModPerl::Registry
</Location>

will use afresh interpreter with its own namespace to handle each request.

5.6.11.4 [Per | *Handl er|

Disable Perl*Handler s, al compiled-in handlers are enabled by default. The option name is derived
from the Perl*Handler name, by stripping the Perl and Handler parts of the word. So Perl -
LogHandler becomesLog which can be used to disable Perl LogHandler :

29 Jan 2004 53

5.6.11 PerlOptions

PerlOptions -Log

Suppose one of the hosts does not want to alow users to configure PerlAu then Handler , PerlAu -
thzHan dler , PerlAc cessHan dler and <Perl> sections:

<VirtualHost ...>

PerlOptions -Authen -Authz -Access -Sections
</VirtualHost>

Or maybe everything but the response handler:
<VirtualHost ...>

PerlOptions None +Response
</VirtualHost>

5.6.11.5

Resolve Perl*Handlers at startup time, which includes loading the modules from disk if not already
loaded.

In mod_perl 1.0, configured Perl*Handlers which are not a fully qualified subroutine names are
resolved at request time, loading the handler module from disk if needed. In mod_perl 2.0, configured
Perl*Handlers are resolved at startup time. By default, modules are not auto-loaded during
startup-time resolution. It is possible to enabl e this feature with:

PerlOptions +Autoload
Consider this configuration:

PerlResponseHandler Apache::Magick

In this case, Apache::Magick isthe package name, and the subroutine name will default to handler. If
the Apache::Magick moduleis not already loaded, PerlOp tions +Autoload will attempt to pull
it in at startup time. With this option enabled you don’t have to explicitly load the handler modules. For
example you don’t need to add:

PerlModule Apache::Magick

in our example.

5.6.11.6 |d obal Request |

Setup the global request_rec for use with Apache->request

This setting is enabled by default during the PerlResponseHandler phase for sections configured as:

<Location ...>
SetHandler perl-script

</Location>

54 29 Jan 2004

mod_perl 2.0 Server Configuration 5.6.11 PerlOptions

And can be disabled with:

<Location ...>
Set Handl er perl-script
Per| Opti ons -d obal Request

</ Locati on>

Notice that if you need the global request object during other phases, you will need to explicitly enable it
in the configuration file.

Y ou can also set that global object from the handler code, like so:

sub handl er {
ny $r = shift;
Apache- >r equest ($r);

}

The +d obal Request setting is needed for example if you use older versions of CA . pmto process
the incoming request. Starting from version 2.93, CA . pm optionally accepts $r as an argument to
new(), like so:

sub handl er {
ny $r shift;
ny $q = CG ->new($r);

}

Remember that inside registry scripts you can aways get $r at the beginning of the script, since it gets
wrapped inside a subroutine and accepts $r as the first and the only argument. For example:

#! [usr/ bi n/ perl

use C4;

ny $r = shift;

ny $q = CA - >new($r);

of course you won't be able to run this under mod_cgi, so you may need to do:
#1/ usr/ bi n/ perl

use C4 ;
ny $q = $ENV{MOD PERL} ? CA ->new(shift @) : CA->new);

in order to have the script running under mod_perl and mod_cgi.

5.6.11.7 [Par seHeader s|

Scan output for HTTP headers, same functionality as mod perl 1.0's Per | SendHeader , but more
robust. This option is usually needs to be enabled for registry scripts which send the HTTP header with:

29 Jan 2004 55

5.6.11 PerlOptions

print "Content-type: text/html\n\n";

5.6.11.8 [Mer geHandl er s|

Turn on merging of Perl*Handler arrays. For example with a setting:
PerlFixupHandler Apache::FixupA
<Location /inside>

PerlFixupHandler Apache::FixupB
</Location>

arequest for /inside only runs Apache::FixupB (mod_perl 1.0 behavior). But with this configuration:
PerlFixupHandler Apache::FixupA
<Location /inside>
PerlOptions +MergeHandlers

PerlFixupHandler Apache::FixupB
</Location>

arequest for /inside will run both Apache::FixupA and Apache::FixupB handlers.

5.6.11.9

Set up environment variables for each request alamod_cgi.

When this option is enabled, mod_per! fiddles with the environment to make it appear as if the code is
caled under the mod_cgi handler. For example, the SENV{QUERY_STRING}environment variable is
initialized with the contents of Apache::args(), and the value returned by Apache::server_hostname() is
put into SENV{SERVER_NAME}

But %ENVpopulation is expensive. Those who have moved to the Perl Apache API no longer need this
extra Y%oEN\population, and can gain by disabling it. A code using the CGl.pm module require PerlOp -
tions +Setu pEnv because that module relies on a properly populated CGI environment table.

This option is enabled by default for sections configured as:

<Location ...>
SetHandler perl-script

</Location>

Since this option adds an overhead to each request, if you don't need this functionality you can turn it off
for acertain section:

<Location ...>
SetHandler perl-script
PerlOptions -SetupEnv

</Location>

56 29 Jan 2004

mod_perl 2.0 Server Configuration

or globally:

Per| Opti ons - Set upEnv
<Location ...>

</ Locati on>

and then it’ll affect the whole server. It can still be enabled for sections that need this functionality.

5.7 Server Life Cycle Handlers Directives

When this option is disabled you can still read environment variables set by you. For example when you

use the following configuration:

Per| Opti ons - Set upEnv
Per| Modul e ModPerl :: Registry
<Location /perl>
Per| Set Env TEST hi
Set Handl er perl-script
Per| ResponseHandl er MbdPerl :: Registry
Opti ons +ExecCd
</ Locati on>

and you issue arequest for this script:

set upenvof f . pl

use Dat a: : Dunper,

ny $r = Apache->request();
$r->content _type('text/plain');
print Dunper (\ %ENV) ;

you should see something like this:

$VARL = {
" GATEWAY_I NTERFACE' => "Cd -Perl /1.1,
"MOD_PERL’ => 'nod_perl/2.0.1",
"PATH => "bin:/usr/bin",
"TEST' => "hi’

I

Notice that we have got the value of the environment variable TEST.

5.7 |Server Life Cycle Handlers Directives

See|Server life cycld

5.7.1 [Per | OpenLogsHandl er|

See|Per | OpenLogsHandl er|

29 Jan 2004

57

5.8 Protocol Handlers Directives

5.7.2 [Per | Post Confi gHandl er|

See|Per | Post Conf i gHandl er|

5.7.3 [Per| Chi | dl ni t Handl er|

See|Per | Chi | dl ni t Handl er|

5.7.4 [Per | Chi | dExi t Handl er|

See|Per | Chi | dExi t Handl er|

5.8

Protocol Handler s Directives

See|Protocol handlerg

5.8.1 [Per | PreConnect i onHandl er|

See|Per | Pr eConnect i onHandl er|

5.8.2 [Per| ProcessConnecti onHandl er|

See|Per | Pr ocessConnect 1 onHandl er|

5.9

Filter Handlers Directives

mod_perl filters are described in the [filter handlers tutorial
Apache: : Fi | t er Rec manpages.

The following filter handler configuration directives are available:

5.9.1 Perl | nput Fi | t er Handl er]|

SeelPer | | nput Fi | t er Handl er|

5.9.2 [Per| Qut put Fi |l t er Handl er|

See|Per | Qut put Fi | t er Handl erl

58

Apache: :Filter

and

29 Jan 2004

mod_perl 2.0 Server Configuration 5.10 HTTP Protocol Handlers Directives

5.9.3 [Perl Setl nputFilter|

SeelPer| Set | nput Fi |l ter]

5.9.4 Perl Set Qut put Fi |l ter|

SeelPer | Set | nput Fi | t er|

5.10 HTTP Protocol Handlers Directives
See[HTTP protocol handierd

5.10.1 |Per | Post ReadRequest Handl er |

See|Per | Post ReadRequest Handl er|

5.10.2 |Per | Tr ansHandl er |

See|Per | Tr ansHandl er}|

5.10.3 |Per | MapToSt or ageHandl er|

See|Per | MapToSt or ageHand! erl

5.10.4 |Per | | ni t Handl er|

SeelPer | | ni t Handl er|

5.10.5 |Per | Header Par ser Handl er |

See|Per | Header Par ser Handl erl

5.10.6 [Per | AccessHandl er|

SeelPer | AccessHandl erl|

5.10.7 |Per | Aut henHandl er|

See|Per | Aut henHandl er|

29 Jan 2004 59

5.11 Threads Mode Specific Directives

5.10.8 [Per | Aut hzHandl er|

SeelPer | Aut hzHandl er|

5.10.9 |Per | TypeHandl er|

See|Per | TypeHandl er|

5.10.10 [Per | Fi xupHandl er |

See|Per | Fi xupHandl er}|

5.10.11 |Per | ResponseHandl er |

See|Per | ResponseHandl er}|

5.10.12 [Per | LogHandl er|

SeelPer | LogHandl er|

5.10.13 [Per | d eanupHandl er|

SeelPer | Cl eanupHandl er|

5.11 [Threads M ode Specific Directives

These directives are enabled only in athreaded mod_perl+Apache combo:

5.11.1 |Perl I nterpStart)]

The number of interpretersto clone at startup time.

Default value: 3

5.11.2 |Per | | nt er pNVaXx|

If al running interpreters are in use, mod_perl will clone new interpreters to handle the request, up until
this number of interpreters is reached. when Per | | nt er pMax is reached, mod_perl will block (via
COND_WAIT()) until one becomes available (signaled via COND_SIGNAL()).

Default value: 5

60 29 Jan 2004

mod_perl 2.0 Server Configuration 5.11.3 PerlinterpMinSpare

5.11.3 [Per | | nt er pM nSpar €|

The minimum number of available interpreters this parameter will clone interpreters up to Perlin -
terp Max, before aregquest comesin.

Default value: 3

5.11.4 [Per | | nt er pMaxSpar €|

mod_perl will throttle down the number of interpretersto this number as those in use become available.

Default value: 3

5.11.5 [Per | | nt er pMaxRequest s|

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh clone.

Default value: 2000

5.11.6 [Per | | nt er pScope|

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be pulled
from the interpreter pool. The interpreter is then only available to the thread that selected it, until it is
released back into the interpreter pool. By default, an interpreter will be held for the lifetime of the
request, equivalent to this configuration:

PerlinterpScope request

For example, if a PerlAc cessHan dler is configured, an interpreter will be selected before it is run
and not released until after the logging phase.

Interpreters will be shared across sub-requests by default, however, it is possible to configure the inter-
preter scope to be per-sub-request on a per-directory basis:

PerlinterpScope subrequest

With this configuration, an autoindex generated page, for example, would select an interpreter for each
itemin the listing that is configured with a Perl*Handler.

It is also possible to configure the scope to be per-handler:
PerlinterpScope handler

For example if PerlAc cessHan dler is configured, an interpreter will be selected before running the
handler, and put back immediately afterwards, before Apache moves onto the next phase. If a Perl Fix -
upHandler is configured further down the chain, another interpreter will be selected and again put back
afterwards, before Perl Respon se Handler isrun.

29 Jan 2004 61

5.12 Debug Directives

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and provide ar equest _r ec record. In this case, the
default scope is that of the request. Should a mod_perl handler want to maintain state for the lifetime of an
ftp connection, it is possible to do so on a per-virtualhost basis:

Per| I nt er pScope connection

Default value: r equest

5.12 |Debug Dir ectives
5.12.1 [Per | Tr ace|

The Per | Tr ace is used for tracing the mod_perl execution. This directive is enabled when mod_perl is
compiled with the MP_TRACE=1 option.

To enable tracing, add to httpd.conf:

Perl Trace [Ievel]

wherel evel iseither:

al |
which sets maximum logging and debugging levels;

a combination of one or more option letters from the following list:

a Apache APl interaction
configuration for directive handlers
directive processing
filters

envi ronment vari abl es

Per|l runtine interaction
handl ers

i interpreter pool managenent
m nmenory al | ocati ons

ol/0O

s Perl sections

t benchnark-ish timngs

oQ O Qo O

Tracing options add to the previous setting and don’t override it. So for example:
Perl Trace c
bé;ITrace f

will set tracing level first to’c’ and later to 'cf’. If you wish to override settings, unset any previous setting
by assigning O (zero), like so:

62 29 Jan 2004

mod_perl 2.0 Server Configuration 5.13 mod_perl Directives Argument Types and Allowed Location

Per| Trace ¢

Perl Trace 0
Per| Trace f

now thetracing level isset only to 'f'. You can't mix the number O with letters, it must be alone.

When Perl Trace is not specified, the tracing level will be set to the value of the
$ENV{ MOD_PERL_TRACE} environment variable.

5.13 mod perl Directives Argument Types and Allowed
L ocation

The following table shows where in the configuration files mod_perl configuration directives are allowed
to appear, what kind and how many arguments they expect:

General directives:

Directive Argunents Scope
Per| Swi t ches | TERATE SRV
Per| Requi re | TERATE SRV
Per | Modul e | TERATE SRV
Per | LoadModul e RAW ARGS SRV
Per| Opti ons | TERATE D R
Per | Set Var TAKE2 D R
Per | AddVar | TERATE2 D R
Per | Set Env TAKE2 D R
Per | PassEnv TAKE1 SRV
<Per| > Sections RAW ARGS SRV
Per| Trace TAKE1 SRV

Handler assignment directives:

Directive Argunents Scope
Per | OpenLogsHandl er | TERATE SRV
Per | Post Confi gHandl er | TERATE SRV
Per | Chi | dI ni t Handl er | TERATE SRV
Per | Chi | dExi t Handl er | TERATE SRV
Per | PreConnect i onHandl er | TERATE SRV

Per | ProcessConnect i onHandl er | TERATE SRV

Per | Post ReadRequest Handl er | TERATE SRV

Per | Tr ansHandl er | TERATE SRV
Per | MapToSt or ageHandl er | TERATE SRV
Per | | ni t Handl er | TERATE D R
Per | Header Par ser Handl er | TERATE DI R
Per | AccessHandl er | TERATE DI R
Per | Aut henHandl er | TERATE D R
Per | Aut hzHandl er | TERATE D R
Per | TypeHandl er | TERATE DR

29 Jan 2004 63

5.13 mod_perl Directives Argument Types and Allowed Location

Per | Fi xupHandl er | TERATE D R
Per | ResponseHandl er | TERATE D R
Per | LogHandl er | TERATE D R
Per | G eanupHandl er | TERATE D R
Per | | nput Fi | t er Handl er | TERATE D R
Per | Qut put Fi | t er Handl er | TERATE D R
Perl Set I nputFilter | TERATE D R
Per| Set Qut putFil ter | TERATE D R

Perl Interpreter management directives:

Directive Argunents Scope
PerlInterpStart TAKE1 SRV
Per | | nt er pMax TAKE1 SRV
Per || nt er pM nSpar e TAKE1 SRV
Per | | nt er pMaxSpar e TAKE1 SRV
Per | | nt er pMaxRequest s TAKE1 SRV
Per | I nt er pScope TAKE1 DR

mod_perl 1.0 back-compatibility directives:

Directive Argunents Scope
Per | Handl er | TERATE DI R
Per | SendHeader FLAG DI R
Per | Set upEnv FLAG D R
Per | Tai nt Check FLAG SRV
Per | War n FLAG SRV

The Arguments column represents the type of arguments directives accepts, where:
e |ITERATE
Expects alist of arguments.
o |ITERATE2
Expects one argument, followed by at |east one or more arguments.
e TAKElL
Expects one argument only.
® TAKEZ2
Expects two arguments only.
o FLAG

Oneof On or O f (caseinsensitive).

64 29 Jan 2004

mod_perl 2.0 Server Configuration 5.14 Server Startup Options Retrieval

e RAW _ARGS
The function parses the command line by itself.
The Scope column shows the location the directives are allowed to appear in:
e SRV

Global configuration and <Vi rt ual Host > (mnemonic: SeRVer). These directives are defined as
RSRC_CONF in the source code.

e DIR

<Di rectory>, <Locati on>, <Fi | es> and al their regular expression variants (mnemonic:
DIRectory). These directives can also appear in .htaccess files. These directives are defined as
OR_ALL inthe source code.

These directives can also appear in the global server configuration and <Vi r t ual Host >.

Apache specifies other alowed location types which are currently not used by the core mod_perl direc-
tives and their definition can be found in include/httpd_config.h (hint: search for RSRC_CONF).

Also see|Stacked Handlerd

5.14 [Server Startup Options Retrieval

Inside httpd.conf one can do conditional configuration based on the define options passed at the server
startup. For example:

<| f Defi ne PERLDB>
<Per| >
use Apache::DB ();
Apache: : DB->init;
</ Perl >

<Location />
Per | Fi xupHandl er Apache: : DB

</ Locati on>
</| fDefine>

So only when the server is started as:

% htt pd C<- DPERLDB> ...

The configuration inside | f Def i ne will have an effect. If you want to have some configuration section
to have an effect if a certain define wasn’t defined use ! , for example here is the opposite of the previous
example:

29 Jan 2004 65

5.15 Perl Interface to the Apache Configuration Tree

<| f Defi ne ! PERLDB>
...
</|fDefine>

If you need to access any of the statup defines in the Perl code you use
Apache: : Server: :exists_config defi ne.For exampleinastartup file you can say:

use Apache:: ServerWil ();

i f (Apache:: Server::exists_config_define("PERLDB")) {
requi re Apache: : DB;
Apache: : DB->init;

}

For example to check whether the server has been started in a single mode use:

if (Apache:: Server::exists_config_define("ONE_PROCESS"')) ({
print "Running in a single node";
}

5.14.1 [MODPERL2 Define Option|

When running under mod_perl 2.0 a special configuration "define” symbol MODPERL2 is enabled inter-
nally, asif the server had been started with - DMODPERL 2. For example this can be used to write a config-
uration file which needs to do something different whether it’s running under mod_perl 1.0 or 2.0:

<| f Defi ne MODPERL2>
2.0 configuration
</| fDefine>
<| f Defi ne ! MODPERL2>
el se
</| fDefine>

From within Perl code this can be tested with Apache: : Server::exists _config define(),
for example:

if (Apache:: Server::exists_config_define("MODPERL2")) {
some 2.0 specific code
}

5.15 |Perl Interface to the Apache Configuration Tree

For now refer to the Apache::Directive manpage and the test t/response/TestApache/conftree.pm in the
mod_perl source distribution.

META: need help to write the tutorial section on this with examples.

66 29 Jan 2004

mod_perl 2.0 Server Configuration 5.16 Adjusting @INC

5.16 |Adjusting @ NG

Y ou can always adjust contents of @ NC before the server starts. There are several ways to do that.

e dtartup.pl

Inthe startup filgyou can usethel i b pragmalike so:

use lib gw(/honme/ httpd/ projectl/lib /tnp/lib);
use |lib gw(/hone/ httpd/ project2/1ib);

e httpd.conf

In httpd.conf you can use the Per | Swi t ches directive to pass arguments to perl asyou do from the
command line, e.q.:

Perl Swi tches -1/hone/httpd/projectd/lib -1/tnmp/lib
Perl Swi tches -1/hone/ httpd/project2/lib

5.16.1 |PERL5LI B and PERLLI B Environment Variableg

The effect of the PERL5LI B and PERLLI B environment variables on @ NC is described in the perlrun
manpage. mod_perl 2.0 doesn’t do anything specia about them.

It's important to remind that both PERL5LI B and PERLLI B are ignored when the taint mode (Per | -
Swi t ches -T)isin effect. Since you want to make sure that your mod_perl server is running under the
taint mode, you can’t use the PERL5LI B and PERLLI B environment variables.

However there is the perl5lib module on CPAN, which, if loaded, bypasses perl’s security and will affect
@ NC. Useit only if you know what you are doing.

5.16.2 Modifying @ NC on a Per-VirtualHost|

If Perl used with mod_perl was built with ithreads support one can specify different @ NC values for
different VirtualHosts, using a combination of [Per | Opti ons +Par ent|and [Per | Swi t ches| For
example:

<Virtual Host ...>
Server Name devl
Per| Opti ons +Parent
Per| Swi tches -1/ hone/devl/Iib/ perl
Per | Modul e Apache2
</ Vi rt ual Host >

<Virtual Host ...>
Server Nane dev2
Per| Opti ons +Parent
Per| Swi tches -1/hone/dev2/Iib/ perl
Per | Modul e Apache2
</ Vi r t ual Host >

29 Jan 2004 67

5.17 Genera Issues

5.17 |General |ssues

5.18 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

5.19 |[Authors

® Doug MacEachern <dougm (at) covalent.net>

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

68

29 Jan 2004

Apache Server Configuration Customization in Perl 6 Apache Server Configuration Customization in Perl

6 Apache Server Configuration Customization in Per|

29 Jan 2004 69

6.1 Description

6.1 |[Description|

This chapter explains how to create custom Apache configuration directivesin Perl.

6.2 |Incentives

mod_perl provides several ways to pass custom configuration information to the modules.

The simplest way to pass custom information from the configuration file to the Perl module is to use the
[Per | Set Var |and|Per | AddVar |directives. For example:

Per| Set Var Secret "Matrix is us"

and in the mod_perl code this value can be retrieved as:

ny $secret = $r->dir_config("Secret");

Another aternative is to add custom configuration directives. There are severa reasons for choosing this
approach:

® \When the expected value is not a simple argument, but must be supplied using a certain syntax,
Apache can verify at startup time that this syntax is valid and abort the server start up if the syntax is
invalid.

® Custom configuration directives are faster because their values are parsed at the startup time, whereas
Per | Set Var and Per | AddVar values are parsed at the request time.

® |t's possible that some other modules have accidentally chosen to use the same key names but for
absolutely different needs. So the two now can’t be used together. Of course this collision can be
avoided if auniqueto your module prefix is used in the key names. For example:

Per | Set Var ApacheFooSecret "Matrix is us"

Finally, modules can be configured in pure Perl using|<Per | > Sect i ons]or|a startup filg, by simply
modifying the global variables in the modul€e's package. This approach could be undesirable because it
requires a use of globals, which we al try to reduce. A bigger problem with this approach is that you can’t
have different settings for different sections of the site (since there is only one version of a globa vari-
able), something that the previous two approaches easily achieve.

6.3 |Creating and Using Custom Configuration Directives

In mod_perl 2.0, adding new configuration directives is a piece of cake, because it requires no XS code
and Makefile.PL, needed in case of mod_perl 1.0. In mod_perl 2.0, custom directives are implemented in
pure Perl.

70 29 Jan 2004

Apache Server Configuration Customization in Perl 6.3 Creating and Using Custom Configuration Directives

Here is a very basic module that declares two new configuration directives. MyPar anet er, which

accepts one or more arguments, and MyQx her Par anet er which accepts a single argument.
#file: MyApache/ MyPar anet ers. pm
package MyApache:: MyPar anet ers;

use strict;
use warni ngs FATAL => "all’

use Apache:: Test;
use Apache:: TestUil;

use Apache:: Const -conpile => qw(OR_ALL | TERATE);

use Apache:: CmdParnms ();
use Apache:: Mdule ();

our @WPACHE_MODULE_COMMVANDS = (

{
nane => ' MyParaneter’,
func => PACKAGE__ . '::MParaneter’,
req_override => Apache:: OR_ALL,
args_how => Apache: : | TERATE,
errnsg => 'MParaneter Entryl [Entry2 ... [EntryN]’,
}
{
nanme => ' M/Q her Par anet er’,
}

sub MyParaneter {
ny($sel f, $parns, @rgs) = @;
$sel f->{WParaneter} = \@rgs;
}
1

And here is how to useit in httpd.conf:

first load the nodul e so Apache will recognize the new directives
Per| LoadModul e MyApache: : MyPar anet er s

MyPar arret er one two three
MyQ her Par anet er Foo
<Location /perl>
MyPar anet er el even twenty
MyQ her Par anet er Bar
</ Locati on>

The following sections discuss this and more advanced modulesin detail.

A minimal configuration module is comprised of two groups of elements:

29 Jan 2004

71

6.3.1 @APACHE_MODULE_COMMANDS

e A global array @GAPACHE MODULE COVMANDS for declaring the new directives and their
behavior.

® A subroutine per each new directive, which is called when thedirectiveis seen

6.3.1 [GAPACHE MODULE COVIVANDS

@APACHE_MODULE_COMVANDS is a global array of hash references. Each hash represents a separate
new configuration directive. In our example we had:

our @\PACHE_MODULE_COMVANDS = (

{
name => ' MParaneter’,
func => PACKAGE__ . ’'::MParaneter’,
reqg_override => Apache:: OR ALL,
ar gs_how => Apache: : | TERATE,
errmsg =>'MParaneter Entryl [Entry2 ... [EntryN]’,
},
{
name => " M/Q her Par anet er’,
b

)

This structure declares two new directives: MyPar anet er and MyQt her Par anet er. You have to
declare at least the name of the new directive, which is how we have declared the MyQt her Par anet er
directive. mod_perl will fill in the rest of the configuration using the defaults described next.

These are the attributes that can be used to define the directives behavior: jnamg, [fund |[args how,
[req overridgandlerrmsgl They are discussed in the following sections.

6.3.11

This is the only required attribute. And it declares the name of the new directive as it'll be used in
httpd.conf.

6.3.1.2

The func attribute expects a reference to a function or a function name. This function is called by httpd
every time it encounters the directive that is described by this entry while parsing the configuration file.
Therefore it's invoked once for every instance of the directive at the server startup, and once per request
per instance in the .htaccessfile.

This function accepts two or more arguments, [depending on the args_how attribute’s valug

This attribute is optional. If not supplied, mod_perl will try to use a function in the current package whose
name is the same as of the directive in question. In our example with Myt her Par anet er , mod_perl
will use:

72 29 Jan 2004

Apache Server Configuration Customization in Perl 6.3.1 @APACHE_MODULE_COMMANDS

__PACKAGE__ . '::M/OtherParaneter’

as aname of a subroutine and it anticipates that it exists in that package.

6.3.1.3 [req overri de|

The attribute defines the valid scope in which this directive can appear. There are|several constantg which
map onto the corresponding Apache macros. These constants should be imported from the
Apache: : Const package.

For example, to use the OR_ALL constant, which allows directives to be defined anywhere, first, it needs
to be imported:

use Apache:: Const -conpile => gWm OR_ALL);

and then assigned to the req_override attribute:
req_override => Apache:: OR_ALL,

It's possible to combine several options using the unary operators. For example, the following setting:
req_override => Apache:: RSRC_CONF | Apache:: ACCESS CONF

will alow the directive to appear anywhere in httpd.conf, but forbid it from ever being used in .htaccess
files:

This attribute is optional. If not supplied, the default value of |[Apache: : OR ALL]|is used.

6.3.1.4

Directives can receive zero, one or many arguments. In order to help Apache validate that the number of
arguments is valid, the args_how attribute should be set to the desired value. Similar to the[req overridg
attribute, the Apache: : Const package provides specia constants which map to the corresponding
Apache macros. There are|severa constantgto choose from.

In our example, the directive MyPar anet er accepts one or more arguments, therefore we have the
[Apache: : | TERATH constant:

args_how => Apache: : | TERATE,

This attribute is optional . If not supplied, the default value of [Apache: : TAKEL]is used.

META: the default may change to use a constant corresponding to the func prototype.

6.3.L5

The errmsg attribute provides a short but succinct usage statement that summarizes the arguments that the
directive takes. It's used by Apache to generate a descriptive error message, when the directive is config-
ured with awrong number of arguments.

29 Jan 2004 73

6.3.1 @APACHE_MODULE_COMMANDS

In our example, the directive MyPar anet er accepts one or more arguments, therefore we have chosen
the following usage string:

errmsg => ' MyParaneter Entryl [Entry2 ... [EntryN]’,

This attribute is optional. If not supplied, the default value of will be astring based on the directive’ sjhamg
andfargs_howj attributes.

6.3.1.6

Sometimes it is useful to pass information back to the directive handler callback. For instance, if you use
the func parameter to specify the same callback for two different directives you might want to know which
directive is being called currently. To do this, you can use the cmd_data parameter, which allows you to
store arbitrary strings for later retrieval from your directive handler. For instance:

our @\PACHE_MODULE _COWMANDS = (
{
nane => '<lLocation’,
func defaults to Redirect()
req_override => Apache: : RSRC_CONF,

ar gs_how => Apache: : RAW ARGS,

,

{
name => '<Locati oniat ch’,
func => Redirect,
req_override => Apache: : RSRC_CONF,
ar gs_how => Apache: : RAW ARGS,
cnd_dat a = '1,

H

)

Here, we are using the Locat i on() function to process both the Locat i on and Locat i onMat ch
directives. In the Locat i on() calback we can check the data in the cmd_data slot to see whether the
directive being processed is Locat i onMat ch and alter our logic accordingly. How? Through the
i nf o() method exposed by the Apache: : CrdPar s class.

use Apache:: CmdParnms ();
sub Location {
ny ($cfg, $parns, $data) = @;

see if we were called via LocationMtch
nmy $regex = $par ns- >i nfo;

continue al ong

}

In case you are wondering, Locat i on and Locat i onMat ch were chosen for a reason - this is exactly
how httpd core handles these two directives.

74 29 Jan 2004

Apache Server Configuration Customization in Perl 6.3.2 Directive Scope Definition Constants

6.3.2 [Directive Scope Definition Constantg

The[reg_overridg attribute specifies the configuration scope in which it's valid to use a given configura-
tion directive. This attribute’' s value can be any of or a combination of the following constants:

(these constants are declared in httpd-2.0/include/http_config.h.)

6.3.2.1 [Apache: : OR NONH

The directive cannot be overridden by any of the Al | owOver ri de options.

6.3.2.2 [Apache: : OR LI M T|

The directive can appear within directory sections, but not outside them. It is also alowed within .htaccess
files, provided that Al | owOverri de Limt issetforthecurrent directory.

6.3.2.3 |[Apache: : OR_OPTI ONY

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
Al l owOverri de Opti ons issetfor the current directory.

6.3.2.4 [Apache: : OR FI LEI NFQ

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
Al l owOverride Fil el nfoissetforthe current directory.

6.3.2.5 [Apache: : OR AUTHCFQ

The directive can appear within directory sections, but not outside them. It is also alowed within .htaccess
files, provided that Al | owOverri de Aut hConfi g isset for the current directory.

6.3.2.6 |[Apache: : OR | NDEXESY

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
Al'l owOverri de | ndexes isset for the current directory.

6.3.2.7 |Apache: : OR UNSET]

META: details? "unset adirective (in Allow)"

6.3.2.8 [Apache: : ACCESS CONF|

The directive can appear within directory sections. The directive is not allowed in .htaccessfiles.

29 Jan 2004 75

6.3.3 Directive Callback Subroutine

6.3.2.9 |[Apache: : RSRC_CONH

The directive can appear in httpd.conf outside a directory section (<Di r ect ory>, <Locati on> or
<Fi | es>; also <Fi | esMat ch> and kin). The directiveis not allowed in .htaccess files.

6.3.2.10 |[Apache: : OR_EXEC _ON_READ

Force directive to execute a command which would modify the configuration (like including another file,
or | FModul e).

Normally, Apache first parses the configuration tree and then executes the directives it has encountered
(e.g., Set Env). But there are directives that must be executed during the initial parsing, either because
they affect the configuration tree (e.g., | ncl ude may load extra configuration) or because they tell
Apache about new directives (e.g., | f Modul e or Per | LoadMbdul e, may load a module, which installs
handlers for new directives). These directives must have the Apache: : OR_EXEC_ON_READ turned on.

6.3.2.11 |[Apache: : OR ALL|

The directive can appear anywhere. It isnot limited in any way.

6.3.3 [Directive Callback Subrouting

Depending on the value of thefargs_how attribute the callback subroutine, specified with theffund attribute,
will be called with two or more arguments. The first two arguments are always $sel f and $par nms. A
typical callback function which expects asingle value (Apache: : TAKEL) might look like the following:

sub MyParam {
my($sel f, $parms, $arg) = @;
$sel f->{MyParant = $arg;

}

In this function we store the passed single value in the configuration object, using the directive’s name
(assuming that it was MyPar an) as the key.

Let’slook at the subroutine argumentsin detail:
1. $sel f isthe current container’s configuration object.

This configuration object is a reference to a hash, in which you can store arbitrary key/value pairs.
When the directive callback function is invoked it may aready include several key/value pairs
inserted by other directive callbacks or during the[SERVER_CREATH and[DI R_CREATH functions,
which will be explained later.

Usually the calback function stores the passed argument(s), which later will be read by
[SERVER MERGHand|DI R_NMERGH, which will be explained later, and of course at request time.

76 29 Jan 2004

Apache Server Configuration Customization in Perl 6.3.4 Directive Syntax Definition Constants

The convention is use the name of the directive as the hash key, where the received values are stored.
The value can be asimple scalar, or areference to a more complex structure. So for example you can
store areference to an array, if there is more than one value to store.

This object can be later retrieved at request time via:
ny $dir_cfg = $sel f->get_config($s, $r->per_dir_config);
Y ou can retrieve the server configuration object via:
ny $srv_cfg = $sel f->get config($s);
if invoked inside the virtual host, the virtual host’s configuration object will be returned.

2. $par ns isan Apache: : CndPar ns object from which you can retrieve various other information
about the configuration. For example to retrieve the server object:

ny $s = $parns->server;
See Apache: : CndPar ns for more information.

3. The rest of the arguments whose number depends on thefargs how s value are covered in

6.3.4 [Directive Syntax Definition Constantg

The following values of thefargs_how attribute define how many arguments and what kind of arguments
directives can accept. These values are constants that can be imported from the Apache: : Const
package. For example:

use Apache:: Const -conpile => gwm TAKELl TAKE23);

6.3.4.1 [Apache: : NO ARGS

The directive takes no arguments. The callback will be invoked once each time the directive is encoun-
tered. For example:

sub MyParaneter {
ny($sel f, $parns) = @;
$sel f - >{ MyPar anet er } ++;

}
6.3.4.2 |[Apache: : TAKE]]

The directive takes a single argument. The callback will be invoked once each time the directive is
encountered, and its argument will be passed as the third argument. For example:

sub MyParaneter {
ny($sel f, $parns, $arg) = @;
$sel f->{MWyParaneter} = $arg;
}

29 Jan 2004 7

6.3.4 Directive Syntax Definition Constants

6.3.4.3 [Apache: : TAKEZ|

The directive takes two arguments. They are passed to the callback as the third and fourth arguments. For
example:

sub MyParaneter {
ny($sel f, $parns, $argl, $arg2) = @;
$sel f->{MyParaneter} = {$argl => $arg2};
}

6.3.4.4 [Apache: : TAKES|

This is like [Apache: : TAKE]L] and [Apache: : TAKE2} but the directive takes three mandatory argu-
ments. For example:

sub MyParaneter {
ny($sel f, $parms, @rgs) = @;
$sel f->{MyParaneter} =\ @rgs;

}
6.3.4.5 [Apache: : TAKE12|

This directive takes one mandatory argument, and a second optional one. This can be used when the
second argument has a default value that the user may want to override. For example:

sub MyParaneter {

ny($sel f, $parns, $argl, $arg2) = @;

$sel f->{MyParaneter} = {$argl => $arg2|| default’};
}

6.3.4.6 [Apache: : TAKE23|

[Apache: : TAKE23|isjust like]Apache: : TAKE12] except now there are two mandatory arguments and
an optional third one.

6.3.4.7 [Apache: : TAKE123]

In the Apache: : TAKEL123 variant, the first argument is mandatory and the other two are optional. This
isuseful for providing defaults for two arguments.

6.3.4.8 |[Apache: : | TERATH

Apache: : | TERATE is used when a directive can take an unlimited number of arguments. The callback
is invoked repeatedly with a single argument, once for each argument in the list. It's done this way for
interoperability with the C API, which doesn’'t have the flexible argument passing that Perl provides. For
example:

sub MyParaneter {

ny($sel f, $parns, $args) = @;

push @ $sel f->{M/Paraneter} }, $arg;
}

78 29 Jan 2004

Apache Server Configuration Customization in Perl 6.3.4 Directive Syntax Definition Constants

6.3.4.9 [Apache: : | TERATE?|

Apache: : | TERATEZ is used for directives that take a mandatory first argument followed by a list of
argumentsto be applied to the first. A familiar example isthe Add Ty pe directive, in which a series of file
extensions are applied to asingle MIME type:

AddType image/jpeg JPG JPEG JFIF jfif

Apache will invoke your callback once for each item in the list. Each time Apache runs your callback, it
passes the routine the constant first argument ("image/jpeg” in the example above), and the current item in
the list ("JPG" the first time around, "JPEG" the second time, and so on). In the example above, the
configuration processing routine will be run atotal of four times.

For example:

sub MyParameter {

my($sel f, $parnms, $key, $val) = @;

push @ $sel f->{MParaneter}{$key} }, $val;
}

6.3.4.10 [Apache: : RAW ARGS

An of Apache: : RAW ARGS instructs Apache to turn off parsing altogether. Instead it simply
passes your callback function the line of text following the directive. Leading and trailing whitespace is
stripped from the text, but it is not otherwise processed. Y our callback can then do whatever processing it
wishes to perform.

This callback receives three arguments (similar to [Apache: : TAKEL), the third of which is a
string-valued scalar containing the text following the directive.

sub MyParaneter {
ny($sel f, $parms, $val) = @;
process $val

}

If this mode is used to implement a custom "container" directive, the attribute|req_overridg needs to OR
[Apache: : OR_ EXEC ON READ eg.

req_override => Apache:: OR_ALL | Apache:: OR_EXEC _ON READ,

META: complete the details, which are new to 2.0.

There is one other trick to making configuration containers work. In order to be recognized as a valid
directive, the [namdg attribute must contain the leading <. This token will be stripped by the code that
handles the custom directive callbacks to Apache. For example:

nane => ' <MyCont ai ner’,

29 Jan 2004 79

6.3.5 Enabling the New Configuration Directives

One other trick that is not required, but can provide some more user friendlinessis to provide a handler for
the container end token. In our example, the Apache configuration gears will never see the </ My Con-

t ai ner > token, as our |[Apache: : RAW ARGS handler will read in that line and stop reading when it is
seen. However in order to catch cases in which the </ MyCont ai ner > text appears without a preceding
<My Cont ai ner > opening section, we need to turn the end token into a directive that ssmply reports an
error and exits. For example:

{
nanme => ' </ MyCont ai ner >’ ,
func => PACKAGE__ . "::MContainer_ END',
errnsg => "end of MyContainer without beginning?,
ar gs_how => Apache: : NO_ARGS,
req_override => Apache:: OR_ALL,

}

ny $EndToken = "</ MyCont ai ner>";
sub MyCont ai ner _END {

di e "$EndToken outside a <MyContai ner> container\n";
}

Now, should the server administrator misplace the container end token, the server will not start, complain-
ing with this error message:

Syntax error on line 54 of httpd. conf:
</ MyCont ai ner> outsi de a <MyCont ai ner> cont ai ner

6.3.4.11 |Apache: : FLAG

When Apache: : FLAG is used, Apache will only allow the argument to be one of two values, On or
O f . Thisstring value will be converted into an integer, 1 if theflagisOn, 0 if itisOF f . If the configura
tion argument is anything other than On or OF f , Apache will complain:

Syntax error on line 73 of httpd. conf:
MyFl ag nust be On or Of

For example:

sub MyFl ag {
ny($sel f, $parns, $arg) = @;
$sel f->{MFlag} = $arg; # 1 or O

}

6.3.5 [Enabling the New Configuration Directives

As seen in the first example, the module needs to be loaded before the new directives can be used. A
special directive Per | LoadModul e isused for this purpose. For example:

Per| LoadModul e MyApache: : MyPar anet er s

80 29 Jan 2004

Apache Server Configuration Customization in Perl 6.3.6 Creating and Merging Configuration Objects

Thisdirectiveis similar to Per | Modul e, but it require()’ s the Perl module immediately, causing an early
mod_perl startup. After loading the module it let's Apache know of the new directives and installs the
callbacks to be called when the corresponding directives are encountered.

6.3.6 |Creating and Merging Configuration Objectg

By default mod_perl creates a ssmple hash to store each container’s configuration values, which are popu-
lated by directive callbacks, invoked when the httpd.conf and the .htaccess files are parsed and the corre-
sponding directive are encountered. It's possible to pre-populate the hash entries when the data structure is
created, e.g., to provide reasonable default values for cases where they weren’t set in the configuration
file. To accomplish that the optional [SERVER CREATHand|DI R _CREATH functions can be supplied.

When a request is mapped to a container, Apache checks if that container has any ancestor containers. If
that’s the case, it allows mod_perl to call special merging functions, which decide whether configurations
in the parent containers should be inherited, appended or overridden in the child container. The custom
configuration module can supply custom merging functions [SERVER_MERGH and [DI R_MERGE, which
can override the default behavior. If these functions are not supplied the following default behavior takes
place: The child container inherits its parent configuration, unless it specifies its own and then it overrides
its parent configuration.

6.3.6.1 [SERVER_CREATH

SERVER _CREATE is caled once for the main server, and once more for each virtual host defined in
httpd.conf. It's called with two arguments: $cl ass, the package name it was created in and $par ns the
aready familiar Apache: : CmdPar ns object. The object is expected to return a reference to a blessed
hash, which will be used by configuration directives callbacks to set the values assigned in the configura-
tion file. But it's possible to preset some values here:

For example, in the following example the object assigns a default value, which can be overridden during
merge if athe directive was used to assign a custom value:

package MyApache:: MyPar anet ers;

use Apache:: Mdule ();
use Apache:: CndParns ();
our @\PACHE_MODULE_COMMANDS = (...);

sub SERVER_CREATE {
ny($cl ass, $parns) = @;
return bl ess {
name => _ PACKAGE _,
}, $cl ass;

}
To retrieve that value later, you can use:
use Apache: : Mbdule ();

nmy $srv_cfg = Apache:: Modul e- >get _confi g(’ MyApache: : MyParaneters’, $s);
print $srv_cfg->{nane};

29 Jan 2004 81

6.3.6 Creating and Merging Configuration Objects

If arequest is made to a resource inside a virtual host, $srv_cf g will contain the object of the virtua
host’ s server. To reach the main server’s configuration object use:

use Apache:: Module ();
use Apache:: Server ();
use Apache::ServerUtil ();

if ($s->is_virtual) {
nmy $base_srv_cfg = Apache:: Modul e- >get _confi g(’ MyApache: : MyPar aneters’,
Apache- >server);
print $base_srv_cfg->{nane};

}

If the function SERVER _CREATE is not supplied by the module, a function that returns a blessed into the
current package reference to a hash is used.

6.3.6.2 [SERVER_MERGH

During the configuration parsing virtual hosts are given a chance to inherit the configuration from the
main host, append to or override it. The SERVER MERGE subroutine can be supplied to override the
default behavior, which smply overrides the main server’s configuration.

The custom subroutine accepts two arguments: $base, a blessed reference to the main server configura-
tion object, and $add, a blessed reference to a virtual host configuration object. It's expected to return a
blessed object after performing the merge of the two objects it has received. Here is the skeleton of a
merging function:

sub nerge {
ny($base, $add) = @;
my %wg = ();
code to nerge %base and %add
return bl ess \%mrg, ref($base);

}

The section[Merging at Work] provides an extensive example of a merging function.

6.3.6.3 DIl R_CREATH

Similarly to [SERVER_CREATH, this optional function, is used to create an object for the directory
resource. If the function is not supplied mod_perl will use an empty hash variable as an object.

Just like[SERVER CREATH, it’s called once for the main server and one more time for each virtual host.
In addition it'll be called once more for each resource (<Locat i on>, <Di r ect or y> and others). All
this happens during the startup. At request time it might be called for each parsed .htaccess file and for
each resource defined init.

The DI R_CREATE function’s skeleton isidentical to SERVER CREATE. Here is an example:
package MyApache: : MyPar anet er s;

use Apache: : Modul e ();
use Apache:: CmdParms ();

82 29 Jan 2004

Apache Server Configuration Customization in Perl 6.4 Examples

our @WPACHE_MODULE_COMMANDS = (...);

sub DI R_CREATE {
ny($cl ass, $parns) = @;
return bless {
foo => '"bar’,
}, $class;

}
Toretrieve that value later, you can use:
use Apache:: Mdule ();
my $dir_cfg = Apache:: Modul e- >get _confi g(’ MyApache: : MyPar anet er s’
$s, $r->per_dir_config);
print $dir_cfg->{foo};

The only difference in the retrieving the directory configuration object. Here the third argument
$r->per _dir_confi gtellsApache: : Modul e to get the directory configuration object.

6.3.6.4 D R_MVERGH

Similarly to[SERVER _MERGH DI R MERGE merges the ancestor and the current node’ s directory config-
uration objects. At the server startup DI R_MERGE is called once for each virtual host. At request time, the
merging of the objects of resources, their sub-resources and the virtual host/main server merge happens.
Apache caches the products of merges, so you may see certain merges happening only once.

The section[Merging Order Conseguenced discusses in detail the merging order.

The section[Merging at Work] provides an extensive example of a merging function.

6.4 |Examples

6.4.1 Merging at Work|

In the following example we are going to demonstrate in details how merging works, by showing various
merging techniques.

Here is an example Perl module, which, when loaded, installs four custom directives into Apache.
#file: MyApache/ Cust onDi recti ves. pm
package MyApache: : CustonDi rectives

use strict;
use warni ngs FATAL => "all’

use Apache:: CndParns ();

use Apache: : Mdule ();
use Apache:: ServerWil ();

29 Jan 2004 83

6.4.1 Merging at Work

use

our

sub
sub
sub
sub

sub
sub

sub

sub

sub

Apache: : Const -conpile => gwm OK);

@\PACHE_MODULE_COMVANDS = (
{ nane => "' MPlus },

{ nane => ' MlList’ },

{ nane => ' MyAppend’ 1},

{ name => ' MOverride' 1},

My Pl us { set_val (' M\yPl us’, @) }
MyAppend { set_val (' MyAppend’, @) }
MyOverride { set_val (' MWOverride’', @) }
MyLi st { push_val (" MyList’, @) }

DI R_MERGE { nerge(@) 1}
SERVER MERGE { nerge(@) }

set _val {
ny($key, $self, $parns, $arg) = @;
$sel f->{$key} = S$arg;
unl ess ($parns->path) {
ny $srv_cfg = Apache:: Modul e- >get _confi g($sel f,
$par ms- >server) ;
$srv_cfg->{$key} = $arg;

push_val {
ny(key, Sself, S$parns, $arg) = @;

push @ $sel f->{$key} }, $arg;
unl ess ($parns->path) {
ny $srv_cfg = Apache:: Modul e- >get _confi g($sel f,
$par ns- >server);
push @ $srv_cfg->{$key} }, $arg;

nmerge {
nmy($base, $add) = @;

ny %wg = ();
for nmy $key (keys % bbase, %add) ({
next if exists $nrg{$key};
if ($key eq 'WMyPlus’) {
$nr g{ $key} = ($base->{$key}||0) + ($add->{$key}|]|0);
}

elsif ($key eq "'MyList’) {
push @ $nvg{s$key} },
@ $base->{$key}||[] }, @ S$add->{S$key}||[] };

}
el sif ($key eq ' MyAppend’) {
$nmrg{ $key} = join " ", grep defined, $base->{$key},
$add- >{ $key};
}
el se {

override node

29 Jan 2004

Apache Server Configuration Customization in Perl 6.4.1 Merging at Work

$nr g{ $key} = $base->{$key} if exists $base->{$key};
$nr g{ $key} = $add->{$key} if exists $add->{$key};
}
}
return bl ess \%mrg, ref($base);
}
1;
END

It's probably a good ideato specify al the attributes for the GAPACHE_MODULE _COVIVANDS entries, but
here for simplicity we have only assigned to the[namg directive, which is a must. Since all our directives
take a single argument, [Apache: : TAKEL] the default fargs how}, is what we need. We also allow the

directives to appear anywhere, so [Apache: : OR_ALL] the default for [req_overridg is good for us as
well.

We use the same callback for the directives MyPl us, MyAppend and MyOverri de, which simply
assigns the specified value to the hash entry with the key of the same name as the directive.

The MyLi st directive's callback stores the value in the list, a reference to which is stored in the hash,
again using the name of the directive as the key. This approach is usually used when the directive is of
type [Apache: : | TERATH, so you may have more than one value of the same kind inside a single
container. But in our example we choose to have it of the type[Apache: : TAKEL]

In both callbacks in addition to storing the value in the current directory configuration, if the value is
configured in the main server or the virtual host (which is when $par ns- >pat h isfase), we also store
the data in the same way in the server configuration object. This is done in order to be able to query the
values assigned at the server and virtual host levels, when the request is made to one of the sub-resources.
We will show how to access that information in a moment.

Finally we use the same merge function for merging directory and server configuration objects. For the
key MyPl us (remember we have used the same key name as the name of the directive), the merging func-
tion performs, the obvious, summation of the ancestor’s merged value (base) and the current resource’s
value (add). MyAppend joins the values into a string, MyLi st joins the lists and finally MyOverri de
(the default) overrides the value with the current one if any. Notice that all four merging methods take into
account that the values in the ancestor or the current configuration object might be unset, which is the case
when the directive wasn't used by all ancestors or for the current resource.

At the end of the merging, a blessed reference to the merged hash is returned. The referenceis blessed into
the same class, as the base or the add objects, which is MyApache: : Cust onDi recti ves in our
example. That hash is used as the merged ancestor’ s object for a sub-resource of the resource that has just
undergone merging.

