Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 1 Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

1 Porting Apache:: Perl Modules from mod_perl 1.0
to 2.0

29 Jan 2004 1

1.1 Description

1.1 Description|

This docunentdescribes the various options for porting a mod_perl 1.0 Apache module so that it runs on a
Apache 2.0/ mod_perl 2.0 server. It's also helpful to those whadsteebping mod_perl 2.thandlers.

Devebpers who need to port modules using XS code, should also read pbdirtg Apache:: XS
modules

There is alsoPorting CPAN modules to mod_perl Satus

1.2 |{Introduction|

In the vastmajoiity of cases, a perl Apache module that runs under mod_perl 1.@owitlun under
mod_perl 2.0 without at least some degremodlification.

Even a very simple module that does not in itself need any changes will at least need the mod_perl 2.0
Apache modules loaded, because in mod_perl 2.0 hasitionality, such as access to the request object
andreturring an HTTP status, is not found wherejmaplementedhow it used to be in mod_p€rl0.

Most real-life modules will in fact need to deal with folbowing changes:
® methods that have moved tdifferent (new)package
® methods that must be calldiferently (due to changeprotaypeg
® methods that have ceased to effishctionality provided in some othevay)

Do not be alarmed! One way to deal with all of these issues is to loadA\feche: : conpat compat-

bility layer bundled with mod_perl 2.0. This magic spell will make almost any 1.0 module run under 2.0
without further changes. It is by no means sb&tion for every case, however, so please readfully
thefollowing discusion of this and otheoptions.

There are three basic options for porting. Let's take a quick look at each one and then discuss each in more
detail.

1. Runthemoduleon 2.0 under Apache: : conpat with no further changes

As we have said mod_perl 2.0 ships with a modipsche: : conpat , that provides a complete
drop-incompaitbility layer for 1.0 module®\pache: : conpat does thdollowing:

® |oads all the mod_perl 2.0 Apacheodules
® Adjusts method calls where tpeotaype haschanged

® Provides Peirimplemertation for methods that no longer exist2rD

2 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.3 Using Apache::porting

The drawback to using Apache: : conpat isthe performance hit, which can be significant.

Authors of CPAN and other publicly distributed modules should not use Apache: : conpat since
this forces its use in environments where the administrator may have chosen to optimize memory use
by making all code run natively under 2.0.

2. Modify themoduleto run only under 2.0

If you are not interested in providing backwards compatibility with mod_perl 1.0, or if you plan to
leave your 1.0 module in place and develop a new version compatible with 2.0, you will need to
make changes to your code. How significant or widespread the changes are depends largely of course
on your existing code.

Several sections of this document provide detailed information on how to rewrite your code for
mod_perl 2.0 Several tools are provided to help you, and it should be a relatively painless task and
one that you only have to do once.

3. Modify the module so that it runsunder both 1.0 and 2.0

Y ou need to do thisif you want to keep the same version number for your module, or if you distribute
your module on CPAN and want to maintain and release just one codebase.

Thisisarelatively simple enhancement of option (2) above. The module tests to see which version of
mod_perl isin use and then executes the appropriate method call.

The following sections provide more detailed information and instructions for each of these three porting
strategies.

1.3 [Using Apache: : porti ng

META: to be written. this is a new package which makes chunks of this doc simpler. for now see the
Apache: : por ti ng manpage.

1.4 |Using the Apache: : conpat Layer

The Apache: : conpat module tries to hide the changes in API prototypes between version 1.0 and 2.0
of mod_perl, and implements "virtual methods" for the methods and functions that actually no longer
exist.

Apache: : conpat isextremely easy to use. Either add at the very beginning of startup.pl:

use Apache2;
use Apache: : conpat;

or add to httpd.conf:

29 Jan 2004 3

1.5 Porting a Perl Module to Run under mod_perl 2.0

Per | Modul e Apache2
Per | Modul e Apache: : conpat

That's all there is to it. Now you can run your 1.0 moduiehanged.

Rementoer, however, that usingpache: : conpat will make your module run slower. It can create a
larger memoryfootprint than you need and itnplementsfunctionality in pure Perl that is provided in
much faster XS in mod_perl 1.0 as well as in 2.0. This module was really designed to assisaisithe
tion from 1.0 to 2.0Geneally you will be better off if you port your code to use the mod_perARD

It's also espeially important to repeat thaCPAN nodul e devel opers are requested not
to use this nodule in their code, since this takes the control oyerformanceaway from
users.

1.5 |Porting a Perl Moduleto Run under mod perl 2.0

Note: API changes are listedtive mod_perl 1.@ackvard compaitbility document

Thefollowing sections will guide you through the steps of porting your modules to mo@.@erl

1.5.1|Using MbdPer | : : Met hodLookup to Discover Which
Imod perl 2.0 Modules Need to B®aded

It would certainly be nice to have our mod_perl 1.0 code run on the mod_perl 2.0usenetfied. So
first of all, try your luck and test trende.

It's almost certain that your code won’t work when you try, however, because mod_perl 2.tusplits
tionality across many more modules than version 1.0 did, and you have to load these modules before the
methods that live in them can be used. So the first step is to figure out which these modules are and
use() them.

The ModPer | : : Met hodLookup module provided with mod_perl 2.0 allows you to find out which
module contains th&uncdtionality you are looking for. Simply provide it with the name of the mod_perl
1.0 method that has moved to a new module, and it will tell you what the ni@dule

For example, let's say we have a mod_perl 1.0 sog#pet:

$r->content _type('text/plain’);
$r->print("Hello cruel world!");

If we run this, mod_perl 2.0 will complain that the metloaht ent _t ype() can’t be found. So we use
ModPer | : : Met hodLookup to figure out which module provides this method. We can just run this
from the commantine:

% per| -MApache2 - MvbdPerl :: Met hodLookup -e print_method content_type

4 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 1.5.1 Using ModPerl::MethodL ookup to Discover Which mod_perl 2.0 Modules Need to Be L oaded

This prints:

to use nethod 'content_type' add:
use Apache:: RequestRec ();

We do what it says and add this use() statement to our code, restart our server (unless we're using
Apache: : Rel oad), and mod_perl will no longer complain about this particular method.

Since you may need to use this technique quite often you may want to defi ne an alias. Once
defined the last command line lookup can be accomplished with:

% | ookup content _type

ModPer | : : Met hodLookup aso provides helper functions for finding whi ch net hods are
defined in a given nodul e, or which nethods can be invoked on a given
obj ect .

1.5.1.1 [Handling M ethods Existing In More Than One Packagd

Some methods exists in several classes. For examplethisis the case with the pri nt () method. We know
the drill:

% | ookup print
This prints:

There is nore than one class with nethod ’print’
try one of:

use Apache:: Request!| O ();

use Apache::Filter ();

So there is more than one package that has this method. Since we know that we call thepri nt () method
with the $r object, it must be the Apache: : Request | Omodule that we are after. Indeed, loading this
modul e solves the problem.

1.5.1.2 [Using ModPer | : : Met hodLookup Programmatically]

The issue of picking the right module, when more than one matches, can be resolved when using
ModPer | : : Met hodLookup programmatically -- | ookup_ret hod accepts an object as an optional
second argument, which is used if there is more than one module that contains the method in question.
ModPer | : : Met hodLookup knowsthat Apache: : Request | Oand and Apache: : Fi | t er expect
an object of type Apache: : Request Rec and type Apache: : Fi | t er respectively. So in a program
running under mod_perl we can call:

ModPer | : : Met hodLookup: : | ookup_net hod(’ print’, $r);

Now only one module will be matched.

29 Jan 2004 5

1.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions

This functionality can be used in AUTOLOAD, for example, although most users will not have a need for
this robust of solution.

1.5.1.3 |Pre-loading All mod perl 2.0 Moduleq

Now if you use a wide range of methods and functions from the mod_perl 1.0 AP, the process of finding
all the modules that need to be loaded can be quite frustrating. In this case you may find the function
prel oad_al | _nodul es() to be the right tool for you. This function preloads all mod_perl 2.0
modules, implementing their APl in XS.

While useful for testing and development, it is not recommended to use this function in production
systems. Before going into production you should remove the call to this function and load only the
modules that are used, in order to save memory.

CPAN module developers should not be tempted to call this function from their modules, because it
prevents the user of their module from optimizing her system’s memory usage.

1.5.2 Handling Missing and Modified mod perl 1.0 Methods and |

The mod_perl 2.0 APl is modeled even more closely upon the Apache API than was mod_perl version
1.0. Just as the Apache 2.0 API is substantially different from that of Apache 1.0, therefore, the mod_perl
2.0 AP is quite different from that of mod_perl 1.0. Unfortunately, this means that certain method calls
and functions that were present in mod_per| version 1.0 are missing or modified in mod_perl 2.0.

If mod_perl 2.0 tells you that some method is missing and it can’t be found using [ModPerl::Method
[Cookup, it's most likely because the method doesn't exist in the mod_perl 2.0 API. It's also possible that
the method does still exist, but nevertheless it doesn’t work, since its usage has changed (e.g. its prototype
has changed, or it requires different arguments, etc.).