Next we supply the following httpd.conf configuration section, so we can demonstrate the features of this
example:

29 Jan 2004 85

6.4.1 Merging at Work

Per | LoadMbdul e MyApache: : Cust onDi recti ves
MyPlus 5

MyLi st "Mai nServer"

MyAppend " Mai nServer"

MyQverride "MainServer"

Li sten 8081

<Virtual Host _default_:8081>
MyPl us 2
MyLi st "VHost "

M/Append "VHost"
MyQverride "VHost"
<Location /customdirectives_test>

MyPl us 3
MyLi st "Dir"
MyAppend "Dir"

MyQverride "Dir"
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Cust onDi recti vesTest
</ Locati on>
<Location /customdirectives_test/subdir>
M/Plus 1
MyLi st "SubDir"
MyAppend " SubDir"
MyQverride "SubDir"
</ Locati on>
</ Vi r t ual Host >
<Location /customdirectives_test>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Cust onDi recti vesTest
</ Locati on>

Per | LoadMbdul e loads the Perl module MyApache: : Cust onDi r ect i ves and then installs a new
Apache module named MyApache: : Cust onDi r ecti ves, using the callbacks provided by the Perl
module. In our example functions SERVER CREATE and DI R_CREATE aren’t provided, so by default an
empty hash will be created to represent the configuration object for the merging functions. If we don't
provide merging functions, Apache will simply skip the merging. Though you must provide a callback
function for each directive you add.

After installing the new module, we add a virtual host container, containing two resources (which at other
times called locations, directories, sections, etc.), one being a sub-resource of the other, plus one another
resource which resides in the main server.

We assign different values in al four containers, but the last one. Here we refer to the four containers as
MainServer, VHost, Dir and SQubDir, and use these names as values for all configuration directives, but
My Pl us, to make it easier understand the outcome of various merging methods and the merging order. In
the last container used by <Locati on /custom directives_t est >, wedon't specify any direc-
tives so we can verify that al the values are inherited from the main server.

For al three resources we are going to use the same response handler, which will dump the values of
configuration objects that in its reach. As we will see that different resources will see see certain things
identically, while others differently. So here it the handler:

86 29 Jan 2004

Apache Server Configuration Customization in Perl

#file: MyApache/ CustonDi recti vesTest. pm

package MyApache: : CustonDirectivesTest;

use strict;
use warni ngs FATAL => "al |’
use Apache:: Request Rec ();
use Apache: : Request| O ();
use Apache:: Server ()
use Apache:: ServerUtil ()
use Apache: : Modul e ()
use Apache:: Const -conpile => gw CK)
sub get_config {
Apache: : Mbdul e- >get _confi g(’ MyApache: : Cust onDirecti ves’
}
sub handl er {
ny($r) = @;
nmy %ecs = ();

$r->content _type('text/plain');

ny $s = $r->server;
ny $dir_cfg get _confi g($s,
ny $srv_cfg get _config($s);

if ($s->is_virtual) {

6.4.1 Merging at Work

@);

$r->per_dir_config);

$secs{"1: Main Server"} = get_config(Apache->server)
$secs{"2: Virtual Host"} = $srv_cfg;
$secs{"3: Location"} = $dir_cfg;

}

el se {
$secs{"1: Main Server"} = $srv_cfg
$secs{"2: Location"} = $dir_cfg;

}

$r->printf("Processing by %.\n"
$s->is_virtual ? "virtua

for my $sec (sort keys Usecs) {
$r->print("\nSection $sec\n")

host "

"mai n server");

for my $k (sort keys % $secs{$sec}||{} }) {

ny $v = exists $secs{$sec}-
? $secs{$sec}- >{ $k}
: " UNSET

$v =" . (join", ", map
if ref($v) eq ' ARRAY';

$r->printf("%10s : 9%\n",

}

return Apache:: K

29 Jan 2004

>{ $k}

{ag{"$_"}} @v) . "I’
$k, $v);

87

6.4.1 Merging at Work

}

1;
END__

The handler isrelatively simple. It retrieves the current resource (directory) and the server’s configuration
objects. If the server is a virtual hogt, it also retrieves the main server’s configuration object. Once these
objects are retrieved, we simply dump the contents of these objects, so we can verify that our merging
worked correctly. Of course we nicely format the data that we print, taking a specia care of array refer-
ences, which we know is the case with the key MyList, but we use a generic code, since Perl tells us when
areferenceisalist.

It'sashow time. First we issue arequest to aresource residing in the main server:
% GET http://1ocal host: 8002/ customdirectives_test/
Processing by nain server.

Section 1: Miin Server

My Append : Mai nServer
MyLi st © ["MainServer"]
MyQverride : MainServer
MyPl us 5

Section 2: Location

My Append : Mai nServer
MyLi st © ["MainServer"]
MyQverride : MainServer
My Pl us 5

Since we didn’'t have any directives in that resource’s configuration, we confirm that our merge worked
correctly and the directory configuration object contains the same data as its ancestor, the main server. In
this case the merge has simply inherited the values from its ancestor.

The next request is for the resource residing in the virtual host:
% GET http://1ocal host: 8081/ customdirectives_test/
Processing by virtual host.

Section 1. Miin Server

MyAppend : Mai nServer

MyLi st : ["MainServer"]
MyQverride : MinServer

My Pl us . 5

Section 2: Virtual Host

MyAppend : MainServer VHost

MyLi st : ["MainServer", "VHost"]
MyQverride : VHost

My Pl us 7

Section 3: Location

88 29 Jan 2004

Apache Server Configuration Customization in Perl 6.4.1 Merging at Work

MyAppend : MainServer VHost Dir

MyLi st : ["MainServer", "VHost", "Dir"]
MyQverride : Dir

My Pl us . 10

That's where the real fun starts. We can see that the merge worked correctly in the virtual host, and so it
did inside the <Locat i on> resource. It's easy to see that MyAppend and MyLi st are correct, the same
for MyOverri de. For MyPl us, we have to work harder and perform some math. Inside the virtual host
we have main(5)+vhost(2)=7, and inside the first resource vhost_merged(7)+resource(3)=10.

So far so good, the last request is made to the sub-resource of the resource we have requested previoudly:
% GET http://1ocal host: 8081/ customdirectives_test/subdir/
Processing by virtual host.

Section 1: Miin Server

My Append : Mai nServer

MyLi st © ["MainServer"]

MyQverride : MinServer

MyPl us 5

Section 2: Virtual Host

My Append : Mai nServer VHost

MyLi st © ["MainServer", "VHost"]
MyQverride : VHost

M/PI us 7

Section 3: Location

My Append : MainServer VHost Dir SubDir
MyLi st : ["MainServer", "VHost", "Dir", "SubDr"]
MyCverride : SubDr

M/PI us D11

No surprises here. By comparing the configuration sections and the outcome, it’s clear that the merging is
correct for most directives. The only harder verification isfor MyPI us, all we need to doisto add 1 to 10,
which was the result we saw in the previous request, or to do it from scratch, summing up all the ancestors
of this sub-resource: 5+2+3+1=11.

6.4.1.1 [Merging Entries Whose Values Are Refer enceg

When merging entries whose values are references and not scalars, it’'s important to make a deep copy and
not a shallow copy, when the references gets copied. In our example we merged two references to lists, by
explicitly extracting the values of each list:

push @ $nvg{s$key} },
@ $base->{S$key}||[] }, @ S$add->{$key}||[] };

While seemingly the following snippet is doing the same:

29 Jan 2004 89

6.4.1 Merging at Work

$nr g{ $key} = $base- >{ $key};
push @ $nrg{$key} }, @ $add->{$key}||[] };

it won't do what you expect if the same merge (with the same $base and $add arguments) is called
more than once, which is the case in certain cases. What happens in the latter implementation, is that the
first line makes both $nr g{ $key} and $base- >{ $key} point to the same reference. When the second
line expands the @ $nr g{ $key} 1}, it dso affects @ $base->{$key} }. Therefore when the
same mergeis called second time, the $base argument is not the same anymore.

Certainly we could workaround this prablem in the mod_perl core, by freezing the arguments before the
merge call and restoring them afterwards, but this will incur a performance hit. One simply has to remem-
ber that the arguments and the references they point to, should stay unmodified through the function call,
and then the right code can be supplied.

6.4.1.2 [Merging Order Consequenceq

Sometimes the merging logic can be influenced by the order of merging. It's desirable that the logic will
work properly regardless of the merging order.

In Apache 1.3 the merging was happening in the following order:
(((base_srv -> vhost) -> section) -> subsection)
Whereas as of thiswriting Apache 2.0 performs:
((base_srv -> vhost) -> (section -> subsection))

A product of subsections merge (which happen during the request) is merged with the product of the
server and virtual host merge (which happens at the startup time). This change was done to improve the
configuration merging performance.

So for example, if you implement a directive MyExp which performs the exponential:
$nT g=$base** $add, and let’s say there directiveis used four times in httpd.conf:

WExp 5

<Virtual Host _default :8001>
WExp 4
<Location /section>

M/Exp 3

</ Locati on>

<Location /section/subsecti on>
MExp 2

</ Locati on>

The merged configuration for a request |http: //|ocal host: 8001/section/subsection|will see:

(5 ** 4) ** (3 ** 2) = 1.45519152283669e+25

under Apache 2.0, whereas under Apache 1.3 the result would be:

90 29 Jan 2004

http://localhost:8001/section/subsection

Apache Server Configuration Customization in Perl 6.5 Maintainers

((5 ** 4) ** 3) ** 2 = 5 06046447753906e+16

which is not quite the same.

Chances are that your merging rules work identically, regardless of the merging order. But you should be
aware of this behavior.

6.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

6.6 |JAuthorg

® Stas Bekman <stas (at) stason.org>

Only the magjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 91

7 Writing mod_perl Handlers and Scripts

7 Writing mod_perl Handlersand Scripts

92 29 Jan 2004

Writing mod_perl Handlers and Scripts 7.1 Description

7.1 |Description|

This chapter covers the mod_perl coding specifics, different from normal Perl coding. Most other perl
coding issues are covered in the perl manpages and rich literature.

7.2 |Prerequisites

7.3 Wherethe Methods Live

mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the modules
containing them have to be loaded first. If you don’t do that mod_perl will complain that it can't find the
methods in question. The module ModPer | : : Met hodLookup can be used to find out which modules
need to be used.

7.4 Method Handler g

In mod_perl 2.0 method handlers are declared using the met hod attribute:

package Bird
@SA = qw(Eagl e);

sub handl er : method {
my($class, $r) = @;

}

See the attributes manpage.
If d ass- >net hod syntax isused for aPer | * Handl er, the: net hod attribute is not required.

META: need to port the method handlers document from mpl guide, may be keep it as a separate docu-
ment. Meanwhile refer to that document, though|replace the $$ prototype with the : et hod attribute|

7.5 |Goodies Toolkit
7.5.1 [Environment Variableg

mod_perl sets the following environment variables:

e $ENV{ MOD_PERL} - issettothe mod_perl version the server isrunning under. e.g.:

nmod_perl/1.99_03-dev

If SENV{ MOD_PERL} doesn't exist, most likely you are not running under mod_perl.

29 Jan 2004 93

7.5.2 Threaded MPM or not?

die "l refuse to work w thout nod_perl!" unless exists $ENV{MOD PERL};

However to check which version is used it’ s better to use the following technique:

use nod_perl;
use constant MP2 => ($nod_perl::VERSION >= 1.99);
die "I want nod_perl 2.0!" unless MP2;

o SENV{ GATEWAY | NTERFACE} - issetto CA - Perl/ 1. 1 for compatibility with mod_perl 1.0.
Thisvariable is deprecated in mod_perl 2.0. Use SENV{ MOD_PERL} instead.

mod_per| passes (exports) the following shell environment variables (if they are set) :
® PATH - Executables search path.
® TZ-TimeZone.

Any of these environment variables can be accessed via YENV.

7.5.2 [Threaded MPM or not?

If the code needs to behave differently depending on whether it's running under one of the threaded
MPMSs, or not, the class method Apache: : MPM >i s_t hr eaded can be used. For example:

use Apache:: MPM ();
if (Apache:: MPM >i s_t hreaded) {
require APR : CS;
ny $tid = APR :CS::thread_current();
print “current thread id: $tid (pid: 3)";

}
el se {

print "current process id: 3";
}

This code prints the current thread id if running under a threaded MPM, otherwise it prints the processid.

7.5.3 Writing MPM-specific Codg

If you write a CPAN module it's a bad idea to write code that won't run under all MPMs, and developers
should strive to write a code that works with all mpms. However it's perfectly fine to perform different
things under different mpms.

If you don’t develop CPAN modules, it's perfectly fine to develop your project to be run under a specific
MPM.

use Apache:: MPM ();
ny $nmpm = | ¢ Apache: : MPM >show,
if ($npmeq "prefork’) {

prefork-specific code

}
elsif ($mpmeq "worker’) {
wor ker-specific code

94 29 Jan 2004

Writing mod_perl Handlers and Scripts 7.6 Code Developing Nuances

}

elsif ($mpmeqg "winnt’) {
wi nnt - speci fic code

}

el se {
others...
}

7.6 |Code Developing Nuanceg

7.6.1 |Auto-Reloading Modified Modules with Apache::Reload

META: need to port Apache::Reload notes from the guide here. but the gist is:

Per | Modul e Apache: : Rel oad

Per || ni t Handl er Apache: : Rel oad

#Per | PreConnect i onHandl er Apache: : Rel oad

Per| Set Var Rel oadAl |l O f

Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"

Use:

Per | I ni t Handl er Apache: : Rel oad

if you need to debug HTTP protocol handlers. Use:

Per | PreConnecti onHandl er Apache: : Rel oad
for any handlers.

Though notice that we have started to practice the following style in our modules:
package Apache:: \Whatever;

use strict;
use warni ngs FATAL => "all’

FATAL => ’"al |’ escalatesall warningsinto fatal errors. So when Apache: : What ever ismodified
and reloaded by Apache: : Rel oad the request is aborted. Thereforeif you follow this very healthy style
and want to use Apache: : Rel oad, flex the strictness by changing it to:

use warni ngs FATAL => "all’
no war ni ngs ’'redefine’;

but you probably still want to get the redefine warnings, but downgrade them to be non-fatal. The follow-
ing will do the trick:

use warni ngs FATAL => ’all’

no warni ngs ’'redefine’;
use warni ngs ’'redefine’

29 Jan 2004 95

7.7 Integration with Apache |ssues

Perl 5.8.0 allows to do all thisin oneline:

use warni ngs FATAL => "all’, NONFATAL => ’'redefine’;

but if your code may be used with older perl versions, you probably don’'t want to use this new functional-
ity.

Refer to the perllexwarn manpage for more information.

7.7 |Integration with Apache | ssues

In the following sections we discuss the specifics of Apache behavior relevant to mod_perl developers.

7.7.1 [Sending HTTP Response Headerg

Apache 2.0 doesn’t provide a method to force HTTP response headers sending (what used to be done by
send_ht t p_header () in Apache 1.3). HTTP response headers are sent as soon as the first bits of the
response body are seen by the special core output filter that generates these headers. When the response
handler send the first chunks of body it may be cached by the mod_perl internal buffer or even by some of
the output filters. The response handler needs to flush in order to tell al the components participating in
the sending of the response to pass the data out.

For example if the handler needs to perform a relatively long-running operation (e.g. a slow db lookup)
and the client may timeout if it receives nothing right away, you may want to start the handler by setting
the Content-Type header, following by an immediate flush:

sub handl er {
ny $r = shift;
$r->content _type('text/htm’);
$r->rflush; # send the headers out

$r->print(long_operation());
return Apache: : CK;
}

If this doesn't work, check whether you have configured any third-party output filters for the resource in
guestion. Improperly written filter may ignore the orders to flush the data.

META: add alink to the notes on how to write well-behaved filters at handlers/filters

7.7.2 [Sending HT TP Response Body

In mod_perl 2.0 a response body can be sent only during the response phase. Any attempts to do that in
the earlier phases will fail with an appropriate explanation logged into the error_log file.

This happens due to the Apache 2.0 HTTP architecture specifics. One of the issues is that the HTTP
response filters are not setup before the response phase.

96 29 Jan 2004

Writing mod_perl Handlers and Scripts 7.8 Perl Specificsin the mod_perl Environment

7.8 |Perl Specificsin the mod perl Environment

In the following sections we discuss the specifics of Perl behavior under mod_perl.

7.8.1 [Request-localized Globalg

mod_perl 2.0 provides two types of Set Handl er handlers: [nodper | Jand[per | - scri pt| Remember
that the Set Handl er directive is only relevant for the response phase handlers, it neither needed nor
affects non-response phases.

Under the handler:

Set Handl er perl-script

several specia global Perl variables are saved before the handler is called and restored afterwards. This
includes: YENV, @ NC, $/ , STDOUT’s$| and END blocks array (PL_endav).

Under:
Set Handl er nodper |

nothing is restored, so you should be especialy careful to remember localize all specia Perl variables so
the local changes won't affect other handlers.

78.2

In the normal Perl code exit() is used to stop the program flow and exit the Perl interpreter. However
under mod_perl we only want the stop the program flow without killing the Perl interpreter.

Y ou should take no action if your code includes exit() calls and it's OK to continue using them. mod_perl
worries to override the exit() function with its own version which stops the program flow, and performs all
the necessary cleanups, but doesn’t kill the server. Thisis done by overriding:

*CORE: : GLOBAL: :exit = \&WdPer!|::Uil::exit;
so if you mess up with * CORE: : GLOBAL: : exi t yourself you better know what you are doing.

You can till call CORE: : exi t tokill the interpreter, again if you know what you are doing.

7.9 [Threads Coding I ssues Under mod per|

The following sections discuss threading issues when running mod_per| under athreaded MPM.

29 Jan 2004 97

7.9.1 Thread-environment |ssues

7.9.1 [Thread-environment | ssueg

The "only" thing you have to worry about your code is that it’s thread-safe and that you don't use func-
tions that affect all threads in the same process.

Perl 5.8.0 itself is thread-safe. That means that operations like push() , map(), chonmp(), =,/ , +=, etc.
are thread-safe. Operations that involve system calls, may or may not be thread-safe. It al depends on
whether the underlying C libraries used by the perl functions are thread-safe.

For example the function | ocal t i nme() isnot thread-safe when the implementation of ascti me(3) is
not thread-safe. Other usually problematic functionsincluder eaddi r (), srand(), etc.

Another important issue that shouldn’t be missed is what some people refer to as thread-locality. Certain
functions executed in a single thread affect the whole process and therefore all other threads running
inside that process. For example if you chdi r () in one thread, al other thread now see the current
working directory of that thread that chdi r () "ed to that directory. Other functions with similar effects
include umask(), chr oot (), etc. Currently there is no cure for this problem. You have to find these
functionsin your code and replace them with alternative solutions which don’t incur this problem.

For more information refer to the perlthrtut (http://perldoc.comyper|5.8.0/pod/perIthrtut.html) manpage.

7.9.2 [Deploying Threadg

This is actually quite unrelated to mod_perl 2.0. You don’'t have to know much about Perl threads, other
than [Thread-environment Issueq, to have your code properly work under threaded MPM mod_perl.

If you want to spawn your own threads, first of all study how the new ithreads Perl model works, by
reading the perlthrtut, threads (http://search.cpan.org/search?query=threads) and threads::shared
(nttp: //sear ch.cpan.or g/sear ch?quer y=threads%3A%3Ashared) manpages.

Artur Bergman wrote an article which explains how to port pure Perl modules to work properly with Perl
ithreads. Issues with chdir () and other functions that rely on shared process datastructures are
discussed. |http: //www.per|.conVlpt/a/2002/06/11/thr eads.htmi]

7.9.3 [Shared Variableg

Global variables are only global to the interpreter in which they are created. Other interpreters from other
threads can’t access that variable. Though it’s possible to make existing variables shared between severa
threads running in the same process by using the function t hr eads: : shar ed: : share() . New vari-
ables can be shared by using the shared attribute when creating them. This feature is documented in the
threads: : shared (http://search.cpan.or g/sear ch?query=threads%3A%3Ashared) manpage.

98 29 Jan 2004

http://perldoc.com/perl5.8.0/pod/perlthrtut.html
http://search.cpan.org/search?query=threads
http://search.cpan.org/search?query=threads%3A%3Ashared
http://www.perl.com/lpt/a/2002/06/11/threads.html
http://search.cpan.org/search?query=threads%3A%3Ashared

Writing mod_perl Handlers and Scripts 7.10 Maintainers

7.10 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

7.11 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 99

8 Cooking Recipes

8 Cooking Recipes

100 29 Jan 2004

Cooking Recipes 8.1 Description

8.1 |Description|

Asthe chapter’ stitle implies, here you will find ready-to-go mod_perl 2.0 recipes.

If you know a useful recipe, not yet listed here, please post it to the mod_perl mailing list and we will add
it here.

8.2 |Sending Cookiesin REDIRECT Response
(ModPerl::Registry)|
use Cd:: Cookie ();

use Apache:: RequestRec ();
use APR : Table ();

use Apache:: Const -conpile => gw REDI RECT);
ny $location = "http://exanple.conifinal _destination/";

sub handl er {
ny $r = shift;

nmy $cooki e = CA:: Cooki e->new(-name => 'nod_perl’,
-val ue => ’"awesone’);

$r - >err_header s_out - >add(’ Set - Cooki e’ => $cooki e);
$r - >header s_out - >set (Locati on => $l ocation);
$r - >st at us(Apache: : REDI RECT) ;

return Apache: : REDlI RECT;

=

8.3 |Sending Cookiesin REDIRECT Response (handlers)

use Cd:: Cookie ();
use Apache:: RequestRec ();
use APR : Table ();

use Apache:: Const -conpile => gw REDI RECT);
my $location = "http://exanple.con final _destination/";

sub handl er {
ny $r = shift;

nmy $cooki e = CA :: Cooki e->new(-name => 'nod_perl’,
-val ue => "awesone’);

$r->err_header s_out - >add(’ Set - Cooki e’ => $cooki e);
$r - >header s_out - >set (Locati on => $l ocation);

29 Jan 2004 101

8.4 Maintainers

return Apache: : REDI RECT;
}
1;

note that this example differs from the Registry example only in that it does not attempt to fiddle with
$r->status() - ModPer | :: Regi stry uses $r - >st at us() asahack, but handlers should never
manipulate the status field in the request record.

8.4 Maintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

8.5 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

102 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9 Porting Apache:: Perl Modules from mod_perl 1.0to 2.0

9 Porting Apache:: Perl Modulesfrom mod_perl 1.0
to 2.0

29 Jan 2004 103

9.1 Description

9.1 |Description|

This document describes the various options for porting amod_perl 1.0 Apache module so that it runson a
Apache 2.0/ mod_perl 2.0 server. It’'s also helpful to those who start developing mod_perl 2.0 handlers.

Developers who need to port modules using XS code, should aso read about porting Apache:: XS
modules.

Thereis also: Porting CPAN modules to mod_perl 2.0 Status.

9.2 [Introduction|

In the vast majority of cases, a perl Apache module that runs under mod_perl 1.0 will not run under
mod_perl 2.0 without at least some degree of modification.

Even a very simple module that does not in itself need any changes will at least need the mod_perl 2.0
Apache modules loaded, because in mod_perl 2.0 basic functionality, such as access to the request object
and returning an HTTP status, is not found where, or implemented how it used to bein mod_perl 1.0.

Most real-life modules will in fact need to deal with the following changes:
® methods that have moved to a different (new) package
® methods that must be called differently (due to changed prototypes)
® methods that have ceased to exist (functionality provided in some other way)

Do not be alarmed! One way to deal with al of these issuesisto load the Apache: : conpat compati-
bility layer bundled with mod_perl 2.0. This magic spell will make amost any 1.0 module run under 2.0
without further changes. It is by no means the solution for every case, however, so please read carefully
the following discussion of this and other options.

There are three basic options for porting. Let’ s take a quick look at each one and then discuss each in more
detail.

1. Runthemoduleon 2.0 under Apache: : conpat with no further changes

As we have said mod_perl 2.0 ships with a module, Apache: : conpat , that provides a complete
drop-in compatibility layer for 1.0 modules. Apache: : conpat does the following:

® [oadsall themod_perl 2.0 Apache:: modules
® Adjusts method calls where the prototype has changed

® Provides Perl implementation for methods that no longer exist in 2.0

104 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.3 Using Apache::porting

The drawback to using Apache: : conpat isthe performance hit, which can be significant.

Authors of CPAN and other publicly distributed modules should not use Apache: : conpat since
this forces its use in environments where the administrator may have chosen to optimize memory use
by making all code run natively under 2.0.

2. Modify themoduleto run only under 2.0

If you are not interested in providing backwards compatibility with mod_perl 1.0, or if you plan to
leave your 1.0 module in place and develop a new version compatible with 2.0, you will need to
make changes to your code. How significant or widespread the changes are depends largely of course
on your existing code.

Several sections of this document provide detailed information on how to rewrite your code for
mod_perl 2.0 Several tools are provided to help you, and it should be a relatively painless task and
one that you only have to do once.

3. Modify the module so that it runsunder both 1.0 and 2.0

Y ou need to do thisif you want to keep the same version number for your module, or if you distribute
your module on CPAN and want to maintain and release just one codebase.

Thisisarelatively simple enhancement of option (2) above. The module tests to see which version of
mod_perl isin use and then executes the appropriate method call.

The following sections provide more detailed information and instructions for each of these three porting
strategies.

9.3 [Using Apache: : porti ng

META: to be written. this is a new package which makes chunks of this doc simpler. for now see the
Apache: : por ti ng manpage.

9.4 Usingthe Apache: : conpat Layer

The Apache: : conpat module tries to hide the changes in API prototypes between version 1.0 and 2.0
of mod_perl, and implements "virtual methods" for the methods and functions that actually no longer
exist.

Apache: : conpat isextremely easy to use. Either add at the very beginning of startup.pl:

use Apache2;
use Apache: : conpat;

or add to httpd.conf:

29 Jan 2004 105

9.5 Porting a Perl Module to Run under mod_perl 2.0

Per | Modul e Apache2
Per | Modul e Apache: : conpat

That's al thereisto it. Now you can run your 1.0 module unchanged.

Remember, however, that using Apache: : conpat will make your module run slower. It can create a
larger memory footprint than you need and it implements functionality in pure Perl that is provided in
much faster XS in mod_perl 1.0 aswell asin 2.0. This module was really designed to assist in the transi-
tion from 1.0 to 2.0. Generally you will be better off if you port your code to use the mod_perl 2.0 API.

It's also especially important to repeat that CPAN nodul e devel opers are requested not
to use this nodule in their code, since thistakes the control over performance away from
users.

9.5 [Porting a Perl Moduleto Run under mod perl 2.0

Note: API changes are listed injthe mod_perl 1.0 backward compatibility document,

The following sections will guide you through the steps of porting your modulesto mod_perl 2.0.

9.5.1 [Using ModPer | : : Met hodLookup to Discover Which|
Imod perl 2.0 Modules Need to Be L oaded

It would certainly be nice to have our mod_perl 1.0 code run on the mod_perl 2.0 server unmodified. So
first of al, try your luck and test the code.

It's almost certain that your code won't work when you try, however, because mod_perl 2.0 splits func-
tionality across many more modules than version 1.0 did, and you have to load these modules before the
methods that live in them can be used. So the first step is to figure out which these modules are and
use() them.

The ModPer | : : Met hodLookup module provided with mod_perl 2.0 alows you to find out which
module contains the functionality you are looking for. Simply provide it with the name of the mod_perl
1.0 method that has moved to a new module, and it will tell you what the moduleis.

For example, let’s say we have amod_perl 1.0 code snippet:

$r->content _type('text/plain’);
$r->print("Hello cruel world!");

If we run this, mod_perl 2.0 will complain that the method cont ent _t ype() can’t be found. So we use
ModPer | : : Met hodLookup to figure out which module provides this method. We can just run this
from the command line:

% per| -MApache2 - MvbdPerl :: Met hodLookup -e print_method content_type

106 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.1 Using ModPerl::MethodL ookup to Discover Which mod_perl 2.0 Modules Need to Be L oaded

This prints:

to use nethod 'content_type' add:
use Apache:: RequestRec ();

We do what it says and add this use() statement to our code, restart our server (unless we're using
Apache: : Rel oad), and mod_perl will no longer complain about this particular method.

Since you may need to use this technique quite often you may want to defi ne an alias. Once
defined the last command line lookup can be accomplished with:

% | ookup content _type

ModPer | : : Met hodLookup aso provides helper functions for finding whi ch net hods are
defined in a given nodul e, or which nethods can be invoked on a given
obj ect .

9.5.1.1 [Handling M ethods Existing In M ore Than One Packagg

Some methods exists in several classes. For examplethisis the case with the pri nt () method. We know
the drill:

% | ookup print
This prints:

There is nore than one class with nethod ’print’
try one of:

use Apache:: Request!| O ();

use Apache::Filter ();

So there is more than one package that has this method. Since we know that we call thepri nt () method
with the $r object, it must be the Apache: : Request | Omodule that we are after. Indeed, loading this
modul e solves the problem.

9.5.1.2 [Using MbdPer | : : Met hodLookup Programmatically|

The issue of picking the right module, when more than one matches, can be resolved when using
ModPer | : : Met hodLookup programmatically -- | ookup_ret hod accepts an object as an optional
second argument, which is used if there is more than one module that contains the method in question.
ModPer | : : Met hodLookup knowsthat Apache: : Request | Oand and Apache: : Fi | t er expect
an object of type Apache: : Request Rec and type Apache: : Fi | t er respectively. So in a program
running under mod_perl we can call:

ModPer | : : Met hodLookup: : | ookup_net hod(’ print’, $r);

Now only one module will be matched.

29 Jan 2004 107

9.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions

This functionality can be used in AUTOLOAD, for example, although most users will not have a need for
this robust of solution.

9.5.1.3 [Pre-loading All mod perl 2.0 Moduled

Now if you use a wide range of methods and functions from the mod_perl 1.0 AP, the process of finding
all the modules that need to be loaded can be quite frustrating. In this case you may find the function
prel oad_al | _nodul es() to be the right tool for you. This function preloads all mod_perl 2.0
modules, implementing their APl in XS.

While useful for testing and development, it is not recommended to use this function in production
systems. Before going into production you should remove the call to this function and load only the
modules that are used, in order to save memory.

CPAN module developers should not be tempted to call this function from their modules, because it
prevents the user of their module from optimizing her system’s memory usage.

9.5.2 [Handling Missing and Modified mod perl 1.0 Methods and |

The mod_perl 2.0 APl is modeled even more closely upon the Apache API than was mod_perl version
1.0. Just as the Apache 2.0 API is substantially different from that of Apache 1.0, therefore, the mod_perl
2.0 AP is quite different from that of mod_perl 1.0. Unfortunately, this means that certain method calls
and functions that were present in mod_per| version 1.0 are missing or modified in mod_perl 2.0.

If mod_perl 2.0 tells you that some method is missing and it can’t be found using [ModPerl::Method
[Cookup, it's most likely because the method doesn't exist in the mod_perl 2.0 API. It's also possible that
the method does still exist, but nevertheless it doesn’t work, since its usage has changed (e.g. its prototype
has changed, or it requires different arguments, etc.).

In either of these cases, refer tojthe backwards compatibility document] for an exhaustive list of API calls
that have been modified or removed.

9.5.2.1 Methodsthat No L onger Exist|

Some methods that existed in mod_perl 1.0 simply do not exist anywhere in version 2.0 and you must
therefore call a different method o methods to get the functionality you want.

For example, suppose we have amod_perl 1.0 code snippet:
$r->l og_reason("Coul dn’t open the session file: $@);

If we try to run this under mod_perl 2.0 it will complain about the call tol og_r eason() . But when we
use ModPer | : : Met hodLookup to see which module to load in order to call that method, nothing is
found:

108 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.3 Requiring a specific mod_perl version.

% per| - MApache2 - MvbdPerl :: Met hodLookup -1e \
"print((MdPerl:: MethodLookup: : | ookup_net hod(shift))[0])" \
| og_reason

This prints:

don’t know anythi ng about nethod 'l og_reason’

Looks like we are calling a non-existent method! Our next step is to refer tothe backwards compatibility |
document} wherein we find that as we suspected, the method | og_r eason() no longer exists, and that
[instead we should use the other standard logging functiong provided by the Apache: : Log module.

9.5.2.2 [Methods Whose Usage Has Been M odified]

Some methods still exist, but their usage has been modified, and your code must call them in the new
fashion or it will generate an error. Most often the method call requires new or different arguments.

For example, say our mod_perl 1.0 code said:
$parsed_uri = Apache:: URI ->parse($r, $r->uri);

This code causes mod_perl 2.0 to complain first about not being able to load the method par se() viathe
package Apache::URI. We use the tools described above to discover that the package containing our
method has moved and change our code to load and use APR: : URI :

$parsed_uri = APR : UR - >parse($r, $r->uri);
But we still get an error. It' s alittle cryptic, but it gets the point across:

p is not of type APR :Pool at /path/to/QurMdule.pmline 9.

What thisistelling usis that the method par se requires an APR::Pool object asits first argument. (Some
methods whose usage has changed emit more helpful error messages prefixed with "Usage: ...") So we
change our code to:

$parsed_uri = APR : URI - >parse($r->pool, $r->uri);

and all iswell in the world again.

9.5.3 [Requiring a specific mod per| version.

To require amodule to run only under 2.0, simply add:

use Apache2;
use nod_perl 2.0;

META: Infact, before 2.0 is released you really have to say:

29 Jan 2004 109

9.5.4 Should the Module Name Be Changed?

use Apache2;
use nod_perl 1.99;

And you can even require a specific version (for example when a certain APl has been added only starting
from that version). For example to require version 1.99 08, you can say:

use nod_per!| 1.9908;

9.5.4 [Should the Module Name Be Changed?

If it is not possible to make your code run under both mod_perl versions (see below), you will have to
maintain two separate versions of your own code. While you can change the name of the module for the
new version, it's best to try to preserve the name and use some workarounds.

Let’s say that you have amodule Apache: : Fri endl y whose release version compliant with mod_perl
1.0 is 1.57. You keep this version on CPAN and release a new version, 2.01, which is compliant with
mod_perl 2.0 and preserves the name of the module. It's possible that a user may need to have both
versions of the module on the same machine. Since the two have the same name they obviously cannot
live under the same tree.

One attempt to solve this problem is to use Makefile.PL’s MP_I NST_APACHE2 option. If the module is
configured as:

% per| Makefile. PL MP_I NST_APACHE2=1
it'll beinstalled relative to the Apache2/ directory.

META: but of course this won't work in non-core mod_perl, since a generic Makef i | e. PL has no idea
what to do about MP_I NST_APACHE2=1. Need to provide copy-n-paste recipe for this. Or even add to
the core a supporting module that will handle this functionality.

The second step is to change the documentation of your 2.0 compliant module to instruct users to use
Apache2 () ; intheir code (or in startup.pl or via Per | Modul e Apache?2 in httpd.conf) before the
moduleis required. Thiswill cause @ NC to be modified to include the Apache2/ directory first.

The introduction of the Apache2/ directory is similar to how Perl installs its modules in a version specific
directory. For example:

lib/5.7.1
lib/5.7.2

9.5.5 [Using Apache: : conpat Asa Tutorial

Even if you have followed the recommendation and eschewed use of the Apache: : conpat module,
you may find it useful to learn how the API has been changed and how to modify your own code. Simply
look at the Apache: : conpat source code and see how the functionality should be implemented in
mod_perl 2.0.

110 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

For example, mod_perl 2.0 doesn't provide the Apache- >gensymmethod. As we can see if we look at
the Apache/ conpat . pmsource, the functionality is now available via the core Perl module Sy nbol
and its gensym() function. (Since mod _perl 2.0 works only with Perl versions 5.6 and higher, and
Synbol . pmis included in the core Perl distribution since version 5.6.0, there was no reason to keep
providing Apache- >gensym)

So if the original code looked like:

ny $fh = Apache->gensym
open $fh, $file or die "Can't open $file: $!";

in order to port it mod_perl 2.0 we can write:

ny $fh = Synbol :: gensym
open $fh, $file or die "Can't open $file: $!";

Or we can even skip loading Synbol . pm since under Perl version 5.6 and higher we can just do:

open ny $fh, $file or die "Can’t open $file: $!'";

9.5.6 [How Apache: : MP3 was Ported to mod perl 2.0

Apache: : MP3 is an elaborate application that uses a lot of mod_perl API. After porting it, | have real-
ized that if you go through the notes or even better try to do it by yourself, referring to the notes only when
in trouble, you will most likely be able to port any other mod_perl 1.0 module to run under mod_perl 2.0.
So here the log of what | have done while doing the porting.

Please naotice that this tutorial should be considered as-is and I'm not claiming that | have got everything
polished, so if you still find problems, that's absolutely OK. What's important is to try to learn from the
process, so you can attack other modules on your own.

I’ve started to work with Apache: : MP3 version 3.03 which you can retrieve from Lincoln’s CPAN
directory: |http://search.cpan.org/CPAN/authors/id/L/L D/L DS/Apache-MP3-3.03.tar.gZ Even though by
the time you'll read this there will be newer versions available it's important that you use the same version
as astarting point, sinceif you don't, the notes below won't make much sense.

9.5.6.1 |Preparationg

First of al, | scratched most of mine httpd.conf and startup.pl leaving the bare minimum to get mod_perl
started. This is needed to ensure that once I've completed the porting, the module will work correct on
other users systems. For example if my httpd.conf and startup.pl were loading some other modules, which
in turn may load modules that a to-be-ported module may rely on, the ported module may work for me,
but once released, it may not work for others. It's the best to create a new httpd.conf when doing the
porting putting only the required bits of configuration into it.

29 Jan 2004 111

http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

956.1.1

Next, | configure the Apache: : Rel oad module, so we don't have to constantly restart the server after
we modify Apache: : MP3. In order to do that add to httpd.conf:

Per | Modul e Apache: : Rel oad

Per | I ni t Handl er Apache: : Rel oad

Per| Set Var Rel oadAl | O f

Per| Set Var Rel oadMbdul es "ModPer|::* Apache::*"
Per| Set Var Rel oadConst ant Redef i neWar ni ngs O f

You can refer tot he Apache: : Rel oad manpage for more information if you aren’t familiar with
this module. The part:

Per| Set Var Rel oadAl | O f
Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"

tells Apache: : Rel oad to monitor only modules in the ModPer | : ;. and Apache: : namespaces. So
Apache: : MP3 will be monitored. If your module is hamed Foo: : Bar, make sure to include the right
pattern for the Rel oadMbodul es directive. Alternatively simply have:

Per| Set Var Rel oadAl |l On

which will monitor all modules in % NC, but will be a bit slower, asit’'ll have to st at (3) many more
modules on each request.

Finally, Apache: : MP3 uses constant subroutines. Because of that you will get lots of warnings every
time the module is modified, which | wanted to avoid. | can safely shut those warnings off, since I’'m not
going to change those constants. Therefore I’ ve used the setting

Per| Set Var Rel oadConst ant Redef i neWar ni ngs O f
If you do change those constants, refer to the section on Rel oadConst ant Redef i neVWar ni ngs

Next | configured Apache: : MP3. In my case I've followed the Apache: : MP3 documentation, created
adirectory mp3/ under the server document root and added the corresponding directives to httpd.conf.

Now my httpd.conf looked like this:

#file:httpd. conf

Heomm e e o -
Li sten 127.0.0. 1: 8002
#... standard Apache configuration bits omtted ...

LoadModul e perl| _nodul e nodul es/ nod_perl . so
Per| Swi t ches -wTl

Per| Require "/ hone/ httpd/ 2.0/ perl/startup.pl”
Per | Modul e Apache: : Rel oad

Per | I ni t Handl er Apache: : Rel oad
Per| Set Var Rel oadAl |l O f

112 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"
Per | Set Var Rel oadConst ant Redefi neWar ni ngs O f

AddType audi o/ npeg np3 MP3
AddType audi o/ pl ayl i st nBu M3U
AddType audi o/ x-scpls pls PLS
AddType application/x-ogg ogg OGG
<Location /np3>
Set Handl er perl -script
Per | ResponseHandl er Apache: : MP3
Per| Set Var Pl aylistlmage playlist.gif
Per| Set Var StreanBase http://I|ocal host: 8002
Per| Set Var BaseDir /np3
</ Locat i on>

95612

Since chances are that no mod_perl 1.0 module will work out of box without at least preloading some
modules, I’ ve enabled the Apache: : conpat module. Now my startup.pl looked like this:

#file:startup.p
use Apache2 ();

use lib gw(/home/ httpd/2.0/perl);
use Apache: : conpat;

9.5.6.1.3 |Apache/MP3.pm|

Before | even started porting Apache: : MP3, I've added the warnings pragmato Apache/MP3.pm (which
wasn't there because mod_perl 1.0 had to work with Perl versions prior to 5.6.0, which is when the
war ni ngs pragmawas added):

#file:apache_np3_prep.diff
--- Apache/ MP3. pm ori g 2003-06-03 18: 44:21. 000000000 +1000

+++ Apache/ MP3. pm 2003- 06- 03 18: 44: 47. 000000000 +1000
@»-4,2 +4,5 @@
use strict;
+use war ni ngs;
+no warnings 'redefine’; # XXX renove when done with porting

+

From now on, I’'m going to use unified diffs which you can apply using pat ch(1) . Though you may
have to refer to its manpage on your platform since the usage flags may vary. On linux I'd apply the above
patch as:

% cd ~/perl/blead-ithread/lib/site_perl/5.9.0/
% patch -p0 < apache_np3_prep.diff

(note: I've produced the above patch and one more below with di ff -ul, to avoid the RCS Id tag
geting into this document. Normally | produce diffswith di f f - u which uses the default context of 3.)

29 Jan 2004 113

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

assuming that Apache/MP3.pmis located in the directory ~/perl/blead-ithread/lib/site perl/5.9.0/.

I’ve enabled the war ni ngs pragmaeven though | did have warnings turned globally in httpd.conf with:
Perl Swi t ches -wT

it's possible that some badly written module has done:
$"W=0;

without localizing the change, affecting other code. Also notice that the taint mode was enabled from
httpd.conf, something that you shouldn’t forget to do.

| have also told the war ni ngs pragma not to complain about redefined subs via:

no warnings 'redefine’; # XXX renove when done with porting
| will remove that code, once porting is completed.

At this point | was ready to start the porting process and | have started the server.

% hup2

I’m using the following aliases to save typing:

alias err2 "tail -f ~/httpd/prefork/logs/error_|og"
alias acc2 "tail -f ~/httpd/prefork/logs/access_| og"
alias stop2 "~/ htt pd/ prefork/ bi n/ apachect| stop"
alias start2 "~/ htt pd/ prefork/ bin/apachect!l start"
alias restart2 "~/ httpd/prefork/bin/apachectl restart”

alias graceful 2 "~/ httpd/ prefork/bin/apachectl graceful"
alias hup2 "stop2; sleep 3; start2; err2"

(I dso have asimilar set of aiasesfor mod_perl 1.0)

9.5.6.2 [Porting with Apache: : conpat |

| have configured my server to listen on port 8002, so | issue a request |http://localhost:8002/mp3/] in one
console:

% | ynx --dunmp http://1ocal host: 8002/ np3/

keeping the error_log open in the other:

% err2

which expands to:

%tail -f ~/httpd/ prefork/logs/error_|og

114 29 Jan 2004

http://localhost:8002/mp3/

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

When the request isissued, the error_log file tells me:

[Thu Jun 05 15:29:45 2003] [error] [client 127.0.0.1]
Usage: Apache:: Request Rec:: new(cl assnane, ¢, base_pool =NULL)
at .../ Apache/ MP3. pm |ine 60.

Looking at the code:

58: sub handler (3) {
59: ny $class = shift;
60: ny $obj = $class->new(@) or die "Can't create object: $!'";

The problem is that handler wasn’t invoked as method, but had $r passed to it (we can tell because
new() was invoked as Apache:: RequestRec::new(), whereas it should have been
Apache: : MP3: : new() . Why Apache::MP3 wasn't passed as the first argument? | go tothe mod_per]]
[1.0 backward compatibility document] and find that [method handlerq are now marked using the method
subroutine attribute. So I modify the code:

--- Apache/ MP3. pm 0 2003- 06- 05 15:29:19. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 05 15: 38: 41. 000000000 +1000
@®-55,7 +55,7 @@

ny $NO = '"~(no|false)$; # regular expression

ny $YES = '~(yes|true)$; # regul ar expression

-sub handler ($%) {

+sub handl er : method {
ny $class = shift;
ny $obj = $class->new(@) or die "Can't create object: $!'";
return $obj->run();

and issue the request again (no server restart needed).

This time we get a bunch of looping redirect responses, due to a bug in mod_dir which kicks in to handle
the existing dir and messing up with $r - >pat h_i nf o keeping it empty at al times. | thought | could
work around this by not having the same directory and location setting, e.g. by moving the location to be
/songs/ while keeping the physical directory with mp3 files as $DocumentRoot/mp3/, but Apache: : MP3
won't let you do that. So a solution suggested by Justin Erenkrantz is to simply shortcut that piece of code
with:

--- Apache/ MP3. pm 1 2003- 06- 06 14:50: 59. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06-06 14:51:11. 000000000 +1000
@@ -253,7 +253,7 @@

ny $self = shift;

ny $dir = shift;

- unless ($self->r->path_info){

+ unless ($self->r->path_info eq '"){
#l ssue an external redirect if the dir isn't tailed with a '/’
nmy $uri = $sel f->r->uri
ny $query = $sel f->r->args;

29 Jan 2004 115

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

which is equivalent to removing this code, until the bug is fixed (it was till there as of Apache 2.0.46).
But the module still works without this code, because if you issue a request to /mp3 (w/o trailing slash)
mod_dir, will do the redirect for you, replacing the code that we just removed. In any case this got me past
this problem.