In either of these cases, refer to the backwards compatibility document for an exhaustive list of API calls
that have been modified or removed.

1.5.2.1 [Methodsthat No L onger Exist]

Some methods that existed in mod_perl 1.0 simply do not exist anywhere in version 2.0 and you must
therefore call a different method o methods to get the functionality you want.

For example, suppose we have amod_perl 1.0 code snippet:
$r->l og_reason("Coul dn’t open the session file: $@);

If we try to run this under mod_perl 2.0 it will complain about the call tol og_r eason() . But when we
use ModPer | : : Met hodLookup to see which module to load in order to call that method, nothing is
found:

6 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.3 Requiring a specific mod_perl version.

% per| - MApache2 - MvbdPerl :: Met hodLookup -1e \
"print((MdPerl:: MethodLookup: : | ookup_net hod(shift))[0])" \
| og_reason

This prints:
don’t know anythi ng about nethod 'l og_reason’

Looks like we are calling a non-existent method! Our next step is to refer to the backwards compatibility
document, wherein we find that as we suspected, the method | og_r eason() no longer exists, and that
instead we should use the other standard logging functions provided by the Apache: : Log module.

1.5.2.2 [Methods Whose Usage Has Been M odified|

Some methods still exist, but their usage has been modified, and your code must call them in the new
fashion or it will generate an error. Most often the method call requires new or different arguments.

For example, say our mod_perl 1.0 code said:
$parsed_uri = Apache:: URI ->parse($r, $r->uri);

This code causes mod_perl 2.0 to complain first about not being able to load the method par se() viathe
package Apache::URI. We use the tools described above to discover that the package containing our
method has moved and change our code to load and use APR: : URI :

$parsed_uri = APR : UR - >parse($r, $r->uri);
But we still get an error. It' s alittle cryptic, but it gets the point across:

p is not of type APR :Pool at /path/to/QurMdule.pmline 9.

What thisistelling usis that the method par se requires an APR::Pool object asits first argument. (Some
methods whose usage has changed emit more helpful error messages prefixed with "Usage: ...") So we
change our code to:

$parsed_uri = APR : URI - >parse($r->pool, $r->uri);

and all iswell in the world again.

1.5.3 [Requiring a specific mod perl version.

To require amodule to run only under 2.0, simply add:

use Apache2;
use nod_perl 2.0;

META: Infact, before 2.0 is released you really have to say:

29 Jan 2004 7

1.5.4 Should the Module Name Be Changed?

use Apache2;
use nod_perl 1.99;

And you can even require a specific version (for example when a certain APl has been added only starting
from that version). For example to require version 1.99 08, you can say:

use nod_per!| 1.9908;

1.5.4 [Should the Module Name Be Changed?

If it is not possible to make your code run under both mod_perl versions (see below), you will have to
maintain two separate versions of your own code. While you can change the name of the module for the
new version, it's best to try to preserve the name and use some workarounds.

Let’s say that you have amodule Apache: : Fri endl y whose release version compliant with mod_perl
1.0 is 1.57. You keep this version on CPAN and release a new version, 2.01, which is compliant with
mod_perl 2.0 and preserves the name of the module. It's possible that a user may need to have both
versions of the module on the same machine. Since the two have the same name they obviously cannot
live under the same tree.

One attempt to solve this problem is to use Makefile.PL’s MP_I NST_APACHE2 option. If the module is
configured as:

% per| Makefile. PL MP_I NST_APACHE2=1
it'll beinstalled relative to the Apache2/ directory.

META: but of course this won't work in non-core mod_perl, since a generic Makef i | e. PL has no idea
what to do about MP_I NST_APACHE2=1. Need to provide copy-n-paste recipe for this. Or even add to
the core a supporting module that will handle this functionality.

The second step is to change the documentation of your 2.0 compliant module to instruct users to use
Apache2 () ; intheir code (or in startup.pl or via Per | Modul e Apache?2 in httpd.conf) before the
moduleis required. Thiswill cause @ NC to be modified to include the Apache2/ directory first.

The introduction of the Apache2/ directory is similar to how Perl installs its modules in a version specific
directory. For example:

lib/5.7.1
lib/5.7.2

1.5.5 [Using Apache: : conpat Asa Tutoriall

Even if you have followed the recommendation and eschewed use of the Apache: : conpat module,
you may find it useful to learn how the API has been changed and how to modify your own code. Simply
look at the Apache: : conpat source code and see how the functionality should be implemented in
mod_perl 2.0.

8 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

For example, mod_perl 2.0 doesn't provide the Apache- >gensymmethod. As we can see if we look at
the Apache/ conpat . pmsource, the functionality is now available via the core Perl module Sy nbol
and its gensym() function. (Since mod _perl 2.0 works only with Perl versions 5.6 and higher, and
Synbol . pmis included in the core Perl distribution since version 5.6.0, there was no reason to keep
providing Apache- >gensym)

So if the original code looked like:

ny $fh = Apache->gensym
open $fh, $file or die "Can't open $file: $!";

in order to port it mod_perl 2.0 we can write:

ny $fh = Synbol :: gensym
open $fh, $file or die "Can't open $file: $!";

Or we can even skip loading Synbol . pm since under Perl version 5.6 and higher we can just do:

open ny $fh, $file or die "Can’t open $file: $!'";

1.5.6 How Apache: : MP3 was Ported to mod perl 2.0

Apache: : MP3 is an elaborate application that uses a lot of mod_perl API. After porting it, | have real-
ized that if you go through the notes or even better try to do it by yourself, referring to the notes only when
in trouble, you will most likely be able to port any other mod_perl 1.0 module to run under mod_perl 2.0.
So here the log of what | have done while doing the porting.

Please naotice that this tutorial should be considered as-is and I'm not claiming that | have got everything
polished, so if you still find problems, that's absolutely OK. What's important is to try to learn from the
process, so you can attack other modules on your own.

I’ve started to work with Apache: : MP3 version 3.03 which you can retrieve from Lincoln’s CPAN
directory: |http://search.cpan.org/CPAN/authors/id/L/L D/L DS/Apache-MP3-3.03.tar.gZ Even though by
the time you'll read this there will be newer versions available it's important that you use the same version
as astarting point, sinceif you don't, the notes below won't make much sense.

1.5.6.1 [Preparationg

First of al, | scratched most of mine httpd.conf and startup.pl leaving the bare minimum to get mod_perl
started. This is needed to ensure that once I've completed the porting, the module will work correct on
other users systems. For example if my httpd.conf and startup.pl were loading some other modules, which
in turn may load modules that a to-be-ported module may rely on, the ported module may work for me,
but once released, it may not work for others. It's the best to create a new httpd.conf when doing the
porting putting only the required bits of configuration into it.

29 Jan 2004 9

http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

15.6.11

Next, | configure the Apache: : Rel oad module, so we don't have to constantly restart the server after
we modify Apache: : MP3. In order to do that add to httpd.conf:

Per | Modul e Apache: : Rel oad

Per | I ni t Handl er Apache: : Rel oad

Per| Set Var Rel oadAl | O f

Per| Set Var Rel oadMbdul es "ModPer|::* Apache::*"
Per| Set Var Rel oadConst ant Redef i neWar ni ngs O f

You can refer tot he Apache: : Rel oad manpage for more information if you aren’t familiar with
this module. The part:

Per| Set Var Rel oadAl | O f
Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"

tells Apache: : Rel oad to monitor only modules in the ModPer | : ;. and Apache: : namespaces. So
Apache: : MP3 will be monitored. If your module is hamed Foo: : Bar, make sure to include the right
pattern for the Rel oadMbodul es directive. Alternatively simply have:

Per| Set Var Rel oadAl |l On

which will monitor all modules in % NC, but will be a bit slower, asit’'ll have to st at (3) many more
modules on each request.

Finally, Apache: : MP3 uses constant subroutines. Because of that you will get lots of warnings every
time the module is modified, which | wanted to avoid. | can safely shut those warnings off, since I’'m not
going to change those constants. Therefore I’ ve used the setting

Per| Set Var Rel oadConst ant Redef i neWar ni ngs O f
If you do change those constants, refer to the section on Rel oadConst ant Redef i neVWar ni ngs

Next | configured Apache: : MP3. In my case I've followed the Apache: : MP3 documentation, created
adirectory mp3/ under the server document root and added the corresponding directives to httpd.conf.

Now my httpd.conf looked like this:

#file:httpd. conf

Heomm e e o -
Li sten 127.0.0. 1: 8002
#... standard Apache configuration bits omtted ...

LoadModul e perl| _nodul e nodul es/ nod_perl . so
Per| Swi t ches -wTl

Per| Require "/ hone/ httpd/ 2.0/ perl/startup.pl”
Per | Modul e Apache: : Rel oad

Per | I ni t Handl er Apache: : Rel oad
Per| Set Var Rel oadAl |l O f

10 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"
Per | Set Var Rel oadConst ant Redefi neWar ni ngs O f

AddType audi o/ npeg np3 MP3
AddType audi o/ pl ayl i st nBu M3U
AddType audi o/ x-scpls pls PLS
AddType application/x-ogg ogg OGG
<Location /np3>
Set Handl er perl -script
Per | ResponseHandl er Apache: : MP3
Per| Set Var Pl aylistlmage playlist.gif
Per| Set Var StreanBase http://I|ocal host: 8002
Per| Set Var BaseDir /np3
</ Locat i on>

156.1.2

Since chances are that no mod_perl 1.0 module will work out of box without at least preloading some
modules, I’ ve enabled the Apache: : conpat module. Now my startup.pl looked like this:

#file:startup.p
use Apache2 ();

use lib gw(/home/ httpd/2.0/perl);
use Apache: : conpat;

1.5.6.1.3 |[Apache/MP3.pm|

Before | even started porting Apache: : MP3, I've added the warnings pragmato Apache/MP3.pm (which
wasn't there because mod_perl 1.0 had to work with Perl versions prior to 5.6.0, which is when the
war ni ngs pragmawas added):

#file:apache_np3_prep.diff
--- Apache/ MP3. pm ori g 2003-06-03 18: 44:21. 000000000 +1000

+++ Apache/ MP3. pm 2003- 06- 03 18: 44: 47. 000000000 +1000
@»-4,2 +4,5 @@
use strict;
+use war ni ngs;
+no warnings 'redefine’; # XXX renove when done with porting

+

From now on, I’'m going to use unified diffs which you can apply using pat ch(1) . Though you may
have to refer to its manpage on your platform since the usage flags may vary. On linux I'd apply the above
patch as:

% cd ~/perl/blead-ithread/lib/site_perl/5.9.0/
% patch -p0 < apache_np3_prep.diff

(note: I've produced the above patch and one more below with di ff -ul, to avoid the RCS Id tag
geting into this document. Normally | produce diffswith di f f - u which uses the default context of 3.)

29 Jan 2004 11

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

assuming that Apache/MP3.pmis located in the directory ~/perl/blead-ithread/lib/site perl/5.9.0/.

I’ve enabled the war ni ngs pragmaeven though | did have warnings turned globally in httpd.conf with:

Per| Swi t ches -wT
it's possible that some badly written module has done:
$ W = 0;

without localizing the change, affecting other code. Also notice that the taint mode was enabled from
httpd.conf, something that you shouldn’t forget to do.

| have also told the war ni ngs pragma not to complain about redefined subs via:

no warnings 'redefine’; # XXX renove when done with porting
| will remove that code, once porting is completed.

At this point | was ready to start the porting process and | have started the server.

% hup2

I’m using the following aliases to save typing:

alias err2 "tail -f ~/httpd/prefork/logs/error_|og"
alias acc2 "tail -f ~/httpd/prefork/logs/access_| og"
alias stop2 "~/ htt pd/ prefork/ bi n/ apachect| stop"
alias start2 "~/ htt pd/ prefork/ bin/apachect!l start"
alias restart2 "~/ httpd/prefork/bin/apachectl restart”

alias graceful 2 "~/ httpd/ prefork/bin/apachectl graceful"
alias hup2 "stop2; sleep 3; start2; err2"

(I dso have asimilar set of aiasesfor mod_perl 1.0)

1.5.6.2 |Porting with Apache: : conpat|

| have configured my server to listen on port 8002, so | issue a request |http://localhost:8002/mp3/] in one
console:

% | ynx --dunmp http://1ocal host: 8002/ np3/

keeping the error_log open in the other:

% err2

which expands to:

%tail -f ~/httpd/ prefork/logs/error_|og

12 29 Jan 2004

http://localhost:8002/mp3/

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

When the request isissued, the error_log file tells me:

[Thu Jun 05 15:29:45 2003] [error] [client 127.0.0.1]
Usage: Apache:: Request Rec:: new(cl assnane, ¢, base_pool =NULL)
at .../ Apache/ MP3. pm |ine 60.

Looking at the code:

58: sub handler (3) {
59: ny $class = shift;
60: ny $obj = $class->new(@) or die "Can't create object: $!'";

The problem is that handler wasn’t invoked as method, but had $r passed to it (we can tell because
new() was invoked as Apache:: RequestRec::new(), whereas it should have been
Apache: : MP3: : new() . Why Apache::MP3 wasn't passed as the first argument? | go to the mod_per|
1.0 backward compatibility document and find that method handlers are now marked using the method
subroutine attribute. So I modify the code:

--- Apache/ MP3. pm 0 2003- 06- 05 15:29:19. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 05 15: 38: 41. 000000000 +1000
@®-55,7 +55,7 @@

ny $NO = '"~(no|false)$; # regular expression

ny $YES = '~(yes|true)$; # regul ar expression

-sub handler ($%) {

+sub handl er : method {
ny $class = shift;
ny $obj = $class->new(@) or die "Can't create object: $!'";
return $obj->run();

and issue the request again (no server restart needed).

This time we get a bunch of looping redirect responses, due to a bug in mod_dir which kicks in to handle
the existing dir and messing up with $r - >pat h_i nf o keeping it empty at al times. | thought | could
work around this by not having the same directory and location setting, e.g. by moving the location to be
/songs/ while keeping the physical directory with mp3 files as $DocumentRoot/mp3/, but Apache: : MP3
won't let you do that. So a solution suggested by Justin Erenkrantz is to simply shortcut that piece of code
with:

--- Apache/ MP3. pm 1 2003- 06- 06 14:50: 59. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06-06 14:51:11. 000000000 +1000
@@ -253,7 +253,7 @@

ny $self = shift;

ny $dir = shift;

- unless ($self->r->path_info){

+ unless ($self->r->path_info eq '"){
#l ssue an external redirect if the dir isn't tailed with a '/’
nmy $uri = $sel f->r->uri
ny $query = $sel f->r->args;

29 Jan 2004 13

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

which is equivalent to removing this code, until the bug is fixed (it was till there as of Apache 2.0.46).
But the module still works without this code, because if you issue a request to /mp3 (w/o trailing slash)
mod_dir, will do the redirect for you, replacing the code that we just removed. In any case this got me past
this problem.

Since | have turned on the warnings pragma now | was getting loads of uninitialized value warnings from
$r->dir_config() whose return value were used without checking whether they are defined or not.
But you'd get them with mod_perl 1.0 as well, so they are just an example of not-so clean code, not really
a relevant obstacle in my pursuit to port this module to mod_perl 2.0. Unfortunately they were cluttering
thelog file so | had to fix them. I’ ve defined several convenience functions:

sub get_config {
nmy $val = shift->r->dir_config(shift);
return defined $val ? $val : '’;

}

sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
sub config_no { shift->get_config(shift) '~ /$NQoi; }

and replaced them as you can seein this patch: code/apache_mp3_2.diff:

--- Apache/ MP3. pm 2 2003- 06-06 15:17:22. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 15:16:21. 000000000 +1000
@ - 55,6 +55,14 @@

ny $NO = '~(no|false)$; # regular expression

ny $YES = '~(yes|true)$; # regular expression

+sub get_config {
+ ny $val = shift->r->dir_config(shift);
+ return defined $val ? $val : '’;
+
+
+sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
+sub config_no { shift->get_config(shift) !~ /$NQoi; }
+
sub handl er : method {
ny $class = shift;
ny $obj = $class->new(@) or die "Can't create object: $!'";
@-70,7 +78,7 @@
ny @ang_tags;
push @ang_tags,split /,\s+/,$r->header_i n(’ Accept-I| anguage’)
i f $r->header _i n(’ Accept -1 anguage’);

- push @ang_tags, $r->dir_config(’ Defaul t Language') || 'en-US;
+ push @ ang_t ags, $new >get _confi g(’ Def aul t Language’) || 'en-US;
$new->{"Ih'} ||=

Apache: : MP3: : L10ON- >get _handl e(@ ang_t ags)
@ -343,7 +351,7 @@

ny $file = $subr->fil enane;
ny $type = $subr->content _type;
ny $data = $self->fetch_info(S$file, $type);

- ny $format = $sel f->r->dir_config(’ DescriptionFormat’);
+ ny $format = $sel f->get _config(’ Descripti onFormat’');
if ($format) {
$r->print (' #EXTINF:’ |, $data->{seconds} , ’,’);

14 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

(nmy $description = $format) =~ s{%[atfgl ncrdnsqS%)}

@ -1204,7 +1212,7 @@

get fields to display in list of MP3 files
sub fields {
ny $self = shift;

- ny @ =split /\W/,$self->r->dir_config('Fields');

+ my @ = split /\W/, $sel f->get_config('Fields');
returnmap { lc $_ } @ if @; # | ower case
return gm(title artist duration bitrate); # default

}
@@ -1340,7 +1348,7 @@
sub get_dir {
ny $self = shift;
ny ($config, $default) = @;
-y $dir = $self->r->dir_config($config) || $default;
+ ny $dir = $sel f->get_config($config) || $default;

return $dir if $dir =~ mA~ g # | ooks like a path
return $dir if $dir =~ mMw://!; # looks like a URL
return $self->default dir . '/’ . $dir