Since | have turned on the warnings pragma now | was getting loads of uninitialized value warnings from
$r->dir_config() whose return value were used without checking whether they are defined or not.
But you'd get them with mod_perl 1.0 as well, so they are just an example of not-so clean code, not really
a relevant obstacle in my pursuit to port this module to mod_perl 2.0. Unfortunately they were cluttering
thelog file so | had to fix them. I’ ve defined several convenience functions:

sub get_config {
nmy $val = shift->r->dir_config(shift);

return defined $val ? $val : ;

}

sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
sub config_no { shift->get_config(shift) '~ /$NQoi; }

and replaced them as you can seein this patch: code/apache_mp3_2.diff:

--- Apache/ MP3. pm 2 2003- 06-06 15:17:22. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 15:16:21. 000000000 +1000
@ - 55,6 +55,14 @@

ny $NO = '~(no|false)$; # regular expression

ny $YES = '~(yes|true)$; # regular expression

+sub get_config {
+ ny $val = shift->r->dir_config(shift);
+ return defined $val ? $val : '’;
+
+
+sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
+sub config_no { shift->get_config(shift) !~ /$NQoi; }
+
sub handl er : method {
ny $class = shift;
ny $obj = $class->new(@) or die "Can't create object: $!'";
@-70,7 +78,7 @@
ny @ang_tags;
push @ang_tags,split /,\s+/,$r->header_i n(’ Accept-I| anguage’)
i f $r->header _i n(’ Accept -1 anguage’);

- push @ang_tags, $r->dir_config(’ Defaul t Language') || 'en-US;
+ push @ ang_t ags, $new >get _confi g(’ Def aul t Language’) || 'en-US;
$new->{"Ih'} ||=

Apache: : MP3: : L10ON- >get _handl e(@ ang_t ags)
@ -343,7 +351,7 @@

ny $file = $subr->fil enane;
ny $type = $subr->content _type;
ny $data = $self->fetch_info(S$file, $type);

- ny $format = $sel f->r->dir_config(’ DescriptionFormat’);
+ ny $format = $sel f->get _config(’ Descripti onFormat’');
if ($format) {
$r->print (' #EXTINF:’ |, $data->{seconds} , ’,’);

116 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

(nmy $description = $format) =~ s{%[atfgl ncrdnsqS%)}

@ -1204,7 +1212,7 @@

get fields to display in list of MP3 files
sub fields {
ny $self = shift;

- ny @ =split /\W/,$self->r->dir_config('Fields');

+ my @ = split /\W/, $sel f->get_config('Fields');
returnmap { lc $_ } @ if @; # | ower case
return gm(title artist duration bitrate); # default

}
@@ -1340,7 +1348,7 @@
sub get_dir {
ny $self = shift;
ny ($config, $default) = @;
-y $dir = $self->r->dir_config($config) || $default;
+ ny $dir = $sel f->get_config($config) || $default;

return $dir if $dir =~ mA~ g # | ooks like a path
return $dir if $dir =~ mMw://!; # looks like a URL
return $self->default dir . '/’ . $dir

@@ - 1348, 22 +1356, 22 @@

return true if downloads are allowed fromthis directory
sub downl oad_ok {

- shift->r->dir_config(’ All owDownl oad’) !~ /$NO oi

+ shift->config_no(’ Al owDownl oad’) ;
}

return true if streaming is allowed fromthis directory
sub stream ok {

- shift->r->dir_config('AllowStream) !~ /3$NJ oi

+ shift->config_no(’ All owStream);
}

return true if playing locally is allowed

sub pl ayl ocal _ok {
- shift->r->dir_config(’ All owPl ayLocal ly') =~ /$YES/ oi
+ shift->config_yes(’All owPl ayLocally’);

}

return true if we should check that the client can acconpdate stream ng
sub check_streamclient {

- shift->r->dir_config(’ CheckStreanCient’) =~ /$YES/ oi

+ shift->config_yes(’ CheckStreanCient’)
}

return true if client can stream
@@ - 1378, 48 +1386, 48 @@

whether to read info for each MP3 file (mght take a long tine)
sub read_np3_info {

- shift->r->dir_config(’' ReadMP3Info’) !~ /$NJ oi

+ shift->config_no(’ ReadMP3Info’);
}

whether to tine out streamns
sub streamtinmeout {
- shift->r->dir_config(’Streanlineout’) || O

29 Jan 2004 117

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

+ shift->get_config(’ StreanTinmeout’) || O;

}

how |l ong an albumlist is considered so | ong we should put buttons
at the top as well as the bottom
-sub file_ list_is_long { shift->r->dir_config(’LongList’) || 10 }
+sub file_list_is long { shift->get_config(’'LongList’) || 10 }
sub hone_| abel {

ny $self shift;
- ny $hone $sel f->r->di r_config(’ HoneLabel ') |
+ my S$hone = $sel f->get config(’ HoneLabel ’) |

$sel f->x(’ Home') ;
return | c($hone) eq 'hostname’ ? $sel f->r->hostname : $hone;

}

sub path_style { # style for the path to parent directories
- lc(shift->r->dir_config(’'PathStyle')) || ’'staircase’

+ lc(shift->get_config(’'PathStyle')) || 'staircase’

}

where is our cache directory (if any)

sub cache_dir {

ny $self = shift;
- return unless ny $dir sel f->r->dir_config(’ CacheDir’');
+ return unless ny $dir sel f->get _config(’ CacheDir’)
return $sel f->r->server _root _relative($dir);

}

colums to display

-sub subdir_colums {shift->r->dir_config(’ SubdirColums’) || SUBDI RCOLUWS }

-sub playlist_colums {shift->r->dir_config(’ PlaylistColums’) || PLAYLI STCOLUWNS }
+sub subdir_col ums {shift->get_config(’ SubdirColums’) || SUBDI RCOLUWS }

+sub playlist_colums {shift->get_config(’'PlaylistColums’) || PLAYLI STCOLUWS }

=$
=$

various configuration variables

-sub default _dir { shift->r->dir_config('BaseDir’) || BASE DIR }
+sub default_dir { shift->get_config('BaseDir’) || BASE DIR }

sub styl esheet { shift->get _dir(’Styl esheet’, STYLESHEET) }
sub parent_icon { shift->get_dir(’Parentlcon’, PARENTI CON) }

sub cd_list_icon {
ny $sel f = shift;
ny $subdir shift;

- ny $image = $sel f->r->dir_config(’ CoverlnmageSnall’) || COVERI MAGESMALL
+ nmy $image = $sel f->get_config(’ CoverlmageSmall’') || COVERI MAGESMALL;
ny $directory_specific_icon = $sel f->r->fil enane."/$subdir/$i nage"

return -e $directory_specific_icon
? join ("/",%self->r->uri, escape($subdir), $i mage)
@@ -1427,7 +1435,7 @@
}
sub playlist_icon {
ny $self = shift;
- ny $image = $sel f->r->dir_config(’ Playlistlimage’) || PLAYLI STI MAGE
+ nmy $image = $sel f->get_config(’ Playlistlmage’) || PLAYLI STI MAGE
ny $directory_specific_icon = $sel f->r->filenane."/$i nage"
warn $directory_specific_icon
return -e $directory_specific_icon

118 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

@@ - 1444,7 +1452,7 @@
sub cd_icon {
ny $self = shift;
ny $dir = shift;
- ny $coverinmg = $self->r->dir_config(’ Coverlmage’) || COVERI MAGE;
+ my $covering = $sel f->get_config(’ Coverlnmage’) || COVERI MAGE;
if (-e "$dir/$covering") {
$coveri ny;
} else {
@@ - 1453, 7 +1461,7 @@
}
sub m ssing_coment {
ny $self = shift;
- ny $missing = $self->r->dir_config(’ M ssi ngCorment’);
+ ny $missing = $sel f->get_config(’' M ssingComment’);
return if $mssing eq 'off’;
$m ssing = $sel f->| h- >maket ext (" unknown’) unl ess $mi ssi ng;
$mi ssi ng;
@@ - 1464,7 +1472,7 @@
ny $self = shift;
ny $data = shift;
ny $descri ption;
- ny $fornmat = $sel f->r->dir_config(’ DescriptionFormat’);
+ nmy $format = $sel f->get _config(’ DescriptionFormat’);
if ($format) {
($description = $format) =~ s{%[atfglncrdmsqS¥)}
{$1 eq ' % ? "%
@@ - 1495, 7 +1503,7 @@
}
}

- if ((my $basenane = $r->dir_config(’ StreanBase’)) && !$self->is_localnet()) {
+ if ((my $basename = $sel f->get_config(’ StreanBase')) && !$self->is_|ocalnet()) {
$basenane =~ s!http://!http://$auth_info! if $auth_info;
return $basenane;
}
@@ - 1536, 7 +1544,7 @@
sub is_local net {
ny $self = shift;
return 1 if $self->is local; # d uh
- ny @ocal = split /\s+/,$self->r->dir_config(’'Local Net’) or return;
+ ny @ocal = split /\s+/,$sel f->get_config(’ Local Net’) or return;

ny $renote_ip = $sel f->r->connection->renote_ip . .’ ;
foreach (@ocal) {

, it was 194 lines long so | didn't inline it here, but it was quick to create with a few regexes
search-n-replace manipulations in xemacs.

Now | have the browsing of the root /mp3/ directory and its sub-directories working. If | click on ’Fetch’
of a particular song it works too. However if | try to’Stream’ a song, | get a 500 response with error_log
telling me:

29 Jan 2004 119

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

[Fri Jun 06 15:33:33 2003] [error] [client 127.0.0.1] Bad arg length
for Socket::unpack_sockaddr_in, length is 31, should be 16 at
...15.9.0/i686-1inux-thread-nmulti/Socket.pmline 370

It would be certainly nice for Socket.pm to use Car p: : car p() instead of war n() so we will know
where in the Apache: : MP3 code this problem was triggered. However reading the Socket.pm manpage
reveals that sockaddr _i n() in the list context is the same as calling an explicit unpack_sock-
addr _i n(), and in the scalar context it's calling pack_sockaddr _i n(). So | have found sock-
addr _i n was the only Socket.pm function used in Apache: : MP3 and | have found this code in the
functioni s_| ocal ():

ny $r = $sel f->r;

nmy ($serverport, $serveraddr) = sockaddr _i n($r->connecti on->| ocal _addr);
nmy ($renoteport, $renot eaddr) = sockaddr _i n($r->connecti on->renote_addr);
return $serveraddr eq $renoteaddr

Since something is wrong with function cals $r->connection->|l ocal _addr and/or
$r - >connect i on- >renot e_addr and | referred to the mod _perl 1.0 backward compatibility docu-|
and found fthe relevant entry] on these two functions. Indeed the API have changed. Instead of return-
ing a packed SOCKADDR _I N string, Apache now returns an APR: : Socket Addr object, which | can
query to get the bits of information I’m interested in. So | applied this patch:

--- Apache/ MP3. pm 3 2003- 06- 06 15:36:15. 000000000 +1000

+++ Apache/ MP3. pm 2003- 06- 06 15:56: 32. 000000000 +1000

@ - 1533, 10 +1533,9 @@

allows the player to fast forward, pause, etc.

sub is_local {
ny $self = shift;
ny $r = $sel f->r
ny ($serverport, $serveraddr) = sockaddr _i n($r->connecti on->l ocal _addr);
ny ($renoteport, $renot eaddr) = sockaddr _i n($r->connecti on->renot e_addr);
return $serveraddr eq $renoteaddr;

+ my $c = $sel f->r->connection

+ require APR : SockAddr;

+ return $c->l ocal _addr->i p_get eq $c->renote_addr->i p_get;
}

Check if the requesting client is on the local network, as defined by

And voila, the streaming option now works. | get a warning on 'Use of uninitialized value’ on line 1516
though, but again thisis unrelated to the porting issues, just a flow logic problem, which wasn't triggered
without the warnings mode turned on. | have fixed it with:

--- Apache/ MP3. pm 4 2003- 06- 06 15:57: 15. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 16: 04: 48. 000
@@ - 1492, 7 +1492,7 @@

ny $suppress_auth = shift;

ny $r = S$sel f->r

- ny $auth_info;

+ ny $auth_info = "";
the check for auth_nane() prevents an anno
the apache server |og when authentication
if ($r->auth_nane && !$suppress_auth) ({

120 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0

@ - 1509, 10 +1509,9 @@

+ 4+ +

}

}

ny $vhost = $r->host nane;
unl ess ($vhost) {
$vhost = $r->server->server_host nane;

$vhost .= ":" . $r->get_server_port unless
}
$vhost = $r->server->server _hostnane unl ess
$vhost .= ":" . $r->get_server_port unless $

return "http://${auth_i nfo}${vhost}";

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

This completes the first part of the porting. | have tried to use all the visible functions of the interface and
everything seemed to work and | haven't got any warnings logged. Certainly | may have missed some
usage patterns which may be still problematic. But thisis good enough for this tutorial.

9.5.6.3 [Getting Rid of the Apache: : conpat Dependency|

The final stage is going to get rid of Apache: : conpat since thisis a CPAN module, which must not
load Apache: : conpat onitsown. I’'m going to make Apache: : MP3 work with mod_perl 2.0 al by

itself.

Thefirst step isto comment out the loading of Apache: : conpat in startup.pl:

#file:startup.pl

use Apache2 ();
use lib gw(/home/ httpd/ 2.0/ perl);
#use Apache::conpat ();

9.5.6.4 |[Ensuring that Apache: : conpat isnot loaded|

The second step is to make sure that Apache: : conpat doesn’'t get loaded indirectly, through some

other module. So I' ve added this line of code to Apache/MP3.pm:

--- Apache/ MP3. pm 5
+++ Apache/ MP3. pm

@-3,2 +3,6 @@

2003-06-06 16:17:50. 000000000 +1000
2003-06-06 16:21:14. 000000000 +1000

+BEG N {
+ di e "Apache: :conmpat is |oaded | oaded" if $INC[' Apache/ conpat.pm};
+}
+
use strict;

and indeed, even though I’ve commented out the loading of Apache: : conpat from startup.pl, this
module was still getting loaded. | knew that because the request to /mp3 were failing with the error
message:

29 Jan 2004

121

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Apache: : conpat is |oaded | oaded at ...

There are several ways to find the guilty party, you can gr ep(1) for it in the perl libraries, you can over-
ride CORE: : GLOBAL: : requi re() instartup.pl:

BEG N {
use Carp;
*CORE: : GLOBAL: :require = sub {
Carp::cluck("Apache: :conpat is |oaded") if $ [0] =~ /conpat/;

CORE: :require(@);
I
}

or you can modify Apache/compat.pm and make it print the calls trace when it gets compiled:

--- Apache/ conmpat.pmorig 2003- 06- 03 16: 11: 07. 000000000 +1000
+++ Apache/ conpat . pm 2003- 06-03 16: 11: 58. 000000000 +1000
@-1,5 +1,9 @@

package Apache:: conpat;

+BEGQ N {

+ use Carp;

+ Car p: : cl uck("Apache: : conpat is | oaded by");
+}

I’ve used this last technique, since it’s the safest one to use. Remember that Apache: ;. conpat can also
be loaded with:

do "Apache/ conpat. pni;

in which case, neither gr ep(1) 'ping for Apache: : conpat , nor overriding r equi r e() will do the
job.

When I’ ve restarted the server and tried to use Apache: : MP3 (I wasn't preloading it at the server startup
since | wanted the server to start normally and cope with problem when it’s running), the error_log had an
entry:

Apache: : conpat is |oaded by at .../ Apache2/ Apache/ compat.pmline 6
Apache: : conpat:: BEG N() called at .../Apache2/ Apache/conpat.pmline 8
eval {...} called at .../Apache2/ Apache/conpat.pmline 8
requi re Apache/conpat.pmcalled at .../5.9.0/CA.pmline 169
require CA.pmcalled at .../site_perl/5.9.0/ Apache/ MP3.pm |ine 8
Apache: : MP3: : BEG N() called at .../Apache2/ Apache/ conpat.pmline 8

(I’'ve trimmed the whole paths of the libraries and the trace itself, to make it easier to understand.)

We could have used Car p: : car p() which would have told us only the fact that Apache: : conpat
was loaded by CA . pm but by using Car p: : cl uck() we ve obtained the whole stack backtrace so we
aso can learn which module hasloaded CE . pm

Here I've learned that | had an old verson of CA.pm (2.89) which automatically loaded
Apache: : conpat (which should be never done by CPAN modules). Once I've upgraded CA . pmto
version 2.93 and restarted the server, Apache: : conpat wasn't getting loaded any longer.

122 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

9.5.6.5 [Installing the ModPer | : : Met hodLookup Helper|

Now that Apache: : conpat is not loaded, | need to deal with two issues: modules that need to be
loaded and APIsthat have changed.

For the second issue I'll have to refer to thefthe mod perl 1.0 backward compatibility document}

But the first issue can be easily worked out using ModPer | : : Met hodLookup. As explained in the
section [Using ModPer | : : Met hodLookup Programmaticaly] I've added the AUTOLQOAD code to my
startup.pl so it’ll automatically lookup the packages that | need to load based on the request method and
the object type.

So now my startup.pl looked like:
#file:startup.pl

use Apache2 ();
use lib gw(/home/ httpd/ 2.0/ perl);

{
package MddPerl :: Met hodLookupAut o;

use ModPerl :: Met hodLookup;

use Carp;
sub handl er {

| ook inside nod_perl:: Apache:: APR : MdPerl:: excludi ng DESTROY
ny $skip = '~(?! DESTROY$;
*UNI VERSAL: : AUTOLOAD = sub {
ny $net hod = $AUTOLOAD;
return i f $net hod =~ / DESTROY/ ;
ny ($hint, @modul es) =
MbdPer | : : Met hodLookup: : | ookup_net hod($net hod, @);
$hint ||="Can’t find nmethod $AUTOLOAD';
croak $hint;
b
return O;
}
}
1;

and | add to my httpd.conf:

Per | Chi | dl ni t Handl er MbdPer| : : Met hodLookupAut o

9.5.6.6 |Adjusting the codeto run under mod perl 2

| restart the server and off | go to complete the second porting stage.

Thefirst error that |’ ve received was;

29 Jan 2004 123

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

[Fri Jun 06 16:28:32 2003] [error] failed to resolve handl er ‘' Apache:: MP3’
[Fri Jun 06 16:28:32 2003] [error] [client 127.0.0.1] Can’t locate

obj ect nmethod "boot" via package "nod_perl" at .../Apache/ Constants.pm
line 8 Conpilation failed in require at .../Apache/MP3.pmline 12.

| gotoline 12 and find the following code:

use Apache:: Constants gw : conmon REDI RECT HTTP_NO_CONTENT
DI R_MAG C_TYPE HTTP_NOT_MODI Fl ED) ;

Notice that | did have mod_perl 1.0 installed, so the Apache: : Const ant module from mod_perl 1.0
couldn’t find the boot () method which doesn’t exist in mod_perl 2.0. If you don’t have mod_perl 1.0
installed the error would smply say, that it can't find Apache/Constants.pomin @ NC. In any case, we are
going to replace this code with mod_perl 2.0 equivaent:

--- Apache/ MP3. pm 6 2003- 06- 06 16: 33: 05. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 17: 03:43. 000000000 +1000
@-9,7 +9,9 @@

use warni ngs;

no warnings 'redefine’ ; # XXX renobve when done with porting

-use Apache:: Constants gqw(: conmon REDI RECT HTTP_NO CONTENT DI R MAG C TYPE HTTP_NOT_MODI Fl ED) ;
+use Apache:: Const -conpile => gw(:conmon REDI RECT HTTP_NO_ CONTENT

+ DI R_MAG C_TYPE HTTP_NOT_MODI FI ED) ;

+

use Apache:: MP3:: L10N,
use 1O :File;
use Socket ’'sockaddr_in’;

and | aso had to adjust the constants, since what used to be OK, now has to be Apache: : OK, mainly
because in mod_perl 2.0 there is an enormous amount of constants (coming from Apache and APR) and
most of them are grouped in Apache:: or APR : namespaces. The Apache:: Const and
APR: : Const manpage provide more information on available constants.

This search and replace accomplished the job:

% perl -pi -e 's/return\s(OK DECLI NED| FORBI DDEN| \
REDI RECT| HTTP_NO_CONTENT| DI R_MAG C_TYPE| \
HTTP_NOT_MODI FI ED)/ r et urn Apache: : $1/ xg’ Apache/ MP3. pm

As you can see the regex explicitly lists all constants that were used in Apache: : MP3. Your situation
may vary. Here is the patch: code/apache_mp3_7.diff:

--- Apache/ MP3. pm 7 2003-06-06 17:04:27.000000000 +1000
+++ Apache/ MP3. pm 2003-06-06 17:13:26. 000000000 +1000
@ -129,7 +129,7 @@

ny $self = shift;

$sel f->r->send_http_header($self->htnl _content_type);
- return K if $sel f->r->header_only;
+ return Apache:: K if $sel f->r->header_only;

print start_htmn(
-lang => $sel f->| h- >l anguage_t ag,
@ - 246, 20 +246,20 @@
$sel f->send_pl ayl i st (\ @rat ches) ;

124 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

}

return CK;
return Apache:: CK;
}

4+

this is called to generate a playlist for selected files
if (paran(’ Play Selected)) {
- return HTTP_NO CONTENT unless nmy @iles = paran(’'file');
+ return Apache:: HTTP_NO CONTENT unless ny @iles = paran(’'file');
ny $uri = dirname($r->uri);
$sel f->send_playlist([map { "Suri/$_" } @iles]);
- return CK;
+ return Apache:: CK;
}

otherw se don’t know how to deal with this

$sel f->r->log_reason(’Invalid paraneters -- possible attenpt to circunvent checks.’);
- return FORBI DDEN,
+ return Apache: : FORBI DDEN,

}

this generates the top-level directory listing
@ -273,7 +273,7 @@
ny $query = $sel f->r->args;
$query = "?" . $query if defined $query;
$sel f - >r->header _out (Location => "$uri/$query");
- return REDI RECT;
+ return Apache: : REDI RECT,;

}

return $self->list_directory($dir);
@ -289,9 +289,9 @@

if ($is_audio && !$sel f->downl oad_ok) {
$sel f->r->l og_reason(’ File downl oading is forbidden');
- return FORBI DDEN;
+ return Apache: : FORBI DDEN;
} else {
- return DECLINED;, # allow Apache to do its standard thing
+ return Apache:: DECLINED; # allow Apache to do its standard thing

}

@ -302,17 +302,17 @@
ny $self = shift;
ny $r = $self->r;

- return DECLINED unless -e $r->filenane; # should be $r->finfo
+ return Apache:: DECLI NED unl ess -e $r->filenane; # should be $r->finfo

unl ess ($sel f->stream ok) {
$r->l og_reason(’ Al l owStream forbi dden’);
- return FORBI DDEN;
+ return Apache: : FORBI DDEN;

}

if ($self->check_streamclient and !$self->is_streamclient) {
nmy $useragent = $r->header _i n(’ User-Agent’);

29 Jan 2004 125

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

$r->l og_reason("CheckStreanC ient is true and $useragent is not a streamng client");
- return FORBI DDEN;
+ return Apache: : FORBI DDEN;

}

return $sel f->send_stream($r->fil enane, $r->uri);
@ -322,12 +322,12 @@
sub send_pl aylist {
ny $self = shift;
my ($urls, $shuffle) = @;
- return HTTP_NO CONTENT unl ess @urls;
+ return Apache:: HTTP_NO CONTENT unl ess @url s;
ny $r = $self->r;
ny $base = $sel f->stream base;

$r->send_ht t p_header (' audi o/ npegurl’);
- return K if $r->header_only;
+ return Apache:: K if $r->header_only;

| ocal user

ny $local = $sel f->playlocal _ok && $self->is_|ocal;
@-377,7 +377,7 @@

$r->print ("$base$_?$stream par ns$CRLF") ;
}

}
- return O
+ return Apache:: K

}

sub stream parms {
@ -468,7 +468,7 @@
ny $self = shift;
ny $dir = shift;

- return DECLINED unless -d $dir;
+ return Apache:: DECLI NED unless -d $dir;

ny $last_nodified = (stat(_))[9];

@ -478,15 +478,15 @@
ny ($time, $ver) = $check =~ /*([a-f0-9]+)-([0-9.]+)%/;

if ($check eq "*' or (hex($time) == $last_nodified and $ver == $VERSION)) {
return HTTP_NOT_MODI FI ED;
+ return Apache: : HTTP_NOT_MODI Fl ED;
}
}

- return DECLINED unl ess nmy ($directories, $np3s, $pl aylists, $txtfiles)
+ return Apache:: DECLI NED unl ess ny ($directories, $nmp3s, $pl aylists, $txtfiles)
= $self->read _directory($dir);

$sel f->r->send_http_header($sel f->htnl _content_type);
- return K if $sel f->r->header_only;
+ return Apache:: K if $sel f->r->header_only;

$sel f - >page_t op($dir);

$sel f->directory_top($dir);
@»-514,7 +514,7 @@

126 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0

print hr
print "\n\n";

unl ess %np3s;

$sel f->directory_bottom $dir);

- return O
+ return Apache::
}

print the HTM. at the
@ - 1268,8 +1268,8 @@

ny $mne
my $info

top of the page

$r->cont ent _t ype;
$sel f->fetch_info($file, $m ne);

- return DECLINED unless $info; # not a legit nmp3 file?
- ny $fh = $self->open_file($file) || return DECLI NED;
+ return Apache::DECLINED unless $info; # not a legit np3 file?
+ ny $fh = $self->open_file($file) || return Apache:: DECLI NED;
bi nnode($fh); # to prevent DOS text-nopde foolishness

ny $size = -s $file;
@-1317,7 +1317,7 @@

$r->print("Content-Length: $size$CRLF");
$r->print("Content-Type: $m meSCRLF");

$r->print("$CRLF");

- return K if $r->header_only;
+ return Apache:: K if $r->header_only;

if (my $tineout = $sel f->streamtineout) {
ny $seconds = $info->{seconds};

@ -1330, 12 +1330,12 @@
$bytes -= $b;
$r->print($data);

}
- return OK;
+ return Apache:: CK;
}

we get here for untimed transmts

$r->send_fd($fh);
- return O
+ return Apache:: O
}

called to open the MP3 file

| had to manually fix the DI R_MAGQ C_TYPE constant which didn't fit the regex pattern:

--- Apache/ MP3. pm 8
+++ Apache/ MP3. pm
@@ -1055,7 +1055, 7 @@

ny $mime = $sel f->r

2003-06-06 17:24:33.000000000 +1000
2003-06-06 17:26:29. 000000000 +1000

->| ookup_file("$dir/$d")->content_type;

- push(@lirectories, $d) if !$seen{$d}++ && $ninme eq D R_MAG C _TYPE;
+ push(@lirectories,$d) if !$seen{$d}++ && $nminme eq Apache:: DI R_MAG C _TYPE;

.nmBu files should be configured as audio/playlist MME types in your apache .conf

push(@l ayl i sts, $d)

29 Jan 2004

if $mme =~ m "audi o/ (pl aylist| x-nmpegurl | npegurl|x-scpls)$!;

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

file

127

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

And | move on, the next error is:

[Fri Jun 06 17:28:00 2003] [error] [client 127.0.0.1]
Can't |ocate object nethod "header_in" via package
" Apache: : Request Rec" at .../ Apache/ MP3. pm|ine 85.

The [porting_document] quickly me that header _i n() and its brothers header _out () and
err_header _out () are R.I.P. and that | have to use the corresponding functions headers_i n(),
headers_out () anderr _headers_out () which areavailablein mod_perl 1.0 APl aswell.

So | adjust the code to use the new API:

% perl -pi -e 's|header_in\((.*?)\)|headers_in->{$1}| g’ Apache/ MP3. pm
% perl -pi -e 's|header_out\((.*?)\s*=>\s*(.*?)\);| headers_out->{$1} = $2;|g’ Apache/ MP3. pm

which results in this patch: code/apache_mp3_9.diff:

--- Apache/ MP3.pm 9 2003-06-06 17:27:45. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 17:55: 14. 000000000 +1000
@@-82,8 +82,8 @@

$new>{"r'} [|= $r if $r;

nmy @ang_tags;
- push @ang_tags,split /,\s+/,$r->header_i n(’ Accept-I| anguage’)
- i f $r->header_in(’ Accept-I|anguage’);
+ push @ang_tags,split /,\s+/,$r->headers_in->{" Accept -l anguage’}

+ i f $r->headers_i n->{" Accept-I| anguage’ };
push @ ang_t ags, $new >get _confi g(’ Def aul t Language’) || 'en-US ;
$new->{"1h'} ||=
@-272,7 +272,7 @@
ny $uri = $self->r->uri;

ny $query = $sel f->r->args;
$query = "?" . $query if defined $query;
- $sel f - >r - >header _out (Locati on => "$uri/ $query");
+ $sel f->r->headers_out->{Location} = "uri/Squery";
return Apache: : REDI RECT,;
}

@@-310,7 +310,7 @
}

if ($self->check_streamclient and !$self->is_streamclient) {
- ny $user agent $r - >header _i n(’ User-Agent’);
+ ny $useragent = $r->headers_i n->{’ User-Agent’};
$r->l og_reason("CheckStreanClient is true and $useragent is not a streaming client");
return Apache: : FORBI DDEN;

}
@-472,9 +472,9 @@
ny $last_nodified = (stat(_))[9];

- $sel f->r->header_out (' ETag’ => sprintf ("% x-%", $last_nodified, $VERSION));
+ S$sel f->r->headers_out->{'ETag’'} = sprintf("%x-%", $last_nodified, $VERSION);

- if (ny $check
+ if (ny $check

$sel f - >r->header _i n("If-None-Match")) {
$sel f->r->headers_i n->{"1f-None-NMatch"}) {

128 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

ny ($tinme, $ver) = $check =~ /*([a-f0-9]+)-([0-9.]+)%/;

if ($check eq '*' or (hex($time) == $last_nodified and $ver == $VERSION)) {
@ -1283,8 +1283,8 @@

ny $genre = $info->{genre} || $sel f->Ih->maketext(’ unknown');

nmy $range = 0O;
- $r->header _i n("Range")
- and $r->header_i n("Range") =~ ni bytes=(\d+)/
+ $r->headers_i n->{"Range"}
+ and $r->headers_i n->{"Range"} =~ ni bytes=(\d+)/
and $range = $1
and seek($f h, $range, 0) ;

@ -1383, 11 +1383,11 @@
return true if client can stream
sub is_streamclient {
ny $r = shift->r;
$r->header _in(’ I cy- MetaData’) # W nanp/ xms
|| $r->header_in(’ Bandwi dth’) # real pl ayer
|| $r->header _in(’ Accept’) =~ m\baudio/ npeg\b! # npgl23 and others

- || $r->header _in(’ User-Agent’) =~ m ~NSPl ayer/! # Mcrosoft nedia player
- || $r->header_in(’' User-Agent’') =~ m "xmrs/!;
+ $r->headers_in->{"Icy-MetaData’} # wi nanp/ xmrs
+ || $r->headers_in->{" Bandwi dth’} # real pl ayer
+ || $r->headers_in->{" Accept’} =~ ml\baudi o/ npeg\b! # npgl23 and others
+ || $r->headers_in->{"User-Agent’} =~ ml ~NSPl ayer/! # Mcrosoft nedia player
+ || $r->headers_in->{"User-Agent’} =~ m "xms/!;
}

whether to read info for each MP3 file (mght take a long tine)

On the next error ModPer | : : Met hodLookup’ s AUTOLQAD kicksin. Instead of complaining:
[Fri Jun 06 18:35:53 2003] [error] [client 127.0.0.1]

Can't |ocate object nethod "FETCH' via package "APR : Tabl e"
at .../ Apache/ MP3. pm |ine 85.

| now get:

[Fri Jun 06 18:36:35 2003] [error] [client 127.0.0.1]
to use nethod ' FETCH add:

use APR : Table ();
at .../ Apache/ MP3. pm |ine 85

So | follow the suggestion and load APR: : Tabl e() :

29 Jan 2004 129

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

--- Apache/ MP3. pm 10 2003-06-06 17:57:54. 000000000 +1000
+++ Apache/ MP3. pm 2003-06- 06 18:37:33. 000000000 +1000
@-9,6 +9,8 @@

use war ni ngs;

no warnings 'redefine’; # XXX: renove when done with porting

+use APR :Table ();
+
use Apache:: Const -conpile => gw: conmbon REDI RECT HTTP_NO CONTENT
DI R_MAG C_TYPE HTTP_NOT_MODI FI ED) ;

| continue issuing the request and adding the missing modules again and again till 1 get no more
complaints. During this process I’ ve added the following modules:

--- Apache/ MP3. pm 11 2003-06- 06 18:38:47.000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 18:39:10. 000000000 +1000
@-9,6 +9,14 @@

use war ni ngs;

no warnings 'redefine’; # XXX renove when done with porting

+use Apache:: Connection ();
+use Apache: : SubRequest ();
+use Apache:: Access ();
+use Apache:: Request| O ();
+use Apache:: RequestUtil ();
+use Apache: : RequestRec ();
+use Apache:: ServerUtil ();
+use Apache:: Log;

use APR : Table ();

use Apache:: Const -conpile => gw(: common REDI RECT HTTP_NO_CONTENT

The AUTOLOAD code helped me to trace the modules that contain the existing APIs, however | still have
to deal with APIsthat no longer exist. Rightfully the helper code says that it doesn’t know which module
defines the method: send_ht t p_header () becauseit no longer existsin Apache 2.0 vocabulary:

[Fri Jun 06 18:40:34 2003] [error] [client 127.0.0.1]
Don’t know anyt hi ng about method ’'send_http_header’
at .../ Apache/ MP3. pm |ine 498

So | go back to the[porting document] and find the [relevant entry} In 2.0 lingo, we just need to set the
content type():

--- Apache/ MP3. pm 12 2003- 06- 06 18: 43:42. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 18:51:23. 000000000 +1000
@ -138,7 +138,7 @@
sub hel p_screen {
ny $self = shift;

- $self->r->send_http_header($sel f->htnl _content_type);
+ $self->r->content_type($self->htm _content_type);
return Apache:: OK if $sel f->r->header_only;

print start_htnl (
@ -336,7 +336,7 @@

130 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

ny $r = S$self->r
ny $base = $sel f->stream base

- $r->send_http_header (' audi o/ npegurl’);
+ $r->content _type(’ audi o/ npegurl’);
return Apache:: OK i f $r->header_only

| ocal user
@@ -495,7 +495,7 @@
return Apache:: DECLI NED unl ess ny ($directories, $mp3s, $pl aylists, $txtfiles)
= $sel f->read _directory($dir);

- $self->r->send_http_header($sel f->htnl _content_type);
+ $self->r->content_type($self->htm _content_type);
return Apache: : OK i f $sel f->r->header_only

$sel f ->page_top($dir);
also I’ ve noticed that there was this code:

return Apache:: OK if $sel f->r->header_only;

This technique is no longer needed in 2.0, since Apache 2.0 automatically discards the body if the request
is of type HEAD -- the handler should still deliver the whole body, which helps to calculate the
content-length if thisis relevant to play nicer with proxies. So you may decide not to make a specia case
for HEAD requests.

At this point | was able to browse the directories and play files via most options without relying on
Apache: : conpat .

There were afew other APIsthat | had to fix in the same way, while trying to use the application, looking
at the error_log referring to the[porting document] and applying the suggested fixes. I'll make sure to send
al these fixes to Lincoln Stein, so the new versions will work correctly with mod_perl 2.0. | also had to
fix other Apache: : MP3: : files, which come as a part of the Apache- MP3 distribution, pretty much
using the same techniques explained here. A few extrafixes of interest in Apache: : MP3 were:

e send fd()

As of thiswriting we don’'t have this function in the core, because Apache 2.0 doesn’t have it (it'sin
Apache: : conpat but implemented in a slow way). However we may provide one in the future.
Currently one can use the function sendf i | e() which requires afilename as an argument and not
the file descriptor. So | have fixed the code:

i f($r->request ($r->uri)->content _type eq 'audi o/ x-scpls’){

open(FI LE, $r->filenane) || return 404,
$r->send_fd(*FI LE);
cl ose(FI LE);

+

+ i f($r->content _type eq 'audi o/ x-scpls’){

+ $r->sendfile($r->filenane) || return Apache:: NOT_FOUND;

® | 0og reason

29 Jan 2004 131

9.6 Porting aModule to Run under both mod_perl 2.0 and mod_perl 1.0

| og reasonisnow! og_error:

$sel f->r->log_reason(’ I nvalid paraneters -- possible attenpt to circunvent checks.’);
+ $r->log_error('Invalid parameters -- possible attenpt to circunvent checks.’)

| have found the porting process to be quite interesting, especially since | have found severa bugs in
Apache 2.0 and documented a few undocumented API changes. It was also fun, because I’ ve got to listen
to mp3 fileswhen | did things right, and was getting silence in my headphones and a visual irritation in the
form of error_log messageswhen | didn't ;)

9.6 [Porting a Moduleto Run under both mod perl 2.0 and
mod perl 1.0

Sometimes code needs to work with both mod_perl versions. For example this is the case with CPAN
module developers who wish to continue to maintain a single code base, rather than supplying two sepa-
rate implementations.

9.6.1 [Making Code Conditional on Running mod perl Version|

In this case you can test for which version of mod_perl your code is running under and act appropriately.

To continue our example above, let's say we want to support opening a filehandle in both mod_perl 2.0
and mod_perl 1.0. Our code can make use of the variable $nod_per | : : VERSI ON:

use nod_perl;

use constant MP2 => ($nod_perl::VERSION >= 1.99);
...

require Synbol if MPZ;

...

my $fh = MP2 ? Synbol ::gensym: Apache->gensym
open $fh, $file or die "Can't open $file: $!";

Though, make sure that you don’t use $nod_per | : : VERSI ON string anywhere in the code before you
have declared your module’'s own $VERSI ON, since PAUSE will pick the wrong version when you
submit the module on CPAN. It requires that module’s $VERSI ON will be declared first. You can verify
whether it'll pick the Foo.pm's version correctly, by running this code:

% per| -MeExtUtils::MakeMaker -le 'print MW >parse_version(shift)’ Foo.pm

There is more information about thisissue here;
|http://pause.perl.org/pause/query ?ACTION=pause 04about#conventiond

Some modules, like CA . pmmay work under mod_perl and without it, and will want to use the mod_perl
1.0 API if that’s available, or mod_perl 2.0 API otherwise. So the following idiom could be used for this
purpose.

132 29 Jan 2004

http://pause.perl.org/pause/query?ACTION=pause_04about#conventions

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.6.2 Method Handlers

use constant MP_GEN => $ENV{ MOD PERL}
? eval { require nod_perl; $nod_perl::VERSION >=1.99 ? 2 : 1}
. 0;

It sets the constant MP_GENto O if mod_perl is not available, to 1 if running under mod_perl 1.0 and 2 for
mod_perl 2.0.

Here' s another way to find out the mod_perl version. In the server configuration file you can use a special
configuration "define" symbol MODPERL 2, which is magically enabled internally, as if the server had
been started with - DMODPERL 2.

in httpd. conf
<| f Defi ne MODPERL2>
2.0 configuration
</ | f Define>
<| f Defi ne ! MODPERL2>
el se
</ | f Define>

From within Perl code this can be tested with Apache: : Server: : exi sts_config_define().
For example, we can use this method to decide whether or not to call $r - >send_htt p_header (),
which no longer existsin mod_perl 2.0:
sub handl er {
ny $r = shift;

$r->content _type('text/htm’);
$r->send_http_header () unl ess Apache:: Server::exists_config_define("MODPERL2");

}

Relevant links to other places in the porting documents:

e mod_perl 1.0 and 2.0 Constants Coexistence

9.6.2 Method Handlerg

Method handlers in mod_perl are declared using the "'method’ attributg However if you want to have the
same code base for mod_perl 1.0 and 2.0 applications, whose handler has to be a method, you will need to
do the following trick:

sub handl er _nmpl ($9%) { ...}
sub handler_np2 : nethod { ... }
*handl er = MP2 ? \ &andl er_np2 : \ &handl er _npl;

Note that this requires at least Perl 5.6.0, the :method attribute is not supported by older Perl versions,
which will fail to compile such code.

Here are two complete examples. The first example implements MyApache: : Met hod which has a
single method that works for both mod_perl generations:

29 Jan 2004 133

9.6.2 Method Handlers

The configuration:

Per | Modul e MyApache: : Met hod
<Location / net hod>

Set Handl er perl-script

Per | Handl er MyApache: : Met hod- >handl er
</ Locati on>

The code:

#f il e: MyApache/ Met hod. pm
package MyApache: : Met hod;

Per| Modul e MyApache: : Met hod

<Location /method>

Set Handl er perl -scri pt

Per | Handl er MyApache: : Met hod- >handl er
</Location>

use strict;
use war ni ngs;

use nod_perl;
use constant MP2 => $nod_perl::VERSION < 1.99 ? 0 : 1;

BEG N {
if (MP2) {
requi re Apache:: Request Rec;
requi re Apache:: Request| QO
requi re Apache:: Const;
Apache: : Const - >i nport(-conpile => "K');

}
el se {
requi re Apache;
requi re Apache:: Constants;
Apache: : Const ant s->i nport (' OK');
}
}
sub handl er _npl ($$) { &un}

sub handl er_nmp2 : nethod { &un }
*handl er = MP2 ? \ &handl er_np2 : \ &handl er _np1l;

sub run {
ny($cl ass, $r) = @;
MP2 ? $r->content _type(’'text/plain)
$r->send_http_header (' text/plain');
print "$class was called\n";
return MP2 ? Apache:: K : Apache:: Constants:: OK;
}

Here are two complete examples. The second example implements MyApache: : Met hod2, which is
very similar to MyApache: : Met hod, but uses separate methods for mod_perl 1.0 and 2.0 servers.

134 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 9.6.2 Method Handlers

The configuration is the same:

Per | Modul e MyApache: : Met hod2
<Locati on / net hod2>

Set Handl er perl-script

Per | Handl er MyApache: : Met hod2- >handl er
</ Locati on>

The code:

#fil e: MyApache/ Met hod2. pm
package MyApache: : Met hod2;

Per| Modul e MyApache: : Met hod

<Location /et hod>

Set Handl er perl -script

Per | Handl er MyApache: : Met hod- >handl er
</Location>

use strict;
use war ni ngs;

use nod_perl;
use constant MP2 => $nod_perl::VERSION < 1.99 ? 0 : 1;

BEG N {
warn "running $rmod_perl::VERSION'\ n";
if (MP2) {

requi re Apache:: Request Rec;

requi re Apache:: Request| O

requi re Apache:: Const;

Apache: : Const - >i nport(-conpile => "K');

}
el se {
requi re Apache;
requi re Apache:: Constants;
Apache: : Const ant s->i nport (' OK');
}
}
sub handl er _nmpl ($%$) { &l

}
sub handl er_nmp2 : nethod { &m2 }
*handl er = MP2 ? \ &handl er_np2 : \ &handl er _np1l;

sub npl {
ny($cl ass, $r) = @;
$r->send_http_header (' text/plain');
$r->print("npl: $class was called\n");
return Apache:: Constants:: OK();

29 Jan 2004 135

9.7 Maintainers

}

sub nmp2 {
ny($cl ass, $r) = @;
$r->content _type('text/plain');
$r->print("np2: $class was called\n");
return Apache:: OK();

}

Assuming that mod_perl 1.0 is listening on port 8001 and mod_perl 2.0 on 8002, we get the following
results:

% | ynx --source http://1ocal host: 8001/ net hod
MyApache: : Met hod was cal | ed

% | ynx --source http://1ocal host: 8001/ met hod2
mpl: MyApache:: Met hod2 was cal |l ed

% | ynx --source http://I|ocal host: 8002/ net hod
MyApache: : Met hod was cal | ed

% | ynx --source http://Iocal host: 8002/ nmet hod2
mp2: MyApache: : Met hod2 was cal |l ed

9.7 Maintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

9.8 |Authors

® Nick Tonkin <nick (at) tonkinresolutions.com>

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

136 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10 A Referenceto mod_perl 1.0 to mod_perl 2.0 Migration.

10 A Referencetomod perl 1.0tomod_perl 2.0
Migration.

29 Jan 2004 137

10.1 Description

10.1 [Description|

This chapter is areference for porting code and configuration files from mod_perl 1.0 to mod_perl 2.0.

To learn about the porting process you should first read about [porting Perl moduleq (and may be about
porting XS modules).

As will be explained in details later loading Apache: : conpat at the server startup, should make the
code running properly under 1.0 work under mod_perl 2.0. If you want to port your code to mod_perl 2.0
or writing from scratch and not concerned about backwards compatibility, this document explains what
has changed compared to mod_perl 1.0.

Several configuration directives were changed, renamed or removed. Several APIs have changed,
renamed, removed, or moved to new packages. Certain functions while staying exactly the same as in
mod_perl 1.0, now reside in different packages. Before using them you need to find out those packages
and load them.

Y ou should be able to find the destiny of the functions that you cannot find any more or which behave
differently now under the package names the functions belong in mod_perl 1.0.

10.2 |Configuration Files Porting

To migrate the configuration files to the mod_perl 2.0 syntax, you may need to do certain adjustments.
Severa configuration directives are deprecated in 2.0, but still available for backwards compatibility with
mod_perl 1.0 unless 2.0 was built with[VP_COVPAT _1X=0] If you don’t need the backwards compatibil-
ity consider using the directives that have replaced them.

10.2.1 [Per | Handl er|

Per | Handl er wasreplaced with Per | ResponseHandl er .

10.2.2 [Per | SendHeader|

Per | SendHeader wasreplaced with Per | Opti ons +/ - Par seHeader s directive.

Per| SendHeader On => Perl| Opti ons +ParseHeaders
Per| SendHeader O f => Perl|l Options - ParseHeaders

10.2.3 [Per | Set upEnv]|

Per | Set upEnv wasreplaced with Per | Opt i ons +/ - Set upEnv directive.

Per| Set upEnv On => Per| Opti ons +Set upEnv
Per| Set upEnv O f => Per| Opti ons - Set upEnv

138 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.2.4 PerlTaintCheck

10.2.4 |Per | Tai nt Check|

The taint mode now can be turned on with:

Perl Switches -T

As with standard Perl, by default the taint mode is disabled and once enabled cannot be turned off inside
the code.

10.2.5 [Per | War n|

Warnings now can be enabled globally with:

Perl Switches -w

10.2.6 [Per | FreshRest art|

Per| FreshRest art isamod_perl 1.0 legacy and doesn’t exist in mod_perl 2.0. A full teardown and
startup of interpretersis done on restart.

If you need to use the same httpd.conffor 1.0 and 2.0, use:

<| f Defi ne ! MODPERL2>
Per | FreshRest art
</| f Define>

10.2.7 |Apache Configuration Customization|

mod_perl 2.0 has dlightly changed the mechanism for [adding custom configuration directiveg and now
also makes it easy to access an Apache parsed configuration tree’ s values.

META: add to the config tree access when it’ Il be written.

10.2.8 |{@ NC Manipulation|

® Directories Added Automatically to @ NC

Only if mod_perl was built with MP_COVPAT_1X=1, two directories. $ServeRoot and $Server
Rooflib/perl are pushed onto @ NC. $ServeRootis as defined by the Ser ver Root directive in
httpd.conf

e PERL5LI Band PERLLI B Environment Variables

mod_perl 2.0 doesn’t do anything special about PERL5LI B and PERLLI B Environment Variables.
If - T isin effect these variables are ignored by Perl. There are|several other wayqto adjust @ NC.

29 Jan 2004 139

10.3 Code Porting

10.3 |Code Porting

mod_perl 2.0 istrying hard to be back compatible with mod_perl 1.0. However some things (mostly APIS)
have been changed. In order to gain a complete compatibilty with 1.0 while running under 2.0, you should
load the compatibility module as early as possible:

use Apache: : conpat ;

a the server startup. And unless there are forgotten things or bugs, your code should work without any
changes under 2.0 series.

However, unless you want to keep the 1.0 compatibility, you should try to remove the compatibility layer
and adjust your code to work under 2.0 without it. Y ou want to do it mainly for the performance improve-
ment.

This document explains what APIs have changed and what new APIs should be used instead.

If you have mod _perl 1.0 and 2.0 installed on the same system and the two use the same perl libraries
directory (e.g. /usr/lib/perl5), to use mod_perl 2.0 make sure to load first the Apache2 module which will
perform the necessary adjustmentsto @ NC.

use Apache2; # if you have 1.0 and 2.0 installed
use Apache:: conpat;

So if before loading Apache2. pmthe @ NC array consisted of:

/honme/ stas/perl/ithread/lib/5.8.0/i686-1inux-thread-mnulti

/ home/ stas/perl/ithread/lib/5.8.0

/ home/ stas/perl/ithread/lib/site_perl/5.8.0/i686-1inux-thread-mnulti
/ home/ stas/perl/ithread/lib/site_perl/5.8.0

/ home/ stas/ perl/ithread/lib/site_perl

It will now look as:

/home/ stas/perl/ithread/lib/site_perl/5.8.0/i686-1inux-thread-multi/Apache2
/honme/ stas/perl/ithread/lib/5.8.0/i686-1inux-thread-nulti

/ home/ stas/perl/ithread/lib/5.8.0

/home/ stas/perl/ithread/lib/site_perl/5.8.0/i686-1inux-thread-mnulti

/ honme/ stas/perl/ithread/lib/site_perl/5.8.0

/ honme/ stas/perl/ithread/lib/site_perl

Notice that a new directory was prepended to the search path, so if for example the code attempts to load
Apache: : Request Rec and there are two versions of this module undef
/home/stas/perl/ithread/lib/site_perl/:

5.8.0/i686-1inux-thread-nulti/Apache/ Request Rec. pm
5.8.0/i686-1inux-thread-nulti/Apache2/ Apache/ Request Rec. pm

140 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.4 Apache::Registry, Apache::PerlRun and Friends

The mod_perl 2.0 version will be loaded first, because the directory
5.8.0/i686-linux-thread-multi/Apache2 is coming before the directory 5.8.0/i686-linux-thread-multi in
@ NC.

Finally, mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the
modules containing them have to be loaded first. The module ModPer | : : Met hodLookup can be used
to find out which modules need to be used. This module aso provides a function
prel oad_al |l _nodul es() that will load all mod perl 2.0 modules, implementing their APl in XS,
which is useful when one starts to port their mod_perl 1.0 code, though preferrably avoided in the produc-
tion environment if you want to save memory.

10.4 |Apache: : Regi stry, Apache: : Per| Run and
Friends

Apache: : Regi st ry, Apache: : Per| Run and other modules from the registry family now live in the
ModPer | : : namespace. In mod_perl 2.0 we put mod_perl specific functionality into the ModPer | : :
namespace, similar to APR: : and Apache: : which are used for apr and apache features, respectively.

At this moment ModPer| :: Regi stry (and others) doesn't chdir () into the script's dir like
Apache: : Regi st ry does, because chdi r () affects the whole process under threads. This should be
resolved by the time mod_perl 2.0 is released. Arthur Bergman works on the solution in form of:
ex::threads::cwd. See |http://www.perl.com/pub/a’2002/06/11/threads.html?page=2 Someone
should pick up and complete this module to make it really useful.

Meanwhile if you are using a prefork MPM and you have to rely on mod_perl performing chdir to the
script’ s directory, you can use the following subclass of MbdPer | : : Regi stry:

#fil e: ModPerl / Regi stryPrefork. pm
package ModPerl :: Regi stryPrefork;

use strict;
use warni ngs FATAL => ’all’

our $VERSION = ' 0. 01’ ;
use base qw(ModPerl :: Registry);
use File::Basenane ();
sub handl er : method {
ny $class = (@ >= 2) ? shift : _ PACKAGE_;

ny $r = shift;
return $cl ass->new $r)->defaul t_handl er();

sub chdir_file {
ny $file = @ == 2 2?2 $_[1] : $_[0]->{FILENANVE};
ny $dir = File::Basenane::dirname($file);
chdir $dir or die "Can't chdir to $dir: $'";

29 Jan 2004 141

http://www.perl.com/pub/a/2002/06/11/threads.html?page=2

10.5 Apache::Constants

}

1;
END__

Adjust your httpd.conf to have:

Alias /perl /path/to/perl/scripts
<Location /perl>
Set Handl er perl-script
Per | ResponseHandl er MbdPer| : : Regi stryPrefork
Opti ons +ExecCd
Per| Opti ons +Par seHeaders
</ Locati on>

Otherwise ModPer | : : Regi st ry modules are configured and used similarly to Apache: : Regi stry
modules. Refer to one of the following manpages for more information:

ModPer | : : Regi stryCooker, ModPer| : : Regi stry, ModPer | : : Regi st ryBB and

ModPer | : : Per| Run.

10.4.1 (MbdPer | : : Reqgi strylLoader|

In mod_perl 1.0 it was only possible to preload scripts as Apache: : Regi st ry handlers. In 2.0 the
loader can use any of the registry classes to preload into. The old API works as before, but new options
can be passed. Seethe ModPer | : : Regi st ryLoader manpage for more information.

10.5 |Apache: : Const ant s

Apache: : Const ant s has been replaced by three classes:

® Apache: : Const
Apache constants
® APR: : Const
Apache Portable Runtime constants
® MdPerl :: Const
mod_per| specific constants
See the manpages of the respective modules to figure out which constants they provide.

META: add the info how to perform the transition. XXX: may be write a script, which can tell you how to
port the constants to 2.0? Currently Apache: : conpat doesn’t provide a complete back compatibility

layer.