@@ - 1348, 22 +1356, 22 @@

return true if downloads are allowed fromthis directory
sub downl oad_ok {

- shift->r->dir_config(’ All owDownl oad’) !~ /$NO oi

+ shift->config_no(’ Al owDownl oad’) ;
}

return true if streaming is allowed fromthis directory
sub stream ok {

- shift->r->dir_config('AllowStream) !~ /3$NJ oi

+ shift->config_no(’ All owStream);
}

return true if playing locally is allowed

sub pl ayl ocal _ok {
- shift->r->dir_config(’ All owPl ayLocal ly') =~ /$YES/ oi
+ shift->config_yes(’All owPl ayLocally’);

}

return true if we should check that the client can acconpdate stream ng
sub check_streamclient {

- shift->r->dir_config(’ CheckStreanCient’) =~ /$YES/ oi

+ shift->config_yes(’ CheckStreanCient’)
}

return true if client can stream
@@ - 1378, 48 +1386, 48 @@

whether to read info for each MP3 file (mght take a long tine)
sub read_np3_info {

- shift->r->dir_config(’' ReadMP3Info’) !~ /$NJ oi

+ shift->config_no(’ ReadMP3Info’);
}

whether to tine out streamns
sub streamtinmeout {
- shift->r->dir_config(’Streanlineout’) || O

29 Jan 2004 15

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

+ shift->get_config(’ StreanTinmeout’) || O;

}

how |l ong an albumlist is considered so | ong we should put buttons
at the top as well as the bottom
-sub file_ list_is_long { shift->r->dir_config(’LongList’) || 10 }
+sub file_list_is long { shift->get_config(’'LongList’) || 10 }
sub hone_| abel {

ny $self shift;
- ny $hone $sel f->r->di r_config(’ HoneLabel ') |
+ my S$hone = $sel f->get config(’ HoneLabel ’) |

$sel f->x(’ Home') ;
return | c($hone) eq 'hostname’ ? $sel f->r->hostname : $hone;

}

sub path_style { # style for the path to parent directories
- lc(shift->r->dir_config(’'PathStyle')) || ’'staircase’

+ lc(shift->get_config(’'PathStyle')) || 'staircase’

}

where is our cache directory (if any)

sub cache_dir {

ny $self = shift;
- return unless ny $dir sel f->r->dir_config(’ CacheDir’');
+ return unless ny $dir sel f->get _config(’ CacheDir’)
return $sel f->r->server _root _relative($dir);

}

colums to display

-sub subdir_colums {shift->r->dir_config(’ SubdirColums’) || SUBDI RCOLUWS }

-sub playlist_colums {shift->r->dir_config(’ PlaylistColums’) || PLAYLI STCOLUWNS }
+sub subdir_col ums {shift->get_config(’ SubdirColums’) || SUBDI RCOLUWS }

+sub playlist_colums {shift->get_config(’'PlaylistColums’) || PLAYLI STCOLUWS }

=$
=$

various configuration variables

-sub default _dir { shift->r->dir_config('BaseDir’) || BASE DIR }
+sub default_dir { shift->get_config('BaseDir’) || BASE DIR }

sub styl esheet { shift->get _dir(’Styl esheet’, STYLESHEET) }
sub parent_icon { shift->get_dir(’Parentlcon’, PARENTI CON) }

sub cd_list_icon {
ny $sel f = shift;
ny $subdir shift;

- ny $image = $sel f->r->dir_config(’ CoverlnmageSnall’) || COVERI MAGESMALL
+ nmy $image = $sel f->get_config(’ CoverlmageSmall’') || COVERI MAGESMALL;
ny $directory_specific_icon = $sel f->r->fil enane."/$subdir/$i nage"

return -e $directory_specific_icon
? join ("/",%self->r->uri, escape($subdir), $i mage)
@@ -1427,7 +1435,7 @@
}
sub playlist_icon {
ny $self = shift;
- ny $image = $sel f->r->dir_config(’ Playlistlimage’) || PLAYLI STI MAGE
+ nmy $image = $sel f->get_config(’ Playlistlmage’) || PLAYLI STI MAGE
ny $directory_specific_icon = $sel f->r->filenane."/$i nage"
warn $directory_specific_icon
return -e $directory_specific_icon

16 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

@@ - 1444,7 +1452,7 @@
sub cd_icon {
ny $self = shift;
ny $dir = shift;
- ny $coverinmg = $self->r->dir_config(’ Coverlmage’) || COVERI MAGE;
+ my $covering = $sel f->get_config(’ Coverlnmage’) || COVERI MAGE;
if (-e "$dir/$covering") {
$coveri ny;
} else {
@@ - 1453, 7 +1461,7 @@
}
sub m ssing_coment {
ny $self = shift;
- ny $missing = $self->r->dir_config(’ M ssi ngCorment’);
+ ny $missing = $sel f->get_config(’' M ssingComment’);
return if $mssing eq 'off’;
$m ssing = $sel f->| h- >maket ext (" unknown’) unl ess $mi ssi ng;
$mi ssi ng;
@@ - 1464,7 +1472,7 @@
ny $self = shift;
ny $data = shift;
ny $descri ption;
- ny $fornmat = $sel f->r->dir_config(’ DescriptionFormat’);
+ nmy $format = $sel f->get _config(’ DescriptionFormat’);
if ($format) {
($description = $format) =~ s{%[atfglncrdmsqS¥)}
{$1 eq ' % ? "%
@@ - 1495, 7 +1503,7 @@
}
}

- if ((my $basenane = $r->dir_config(’ StreanBase’)) && !$self->is_localnet()) {
+ if ((my $basename = $sel f->get_config(’ StreanBase')) && !$self->is_|ocalnet()) {
$basenane =~ s!http://!http://$auth_info! if $auth_info;
return $basenane;
}
@@ - 1536, 7 +1544,7 @@
sub is_local net {
ny $self = shift;
return 1 if $self->is local; # d uh
- ny @ocal = split /\s+/,$self->r->dir_config(’'Local Net’) or return;
+ ny @ocal = split /\s+/,$sel f->get_config(’ Local Net’) or return;

ny $renote_ip = $sel f->r->connection->renote_ip . .’ ;
foreach (@ocal) {

, it was 194 lines long so | didn't inline it here, but it was quick to create with a few regexes
search-n-replace manipulations in xemacs.

Now | have the browsing of the root /mp3/ directory and its sub-directories working. If | click on ’Fetch’
of a particular song it works too. However if | try to’Stream’ a song, | get a 500 response with error_log
telling me:

29 Jan 2004 17

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

[Fri Jun 06 15:33:33 2003] [error] [client 127.0.0.1] Bad arg length
for Socket::unpack_sockaddr_in, length is 31, should be 16 at
...[5.9.0/i686-linux-thread-multi/Socket.pm line 370.

It would be certainly nice for Socket.pm to use Carp::carp() instead of warn() so we will know
where in the Apache::MP3 code this problem was triggered. However reading the Socket.pm manpage
reveals that sock addr _in() in the list context is the same as calling an explicit unpack_sock -
addr _in() , and in the scalar context it's calling pack_sock addr _in() . So | have found sock -
addr _in was the only Socket.pm function used in Apache::MP3 and | have found this code in the
function is_local()

my $r = $self->r;

my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);

my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
return $serveraddr eq $remoteaddr;

Since something is wrong with function cals $r->connec tion ->local_addr and/or
$r->connec tion ->remote_addr and | referred to the mod_perl 1.0 backward compatibility docu-
ment and found the relevant entry on these two functions. Indeed the APl have changed. Instead of return-
ing a packed SOCKADDRIN string, Apache now returns an APR: : Socket Addr object, which | can
query to get the bits of information I’m interested in. So | applied this patch:

--- Apache/MP3.pm.3 2003-06-06 15:36:15.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 15:56:32.000000000 +1000
@@ -1533,10 +1533,9 @@
allows the player to fast forward, pause, etc.
sub is_local {
my $self = shift;
- my $r = $self->r;
- my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);
my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
return $serveraddr eq $remoteaddr;
my $c = $self->r->connection;
require APR::SockAddr;
return $c->local_addr->ip_get eq $c->remote_addr->ip_get;

—+ + +

Check if the requesting client is on the local network, as defined by

And voila, the streaming option now works. | get a warning on 'Use of uninitialized value’ on line 1516
though, but again thisis unrelated to the porting issues, just a flow logic problem, which wasn't triggered
without the warnings mode turned on. | have fixed it with:

--- Apache/MP3.pm.4 2003-06-06 15:57:15.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 16:04:48.000
@@ -1492,7 +1492,7 @@

my $suppress_auth = shift;

my $r = $self->r;

- my $auth_info;

+ my $auth_info = ";
the check for auth_name() prevents an anno
the apache server log when authentication
if ($r->auth_name && !'$suppress_auth) {

18 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0

@ - 1509, 10 +1509,9 @@

+ 4+ +

}

}

ny $vhost = $r->host nane;
unl ess ($vhost) {
$vhost = $r->server->server_host nane;

$vhost .= ":" . $r->get_server_port unless
}
$vhost = $r->server->server _hostnane unl ess
$vhost .= ":" . $r->get_server_port unless $

return "http://${auth_i nfo}${vhost}";

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

This completes the first part of the porting. | have tried to use all the visible functions of the interface and
everything seemed to work and | haven't got any warnings logged. Certainly | may have missed some
usage patterns which may be still problematic. But thisis good enough for this tutorial.

1.5.6.3 |Getting Rid of the Apache: : conpat Dependency]

The final stage is going to get rid of Apache: : conpat since thisis a CPAN module, which must not
load Apache: : conpat onitsown. I’'m going to make Apache: : MP3 work with mod_perl 2.0 al by

itself.

Thefirst step isto comment out the loading of Apache: : conpat in startup.pl:

#file:startup.pl

use Apache2 ();
use lib gw(/home/ httpd/ 2.0/ perl);
#use Apache::conpat ();

1.5.6.4 [Ensuring that Apache: : conpat isnot loaded|

The second step is to make sure that Apache: : conpat doesn’'t get loaded indirectly, through some

other module. So I' ve added this line of code to Apache/MP3.pm:

--- Apache/ MP3. pm 5
+++ Apache/ MP3. pm

@-3,2 +3,6 @@

2003-06-06 16:17:50. 000000000 +1000
2003-06-06 16:21:14. 000000000 +1000

+BEG N {
+ di e "Apache: :conmpat is |oaded | oaded" if $INC[' Apache/ conpat.pm};
+}
+
use strict;

and indeed, even though I’ve commented out the loading of Apache: : conpat from startup.pl, this
module was still getting loaded. | knew that because the request to /mp3 were failing with the error
message:

29 Jan 2004

19

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Apache: : conpat is |oaded | oaded at ...

There are several ways to find the guilty party, you can gr ep(1) for it in the perl libraries, you can over-
ride CORE: : GLOBAL: : requi re() instartup.pl:

BEG N {
use Carp;
*CORE: : GLOBAL: :require = sub {
Carp::cluck("Apache: :conpat is |oaded") if $ [0] =~ /conpat/;

CORE: :require(@);
I
}

or you can modify Apache/compat.pm and make it print the calls trace when it gets compiled:

--- Apache/ conmpat.pmorig 2003- 06- 03 16: 11: 07. 000000000 +1000
+++ Apache/ conpat . pm 2003- 06-03 16: 11: 58. 000000000 +1000
@-1,5 +1,9 @@

package Apache:: conpat;

+BEGQ N {

+ use Carp;

+ Car p: : cl uck("Apache: : conpat is | oaded by");
+}

I’ve used this last technique, since it’s the safest one to use. Remember that Apache: ;. conpat can also
be loaded with:

do "Apache/ conpat. pni;

in which case, neither gr ep(1) 'ping for Apache: : conpat , nor overriding r equi r e() will do the
job.

When I’ ve restarted the server and tried to use Apache: : MP3 (I wasn't preloading it at the server startup
since | wanted the server to start normally and cope with problem when it’s running), the error_log had an
entry:

Apache: : conpat is |oaded by at .../ Apache2/ Apache/ compat.pmline 6
Apache: : conpat:: BEG N() called at .../Apache2/ Apache/conpat.pmline 8
eval {...} called at .../Apache2/ Apache/conpat.pmline 8
requi re Apache/conpat.pmcalled at .../5.9.0/CA.pmline 169
require CA.pmcalled at .../site_perl/5.9.0/ Apache/ MP3.pm |ine 8
Apache: : MP3: : BEG N() called at .../Apache2/ Apache/ conpat.pmline 8

(I’'ve trimmed the whole paths of the libraries and the trace itself, to make it easier to understand.)

We could have used Car p: : car p() which would have told us only the fact that Apache: : conpat
was loaded by CA . pm but by using Car p: : cl uck() we ve obtained the whole stack backtrace so we
aso can learn which module hasloaded CE . pm

Here I've learned that | had an old verson of CA.pm (2.89) which automatically loaded
Apache: : conpat (which should be never done by CPAN modules). Once I've upgraded CA . pmto
version 2.93 and restarted the server, Apache: : conpat wasn't getting loaded any longer.

20 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

1.5.6.5 [Installing the MbdPer | : : Met hodLookup Helper|

Now that Apache: : conpat is not loaded, | need to deal with two issues: modules that need to be
loaded and APIsthat have changed.

For the second issue I'll have to refer to the the mod_perl 1.0 backward compatibility document.

But the first issue can be easily worked out using ModPer | : : Met hodLookup. As explained in the
section [Using ModPer | : : Met hodLookup Programmaticaly] I've added the AUTOLQOAD code to my
startup.pl so it’ll automatically lookup the packages that | need to load based on the request method and
the object type.

So now my startup.pl looked like:
#file:startup.pl

use Apache2 ();
use lib gw(/home/ httpd/ 2.0/ perl);

{
package MddPerl :: Met hodLookupAut o;

use ModPerl :: Met hodLookup;

use Carp;
sub handl er {

| ook inside nod_perl:: Apache:: APR : MdPerl:: excludi ng DESTROY
ny $skip = '~(?! DESTROY$;
*UNI VERSAL: : AUTOLOAD = sub {
ny $net hod = $AUTOLOAD;
return i f $net hod =~ / DESTROY/ ;
ny ($hint, @modul es) =
MbdPer | : : Met hodLookup: : | ookup_net hod($net hod, @);
$hint ||="Can’t find nmethod $AUTOLOAD';
croak $hint;
b
return O;
}
}
1;

and | add to my httpd.conf:

Per | Chi | dl ni t Handl er MbdPer| : : Met hodLookupAut o

1.5.6.6 |Adjusting the code to run under mod perl 2|

| restart the server and off | go to complete the second porting stage.

Thefirst error that |’ ve received was;

29 Jan 2004 21

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

[Fri Jun 06 16:28:32 2003] [error] failed to resolve handl er ‘' Apache:: MP3’
[Fri Jun 06 16:28:32 2003] [error] [client 127.0.0.1] Can’t locate

obj ect nmethod "boot" via package "nod_perl" at .../Apache/ Constants.pm
line 8 Conpilation failed in require at .../Apache/MP3.pmline 12.

| gotoline 12 and find the following code:

use Apache:: Constants gw : conmon REDI RECT HTTP_NO_CONTENT
DI R_MAG C_TYPE HTTP_NOT_MODI Fl ED) ;

Notice that | did have mod_perl 1.0 installed, so the Apache: : Const ant module from mod_perl 1.0
couldn’t find the boot () method which doesn’t exist in mod_perl 2.0. If you don’t have mod_perl 1.0
installed the error would smply say, that it can't find Apache/Constants.pomin @ NC. In any case, we are
going to replace this code with mod_perl 2.0 equivaent:

--- Apache/ MP3. pm 6 2003- 06- 06 16: 33: 05. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 17: 03:43. 000000000 +1000
@-9,7 +9,9 @@

use warni ngs;

no warnings 'redefine’ ; # XXX renobve when done with porting

-use Apache:: Constants gqw(: conmon REDI RECT HTTP_NO CONTENT DI R MAG C TYPE HTTP_NOT_MODI Fl ED) ;
+use Apache:: Const -conpile => gw(:conmon REDI RECT HTTP_NO_ CONTENT

+ DI R_MAG C_TYPE HTTP_NOT_MODI FI ED) ;

+

use Apache:: MP3:: L10N,
use 1O :File;
use Socket ’'sockaddr_in’;

and | aso had to adjust the constants, since what used to be OK, now has to be Apache: : OK, mainly
because in mod_perl 2.0 there is an enormous amount of constants (coming from Apache and APR) and
most of them are grouped in Apache:: or APR : namespaces. The Apache:: Const and
APR: : Const manpage provide more information on available constants.