142 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.5.1 mod_perl 1.0 and 2.0 Constants Coexistence

10.5.1 jmod perl 1.0 and 2.0 Constants Coexistenceg

If the same codebase is used for both mod_perl generations, the following technique can be used for using
constants:

package MyApache: : Foo;

use strict;
use war ni ngs;

use nod_perl
use constant MP2 => $nod_perl::VERSION >= 1.99

BEG N {
if (MP2) {
requi re Apache:: Const;
Apache: : Const - >i nport (-conpil e => gw OK DECLI NED)) ;
}
el se {
requi re Apache:: Constants
Apache: : Const ant s->i nport (gw OK DECLI NED)) ;
}
}

sub handl er {

...

return MP2 ? Apache:: OK : Apache:: Constants:: K
}
1

Notice that if you don’'t use theidiom:

return MP2 ? Apache:: OK : Apache:: Constants:: K

but something like the following:
sub handl erl {
}&un1ﬂmm&:amﬂaMSuO«y
iub handl er2 {

}éiurn Apache: : OK()
}

You need to add () . If you don’t do that, let’s say that you run under mod_perl 2.0, perl will complain
about mod_perl 1.0 constant:

Bareword "Apache:: Constants::OK" not allowed while "strict subs" ..

Adding () preventsthiswarning.

29 Jan 2004 143

10.6 Issueswith Environment Variables

10.5.2 |Deprecated Constantg

REDI RECT and similar constants have been deprecated in Apache for years, in favor of the HTTP_*
names (they no longer exist Apache 2.0). mod_perl 2.0 API performs the following aiasing behind the
scenes:

NOT_FOUND => ' HTTP_NOT_FOUND ,
FORBI DDEN => ' HTTP_FORBI DDEN ,

AUTH_REQUI RED => ' HTTP_UNAUTHORI ZED |

SERVER ERROR => ' HTTP_| NTERNAL_SERVER ERRCR ,
REDI RECT => ' HTTP_MOVED_TEMPORARI LY’ ,

but we suggest moving to use the HTTP_* names. For example if running in 1.0 compatibility mode
change:

use Apache:: Constants gw REDI RECT);

to:

use Apache:: Constants gw HTTP_MOED TEMPORARI LY) ;

Thiswill work in both mod_perl generations.

10.5.3 |[SERVER_VERSI ON() |

Apache: : Const ant s: : SERVER VERSI ON() has been replaced with:

Apache: : Server::get_server_version();

10.5.4 lexport ()|

Apache: : Const ant s: : export () hasnoreplacement in 2.0 asit’s not needed.

10.6 [Issueswith Environment Variables

There are several thread-safety issues with setting environment variables.

Environment variables set during regquest time won't be seen by C code. See the|DBD::Oracle issug for
possible workarounds.

Forked processes (including backticks) won't see CGI emulation environment variables. (META: This
will hopefully be resolved in the future, it's documented in modperl_env.c:modperl_env_magic _set_all.)

144 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.7 Specia Environment Variables

10.7 |Special Environment Variables

10.7.1 BENV{ GATEWAY | NTERFACE} |

The environment variable $ENV{ GATEWAY_| NTERFACE} is deprecated in mod_perl 2.0 (See
[MP_COVPAT 1X=0). Instead use $SENV{ MOD_PERL} (available in both mod_perl generations), which is
set to something like this:

nmod_perl/1.99_03-dev

However to check the version it’s better to use $nod_per | : : VERSI ON:

use nod_perl;
use constant MP2 => ($nod_perl::VERSION >= 1.99);

10.8 |Apache: : Methods

10.8.1 |Apache- >r equest |

Apache- >r equest usage should be avoided under mod_perl 2.0 $r should be passed around as an
argument instead (or in the worst case maintain your own global variable). Since your application may run
under under threaded mpm, the Apache- >r equest usage involves storage and retrieval from the thread
local storage, which is expensive.

It's possible to use $r even in CGlI scripts running under Registry modules, without breaking the mod_cgi
compatibility. Registry modules convert a script like:

print "Content-type: text/plain";
print "Hello";

into something like:

package Foo;

sub handl er {
print "Content-type: text/plain\n\n";
print "Hello";
return Apache:: CK;

}

where the handl er () function always receives $r as an argument, so if you change your script to be:

my $r;
$r = shift if $ENV{MOD_PERL};
if ($r) {
$r->content _type('text/plain’);
}

el se {
print "Content-type: text/plain\n\n";
}

print "Hello"

29 Jan 2004 145

10.8.1 Apache->reguest

it'll really be converted into something like:

package Foo;
sub handl er {
my $r;
$r = shift if $ENV{MOD_PERL};
if ($r) {
$r->content _type('text/plain’);
}

el se {
print "Content-type: text/plain\n\n";
}

print "Hello"
return Apache:: CK;

}

The script works under both mod_perl and mod_cgi.

For example CGl.pm 2.93 or higher accepts $r as an argument to its new() function. So does

Cd : : Cooki e: : f et ch from the same distribution.

Moreover, user’s configuration may preclude from Apache- >r equest being available at run time. For

any location that uses Apache- >r equest and uses Set Handl er
should either explicitly enable this feature:

<Location ...>
Set Handl er nodper |
Per| Opti ons +d obal Request
</ Locat i on>
It's aready enabled for Set Handl er perl -scri pt:

<Location ...>
Set Handl er perl-script

</ Locati on>

nodper |, the configuration

This configuration makes Apache- >r equest available only during the response phase (Per | Re-]
[sponseHandl er). Other phases can make Apache- >r equest available, by explicitly setting it in the
handler that has an access to $r . For example the following skeleton for an authen phase handler makes

the Apache- >r equest availablein the calls made fromit:
package MyApache: : Aut h;
Per| Aut henHandl er MyApache: : Aut h
use Apache:: RequestUtil ();
#

sub handl er {
ny $r = shift;

146

29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.8.2 Apache->define

Apache- >request ($r);
do sone calls that rely on Apache->request being available
#...

}

10.8.2 |[Apache- >def i ne|

Apache- >defi ne has been replaced with Apache: : Server: :exists _config define()
residing inside Apache: : Server Uti | .

Seethe Apache: : Server Ut i | manpage.

10.8.3 |[Apache- >can st ack handl er s

Apache- >can_st ack_handl er s isno longer needed, as mod_perl 2.0 can aways stack handlers.

10.8.4 |[Apache- >unt ai nt |

Apache->unt ai nt has moved to Apache: : Server Uti |l and now is a function, rather a class
method. It' [l will untaint al its arguments. Y ou shouldn’t be using this function unless you know what you
are doing. Refer to the perlsec manpage for more information.

Apache: : conpat provides the backward compatible with mod_perl 1.0 implementation.

10.8.5 |Apache- >get handl er s|

To get handlers for the server level, mod_perl 2.0 code should use:

$s->get _handlers(...);
or:
Apache- >server->get _handlers(...);

Apache- >get _handl er s isavaableviaApache: : conpat .

10.8.6 |Apache- >push handl er s|

To push handlers at the server level, mod_perl 2.0 code should use:

$s->push_handl ers(...);

or:

Apache- >server->push_handl ers(...);

29 Jan 2004 147

10.8.7 Apache->set_handlers

Apache->push_handl er s isavalableviaApache: : conpat .

10.8.7 [Apache- >set handl er s|

To set handlers at the server level, mod_perl 2.0 code should use:

$s->set _handlers(...);
or:
Apache- >server->set _handlers(...);

Apache- >set _handl er s isavalableviaApache: : conpat .

10.8.8 |[Apache- >ht t pd conf|

Apache- >ht t pd_conf isnow $s- >add_confi g or $r - >add_confi g.eg.:

requi re Apache:: ServerUil;
Apache- >server->add_config([’require valid-user']);

Seethe Apache: : Server Uti | manpage.

Apache->ht t pd_conf isavaableviaApache: : conpat .

10.8.9 |Apache: : exi t ()|

Apache: : exi t () has been replaced with ModPer | :: Util::exit(), whichis a function (not a
method) and accepts a single optional argument: status, whose default is 0 (== do nothing).

Seethe ModPer | : : Uti | manpage.

10.8.10 [Apache: : gensym()|

Since Perl 5.6.1 filehandlers are autovivified and there is no need for Apache: : gensyn() function,
since now it can be done with:

open ny $fh, "foo" or die $!;

Though the C function nodper | _per| gensym() isavailable for XS/C extensions writers.

10.8.11 [Apache: : nodul e()|

Apache: : nodul e() has been replaced with the function Apache: : Modul e: : | oaded(), which
now accepts a single argument: the module name.

148 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.9 Apache: Variables

10.8.12 |[Apache: : 1 og error ()]

Apache: : 1 og_error () isnotavailablein mod perl 2.0 API. You can use:

Apache- >server->l og_error

instead. See the Apache: : Log manpage.

10.9 |Apache: : Variables
10.9.1 $Apache: : T|

$Apache: : __ Tisdeprecated in mod_perl 2.0. Use ${ "TAI NT} instead.

10.10 |Apache: : Server: . Methodsand Variables
10.10.1 $Apache: : Server: : W)

$Apache: : Server: : CADisdeprecated and existsonly in Apache: : conpat .

10.10.2 [$Apache: : Ser ver : : AddPer | Ver si on|

$Apache: : Server: : AddPer| Ver si on is deprecated and exists only in Apache: : conpat .

10.11 [Server Object M ethods

10.11.1 [$s- >r egi st er cl eanup)|

$s- >regi ster_cl eanup has been replaced with APR: : Pool : : cl eanup_regi ster () which
accepts the pool object as the first argument instead of the server object. e.q.:

sub cl eanup_cal | back { ny $data = shift; ... }
$s- >pool - >cl eanup_regi st er (\ &l eanup_cal | back, $data);

where the last argument $dat a is optional, and if supplied will be passed as the first argument to the call-
back function.

Seethe APR: : Pool manpage.

10.11.2

See the next entry.

29 Jan 2004 149

10.12 Request Object Methods

10.11.3

apache-1.3 had server_rec records for server_uid and server_gid. httpd-2.0 doesn’t have them, because in
httpd-2.0 the directives User and Group are platform specific. And only UNIX supports it:
|http://httpd.apache.org/docs-2.0/mod/mpm common.html#user|

It's possible to emulate mod_perl 1.0 API doing:

sub Apache::Server::uid { $<}
sub Apache::Server::gid { $(}

but the problem is that if the server is started as root, but its child processes are run under a different user-
name, e.g. nobody, at the startup the above function will report the ui d and gi d values of root and not
nobody, i.e. at startup it won't be possible to know what the User and Group settings are in httpd.conf.

META: though we can probably access the parsed config tree and try to fish these values from there. The
real problem isthat these values won't be available on all platforms and therefore we should probably not
support them and let developers figure out how to code around it (e.g. by using $< and $().

10.12 |Request Object M ethods
10.12.1 {$r - >cqgi _env|

See the next item

10.12.2 {$r - >cqgi var|

$r->cgi _env and $r->cgi _var should be replaced with $r - >subpr ocess_env, which works
identically in both mod_perl generations.

10.12.3 [$r - >current cal | back|

$r->current _cal | back isnow smply a Apache: : current _cal | back and can be caled for
any of the phases, including those where $r simply doesn’t exist.

Apache: : conpat implements $r - >current _cal | back for backwards compatibility.

10.12.4 |$r - >get renot e host|

get _renot e_host () isnow invoked ontheconnecti on obj ect:

use Apache:: Connecti on;
$r->connect i on- >get _renot e_host ();

150 29 Jan 2004

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#user

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.12.5 $r->cleanup_for_exec

$r - >get _renot e_host isavailablethrough Apache: : conpat .

10.12.5 [$r - >cl eanup for exec|

$r->cl eanup_f or _exec doesn't exist in the Apache 2.0 AP, it is now being internally called by the
Apache process spawning functions. For more information see Apache: : SubPr ocess manpage.

There is $pool - >cl eanup_f or _exec, but it's not the same as $r - >cl eanup_f or _exec in the
mod_perl 1.0 API.

10.12.6 [$r - >cont ent |

See the next item.

10.12.7 |$r - >ar gs in an Array Context]

$r - >ar gs in 2.0 returns the query string without parsing and splitting it into an array. You can also set
the query string by passing a string to this method.

$r - >cont ent and $r - >ar gs in an array context were mistakes that never should have been part of the
mod_perl 1.0 API. There are multiple reason for that, among others:

® does not handle multi-value keys
® does not handle multi-part content types
® does not handle chunked encoding

® durps $r->headers_i n->{" content-|ength’} into asingle buffer (bad for performance,
memory bloat, possible dos attack, etc.)

® ingeneral duplicates functionality (and does so poorly) that is done better in Apache: : Request .

e if one wishes to smply read POST daa, there is the more modern
{setup, shoul d, get} client_ bl ock API, and even more modern filter API, along with
continued support for r ead(STDI N, ...) and $r - >r ead($buf,
$r->headers_i n->{’ content-length'})

For now you can use CA@ . pmor the codein Apache: : conpat (it's slower).

META: when Apache: : Request will be ported to mod_perl 2.0, you will have the fast C implementa-
tion of these functions.

29 Jan 2004 151

10.12.8 $r->chdir_file

10.12.8 $r->chdir fil e

chdir () cannot be used in the threaded environment, therefore $r->chdir _fil e is not in the
mod_perl 2.0 API.

For more information refer to: [Threads Coding Issues Under mod perl|

10.12.9 $r - >i s nmi n|

$r - >i s_nmmi nisnot part of themod _perl 2.0 API. Use! $r - >nai n instead.

Refer to the Apache: : Request Rec manpage.

10.12.10 [$r - >f i nf O

As Apache 2.0 doesn't provide an access to the stat structure, but hides it in the opaque object
$r->fi nfo now returns an APR: : Fi nf 0 object. You can then invoke the APR: : Fi nf o accessor
methods on it.

It's also possible to adjust the mod_perl 1.0 code using Apache::compat’ s overriding. For example:
use Apache: : conpat;
Apache: : conpat : : overri de_np2_api (' Apache:: RequestRec: :finfo');
ny $is_witable = -w $r->finfo;
Apache: : conpat : :restore_np2_api (' Apache: : RequestRec: :finfo’);
which internally does just the following:

stat $r->filename and return *_;

So may beit’'s easier to just change the code to use this directly, so the above example can be adjusted to
be:

ny $is_ witable = -w $r->fil enaneg;

with the performance penalty of an extra st at () system cal. If you don't want this extra call, you'd
have to write:

use APR: : Finfo;

use Apache:: Request Rec;

use APR : Const -conpile => qw(WARI TE);
ny $is_ witable = $r->finfo->protection & APR : WARI TE,

Seethe APR: : Fi nf o manpage for more information.

152 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.12.11 $r->notes

10.12.11 [$r - >not es|

Similar to headers_in(), headers_out() and err_headers_out() in mod perl 2.0,
$r->not es() returns an APR: : Tabl e object, which can be used as a tied hash or caling its
get()/set()/add()/unset() methods.

It's also possible to adjust the mod_perl 1.0 code using Apache::compat’ s overriding:

use Apache:: conpat;

Apache: : conpat: : overri de_np2_api (' Apache: : Request Rec: : notes’);
$r->not es($key => $val);

$val = $r->not es($key);

Apache: : conpat: :restore_np2_api (' Apache: : Request Rec: : notes’);

Seethe Apache: : Request Rec manpage.

10.12.12 [$r - >header i n|

See the next item.

10.12.13 [$r - >header out |

See the next item.

10.12.14 |$r - >err header out|

header in(), header_out() and err_header_out() are not avalable in 2.0. Use
headers_in(), headers_out () anderr_headers_out () instead (which should be used in 1.0
aswaell). For example you need to replace:

$r->err_header _out ("Pragma" => "no-cache");
with:
$r->err_headers_out->{' Pragma’} = "no-cache";

See the Apache::RequestRec manpage.

10.12.15 {$r - >| og r eason)|

$r->|1 og_reason is not available in mod_perl 2.0 API. Use the other standard logging functions
provided by the Apache: : Log module. For example:

$r->log_error("it works!");

Seethe Apache: : Log manpage.

29 Jan 2004 153

10.12.16 $r->register_cleanup

10.12.16 [$r - >r egi st er cl eanup|

$r - >regi st er_cl eanup has been replaced with APR: : Pool : : cl eanup_regi ster () which
accepts the pool object as the first argument instead of the request object. e.g.:

sub cl eanup_cal | back { ny $data = shift; ... }
$r - >pool - >cl eanup_regi ster (\ &l eanup_cal | back, $data);

where the last argument $dat a is optional, and if supplied will be passed as the first argument to the call-
back function.

See the APR::Pool manpage.

10.12.17 [$r - >post connecti on|

$r - >post _connect i on has been replaced with:

$r - >connect i on- >pool - >cl eanup_regi ster();

See the APR::Pool manpage.

10.12.18 [$r - >r equest |

Use|Apache- >r equest |

10.12.19 {$r - >send fd|

Apache 2.0 provides anew method sendf i | e() instead of send_f d, so if your code used to do:

open nmy $fh, "<$file" or die "$!'";
$r->send_fd($fh);
cl ose $fh;
now all you need is:
$r->sendfil e($fh);

There is also a compatibility implementation in pure perl in Apache: : conpat .

10.12.20 {$r - >send fd | engt h|

currently available only in the 1.0 compatibility layer. The problem is that Apache has changed the API
and its functionality. See the implementation in Apache: : conpat .

XXX: needs a better resolution

154 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.12.21 $r->send_http_header

10.12.21 [$r - >send http header]|

This method is not needed in 2.0, though available in Apache: : conpat . 2.0 handlers only need to set
the Content-type via$r - >cont ent _t ype($t ype) .

10.12.22 [$r - >server root rel ati ve|

Apache: : Server::server_root _rel ativeisafunctionin 2.0 anditsfirst argument is the pool
object. For example:

during request

nmy $conf_dir = Apache:: Server::server_root_relative($r->pool, 'conf’)

during startup

my $conf_dir = Apache:: Server::server_root_relative($s->pool, 'conf’);
Alternatively:

during request

ny $conf_dir = $r->server_root_relative('conf’);

during startup

ny $conf_dir = $c->server_root_relative(’conf’);
Note that the old form

nmy $conf_dir = Apache->server_root_relative(’ conf’)

is no longer valid - Apache: : Server: :server_root _rel ative must be caled from either one
of $r, $s, or $c, or be explicitly passed a pool.

See the Apache:: ServerUtil manpage.

10.12.23 [$r - >har d ti nmeout |

See the next item.

10.12.24 [$r - >r eset ti meout |

See the next item.

10.12.25 [$r - >sof t ti meout |

See the next item.

29 Jan 2004 155

10.13 Apache::Connection

10.12.26 [$r->ki Il ti meout|

The functions $r->hard_timeout, $r->reset_tineout, $r->soft_tinmeout and
$r->kill _timeout aren't needed in mod_perl 2.0.

10.12.27 [$r - >set byt er ange|

See the next item.

10.12.28 [$r - >each byt er ange|

The functions $r - >set _byt er ange and $r - >each_byt er ange aren’t in the Apache 2.0 API, and
therefore don’t exist in mod_perl 2.0. The byterange serving functionality is now implemented in the
ap_byterange filter, which is a part of the core http module, meaning that it's automatically taking care of
serving the requested ranges off the normal complete response. There is no need to configure it. It's
executed only if the appropriate request headers are set. These headers aren't listed here, since there are
several combinations of them, including the older ones which are still supported. For a complete info on
these see modules/http/http_protocal.c.

10.13 |Apache: : Connecti on

10.13.1 $connecti on- >aut h t ype|

The record auth_type doesn’t exist in the Apache 2.0's connection struct. It exists only in the request
record struct. The new accessor in 2.0 APl is$r - >ap_aut h_t ype.

Apache: : conpat provides a back compatibility method, though it relies on the availability of the
global Apache- >r equest , which requires the configuration to have:

Per| Opti ons +d obal Request

to set it up for earlier stages than response handler.

10.13.2 [$connect i on- >user |

This method is deprecated in mod_perl 1.0 and $r - >user should be used instead for both versions of
mod_perl. $r - >user () method is available since mod_perl version 1.24 01.

10.13.3 [$connect i on- >l ocal addr|

See the next item.

156 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.14 Apache::File

10.13.4 {$connecti on- >r enot e addr |

$connecti on- >l ocal _addr and $connecti on->renote_addr return an APR:Sock e-
tAddr object and you can use this object’s methods to retrieve the wanted bits of information, so if you
had a code like:

use Socket 'sockaddr_in’;
ny ($serverport, $serverip)
ny ($renoteport, $renoteip)

sockaddr _i n($r - >connecti on->| ocal _addr);
sockaddr _i n($r - >connecti on->renot e_addr) ;

now it'll be written as;

requi re APR : SockAddr
nmy $serverport = $c->l ocal _addr->port;

ny $serverip = $c- >l ocal _addr->i p_get;
ny $renoteport = $c->renote_addr->port;
nmy $remoteip = $c->renote_addr->i p_get;

It's also possible to adjust the code using Apache::compat’ s overriding:

use Socket ’'sockaddr_in’;
use Apache: : conpat;

Apache: : conpat : : overri de_np2_api (' Apache: : Connection: :local _addr’);
ny ($serverport, $serverip) = sockaddr_i n($r->connection->l ocal _addr)
Apache: : conpat : : restore_np2_api (' Apache: : Connection:: | ocal _addr’);

Apache: : conpat : : overri de_np2_api (' Apache:: Connecti on: :renote_addr’)
ny ($renoteport, $renoteip) = sockaddr_in($r->connection->renote_addr);
Apache: : conpat : : restore_np2_api ('’ Apache: : Connection::renpte_addr’);

10.14 Apache: : Fil e

The methods from mod_perl 1.0's module Apache: : Fi | e have been either moved to other packages or
removed.

10.14.1 jopen() andcl ose()]|

The methods open() and cl ose() were removed. See the back compatibility implementation in the
module Apache: : conpat .

10.14.2 tnpfil e()]

Themethodt npfi | e() wasremoved since Apache 2.0 doesn’'t have the API for this method anymore.

SeeFi | e: : Tenp, or the back compatibility implementation in the module Apache: : conpat .

29 Jan 2004 157

10.15 Apache::Util

With Perl v5.8.0 you can create anonymous temporary files:

open $fh, "+>", undef or die $!;

That isaliteral undef , not an undefined value.

10.15 |Apache: : Uti |

A few Apache: : Ut i | functions have changed their interface.

10.15.1 |Apache: : Uil ::size string()]

Apache: : Util::size_string() has been replaced with APR: : String::format_size(),
which returns formatted strings of only 4 characters long. Seethe APR: : St r i ng manpage.

10.15.2 [Apache: : Util :: escape uri ()|

Apache: : Util::escape_uri() has been replaced with Apache: : Util::escape_pat h()
and requires a pool object as a second argument. For example:

$escaped_path = Apache:: Util::escape_pat h($path, $r->pool);

10.15.3 [Apache: : Uti |l :: unescape uri ()|

Apache: : Util::unescape_uri () hasbeenreplaced with
Apache: : URI : : unescape_url ().

10.15.4 |[Apache: : Util :: escape htm ()]

Apache: : Util::escape_htm currently is avalable only via Apache::conpat until
ap_escape_html isreworked to not require a pool.

10.15.5 [Apache: : Uti | : : parsedat e()]|

Apache: : Uti |l :: parsedat e() hasbeen replaced with APR: : Dat e: : parse_http().

10.15.6 |[Apache: : Util::ht tinme()]

Apache: : Util::ht_tinme() hasbeenreplaced (temporary?) with
Apache: : Util::format _time(), which requires a pool object as aforth argument. All four argu-
ments are now required.

For example:

158 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.16 Apache::URI

use Apache:: Uil ();

$f mt %, %d % %W %H YM ¥B % ;

$gnt 1;

$fnt_time = Apache:: Uil::format_tine(tinme(), $fnt, $gnt, $r->pool);

See the Apache::Util manpage.

10.15.7 |Apache: : Util::validate password()]

Apache: : Util::validate_password() has been replaced with APR:: password_vali -
dat e() . For example:

ny $ok = Apache:: Uil ::password_validate("stas", "ZeO RAc3i YvpA")

10.16 |Apache: : UR
10.16.1 [Apache: : URl - >parse($r, [$uri])]

par se() and its associate methods have moved into the APR: : URI package. For example:

ny $curl = $r->construct _url;
APR: : URI - >par se($r- >pool , $curl);

Seethe APR: : URI manpage.

10.16.2 [unpar se()]|

Other than moving to the APR: : URI package, unpar se is now protocol-agnostic. Apache won't use
http as the default protocol if hosthame was set, but scheme wasn’t not. So the following code:

request http://1ocal host. | ocal donmai n: 8529/ Test API : : ur
nmy $parsed = $r->parsed_uri;

$par sed- >host nane($r - >get _server _nane) ;

$par sed- >port ($r- >get _server_port);

print $parsed->unparse

prints:
/11 ocal host. | ocal domai n: 8529/ Test API : : uri

forcing you to make sure that the scheme is explicitly set. Thiswill do the right thing:

request http://Iocal host. | ocal domai n: 8529/ Test API : : ur
ny $parsed = $r->parsed_uri;

$par sed- >host nane($r - >get _server _nane) ;

$par sed- >port ($r->get _server_port);

$par sed- >schene(’ http’)

print $parsed->unparse

29 Jan 2004 159

10.17 Miscellaneous

prints:
http://1ocal host. | ocal donai n: 8529/ Test API : : ur
Seethe APR: : URI manpage for more information.

It's also possible to adjust the behavior to be mod_perl 1.0 compatible using Apache::compat’s overriding,
inwhich caseunpar se() will transparently set scheme to http.

request http://1ocal host.| ocal domai n: 8529/ Test API : : uri
Apache: : conpat: :override_np2_api (' APR : URl : : unparse’);
ny $parsed = $r->parsed_uri;

set hostnane, but not the schene

$par sed- >host name($r - >get _server_nane) ;

$par sed- >port ($r->get _server_port);

print $parsed->unpar se;

Apache: : conpat: :restore_np2_api (' APR : URl : : unparse’);

prints:

http://1ocal host.| ocal donmai n: 8529/ Test API : : uri

10.17 Miscellaneous
10.17.1 Method Handlerg

In mod_perl 1.0 the method handlers could be specified by using the ($$) prototype:

package Bird;
@ SA = gqw Eagl e);

sub handler ($%$) {
ny($class, $r) = @;

}

mod_perl 2.0 doesn’t handle callbacks with ($$) prototypes differently than other callbacks (as it did in
mod_perl 1.0), mainly because severa callbacks in 2.0 have more arguments than just $r, so the ($$)
prototype doesn’'t make sense anymore. Therefore if you want your code to work with both mod_perl
generations and you can allow the luxury of:

require 5.6.0;

or if you need the code to run only on mod_perl 2.0, use the method subroutine attribute. (The subroutine
attributes are supported in Perl since version 5.6.0.)

Here is the same example rewritten using the method subroutine attribute:

160 29 Jan 2004

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.18 Apache::src

package Bird;
@ SA = qw(Eagl e) ;

sub handl er : nethod {
ny($class, $r) = @;

}

See the attributes manpage.
If A ass- >net hod syntax is used for aPer | * Handl er, the: met hod attributeis not required.

The porting tutorial provides|exampled on how to use the same code base under both mod_perl genera-
tions when the handler has to be a method.

10.17.2 |Stacked Handlerg

Both mod_perl 1.0 and 2.0 support the ability to register more than one handler in each runtime phase, a
feature known as stacked handlers. For example,

Per | Aut henHandl er My::First My:: Second

The behavior of stacked Perl handlers differs between mod_perl 1.0 and 2.0. In 2.0, mod_per| respects the
run-type of the underlying hook - it does not run all configured Perl handlers for each phase but instead
behaves in the same way as Apache does when multiple handlers are configured, respecting (or ignoring)
the return value of each handler asit is called.

See|Stacked Handlerg for a complete description of each hook and its run-type.

10.18 |Apache: : src

For those who write 3rd party modules using XS, this module was used to supply mod_perl specific
include paths, defines and other things, needed for building the extensions. mod_perl 2.0 makes things
transparent with ModPer | : : MM

Here is how to write a simple Makefile.PL for modules wanting to build XS code against mod_perl 2.0:
use Apache2;
use nod_perl 1.99;
use ModPerl:: MW ();
ModPer | :: MM : WiteMakefil e(
NAME => "Foo",
)

and everything will be done for you.

META: we probably will have acompat layer at some point.

29 Jan 2004 161

10.19 Apache:Table

META: move this section to the devel/porting and link there instead

10.19 |[Apache: : Tabl e

Apache: : Tabl e hasbeen renamed to APR: : Tabl e.

10.20 |Apache: : SI G

Apache: : SI Gceurrently exists only Apache: : conpat and it does nothing.

10.21 [Apache: : St at | NC

Apache: : St at | NC has been replaced by Apache: : Rel oad, which works for both mod_perl genera-
tions. To migrateto Apache: : Rel oad simply replace:

Per| I ni t Handl er Apache:: Stat| NC
with:
Per || ni t Handl er Apache: : Rel oad

However Apache: : Rel oad provides an extra functionality, covered in the modul€’ s manpage.

10.22 M aintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

10.23 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

162 29 Jan 2004

Introducing mod_perl Handlers 11 Introducing mod_perl Handlers

11 Introducing mod_perl Handlers

29 Jan 2004 163

11.1 Description

11.1 |Description|

This chapter provides an introduction into mod_perl handlers.

11.2 What are Handler s?

Apache distinguishes between numerous phases for which it provides hooks (because the C functions are
called ap_hook_<phase_name>) where modules can plug various callbacks to extend and alter the default
behavior of the webserver. mod _perl provides a Perl interface for most of the available hooks, so
mod_perl modules writers can change the Apache behavior in Perl. These callbacks are usually referred to
as handlers and therefore the configuration directives for the mod_perl handlers look like: Per| -
FooHandl er , where Foo is one of the handler names. For example Per | ResponseHandl er config-
ures the response callback.

A typical handler is simply aperl package with a handler subroutine. For example:
file:MyApache/ Current Ti me. pm

package MyApache: : Current Ti ne;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request! O ();

use Apache:: Const -conpile => gw(K);

sub handl er {
my $r = shift;

$r->content _type('text/plain’);
$r->print("Nowis: " . scalar(localtine) . "\n");

return Apache: : CK;
}
1;

This handler ssimply returns the current date and time as a response.

Since thisis aresponse handler, we configure it as a such in httpd.conf:

Per | ResponseHandl er MyApache: : Current Ti ne

Since the response handler should be configured for a specific location, let's write a complete configura-
tion section:

Per| Modul e MyApache: : Current Ti me
<Location /tine>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : Current Ti ne
</ Locati on>

164 29 Jan 2004

Introducing mod_perl Handlers 11.3 Handler Return Values

Now when arequest is issued to|http://localhost/timg this response handler is executed and a response that
includes the current time is returned to the client.

11.3 Handler Return Values

Different handler groups are supposed to return different values. The only value that can be returned by all
handlersis Apache: : OK, which tells Apache that the handler has successfully finished its execution.

Apache: : DECLI NED is another return value that indicates success, but it's only relevant for [phased of
typel[RUN_FI RS

may also return Apache: : DONE which tells Apache to stop the normal
and fast forward to the [Perl LogHandl er] followed by [PerT O eanupHandl er] [HTTP |
may return any HTTP status, which similarly to Apache: : DONE will cause an abort of the
request cycle, by also will be interpreted as an error. Therefore you don't want to return
Apache: : HTTP_OK from your HTTP response handler, but Apache: : OK and Apache will send the
200 K dtatus by itself.

return Apache: : OK to indicate that the filter has successfully finished. If the return value
is Apache: : DECLI NED, mod_perl will read and forward the data on behalf of the filter. Please notice
that this feature is specific to mod_perl. If there is some problem with obtaining or sending the bucket
brigades, or the bucketsin it, filters need to return the error returned by the method that tried to manipulate
the bucket brigade or the bucket. Normally it'd be an APR: : constant.

[Protocol handler|return values aren’t really handled by Apache, the handler is supposed to take care of any
errors by itself. The only special case is the|Per | Pr eConnect i onHandl er |handler, which, if return-
ing anything but Apache: : OK or Apache: : DONE, will prevent from[Per | Connect i onHandl er[to
berun.|Per | Pr eConnect i onHandl er|handlers should always return Apache: : OK.

11.4 mod per|l Handlers Categories

The mod_perl handlers can be divided by their application scope in several categories:

e [Server lifecycld

O [Per| OpenLogsHandl er|

O |Per | Post Conf i gHandl er|

O |Per| Chi | dl ni t Handl er|

O [Perl Chi | dExi t Handl er]
® |Protocols

O |Per| PreConnect i onHandl er|

O [Per| ProcessConnecti onHandl er|
o |Filterg

O |Perl I nput Fi |t er Handl er|

O [Perl Qut put Fi | t er Handl er|
e [HTTP Protocol|

29 Jan 2004 165

http://localhost/time

11.5 Stacked Handlers

11.

[Per | Post ReadRequest Handl er|

[Per 1 Tr ansHandl er|

|Per | MapToSt or ageHandl er|

[Per || ni t Handl er|

|Per | Header Par ser Handl er|

|Per| AccessHandl er|

[Per | Aut henHandl er|

[Per 1 Aut hzHandl er|

|Per | TypeHandl er|

[Per | Fi xupHandl er|

|Per | ResponseHandl er|

|Per| LogHandl er|

O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOo

[Per1 A eanupHandl er |

5 [Stacked Handler g

For each phase there can be more than one handler assigned (also known as hooks, because the C func-
tions are called ap_hook <phase name>). Phases' behavior varies when there is more then one handler
registered to run for the same phase. The following table specifies each handler’s behavior in this situa-

tion:

Directive

Per | OpenLogsHandl er
Per | Post Confi gHandl er
Per | Chi | dI ni t Handl er
Per | Chi | dExi t Handl er

Per | PreConnecti onHandl er
Per | ProcessConnect i onHandl er

Per | Post ReadRequest Handl er
Per | TransHandl er

Per | MapToSt or ageHandl er
Per | | ni t Handl er

Per | Header Par ser Handl er
Per | AccessHandl er

Per | Aut henHandl er

Per | Aut hzHandl er

Per | TypeHandl er

Per | Fi xupHandl er

Per | ResponseHandl er

Per | LogHandl er

Per | C eanupHandl er

Per| I nput Fi | t er Handl er
Per | Qut put Fi | t er Handl er

166

RUN_ALL
RUN_ALL
VO D
VO D

RUN_ALL
RUN_FI RST

RUN_ALL
RUN_FI RST
RUN_FI RST
RUN_ALL
RUN_ALL
RUN_ALL
RUN_FI RST
RUN_FI RST
RUN_FI RST
RUN_ALL
RUN_FI RST
RUN_ALL
RUN_ALL

va D
va D

29 Jan 2004

Introducing mod_perl Handlers 11.6 Hook Ordering (Position)

Note: [Per | Chi | dExi t Handl er| and [Per | G eanupHandl er| are not real Apache hooks, but to
mod_perl users they behave as all other hooks.

And here is the description of the possible types:

1151 NO D

Handlers of the type VO D will be all executed in the order they have been registered disregarding their
return values. Though in mod_perl they are expected to return Apache: : OK.

11.5.2 |RUN_FI RST]

Handlers of the type RUN_FI RST will be executed in the order they have been registered until the first
handler that returns something other than Apache:: DECLI NED. If the return vaue is
Apache: : DECLI NED, the next handler in the chain will be run. If the return value is Apache: : K the
next phase will start. In al other cases the execution will be aborted.

11.5.3 |RUN_ALL

Handlers of the type RUN_ALL will be executed in the order they have been registered until the first
handler that returns something other than Apache: : OK or Apache: : DECLI NED.

For C APl declarations see include/ap _config.h, which includes other types which aren't exposed by
mod_perl handlers.

Also seejmod perl Directives Argument Types and Allowed Location|

11.6 Hook Ordering (Position)

The following constants specify how the new hooks (handlers) are inserted into the list of hooks when
thereis at least one hook already registered for the same phase.

META: Not working yet.
META: need to verify the following:
® APR : HOOK_REALLY_FI RST
run this hook first, before ANY THING.
® APR : HOOK_FI RST
run this hook first.

e APR: : HOOK_M DDLE

29 Jan 2004 167

11.7 Bucket Brigades

run this hook somewhere.
® APR : HOOK LAST

run this hook after every other hook which is defined.
e APR : HOOK_REALLY_LAST

run this hook last, after EVERY THING.

META: more information in mod_example.c talking about position/predecessors, €tc.

11.7 Bucket Brigades

Apache 2.0 allows multiple modules to filter both the request and the response. Now one module can pipe
its output as an input to another module as if another module was receiving the data directly from the TCP
stream. The same mechanism works with the generated response.

With I/O filtering in place, simple filters, like data compression and decompression, can be easily imple-
mented and complex filters, like SSL, are now possible without needing to modify the the server code
which was the case with Apache 1.3.

In order to make the filtering mechanism efficient and avoid unnecessary copying, while keeping the data
abstracted, the Bucket Brigades technology was introduced. It’'s also used in[protocol handlerg

A bucket represents a chunk of data. Buckets linked together comprise a brigade. Each bucket in a brigade
can be modified, removed and replaced with another bucket. The goal is to minimize the data copying
where possible. Buckets come in different types, such asfiles, data blocks, end of stream indicators, pools,
etc. To manipulate a bucket one doesn’t need to know itsinternal representation.

The stream of datais represented by bucket brigades. When afilter is called it gets passed the brigade that
was the output of the previous filter. This brigade is then manipulated by the filter (e.g., by modifying
some buckets) and passed to the next filter in the stack.

The following figure depicts an imaginary bucket brigade:

168 29 Jan 2004

Introducing mod_perl Handlers 11.8 Maintainers

Apache 2.0 ‘ — Removed buckets

Bucket Brigades Original buckets
— — =Ingerted buckets

e

A

Y

The figure tries to show that after the presented bucket brigade has passed through severa filters some
buckets were removed, some modified and some added. Of course the handler that gets the brigade cannot
tell the history of the brigade, it can only see the existing buckets in the brigade.

Bucket brigades are discussed in detail in the|protocol handlerd and|l/O filtering chapters.

11.8 M aintainer g

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

11.9 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 169

12 Server Life Cycle Handlers

12 Server LifeCycleHandlers

170 29 Jan 2004

Server Life Cycle Handlers 12.1 Description

12.1 [Description|

This chapter discusses server life cycle and the mod_perl handlers participating in it.

12.2 |Server Life Cycle

The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are avail-
able to mod_perl 2.0:

EApache/mod perl 2.0
Server Lifecycle

StartUp OpenLogs
and \/ Eegtart
Contig PostConfig
Create processes/threads (+ChildInit)

JTonnectio

Jonnectiog
Loop

Server Shutdown (+ChildExit)

Jonnectio
Loop

Apache 2.0 starts by parsing the configuration file. After the configuration file is parsed, the Per | Open-
LogsHandl er handlers are executed if any. After that it's a turn of Per| Post Conf i gHandl er
handlers to be run. When the post_config phase is finished the server immediately restarts, to make sure

29 Jan 2004 1711

12.2.1 Startup Phases Demonstration Module

that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes and a mixture of both. For example the worker MPM
spawns a humber of processes, each running a number of threads. When each child process is started
Per | Chi | dI ni t handlers are executed. Notice that they are run for each starting process, not athread.

From that moment on each working thread processes connections until it's killed by the server or the
server is shutdown.

12.2.1 |Startup Phases Demonstration Modulg

Let’slook at the following example that demonstrates all the startup phases:

file:MyApache/ St artuplLog. pm

package MyApache:: StartuplLog

use strict;
use war ni ngs;

use Apache::Log ();
use Apache:: ServerWil ();

use File::Spec:: Functions;
use Apache:: Const -conpile => 'K

my $log file = catfile "logs", "startup_l og"
ny $log_fh;

sub open_l ogs {
ny($conf _pool, $log _pool, $tenp_pool, $s) = @;
my $l og_path = Apache:: Server::server_root_relative($conf_pool, $log file);

$s->warn("opening the log file: $log_path");
open $log fh, ">>3log_path" or die "can't open $log_path: $'";
ny $oldfh = select($log fh); $| = 1; sel ect(S$ol dfh);

say("process $% is born to reproduce");
return Apache:: X

sub post_config {
ny($conf _pool, $log _pool, $tenp_pool, $s) = @;
say("configuration is conpleted");
return Apache:: X

sub child_init {
my($chil d_pool, $s) = @;
say("process $$ is born to serve");
return Apache:: K

172 29 Jan 2004

Server Life Cycle Handlers

sub child_exit {
ny($chi | d_pool
say("process $$ now exits");
return Apache: : K

$s) = @;

= (caller(1))[3] =~ /([":]

printf $log_fh "[%] -
scal ar (1 ocal ti ne)

% 11s: %\n

+)$/;

$caller, $ [0];

when the log file is not open

" says: $_[0]\n

say("process $$ i s shutdown\n")

}
sub say {
ny($cal |l er)
if (defined $log_fh) {
}
el se {
warn _ PACKAGE
}
}
END {
}
1

And the httpd.conf configuration section:

<l f Modul e prefork.c>

Start upLog

Start Servers 4
M nSpar eServers 4
MaxSpar eSer vers 4
MaxCl i ents 10
MaxRequest sPerChild O
</ | f Modul e>
Per | Modul e MyApache:
Per | OpenLogsHandl er MyApache:
Per | Post Confi gHandl er MyApache:
Per| Chi | dl ni t Handl er MyApache:
Per| Chi | dExi t Handl er MyApache:

StartuplLog:
StartuplLog:
StartuplLog:
StartuplLog:

open_I ogs
post _config
child_init
child_exit

12.2.1 Startup Phases Demonstration Module

When we perform a server startup followed by a shutdown, the logs/startup_log is created if it didn’t exist
aready (it shares the same directory with error_log and other standard log files), and each stage appends
to it itslog information. So when we perform:

% bi n/ apachect |

start && bin/apachectl sto

the following is getting logged to logs/startup_log:

[Thu May
[Thu May
[Thu May

[Thu May

[Thu May
[Thu May

29 Jan 2004

29
29
29

29
29
29

13:
13:
13:

13:
13:
13:

11:
11:
11:

11:
11:
11:

08
08
09

10
10
11

2003] - open_l ogs
2003] - post_config:
2003] - END :

2003] - open_l ogs
2003] - post_config:
2003] - child_init

p

process 21823
configuration
process 21823

process 21825
configuration
process 21830

is
is
is
is
is
is

born to reproduce
conpl et ed
shut down

born to reproduce

conpl et ed
born to serve

173

12.2.2 PerlOpenLogsHandler

[Thu May 29 13:11:11 2003] - child_init : process 21831 is born to serve
[Thu May 29 13:11:11 2003] - child_init : process 21832 is born to serve
[Thu May 29 13:11:11 2003] - child_init : process 21833 is born to serve
[Thu May 29 13:11:12 2003] - child_exit : process 21833 now exits

[Thu May 29 13:11:12 2003] - child_exit : process 21832 now exits

[Thu May 29 13:11:12 2003] - child_exit : process 21831 now exits

[Thu May 29 13:11:12 2003] - child_exit : process 21830 now exits

[Thu May 29 13:11:12 2003] - END . process 21825 is shutdown

First of al, we can clearly see that Apache always restart itself after the first post_config phase is over.
The logs show that the post_config phase is preceded by the open _logs phase. Only after Apache has
restarted itself and has completed the open_logs and post_config phase again the child_init phaseisrun for
each child process. In our example we have had the setting St ar t Ser ver s=4, therefore you can see
four child processes were started.

Finally you can see that on server shutdown, the child_exit phaseisrun for each child process and the END
{} block is executed by the parent process only.

Apache also specifies the pre_config phase, which is executed before the configuration files are parsed,
but thisis of no use to mod_perl, because mod_perl isloaded only during the configuration phase.

Now let's discuss each of the mentioned startup handlers and their implementation in the
MyApache: : St art upLog modulein detail.

12.2.2 [PerlOpenL ogsHandler]

The open_logs phase happens just before the post_config phase.

Handlers registered by Per | OpenLogsHandl er are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phaseis of type RUN_ALL.

The handler’s configuration scope is[SR

As we have seen in the [MyApache: : StartuplLog: : open I ogs] handler, the open_logs phase
handlers accept four arguments: the configuration pool, the logging stream pool, the temporary pool and
the server object:

174 29 Jan 2004

Server Life Cycle Handlers 12.2.3 PerlPostConfigHandler

sub open_l ogs {
ny($conf _pool, $log_pool, $tenp_pool, $s) = @;
ny $l og_path = Apache:: Server::server_root _rel ative($conf_pool, $log file);

$s->warn("opening the log file: $log_path");
open $log_fh, ">>$log_path" or die "can't open $log_path: $!";
ny $oldfh = select($log _fh); $| = 1; select($oldfh);

say("process $% is born to reproduce");
return Apache: : OK;

}

In our example the handler uses the function Apache: : Server::server _root _relative() to
set the full path to the log file, which is then opened for appending and set to unbuffered mode. Finaly it
logs the fact that it’s running in the parent process.

Asyou've seen in the example this handler is configured by adding to httpd.conf:

Per | OpenLogsHandl er MyApache: : StartuplLog: : open_Il ogs

12.2.3 [PerlPostConfigHandler|

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree
(viaApache: : Directive).

This phaseis of type RUN_ALL.

The handler’ s configuration scope is[SRM

Inour|MyApache: : St ar t upLog|example we used the post_config() handler:

sub post_config {
my($conf _pool, $l og_pool, $tenp_pool, $s) = @;
say("configuration is conpleted");
return Apache:: CK;

}

As you can seg, its arguments are identical to the open_logs phase's handler. In this example handler we
don’t do much but logging that the configuration was completed and returning right away.

Asyou've seen in the example this handler is configured by adding to httpd.conf:

Per | Post Confi gHandl er MyApache: : StartupLog: : post _config

29 Jan 2004 175

12.2.4 PerlChildInitHandler

12.2.4 |PerIChildl nitHandle]|

The child_init phase happens immediately after the child process is spawned. Each child process (hot a
thread!) will run the hooks of this phase only once in their life-time.

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For example Apache:: DBl pre-opens database connections during this phase and
Apache: : Resour ce setsthe process' resources limits.

This phaseis of type VO D.

The handler’ s configuration scope is[SRM

Inour|MyApache: : St ar t upLog|example we used the child_init() handler:

sub child_init {
ny($child_pool, $s) = @;
say("process $$ is born to serve");
return Apache: : OK;

}

The child_init() handler accepts two arguments: the child process pool and the server abject. The example
handler logs the pid of the child processit’s run in and returns.

Asyou've seen in the example this handler is configured by adding to httpd.conf:

Per| Chi | dl ni t Handl er MyApache: : StartuplLog::child_init

12.2.5 [PerIChildExitHandler|

Opposite to the child_init phase, the child_exit phase is executed before the child process exits. Natice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

Thisphaseis of type RUN_ALL.

The handler’ s configuration scope is[SRM

Inour|MyApache: : St ar t upLog|example we used the child_exit() handler:

sub child_exit {
ny($child_pool, $s) = @;
say("process $$ now exits");
return Apache: : OK;

}

The child_exit() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child processit’s run in and returns.

176 29 Jan 2004

Server Life Cycle Handlers 12.3 Maintainers

Asyou’'ve seen in the exampl e this handler is configured by adding to httpd.conf:

Per | Chi | dExi t Handl er MyApache: : StartuplLog: :child_exit

12.3 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

12.4 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 177

13 Protocol Handlers

13 Protocol Handlers

178 29 Jan 2004

Protocol Handlers

13.1 [Description|

This chapter explains how to implement Protocol (Connection) Handlersin mod_perl.

13.2 [Connection Cycle Phases

13.1 Description

As we saw earlier, each child server (be it a thread or a process) is engaged in processing connections.
Each connection may be served by different connection protocols, e.g., HTTP, POP3, SMTP, etc. Each
connection may include more than one request, e.g., several HTTP requests can be served over a single

connection, when several images are requested for the same webpage.

The following diagram depicts the connection life cycle and highlights which handlers are available to

mod_perl 2.0:
Client <
Eequest Responge
PreConnection = ProcessConnection
/
Connection | Connection
Input | output
Filters | Filters
Apache/mod perl 2.0 Connection Processing\é—

29 Jan 2004

179

13.2.1 PerlPreConnectionHandler

When a connection isissued by aclient, it's first run through Per | Pr eConnect i onHandl er and then
passed to the Per | Pr ocessConnect i onHandl er , which generates the response. When Per | Pr o-
cessConnect i onHandl er is reading data from the client, it can be filtered by connection input
filters. The generated response can be also filtered though connection output filters. Filters are usually
used for modifying the data flowing though them, but can be used for other purposes as well (e.g., logging
interesting information). For example the following diagram shows the connection cycle mapped to the
time scale:

Interactive l"mm"mmk k Eumm"mm"mﬂ
Protocol connection input filters :
Data Flow T i bk S L i O o s R b
/I\\ \\ /N /\\
EPreConnection?ﬁ% FrocegzConnection 5

connection output filters :

R B L I B o

The arrows show the program control. In addition, the black-headed arrows aso show the data flow. This
diagram matches an interactive protocol, where a client send something to the server, the server filters the
input, processes it and send it out through output filters. This cycle is repeated till the client or the server
don't tell each other to go away or abort the connection. Before the cycle starts any registered pre_connec-
tion handlers are run.

Now let’'s discuss each of the Per| PreConnecti onHandl er and Per| ProcessConnecti on-
Handl er handlersin detail.