This search and replace accomplished the job:

% perl -pi -e 's/return\s(OK DECLI NED| FORBI DDEN| \
REDI RECT| HTTP_NO_CONTENT| DI R_MAG C_TYPE| \
HTTP_NOT_MODI FI ED)/ r et urn Apache: : $1/ xg’ Apache/ MP3. pm

As you can see the regex explicitly lists all constants that were used in Apache: : MP3. Your situation
may vary. Here is the patch: code/apache_mp3_7.diff:

--- Apache/ MP3. pm 7 2003-06-06 17:04:27.000000000 +1000
+++ Apache/ MP3. pm 2003-06-06 17:13:26. 000000000 +1000
@ -129,7 +129,7 @@

ny $self = shift;

$sel f->r->send_http_header($self->htnl _content_type);
- return K if $sel f->r->header_only;
+ return Apache:: K if $sel f->r->header_only;

print start_htmn(
-lang => $sel f->| h- >l anguage_t ag,
@ - 246, 20 +246,20 @@
$sel f->send_pl ayl i st (\ @rat ches) ;

22 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

}

return CK;
return Apache:: CK;
}

4+

this is called to generate a playlist for selected files
if (paran(’ Play Selected)) {
- return HTTP_NO CONTENT unless nmy @iles = paran(’'file');
+ return Apache:: HTTP_NO CONTENT unless ny @iles = paran(’'file');
ny $uri = dirname($r->uri);
$sel f->send_playlist([map { "Suri/$_" } @iles]);
- return CK;
+ return Apache:: CK;
}

otherw se don’t know how to deal with this

$sel f->r->log_reason(’Invalid paraneters -- possible attenpt to circunvent checks.’);
- return FORBI DDEN,
+ return Apache: : FORBI DDEN,

}

this generates the top-level directory listing
@ -273,7 +273,7 @@
ny $query = $sel f->r->args;
$query = "?" . $query if defined $query;
$sel f - >r->header _out (Location => "$uri/$query");
- return REDI RECT;
+ return Apache: : REDI RECT,;

}

return $self->list_directory($dir);
@ -289,9 +289,9 @@

if ($is_audio && !$sel f->downl oad_ok) {
$sel f->r->l og_reason(’ File downl oading is forbidden');
- return FORBI DDEN;
+ return Apache: : FORBI DDEN;
} else {
- return DECLINED;, # allow Apache to do its standard thing
+ return Apache:: DECLINED; # allow Apache to do its standard thing

}

@ -302,17 +302,17 @@
ny $self = shift;
ny $r = $self->r;

- return DECLINED unless -e $r->filenane; # should be $r->finfo
+ return Apache:: DECLI NED unl ess -e $r->filenane; # should be $r->finfo

unl ess ($sel f->stream ok) {
$r->l og_reason(’ Al l owStream forbi dden’);
- return FORBI DDEN;
+ return Apache: : FORBI DDEN;

}

if ($self->check_streamclient and !$self->is_streamclient) {
nmy $useragent = $r->header _i n(’ User-Agent’);

29 Jan 2004 23

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

$r->l og_reason("CheckStreanC ient is true and $useragent is not a streamng client");
- return FORBI DDEN;
+ return Apache: : FORBI DDEN;

}

return $sel f->send_stream($r->fil enane, $r->uri);
@ -322,12 +322,12 @@
sub send_pl aylist {
ny $self = shift;
my ($urls, $shuffle) = @;
- return HTTP_NO CONTENT unl ess @urls;
+ return Apache:: HTTP_NO CONTENT unl ess @url s;
ny $r = $self->r;
ny $base = $sel f->stream base;

$r->send_ht t p_header (' audi o/ npegurl’);
- return K if $r->header_only;
+ return Apache:: K if $r->header_only;

| ocal user

ny $local = $sel f->playlocal _ok && $self->is_|ocal;
@-377,7 +377,7 @@

$r->print ("$base$_?$stream par ns$CRLF") ;
}

}
- return O
+ return Apache:: K

}

sub stream parms {
@ -468,7 +468,7 @@
ny $self = shift;
ny $dir = shift;

- return DECLINED unless -d $dir;
+ return Apache:: DECLI NED unless -d $dir;

ny $last_nodified = (stat(_))[9];

@ -478,15 +478,15 @@
ny ($time, $ver) = $check =~ /*([a-f0-9]+)-([0-9.]+)%/;

if ($check eq "*' or (hex($time) == $last_nodified and $ver == $VERSION)) {
return HTTP_NOT_MODI FI ED;
+ return Apache: : HTTP_NOT_MODI Fl ED;
}
}

- return DECLINED unl ess nmy ($directories, $np3s, $pl aylists, $txtfiles)
+ return Apache:: DECLI NED unl ess ny ($directories, $nmp3s, $pl aylists, $txtfiles)
= $self->read _directory($dir);

$sel f->r->send_http_header($sel f->htnl _content_type);
- return K if $sel f->r->header_only;
+ return Apache:: K if $sel f->r->header_only;

$sel f - >page_t op($dir);

$sel f->directory_top($dir);
@»-514,7 +514,7 @@

24 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0

print hr
print "\n\n";

unl ess %np3s;

$sel f->directory_bottom $dir);

- return O
+ return Apache::
}

print the HTM. at the
@ - 1268,8 +1268,8 @@

ny $mne
my $info

top of the page

$r->cont ent _t ype;
$sel f->fetch_info($file, $m ne);

- return DECLINED unless $info; # not a legit nmp3 file?
- ny $fh = $self->open_file($file) || return DECLI NED;
+ return Apache::DECLINED unless $info; # not a legit np3 file?
+ ny $fh = $self->open_file($file) || return Apache:: DECLI NED;
bi nnode($fh); # to prevent DOS text-nopde foolishness

ny $size = -s $file;
@-1317,7 +1317,7 @@

$r->print("Content-Length: $size$CRLF");
$r->print("Content-Type: $m meSCRLF");

$r->print("$CRLF");

- return K if $r->header_only;
+ return Apache:: K if $r->header_only;

if (my $tineout = $sel f->streamtineout) {
ny $seconds = $info->{seconds};

@ -1330, 12 +1330,12 @@
$bytes -= $b;
$r->print($data);

}
- return OK;
+ return Apache:: CK;
}

we get here for untimed transmts

$r->send_fd($fh);
- return O
+ return Apache:: O
}

called to open the MP3 file

| had to manually fix the DI R_MAGQ C_TYPE constant which didn't fit the regex pattern:

--- Apache/ MP3. pm 8
+++ Apache/ MP3. pm
@@ -1055,7 +1055, 7 @@

ny $mime = $sel f->r

2003-06-06 17:24:33.000000000 +1000
2003-06-06 17:26:29. 000000000 +1000

->| ookup_file("$dir/$d")->content_type;

- push(@lirectories, $d) if !$seen{$d}++ && $ninme eq D R_MAG C _TYPE;
+ push(@lirectories,$d) if !$seen{$d}++ && $nminme eq Apache:: DI R_MAG C _TYPE;

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

.nBu files should be configured as audi o/playlist MME types in your apache .conf file

push(@l ayl i sts, $d)

29 Jan 2004

if $mme =~ m "audi o/ (pl aylist| x-nmpegurl | npegurl|x-scpls)$!;

25

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

And | move on, the next error is:

[Fri Jun 06 17:28:00 2003] [error] [client 127.0.0.1]
Can't |ocate object nethod "header_in" via package
" Apache: : Request Rec" at .../ Apache/ MP3. pm|ine 85.

The porting document quickly reveals me that header _i n() and its brothers header _out () and
err_header _out () are R.I.P. and that | have to use the corresponding functions headers_i n(),
headers_out () anderr _headers_out () which areavailablein mod_perl 1.0 APl aswell.

So | adjust the code to use the new API:

% perl -pi -e 's|header_in\((.*?)\)|headers_in->{$1}| g’ Apache/ MP3. pm
% perl -pi -e 's|header_out\((.*?)\s*=>\s*(.*?)\);| headers_out->{$1} = $2;|g’ Apache/ MP3. pm

which results in this patch: code/apache_mp3_9.diff:

--- Apache/ MP3.pm 9 2003-06-06 17:27:45. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 17:55: 14. 000000000 +1000
@@-82,8 +82,8 @@

$new>{"r'} [|= $r if $r;

nmy @ang_tags;
- push @ang_tags,split /,\s+/,$r->header_i n(’ Accept-I| anguage’)
- i f $r->header_in(’ Accept-I|anguage’);
+ push @ang_tags,split /,\s+/,$r->headers_in->{" Accept -l anguage’}

+ i f $r->headers_i n->{" Accept-I| anguage’ };
push @ ang_t ags, $new >get _confi g(’ Def aul t Language’) || 'en-US ;
$new->{"1h'} ||=
@-272,7 +272,7 @@
ny $uri = $self->r->uri;

ny $query = $sel f->r->args;
$query = "?" . $query if defined $query;
- $sel f - >r - >header _out (Locati on => "$uri/ $query");
+ $sel f->r->headers_out->{Location} = "uri/Squery";
return Apache: : REDI RECT,;
}

@@-310,7 +310,7 @
}

if ($self->check_streamclient and !$self->is_streamclient) {
- ny $user agent $r - >header _i n(’ User-Agent’);
+ ny $useragent = $r->headers_i n->{’ User-Agent’};
$r->l og_reason("CheckStreanClient is true and $useragent is not a streaming client");
return Apache: : FORBI DDEN;

}
@-472,9 +472,9 @@
ny $last_nodified = (stat(_))[9];

- $sel f->r->header_out (' ETag’ => sprintf ("% x-%", $last_nodified, $VERSION));
+ S$sel f->r->headers_out->{'ETag’'} = sprintf("%x-%", $last_nodified, $VERSION);

- if (ny $check
+ if (ny $check

$sel f - >r->header _i n("If-None-Match")) {
$sel f->r->headers_i n->{"1f-None-NMatch"}) {