13.2.1 |PerlPreConnectionHandler|

The pre_connection phase happens just after the server accepts the connection, but before it is handed off
to a protocol module to be served. It gives modules an opportunity to modify the connection as soon as
possible and insert filters if needed. The core server uses this phase to setup the connection record based
on the type of connection that is being used. mod_perl itself uses this phase to register the connection
input and output filters.

In mod_perl 1.0 during code development Apache: : Rel oad was used to automatically reload modified
since the last request Perl modules. It was invoked during post _read_r equest, the first HTTP
request’s phase. In mod_perl 2.0 pre_connection is the earliest phase, so if we want to make sure that all

180 29 Jan 2004

Protocol Handlers 13.2.1 PerlPreConnectionHandler

modified Perl modules are reloaded for any protocols and its phases, it's the best to set the scope of the
Perl interpreter to the lifetime of the connection via:

Per | I nt er pScope connection

and invoke the Apache: : Rel oad handler during the pre_connection phase. However this develop-
ment-time advantage can become a disadvantage in production--for example if a connection, handled by
HTTP protocal, is configured as KeepAl i ve and there are several reguests coming on the same connec-
tion and only one handled by mod_perl and the others by the default images handler, the Perl interpreter
won't be available to other threads while the images are being served.

Thisphaseis of type RUN_ALL.

The handler’s configuration scope is[SRV, because it’s not known yet which resource the request will be
mapped to.

A pre_connection handler accepts a connection record at its argument:
sub handl er {
ny $¢c = shift;
...
return Apache:: K
}

[META: Thereis another argument passed (the actual client socket), but it currently an undef]

Here is a useful pre_connection phase example: provide a facility to block remote clients by their 1P,
before too many resources were consumed. Thisis amost as good as a firewall blocking, as it’s executed
before Apache has started to do any work at all.

MyApache: : Bl ockl P2 retrieves client's remote IP and looks it up in the black list (which should
certainly live outside the code, e.g. dom file, but a hardcoded list is good enough for our example).

#fil e: MyApache/ Bl ockl P2. pm
package MyApache: : Bl ockl P2;

use strict;
use war ni ngs;

use Apache:: Connection ();
use Apache:: Const -conpile => gw(FORBI DDEN OK) ;
ny Y%ad_ips = map {$_ => 1} gw(127.0.0.1 10.0.0.4);

sub handl er {
ny Apache: : Connection $c = shift;

ny $ip = $c->renote_ip

if (exists $bad_ips{$ip}) {
warn "IP $ip is blocked\n";
return Apache: : FORBI DDEN,;

29 Jan 2004 181

13.2.2 PerlProcessConnectionHandler

}

return Apache: : OK;
}

1
This all happens during the pre_connection phase:
Per | PreConnecti onHandl er MyApache: : Bl ockl P2

If a client connects from a blacklisted 1P, Apache will simply abort the connection without sending any
reply to the client, and move on to serving the next request.

13.2.2 [PerlProcessConnectionHandler|

The process_connection phase is used to process incoming connections. Only protocol modules should
assign handlers for this phase, as it gives them an opportunity to replace the standard HTTP processing
with processing for some other protocols (e.g., POP3, FTP, etc.).

This phaseis of type RUN_FI RST.

The handler’s configuration scope is[SRV} Therefore the only way to run protocol servers different than
the core HTTP isinside dedicated virtual hosts.

A process_connection handler accepts a connection record object asits only argument, a socket object can
be retrieved from the connection record object.

sub handl er {
my ($c) = @;
ny $socket = $c->client_socket;
...
return Apache: : OK;
}

Now let's look at the following two examples of connection handlers. The first using the connection
socket to read and write the data and the second using [bucket brigadeq to accomplish the same and allow
for connection filters to do their work.

13.2.2.1 |Socket-based Protocol M odul€

To demonstrate the workings of a protocol module, we'll take alook at the MyApache: : EchoSocket
module, which simply echoes the data read back to the client. In this module we will use the implementa-
tion that works directly with the connection socket and therefore bypasses connection filtersif any.

A protocol handler is configured using the Per | Pr ocessConnect i onHandl er directive and we will
usetheLi st en and <Vi r t ual Host > directivesto bind to the non-standard port 8010:

182 29 Jan 2004

Protocol Handlers 13.2.2 PerlProcessConnectionHandler

Li sten 8010
<Virtual Host _default_ :8010>
Per | Modul e MyApache: : EchoSocket
Per | ProcessConnecti onHandl er MyApache: : EchoSocket
</ Vi r t ual Host >

MyApache: : EchoSocket isthen enabled when starting Apache:

pani c% htt pd
And we give it awhirl:
pani c% tel net | ocal host 8010
Trying 127.0.0.1...
Connected to | ocal host (127.0.0.1).
Escape character is ""]'.
Hel l o
Hel l o

fCo BaR
fCo BaR

Connection cl osed by foreign host.

Here isthe code:
file: MApache/ EchoSocket. pm

package MyApache: : EchoSocket ;

use strict;
use warni ngs FATAL => "all’

use Apache:: Connection ();
use APR : Socket ();

use Apache:: Const -conpile => "K' ;
use constant BUFF_LEN => 1024;
sub handl er {
ny $c = shift;
ny $socket = $c->client_socket;
ny $buff;
while (1) {
ny $rlen = BUFF_LEN,
$socket ->recv($buff, $rlen);

last if $rlen <= 0 or $buff =~ /~A[\r\n]+$/;

ny $wen = $rlen;
$socket - >send($buff, $w en);

last if $wen !'= $rlen;

29 Jan 2004 183

13.2.2 PerlProcessConnectionHandler

Apache: : CK;
}
1;

The example handler starts with the standard package declaration and of course, use stri ct; . Aswith
al Perl *Handl er s, the subroutine name defaults to handler. However, in the case of a protocol
handler, the first argument is not a request _rec, but a conn_rec blessed into the
Apache: : Connecti on class. We have direct access to the client socket via Apache: : Connec-
ti on’sclient_socket method. This returns an object blessed into the APR: : Socket class.

Inside the read/send loop, the handler attempts to read BUFF_LEN bytes from the client socket into the
$buf f buffer. The $rl en parameter will be set to the number of bytes actualy read. The
APR: : Socket : : recv() method returns an APR status value, but we need only to check the read
length to break out of the loop if it is less than or equal to O bytes. The handler also breaks the loop after
processing an input including nothing but new lines characters, which is how we abort the connection in
the interactive mode.

If the handler receives some data, it sends it unmodified back to the client with the
APR: : Socket : : send() method. When the loop is finished the handler returns Apache: : CK, telling
Apache to terminate the connection. As mentioned earlier since this handler is working directly with the
connection socket, no filters can be applied.

13.2.2.2 Bucket Brigades-based Protocol M odulg

Now let's look at the same module, but this time implemented by manipulating bucket brigades, and
which runs its output through a connection output filter that turns all uppercase characters into their lower-
case equivalents.

The following configuration defines a virtual host listening on port 8011 and which enables the
My Apache: : EchoBB connection handler, which will run its output through
MyApache: : EchoBB: : | ower case_filter filter:

Li sten 8011
<Virtual Host _default _:8011>
Per | Modul e MyApache: : EchoBB
Per | ProcessConnecti onHandl er MyApache: : EchoBB
Per | Qut put Fi | t er Handl er MyApache: : EchoBB: : | ower case_filter

</ Vi r t ual Host >

As before we start the httpd server:
pani c% htt pd

And try the new connection handler in action:

184 29 Jan 2004

Protocol Handlers 13.2.2 PerlProcessConnectionHandler

pani c% tel net |ocal host 8011
Trying 127.0.0.1..

Connected to | ocal host (127.0.0.1).
Escape character is '"]'.

Hel | o

hel |l o

f o BaR
foo bar

Connection closed by forei gn host.
Asyou can see the response now was al in lower case, because of the output filter.

And here isthe implementation of the connection and the filter handlers.

file: MyApache/ EchoBB. pm

package MyApache: : EchoBB

use strict;
use warni ngs FATAL => "all’

use Apache:: Connection ();
use APR : Bucket ();

use APR :Brigade ();

use APR :Util ();

use APR : Const -conpile => qw SUCCESS EOF);
use Apache:: Const -conpile => qw OK MODE_GETLI NE)

sub handl er {
my $c = shift;

ny $bb_in
ny $bb_out
ny $last =

APR: : Bri gade- >new $c- >pool , $c->bucket _all oc);
APR: : Bri gade- >new $c- >pool , $c->bucket _all oc);

onu

while (1) {
nmy $rv = $c->input_filters->get_brigade($bb_i n, Apache:: MODE_GETLI NE)
if ($rv !'= APR : SUCCESS && $rv != APR : EOF) ({
ny $error = APR :strerror($rv);
warn _ PACKAGE _ . ": get_brigade: $error\n";
| ast;

}
last if $bb_in->enpty;

while (!$bb_in->enpty) {
ny $bucket = $bb_in->first;

$bucket - >r enove
if ($bucket->is_eos) {

$bb_out - >i nsert _tail ($bucket);
| ast;

29 Jan 2004 185

13.2.2 PerlProcessConnectionHandler

}

ny $dat a;
ny $status = $bucket - >r ead($dat a) ;

return $status unless $status == APR : SUCCESS

if ($data) {
$last++ if $data =~ /"A[\r\n] +$/;
could do sonething with the data here
$bucket = APR : Bucket - >new($dat a) ;

}

$bb_out->insert _tail ($bucket);
}

my $b = APR : Bucket::flush_create($c->bucket _all oc)

$bb_out->insert _tail ($b);
$c->out put _filters->pass_brigade($bb_out);
last if $last;

}
$bb_i n->dest r oy;

Apache: : CK;
}

use base gw Apache::Filter)
use constant BUFF_LEN => 1024;

sub lowercase_filter : FilterConnectionHandl er {
ny $filter = shift;

while ($filter->read(nmy $buffer, BUFF_LEN)) {
$filter->print(lc $buffer);
}

return Apache:: OK
}

1

For the purpose of explaining how this connection handler works, we are going to simplify the handler.

The whole handler can be represented by the following pseudo-code:

while ($bb_in = get_brigade()) {
whil e ($bucket _in = $bb_i n->get_bucket()) {
ny $data = $bucket _i n->read();
do sonething with data
$bucket _out = new_bucket ($dat a);

$bb_out - >i nsert _tail ($bucket _out);

}
$bb_out->i nsert _tail ($f | ush_bucket);
pass_bri gade($bb_out);

186

29 Jan 2004

Protocol Handlers 13.3 Maintainers

The handler receives the incoming data via bucket bridges, one at a time in a loop. It then process each
bridge, by retrieving the buckets contained in it, reading the data in, then creating new buckets using the
received data, and attaching them to the outgoing brigade. When all the buckets from the incoming bucket
brigade were transformed and attached to the outgoing bucket brigade, a flush bucket is created and added
as the last bucket, so when the outgoing bucket brigade is passed out to the outgoing connection filters, it
won't be buffered but sent to the client right away.

If you look at the complete handler, the loop is terminated when one of the following conditions occurs: an
error happens, the end of stream bucket has been seen (no more input at the connection) or when the
received data contains nothing but new line characters which we used to to tell the server to terminate the
connection.

Notice that this handler could be much simpler, since we don’t modify the data. We could simply pass the
whole brigade unmodified without even looking at the buckets. But from this example you can see how to
write a connection handler where you actually want to read and/or modify the data. To accomplish that
modification simply add a code that transforms the data which has been read from the bucket before it's
inserted to the outgoing brigade.

We will skip the filter discussion here, since we are going to talk in depth about filters in the dedicated to
filters sections. But al you need to know at this stage is that the data sent from the connection handler is
filtered by the outgoing filter and which transformsit to be all lowercase.

13.3 Maintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

13.4 |[Authorg

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 187

14 HTTP Handlers

14 HTTP Handlers

188 29 Jan 2004

HTTP Handlers 14.1 Description

14.1 |Description|

This chapter explains how to implement the HTTP protocol handlersin mod_perl.

14.2 HTTP Request Handler Skeleton

All HTTP Request handlers have the following structure:

package MyApache: : MyHandl er Nane;

| oad nodul es that are going to be used
use ...;

conpile (or inport) constants
use Apache:: Const -conpile => gwm OK);

sub handl er {
ny $r = shift;

handl er code cones here
return Apache::OK; # or another status constant

}
1

First, the package is declared. Next, the modules that are going to be used are loaded and constants
compiled.

The handler itself coming next and usually it receives the only argument: the Apache: : Request Rec
object. If the handler is declared asfa method handler |

sub handl er : nethod {
ny($class, $r) = @;

the handler receives two arguments: the class name and the Apache: : Request Rec object.

The handler ends with[areturn codd and the file is ended with 1; to return true when it gets loaded.

14.3 HTTP Request Cycle Phaseg

Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be ailmost identical
to the mod_perl 1.0's model. The only difference is in the response phase which now includes filtering.
Also the Per | Handl er directive has been renamed to Per | ResponseHandl er to better match the
corresponding Apache phase name (response).

The following diagram depicts the HTTP request life cycle and highlights which handlers are available to
mod_perl 2.0:

29 Jan 2004 189

14.3 HTTP Request Cycle Phases

Apache/mod _perl 2.0
HTTP Request \
Lif 1

HOR R HTTP
Request /
Cycle

Cleanup —

— PostReadRequest

* 1 Trans

‘ / |+ HeaderParser

f0 7 1 Access

- authen

‘ 4+ Authz

4+ Type

Lng _% V Fi:mp

<
Response > >
—=>
Connection Request Request Connection

Input Input
Filters Filters

cutput cutput
Filters Filters

Docu-
ment

From the diagram it can be seen that an HT TP request is processes by 11 phases, executed in the following
order:

190

©oOoNOORrWDN R

PerIPostReadRequestHandler (PerlinitHandler)
PerITransHandler

PerIMapT oStorageHandler

PerIHeader Par serHandler (PerllnitHandler)
PerlAccessHandler

PerlAuthenHandler

PerlAuthzHandler

PerITypeHandler

PerlFixupHandler

29 Jan 2004

HTTP Handlers 14.3.1 PerlPostReadRequestHandler

10. PerlResponseHandler
11. PerlLogHandler
12. PerICleanupHandler

It's possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens. In that case Apache skips to the logging phase (mod_perl executes all registered Per | LogHan-
dl er handlers) and finally the cleanup phase happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it's sent to the client.
We will talk about filtersin detail later in this chapter.

Before discussing each handler in detail remember that if you usejthe stacked handlers featurg all handlers
in the chain will be run as long as they return Apache: : OK or Apache: : DECLI NED. Because stacked
handlers is a special case. So don't be surprised if you've returned Apache: : OK and the next handler
was still executed. Thisis afeature, not abug.

Now let’ s discuss each of the mentioned handlers in detail.

14.3.1 |PerlPostReadRequestHandl er|

The post_read request phase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

This phase is usualy used to do processing that must happen once per request. For example
Apache: : Rel oad isusualy invoked at this phase to reload modified Perl modules.

Thisphaseis of type RUN_ALL.

The handler’s configuration scope is[SRV} because at this phase the request has not yet been associated
with a particular filename or directory.

Now, let’slook at an example. Consider the following registry script:

t ouch. pl

use strict;
use war ni ngs;

use Apache:: ServerUtil ()
use File::Spec::Functions gw(catfile);

ny $r = shift;

$r->content _type('text/plain');

nmy $conf _file = catfile Apache:: Server::server_root_relative($r->pool, 'conf’),
"httpd. conf";

printf “$conf _file is 99.2f mnutes ol d", 60*24*(-M $conf _file)

29 Jan 2004 191

14.3.1 PerlPostReadRequestHandler

This registry script is supposed to print when the last time httpd.conf has been modified, compared to the
start of the request process time. If you run this script several times you might be surprised that it reports
the same value al the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won't be reported correctly.

This happens because the - M operator reports the difference between file's modification time and the
value of a specia Perl variable $" T. When we run scripts from the command line, this variable is always
set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like
-M - Cand - A are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we
need to reset $M T to the request’s start time, before - Mis used. We can change the script itself, but what if
we need to do the same change for severa other scripts and handlers? A simple Per | Post Read-
Request Handl er handler, which will be executed as the very first thing of each requests, comes handy
here:

file: MApache/ Ti neReset. pm

package MyApache: : Ti neReset;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Const -conpile => 'K
sub handl er {

ny $r = shift;

$"T = $r->request_time;
return Apache:: X

}
1;

We could do:
$AT = time();

But to make things more efficient we use $r - >r equest _t i ne since the request object $r aready
stores the request’ s start time, so we get it without performing an additional system call.

To enableit just add to httpd.conf:

Per | Post ReadRequest Handl er MyApache: : Ti neReset

either to the global section, or to the <Vi r t ual Host > section if you want this handler to be run only for
aspecific virtual host.

192 29 Jan 2004

HTTP Handlers 14.3.2 PerlTransHandler

14.3.2 |PerlTransHandler|

The trandate phase is used to perform the trandation of a request’s URI into an corresponding filename.
If no custom handler is provided, the server's standard trandlation rules (e.g., Al i as directives,
mod_rewrite, etc.) will continue to be used. A Per | Tr ansHandl er handler can alter the default trans-
lation mechanism or completely overrideiit.

In addition to doing the trandation, this stage can be used to modify the URI itself and the request method.
Thisis also agood place to register new handlers for the following phases based on the URI.

This phaseis of type RUN_FI RST.

The handler’s configuration scope is[SRV} because at this phase the request has not yet been associated
with a particular filename or directory.

There are many useful things that can be performed at this stage. Let’s look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-site was originally
made of static pages, and now you have moved to a dynamic page generation chances are that you don’t
want to change the old URIs, because you don’t want to break links for those who link to your site. If the
URI:

http://exanpl e. com news/ 20021031/ 09/ i ndex. ht m

is now handled by:

http://exanpl e. coni perl/ news. pl ?dat e=20021031& d=09&page=i ndex. ht m
the following handler can do the rewriting work transparent to news.pl, so you can still use the former URI
mapping:

file:MyApache/ RewriteURl.pm

package MyApache:: RewiteUR

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Const -conpile => gw DECLI NED);

sub handl er {
my $r = shift;

ny ($date, $id, $page) = $r->uri =~ nl M news/ (\d+)/(\d+)/(.*)]|
$r->uri ("/perl/news.pl");
$r->ar gs("dat e=$dat e& d=$i d&page=$page") ;

return Apache: : DECLI NED

=

29 Jan 2004 193

14.3.3 PerlMapToStorageHandler META: add something here

The handler matches the URI and assigns a new URI via $r->uri () and the query string via
$r->ar gs() . It then returns Apache: : DECLI NED, so the next translation handler will get invoked, if
more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

To configure this module simply add to httpd.conf:

Per | TransHandl er +MyApache: : RewriteURl

14.3.3 [PerIMapToStorageHandler META: add something hered

This phaseis of type RUN_FI RST.

The handler’s configuration scope is[SRV} because at this phase the request has not yet been associated
with a particular filename or directory.

14.3.4 [PerlHeaderParserHandler|

The header_parser phase is the first phase to happen after the request has been mapped to its <Loca-
ti on> (or an equivalent container). At this phase the handler can examine the request headers and to take
a specia action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

Thisphaseis of type RUN_ALL.

The handler’s configuration scopeis[DI R

This phase is very similar to|Per | Post ReadRequest Handl er] with the only difference that it's run
after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can take any |Per | Post ReadRequest Handl er| and
turn it into [Per | Header Par ser Handl er| by simply changing the directive name in httpd.conf and
moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a special directive[Per | | ni t Handl er|which if found outside resource containers behaves as
|Per | Post ReadRequest Handl er| otherwise as|Per | Header Par ser Handl er|

You already know that Apache handles the HEAD, GET, POST and severa other HTTP methods. But did
you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages:. they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the
EMAI L method. We can enable this protocol extension and push the real content handler during the
[Per | Header Par ser Handl er |phase:

<Location /enuil >
Per | Header Par ser Handl er MyApache: : SendEni |
</ Locati on>

194 29 Jan 2004

HTTP Handlers

and hereisthe MyApache: : SendEmai | handler:

file: MApache/ SendEnuai | . pm

package MyApache: : SendEnai |

use
use

use
use
use

use

use
use

sub

sub

sub

}

sub

strict;
war ni ngs;

Apache: : Request Rec ();

Apache: : Request 1 O ();

Apache: : Request Wil ();

Apache: : Const -conpile => gw DECLI NED OK);

constant METHOD => "EMAIL";
constant SMIP_HOSTNAME => "l ocal host";

handl er {
ny $r = shift;

return Apache:: DECLI NED unl ess $r->net hod eq METHOD,

Apache: : Server:: nmet hod_regi ster($r->pool, METHOD);
$r->handl er("perl-script");

14.3.4 PerlHeaderParserHandler

$r - >push_handl er s(Per| ResponseHandl er => \ &end_enai | _handl er);

return Apache:: K

send_emai | _handl er {

ny $r = shift;
ny %eaders = map {$_ => $r->headers_in->get($_)} gw(To From Subject);
ny $content = content($r);

ny $status = send_enmil (\ %headers, \$content)

$r->content _type('text/plain’);
$r->print($status ? "ACK' : "NACK")
return Apache:: K

content {

ny $r = shift;

$r->setup_client_bl ock;

return '’ unless $r->shoul d_client_bl ock;

my $len = $r->headers_i n->get (' content-length’);
ny $buf;

$r->get _client_bl ock($buf, $len);

return $buf;

send_emai | {

29 Jan 2004

195

14.3.4 PerlHeaderParserHandler

my($rh_headers, $r_body) = @;

require MME :Lite;
M ME: : Lite->send("sntp", SMIP_HOSTNAME, Ti nmeout => 60);

nmy $nsg = M ME: : Li te->new %r h_headers, Data => $$r_body);
#warn $nmsg->as_stri ng;
$nsg- >send;

}

1

Let’'s get the less interesting code out of the way. The function content() grabs the request body. The func-
tion send_email() sends the email over SMTP. Y ou should adjust the constant SMTP_ HOSTNAME to point
to your outgoing SMTP server. You can replace this function with your own if you prefer to use a differ-
ent method to send email.

Now to the more interesting functions. The function handl er () returns immediately and passes the
control to the next handler if the request method is not equal to EMAI L (set in the METHOD constant):

return Apache:: DECLI NED unl ess $r->net hod eq METHOD,

Next it tells Apache that this new method is a valid one and that the per | - scri pt handler will do the
processing. Finally it pushes the function send_enai | _handl er () to the Per| ResponseHan-
dl er list of handlers:

Apache: : Server:: nethod_regi ster($r->pool, METHOD);

$r->handl er ("perl-script");
$r - >push_handl er s(Per| ResponseHandl er => \ &end_emai | _handl er);

The function terminates the header_parser phase by:

return Apache:: CK;

All other phases run as usual, so you can reuse any HTTP protocol hooks, such as authentication and fixup
phases.

When the response phase starts send_emai | _handl er () isinvoked, assuming that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email headers
To, Fr omand Subj ect , and the body of the message:

nmy Y%eaders
ny S$cont ent

map {$_ => $r->headers_in->get($_)} gw(To From Subject);
$r->cont ent ;

Then send the email:

ny $status = send_enmil (\ %eaders, \$content);

Finally return to the client a simple response acknowledging that email has been sent and finish the
response phase by returning Apache: : OK:

196 29 Jan 2004

HTTP Handlers 14.3.5 PerlInitHandler

$r->content _type('text/plain');
$r->print($status ? "ACK" : "NACK");
return Apache: : OK;

Of course you will want to add extra validations if you want to use this code in production. Thisisjust a
proof of concept implementation.

As aready mentioned when you extend an HT TP protocol you need to have a client that knows how to use
the extension. So here is a simple client that uses LWP: : User Agent to issue an EMAI L method request
over HTTP protocol:

file:send_http_enuil.pl

#! [usr/ bi n/ perl

use strict;
use war ni ngs;

requi re LWP:: User Agent ;

ny $url = "http://Iocal host: 8000/ enwil/";
my Y%eaders = (

From => ' exanpl e@xanpl e. comni ,

To => ' exanpl e@xanpl e. comni ,

Subject => '3 weeks in Tibet’,

E

ny $content = <<EQ;

| didn’t have an email software,

but could use HTTP so |'’msending it over HITP
EQ

ny $headers = HITP: : Header s- >new %headers) ;

ny $req = HITP:: Request->new("EMAI L", $url, $headers, $content);
ny $res = LWP:: User Agent - >new >r equest ($req) ;

print $res->is_success ? $res->content : "failed";

most of the code isjust a custom data. The code that does something consists of four lines at the very end.
Create HTTP: : Header s and HTTP: : Request object. Issue the request and get the response. Finally
print the response’ s content if it was successful or just "failed" if not.

Now save the client code in the file send_http_email.pl, adjust the To field, make the file executable and
execute it, after you have restarted the server. Y ou should receive an email shortly to the address set in the
To field.

14.3.5 |PerlinitHandler|

When configured inside any container directive, except <Vi r t ual Host >, this handler is an dlias for
|Per | Header Par ser Handl er | described earlier. Otherwise it acts as an alias for [Per | Post Read- |
[|Request Handl er|described earlier.

29 Jan 2004 197

14.3.6 PerlAccessHandler

It isthe first handler to be invoked when serving a request.
This phaseis of type RUN_ALL.

The best example here would be to use Apache: : Rel oad which takes the benefit of this directive.
Usualy Apache: : Rel oad isconfigured as:

Per | I ni t Handl er Apache: : Rel oad
Per| Set Var Rel oadAl |l O f
Per | Set Var Rel oadMbdul es " MyApache: : *"

which during the current HTTP request will monitor and reload all MyApache: : * modules that have
been modified since the last HTTP request. However if we move the global configuration into a<Loca-
t i on> container:

<Location /devel >
Per | I ni t Handl er Apache: : Rel oad
Per| Set Var Rel oadAl | O f
Per | Set Var Rel oadMbdul es " MyApache: : *"
Set Handl er perl-script
Per | ResponseHandl er MbdPerl :: Registry
Opti ons +ExecCd

</ Locat i on>

Apache: : Rel oad will reload the modified modules, only when a request to the /devel namespace is
issued, because[Per | | ni t Handl er|playstherole of [Per | Header Par ser Handl er |here.

14.3.6 [PerlAccessHandler|

The access checker phase is the first of three handlers that are involved in what's known as AAA:
Authentication and Authorization, and Access control.

This phase can be used to restrict access from a certain |P address, time of the day or any other rule not
connected to the user’ sidentity.

This phaseis of type RUN_ALL.
The handler’s configuration scope is[DI R

The concept behind access checker handler is very simple, return Apache: : FORBI DDEN if the accessis
not allowed, otherwise return Apache: : OK.

The following example handler denies requests made from IPs on the blacklist.
file: MyApache/ Bl ockByl P. pm

package MyApache: : Bl ockByl P;

use strict;
use war ni ngs;

use Apache:: RequestRec ();

198 29 Jan 2004

HTTP Handlers 14.3.7 PerlAuthenHandler

use Apache:: Connection ();
use Apache:: Const -conpile => gw FORBI DDEN K);
ny Y%ad_ips = map {$_ => 1} gw(127.0.0.1 10.0.0.4);

sub handl er {
ny $r = shift;

return exists $bad_i ps{$r->connecti on->renote_ip}
? Apache: : FORBI DDEN
. Apache: : OK;
}

1

The handler retrieves the connection’s | P address, looks it up in the hash of blacklisted | Ps and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler smply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base location /per| add:

<Location /perl/>
Set Handl er perl -script
Per | ResponseHandl er ModPer| :: Registry
Per | AccessHandl er MyApache: : Bl ockByl P
Opti ons +ExecCd

</ Locat i on>

It's important to notice that Per | AccessHandl er can be configured for any subsection of the site, no
matter whether it's served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server simply add to httpd.conf:

<Location />
Per | AccessHandl er MyApache: : Bl ockByl P
</ Locati on>

14.3.7 [PerlAuthenHandler|

The check_user_id (authen) phaseis called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated with Aut hNane, Aut hType and at least one
requi r e directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should return Apache:: OK. Otherwise the handler returns
Apache: : HTTP_UNAUTHORI ZED to indicate that the user has not authenticated successfully. When
Apache sends the HTTP header with this code, the browser will normally pop up a dialog box that
prompts the user for login information.

29 Jan 2004 199

14.3.7 PerlAuthenHandler

This phaseis of type RUN_FI RST.
The handler’s configuration scope is[DI R

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space eguals to the
secret length, specified by the constant SECRET _LENGTH.

file: MyApache/ Secr et Lengt hAut h. pm

package MyApache: : Secr et Lengt hAut h;

use strict;
use war ni ngs;

use Apache:: Access ();
use Apache:: RequestUtil ();

use Apache:: Const -conpile => gw OK DECLI NED HTTP_UNAUTHORI ZED) ;
use Apache: : Access();
use constant SECRET_LENGIH => 14;

sub handl er {
my $r = shift;

ny ($status, $password) = $r->get_basic_auth_pw;
return $status unless $status == Apache:: K;

return Apache:: K
i f SECRET_LENGTH == length join " ", $r->user, $password;

$r->not e_basi c_aut h_fail ure;
return Apache: : HTTP_UNAUTHORI ZED;
}

1

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set to Apache: : OK only when the user has supplied the username and the password credentials. If the
status is different, we just let Apache handle this situation for us, which will usually challenge the client so
it'll supply the credentials.

Note that get _basi ¢_aut h_pw() does afew things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use
get basic_aut h_pw(). Firgt, is checks the value of the configured Aut hType for the request,
making sure it is Basi c. Then it makes sure that the Authorization (or Proxy-Authorization) header is
formatted for Basi ¢ authentication. Finally, after isolating the user and password from the header, it
populates the ap_auth_type dlot in the request record with Basi c¢. For the first and last parts of this
process, mod_perl offers an API. $r - >aut h_t ype returns the configured authentication type for the
current request - whatever was set via the Aut hType configuration directive. $r - >ap_aut h_t ype
populates the ap_auth_type slot in the request record, which should be done after it has been confirmed

200 29 Jan 2004

HTTP Handlers 14.3.7 PerlAuthenHandler

that the request is indeed using Basi c authentication. (Note $r->ap_auth_type was
$r - >connect i on- >aut h_t ype inthemod_perl 1.0 API.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTH long (14 in our example). So for example the pair mod_perl/rules authenticates
correctly, whereas secret/password does not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it's fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note basic auth failure() and returns
Apache: : HTTP_UNAUTHORI ZED, which sets the proper HTTP response headers that tell the client that
its user that the authentication has failed and the credentials should be supplied again.

It's not enough to enable this handler for the authentication to work. Y ou have to tell Apache what authen-
tication scheme to use (Basi ¢ or Di gest), which is specified by the Aut hType directive, and you
should also supply the Aut hNane -- the authentication realm, which is really just a string that the client
usually uses as atitle in the pop-up box, where the username and the password are inserted. Finadly the
Requi r e directive is needed to specify which usernames are allowed to authenticate. If you set it to
val i d- user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts from /perl/:

<Location /perl/>
Set Handl er perl-script
Per | ResponseHandl er MbdPerl :: Registry
Per | Aut henHandl er MyApache: : Secr et Lengt hAut h
Opti ons +ExecCd

Aut hType Basi c

Aut hNarme "The Gate"

Requi re val i d-user
</ Locati on>

Just like Per | AccessHandl er and other mod_perl handlers, Per | Aut henHandl er can be config-
ured for any subsection of the site, no matter whether it's served by a mod_perl response handler or not.
For example to use the authentication handler from the last example for any requests to the site, simply
use:

<Location />
Per | Aut henHandl er MyApache: : Secr et Lengt hAut h
Aut hType Basi c
Aut hNarme "The Gate"
Requi re val i d-user
</ Locati on>

29 Jan 2004 201

14.3.8 PerlAuthzHandler

14.3.8 |PerlAuthzHandler|

The auth_checker (authz) phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only caled when the requested resource is password protected, similar to the auth phase. The handler is
expected to return Apache: : DECLI NED to defer the decision, Apache: : K to indicate its acceptance
of the user’'s authorization, or Apache: : HTTP_UNAUTHORI ZED to indicate that the user is not autho-
rized to access the requested document.

This phaseis of type RUN_FI RST.
The handler’s configuration scopeis[DI R

Here is the MyApache: : Secr et Resour ceAut hz handler which grants access to certain resources
only to certain users who have already properly authenticated:

fil e: MyApache/ Secr et Resour ceAut hz. pm

package MyApache: : Secr et Resour ceAut hz;

use strict;
use war ni ngs;

use Apache:: Access ();
use Apache:: RequestUtil ();

use Apache:: Const -conpile => gw(OK HTTP_UNAUTHORI ZED) ;
use Apache:: Access ();

my Y%rotected = (
"adnmin' =>['stas'],
"report’ => [gw(stas boss)],
)

sub handl er {
ny $r = shift;

ny $user = $r->user;
if ($user) {
ny($section) = $r->uri =~ n~/ conpany/ (\w+)/];
if (defined $section && exists $protected{$section}) {
nmy $users = $protected{P$section};
return Apache: :OK if grep { $_ eq $user } @users;

}
el se {

return Apache:: CK;
}

202 29 Jan 2004

HTTP Handlers 14.3.9 PerlTypeHandler

$r->note_basic_auth_failure;
return Apache: : HTTP_UNAUTHORI ZED;

}

1

This authorization handler is very similar to the authentication handler from the previous section, Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under
/company/admin/ can be accessed only by the user stas, /company/report/ can be accessed by users stas
and boss, whereas any other resources under /company/ can be accessed by everybody who has reached so
far. If for some reason we don't get the username, we or the user is not authorized to access the resource
the handler does the same thing as it does when the authentication fails, i.e, cals:

$r->not e_basi c_auth_failure;
return Apache: : HTTP_UNAUTHORI ZED;

The configuration is similar to the one in [the previous section, this time we just add the Per | Au-
t hzHandl er setting. The rest doesn’t change.

Alias /conpany/ /hone/httpd/ httpd-2.0/perl/
<Location /conpany/>
Set Handl er perl-script
Per| ResponseHandl er MbdPerl :: Registry
Per | Aut henHandl er MyApache: : Secr et Lengt hAut h
Per | Aut hzHandl er MyApache: : Secr et Resour ceAut hz
Opti ons +ExecCd

Aut hType Basi c
Aut hNanme "The Secret Gate”
Requi re val i d-user

</ Locati on>

And if you want to run the authentication and authorization for the whole site, smply add:

<Location />
Per | Aut henHandl er MyApache: : Secr et Lengt hAut h
Per | Aut hzHandl er MyApache: : Secr et Resour ceAut hz
Aut hType Basic
Aut hNarme "The Secret Gate"
Requi re val i d-user

</ Locati on>

14.3.9 |PerlTypeHandler]

The type _checker phase is used to set the response MIME type (Cont ent - t ype) and sometimes other
bits of document type information like the document language.

For example nod_aut oi ndex, which performs automatic directory indexing, uses this phase to map the
filename extensions to the corresponding icons which will be later used in the listing of files.

29 Jan 2004 203

14.3.10 PerlFixupHandler

Of course |later phases may override the mime type set in this phase.
This phaseis of type RUN_FI RST.
The handler’s configuration scope is[DI R

The most important thing to remember when overriding the default type_checker handler, which is usually
the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’'t work. mod_mime does that based on Set Handl er and
AddHandl er directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

$r->handl er (" perl-script’);
$r - >set _handl er s(Per| ResponseHandl er => \ &andl er);

or:

$r - >handl er (’ nodper|');
$r - >set _handl er s(Per| ResponseHandl er => \ &andl er);

depending on which type of response handler is wanted.

Writing a Perl| TypeHandl er handler which sets the content-type value and returns
Apache: : DECLI NED so that the default handler will do the rest of the work, is not a good idea, because
mod_mime will probably override this and other settings.

Thereforeit’ sthe easiest to leave this stage alone and do any desired settings in the fixups phase.

14.3.10 |PerlFixupHandler|

The fixups phase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this phase nod_env populates the environment with
variables configured with SetEnv and PassEnv directives.

Thisphaseis of type RUN_ALL.
The handler’s configuration scopeis[DI R

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’s URI.
file: MyApache/ Fi | eExt Di spat ch. pm

package MyApache: : Fi | eExt Di spat ch;

use strict;
use war ni ngs;

use Apache: : Request| O ();
use Apache: : Request Rec ();

204 29 Jan 2004

HTTP Handlers 14.3.10 PerlFixupHandler

use Apache::Const -conpile => "K' ;
use constant HANDLER => O;
use constant CALLBACK => 1;
nmy %exts = (
cgi => [’ perl-script’, \ &gi _handl er],
pl => [’ nodperl’, \ &l _handl er],
tt => ['perl-script’, \ & t_handler],
txt => ['defaul t-handl er’, undef 1,
)
sub handl er {
ny $r = shift;
ny($ext) = $r->uri =~ /\.(\w) $/;
$ext = "txt’ unless defined $ext and exists $exts{$ext};
$r - >handl| er ($ext s{ $ext } - >[HANDLER]) ;
if (defined $exts{$ext}->[CALLBACK]) ({
$r->set _handl er s(Per| ResponseHandl er => $ext s{$ext}->[CALLBACK]) ;
}
return Apache: : OK;
}
sub cgi _handler { content_handler($_[0], 'cgi’) }
sub pl _handler { content_handler($_[0], "pl') }
sub tt_handler { content_handler($_[0], "tt') }
sub content _handl er {
ny($r, $type) = @;
$r->content _type('text/plain’);
$r->print("A handler of type '$type’ was called");
return Apache:: CK;
}
1;

In the example we have used the following mapping.

ny %exts = (
cgi => ['perl-script’, \ &gi _handl er],
pl => [’ nodperl’, \ &l _handler],
tt =>['perl-script’, \&t_handler],
txt => [’ defaul t-handler’, undef 1.
)i

So that .cgi requests will be handled by the per | - scri pt handler and thecgi _handl er () callback,
.pl requests by nodper| and pl _handl er (), .tt (template toolkit) by perl -script and the
tt_handl er (), finaly .txt request by thedef aul t - handl er handler, which requires no callback.

29 Jan 2004 205

14.3.11 PerlResponseHandler

Moreover the handler assumes that if the request’s URI has no file extension or it does, but it's not in its
mapping, thedef aul t - handl er will be used, asif the txt extension was used.

After doing the mapping, the handler assigns the handler:

$r - >handl| er ($ext s{ $ext } - >[HANDLER]) ;

and the callback if needed:

if (defined $exts{$ext}->[CALLBACK]) {
$r - >set _handl er s(Per| ResponseHandl er => $ext s{$ext }->[CALLBACK]) ;

}

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real
things.

Here is how this handler is configured:

Alias /dispatch/ /hone/httpd/ httpd-2.0/htdocs/
<Location /dispatch/>

Per | Fi xupHandl er MyApache: : Fi | eExt Di spatch
</ Locati on>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings
dynamically at run-time.

14.3.11 [PerlResponseHandler|

The handler (response) phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

Thisisthe only phase that requires two directives under mod_perl. For example:

<Location /perl>

Set Handl er perl -scri pt

Per | ResponseHandl er MyApache: : Wr | dDomi nat i on
</ Locati on>

Set Handl er set to|perl -scri pt]or[modper|]|tells Apache that mod_perl is going to handle the
response generation. Per | ResponseHand| er tells mod_perl which callback is going to do the job.

This phaseis of type RUN_FI RST.
The handler’s configuration scope is[DI R

Most of the Apache: : modules on CPAN are dealing with this phase. In fact most of the developers
spend the mgjority of their time working on handlers that generate response content.

206 29 Jan 2004

HTTP Handlers 14.3.12 PerlLogHandler

Let’swrite a simple response handler, that just generates some content. This time let’s do something more
interesting than printing "Hello world". Let’ s write a handler that prints itself:

file: MApache/ Deparse. pm

package MyApache: : Depar se;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();
use B::Deparse ();

use Apache:: Const -conpile => "K' ;

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);
$r->print(’sub handler ', B::Deparse->new >coder ef 2t ext (\ &andl er));

return Apache:: CK;
}
1;

To enable this handler add to httpd.conf:

<Location /deparse>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : Depar se
</ Locati on>

Now when the server is restarted and we issue a request to |http://localhost/depar sg we get the following
response:

sub handl er {
package MyApache: : Depar se;
ny $r = shift @;
$r->content _type('text/plain’);
$r->print(’sub handler ', 'B::Deparse’->new >coderef 2t ext (\ &andl er));
return O;

}

If you compare it to the source code, it’s pretty much the same code. B: : Depar se isfun to play with!

14.3.12 |PerlLogHandler|

The log_transaction phase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

29 Jan 2004 207

http://localhost/deparse

14.3.12 PerlLogHandler

By this phase al the information about the request and the response is known, therefore the logging
handlers usually record thisinformation in various ways (e.g., logging to aflat file or a database).

This phaseis of type RUN_ALL.
The handler’s configuration scope is[DI R

Imagine a situation where you have to log regquests into individual files, one per user. Assuming that all
requests start with /users/username/, so it's easy to categorize requests by the second URI path compo-
nent. Here is the log handler that does that:

file:MyApache/ LogPer User. pm

package MyApache: : LogPer User;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Connection ();
use Fcntl gw :flock);

use Apache:: Const -conpile => qw(OK DECLI NED) ;

sub handl er {
my $r = shift;

ny($usernanme) = $r->uri =~ m ~users/ ([*]+)];
return Apache:: DECLI NED unl ess defi ned $usernane;

ny $entry = sprintf qq(% [%] "%" % %\n),
$r->connection->renpte_i p, scalar(localtine),
$r->uri, $r->status, $r->bytes_sent;

ny $l og_path = Apache:: Server::server_root_rel ative($r->pool
"1 ogs/ $user nane. | 0g") ;

open ny $fh, ">>$log_path" or die "can't open $log_path: $!";

flock $fh, LOCK EX;

print $fh $entry;

cl ose $fh;

return Apache:: CK
}
1;

First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it
simply returns Apache: : DECLI NED, letting other log handlers to do the logging. Though it could return
Apache: : OKsinceal other log handlers will be run anyway.

Next it builds the log entry, similar to the default access log entry. It's comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

208 29 Jan 2004

HTTP Handlers 14.3.13 PerlCleanupHandler

Finally the handler appends this entry to the log file for the user the request was issued for. Usually it's
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before
performing the writing.

To configure the handler simply enable the module with the Per | LogHandl er directive, inside the
wanted section, which was /users/ in our example:

<Location /users/>
Set Handl er perl-script
Per | ResponseHandl er ModPerl :: Registry
Per | LogHandl er MyApache: : LogPer User
Opti ons +ExecCd

</ Locati on>

After restarting the server and issuing requests to the following URIs:
http://1ocal host/users/stas/test. pl

http://1ocal host/users/eric/test.pl
http://1ocal host/users/stas/date. pl

The MyApache: : LogPer User handler will append to logs/stas.|og:

127.0.0.1 [Sat Aug 31 01:50:38 2002] "/users/stas/test.pl" 200 8
127.0.0.1 [Sat Aug 31 01:50:40 2002] "/users/stas/date.pl" 200 44

and to logg/eric.log:

127.0.0.1 [Sat Aug 31 01:50:39 2002] "/users/eric/test.pl" 200 8

It's important to notice that Per | LogHandl er can be configured for any subsection of the site, no
matter whether it's served by amod_perl response handler or not. For example to run the handler from our
example for al requests to the server, smply add to httpd.conf:

<Location />
Per | LogHandl er MyApache: : LogPer User
</ Locati on>

Since the Per | LogHandl er phase is of type RUN_ALL, all other logging handlers will be called as
well.

14.3.13 [PerICleanupHandler|

There is no cleanup Apache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase instead of [Per | LogHandl er|if the
logging operation is time consuming. This approach alows to free the client as soon as the response is
sent.

29 Jan 2004 209

14.3.13 PerlCleanupHandler

This phaseis of type RUN_ALL.
The handler’s configuration scope is[DI R
There are two ways to register and run cleanup handlers:

1. UsingthePer | C eanupHandl er phase
Per | C eanupHandl er MyApache: : d eanup
or.

$r - >push_handl er s(Per| d eanupHandl er => \ &l eanup) ;
Thismethod isidentical to al other handlers.
In thistechniquethe cl eanup() callback accepts $r asitsonly argument.
2. Usingcl eanup_regi st er () acting on therequest object’s pool

Since arequest object pool is destroyed at the end of each request, we can register a cleanup callback
which will be executed just before the pool is destroyed. For example:

$r - >pool - >cl eanup_regi ster (\ &l eanup, $arg);

The important difference from using the Per | CI eanupHandl er handler, isthat here you can pass
an optional arbitrary argument to the callback function, and no $r argument is passed by default.
Thereforeif you need to pass any data other than $r you may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
running | s -1 and stores the output in temporary file, which is then used by $r - >sendfi | e to send
the file's contents. We use push_handl er s() to push Per | Cl eanupHandl er to unlink the file at
the end of the request.

#file: MyApache/ d eanupl. pm
package MyApache: : C eanupl;

use strict;
use warni ngs FATAL => "all’;

use File::Spec::Functions gwcatfile);
use Apache:: RequestRec ();

use Apache:: Request! O ();

use Apache:: RequestUtil ();

use Apache:: Const -conpile => gqw(OK DECLI NED) ;
use APR: : Const -conpi l e => ' SUCCESS' ;

ny $file = catfile "/tnp", "data";

sub handl er {

210 29 Jan 2004

HTTP Handlers 14.3.13 PerlCleanupHandler

ny $r = shift;
$r->content _type('text/plain');

| ocal @ENV{ qw(PATH BASH ENV) };
gx(/bin/ls -1 > $file);

ny $status = $r->sendfile($file);
die "sendfile has failed" unless $status == APR : SUCCESS;

$r - >push_handl er s(Per| O eanupHandl er => \ &cl eanup) ;

return Apache: : OK;

}

sub cl eanup {
ny $r = shift;
die "Can’t find file: $file" unless -e $file;
unlink $file or die "failed to unlink $file";
return Apache:: CK;

}

1

Next we add the following configuration:

<Location /cl eanupl>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : O eanupl
</ Locati on>

Now when a reguest to /cleanupl is made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the process id $$ to the file's name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same process and the $$
trick won’'t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes.

sub unique_id {
requi re Apache:: MPM
require APR: : CS;
return Apache:: MPM >i s_t hr eaded
?"$$." . ${ APR:OS::thread_current() }
D 8%
}

In the threaded environment it will return a string containing the process ID, followed by athread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perl’sr and, some CPAN module or the APR's APR: : UUI D:

29 Jan 2004 211

14.3.13 PerlCleanupHandler

sub unique_id {
require APR:: UU D
return APR:: UU D- >new >f or mat ;

}

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the $r - >not es table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

#file: MyApache/ d eanup2. pm
package MyApache:: C eanup2;

use strict;
use warni ngs FATAL => "all’

use File::Spec::Functions gw(catfile);
use Apache:: RequestRec ();

use Apache:: Request!| O ();

use Apache:: RequestUtil ();

use APR : UUID ();

use APR : Pool ();

use Apache:: Const -conpile => gw OK DECLI NED);
use APR : Const -conpil e => ' SUCCESS' ;

nmy $file_base = catfile "/tnp", "data-";

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);
nmy $file = $file_base . APR : UU D >new >f or nat ;

| ocal @ENV{ gw(PATH BASH ENV) };
gx(/binfls -1 > $file);

ny $status = $r->sendfile($file);
die "sendfile has failed" unless $status == APR. : SUCCESS;

$r - >pool - >cl eanup_regi ster (\ &l eanup, $file);

return Apache:: OK;

sub cl eanup {
my $file = shift;

212 29 Jan 2004

HTTP Handlers 14.4 Handling HEAD Requests

die "Can’t find file: $file" unless -e $file;
unlink $file or die "failed to unlink $file";

return Apache: : OK;
}
1;

Similarly to the first handler, we add the configuration:

<Location /cl eanup2>

Set Handl er nodper |

Per | ResponseHandl er MyApache: : O eanup2
</ Locati on>

And now when reguesting /cleanup2 we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up aswell.

14.4 Handling HEAD Requests

In order to avoid the overhead of sending the data to the client when the request is of type HEAD in
mod_perl 1.0 we used to return early from the handler:

return K i f $r->header_only;

This logic is no longer needed in mod_perl 2.0, because Apache 2.0 automatically discards the response
body for HEAD requests. (You can also read the comment in for ap_htt p_header filter() in
modules/http/http_protocol.c in the Apache 2.0 source.)

14.5 |[Extending HT TP Protocol

Extending HTTP under mod_perl is atrivial task. Look at [the example of adding a new method EMAI L|
for details.

14.6 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

14.7 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 213

15 Input and Output Filters

15 Input and Output Filters

214 29 Jan 2004

Input and Output Filters 15.1 Description

15.1 [Description|

This chapter discusses mod_perl’sinput and output filter handlers.

If al you need is to lookup the filtering APl proceed directly to the Apache::Filter and
Apache: : Fi | t er Rec manpages.

15.2 [Your First Filter

You certainly already know how filters work. That’s because you encounter filters so often in real life. If
you are unfortunate to live in smog-filled cities like Saigon or Bangkok you are probably used to wear a
dust filter mask:

If you are smoker, chances are that you smoke cigarettes with filters:

)

If you are a coffee gourmand, you have certainly tried afilter coffee:

29 Jan 2004 215

15.2 Your First Filter

The shower that you use, may have awater filter:

When the sun istoo bright, you protect your eyes by wearing sun goggles with UV filter:

If are a photographer you can’t go a step without using filter lenses:

216 29 Jan 2004

Input and Output Filters 15.2 Your First Filter

If you love music, you might be unaware of it, but your super-modern audio system is literally loaded with
various electronic filters:

There are many more places in our lives where filters are used. The purpose of all filtersis to apply some
transformation to what’'s coming into the filter, letting something different out of the filter. Certainly in
some cases it's possible to modify the source itself, but that makes things unflexible, and but most of the
time we have no control over the source. The advantage of using filters to modify something is that they
can be replaced when requirements change Filters also can be stacked, which allows us to make each filter
do simple transformations. For example by combining several different filters, we can apply multiple
transformations. In certain situations combining several filters of the same kind let’s us achieve a better
quality output.