26 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

ny ($tinme, $ver) = $check =~ /*([a-f0-9]+)-([0-9.]+)%/;

if ($check eq '*' or (hex($time) == $last_nodified and $ver == $VERSION)) {
@ -1283,8 +1283,8 @@

ny $genre = $info->{genre} || $sel f->Ih->maketext(’ unknown');

nmy $range = 0O;
- $r->header _i n("Range")
- and $r->header_i n("Range") =~ ni bytes=(\d+)/
+ $r->headers_i n->{"Range"}
+ and $r->headers_i n->{"Range"} =~ ni bytes=(\d+)/
and $range = $1
and seek($f h, $range, 0) ;

@ -1383, 11 +1383,11 @@
return true if client can stream
sub is_streamclient {
ny $r = shift->r;
$r->header _in(’ I cy- MetaData’) # W nanp/ xms
|| $r->header_in(’ Bandwi dth’) # real pl ayer
|| $r->header _in(’ Accept’) =~ m\baudio/ npeg\b! # npgl23 and others

- || $r->header _in(’ User-Agent’) =~ m ~NSPl ayer/! # Mcrosoft nedia player
- || $r->header_in(’' User-Agent’') =~ m "xmrs/!;
+ $r->headers_in->{"Icy-MetaData’} # wi nanp/ xmrs
+ || $r->headers_in->{" Bandwi dth’} # real pl ayer
+ || $r->headers_in->{" Accept’} =~ ml\baudi o/ npeg\b! # npgl23 and others
+ || $r->headers_in->{"User-Agent’} =~ ml ~NSPl ayer/! # Mcrosoft nedia player
+ || $r->headers_in->{"User-Agent’} =~ m "xms/!;
}

whether to read info for each MP3 file (mght take a long tine)

On the next error ModPer | : : Met hodLookup’ s AUTOLQAD kicksin. Instead of complaining:
[Fri Jun 06 18:35:53 2003] [error] [client 127.0.0.1]

Can't |ocate object nethod "FETCH' via package "APR : Tabl e"
at .../ Apache/ MP3. pm |ine 85.

| now get:

[Fri Jun 06 18:36:35 2003] [error] [client 127.0.0.1]
to use nethod ' FETCH add:

use APR : Table ();
at .../ Apache/ MP3. pm |ine 85

So | follow the suggestion and load APR: : Tabl e() :

29 Jan 2004 27

1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

--- Apache/ MP3. pm 10 2003-06-06 17:57:54. 000000000 +1000
+++ Apache/ MP3. pm 2003-06- 06 18:37:33. 000000000 +1000
@-9,6 +9,8 @@

use war ni ngs;

no warnings 'redefine’; # XXX: renove when done with porting

+use APR :Table ();
+
use Apache:: Const -conpile => gw: conmbon REDI RECT HTTP_NO CONTENT
DI R_MAG C_TYPE HTTP_NOT_MODI FI ED) ;

| continue issuing the request and adding the missing modules again and again till 1 get no more
complaints. During this process I’ ve added the following modules:

--- Apache/ MP3. pm 11 2003-06- 06 18:38:47.000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 18:39:10. 000000000 +1000
@-9,6 +9,14 @@

use war ni ngs;

no warnings 'redefine’; # XXX renove when done with porting

+use Apache:: Connection ();
+use Apache: : SubRequest ();
+use Apache:: Access ();
+use Apache:: Request| O ();
+use Apache:: RequestUtil ();
+use Apache: : RequestRec ();
+use Apache:: ServerUtil ();
+use Apache:: Log;

use APR : Table ();

use Apache:: Const -conpile => gw(: common REDI RECT HTTP_NO_CONTENT

The AUTOLOAD code helped me to trace the modules that contain the existing APIs, however | still have
to deal with APIsthat no longer exist. Rightfully the helper code says that it doesn’t know which module
defines the method: send_ht t p_header () becauseit no longer existsin Apache 2.0 vocabulary:

[Fri Jun 06 18:40:34 2003] [error] [client 127.0.0.1]
Don’t know anyt hi ng about method ’'send_http_header’
at .../ Apache/ MP3. pm |ine 498

So | go back to the porting document and find the relevant entry. In 2.0 lingo, we just need to set the
content type():

--- Apache/ MP3. pm 12 2003- 06- 06 18: 43:42. 000000000 +1000
+++ Apache/ MP3. pm 2003- 06- 06 18:51:23. 000000000 +1000
@ -138,7 +138,7 @@
sub hel p_screen {
ny $self = shift;

- $self->r->send_http_header($sel f->htnl _content_type);
+ $self->r->content_type($self->htm _content_type);
return Apache:: OK if $sel f->r->header_only;

print start_htnl (
@ -336,7 +336,7 @@

28 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.5.6 How Apache::MP3 was Ported to mod_perl 2.0

ny $r = S$self->r
ny $base = $sel f->stream base

- $r->send_http_header (' audi o/ npegurl’);
+ $r->content _type(’ audi o/ npegurl’);
return Apache:: OK i f $r->header_only

| ocal user
@@ -495,7 +495,7 @@
return Apache:: DECLI NED unl ess ny ($directories, $mp3s, $pl aylists, $txtfiles)
= $sel f->read _directory($dir);

- $self->r->send_http_header($sel f->htnl _content_type);
+ $self->r->content_type($self->htm _content_type);
return Apache: : OK i f $sel f->r->header_only

$sel f ->page_top($dir);
also I’ ve noticed that there was this code:

return Apache:: OK if $sel f->r->header_only;

This technique is no longer needed in 2.0, since Apache 2.0 automatically discards the body if the request
is of type HEAD -- the handler should still deliver the whole body, which helps to calculate the
content-length if thisis relevant to play nicer with proxies. So you may decide not to make a specia case
for HEAD requests.

At this point | was able to browse the directories and play files via most options without relying on
Apache: : conpat .

There were afew other APIsthat | had to fix in the same way, while trying to use the application, looking
at the error_log referring to the porting document and applying the suggested fixes. I'll make sure to send
al these fixes to Lincoln Stein, so the new versions will work correctly with mod_perl 2.0. | also had to
fix other Apache: : MP3: : files, which come as a part of the Apache- MP3 distribution, pretty much
using the same techniques explained here. A few extrafixes of interest in Apache: : MP3 were:

e send fd()

As of thiswriting we don’'t have this function in the core, because Apache 2.0 doesn’t have it (it'sin
Apache: : conpat but implemented in a slow way). However we may provide one in the future.
Currently one can use the function sendf i | e() which requires afilename as an argument and not
the file descriptor. So | have fixed the code:

i f($r->request ($r->uri)->content _type eq 'audi o/ x-scpls’){

open(FI LE, $r->filenane) || return 404,
$r->send_fd(*FI LE);
cl ose(FI LE);

+

+ i f($r->content _type eq 'audi o/ x-scpls’){

+ $r->sendfile($r->filenane) || return Apache:: NOT_FOUND;

® | 0og reason

29 Jan 2004 29

1.6 Porting aModule to Run under both mod_perl 2.0 and mod_perl 1.0

| og reasonisnow! og_error:

$sel f->r->log_reason(’ I nvalid paraneters -- possible attenpt to circunvent checks.’);
+ $r->log_error('Invalid parameters -- possible attenpt to circunvent checks.’)

| have found the porting process to be quite interesting, especially since | have found severa bugs in
Apache 2.0 and documented a few undocumented API changes. It was also fun, because I’ ve got to listen
to mp3 fileswhen | did things right, and was getting silence in my headphones and a visual irritation in the
form of error_log messageswhen | didn't ;)

1.6 |Porting a Moduleto Run under both mod perl 2.0 and
mod perl 1.0

Sometimes code needs to work with both mod_perl versions. For example this is the case with CPAN
module developers who wish to continue to maintain a single code base, rather than supplying two sepa-
rate implementations.

1.6.1 Making Code Conditional on Running mod per| Version|

In this case you can test for which version of mod_perl your code is running under and act appropriately.

To continue our example above, let's say we want to support opening a filehandle in both mod_perl 2.0
and mod_perl 1.0. Our code can make use of the variable $nod_per | : : VERSI ON:

use nod_perl;

use constant MP2 => ($nod_perl::VERSION >= 1.99);
...

require Synbol if MPZ;

...

my $fh = MP2 ? Synbol ::gensym: Apache->gensym
open $fh, $file or die "Can't open $file: $!";

Though, make sure that you don’t use $nod_per | : : VERSI ON string anywhere in the code before you
have declared your module’'s own $VERSI ON, since PAUSE will pick the wrong version when you
submit the module on CPAN. It requires that module’s $VERSI ON will be declared first. You can verify
whether it'll pick the Foo.pm's version correctly, by running this code:

% per| -MeExtUtils::MakeMaker -le 'print MW >parse_version(shift)’ Foo.pm

There is more information about thisissue here;
|http://pause.perl.org/pause/query ?ACTION=pause 04about#conventiond

Some modules, like CA . pmmay work under mod_perl and without it, and will want to use the mod_perl
1.0 API if that’s available, or mod_perl 2.0 API otherwise. So the following idiom could be used for this
purpose.