The mod_perl filters are not any different, they receive some data, modify it and send it out. In the case of
filtering the output of the response handler, we could certainly change the response handler’s logic to do
something different, since we control the response handler. But this may make the code unnecessary
complex. If we can apply transformations to the response handler’ s output, it certainly gives us more flexi-
bility and simplifies things. For example if a response needs to be compressed before sent out, it'd be very
inconvenient and inefficient to code in the response handler itself. Using a filter for that purpose is a
perfect solution. Similarly, in certain cases, using an input filter to transform the incoming request data is
the most wise solution. Think of the same example of having the incoming data coming compressed.

Just like with real life filters, you can pipe several filters to modify each other’s output. You can aso
customize a selection of different filters at run time.

Without much further ado, let’s write a simple but useful obfuscation filter for our HTML documents.

We are going to use a very simple obfuscation -- turn an HTML document into a one liner, which will
make it harder to read its source without a specia processing. To accomplish that we are going to remove
characters\012 (\ n) and \015 (\ r), which depending on the platform aone or as a combination represent
the end of line and a carriage return.

And hereisthefilter handler code:
#file: MyApache/ Fi | t er Cbf uscate. pm
package MyApache:: FilterObfuscate

use strict;
use war ni ngs;

29 Jan 2004 217

15.2 Your First Filter

use Apache::Filter ();
use Apache:: Request Rec ();
use APR : Table ();

use Apache:: Const -conpile => gwm OK);
use constant BUFF_LEN => 1024;

sub handl er {
ny $f = shift;

unl ess ($f->ctx) {
$f - >r - >headers_out - >unset (* Content-Length’);
$f->ct x(1);

}

while ($f->read(nmy $buffer, BUFF_LEN)) {
$buffer =~ s/[\r\n]//g;
$f - >print ($buffer);

}

return Apache: : OK;
}
1;

Next we configure Apache to apply the MyApache: : Fi | t er Cbf uscat e filter to al requests that get
mapped to fileswith an ".html" extension:

<Files ~ "\.htnml">
Per| Qut put Fi | t er Handl er MyApache: : Fi |l t er Obf uscat e
</Files>

Filter handlers are similar to HTTP handlers, they are expected to return Apache:: OK or
Apache: : DECLI NED, but instead of receiving $r (the request object) as the first argument, they receive
$f (thefilter object).

The filter starts by unsetting of the Cont ent - Lengt h response header, because it modifies the length of
the response body (shrinks it). If the response handler had set the Cont ent - Lengt h header and the
filter hasn't unset it, the client may have problems receiving the response since it'd expect more data than
it was sent.

The core of this filter is a read-modify-print expression in a while loop. The logic is very simple: read at
most BUFF_LEN characters of data into $buf f er, apply the regex to remove any occurences of \ n and
\'r init, and print the resulting data out. The input data may come from a response handler, or from an
upstream filter. The output data goes to the next filter in the output chain. Even though in this example we
haven't configured any more filters, internally Apache by itself uses several core filters to manipulate the
data and send it out to the client.

As we are going to explain in great detail in the next sections, the same filter may be called many times
during a single request, every time receiving a chunk of data. For example if the POSTed request datais
64k long, an input filter could be invoked 8 times, each time receiving 8k of data. The same may happen
during response phase, where an upstream filter may split 64k output in 8 8k chunks. The while loop that

218 29 Jan 2004

Input and Output Filters 15.3 1/O Filtering Concepts

we just saw is going to read each of these 8k in 8 calls, since it requests 1k on every r ead() call.

Since it's enough to unset the Cont ent - Lengt h header when the filter is called the first time, we need
to have some flag telling us whether we have done the job. The method ct x() provides this functional-

ity:

unl ess ($f->ctx) {
$f - >r - >header s_out - >unset (' Content-Length’);
$f->ct x(1);

}

theunset () call will be made only on the first filter call for each request. Of course you can store any
kind of a Perl data structure in $f - >ct x and retrieve it later in subsequent filter invocations of the same
request. We will show plenty of examples using this method in the following sections.

Of course the MyApache: : Fi | t er Obf uscat e filter logic should take into account situations where
removing new line characters will break the correct rendering, as is the case if there are multi-line
<pre>..</ pr e> entries, but since it escalates the complexity of the filter, we will disregard this require-
ment for now.

A positive side effect of this obfuscation algorithm is in shortening the amount of the data sent to the
client. If you want to look at the production ready implementation, which takes into account the HTML
markup specifics, the Apache: : Cl ean module, available from CPAN, does just that.

mod_perl 1/0 filtering follows the Perl’s principle of making simple things easy and difficult things possi-
ble. You have seen that it’ s trivial to write smple filters. Asyou read through this tutorial you will see that
much more difficult things are possible, even though a more elaborated code will be needed.

15.3 |I/O Filtering Concepts

Before introducing the APIs, mod_perl provides for Apache Filtering, there are several important concepts
to understand.

15.3.1 [Two Methods for Manipulating Datd|

Apache 2.0 considers al incoming and outgoing data as chunks of information, disregarding their kind and
source or storage methods. These data chunks are stored in buckets, which form Input and
output filters massage the data in bucket brigades. Response and protocol handlers also receive and send
data using bucket brigades, though in most cases this is hidden behind wrappers, such asread() and

print().

mod_perl 2.0 filters can directly manipulate the bucket brigades or use the simplified streaming interface
where the filter object acts similar to afilehandle, which can be read from and printed to.

Even though you don't use bucket brigades directly when you use the streaming filter interface (which
works on bucket brigades behind the scenes), it's still important to understand bucket brigades. For
example you need to know that an output filter will be invoked as many times as the number of bucket
brigades sent from an upstream filter or a content handler. Or you need to know that the end of stream

29 Jan 2004 219

15.3.2 HTTP Request Versus Connection Filters

indicator (EOS) is sometimes sent in a separate bucket brigade, so it shouldn’t be a surprise that the filter
was invoked even though no real data went through. As we delve into the filter details you will see that
[understanding bucket brigadeq, will help to understand how filters work.

Moreover you will need to understand bucket brigades if you plan to implement [protocol modules

15.3.2 HTTP Request Versus Connection Filtersg

HTTP request filters are applied when Apache serves an HTTP request.

HTTP request input filters get invoked on the body of the HTTP request only if the body is consumed by
the content handler. HTTP request headers are not passed through the HTTP request input filters.

HTTP response output filters get invoked on the body of the HTTP response if the content handler has
generated one. HTTP response headers are not passed through the HTTP response output filters.

Connection level filters are applied at the connection level.

A connection may be configured to serve one or more HTTP requests, or handle other protocols. Connec-
tion filters see all the incoming and outgoing data. If an HTTP request is served, connection filters can
modify the HTTP headers and the body of request and response. If a different protocol is served over
connection (e.g. IMAP), the data could have a completely different pattern, than the HTTP protocol
(headers + body).

Apache supports several other filter types, which mod_perl 2.0 may support in the future.

15.3.3 [Multiple I nvocations of Filter Handlerg

Unlike other Apache handlers, filter handlers may get invoked more than once during the same request.
Filters get invoked as many times as the number of bucket brigades sent from an upstream filter or a
content provider.

For example if a content generation handler sends a string, and then forces a flush, following by more
data:

assum ng buffered STDOUT ($|==0)
$r->print("foo");

$r->rflush;

$r->print("bar");

Apache will generate one bucket brigade with two buckets (there are severa types of buckets which
contain data, one of them istransient):

bucket type dat a
1st transi ent foo
2nd flush

220 29 Jan 2004

Input and Output Filters 15.3.3 Multiple Invocations of Filter Handlers

and send it to the filter chain. Then assuming that no more data was sent after pri nt ("bar "), it will
create alast bucket brigade containing data:

bucket type dat a

and send it to the filter chain. Finaly it'll send yet another bucket brigade with the EOS bucket indicating
that there will be no more data sent:

bucket type dat a

Notice that the EOS bucket may come attached to the last bucket brigade with data, instead of coming in
its its own bucket brigade. Filters should never make an assumption that the EOS bucket is arriving alone
in a bucket brigade. Therefore the first output filter will be invoked two or three times (three times if EOS
iscoming in its own brigade), depending on the number of bucket brigades sent by the response handler.

A user may install an upstream filter, and that filter may decide to insert extra bucket brigades or collect
al the datain all bucket brigades passing through it and send it all down in one brigade. What’ s important
to remember is when coding afilter, one should never assume that the filter is always going to be invoked
once, or afixed number of times. Neither one can make assumptions on the way the data is going to come
in. Therefore atypical filter handler may need to split its logic in three parts.

Jumping ahead we will show some pseudo-code that represents all three parts. This is how a typical
stream-oriented filter handler looks like:

sub handl er {
nmy $f = shift;

runs on first invocation
unl ess ($f->ctx) {
init($f);
$f->ct x(1);
}

runs on all invocations
process($f);

runs on the last invocation
if ($f->seen_eos) {

finalize($f);
}
return Apache:: K
}
sub init { ...}
sub process { ... }
sub finalize { }

29 Jan 2004 221

15.3.3 Multiple Invocations of Filter Handlers

The following diagram depicts al three parts:

Fead ; ; Read é Read é Read
Modify |[i || Modify coc | Modify || Modify
pedmts ¢ 4| BEiwne i| Print || BEEE
Cleanup
lat 2nd -1 LastTiég

Multiple Filter Invocations

Let’s explain each part using this pseudo-filter.

1. Initialization

222

During the initialization, the filter runs all the code that should be performed only once across multi-
ple invocations of the filter (thisis during a single request). The filter context is used to accomplish
that task. For each new request the filter context is created before the filter is called for the first time
and its destroyed at the end of the request.

unl ess ($f->ctx) {
init($f);
$f - >ct x(1);

}

When the filter is invoked for the first time $f - >ct x returns undef and the custom function init()
is caled. This function could, for example, retrieve some configuration data, set in httpd.conf or
initialize some datastructure to its default value.

To make sure that init() won't be called on the following invocations, we must set the filter context
before the first invocation is completed:

$f->ctx(1);

29 Jan 2004

Input and Output Filters 15.3.3 Multiple Invocations of Filter Handlers

In practice, the context is not just served as aflag, but used to store real data. For example the follow-
ing filter handler counts the number of timesit was invoked during a single request:

sub handl er {
ny $f = shift;

ny $ctx = $f->ctx;

$ct x- >{i nvoked} ++;

$f - >ct x($ct x) ;

warn "filter was invoked $ctx->{invoked} tinmes\n";

return Apache: : DECLI NED;
}

Since this filter handler doesn’t consume the data from the upstream filter, it's important that this
handler returns Apache: : DECLI NED, in which case mod_perl passes the current bucket brigade to
the next filter. If this handler returns Apache: : OK, the data will be simply lost. And if that data
included a specia EOS token, this may wreck havoc.

Unsetting the Cont ent - Lengt h header for filters that modify the response body length is a good
example of the code to be used in the initialization phase:
unl ess ($f->ctx) {
$f - >r - >header s_out - >unset ('’ Content - Length’) ;
$f->ctx(1);
}

We will see more of initialization examples later in this chapter.
2. Processing

The next part:

process($f);

is unconditionally invoked on every filter invocation. That’s where the incoming data is read, modi-
fied and sent out to the next filter in the filter chain. Here is an example that lowers the case of the
characters passing through:

use constant READ S| ZE => 1024;
sub process {
ny $f = shift;
while ($f->read(ny $data, READ_SIZE)) {
$f->print(lc $data);
}

}

Here the filter operates only on a single bucket brigade. Since it manipulates every character sepa-
rately the logic isreally simple.

29 Jan 2004 223

15.3.4 Blocking Calls

In more complicated filters the filters may need to buffer data first before the transformation can be
applied. For example if the filter operates on html tokens (e.g., '"), it's possible
that one brigade will include the beginning of the token ('<img ') and the remainder of the token
('src="me.jpg">") will come in the next bucket brigade (on the next filter invocation). In certain cases
it may involve more than two bucket brigades to get the whole token. In such a case the filter will haveto
store the remainder of unprocessed data in the filter context and then reuse it on the next invocation.
Another good example is a filter that performs data compression (compression is usualy effective
only when applied to relatively big chunks of data), so if a single bucket brigade doesn’'t contain
enough data, the filter may need to buffer the datain the filter context till it collects enough of it.

We will see the implementation examplesin this chapter.
3. Finalization

Finally, some filters need to know when they are invoked for the last time, in order to perform
various cleanups and/or flush any remaining data. As mentioned earlier, Apache indicates this event
by a special end of stream "token", represented by a bucket of type ECS. If the filter is using the
streaming interface, rather than manipulating the bucket brigades directly, and it was calling read() in
a while loop, it can check whether this is the last time it's invoked, using the $f - >seen_eos
method:

if ($f->seen_eos) {
finalize($f);
}

This check should be done at the end of the filter handler, because sometimes the EOS "token™" comes
attached to thetail of data (the last invocation gets both the data and EOS) and sometimesit comes all
aone (the last invocation gets only EOS). So if this test is performed at the beginning of the handler
and the EOS bucket was sent in together with the data, the EOS event may be missed and filter won't
function properly.

Jumping ahead, filters, directly manipulating bucket brigades, have to look for a bucket whose typeis
ECS to accomplish this. We will see examples later in the chapter.

Some filters may need to deploy al three parts of the described logic, others will need to do only initial-
ization and processing, or processing and finalization, while the simplest filters might perform only the
normal processing (as we saw in the example of the filter handler that lowers the case of the characters
going through it).

15.3.4 Blocking Callg

All filters (excluding the core filter that reads from the network and the core filter that writesto it) block at
least once when invoked. Depending on whether thisis an input or an output filter, the blocking happens
when the bucket brigade is requested from the upstream filter or when the bucket brigade is passed to the
downstream filter.

224 29 Jan 2004

Input and Output Filters 15.3.4 Blocking Calls

First of all, the input and output filters differ in the ways they acquire the bucket brigades (which includes
the data that they filter). Even though when a streaming API is used the difference can’'t be seen, it's
important to understand how things work underneath. Therefore we are going to show examples of trans-
parent filters, which pass data through them unmodified. Instead of reading the datain and printing it out
the bucket brigades are now passed asis.

Here is a code for atransparent input filter:
#file: MyApache/ Fil terTransparent.pm (first part)
package MyApache:: FilterTransparent;

use Apache:: Const -conpile => qw(XK);
use APR : Const -conpile => ':common’;

sub in {
ny ($f, $bb, $node, $block, $readbytes) = @;

nmy $rv = $f->next->get _bri gade($bb, $node, $bl ock, $readbytes);
return $rv unless $rv == APR: : SUCCESS;

return Apache:: OK;
}

When the input filter in() isinvoked, it first asks the upstream filter for the next bucket brigade (using the
get _bri gade() cdl). That upstream filter isin turn going to ask for the bucket brigade from the next
upstream filter in chain, etc,, till the last filter (called cor e_i n), that reads from the network is reached.
The cor e_i n filter reads, using a socket, a portion of the incoming data from the network, processes it
and sends it to its downstream filter, which will process the data and send it to its downstream filter, etc.,
till it reaches the very first filter who has asked for the data. (In reality some other handler triggers the
request for the bucket brigade, e.g., an HTTP response handler, or a protocol module, but for our discus-
sion it'sgood enough to assume that it’ sthe first filter that issuestheget _bri gade() call.)

The following diagram depicts a typical input filters chain data flow in addition to the program control
flow.

29 Jan 2004 225

15.3.4 Blocking Calls

._E..sub handler §

mpesE, Sbb outs = @
get. brigads(shb_in); —E?’-'r hittp_input £ilter{*bb_ wt}ﬂ

%—'F—'F—'F—'-"—' E get_brigade{bb_in}; -——EE" cu:urs _input_filter{*bb_out}
g e e e N 2
— EE%%EE%]:-]:-_u:-ut = apr_hrig‘ads_crsats;i
shios oo shons E read{zocket, bb_out, szize);
%l---.ﬁ I I e DK-: E
R g waps i *bb_out = modify{bb_ m} b ;

‘ : return OF; [:
$]:|]:| onk= m_.:..j'lfy{shh .'L'l.'l.:l E o Memsessssssssssssssssssssssssssssss s s s

return Apache! | OK;

...

Input Filter Chain Data Flow

The black- and white-headed arrows show when the control is switched from one filter to another. In addi-
tion the black-headed arrows show the actual data flow. The diagram includes some pseudo-code, both for
in Perl for the mod_perl filtersand in C for the internal Apache filters. Y ou don't have to understand C to
understand this diagram. What's important to understand is that when input filters are invoked they first
call each other via the get _bri gade() cal and then block (notice the brick wall on the diagram),
waiting for the call to return. When this call returns all upstream filters have aready completed finishing
their filtering task.

As mentioned earlier, the streaming interface hides these details, however the first $f - >r ead() call will
block, as underneath it performsthe get _br i gade() call.

The diagram shows a part of the actual input filter chain for an HTTP request, the . . . shows that there
are more filters in between the mod_per! filter and ht t p_i n.

Now let’slook at what happens in the output filters chain. Here the first filter acquires the bucket brigades
containing the response data, from the content handler (or another protocol handler if we aren't talking
HTTP), it then may apply some modification and pass the data to the next filter (using the
pass_bri gade() call), which in turn appliesits modifications and sends the bucket brigade to the next
filter, etc., all the way down to the last filter (called cor e) which writes the data to the network, via the
socket the client is listening to. Even though the output filters don't have to wait to acquire the bucket
brigade (since the upstream filter passes it to them as an argument), they still block in a similar fashion to
input filters, since they have to wait for thepass_br i gade() call to return.

Hereis an example of atransparent output filter:

226 29 Jan 2004

Input and Output Filters 15.4 mod_perl Filters Declaration and Configuration

#file: MyApache/ Fil ter Transparent. pm (conti nued)

sub out {
ny ($f, $bb) = @;

ny $rv = $f->next->pass_bri gade($bb);
return $rv unless $rv == APR: : SUCCESS;

return Apache: : OK;
}
1;

The out() filter passes $bb to the downstream filter unmodified and if you add debug prints before and
after thepass_bri gade() cal and configure the same filter twice, the debug print will show the block-
ing call.

The following diagram depicts a typical output filters chain data flow in addition to the program control
flow:

modperl fllter hittp . header

su.b handler {
mp{FE, $bby = @_;
modify (sbh

pass hrlg'a_dg{$hh} +http header fllter{*hh} CoTre
o thre 4~ modify {bb); ; [rimmm——————
pass_brigade({bb}; + core_ontput_filter{*hh}

i

I ! write(zocket, bhb, 5_1'.33},-;—-
! return (1) 4 ‘Q_.}
i return Apache::dk; Q—} :

Dutput Filter Chain Data Flow

Similar to the input filters chain diagram, the arrows show the program control flow and in addition the
black-headed arrows show the data flow. Again, it uses a Perl pseudo-code for the mod_perl filter and C
pseudo-code for the Apache filters, similarly the brick walls represent the waiting. And again, the diagram
shows a part of the real HTTP response filters chain, where . . . stands for the omitted filters.

15.4 Imod perl Filters Declaration and Configuration

Now let’s see how mod_per! filters are declared and configured.

29 Jan 2004 227

15.4.1 Filter Priority Types

15.4.1 [Filter Priority Typeq

When Apache filters are configured they are inserted into the filters chain according to their priority/type.
In most cases when using one or two filters things will just work, however if you find that the order of
filter invocation is wrong, the filter priority type should be consulted. Unfortunately this information is
available only by consulting the source code, unless it’'s documented in the module man pages. Numerical
definitions of priority types, such as AP_FTYPE CONTENT_SET, AP_FTYPE_RESOURCE, can be
found in include/util_filter.h.

As of this writing Apache comes with two core filters: DEFLATE and | NCLUDES. For example in the
following configuration:

Set Qut put Fi | t er DEFLATE
Set Qut put Fi | ter | NCLUDES

the DEFLATE filter will be inserted in the filters chain after the | NCLUDES filter, even though it was
configured before it. This is because the DEFLATE filter is of type AP_FTYPE_CONTENT_SET (20),
whereas the | NCLUDES filter is of type AP_FTYPE_RESOURCE (10).

As of thiswriting mod_perl provides two kind of filters with fixed priority type:

Handl er Priority Val ue

Fi | t er Request Handl er AP_FTYPE_RESOURCE 10
Fi | ter Connecti onHandl er AP_FTYPE_PROTOCOL 30

Therefore Fi | t er Request Handl er filters (10) will be aways invoked before the DEFLATE filter
(20), whereas Fi | t er Connect i onHandl er filters (30) after it. The | NCLUDES filter (10) has the
same priority as Fi | t er Request Handl er filters (10), and therefore it’'ll be inserted according to the
configuration order, when|Per | Set Qut put Fi | t er|or[Per | Set | nput Fi | t er|isused.

15.4.2 Per| | nput Fi | t er Handl er|

ThePer | | nput Fi | t er Handl er directive registers afilter, and insertsit into the[relevant] input filters
chain.

This handler is of type VO D.
The handler’s configuration scope is[DI R

The following sections include several examplesthat usethe Per | | nput Fi | t er Handl er handler.

15.4.3 [Per | Qut put Fi | t er Handl er|

The Per | Qut put Fi | t er Handl er directive registers a filter, and inserts it into the [relevant] output
filters chain.

228 29 Jan 2004

Input and Output Filters 15.4.4 PerlSetInputFilter

This handler is of type VA D.
The handler’s configuration scope is[DI R

The following sections include several examplesthat use the Per | Qut put Fi | t er Handl er handler.

15.4.4 Per | Set | nput Fi | t er|

TheSet | nput Fi | t er directive, documented at

[http://httpd.apache.or g/docs-2.0/mod/cor e.htmi#setinputfilter| sets the filter or filters which will process
client requests and POST input when they are received by the server (in addition to any filters configured
earlier).

To mix mod_perl and non-mod_perl input filters of the[same priority] nothing special should be done. For
example if we have an imaginary Apache filter FILTER FOO and mod perl filter
MyApache: : Fi |l t er | nput Foo, this configuration:

SetlnputFilter FILTER FOO
Per | | nput Fi | t er Handl er MyApache: : Fil terl nput Foo

will add both filters, however the order of their invocation might be not the one that you’ ve expected. To
make the invocation order the same as the insertion order replace Set | nput Fi | t er with Per | Set -
Input Fil ter,likeso:

Per| SetlnputFilter FILTER FOO
Per| I nput Fi | t er Handl er MyApache: : Fi |l t er | nput Foo

now FI LTER FOO filter will be always executed before the MyApache: : Fi | t er | nput Foo filter,
since it was configured before MyApache: : Fi | t er | nput Foo (i.e, it'll apply its transformations on
the incoming data last). Here is a diagram input filters chain and the data flow from the network to the
response handler for the presented configuration:

response handl er
/\
|

FI LTER_FOO
/\
|
MyApache: : Fi |l t er | nput Foo

/\
N

core input filters
/\
N

net wor k

As explained in the section [Filter Priority Typedthis directive won't affect filters of different priority. For
example assuming that MyApache: : Fil t erl nput Foo isaFi |l t er Request Handl er filter, the
configurations:

29 Jan 2004 229

http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter

15.4.5 PerlSetOutputFilter

Per | | nput Fi | t erHandl er MyApache: : Fil terl nput Foo
Per| Set I nputFilter DEFLATE

and

Per| Set I nput Fi | ter DEFLATE
Per | | nput Fi | t er Handl er MyApache: : Fil terl nput Foo

are equivalent, because mod_deflate’ s DEFLATE filter has a higher priority than MyApache: : Fil ter -
I nput Foo, thefore it’'ll aways be inserted into the filter chain after MyApache: : Fi |l t er | nput Foo,
(i.e. the DEFLATE filter will apply its transformations on the incoming data first). Here is a diagram input
filters chain and the data flow from the network to the response handler for the presented configuration:

response handl er
I\
|

MyApache: : Fi | t er | nput Foo
I\
I
DEFLATE

I\
I

core input filters
I\
I

net wor k

Setl nput Fi |t er’s; semantics are supported as well. For example, in the following configuration:

Per | I nput Fi | t erHandl er MyApache: : Fil terl nput Foo
Perl Setl nputFilter FILTER FOO FILTER BAR

MyApache: : Fi | t er Qut put Foo will be executed first, followed by FI LTER FQOO and finaly by
FI LTER _BAR (again, assuming that all three filters have the same priority).

ThePer | Set | nput Fi | t er directives's configuration scopeisDl B

15.4.5 |Per | Set Qut put Fi | t er|

The Set Qut put Fi | t er directive, documented at
[http://httpd.apache.or g/docs-2.0/mod/cor e.ntmi#setoutputfilter] sets the filters which will process
responses from the server before they are sent to the client (in addition to any filters configured earlier).

To mix mod_perl and non-mod_perl output filters of the [same priority] nothing special should be done.
This configuration:

Set Qut put Fi | ter | NCLUDES
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo

will add al two filters to the filter chain, however the order of their invocation might be not the one that
you've expected. To preserve the insertion order replace Set Qut put Fi | t er with Per | Set Qut put -
Filter,likeso:

230 29 Jan 2004

http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter

Input and Output Filters 15.4.5 PerlSetOutputFilter

Per| Set Qut put Fi | ter | NCLUDES
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo

now mod_include's | NCLUDES filter will be always executed before the MyApache: : Fi |l t er Qut -
put Foo filter. Here is a diagram input filters chain and the data flow from the response handler to the
network for the presented configuration:

response handl er

N
\/

I NCLUDES
|
\/

MyApache: : Fi | t er Qut put Foo
|
\/
core output filters

|
\/

net wor k

Set Qut put Fi | t er’s; semantics are supported as well. For example, in the following configuration:

Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo
Per| Set Qut put Fi | ter | NCLUDES; FI LTER_FQO

MyApache: : Fi | t er Qut put Foo will be executed first, followed by | NCLUDES and finally by
FI LTER _FQOO(again, assuming that all three filters have the same priority).

Just as explained in the[Per | Set | nput Fi | t er|section, if filters have different priorities, the insertion
order might be different. For example in the following configuration:

Per| Set Qut put Fi | ter DEFLATE
Per| Set Qut put Fi | ter | NCLUDES
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo

mod_include's | NCLUDES filter will be always executed before the MyApache: : Fi | t er Qut put Foo
filter. The latter will be followed by mod_deflate’s DEFLATE filter, even though it was configured before
the other two filters. Thisis because it has afhigher priority] And the corresponding diagram looks like so:

response handl er

| |
\/

I NCLUDES
| |
\/

MyApache: : Fi | t er Qut put Foo

| |
\/

DEFLATE

I
\/

29 Jan 2004 231

15.4.6 HTTP Request vs. Connection Filters

core output filters
|
\/
net wor k

ThePer | Set Qut put Fi | t er directives's configuration scopeisDI R

15.4.6 HTTP Request vs. Connection Filterg

mod_perl 2.0 supports connection and HTTP request filtering. mod_perl filter handlers specify the type of
the filter using the method attributes.

HTTP request filter handlers are declared using the Fi | t er Request Handl er attribute. Consider the
following request input and output filters skeleton:

package MyApache: : Filter Request Foo
use base qw(Apache:: Filter);

sub input : FilterRequestHandl er {
ny($f, $bb, $node, $block, $readbytes) = @;
#...

}

sub output : FilterRequestHandl er {

ny($f, $bb) = @;
#...

}

1

If the attribute is not specified, the default Fi | t er Request Handl er attribute is assumed. Filters spec-
ifying subroutine attributes must subclass Apache: : Fi | t er, othersonly need to:

use Apache::Filter ();

The request filters are usually configured in the <Locat i on> or equivalent sections:

Per | Modul e MyApache: : Fi |l t er Request Foo
Per | Modul e MyApache: : Ni ceResponse
<Location /filter_foo>
Set Handl er nodper
Per | ResponseHandl er MyApache: : Nl ceResponse
Perl I nput FilterHandl er MApache:: FilterRequestFoo: :input
Per| Qut put Fi | ter Handl er MyApache: : Fi | t er Request Foo: : out put
</ Locat i on>

Now we have the request input and output filters configured.

The connection filter handler uses the Fi | t er Connecti onHandl er attribute. Here is a similar
example for the connection input and output filters.

232 29 Jan 2004

Input and Output Filters 15.4.7 Filter Initialization Phase

package MyApache: : Filter Connecti onBar
use base gw Apache::Filter)

sub input : FilterConnectionHandl er {
ny($f, $bb, $node, $bl ock, $readbytes) = @;
#...

}

sub output : FilterConnectionHandl er {

ny($f, $bb) = @;
#...

}

1

This time the configuration must be done outside the <Locat i on> or equivalent sections, usually within
the <Vi r t ual Host > or the global server configuration:

Li sten 8005

<Virtual Host _default_: 8005>
Per| Modul e MyApache: : Fil t er Connecti onBar
Per | Modul e MyApache: : Ni ceResponse

Perl I nput FilterHandl er MApache:: FilterConnectionBar::input
Per| Qut put Fi | ter Handl er MyApache: : Fi |l t er Connecti onBar: : out put
<Location />

Set Handl er nodper |

Per | ResponseHandl er MyApache: : N ceResponse
</ Locati on>

</ Vi rt ual Host >
This accomplishes the configuration of the connection input and output filters.

Notice that for HTTP requests the only difference between connection filters and request filters is that the
former see everything: the headers and the body, whereas the latter see only the body.

mod_perl provides two interfaces to filtering: a direct bucket brigades manipulation interface and a
simpler, stream-oriented interface. The examples in the following sections will help you to understand the
difference between the two interfaces.

15.4.7 [Filter Initialization Phasg

Like in any cool application, there is a hidden door, that let’'s you do cool things. mod_perl is not an
exception.

where you can plug yet another callback. This init callback runs immediately after the filter handler is
inserted into the filter chain, before it was invoked for the first time. Here is a skeleton of an init handler:

29 Jan 2004 233

15.4.7 Filter Initialization Phase

sub init : FilterlnitHandler {
ny $f = shift;
#...
return Apache: : OK;

}

The attribute Fi | t er | ni t Handl er marks the Perl function suitable to be used as a filter initialization
callback, which is called immediately after a filter is inserted to the filter chain and before it's actualy
called.

For example you may decide to dynamically remove a filter before it had a chance to run, if some condi-
tionistrue:

sub init : FilterlnitHandler {
ny $f = shift;
$f->remove() if should_remove_filter();
return Apache:: OK;

}

Not all Apache: : Fi | t er methods can be used in the init handler, because it's not a filter. Hence you
can use methods that operate on the filter itself, such asr enove() and ct x() or retrieve request infor-
mation, suchasr () and c() . But not methods that operate on data, such asr ead() andpri nt ().

In order to hook an init filter handler, the rea filter has to assign this calback using the Fi |l t er -
Hasl ni t Handl er which accepts a reference to the callback function, ssimilar to push_handl er s() .
The used callback function hasto havetheFi | t er | ni t Handl er attribute. For example;

package MyApache:: FilterBar;

use base gw Apache::Filter);

sub init : FilterlnitHandler { ... }

sub filter : FilterRequestHandl er FilterHaslnitHandl er(\& nit) {
ny ($f, $bb) = @;
...
return Apache: : OK;

}

While attributes are parsed during the code compilation (it's really a sort of source filter), the argument to
theFi | t er Hasl ni t Handl er () attribute is compiled at alater stage once the module is compiled.

Theargument to Fi | t er Hasl ni t Handl er () can be any Perl code which when eval () 'ed returns a
code reference. For example:

package MyApache:: Ot herFilter;
use base qw(Apache::Filter);
sub init : FilterlnitHandler { ... }

package MyApache:: FilterBar;

use MyApache:: QtherFilter;

use base qw(Apache::Filter);

sub get_pre_handler { \&WApache:: GtherFilter::init }

sub filter : FilterHaslnitHandl er(get_pre_handler()) { ... }

234 29 Jan 2004

Input and Output Filters 15.5 All-in-OneFilter

Herethe MyApache: : FilterBar:: filter handlerisconfigured to runthe M/Apache: : & her -
Filter::init inithandler.

Notice that the argument to Fi | t er Hasl ni t Handl er () isawayseval () 'ed in the package of the
rea filter handler (not the init handler). So the above code leads to the following evaluation:

$init_sub = eval "package MyApache::FilterBar; get_pre_handler()"
though, thisisdonein C, using theeval _pv() Ccall.

META: currently only one initialization callback can be registered per filter handler. If the need to register
more than one arises it should be very easy to extend the functionality.

15.5 |All-in-One Filter

Before we delve into the details of how to write filters that do something with the data, lets first write a
simple filter that does nothing but snooping on the data that goes through it. We are going to develop the
MyApache: : Fi | t er Snoop handler which can snoop on request and connection filters, in input and
output modes.

But first let's develop a simple response handler that simply dumps the request’s args and content as
strings:

file: MApache/ Dunp. pm

package MyApache: : Dunp;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();
use APR : Table ()
use Apache:: Const -conpile => qw(K M _PQGST)
sub handl er {
ny $r = shift;
$r->content _type('text/plain’);
$r->print("args:\n", $r->args, "\n");
if ($r->method_nunber == Apache:: M PCST) {
ny $data = content ($r);
$r->print("content:\n$data\n");

}

return Apache:: K

sub content {
ny $r = shift;

29 Jan 2004 235

15.5 All-in-One Filter

$r->set up_cl i ent _bl ock;

return '’ unless $r->shoul d_client_ bl ock;

my $len = $r->headers_in->get (' content-length’)
nmy $buf;

$r->get _client_bl ock($buf, $len);

return $buf;

1
which is configured as:
Per| Modul e MyApache: : Dunp
<Location /dunp>
Set Handl er nodper |

Per | ResponseHandl er MyApache: : Dunp
</ Locati on>

If we issue the following request:

% echo "nod_perl| rules” | POST 'http://1ocal host: 8002/ dunp?f oo=1&bar =2

the response will be:

ar gs:

f oo=1&bar =2
content:
nmod_perl rules

Asyou can see it simply dumped the query string and the posted data.

Now let’s write the snooping filter:

file:M/Apache/ Filter Snoop. pm

package MyApache:: Filter Snoop

use strict;
use war ni ngs;

use base qw(Apache::Filter);
use Apache::FilterRec ();
use APR :Brigade ();

use APR : Bucket ();

use Apache:: Const -conpile => qw(OK DECLI NED) ;
use APR : Const -conpile => ':conmon’;

sub connection : FilterConnectionHandl er { snoop("connection", @) }
sub request : FilterRequest Handl er { snoop("request", @) }

sub snoop {

236 29 Jan 2004

Input and Output Filters 15.5 All-in-One Filter

ny $type = shift;
ny($f, $bb, $node, $block, $readbytes) = @; # filter args

$node, $bl ock, $readbytes are passed only for input filters
ny $stream = defined $node ? "input" : "output”;

read the data and pass-through the bucket brigades unchanged
if (defined $node) {
input filter
ny $rv = $f->next->get _brigade($bb, $node, $bl ock, $readbytes);
return $rv unless $rv == APR : SUCCESS;
bb_dunp($type, $stream $bb);

}
el se {
output filter
bb_dunp($type, $stream $bb);
ny $rv = $f->next->pass_bri gade($bb);
return $rv unless $rv == APR: : SUCCESS;
}

return Apache: : OK;

sub bb_dunp {
ny($type, $stream $bb) = @;

ny @lat a;

for (my $b = $bb->first; $b; $b = $bb->next ($b)) {
$b->read(ny $bdata);
$bdata = '’ unl ess defined $bdat a;
push @lata, $b->type->nanme, $bdata;

}

send the sniffed info to STDERR so not to interfere with nornal
out put

ny $direction = $streameq ’'output’ ? ">>>" : "<<<";

print STDERR "\n$direction $type $streamfilter\n";

ny $c = 1;

while (ny($btype, $data) = splice @ata, 0, 2) {
print STDERR " o0 bucket $c: $btype\n";
print STDERR "[$data]\n";
$c++;

}
1

This package provides two filter handlers, one for connection and another for request filtering:

sub connection : FilterConnectionHandl er { snoop("connection", @) }
sub request : FilterRequest Handl er { snoop("request", @) }

Both handlers forward their arguments to the snoop() function that does the real job. We needed to add
these two subroutines in order to assign the two different attributes. Plus the functions pass the filter type
tosnoop() asthefirst argument, which gets shifted off @ and the rest of the @_are the arguments that

29 Jan 2004 237

15.5 All-in-One Filter

were originally passed to the filter handler.

It's easy to know whether a filter handler is running in the input or the output mode. The arguments $f
and $bb are always passed, whereas the arguments $node, $bl ock, and $r eadbyt es are passed only
toinput filter handlers.

If we are in the input mode, in the same call we retrieve the bucket brigade from the previous filter on the
input filters stack and immediately link it to the $bb variable which makes the bucket brigade available to
the next input filter when the filter handler returns. If we forget to perform this linking our filter will
become a black hole in which data simply disappears. Next we call bb_dunp() which dumps the type of
the filter and the contents of the bucket brigade to STDERR, without influencing the normal data flow.

If we are in the output mode, the $bb variable already points to the current bucket brigade. Therefore we
can read the contents of the brigade right away. After that we pass the brigade to the next filter.

Let’s snoop on connection and request filter levels in both directions by applying the following configura-
tion:

Li sten 8008

<Virtual Host _default :8008>
Per | Modul e MyApache: : Fi |l t er Snoop
Per | Modul e MyApache: : Dunp

Connection filters
Perl| I nputFilterHandl er MApache:: FilterSnoop::connection
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Snoop: : connecti on

<Location /dunp>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Dunp
Request filters
Per| I nput Fil ter Handl er MyApache: : Filter Snoop: : request
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Snoop: : r equest
</ Locat i on>

</ Vi r tual Host >
Notice that we use avirtual host because we want to install connection filters.

If we issue the following request:

% echo "nod_perl rules" | POST 'http://1ocal host: 8008/ dunp?f oo=1&bar =2’

We get the same response, when using MyApache: : Fi | t er Snoop, because our snooping filter didn’t
change anything. Though there was a lot of output printed to error_log. We present it all here, since it
helps alot to understand how filters work.

First we can see the connection input filter at work, as it processes the HTTP headers. We can see that for
this request each header is put into a separate brigade with a single bucket. The data is conveniently
enclosed by [] so you can seethe new line characters as well.

238 29 Jan 2004

Input and Output Filters 15.5 All-in-One Filter

<<< connection input filter
o bucket 1: HEAP
[POST / dunp?foo=1&bar=2 HTTP/ 1.1

]

<<< connection input filter
o bucket 1: HEAP

[TE: deflate, gzip; g=0.3

]

<<< connection input filter
o bucket 1: HEAP
[Connection: TE, close

]

<<< connection input filter
o bucket 1: HEAP
[Host: | ocal host: 8008

]

<<< connection input filter
o bucket 1: HEAP
[User-Agent: |wp-request/2.01

]

<<< connection input filter
o bucket 1: HEAP
[Content-Length: 14

]

<<< connection input filter
o bucket 1: HEAP
[Content - Type: application/x-ww«formurl encoded

]

<<< connection input filter
o bucket 1: HEAP
[

]

Here the HTTP header has been terminated by a double new line. So far all the buckets were of the HEAP
type, meaning that they were allocated from the heap memory. Notice that the HTTP request input filters
will never see the bucket brigades with HTTP headers, as it has been consumed by the last core connection
filter.

The following two entries are generated when MyApache: : Dunp: : handl er reads the POSTed
content:

29 Jan 2004 239

15.5 All-in-One Filter

<<< connection input filter
o bucket 1: HEAP
[mod_per!| rul es]

<<< request input filter
o bucket 1: HEAP

[mod_perl rul es]
o bucket 2: ECS

[l

as we saw earlier on the diagram, the connection input filter is run before the request input filter. Since our
connection input filter was passing the data through unmodified and no other custom connection input
filter was configured, the request input filter sees the same data. The last bucket in the brigade received by
the request input filter is of type EOS, meaning that all the input data from the current request has been
received.

Next we can see that MyApache: : Dunp: : handl er has generated its response. However we can see
that only the request output filter gets run at this point:

>>> request output filter
0 bucket 1: TRANSI ENT

[args:

f oo=1&bar =2

content:

mod_per!l rules

]

This happens because Apache hasn’t sent yet the response HTTP headers to the client. The request filter
sees a bucket brigade with a single bucket of type TRANS ENT which is allocated from the stack memory.

The moment the first bucket brigade of the response body has entered the connection output filters,
Apache injects a bucket brigade with the HTTP headers. Therefore we can see that the connection output
filter isfiltering the brigade with HT TP headers (notice that the request output filters don’t seeit):

>>> connection output filter
o bucket 1: HEAP
[HTTP/ 1.1 200 K
Date: Tue, 19 Nov 2002 15:59:32 GMVI
Server: Apache/ 2.0.44-dev (Unix) nod_perl/1.99 08-dev
Perl/v5.8.0 nod_ssl/2.0.44-dev OpenSSL/0. 9. 6d DAV/ 2
Connection: close
Transfer-Encodi ng: chunked
Cont ent - Type: text/plain; charset=lSO 8859-1

]
and followed by the first response body’ s brigade:

>>> connection output filter
0 bucket 1: TRANSI ENT
[2b
]
0 bucket 2: TRANSI ENT
[args:

240 29 Jan 2004

Input and Output Filters 15.6 Input Filters

f oo=1&bar =2
content:
nmod_per!| rules

]

[
]

o bucket 3: | MMORTAL

If the response is large, the request and connection filters will filter chunks of the response one by one.
META: what's the size of the chunks? 8k?

Finally, Apache sends a series of the bucket brigades to finish off the response, including the end of
stream meta-bucket to tell filters that they shouldn’t expect any more data, and flush buckets to flush the
data, to make sure that any buffered output is sent to the client:

>>> connection output filter
o bucket 1: | MMORTAL

[0

]

[l

o bucket 2: ECS

>>> connection output filter
o0 bucket 1: FLUSH

[l

>>> connection output filter
o0 bucket 1: FLUSH

[l

This module helps to understand that each filter handler can be called many time during each request and
connection. It’s called for each bucket brigade.

Also it's important to mention that HTTP request input filters are invoked only if there is some POSTed
datato read and it's consumed by a content handler.

15.6 || nput Filters

mod_perl supports[Connection and[HT TP Requesiinpui filters:

15.6.1 |Connection I nput Filterg

Let’'s say that we want to test how our handlers behave when they are requested as HEAD requests, rather
than GET. We can alter the request headers at the incoming connection level transparently to al handlers.

This example' sfilter handler looks for datalike:

29 Jan 2004 241

15.6.1 Connection Input Filters

GET /perl/test.pl HITP/ 1.1

and turns it into:

HEAD /perl/test.pl HTTP/ 1.1

The following input filter handler does that by directly manipulating the bucket brigades:

file:M/Apache/ | nput Fi |l t er GET2HEAD. pm

package MyApache: : | nput Filter GET2HEAD,

use strict;
use war ni ngs;

use base qw(Apache::Filter);

use APR :Brigade ();
use APR : Bucket ();

use Apache:: Const -conpile => " OK ;
use APR: : Const -conpile =>"':conmon’;

sub handl er : FilterConnectionHandl er {
ny($f, $bb, $node, $bl ock, $readbytes) = @;

return Apache:: DECLINED if $f->ctx;

ny $rv = $f->next->get_brigade($bb, $npde, $bl ock, $readbytes);
return $rv unless $rv == APR: : SUCCESS;

for (ny $b = $bb->first; $b; $b = $bb->next ($b)) {
ny $dat a;
ny $status = $b->read($dat a);
return $status unl ess $status == APR : SUCCESS;
war n("data: $data\n");

if ($data and $data =~ s|GET| HEAD|) {
ny $bn = APR: : Bucket - >new($dat a) ;
$b->i nsert _after($bn);
$b- >renmove; # no | onger needed
$f->ctx(1); # flag that that we have done the job
| ast;

Apache: : OK;
}

1

The filter handler is called for each bucket brigade, which in turn includes buckets with data. The gist of
any input filter handler is to request the bucket brigade from the upstream filter, and return it downstream
filter using the second argument $bb. It's important to remember that you can call methods on this argu-
ment, but you shouldn’t assign to this argument, or the chain will be broken. Y ou have two techniques to

242 29 Jan 2004

Input and Output Filters 15.6.1 Connection Input Filters

choose from to retrieve-modify-return bucket brigades:

1. Create a new empty bucket brigade $ct x_bb, pass it to the upstream filter viaget _bri gade()
and wait for this call to return. When it returns, $ct x_bb is populated with buckets. Now the filter
should move the bucket from $ct x_bb to $bb, on the way modifying the buckets if needed. Once
the buckets are moved, and the filter returns, the downstream filter will receive the populated bucket
brigade.

2. Pass $bb to get _bri gade() to the upstream filter, so it will be populated with buckets. Once
get _bri gade() returns, the filter can go through the buckets and modify them in place, or it can
do nothing and just return (in which case, the downstream filter will receive the bucket brigade
unmodified).

Both techniques alow addition and removal of buckets. Though the second technique is more efficient
since it doesn’t have the overhead of create the new brigade and moving the bucket from one brigade to
another. In this example we have chosen to use the second technique, in the next example we will see the
first technique.

Our filter has to perform the substitution of only one HTTP header (which normally resides in one
bucket), so we have to make sure that no other data gets mangled (e.g. there could be POSTED data and it
may match / *GET/ in one of the buckets). We use $f - >ct x as a flag here. When it's undefined the
filter knows that it hasn't done the required substitution, though once it completes the job it sets the
context to 1.

To optimize the speed, the filter immediately returns Apache: : DECLI NED when it's invoked after the
substitution job has been done:

return Apache:: DECLINED i f $f->ctx;

In that case mod_perl will cal get bri gade() internally which will pass the bucket brigade to the
downstream filter. Alternatively the filter could do:

my $rv = $f->next->get _bri gade($bb, $node, $bl ock, $readbytes);
return $rv unless $rv == APR: : SUCCESS;
return Apache:: K if $f->ctx;

but thisis abit less efficient.

[META: the most efficient thing to do is to remove the filter itself once the job isdone, so it won't be even
invoked after the job has been done.

if ($f->ctx) {

$f - >renove;

return Apache: : DECLI NED;
}

However, this can't be used with Apache 2.0.46 and lower, since it has a bug when trying to remove the
edge connection filter (it doesn't removeit). Don't know if it's going to be fixed in 2.0.47]

29 Jan 2004 243

15.6.1 Connection Input Filters

If the job wasn’t done yet, the filter callsget _br i gade, which populates the $bb bucket brigade. Next,
the filter steps through the buckets looking for the bucket that matches the regex: / "GET/ . If that
happens, a new bucket is created with the modified data (s/ * GET/ HEAD/ . Now it has to be inserted in
place of the old bucket. In our example we insert the new bucket after the bucket that we have just modi-
fied and immediately remove that bucket that we don’t need anymore:

$b- >i nsert _after($bn);
$b- >renove; # no | onger needed

Finally we set the context to 1, so we know not to apply the substitution on the following data and break
from the for loop.

The handler returns Apache: : OK indicating that everything was fine. The downstream filter will receive
the bucket brigade with one bucket modified.

Now let’s check that the handler works properly. For example, consider the following response handler:

file: MApache/ Request Type. pm

package MyApache: : Request Type;

use strict;
use war ni ngs;

use Apache:: Request! O ();
use Apache:: RequestRec ();
use Apache:: Response ();

use Apache:: Const -conpile => " K ;

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);

nmy $response = "the request type was " . $r->nethod,;
$r->set _content _l ength(l ength $response);

$r->print ($response);

Apache: : OK;
}

1

which returns to the client the request type it has issued. In the case of the HEAD request Apache will
discard the response body, but it’ll will still set the correct Cont ent - Lengt h header, which will be 24
in case of the GET request and 25 for HEAD. Therefore if this response handler is configured as:

Li sten 8005
<Virtual Host _default_:8005>
<Location />
Set Handl er nodper|
Per | ResponseHandl er +MyApache: : Request Type
</ Locati on>
</ Vi rt ual Host >

244 29 Jan 2004

Input and Output Filters 15.6.2 HTTP Request Input Filters

and a GET request isissued to /:
pani c% perl -MWP: : User Agent -le \
"$r = LWP: : User Agent->new()->get ("http://Ilocal host:8005/"); \

print $r->headers->content_length . ": ". $r->content
24: the request type was CGET

where the response’ s body is:

the request type was GET
And the Cont ent - Lengt h header is set to 24.

However if we enablethe MyApache: : | nput Fi | t er GET2HEAD input connection filter:

Li sten 8005
<Virtual Host _default_:8005>
Per | I nput Fi | t erHandl er +MyApache: : | nput Fi | t er GET2HEAD

<Location />

Set Handl er nodper

Per | ResponseHandl er +MyApache: : Request Type
</ Locat i on>
</ Vi r t ual Host >

And issue the same GET request, we get only:

25:

which means that the body was discarded by Apache, because our filter turned the GET request into a
HEAD request and if Apache wasn't discarding the body on HEAD, the response would be:

the request type was HEAD

that’s why the content length is reported as 25 and not 24 asin thereal GET request.

15.6.2 HTTP Request I nput Filterg

Request filters are really non-different from connection filters, other than that they are working on request
and response bodies and have an access to a request object.

15.6.3 |Bucket Brigade-based | nput Filterg

Let’slook at the request input filter that lowers the case of the request’s body: MyApache: : | nput Re-
questFilterlLC

file:M/Apache/ | nput Request FilterLC pm

package MyApache: : | nput RequestFilterLC

use strict;
use war ni ngs;

29 Jan 2004 245

15.6.3 Bucket Brigade-based Input Filters

use base gw Apache::Filter);

use Apache: : Connection ();
use APR : Brigade ();
use APR : Bucket ();

use Apache::Const -conpile => 'K ;
use APR: : Const -conpile =>":common’;

sub handl er : FilterRequestHandl er {
ny($f, $bb, $node, $bl ock, $readbytes) = @;

ny $c = $f->c;
nmy $bb_ctx = APR : Bri gade- >new($c- >pool , $c->bucket _all oc);

nmy $rv = $f->next->get _bri gade($bb_ctx, $node, $bl ock, $readbytes);

return $rv unless $rv == APR : SUCCESS;

while (!$bb_ctx->enpty) {
ny $b = $bb_ct x->first;

$b- >r enove;
if ($b->is_eos) {
$bb->i nsert _tail ($b);

| ast ;

}
ny $dat a;

ny $status = $b->read($dat a);
return $status unless $status == APR : SUCCESS;

$b = APR : Bucket->new(l c $data) if $data;

$bb->i nsert _tail ($b);
}

Apache: : OK;
}

1;

As promised, in this filter handler we have used the first technique of bucket brigade modification. The
handler creates a temporary bucket brigade (ct x__bb), populates it with data using get _bri gade(),
and then moves buckets from it to the bucket brigade $bb, which is then retrieved by the downstream

filter when our handler returns.

This filter doesn’t need to know whether it was invoked for the first time or whether it has already done
something. It’'s state-less handler, since it has to lower case everything that passes through it. Notice that
this filter can’t be used as the connection filter for HTTP requests, since it will invalidate the incoming

regquest headers; for example the first header line:

246

Input and Output Filters 15.6.4 Stream-oriented Input Filters

GET /perl/TEST.pl HITP/ 1.1

will become:

get /perl/test.pl http/1l.1
which messes up the request method, the URL and the protocol.

Now if we use the MyApache: : Dunp response handler, we have devel oped before in this chapter, which
dumps the query string and the content body as a response, and configure the server as follows:

<Location /| c_input>

Set Handl er nodper |

Per | ResponseHandl er +MyApache: : Dunp

Per| I nput Fi | t er Handl er +MyApache: : | nput RequestFilterLC
</ Locat i on>

When issuing a POST request:

% echo "mOd_pErl RuLeS" | POST 'http://1ocal host:8002/1 c_i nput ?FoO=1&BAR=2’

we get aresponse

ar gs:
FoO=1&BAR=2
content:
nmod_per!l rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
Y ou can see that the query string wasn't changed.

15.6.4 |Stream-oriented I nput Filterg

Let’snow look at the same filter implemented using the stream-oriented API.

file:M/Apache/ | nput Request FilterLC2. pm

package MyApache: : | nput RequestFilterLC2;

use strict;
use war ni ngs;

use base qw(Apache::Filter);
use Apache:: Const -conpile => "' OK ;
use constant BUFF_LEN => 1024;

sub handl er : FilterRequestHandl er {
my $f = shift;

whil e ($f->read(mnmy $buffer, BUFF_LEN)) {
$f->print(lc $buffer);
}

29 Jan 2004 247

15.6.4 Stream-oriented Input Filters

Apache: : CK;
}
1;

Now you probably ask yourself why did we have to go through the bucket brigades filters when this all
can be done so much simpler. The reason is that we wanted you to understand how the filters work under-
neath, which will assist alot when you will need to debug filters or optimize their speed. In certain cases a
bucket brigade filter may be more efficient than the stream-oriented. For example if the filter applies trans-
formation to selected buckets, certain buckets may contain open filehandles or pipes, rather than real data.
And when you call read() the buckets will be forced to read that data in. But if you didn’'t want to modify
these buckets you could pass them as they are and let Apache do faster techniques for sending data from
the file handles or pipes.

The logic is very simple here, the filter reads in loop, and prints the modified data, which at some point
will be sent to the next filter. This point happens every time the internal mod_perl buffer is full or when
thefilter returns.

read() populates $buf f er to a maximum of BUFF_LEN characters (1024 in our example). Assuming
that the current bucket brigade contains 2050 chars, r ead() will get the first 1024 characters, then 1024
characters more and finally the remaining 2 characters. Notice that even though the response handler may
have sent more than 2050 characters, every filter invocation operates on a single bucket brigade so you
have to wait for the next invocation to get more input. In one of the earlier examples we have shown that
you can force the generation of several bucket brigades in the content handler by using r f | ush() . For
example:

$r->print("string");

$r->rflush();
$r->print("another string");

It's only possible to get more than one bucket brigade from the same filter handler invocation if the filter
is not using the streaming interface and by simply calling get _bri gade() as many times as needed or
till EOSis received.

The configuration section is pretty much identical:
<Location /Il c_input2>
Set Handl er nodper|
Per | ResponseHandl er +MyApache: : Dunp

Per| I nput Fi | t er Handl er +MyApache: : | nput Request Fil ter LC2
</ Locati on>

When issuing a POST request:

% echo "nmOd_pErl RuLeS" | POST 'http://1ocal host:8002/1 c_i nput 2?FoO=1&BAR=2’

we get a response:

248 29 Jan 2004

Input and Output Filters 15.7 Output Filters

args:
FoO=1&BAR=2
content:
nmod_per!| rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
Y ou can see that the query string wasn't changed.

15.7 |Output Filters

mod_perl supports[Connection and[HT TP Request output filters:

15.7.1 |Connection Output Filterg

Connection filters filter all the data that is going through the server. Therefore if the connection is of
HTTP request type, connection output filters see the headers and the body of the response, whereas
regquest output filters see only the response body.

META: for now see the request output filter explanations and examples, connection output filter examples
will be added soon. Interesting ideas for such filters are welcome (possible ideas: mangling output headers
for HTTP requests, pretty much anything for protocol modules).

15.7.2 HTTP Request Output Filterg

As mentioned earlier output filters can be written using the bucket brigades manipulation or the ssimplified
stream-oriented interface.

First let's develop a response handler that sends two lines of output: numerals 1234567890 and the
English alphabet in a single string:
file: MyApache/ SendAl phaNum pm

package MyApache: : SendAl phaNum

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();

use Apache:: Const -conpile => qw(OK)

sub handl er {
ny $r = shift;

$r->content _type('text/plain');

$r->print(1..9, "0\n");
$r->print(’a..’z’, "\n");

29 Jan 2004 249

15.7.2 HTTP Request Output Filters

Apache: : CK;
}
1;
The purpose of our filter handler is to reverse every line of the response body, preserving the new line

charactersin their places. Since we want to reverse characters only in the response body, without breaking
the HTTP headers, we will use the HTTP request output filter.

15.7.2.1 [Stream-oriented Output Filterd

Thefirst filter implementation is using the stream-oriented filtering API:

file:M/Apache/ FilterReversel. pm

package MyApache:: FilterReversel;

use strict;
use war ni ngs;

use base qw(Apache::Filter);
use Apache:: Const -conpile => gw K);
use constant BUFF_LEN => 1024;

sub handl er : FilterRequestHandl er {
my $f = shift;

whil e ($f->read(mnmy $buffer, BUFF_LEN)) {
for (split "\n", S$buffer) {
$f->print(scalar reverse $);
$f->print("\n");

Apache: : OK;
}
1

Next, we add the following configuration to httpd.conf:

Per | Modul e MyApache: : FilterReversel
Per | Modul e MyApache: : SendAl phaNum
<Location /reversel>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : SendAl phaNum
Per | Qut put Fi | t er Handl er MyApache: : Fi |l t er Reversel
</ Locat i on>

Now when a request to /reversel is made, the response handler MyApache: : SendAl -
phaNum : handl er () sends:

250 29 Jan 2004

Input and Output Filters 15.7.2 HTTP Request Output Filters

1234567890
abcdef ghi j kIl mopgr st uvwxyz

as a response and the output filter handler MyApache: : Fi | t er Rever sel: : handl er reverses the
lines, so the client gets:

0987654321
zyxwvut srgponm kj i hgf edcba

The Apache: : Filter module loads the read() and print() methods which encapsulate the
stream-oriented filtering interface.

The reversing filter is quite smple: in the loop it reads the data in the readling() mode in chunks up to the
buffer length (1024 in our example), and then prints each line reversed while preserving the new line
control characters at the end of each line. Behind the scenes $f - >r ead() retrieves the incoming brigade
and gets the data from it, and $f - >pri nt () appends to the new brigade which is then sent to the next
filter in the stack. r ead() breaks the while loop, when the brigade is emptied or the end of stream is
received.

In order not to distract the reader from the purpose of the example the used code is oversimplified and
won’t handle correctly input lines which are longer than 1024 characters and possibly using a different
line termination token (could be "\n", "\r" or "\r\n" depending on a platform). Moreover a single line may
be split between across two or even more bucket brigades, so we have to store the unprocessed string in
the filter context, so it can be used on the following invocations. So here is an example of a more complete
handler, which does takes care of these issues:

sub handl er {
ny $f = shift;

ny $leftover = $f ->ctx;
while ($f->read(ny $buffer, BUFF_LEN)) {
$buffer = $leftover . $buffer if defined $l eftover;
$l ef t over = undef;
while (Sbuffer =~ /([M\r\n]*)([\r\n]*)/g) {
$l eftover = $1, |ast unless $2;
$f->print(scal ar(reverse $1), $2)

}

if ($f->seen_eos) {
$f->print(scalar reverse $leftover) if defined $leftover;

}
el se {

$f->ct x($l eftover) if defined $l eftover
}

return Apache: : K
}

The handler uses the $Il ef t over variable to store unprocessed data as long as it fails to assemble a
complete line or there is an incomplete line following the new line token. On the next handler invocation
this data is then prepended to the next chunk that is read. When the filter is invoked on the last time, it

29 Jan 2004 251

15.7.2 HTTP Request Output Filters

unconditionally reverses and flushes any remaining data.

15.7.2.2 [Bucket Brigade-based Output Filterd

The following filter implementation is using the bucket brigades API to accomplish exactly the same task
asthefirst filter.

file:MyApache/ FilterReverse2. pm

package MyApache:: FilterReverse2

use strict;
use war ni ngs;

use base qw(Apache::Filter);

use APR :Brigade ();
use APR : Bucket ();

use Apache:: Const -conpile => 'K
use APR : Const -conpile => ':conmmon’;

sub handl er : FilterRequestHandl er {
ny($f, $bb) = @;

ny $c = $f->c
ny $bb_ctx = APR : Bri gade- >new($c- >pool , $c->bucket _al | oc);

whil e (!$bb->empty) {
ny $bucket = $bb->first;

$bucket - >r enove

if ($bucket->is_eos) {
$bb_ct x->i nsert _tail ($bucket);
| ast;

}

ny $dat a;
ny $status = $bucket - >read($data);
return $status unless $status == APR: : SUCCESS

if ($data) {
$data = join "",
map {scal ar(reverse $_), "\n"} split "\n", $data
$bucket = APR : Bucket - >new($dat a) ;

252 29 Jan 2004

Input and Output Filters 15.8 Filter Applications

$bb_ctx->insert _tail ($bucket);
}

ny $rv = $f->next->pass_brigade($bb_ctx);
return $rv unless $rv == APR : SUCCESS;

Apache: : CK;
}
1;

and the corresponding configuration:

Per| Modul e MyApache: : Fil ter Reverse2
Per | Modul e MyApache: : SendAl phaNum
<Location /reverse2>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : SendAl phaNum
Per| Qut put Fi | t er Handl er MyApache: : Fi |l t er Reverse2
</ Locati on>

Now when arequest to /reverse2 is made, the client gets:

0987654321
zyxwvut srgponm kj i hgf edcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the stream-oriented one. The
handler receives the incoming bucket brigade $bb as its second argument. Since when the handler is
completed it must pass a brigade to the next filter in the stack, we create a new bucket brigade into which
we are going to put the modified buckets and which eventually we pass to the next filter.

The core of the handler is in removing buckets from the head of the bucket brigade $bb while there are
some, reading the data from the buckets, reversing and putting it into a newly created bucket which is
inserted to the end of the new bucket brigade. If we see a bucket which designates the end of stream, we
insert that bucket to the tail of the new bucket brigade and break the loop. Finally we pass the created
brigade with modified data to the next filter and return.

Similarly to the original version of MyApache: : Fi |l t er Rever sel: : handl er, this filter is not
smart enough to handle incomplete lines. However the exercise of making the filter foolproof should be
trivial by porting a better matching rule and using the $I ef t over buffer from the previous section is
trivial and left as an exercise to the reader.

15.8 |Filter Applicationg

The following sections provide various filter applications and their implementation.

29 Jan 2004 253

15.8.1 Handling Data Underruns

15.8.1 Handling Data Underrung

Sometimes filters need to read at least N bytes before they can apply their transformation. It’'s quite possi-
ble that reading one bucket brigade is not enough. But two or more are needed. This situation is sometimes
referred to as an underrun.

Let's take an input filter as an example. When the filter realizes that it doesn’t have enough data in the
current bucket brigade, it can store the read data in the filter context, and wait for the next invocation of
itself, which may or may not satisfy its needs. Meanwhile it must return an empty bb to the upstream input
filter. Thisis not the most efficient technique to resolve underruns.

Instead of returning an empty bb, the input filter can initiate the retrieval of extra bucket brigades, until the
underrun condition gets resolved. Notice that this solution is absolutely transparent to any filters before or
after the current filter.

Consider thisHTTP request:

% perl -MWP:: User Agent -le ' \
$r = LWP: : User Agent - >new() - >post ("http://1 ocal host: 8011/", \
[content => "x" x (40 * 1024 + 7)]); \
print $r->is_success ? $r->content : "failed: " . $r->code’
read 40975 chars

This client POSTSs just alittle bit more than 40kb of data to the server. Normally Apache splits incoming
POSTed data into 8kb chunks, putting each chunk into a separate bucket brigade. Therefore we expect to
get 5 brigades of 8kb, and one brigade with just a few bytes (atotal of 6 bucket brigades).

Now let’s say that the filter needs to have 1024* 16 + 5 bytes to have a compl ete token and then it can start
its processing. The extra 5 bytes are just so we don't perfectly fit into 8bk bucket brigades, making the
example closer to real situations. Having 40975 bytes of input and a token size of 16389 bytes, we will
have 2 full tokens and 8197 remainder.

Jumping ahead let’slook at the filter debug output:

filter called

asking for a bb

asking for a bb

asking for a bb

storing the remainder: 7611 bytes

filter called

asking for a bb

asking for a bb

storing the remainder: 7222 bytes

filter called

asking for a bb
seen eos, flushing the remaining: 8197 bytes

254 29 Jan 2004

Input and Output Filters 15.8.1 Handling Data Underruns

So we can see that the filter was invoked three times. The first time it has consumed three bucket brigades,
collecting one full token of 16389 bytes and has a remainder of 7611 bytes to be processed on the next
invocation. The second time it needed only two more bucket brigades and this time after completing the
second token, 7222 bytes have remained. Finally on the third invocation it has consumed the last bucket
brigade (total of six, just as we have expected), however it didn’t have enough for the third token and since
EOS has been seen (no more data expected), it has flushed the remaining 8197 bytes as we have calculated
earlier.

It is clear from the debugging output that the filter was invoked only three times, instead of six times
(there were six bucket brigades). Notice that the upstread input filter (if any) wasn’t aware that there were
six bucket brigades, since it saw only three. Our example filter didn’t do much with those tokens, so it has
only repackaged data from 8kb per bucket brigade, to 16389 bytes per bucket brigade. But of course in
real world some transformation is applied on these tokens.

Now you understand what did we want from the filter, it's time for the implementation details. First let's
look at ther esponse() handler (thefirst part of the module):

#fil e: My/Apache/ Under run. pm
package MyApache: : Underrun;

use strict;
use war ni ngs;

use constant | OBUFSI ZE => 8192;

use Apache:: Const -conpile => gqw(MODE_READBYTES CK M PQCST);
use APR : Const -conpi l e => gw SUCCESS BLOCK_READ) ;

sub response {
ny $r = shift;

$r->content _type('text/plain');

if ($r->method_nunber == Apache:: M PCST) {
ny $data = read_post ($r);
#warn "HANDLER READ: $data\n";
ny $length = |l ength $dat a;
$r->print("read $length chars");

}

return Apache:: OK;

sub read_post {

ny $r = shift;

ny $debug = shift || O;

nmy @ata = ();

ny $seen_eos = O;

ny $filters = $r->input_filters();

nmy $ba = $r->connection->bucket _all oc;

ny $bb = APR : Bri gade- >new($r - >pool , $ba);

29 Jan 2004 255

15.8.1 Handling Data Underruns

do {
ny $rv = $filters->get_brigade($bb,

Apache: : MODE_READBYTES, APR: : BLOCK_READ,

if ($rv !'= APR : SUCCESS) {
return $rv;
}

while (!$bb->enmpty) {
ny $buf;
ny $b = $bb->first;

$b- >r enove;

if ($b->is_eos) {
warn "ECS bucket:\n" if $debug;
$seen_eos++;
| ast;

}

ny $status = $b->read($buf);

warn "DATA bucket: [$buf]\n" if $debug;

if ($status != APR : SUCCESS) ({
return $status;
}

push @lata, $buf;
}

$bb- >dest r oy;
} while (!$seen_eos);

return join '’, @lata;

}

| OBUFSI ZE) ;

Theresponse() handler istrivia -- it reads the POSTed data and prints how many bytes it has read.

read_post () sucksall POSTed datawithout parsing it.

Now comes the filter (which livesin the same package):
#fil e: MyApache/ Underrun. pm (conti nued)
use Apache::Filter ();
use Apache:: Const -conpile => gw(OK M _PGCST);
use constant TOKEN_SI ZE => 1024*16 + 5; # ~16k
sub filter {
ny($f, $bb, $node, $bl ock, $readbytes) = @;
nmy $ba = $f->r->connecti on->bucket _al | oc;
nmy $ctx = $f->ctx;
ny $buffer = defined $ctx ? $ctx : ' ;

$ctx = '’; # reset
nmy $seen_eos = 0;

256

29 Jan 2004

Input and Output Filters 15.8.1 Handling Data Underruns

}

ny $dat a;
warn "\'nfilter called\n";

fetch and consune bucket brigades untill we have at |east TOKEN S| ZE
bytes to work with
do {
ny $tbb = APR : Bri gade- >new($f - >r - >pool , $ba);
ny $rv = $f->next->get_brigade($tbb, $node, $bl ock, $readbytes);
warn "asking for a bb\n";
($data, $seen_eos) = flatten_bb($tbb);
$t bb- >dest r oy;
$buffer .= $dat a;
} while (!$seen_eos && length($buffer) < TOKEN_SI ZE);

now create a bucket per chunk of TOKEN S| ZE size and put the remainder
#in ctx
for (split_buffer($buffer)) {
if (length($_) == TOKEN_SI ZE) {
$bb->i nsert _tail (APR : Bucket->new($_));

}
el se {

$ctx .= $_;
}

}

ny $len = | ength($ctx);
if ($seen_eos) {
flush the renuinder
$bb->i nsert _tail (APR: : Bucket - >new($ct x)) ;
$bb->insert _tail (APR : Bucket::eos_create($ha));
warn "seen eos, flushing the remaining: $len bytes\n";

}

el se {
wll re-use the renmminder on the next invocation
$f - >ct x($ctx) ;
warn "storing the renminder: $len bytes\n";

}

return Apache:: CK;

split a string into tokens of TOKEN SIZE bytes and a renmi nder
sub split_buffer {

}

ny $buffer = shift;

if ($] < 5.007) {
ny @okens = $buffer =~ /(. {@[TOKEN_SI ZE] }}|.+)/g;
return @ okens;

}
el se {

available only since 5.7.x+

return unpack "(A" . TOKEN SIZE . ")*", S$buffer;
}

sub flatten_bb {

my ($bb) = shift;

29 Jan 2004 257

15.9 Filter Tipsand Tricks

ny $seen_eos = O;

ny @lata,;
for (my $b = $bb->first; $b; $b = $bb->next ($b)) {
$seen_eos++, last if $b->is_eos;
$b->read(ny $bdata);
$bdata = '’ unl ess defined $bdat a;
push @lata, $bdat a;

}

return (join('', @ata), $seen_eos);

}

1;

The filter callsget _bri gade() inado-while loop till it reads enough data or sees EOS. Notice that it
may get underruns for several times, and then suddenly receive alot of data at once, which will be enough
for more than one minimal size token, so we have to take care this into an account. Once the underrun
condition is satisfied (we have at least one complete token) the tokens are put into a bucket brigade and
returned to the upstream filter for processing, keeping any remainders in the filter context, for the next
invocations or flushing all the remaining data if EOS has been seen.

Notice that this won't be possible with streaming filters where every invocation gives the filter exactly one
bucket brigade to work with and provides not facilities to fetch extra brigades. (META: however this can
be fixed, by providing a method which will fetch the next bucket brigade, so the read in a while loop can
be repeated)

And here is the configuration for this setup:

Per | Modul e MyApache: : Under run
<Location />
Per| I nput Fi | t er Handl er MyApache: : Underrun::filter
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Underrun: : response
</ Locat i on>

15.9 |Filter Tipsand Tricks

Varioustipsto usein filters.

15.9.1 |Altering the Content-Type Response Headey|

Let’ s say that you want to modify the Cont ent - Type header in the request output filter:

sub handl er : FilterRequestHandl er {
ny $f = shift;

$f->r->content _type("text/htm ; charset=%charset");

258 29 Jan 2004

Input and Output Filters 15.10 Writing Well-Behaving Filters

Request filters have an access to the request object, so we simply modify it.

15.10 Writing Well-Behaving Filters

Filter writers must follow the following rules:

15.10.1 |Adjusting HTTP Headerg

The following information isrelevant for HTTP filters

e Unsetting the Content-L ength header

HTTP response filters modifying the length of the body they process must unset the
Cont ent - Lengt h header. For example, a compression filter modifies the body length, whereas a
lowercasing filter doesn't; therefore the former has to unset the header, and the latter doesn’t have to.

The header must be unset before any output is sent from the filter. If this rule is not followed, an
HTTP response header with incorrect Cont ent - Lengt h value might be sent.

Since you want to run this code once during the multiple filter invocations, use the ct x() method to
set the flag:

unl ess ($f->ctx) {
$f - >r - >header s_out - >unset ('’ Content -Length’);
$f ->ct x(1);

}

e META: Same goes for last-modified/etags, which may need to be unset, "vary" might need to be
added if you want caching to work properly (depending on what your filter does.

15.10.2 |Other issueq

META: to be written. Meanwhile collecting important inputs from various sources.

[

This one will be expanded by Geoff at some point:

HTTP output filter developers are ought to handle conditional GETSs properly... (mostly for the reason of
efficiency?)

]
[

talk about issues like not losing meta-buckets. e.g. if the filter runs a switch statement and propagates
buckets types that were known at the time of writing, it may drop buckets of new types which may be
added later, so it’simportant to ensure that there is a default cause where the bucket is passed asiis.

29 Jan 2004 259

15.11 Writing Efficient Filters

of course mention the fact where things like EOS buckets must be passed, or the whole chain will be
broken. Or if some filter decides to inject an EOS bucket by itsdlf, it should probably consume and destroy
the rest of the incoming bb. need to check on thisissue.

]
[

Need to document somewhere (concepts?) that the buckets should never be modified directly, because the
filter can’t know ho else could be referencing it at the same time. (shared mem/cache/memory mapped
files are examples on where you don’t want to modify the data). Instead the data should be moved into a
new bucket.

Also it looks like we need to $b->destroy (need to add the API) in addition to $b->remove. Which can be
done in one stroke using $b->delete (need to add the API).

]
[

Mention mod_bucketeer as filter debugging tool (in addition to FilterSnoop)

]

15.11 Writing Efficient Filters
META: to be written

[

As of this writing the network input filter reads in 8000B chunks (not 8192B!), and making each bucket
8000B in size, so it seems that the most efficient reading techniqueis:

use constant BUFF_LEN => 8000;

while ($f->read(nmy $buffer, BUFF_LEN)) {
mani p $buffer
$f ->print ($buffer);

}

however if there is some filter in between, it may change the size of the buckets. Also this number may
change in the future.

Hmm, I've also seen it read in 7819 chunks. | suppose this is not very reliable. But it’s probably a good
ideato ask at least 8k, so if a bucket brigade has < 8k, nothing will need to be stored in the internal buffer.
i.e. read() will return less than asked for.

]

260 29 Jan 2004

Input and Output Filters 15.12 Maintainers

[

Bucket Brigades are used to make the data flow between filters and handlers more efficient. e.g. a file
handle can be put in a bucket and the read from the file can be postponed to the very moment when the
data is sent to the client, thus saving a lot of memory and CPU cycles. though filters writers should be
aware that if they call $bucket->read(), or any other operation that internally forces the bucket to read the
information into the memory (like the length() op) and thus making the data handling inefficient. therefore
a care should be taken so not to read the datain, unlessit’s really necessary.

]

15.12 (M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

15.13 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 261

16 Genera Handlers Issues

16 General Handlers|ssues

262 29 Jan 2004

General Handlers Issues 16.1 Description

16.1 |Description|

This chapter discusses issues relevant too any kind of handlers.

16.2 [Handlers Communication|

Apache handlers can communicate between themselves by writing and reading notes. It doesn’t matter in
what language the handlers were implemented as long as they can access the notes table.

For example inside arequest handler we can say:

ny $r shift;
ny $c = $r->connecti on;
$c- >not es- >set (nmod_perl => "rules’);

and then later inamod_perl filter handler this note can be retrieved with:

ny $f shift;

ny $c = $f->c;

ny $is = $c->notes->get ("nod_perl");
$f ->print("nmod_perl $is");

16.3 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

16.4 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 263

17 Preventive Measures for Performance Enhancement

17 Prevenive Measures forPerformanceEnhance
ment

264 29 Jan 2004

Preventive Measures for Performance Enhancement 17.1 Description

17.1 |Description|

This chapter explains what should or should not be done in order to keep the performance high

17.2 Memory L eakage

Memory leakagein 1.0 docs.

17.2.1 |Proper Memory Pools Usagg

Several mod_perl 2.0 APIs are using Apache memory pools for memory management. Mainly because the
underlying C API requires that. So every time Apache needs to allocate memory it allocates it using the
pool object that is passed as an argument. Apache doesn’t frees allocated memory, this happens automati-
cally when a pool endsitslife.

Different pools have different life lengths. Request pools ($r - >pool) are destroyed at the end of each
request. Connection pools ($c- >pool) are destroyed when the connection is closed. Server pools
$s- >pool) and the globa pools (accessible in the server startup phases, like Per | OQpenLogsHan-
dl er handlers) are destroyed only when the server exits.

Therefore always use the pool of the shortest possible life if you can. Never use server pools during
request, when you can use arequest pool. For exampleinside an HTTP handler, don't call:

nmy $conf_dir = Apache:: Server::server_root_relative($s->pool, 'conf’);
when you can call:
nmy $conf_dir = Apache:: Server::server_root_relative($r->pool, 'conf’);

Of course on specia occasions, you may want to have something allocated off the server pool if you want
the allocated memory to survive through several subsequent reguests or connections. But this is normally
doesn’'t apply to the core mod_perl 2.0, but rather for 3rd party extensions.

17.3 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

17.4 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 265

18 Performance Considerations Under Different MPMs

18 Performance Considerations Under Different
MPMs

266 29 Jan 2004

Performance Considerations Under Different MPMs 18.1 Description

18.1 |Description|

This chapter discusses how to choose the right MPM to use (on platforms that have such a choice), and
how to get the best performance out of it.

Certain kind of applications may show a better performance when running under one mpm, but not the
other. Results a'so may vary from platform to platform.

CPAN module devel opers have to strive making their modules function correctly regardless the mpm they
are being deployed under. However they may choose to indentify what MPM the code is running under
and do better decisions better on this information, as long as it doesn't break the functionality for other
platforms. For examples if a developer provides thread-unsafe code, the module will work correctly under
the prefork mpm, but may malfunction under threaded mpms.

18.2 M emory Requirements

Since the very beginning mod_per| users have enjoyed the tremendous speed boost mod_perl was provid-
ing, but there is no free lunch -- mod_perl has quite big memory requirements, since it has to store the
compiled code in the memory to avoid the code loading and recompilation overhead for each request.

18.2.1 [Memory Requirementsin Prefork MPM|

For those familiar with mod_perl 1.0, mod_perl 2.0 has not much new to offer. We still rely on shared
memory, try to preload as many things as possible at the server startup and limit the amount of used
memory using specially designed for that purpose tools.

The new thing is that the core API has been spread across multiply modules, which can be loaded only
when needed (this of course works only when mod_perl is builts as DSO). This alows to save some
memory. However the savings are not big, since al these modules are writen in C, making them into the
text segments of the memory, which is perfectly shared. The savings are more significant at the startup
speed, since the startup time, when DSO modules are loaded, is growing almost quadratically as the
number of loaded DSO modules grows (because of symbol relocations).

18.2.2 [Memory Requirementsin Threaded MPM|

The threaded MPM is a totally new beast for mod_perl users. If you run several processes, the same
memory sharing techniques apply, but usually you want to run as few processes as possible and to have as
many threads as possible. Remember that mod_perl 2.0 allows you to have just a few Perl interpretersin
the process which otherwise runs multiple threads. So using more threads doesn’t mean using significantly
more memory, if the maximum number of available Perl interpretersis limited.

Even though memory sharing is not applicable inside the same process, mod_perl gets a significant
memory saving, because Perl interpreters have a shared opcode tree. Similar to the preforked model, all
the code that was loaded at the server startup, before Perl interpreters are cloned, will be shared. But there
is a significant difference between the two. In the prefork case, the normal memory sharing applies: if a
single byte of the memory page gets unshared, the whole page is unshared, meaning that with time less

29 Jan 2004 267

18.3 Work with DataBases

and less memory is shared. In the threaded mpm case, the opcode tree is shared and this doesn’t change as
the code runs.

Moreover, since Perl Interpreter pools are used, and the FIFO model is used, if the pool contains three Perl
interpreters, but only one is used at any given time, only that interpreter will be ever used, making the
other two interpreters consuming very little memory. So if with prefork MPM, you'd think twice before
loading mod_perl if all you need is trans handler, with threaded mpm you can do that without paying the
price of the significanly increased memory demands. Y ou can have 256 light Apache threads serving static
requests, and let’'s say three Perl interpreters running quick trans handlers, or even heavy but infrequest
dynamic requests, when needed.

It's not clear yet, how one will be able to control the amount of running Perl interepreters, based on the
memory consumption, because it’s not possible to get the memory usage information per thread. However
we are thinking about running a garbage collection thread which will cleanup Perl interpreters and occa-
sionaly kill off the unused ones to free up used memory.

18.3 Work with DataBases

18.3.1 Work with DataBases under Prefork MPM|

Apache: : DBl worksaswith mod_perl 1.0, to share database connections.

18.3.2 Work with DataBases under Threaded MPM|

The current Apache: : DBl should be usable under threaded mpm, though it doesn’t share connections
across threads. Each Perl interpreter has its own cache, just like in the prefork mpm.

DBI : : Pool isawork in progress, which should bring the sharing of database connections across threads
of the same process. Watch the mod_perl and dbi-dev lists for updates on thiswork. Once DBI : : Pool is
completed it'll either replace Apache: : DBl or will be used by it.

18.4 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

18.5 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

268 29 Jan 2004

Troubleshooting mod_perl problems 19 Troubleshooting mod_perl problems

19 Troubleshooting mod_perl problems

29 Jan 2004 269

19.1 Description

19.1 |Description|

Frequently encountered problems (warnings and fatal errors) and their troubleshooting.

19.2 Building and I nstallation|

19.3 |Configuration and Startup

19.3.1 [(28)No space |eft on device

httpd-2.0 is not very helpful at telling which device has run out of precious space. Most of the time when
you get an error like:

(28) No space | eft on device:
nmod_rewite: could not create rewite_ | og_ Il ock

it means that your system have run out of semaphore arrays. Sometimes it's full with legitimate
semaphores at other times it’s because some application has leaked semaphores and haven't cleaned them
up during the shutdown (which is usually the case when an application segfaults).

Use the relevant application to list the ipc facilities usage. On most Unix platforms this is usually an
i pcs(1) utility. For example linux to list the semaphore arrays you should execute:

% ipcs -s

------ Semaphore Arrays --------

key sem d owner per ns nsemns
0x00000000 2686976 st as 600 1
0x00000000 2719745 st as 600 1
0x00000000 2752514 st as 600 1

Next you have to figure out what are the dead ones and remove them. For example to remove the semid
2719745 execute:

% ipcrm-s 2719745

Instead of manually removing each (and sometimes there can be many of them), and if you know that
none of listed the semaphoresisreally used (all leaked), you can try to remove them all:

%ipcs -s | perl -ane '‘ipcrm-s $F[1]"’

httpd-2.0 seems to use the key 0x00000000 for its semaphores on Linux, so to remove only those that
match that key you can use:

% ipcs -s | perl -ane '/”~0x00000000/ && ‘ipcrm-s $F[1]°’

Notice that on other platforms the output of i pcs -s might be different, so you may need to apply a
different Perl one-liner.

270 29 Jan 2004

Troubleshooting mod_perl problems 19.4 Shutdown and Restart

19.3.2 |[Segmentation Fault when Using DBI|

Update DBI to at least version 1.31.

19.3.3 [<Perl> directive missing closing ’>’|

See the Apache:: Perl Sections manpage.

19.3.4 [Invalid per-unknown PerlOption: ParseHeaders on HP-UX|
[11 for PA-RISC
When building mod_perl 2.0 on HP-UX 11 for PA-RISC architecture, using the HP ANSI C compiler,

please make sure you have installed patches PHSS 29484 and PHSS 29485. Once installed the issue
should go away.

19.4 (Shutdown and Restart

19.5 [Code Parsing and Compilation

19.6 |Runtime
19.6.1 |C Libraries Don’t See YNV Entries Set by Perl Codg

For example some people have reported problems with DBD: : Or acl e (whose guts are implemented in
C), which doesn’t see environment variables (like ORACLE_HOVE, ORACLE_SI D, etc.) set in the perl
script and therefore fails to connect.

The issue is that the C array envi ron[] is not thread-safe. Therefore mod_perl 2.0 unties &NV from
the underlying envi ron[] array under the[perl-scriptl handler.

The DBD: : Or acl e driver or client library uses get env() (which fetches from the envi ron[]
array). When &NV is untied from envi r on[] , Perl code will see &NV changes, but C code will not.

The[modper]] handler does not untie %ENV from envi r on[] . Still one should avoid setting “ENV values
whenever possible. And if it isrequired, should be done at startup time.

In the particular case of the DBD:: drivers, you can set the variables that don't change
(PENV{ ORACLE_HOVE} and $ENV{ NLS_LANG} in the startup file, and those that change pass via the
connect () method, e.g.:

29 Jan 2004 271

19.6.2 Error about not finding Apache.pm with CGl.pm

ny $sid ='ynt0;

nmy $dsn = 'dbi:Oacle:’;

my 3$user = 'usernane/ password’ ;

ny $password = '’ ;

$dbh = DBI - >connect ("$dsn$si d", $user, $password)
or die "Cannot connect: " . $DBl::errstr;

Also remember that DBD: : Or acl e requires that ORACLE_HOME (and any other stuff like NSL_LANG
stuff) be in 4ENV when DBD: : Or acl e is loaded (which might happen indirectly via the DBl module.
Therefore you need to make sure that wherever that load happens &NV is properly set by that time.

19.6.2 [Error about not finding Apache.pm with CGI.pm|

You need to ingtall at least version 2.87 of CGl.pm to work under mod perl 2.0, as earlier CGl.pm
versions aren't mod_perl 2.0 aware.

19.6.3 [20014: Error string not specified yef]

This error is reported when some undefined Apache error happens. The known cases are:

e when using mod_deflate

A bug in mod_deflate was triggering this error, when a response handler would flush the data that
was flushed earlier: |http://nagoya.apache.org/bugzilla/show bug.cgi?2d=22259 It has been fixed in
httpd-2.0.48.

19.6.4 (22)Invalid argument: core output filter: writing data to the|
networ

Apache uses the sendfile syscall on platforms where it is available in order to speed sending of responses.
Unfortunately, on some systems, Apache will detect the presence of sendfile at compile-time, even when it
does not work properly. This happens most frequently when using network or other non-standard
file-system.

The whole story and the solutions are documented at:
|http://httpd.apache.org/docs-2.0/fag/error .html#error.sendfilg

19.6.5 [undefined symbol: apr table compresq

After a successful mod_perl build, sometimes during the startup or a runtime you'd get an "undefined
symbol: foo" error. The following is one possible scenario to encounter this problem and possible ways to
resolveit.

Let's say you ran mod_perl’ stest suite:

272 29 Jan 2004

http://nagoya.apache.org/bugzilla/show_bug.cgi?id=22259
http://httpd.apache.org/docs-2.0/faq/error.html#error.sendfile

Troubleshooting mod_perl problems 19.6.5 undefined symbol: apr_table_compress

% nmake test

and got errors, and you looked in the error_log file (t/loggerror_log) and saw one or more "undefined
symbol" errors, e.g.

% undefi ned synbol: apr_tabl e_conpress
® Stepl
From the source directory (same place you ran "make test") run:
% | dd blib/arch/auto/ APR/ APR so | grep apr-
META: Idd is not available on all platforms, e.g. not on Darwin/OS X
Y ou you should get afull path, for example:
i bapr-0.s0.0 => /usr/local/apache2/1ib/libapr-0.so0.0 (0x40003000)
or
| i bapr-0.so0.0 => /sone/ path/to/ apache/lib/libapr-0.s0.0 (0x40003000)
or something like that. It s that full path to libapr-0.s0.0 that you want.
® Step 2
Do:
% nm /path/to/your/libapr-0.s0.0 | grep table_conpress
for example:
% nm /usr/| ocal /apache2/1ib/libapr-0.s0.0 | grep table_conpress
Y ou should get something like this:
0000d010 T apr_tabl e_conpress

Note that the "grep table compress' is only an example, the exact string you are looking for is the
name of the "undefined symbol" from the error_log. So, if you got "undefined symbol:
apr_holy_grail" then you would do

% nm /usr/ | ocal /apache2/1ib/libapr-0.s0.0 | grep holy_grail
® Step 3

Now, let's see what shared libraries your apache binary has. So, if in step 1 you got
{usr/local/apache2/lib/libapr-0.s0.0 then you will do:

29 Jan 2004 273

19.6.5 undefined symbol: apr_table compress

274

% 1dd /usr/local /apache2/bin/httpd

if in step 1 you got /foo/bar/apache/lib/libapr-0.s0.0 then you do:

% | dd /f oo/ bar/ apache/ bi n/ httpd

The output should look something like this:

libssl.so0.2 =>/lib/libssl.so.2 (0x40023000)

libcrypto.so.2 => /lib/libcrypto.so.2 (0x40054000)
libaprutil-0.s0.0 => /usr/local/apache2/1ib/libaprutil-0.s0.0 (0x40128000)
I i bgdbm so.2 => [usr/Ilib/libgdbm so.2 (0x4013c000)

l'ibdb-4.0.s0 => /lib/libdb-4.0.so0 (0x40143000)

| i bexpat.so.0 => /usr/lib/libexpat.so.0 (0x401eb000)

| i bapr-0.s0.0 => /usr/local/apache2/1ib/libapr-0.so0.0 (0x4020b000)
librt.so.1 =>/lib/librt.so.1 (0x40228000)

libmso.6 => /1ib/i686/1ibmso.6 (0x4023a000)

libcrypt.so.1 => /lib/libcrypt.so.1 (0x4025c000)

libnsl.so.1 =>/lib/libnsl.so.1 (0x40289000)

libdl.so.2 => /lib/libdl.so.2 (0x4029f 000)

i bpthread.so.0 => /1ib/i686/!1ibpthread.so.0 (0x402a2000)
libc.so.6 => /1ib/i686/1ibc.so.6 (0x42000000)

[1ib/ld-linux.so.2 =>/lib/ld-Iinux.so.2 (0x40000000)

Those are name => value pairs showing the shared libraries used by the ht t pd binary.

Take note of the value for libapr-0.s0.0 and compare it to what you got in step 1. They should be the
same, if not, then mod_perl was compiled pointing to the wrong Apache installation. Y ou should run
"make clean" and then

% per| Makefile.pl MP_APACHE CONFI G=/ pat h/t o/ apache/ bi n/apr-config
using the correct path for the Apache installation.
Step 4

You should aso search for extra copies of libapr-0.s0.0. If you find one in /usr/lib or /usr/local/lib
that will explain the problem. Most likely you have an old pre-installed apr package which gets
loaded before the copy you found in step 1.

On most Linux (and Mac OS X) machines you can do afast search with:

% | ocate |ibapr-0.s0.0

which searches a database of files on your machine. The "locate”" database isn’'t always up-to-date so
aslower, more comprehensive search can be run (asroot if possible):

%find / -nane "libapr-0.so.0*"

or

29 Jan 2004

Troubleshooting mod_perl problems 19.7 Issueswith APR Used Outside of mod_perl

% find /usr/local -name "libapr-0.so.0*"

Y ou might get output like this:

lusr/local /apache2.0.47/1ib/libapr-0.s0.0.9.4
lusr/local /apache2.0.47/1ib/libapr-0.s0.0
lusr/local /apache2.0.45/1ib/libapr-0.s0.0.9.3
lusr/1ocal / apache2.0.45/1ib/libapr-0.s0.0

in which case you would want to make sure that you are configuring and compiling mod_perl with
the latest version of apache, for example using the above output, you would do:

% per| Makefile.PL MP_AP_CONFI G=/ usr/| ocal / apache2. 0. 47

% make
% make test

There could be other causes, but this example shows you how to act when you encounter this problem.

19.7 |Issueswith APR Used Outside of mod per|

It doesn't strictly belong to this document, since it’ s talking about APR usages outside of mod_perl, so this
may move to its own dedicated page, some time later.

Whenever using an APR: : package outside of mod_perl, you heed to:

use APR;

in order to load the XS subroutines. For example:

% per| -MApache2 -MAPR -MAPR : UUID -le ’'print APR :UU D >new >f or mat’

19.8 M aintainer g

Maintainer is the person(s) you should contact with updates, corrections and patches.

® StasBekman

19.9 |[Authorg

® StasBekman

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 275

20 User Help

20 User Help

276 29 Jan 2004

User Help 20.1 Description

20.1 [Description|

This chapter is for those needing help using mod_perl and related software.

Thereis aparallel Getting Help document written mainly for mod_perl core developers, but may be found
useful to non-core problems as well.

20.2 |Reporting Problems

Whenever you want to report a bug or a problem remember that in order to help you, you need to provide
us the information about the software that you are using and other relevant details. Please follow the
instructions in the following sections when reporting problems.

The most important thing to understand is that you should try hard to provide all the information that
may assist to understand and reproduce the problem. When you prepare a bug report, put yourself in the
position of a person who is going to try to help you, realizing that a guess-work on behalf of that helpful
person, more often doesn't work than it does. Unfortunately most people don’t realize that, and it takes
several emails to squeeze the needed details from the person reporting the bug, a process which may drag
for days.

20.2.1 Wrong Apache/mod perl combination|

First of all:

Apache 2.0 doesn’t work with nod_perl 1.0.
Apache 1.0 doesn’t work with nod_perl 2.0.

Soif you aren’'t using Apache 2.x with mod_perl 2.0 please do not send any bug reports.

META: mod_perl-1.99 xx ismod_perl 2.0 to-be.

20.2.2 |Before Posting a Report]

Before you post the report, make sure that you’ ve checked the error_log file (t/logs/error_log in case of
the failing test suite). Usually the errors are self-descriptive and if you remember to always check this file
whenever you have a problem, chances are that you won’t need to ask for help.

20.2.3 [Test with the Latest mod perl 2.0 Version|

If you are using an older version than the most recently released one, chances are that a bug that you are
about to report has already been fixed. If possible, save us and yourself time and try first to upgrade to the
latest version, and only if the bug persists report it.

Reviewing the Changes file may help as well. Here is the Changes file of the most recenly released
version: |http://perl.apache.org/dist/mod perl-2.0-current/Changes .

29 Jan 2004 277

http://perl.apache.org/dist/mod_perl-2.0-current/Changes

20.2.4 Use aProper Subject

If the problem persists with the latest version, you may also want to try to reproduce the problem with the
latest development version. It's possible that the problem was resolved since the last release has been
made. Of course if this version solves the problem, don't rush to put it in production unless you know
what you are doing. Instead ask the developers when the new version will be released.

20.2.4 |Use a Proper Subject]

Make sure to include a good subject like explaining the problem in afew words. Also please mention that
this a problem with mod_perl 2.0 and not mod_perl 1.0. Here is an example of a good subject:

Subj ect: [nmp2] protocol nodule doesn't work with filters

Thisis especially important now that we support mod_perl versions 1.0 and 2.0 on the same list.

20.2.5 |Send the Report Inlined

When sending the bug report, please inline it and don't attach it to the email. It's hard following up on the
attachments.

20.2.6 || mportant | nformation|

Whenever you send a bug report make sure to include the information about your system by doing the
following:

% cd nodperl-2.0
% t/ REPORT > nybugreport

where nodper | - 2. 0 is the source directory where mod_perl was built. Thet / REPORT utility is auto-
generated whenper | Makefi | e. PL isrun, soyou should have it already after building mod_perl.

META: soon we will have np2bug report script which will be installed system-wide. For now, if you
don’t have the source, you can create the report by running the following:

% per| -MApache2 - MApache: : Test ReportPerl| \
-l e ' Apache: : Test Report Per| - >new >run’

Now add the problem description to the report and send it to the list.

20.2.7 |Problem Description|

If the problem incurs with your own code, please try to reduce the code to the very minimum and include
it in the bug report. Remember that if you include a long code, chances that somebody will look at it are
low. If the problem iswith some CPAN module, just provide its name.

Also remember to include the relevant part of httpd.conf and of startup.pl if applicable. Don't include
wholefiles, only the parts that should aid to understand and reproduce the problem.

278 29 Jan 2004

User Help 20.2.8 'maketest’ Failures

Finally don't forget to copy-n-paste (not type!) the relevant part of the error_log file (not the wholefile!).

To further increase the chances that bugs your code exposes will be investigated, try using
Apache- Test to create a self-contained test that core developers can easily run. To get you started, an
Apache- Test bug skeleton has been created:

|http://perl .apache.org/~geoff/bug-reporting-skel eton-mp2.tar.gz|

Detailed instructions are contained within the README.

20.2.8 [make test’ Failureg

If when running 'make test’ some of the tests fail, please re-run them in the verbose mode and post the
output of the run and the contents of the error_log file to the list.

For exampleif ‘'make test’ reports:

Fai |l ed Test Stat Wstat Total Fail Failed List of Failed
conpat / apache_util .t 15 1 6.67% 13
nmodper | / pnotes. t 5 1 20% 2

Do the following:

% cd nodperl-1.99_xx
% make test TEST_VERBOSE=1 \
TEST_FI LES="conpat/ apache_util.t nodperl/pnotes.t"

or use an atenative way:

% cd nodperl-1.99 xx
%rmt/logs/error_|og
%t/ TEST -verbose conpat/apache_util.t nodperl/pnotes.t

If you are using the latter, remember to remove the error_log file before running tests, so you won't have
clutter from the previousrun. make t est awaysremovestheold error_log file for you.

Also please notice that there is more than one make t est run. Thefirst oneis running at the top direc-
tory, the second inside a sub-directory ModPerl-Registry/. The first logs errors to t/logs/error_log, the
second to ModPer|-Registry/t/logs/error_log. Therefore if you get failures in the second run, make sure to
chdir() to that directory before you look at the t/logs/error_log file and re-run tests in the verbose mode.
For example:

% cd nodper| -1.99 xx/MdPerl - Registry

%rmt/logs/error_|og
%t/ TEST -verbose cl osure.t

29 Jan 2004 279

http://perl.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz

20.2.9 Resolving Segmentation Faults

20.2.9 |Resolving Segmentation Faultg

If during nake test or the use of mod perl you get a segmentation fault you should send to the list a
stack backtrace. This section explains how to extract this backtrace.

Of course to generate a useful backtrace you need to have mod_perl with debugging symbols in it (and
probably perl and/or httpd too) and also to be able to see the arguments in the calls trace. To accomplish
that do:

e mod_perl

rebuild mod_perl with MP_DEBUG=1.

% per| Makefile.PL MP_DEBUG-1 ...
% make && make test && nmke install

® httpd

If the segfault happens inside ap_ or apr_ cals, rebuild httpd with - - enabl e- mai n-
t ai ner - node:

% ./ configure --enabl e-nai ntai ner-node ...
% make && make install

e perl
If the segfault happens inside Perl_ calls, rebuild perl with - Dopti ni ze="-g’ :

% ./ Configure -Doptimnze="-g ...
% make && nmake test && make install

® 3rd party perl modules

if the trace happensin one of the 3rd party perl modules, make sure to rebuild them, now that you' ve
perl re-built with debugging flags. They will automatically pick the right compile flags from perl.

Once a proper stack backtrace is obtained append it to the bug report as explained in the previous section.

20.2.10 |Please Ask Only Questions Related to mod per||

If you have general Apache questions, please refer to: fhttp://httpd.apache.org/lists.htmlf

If you have general Perl questions, please refer to: [nttp://lists.perl.org/}

For other remotely related to mod_perl questions see the references to other documentation.

Finally, if you are not familiar with the modperl list etiquette, please refer to the mod_perl mailing lists
Guidelines before posting.

280 29 Jan 2004

http://httpd.apache.org/lists.html
http://lists.perl.org/

User Help 20.3 Help on Related Topics

20.3 Help on Related Topics

When developing with mod_perl, you often find yourself having questions regarding other projects and
topics like Apache, Perl, SQL, etc. This document will help you find the right resource where you can find
the answers to your questions.

20.4 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® StasBekman

20.5 |Authors

® StasBekman

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 281

User Help

Table of Contents:

User’s guide
|Getting Your Feet Wet W|th modmerll
1 | Getting Y our Feet Wet with mod perl |
11 :
1.2 [Installation .
1.3 [Configuration

14 IServer Launch and Shutdowri
1.5 |Registry Scriptq .
1.6 |Handler Moduleg
1.7 [Troubleshooting .
18 :
19
|[Overview of mod perl 2.0
2 |Overview of mod perl 2.0
2.1 [Description o
2.2 I\/ers on Nam ng Conventlonsi
2.3 [Why mod perl, The Next Generation|
2.4 \What's new in Apache 2.0
2.5 |What's new in Perl 5.6.0 - 5.8.0
2.6 [What's new in mod perl 2.0
2.6.1 [Threads Support] .
2.6.2 [Thread-environment Issued . .
2.6.3 |Perl Interface to the APR and ApacheAPlsl .
2.7 |Integration with 2.0 Filtering .
2.7.1 [Other New Featurey .
272
2.8 [Maintainerd .
2.9 [Authord
[Notes on the design and qoalsof modyerl 2. O|
3 [Notes on the design and goals of mod perl-2.0].
31 :
3.2 [Introduction. :
3.3 [Interpreter Management| .
331 .
332

3.3.3 [Further Enhancementq

3.4 [Hook Code and Callbackg

3.5 [Perl interface to the Apache API and Data Structuresl
3.5.1 |[Advantages to generating XS codd .
3.5.2 [Lvalue methody .

3.6 [Filter Hook

3.7 |D|rect|ve Handlerg

3.8 [<Perl> Configuration Secti onsl

3.9 [Protocol Module Support] .

29 Jan 2004

Table of Contents:

O OO ~NoOOUTulolh~ b~

NINNDNDNNNDNNNNNNNNNMDNRERPERPPEPRPRPEPERPRRPERER
OO ~NUNOTOA,B_MNNMNMNRPPOOOOOO~NOO R, OOO

Table of Contents:

3.10 |[mod_perl MPM]| .

3.11 :

3.12 :

3.13 [CGI Emulation] .

3.14

3.15 |Per| Enhancemen@
3.15.1 [GVSHARED]
3.15.2 [Shared SYPVX] . . .
3.15.3 |[Compile-time method Iooku ng .
3.15.4 [Memory management hooksg
3.155

3.16 fMaintainerQ .

3.17 [Authord. .

[[nstalling mod_perl 2.0
4| ns:allmﬁ mod Eer |

4.1 [Description] .

4.2 L
421
4.2.2 |Getting Bleeding Edge CV'S Sources
4.2.3 [Configuring and Installing i

4.3 [Installing mod_perl from Binary Pack@@
4.4 [Ingtalling mod_perl from Sourcq :

4.4.1 [Downloading the mod perl Sourceg
4.4.2 |Configuring mod perl} mod [Configuring mod per|

4.4.2.1 Boolean Build Optiond . .
4.4.2.1.1 [MP_PROMPT DEFAULT m
44212 MP_GENERATE X§ . .
4.4.2.1.3 MP_USE DSO .
4.4.2.1.4 MP_USE STAI'IQ
4.4.2.1.5 [MP_STATIC EXTS
44216 .
44217
44218 o
4.4.2.19
442110 MP TRACH. . .
4.4.2.1.11 [MP_INST_APACHEZ

4.4.2.2 [Non-Boolean Build Optiong
44221 o
4.4.2.2.2 [MP_AP_PREFIX] m :
4.4.2.2.3
44224 MP CCOPTS. . .
4.4.2.2.5 [MP_OPTIONS FILH m :

44.2.3 |mod Eerl—iecmc Com@ler Oﬁtlong
44231 [DMP_IOBUFSIZH . .

4424 |moc Eerl Oﬁtlons F|I§ .

4.4.3 Re-us n§ Confiﬁure O§ti on§
4.4.4 [Compilingmod perl] . .

SRR

29 Jan 2004

User Help Table of Contents:

4.45 [Testing mod perl] .

4.4.6 nstaIIinQ mod Eerl| .
45| Somethlnﬁ GoesWrong
4.6 fMalntamerQ .
47 uthor§ .
|mod Eerl 2.0 Server Conflgurat|0n| .
5 [mod_perf 2.0 Server Configuration].
5.1 ..
5.2 [mod perl configuration directive
5.3 Enablmﬁ mod Eerl| .
54 A ccng the mod perl 2.0 Modula
5.5 [Startup Startup Fil8 ..
5.6 |Server Coni iguration Directivg.
56.1 :
562 [Per Module] .
563| Per | LoadModul e|
5.6.4 [Per Set Var]
5.6.5 [Per 1 AddVar]
5.6.6 |Per| Set Env
5.6.7 |Per| PassEnv| .
5.6.8 [<Per T > Sectiong .
5.6.9 [Perl Swi t ches] .

5.6.10 [Set Handl er
5.6.10.1 [nodper |

5.6.10.2 gerl -SCri 9t| .
5.6.10.3 [Exampled .

56.11 :
5.6.11.1 [Enabl e|
5.6.11.2 | one|

5.6.11.3 [Par ent]

5.6.11.4 |Per | *Handl er|
5.6.11.5 |Aut oLoad| . .
5.6.11.6 [@ obal Request]
5.6.117
56.11.8
5.6.11.9 . .
5.7
5.7.1 [PerT OpenLogsHandl er] .
572| Per | Post Confi ﬁHandI er|
5.7.3 [Per1 Chi I dI ni t Handl er]
5.7.4 [Per1 Chi l dExi t Handl erj
5.8 [Protocol Handlers Directived . .
5.8.1 [Per T PreConnect i onHandT er] m :
5.8.2 [Per T Pr ocessConnect i onHandT er] m
5.9 [Filter Handlers Directives : :
591
592| Per | Qut put Fi | t er Handl erI

BREEE655656565555556856G688R8R

[S28)]
w N

GEES

oo o1 01011 A
WO NNOO

Q1 O1 o1 g1 g1
0 00 00 00 O

29 Jan 2004 iii

Table of Contents:

593 |Per| Set | nput Fi | ter| S - < |
594 [PerlSetOutputFilter] 59
5.10 [HTTP Protocol Handlers Directived . =
5. 10 1[PerTPost ReadRequest Handler] 59
5.10.2 [Per T Tr ansHandl er] m . - =
5103 [Perl MapToStoragerandier] 59
5104|Per| InltHandI er| . 1)
5.10.5 |Per| Header Par ser Handl er| 1)
5.10.6 |Per| AccessHandl er - 1)
5.10.7 |Per| Aut henHandler|. 59
5.10.8 = s
5109 [Perl TypeHandler] 60
5.10.10 |Per| Fi quHandI er -
5.10.11 |Per| Res@onsel—land | -
51012 [Perl Loghandl er] 60
5.10.13 Y
5.11 & 0
511.1 e
511.2 O
511.3[PerTInterpMnSpare] 861
5.11.4 [Per T 1 nt er pMaxSpar €] O 1 1
5.11.5 |Per| | nter ElvaxReguest s| .y
5116 [Perl Interpscope] 6l
512 D ebu Directives e 4
5121|Per| Tr ace| .. e & Y4
5.13 [mod_perl Directives Argument Tygesand AIIowed Locatlorj 63
5.14 [Server Startu@ OEtI ons Retrleval| - Y
5.14.1 MODPERL2 DefineOption] . . - >
5.15 Perl Interface to theApache Configuration Treel 66
5.16 | diustl n§ @ Ej T Y 4
5.16.1 |PERL5LI B and PERLLI B EnV|ronment Varlablg N - Y4
5.16.2 |Mod|f§|nc @ NC on a Per- thualHoﬂ . S - V4
517 [Generdl Isued es8
5.18 fMaintainerQ e &
5.19 uthor§ o8
E@ache Server Conflguratlon Customlzatlon in PerI| e e
6 T ¢
1D nﬁtloﬂ 10

6.2 [[ncentiv 10
6.3 |Creating and Using Custom Conflguratl on Dlrectlvg Y (0]
6.3.1 [@GAPACHE_MODULE COVMAN@ S ¢4
6.3.1.1 [nane Y 2
6.3.1.2 [f unc S 04
6.3.13|eq overridel. 713
6314frgs howy 13
6315frrnmsg 13
6316fcmd data 14

iv 29 Jan 2004

User Help Table of Contents:

6.3.2 [Directive Scope Definition Constantg Y £
6.3.2.1 [Apache: : OR_ NONH . . Y)
6322‘E§ache..m kMt1
6.323 [Apache. R OPTION]. 715
6.324 [Apache: _:OR FILEINFQ 15
6.325Apache: :ORAUTHCFG. 15
6326 [Apache: :ORINDEXE§. 715
6327 Apache::ORUNSET] 715
6.3.2.8 [Apache: : ACCESS _CONH Y)
6.3.2.9 [Apache: : RSRC CONH . Y {
6.3.2.10 |Apache: : OR EXEC ON REAg Y (¢}
6.3.2.11 |Apache: : OR ALL| 16

6.3.3 Directive Cdllback Subroutind 16

6.3.4 |D|rect|ve @ntax Definition Constantg17
6.3.4.1 [Apache: : NO ARG . e 44
6.3.4.2 [Apache: : TAKEL S 4 4
6.343[Apache: :TAKE2] 18
6.34.4 [Apache: :TAKE3] 18
6.3.4.5 [Apache: : TAKE12] 18
6.34.6 [Apache: : TAKE23] 18
6.3.4.7 [Apache: : TAKE123]. 18
6.34.8 [Apache: - ITERATH 18
6.3.4.9 [Apache: : | TERATEZ2 e
6.34.10 [Apache: :RAWARSY 1
6.3.4.11 [Apache: : FLAG .. = 0]

6.3.5 [Enabling the New Configuration Dlrect|v§ = 0]

6.3.6 [Creating and Merging ConfigurationObject4 81
6.36.1 - 1
6.36.2 -
6.36.3 -
6364DIRMERGH g3

6.4 Exampled . - <

64 1 Merginga@ Work . . - <
6.4.1.1 |M erging EntrlesWhose VaI ues Are Referencg . - ¢
6.4.1.2 [Merging Order Con%quenc@ . . 0]

6.5 fMalntamerQ91

6.6 [Authord . . .
Writing mod perl Handlers and Scr|§t§ e 922
7 Wr|t|n [Writing mod perl Handlers and Scripts|. 92
71 Desoripiod o3

7.2 Prer@wst@ 93

7.3 Where the Methods lea e <

7.4 Method Handler o3

7.5 [Goodies Toolki] . O =

7. 5 1 [Environment Varables O - <

7.5.2 [Threaded MPM or notfj . 94

7.5.3 [Writing MPM-specific Codd 94

29 Jan 2004 v

Table of Contents:

7.6 [Code Developing Nuance§
7.6.1 |Euto—ReIoadin§ Modified Modules with AEache::ReI o@
7.7 |Int@ration with Aﬁachelssug e
7.7.1 Sendinﬁ HTTP R@onse Header§
7.7.2 Sendinﬁ HTTP R@onse Bodzl .
7.8 |Per| @ecificsinthe mod Eerl Environmenﬂ .
7.8.1 R@uest—localized Globa@ . .
7.8.2 [exit()] . .
7.9 | Threads Codi ng Issu&s Under mod |c_)er|
7.9.1 [Thread-environment Issues :
7.9.2 [Deploying Threadd
7.9.3 [Shared Variable
7.10 fMalntamerQ .
7.11 [Authory .
|Cookin§ Reciﬁ@ .
Cookin Reci [Cooking Recipes|.
8.1 Descriptiol . .
8.2 |Send| ng Cookiesin REDI RECT R@onse (ModPerI Reg y)]
8.3 [Sending Cookies in REDIRECT Response (handlers) .
8.4 fMaintainerQ
8.5 [Authorg . .
Porting Apache:: Perl Modul&from mod erI 10t02 .
9 [Porting Apache:: Perl Modules from mod perl 1.0 to Lfl .
9.1 [Description
9.2 [Introduction o
9.3 [Usin ache: : orti n
9.4 [Using the Apache: at L
9.5 [Porting a Perl Module to Run under mod perl 2.0 Moduleto Run under mod per| 2

95
95
96
96
96
97
97
97
97
98
98
98
99
99
100
100
101
101
101
102
102
103
103
104
104
105
105
106

9.5.1 [Using ModPer | : : Met hodLookup to Dlscover Which modJoerI 2 0 Modules Need to Be|

L oaded e
9.5.1.1 [Handling Methods Existing In More Than One Packagg
9.5.1.2 [Using ModPer I : : Met hodLookup Programmatically]
9.5.1.3 |Pre-loading All mod perl 2.0 Moduleg mod perl 2.0 Moduled . .
9.5.2 [Handling Missing and Modified modJoerI 1.0 Methods and Functlon§
9.5.2.1 [Methods that No Longer EXis] :
9522 IMethodsWhose Usage Has Been MOdIfla
9.5.3 |Requiring a specific mod_per| version.
9.5.4 [Should the Module Name Be Changed? .

9.5.5 |Usin ache: : at AsaTutorid ..
9.5.6 [How Apache: : I\/P3 was Ported to mod perl 2.0).
9.56.1 |Pr@aration§ .
9.5.6.1.1 |httpd.con
9.5.6.1.2 [dartup.pl]. .
95.6.1.3 [ApacheMP3pm . . .
9.5.6.2 |Porting with Apache: : conpat | .
9.5.6.3

9.5.6.4 [Ensuring that Apache: : conpat is not loaded

Vi

106
107
107
108
108
108
109
109
110
110
111
111
112
113
113
114
121
121

29 Jan 2004

User Help Table of Contents:

9.5.6.5 [Instdling the ModPer | : : Met hodLookup Helpey 123
9.5.6.6 | di usti n§ the code to run under mod Eerl Z 123

9.6 |Port| nﬁ aModule to Run under both mod @erl 2.0 and mod Eerl 1. (] N € 4
9.6.1 [Making Code Conditional on Running mod perl Version .24
962 Method Handlerd13
9.7 fMalntamerQ 136
9.8 [Authord 136
|A Referenceto mod_perl 10to mod |c_)erl 2. 0 Mlgrat|0n| e Y4
10 [A Referenceto mod perl 1.0 to mod perl 2.0 Migration. | N e 74
10.1 | rlgtl og 138
102 [Configuration FilesPorind = 138
10.2.1 [Per I Handl er] m ... 138
102.2 ... 138
1023 [Perl Setupenv] 138
1024 Perl Taintcheckl 139
10.25 |Per| rn e i¢
10.2.6 [Per | Fr eshRest ar t| .. 110
10.2.7 | Eache Conflﬁuratlon Custom|zat|oﬂ 110
10.2.8 [@ NC Mani Eulatloﬂ S 1.1¢
10.3 |Code Portin . e 1)
10.4 [Apache: : Regi st ry Apache PerI RunandFriendg 141
10.4.1 l\/deerI . Regi strylLoader|. 142
105 [Apache. : Constants] . . . L1
10. 5 1[mod peT10and20 Conslants Coexistene 143
10.5.2 D@recated Constan@ . .14
1053 [SERVER VERSION)]14
1054 export§§| A 7 72§
10.6 |Issues with Enwronment Varlablg e 2V
10.7 @emal EnwronmentVarlabIE e 15
10.7.1 [FENV] GATEVAY T NTERFACE] m . 1=
10.8 |E§ache Method§ .. e 15
10.8.1 Eﬁache >request]45
10.8.2 [Apache- >defineg] . . ¥
10.8.3 [Apache- >can_st ack handl er s| 4
10.8.4 [Apache->untaint] l47
10.8.5 [Apache->get_handlers| 147
10.8.6 [Apache- >push_handlers] 147
10.8.7 [Apache->set_handlers] 148
10.8.8 [Apache->httpd conf] 148
10.89 [Apache: :exit()] 148
10.8.10 |Apache: : gensyn()| 148
10.8.11 |Apache: : nodul e() e
10.8.12 |Apache: : | og_error e (0]
10.9 |E§ache: : Variabl@ e v e
10.9.1 [fApache: : . . . 149
10.10 [Apache: : Ser ver : : Methods and Variabl e e
10.10.1 [fApache: : Server: : O\ . o)

29 Jan 2004 vii

Table of Contents:

10.10.2 [$Apache: : Server:: AddPerl Version|f 149
10.11 |Server Object Methodyd . . 7 ¢
10.11.1 |$s- >r eqgi st er cl eanupl N e
10112 |$s->uidl L. ...
10.11.3 [$s->gi d T 120
10.12 [Request Object Method§ e 120
10.12.1 [$r - >cgi _env e =0
10.12.2 |$r - >cgi var N 10
10.12.3 |$r - >cur r ent cal | backl 150
10.12.4 |$r - >get remote host| 150
10.12.5 |$r - >cl eanup for exec| ey
10.12.6 [$r - >cont ent] . ey
10.12.7 |$r - >ar gs in an Array Contexﬂ e oY
10.12.8 |r->chdir fil €| e 54
10.129 [$r->i s mai n| e -4
10.12.10 |$r->finfol 152
10.12.11 [$r - >notesf 153
10.12.12 $r - >header in|. 153
10.12.13 $r - >header out| 153
10.12.14 |$r - >err header out| 153
10.12.15$r->log reason| 153
10.12.16 [$r - >reqgi ster cleanup| 154
10.12.17 {$r - >post connection|. 144
10.12.18 [$r - >r equest v
10.12.19 [$r - >send fd . Y
10.12.20 [$r - >send fd Iengt h| S 57
10.12.21 [$r - >send http header| 155
10.12.22 |$r - >server root relativel 155
10.12.23 |$r - >hard tineout|. 155
10.12.24 |$r - >reset tineout| 155
10.12.25 $r - >soft tineout|.15
10.12.26 |$r->kill tinmeout|{. 156
10.12.27 |$r - >set byterange| 156
10.12.28 [$r - >each byterangel 156
10.13 |Apache: : Connection| 1%
10.13.1 E>connect| on->aut h typel . 516)
10.13.2 [$connect i on- >user T 16
10.13.3 [$connect i on- >l ocal addr|)
10.13.4 |$connecti on- >renmote addr| 157
10.14 |Apache: : File 157
10.14.1 [open() andcl ose()] 157
10142 tnpfile)| 157
10.15 |Apache: : Ut | 1%
10.15.1 |Apache: Ut|| :size_strin 1-8
10.15.2 [Apache: : Util:: escape_uri 158
10.15.3 [Apache: : Uti [::unescape_uri 1-8
10.15.4 [Apache: : Uti | : : escape htdd (O] 158

viii 29 Jan 2004

User Help

10.15.5 |Apache: : Uti] : : parsedate

10.15.6 [Apache: : Uti | : ht time()

10.15.7 |Apache: : Util::val i date passvvord()l
10.16 [Apache: : URI S

10.16.1 [Apache: : URI - >parse($r, [$uri])]

10.16.2 Junpar se() |
10.17 Miscellaneoud . .

10.17.1 [Method Handlers

10.17.2 IStacked Handlerd
10.18 ache::src

1019‘ ache: : Tabl ¢ .

10.20 [Apache: - SI§ .

10.21 [Apache: : Stat I NJ

10.22 Maintai nerg

10.23 | uthor§ ..

| ntroduch mod Eerl Handlerg
[Introducing mod perl Handlers|

11.1 D&cri@tioﬂ ..

11.2 [What are Handlers] .

11.3 [Handler Return Value . .

11.4 [mod_perl Handlers Categorieq .

11.5 [Stacked Handlerd ..
1151 vO0Q0 .

1152 RON_FTRST]
1153 ROINALL . .

11.6 [Hook Ordering (Position)

11.7 |Bucket Brig §

11.8 [Maintainery . .

11.9 [Authory. . .

|Server Li eCQcIe Handler§ .
12

121 .

12.2 L
12.2.1
12.2.2
1223
12.2.4 [PerIChildInitHandler W
12.2.5 [PerIChildExitHandler

12.3 fMalntamerQ . .

12.4 [Authord .

|Protoco| HandIerQ .
13

131 . Lo

13.2 .

1321 :
13.2.2 :
13.2.2.1 [Socket-based Protocol Moduld .

29 Jan 2004

Table of Contents:

158
158
159
159
159
159
160
160
161
161
162
162
162
162
162
163
163
164
164
165
165
166
167
167
167
167
168
169
169
170
170
171
171
172
174
175
176
176
177
177
178
178
179
179
180
182
182

Table of Contents:

13.2.2.2 |Bucket Brigades-based Protocol Modulq 184
13.3 fMaintai nerQ e £ 74
134 [Authord.7

HTTPHandlerd1s8
14 [HT TP Handlers m O
14.1 [Description . e e.1¢)
14.2 |HTTP R@uest Handler Skel etorj e o8
14.3 [HTTP Request Cycle Phases e e.1¢)
1431 O 1
1432 .19
14.3.3 P Ko 7
14.3.4 14
1435 T
14.3.6 198
14.3.7 19
14.3.8 0
14.3.9 203
14.3.10 o
14311 L 208
14.3.12 [PerlLogHandled.27
14.3.13 20
144 Handing HEAD Requestd 23
145 ExtendngHTTPProtocol.23
14.6 fMalntal nerQ 213
14.7 uthor§ e
|In§ut and Out@ut FiIterQ e
15 | In@ut and Outﬁut FiIters| 2
15.1 |Description 215
15.2 [Your First r—|Iter| 2 1Y
153 [/OFilteringConcepty29
15.3.1 L. L 219
15.3.2 L 20
15.3.3 [Multiple Invocations of Filter Handlerd 22
15.3.4 Blocking Calld . . e s 224
15.4 [mod_perl Filters Declaration and Conflguratl og e 227
15.4.1 |Filter Priority Typeg T Filter Priority Types 228
1542 Perl Inputfilterdandier] 228
1543 Perl Output Fil terandler] 228
15.4.4 2
15.4.5 <)
154.6 ATTPReques vs. Connection Filterd 23
1547| Filter In|t|aI|zaI|on Ph@ e €
15.5 |All-in-One FI|IE 238
15.6 In@ut Fllter§ . 22 |
15.6.1 [Connection Tnput Filters o1
1562 ATTPReques InputFilte’d o245
15.6.3 IBucket Brigadebased lnput Alterd.25

X 29 Jan 2004

User Help

15.6.4 |Stream-oriented Input Fi Iterg
15.7 |Out§ut Fi IterQ ..
15.7.1 |Connection OutEut Fi Iter§ .
15.7.2 HTTP R@uest Out@ut Fllter§ ..
15.7.2.1 [Stream-oriented Output Filterd .
15 7.2.2 | ucket Brlﬁadebased Out@ut —|Iter§
15.8 [Filter Applicationd . . :
15. 8 1 [Handling Data Underrung
15.9 [Filter Tips and Trickg

15.9.1 |Alter| ng the Content -Type R@onse Header|

15.10 |[Vr|t|n§ Well-Behavi nﬁ Fllter§
15.10.1 [Adjusting HT TP Headerg
15.10.2 [Other issueq .

15.11 |[Vr|t|n§ Efficient F|Iter§

15.12 [Maintainer
15.13 |Author

[General HandlersIssuey .
16 [Generdl Handlers Issues] .
16.1 D n@noﬂ . . .
16.2 [Handlers Communlcatloﬂ
16.3 fMalntamerQ
16.4 [Authord. . .
[Preventive M easures for Performance Enhancement|

17 [Preventive Measures for Performance Enhancement |

17.1 | escription . .
17.2 [Memory Leskagd .
17. 2 1 [Proper Memory Pools Usage
17.3 fMalntal ner§ .
17.4 uthor§

Performance Consider atlons Under lefer ent M PM

18 [Performance Considerations Under Different M W

18.1 | escripti og .
18.2 [Memory Requirementy . .
18. 2 1 [Memory Requirementsin Prefork MPM|
18.2.2 |M emori R@w rementsin Threaded MPM]
18.3 [Vv_rk with DataBaseq

18.3.1 [Work with DataBases under Prefork M PM| .
18.3.2 Work with DataBases under Threaded MPM|

18.4 [Maintainerd .
18.5 [Authord. . ..
[Troubleshooting mod_per| Qroblems.
19 TroubI eshootln mod perl problems
19.1 [Description . .
19.2 [Building and Installation
19.3 |Conf|§uratl on and Startuﬂ

19.3.1 [28)No spaceleft ondevicd . .
19.3.2 [Segmentation Fault when Using DBI|

29 Jan 2004

Table of Contents:

247
249
249
249
250
252
253
254
258
258
259
259
259
260
261
261
262
262
263
263
263
263
264
264
265
265
265
265
265
266
266
267
267
267
267
268
268
268
268
268
269
269
210
210
210
210
271

Xi

Table of Contents:

19.3.3 [<Perl>directive missing closing ’>'| . .. 20
19.3.4 [Invalid per-unknown PerlOption: ParseHeaders on HP UX 11 for PA RISCI .. 20
194 |Shutdown and R&ctarg . ey
195 [Code Pasngand Compiiatiod.on
19.6 [Runtime . 4]
19.6.1 |C Libraries Don t See %ENV Entrles Set by Perl Codg21
19.6.2 [Error about not findi n§ A@ache Em with CGl. EE] A 4
19.6.3 [20014:Error string not specified . Y 4
19.6.4 |(22)Invalid argument: core output filter: WI’I'[I ng datato the networRl Y 4
19.6.5 |undefined symbol: apr table compr s s 212
19.7 [ssueswithAPRUsed Outsdeof mod perl] 215
19.8 fMalntal nerQ 205
19.9 uthor§ Y)
[User HeIg] . e (o)
20[UserHaD] e 2ts
20 1 e 2
20.2 |R@orti n§ Poblemd20
20.2.1 |[Vron§ Aﬁache/ mod Eerl combinati oﬂ s 2
20.2.2 |Before Posting a Report] . . e 2T
20.2.3 [Test with the Latest mod Eerl 2.0 Versuoﬂ e 2T
20.2.4 Usea Pro@er Subi ecﬂ .. 218
20.25 [SendtheReport Inlined 218
20.2.6 Im@ortant Informatioﬂ e e .o 218
20.2.7 L s
2028 [nake test’Falureg 219
20.2.9 [Resolving Segmentation Faultg 280
20.2.10 |P|easeAsk Only Questions Related to mod per | 280
203 [AdponRealed Topicd . . . 1
204 fMalntal nerQ 281
205 [Authorg.23

Xii 29 Jan 2004

	1€€Getting Your Feet Wet with mod_perl
	1.1€€Description
	1.2€€Installation
	1.3€€Configuration
	1.4€€Server Launch and Shutdown
	1.5€€Registry Scripts
	1.6€€Handler Modules
	1.7€€Troubleshooting
	1.8€€Maintainers
	1.9€€Authors

	2€€Overview of mod_perl 2.0
	2.1€€Description
	2.2€€Version Naming Conventions
	2.3€€Why mod_perl, The Next Generation
	2.4€€What's new in Apache 2.0
	2.5€€What's new in Perl 5.6.0 - 5.8.0
	2.6€€What's new in mod_perl 2.0
	2.6.1€€Threads Support
	2.6.2€€Thread-environment Issues
	2.6.3€€Perl Interface to the APR and Apache APIs

	2.7€€Integration with 2.0 Filtering
	2.7.1€€Other New Features
	2.7.2€€Optimizations

	2.8€€Maintainers
	2.9€€Authors

	3€€Notes on the design and goals of mod_perl-2.0
	3.1€€Description
	3.2€€Introduction
	3.3€€Interpreter Management
	3.3.1€€TIPool
	3.3.2€€Virtual Hosts
	3.3.3€€Further Enhancements

	3.4€€Hook Code and Callbacks
	3.5€€Perl interface to the Apache API and Data Structures
	3.5.1€€Advantages to generating XS code
	3.5.2€€Lvalue methods

	3.6€€Filter Hooks
	3.7€€Directive Handlers
	3.8€€<Perl> Configuration Sections
	3.9€€Protocol Module Support
	3.10€€mod_perl MPM
	3.11€€Build System
	3.12€€Test Framework
	3.13€€CGI Emulation
	3.14€€Apache::* Library
	3.15€€Perl Enhancements
	3.15.1€€GvSHARED
	3.15.2€€Shared SvPVX
	3.15.3€€Compile-time method lookups
	3.15.4€€Memory management hooks
	3.15.5€€Opcode hooks

	3.16€€Maintainers
	3.17€€Authors

	4€€Installing mod_perl 2.0
	4.1€€Description
	4.2€€Prerequisites
	4.2.1€€Downloading Stable Release Sources
	4.2.2€€Getting Bleeding Edge CVS Sources
	4.2.3€€Configuring and Installing Prerequisites

	4.3€€Installing mod_perl from Binary Packages
	4.4€€Installing mod_perl from Source
	4.4.1€€Downloading the mod_perl Source
	4.4.2€€Configuring mod_perl
	4.4.2.1€€Boolean Build Options
	4.4.2.1.1€€MP_PROMPT_DEFAULT
	4.4.2.1.2€€MP_GENERATE_XS
	4.4.2.1.3€€MP_USE_DSO
	4.4.2.1.4€€MP_USE_STATIC
	4.4.2.1.5€€MP_STATIC_EXTS
	4.4.2.1.6€€MP_USE_GTOP
	4.4.2.1.7€€MP_COMPAT_1X
	4.4.2.1.8€€MP_DEBUG
	4.4.2.1.9€€MP_MAINTAINER
	4.4.2.1.10€€MP_TRACE
	4.4.2.1.11€€MP_INST_APACHE2

	4.4.2.2€€Non-Boolean Build Options
	4.4.2.2.1€€MP_APXS
	4.4.2.2.2€€MP_AP_PREFIX
	4.4.2.2.3€€MP_APR_CONFIG
	4.4.2.2.4€€MP_CCOPTS
	4.4.2.2.5€€MP_OPTIONS_FILE

	4.4.2.3€€mod_perl-specific Compiler Options
	4.4.2.3.1€€-DMP_IOBUFSIZE

	4.4.2.4€€mod_perl Options File

	4.4.3€€Re-using Configure Options
	4.4.4€€Compiling mod_perl
	4.4.5€€Testing mod_perl
	4.4.6€€Installing mod_perl

	4.5€€If Something Goes Wrong
	4.6€€Maintainers
	4.7€€Authors

	5€€mod_perl 2.0 Server Configuration
	5.1€€Description
	5.2€€mod_perl configuration directives
	5.3€€Enabling mod_perl
	5.4€€Accessing the mod_perl 2.0 Modules
	5.5€€Startup File
	5.6€€Server Configuration Directives
	5.6.1€€PerlRequire
	5.6.2€€PerlModule
	5.6.3€€PerlLoadModule
	5.6.4€€PerlSetVar
	5.6.5€€PerlAddVar
	5.6.6€€PerlSetEnv
	5.6.7€€PerlPassEnv
	5.6.8€€<Perl> Sections
	5.6.9€€PerlSwitches
	5.6.10€€SetHandler
	5.6.10.1€€modperl
	5.6.10.2€€perl-script
	5.6.10.3€€Examples

	5.6.11€€PerlOptions
	5.6.11.1€€Enable
	5.6.11.2€€Clone
	5.6.11.3€€Parent
	5.6.11.4€€Perl*Handler
	5.6.11.5€€AutoLoad
	5.6.11.6€€GlobalRequest
	5.6.11.7€€ParseHeaders
	5.6.11.8€€MergeHandlers
	5.6.11.9€€SetupEnv

	5.7€€Server Life Cycle Handlers Directives
	5.7.1€€PerlOpenLogsHandler
	5.7.2€€PerlPostConfigHandler
	5.7.3€€PerlChildInitHandler
	5.7.4€€PerlChildExitHandler

	5.8€€Protocol Handlers Directives
	5.8.1€€PerlPreConnectionHandler
	5.8.2€€PerlProcessConnectionHandler

	5.9€€Filter Handlers Directives
	5.9.1€€PerlInputFilterHandler
	5.9.2€€PerlOutputFilterHandler
	5.9.3€€PerlSetInputFilter
	5.9.4€€PerlSetOutputFilter

	5.10€€HTTP Protocol Handlers Directives
	5.10.1€€PerlPostReadRequestHandler
	5.10.2€€PerlTransHandler
	5.10.3€€PerlMapToStorageHandler
	5.10.4€€PerlInitHandler
	5.10.5€€PerlHeaderParserHandler
	5.10.6€€PerlAccessHandler
	5.10.7€€PerlAuthenHandler
	5.10.8€€PerlAuthzHandler
	5.10.9€€PerlTypeHandler
	5.10.10€€PerlFixupHandler
	5.10.11€€PerlResponseHandler
	5.10.12€€PerlLogHandler
	5.10.13€€PerlCleanupHandler

	5.11€€Threads Mode Specific Directives
	5.11.1€€PerlInterpStart
	5.11.2€€PerlInterpMax
	5.11.3€€PerlInterpMinSpare
	5.11.4€€PerlInterpMaxSpare
	5.11.5€€PerlInterpMaxRequests
	5.11.6€€PerlInterpScope

	5.12€€Debug Directives
	5.12.1€€PerlTrace

	5.13€€mod_perl Directives Argument Types and Allowed Location
	5.14€€Server Startup Options Retrieval
	5.14.1€€MODPERL2 Define Option

	5.15€€Perl Interface to the Apache Configuration Tree
	5.16€€Adjusting @INC
	5.16.1€€PERL5LIB and PERLLIB Environment Variables
	5.16.2€€Modifying @INC on a Per-VirtualHost

	5.17€€General Issues
	5.18€€Maintainers
	5.19€€Authors

	6€€Apache Server Configuration Customization in Perl
	6.1€€Description
	6.2€€Incentives
	6.3€€Creating and Using Custom Configuration Directives
	6.3.1€€@APACHE_MODULE_COMMANDS
	6.3.1.1€€name
	6.3.1.2€€func
	6.3.1.3€€req_override
	6.3.1.4€€args_how
	6.3.1.5€€errmsg
	6.3.1.6€€cmd_data

	6.3.2€€Directive Scope Definition Constants
	6.3.2.1€€Apache::OR_NONE
	6.3.2.2€€Apache::OR_LIMIT
	6.3.2.3€€Apache::OR_OPTIONS
	6.3.2.4€€Apache::OR_FILEINFO
	6.3.2.5€€Apache::OR_AUTHCFG
	6.3.2.6€€Apache::OR_INDEXES
	6.3.2.7€€Apache::OR_UNSET
	6.3.2.8€€Apache::ACCESS_CONF
	6.3.2.9€€Apache::RSRC_CONF
	6.3.2.10€€Apache::OR_EXEC_ON_READ
	6.3.2.11€€Apache::OR_ALL

	6.3.3€€Directive Callback Subroutine
	6.3.4€€Directive Syntax Definition Constants
	6.3.4.1€€Apache::NO_ARGS
	6.3.4.2€€Apache::TAKE1
	6.3.4.3€€Apache::TAKE2
	6.3.4.4€€Apache::TAKE3
	6.3.4.5€€Apache::TAKE12
	6.3.4.6€€Apache::TAKE23
	6.3.4.7€€Apache::TAKE123
	6.3.4.8€€Apache::ITERATE
	6.3.4.9€€Apache::ITERATE2
	6.3.4.10€€Apache::RAW_ARGS
	6.3.4.11€€Apache::FLAG

	6.3.5€€Enabling the New Configuration Directives
	6.3.6€€Creating and Merging Configuration Objects
	6.3.6.1€€SERVER_CREATE
	6.3.6.2€€SERVER_MERGE
	6.3.6.3€€DIR_CREATE
	6.3.6.4€€DIR_MERGE

	6.4€€Examples
	6.4.1€€Merging at Work
	6.4.1.1€€Merging Entries Whose Values Are References
	6.4.1.2€€Merging Order Consequences

	6.5€€Maintainers
	6.6€€Authors

	7€€Writing mod_perl Handlers and Scripts
	7.1€€Description
	7.2€€Prerequisites
	7.3€€Where the Methods Live
	7.4€€Method Handlers
	7.5€€Goodies Toolkit
	7.5.1€€Environment Variables
	7.5.2€€Threaded MPM or not?
	7.5.3€€Writing MPM-specific Code

	7.6€€Code Developing Nuances
	7.6.1€€Auto-Reloading Modified Modules with Apache::Reload

	7.7€€Integration with Apache Issues
	7.7.1€€Sending HTTP Response Headers
	7.7.2€€Sending HTTP Response Body

	7.8€€Perl Specifics in the mod_perl Environment
	7.8.1€€Request-localized Globals
	7.8.2€€exit†‡

	7.9€€Threads Coding Issues Under mod_perl
	7.9.1€€Thread-environment Issues
	7.9.2€€Deploying Threads
	7.9.3€€Shared Variables

	7.10€€Maintainers
	7.11€€Authors

	8€€Cooking Recipes
	8.1€€Description
	8.2€€Sending Cookies in REDIRECT Response †ModPerl::Registry‡
	8.3€€Sending Cookies in REDIRECT Response †handlers‡
	8.4€€Maintainers
	8.5€€Authors

	9€€Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
	9.1€€Description
	9.2€€Introduction
	9.3€€Using Apache::porting
	9.4€€Using the Apache::compat Layer
	9.5€€Porting a Perl Module to Run under mod_perl 2.0
	9.5.1€€Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be Loaded
	9.5.1.1€€Handling Methods Existing In More Than One Package
	9.5.1.2€€Using ModPerl::MethodLookup Programmatically
	9.5.1.3€€Pre-loading All mod_perl 2.0 Modules

	9.5.2€€Handling Missing and Modified mod_perl 1.0 Methods and Functions
	9.5.2.1€€Methods that No Longer Exist
	9.5.2.2€€Methods Whose Usage Has Been Modified

	9.5.3€€Requiring a specific mod_perl version.
	9.5.4€€Should the Module Name Be Changed?
	9.5.5€€Using Apache::compat As a Tutorial
	9.5.6€€How Apache::MP3 was Ported to mod_perl 2.0
	9.5.6.1€€Preparations
	9.5.6.1.1€€httpd.conf
	9.5.6.1.2€€startup.pl
	9.5.6.1.3€€Apache/MP3.pm

	9.5.6.2€€Porting with Apache::compat
	9.5.6.3€€Getting Rid of the Apache::compat Dependency
	9.5.6.4€€Ensuring that Apache::compat is not loaded
	9.5.6.5€€Installing the ModPerl::MethodLookup Helper
	9.5.6.6€€Adjusting the code to run under mod_perl 2

	9.6€€Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0
	9.6.1€€Making Code Conditional on Running mod_perl Version
	9.6.2€€Method Handlers

	9.7€€Maintainers
	9.8€€Authors

	10€€A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.
	10.1€€Description
	10.2€€Configuration Files Porting
	10.2.1€€PerlHandler
	10.2.2€€PerlSendHeader
	10.2.3€€PerlSetupEnv
	10.2.4€€PerlTaintCheck
	10.2.5€€PerlWarn
	10.2.6€€PerlFreshRestart
	10.2.7€€Apache Configuration Customization
	10.2.8€€@INC Manipulation

	10.3€€Code Porting
	10.4€€Apache::Registry, Apache::PerlRun and Friends
	10.4.1€€ModPerl::RegistryLoader

	10.5€€Apache::Constants
	10.5.1€€mod_perl 1.0 and 2.0 Constants Coexistence
	10.5.2€€Deprecated Constants
	10.5.3€€SERVER_VERSION†‡
	10.5.4€€export†‡

	10.6€€Issues with Environment Variables
	10.7€€Special Environment Variables
	10.7.1€€$ENV{GATEWAY_INTERFACE}

	10.8€€Apache:: Methods
	10.8.1€€Apache->request
	10.8.2€€Apache->define
	10.8.3€€Apache->can_stack_handlers
	10.8.4€€Apache->untaint
	10.8.5€€Apache->get_handlers
	10.8.6€€Apache->push_handlers
	10.8.7€€Apache->set_handlers
	10.8.8€€Apache->httpd_conf
	10.8.9€€Apache::exit†‡
	10.8.10€€Apache::gensym†‡
	10.8.11€€Apache::module†‡
	10.8.12€€Apache::log_error†‡

	10.9€€Apache:: Variables
	10.9.1€€$Apache::__T

	10.10€€Apache::Server:: Methods and Variables
	10.10.1€€$Apache::Server::CWD
	10.10.2€€$Apache::Server::AddPerlVersion

	10.11€€Server Object Methods
	10.11.1€€$s->register_cleanup
	10.11.2€€$s->uid
	10.11.3€€$s->gid

	10.12€€Request Object Methods
	10.12.1€€$r->cgi_env
	10.12.2€€$r->cgi_var
	10.12.3€€$r->current_callback
	10.12.4€€$r->get_remote_host
	10.12.5€€$r->cleanup_for_exec
	10.12.6€€$r->content
	10.12.7€€$r->args in an Array Context
	10.12.8€€$r->chdir_file
	10.12.9€€$r->is_main
	10.12.10€€$r->finfo
	10.12.11€€$r->notes
	10.12.12€€$r->header_in
	10.12.13€€$r->header_out
	10.12.14€€$r->err_header_out
	10.12.15€€$r->log_reason
	10.12.16€€$r->register_cleanup
	10.12.17€€$r->post_connection
	10.12.18€€$r->request
	10.12.19€€$r->send_fd
	10.12.20€€$r->send_fd_length
	10.12.21€€$r->send_http_header
	10.12.22€€$r->server_root_relative
	10.12.23€€$r->hard_timeout
	10.12.24€€$r->reset_timeout
	10.12.25€€$r->soft_timeout
	10.12.26€€$r->kill_timeout
	10.12.27€€$r->set_byterange
	10.12.28€€$r->each_byterange

	10.13€€Apache::Connection
	10.13.1€€$connection->auth_type
	10.13.2€€$connection->user
	10.13.3€€$connection->local_addr
	10.13.4€€$connection->remote_addr

	10.14€€Apache::File
	10.14.1€€open†‡ and close†‡
	10.14.2€€tmpfile†‡

	10.15€€Apache::Util
	10.15.1€€Apache::Util::size_string†‡
	10.15.2€€Apache::Util::escape_uri†‡
	10.15.3€€Apache::Util::unescape_uri†‡
	10.15.4€€Apache::Util::escape_html†‡
	10.15.5€€Apache::Util::parsedate†‡
	10.15.6€€Apache::Util::ht_time†‡
	10.15.7€€Apache::Util::validate_password†‡

	10.16€€Apache::URI
	10.16.1€€Apache::URI->parse†$r, [$uri]‡
	10.16.2€€unparse†‡

	10.17€€Miscellaneous
	10.17.1€€Method Handlers
	10.17.2€€Stacked Handlers

	10.18€€Apache::src
	10.19€€Apache::Table
	10.20€€Apache::SIG
	10.21€€Apache::StatINC
	10.22€€Maintainers
	10.23€€Authors

	11€€Introducing mod_perl Handlers
	11.1€€Description
	11.2€€What are Handlers?
	11.3€€Handler Return Values
	11.4€€mod_perl Handlers Categories
	11.5€€Stacked Handlers
	11.5.1€€VOID
	11.5.2€€RUN_FIRST
	11.5.3€€RUN_ALL

	11.6€€Hook Ordering †Position‡
	11.7€€Bucket Brigades
	11.8€€Maintainers
	11.9€€Authors

	12€€Server Life Cycle Handlers
	12.1€€Description
	12.2€€Server Life Cycle
	12.2.1€€Startup Phases Demonstration Module
	12.2.2€€PerlOpenLogsHandler
	12.2.3€€PerlPostConfigHandler
	12.2.4€€PerlChildInitHandler
	12.2.5€€PerlChildExitHandler

	12.3€€Maintainers
	12.4€€Authors

	13€€Protocol Handlers
	13.1€€Description
	13.2€€Connection Cycle Phases
	13.2.1€€PerlPreConnectionHandler
	13.2.2€€PerlProcessConnectionHandler
	13.2.2.1€€Socket-based Protocol Module
	13.2.2.2€€Bucket Brigades-based Protocol Module

	13.3€€Maintainers
	13.4€€Authors

	14€€HTTP Handlers
	14.1€€Description
	14.2€€HTTP Request Handler Skeleton
	14.3€€HTTP Request Cycle Phases
	14.3.1€€PerlPostReadRequestHandler
	14.3.2€€PerlTransHandler
	14.3.3€€PerlMapToStorageHandler META: add something here
	14.3.4€€PerlHeaderParserHandler
	14.3.5€€PerlInitHandler
	14.3.6€€PerlAccessHandler
	14.3.7€€PerlAuthenHandler
	14.3.8€€PerlAuthzHandler
	14.3.9€€PerlTypeHandler
	14.3.10€€PerlFixupHandler
	14.3.11€€PerlResponseHandler
	14.3.12€€PerlLogHandler
	14.3.13€€PerlCleanupHandler

	14.4€€Handling HEAD Requests
	14.5€€Extending HTTP Protocol
	14.6€€Maintainers
	14.7€€Authors

	15€€Input and Output Filters
	15.1€€Description
	15.2€€Your First Filter
	15.3€€I/O Filtering Concepts
	15.3.1€€Two Methods for Manipulating Data
	15.3.2€€HTTP Request Versus Connection Filters
	15.3.3€€Multiple Invocations of Filter Handlers
	15.3.4€€Blocking Calls

	15.4€€mod_perl Filters Declaration and Configuration
	15.4.1€€Filter Priority Types
	15.4.2€€PerlInputFilterHandler
	15.4.3€€PerlOutputFilterHandler
	15.4.4€€PerlSetInputFilter
	15.4.5€€PerlSetOutputFilter
	15.4.6€€HTTP Request vs. Connection Filters
	15.4.7€€Filter Initialization Phase

	15.5€€All-in-One Filter
	15.6€€Input Filters
	15.6.1€€Connection Input Filters
	15.6.2€€HTTP Request Input Filters
	15.6.3€€Bucket Brigade-based Input Filters
	15.6.4€€Stream-oriented Input Filters

	15.7€€Output Filters
	15.7.1€€Connection Output Filters
	15.7.2€€HTTP Request Output Filters
	15.7.2.1€€Stream-oriented Output Filters
	15.7.2.2€€Bucket Brigade-based Output Filters

	15.8€€Filter Applications
	15.8.1€€Handling Data Underruns

	15.9€€Filter Tips and Tricks
	15.9.1€€Altering the Content-Type Response Header

	15.10€€Writing Well-Behaving Filters
	15.10.1€€Adjusting HTTP Headers
	15.10.2€€Other issues

	15.11€€Writing Efficient Filters
	15.12€€Maintainers
	15.13€€Authors

	16€€General Handlers Issues
	16.1€€Description
	16.2€€Handlers Communication
	16.3€€Maintainers
	16.4€€Authors

	17€€Preventive Measures for Performance Enhancement
	17.1€€Description
	17.2€€Memory Leakage
	17.2.1€€Proper Memory Pools Usage

	17.3€€Maintainers
	17.4€€Authors

	18€€Performance Considerations Under Different MPMs
	18.1€€Description
	18.2€€Memory Requirements
	18.2.1€€Memory Requirements in Prefork MPM
	18.2.2€€Memory Requirements in Threaded MPM

	18.3€€Work with DataBases
	18.3.1€€Work with DataBases under Prefork MPM
	18.3.2€€Work with DataBases under Threaded MPM

	18.4€€Maintainers
	18.5€€Authors

	19€€Troubleshooting mod_perl problems
	19.1€€Description
	19.2€€Building and Installation
	19.3€€Configuration and Startup
	19.3.1€€†28‡No space left on device
	19.3.2€€Segmentation Fault when Using DBI
	19.3.3€€<Perl> directive missing closing '>'
	19.3.4€€'Invalid per-unknown PerlOption: ParseHeaders' on HP-UX 11 for PA-RISC

	19.4€€Shutdown and Restart
	19.5€€Code Parsing and Compilation
	19.6€€Runtime
	19.6.1€€C Libraries Don't See %ENV Entries Set by Perl Code
	19.6.2€€Error about not finding Apache.pm with CGI.pm
	19.6.3€€20014:Error string not specified yet
	19.6.4€€†22‡Invalid argument: core_output_filter: writing data to the network
	19.6.5€€undefined symbol: apr_table_compress

	19.7€€Issues with APR Used Outside of mod_perl
	19.8€€Maintainers
	19.9€€Authors

	20€€User Help
	20.1€€Description
	20.2€€Reporting Problems
	20.2.1€€Wrong Apache/mod_perl combination
	20.2.2€€Before Posting a Report
	20.2.3€€Test with the Latest mod_perl 2.0 Version
	20.2.4€€Use a Proper Subject
	20.2.5€€Send the Report Inlined
	20.2.6€€Important Information
	20.2.7€€Problem Description
	20.2.8€€'make test' Failures
	20.2.9€€Resolving Segmentation Faults
	20.2.10€€Please Ask Only Questions Related to mod_perl

	20.3€€Help on Related Topics
	20.4€€Maintainers
	20.5€€Authors