30 29 Jan 2004

http://pause.perl.org/pause/query?ACTION=pause_04about#conventions

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.6.2 Method Handlers

use constant MP_GEN => $ENV{ MOD PERL}
? eval { require nod_perl; $nod_perl::VERSION >=1.99 ? 2 : 1}
. 0;

It sets the constant MP_GENto O if mod_perl is not available, to 1 if running under mod_perl 1.0 and 2 for
mod_perl 2.0.

Here' s another way to find out the mod_perl version. In the server configuration file you can use a special
configuration "define" symbol MODPERL 2, which is magically enabled internally, as if the server had
been started with - DMODPERL 2.

in httpd. conf
<| f Defi ne MODPERL2>
2.0 configuration
</ | f Define>
<| f Defi ne ! MODPERL2>
el se
</ | f Define>

From within Perl code this can be tested with Apache: : Server: : exi sts_config_define().
For example, we can use this method to decide whether or not to call $r - >send_htt p_header (),
which no longer existsin mod_perl 2.0:
sub handl er {
ny $r = shift;

$r->content _type('text/htm’);
$r->send_http_header () unl ess Apache:: Server::exists_config_define("MODPERL2");

}

Relevant links to other places in the porting documents:

e mod_perl 1.0 and 2.0 Constants Coexistence

1.6.2 Method Handlerg

Method handlers in mod_perl are declared using the 'method’ attribute. However if you want to have the
same code base for mod_perl 1.0 and 2.0 applications, whose handler has to be a method, you will need to
do the following trick:

sub handl er _nmpl ($9%) { ...}
sub handler_np2 : nethod { ... }
*handl er = MP2 ? \ &andl er_np2 : \ &handl er _npl;

Note that this requires at least Perl 5.6.0, the :method attribute is not supported by older Perl versions,
which will fail to compile such code.

Here are two complete examples. The first example implements MyApache: : Met hod which has a
single method that works for both mod_perl generations:

29 Jan 2004 31

1.6.2 Method Handlers

The configuration:

Per | Modul e MyApache: : Met hod
<Location / net hod>

Set Handl er perl-script

Per | Handl er MyApache: : Met hod- >handl er
</ Locati on>

The code:

#f il e: MyApache/ Met hod. pm
package MyApache: : Met hod;

Per| Modul e MyApache: : Met hod

<Location /method>

Set Handl er perl -scri pt

Per | Handl er MyApache: : Met hod- >handl er
</Location>

use strict;
use war ni ngs;

use nod_perl;
use constant MP2 => $nod_perl::VERSION < 1.99 ? 0 : 1;

BEG N {
if (MP2) {
requi re Apache:: Request Rec;
requi re Apache:: Request| QO
requi re Apache:: Const;
Apache: : Const - >i nport(-conpile => "K');

}
el se {
requi re Apache;
requi re Apache:: Constants;
Apache: : Const ant s->i nport (' OK');
}
}
sub handl er _npl ($$) { &un}

sub handl er_nmp2 : nethod { &un }
*handl er = MP2 ? \ &handl er_np2 : \ &handl er _np1l;

sub run {
ny($cl ass, $r) = @;
MP2 ? $r->content _type(’'text/plain)
$r->send_http_header (' text/plain');
print "$class was called\n";
return MP2 ? Apache:: K : Apache:: Constants:: OK;
}

Here are two complete examples. The second example implements MyApache: : Met hod2, which is
very similar to MyApache: : Met hod, but uses separate methods for mod_perl 1.0 and 2.0 servers.

32 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 1.6.2 Method Handlers

The configuration is the same:

Per | Modul e MyApache: : Met hod2
<Locati on / net hod2>

Set Handl er perl-script

Per | Handl er MyApache: : Met hod2- >handl er
</ Locati on>

The code:

#fil e: MyApache/ Met hod2. pm
package MyApache: : Met hod2;

Per| Modul e MyApache: : Met hod

<Location /et hod>

Set Handl er perl -script

Per | Handl er MyApache: : Met hod- >handl er
</Location>

use strict;
use war ni ngs;

use nod_perl;
use constant MP2 => $nod_perl::VERSION < 1.99 ? 0 : 1;

BEG N {
warn "running $rmod_perl::VERSION'\ n";
if (MP2) {

requi re Apache:: Request Rec;

requi re Apache:: Request| O

requi re Apache:: Const;

Apache: : Const - >i nport(-conpile => "K');

}
el se {
requi re Apache;
requi re Apache:: Constants;
Apache: : Const ant s->i nport (' OK');
}
}
sub handl er _nmpl ($%$) { &l

}
sub handl er_nmp2 : nethod { &m2 }
*handl er = MP2 ? \ &handl er_np2 : \ &handl er _np1l;

sub npl {
ny($cl ass, $r) = @;
$r->send_http_header (' text/plain');
$r->print("npl: $class was called\n");
return Apache:: Constants:: OK();

29 Jan 2004 33

1.7 Maintainers

}

sub nmp2 {
ny($cl ass, $r) = @;
$r->content _type('text/plain');
$r->print("np2: $class was called\n");
return Apache:: OK();

}

Assuming that mod_perl 1.0 is listening on port 8001 and mod_perl 2.0 on 8002, we get the following
results:

% | ynx --source http://1ocal host: 8001/ net hod
MyApache: : Met hod was cal | ed

% | ynx --source http://1ocal host: 8001/ met hod2
mpl: MyApache:: Met hod2 was cal |l ed

% | ynx --source http://I|ocal host: 8002/ net hod
MyApache: : Met hod was cal | ed

% | ynx --source http://Iocal host: 8002/ nmet hod2
mp2: MyApache: : Met hod2 was cal |l ed

1.7 IMaintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.8 |Authors

® Nick Tonkin <nick (at) tonkinresolutions.com>

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

34 29 Jan 2004

Porting Apache:: Perl Modules from mod_perl 1.0to 2.0 Table of Contents:

Table of Contents:

1 | Porting Apache:: Perl Modules from mod perl 1.0 to 2.0| 1
1.1 [Description. 2
12 2
1.3 |Using Apache: : porti an 3
1.4 |Using the Apache: : conpat Layeri . 3
1.5 |Porting a Perl Module to Run under mod perl 2. 0| 4

1.5.1 |Using MbdPer | : : Met hodLookup to Discover WhICh modyerl 2. O Modules Need to|
Be L oaded .. 4
1.5.1.1 [Handling Methods EX|st| nq In More Than One Packaqel 5
1.5.1.2 [Using MbdPer | : : Met hodLookup Programmaticaly]. 5
1.5.1.3 [Pre-loading All mod perl 2.0 Moduleg. 6
1.5.2 |Handling Missing and Modified mod perl 1.0 Methods and Functlonsi 6
1.5.2.1 [Methods that No Longer Exisi] 6
1.5.2.2 [Methods Whose Usage Has Been Modlfled 7
1.5.3 |Requiring a specific mod perl version) 7
1.5.4 |Should the Module Name Be Changed? 8
1.5.5 |Using Apache: : conpat AsaTutoridl 8
1.5.6 |How Apache: : MP3 was Ported to mod perl 2.0 9
156.1 9
1.5.6.1.1 |httpd.conf 10
1.5.6.1.2 [startup.pl] 11
15.6.1.3 IApache'M P3. |on1 . 11
1.5.6.2 [Porting with Apache: : conpat | .. 12
1.5.6.3 [Getting Rid of the Apache: : conpat Dependencyl 19
1.5.6.4 [Ensuring that Apache: : conpat isnot loaded| 19
1.5.6.5 [Installing the ModPer | : : Met hodLookup Helper| 21
1.5.6.6 [Adjusting the code to run under mod perl 2 . . 21
1.6 |Porting a Module to Run under both mod perl 2.0 and mod perl 1 q . 30
1.6.1 [Making Code Conditional on Running mod perl Version 30
1.6.2 |Method Handlerg 31
17 34
1.8 34

29 Jan 2004 i

	1€€Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
	1.1€€Description
	1.2€€Introduction
	1.3€€Using Apache::porting
	1.4€€Using the Apache::compat Layer
	1.5€€Porting a Perl Module to Run under mod_perl 2.0
	1.5.1€€Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be Loaded
	1.5.1.1€€Handling Methods Existing In More Than One Package
	1.5.1.2€€Using ModPerl::MethodLookup Programmatically
	1.5.1.3€€Pre-loading All mod_perl 2.0 Modules

	1.5.2€€Handling Missing and Modified mod_perl 1.0 Methods and Functions
	1.5.2.1€€Methods that No Longer Exist
	1.5.2.2€€Methods Whose Usage Has Been Modified

	1.5.3€€Requiring a specific mod_perl version.
	1.5.4€€Should the Module Name Be Changed?
	1.5.5€€Using Apache::compat As a Tutorial
	1.5.6€€How Apache::MP3 was Ported to mod_perl 2.0
	1.5.6.1€€Preparations
	1.5.6.1.1€€httpd.conf
	1.5.6.1.2€€startup.pl
	1.5.6.1.3€€Apache/MP3.pm

	1.5.6.2€€Porting with Apache::compat
	1.5.6.3€€Getting Rid of the Apache::compat Dependency
	1.5.6.4€€Ensuring that Apache::compat is not loaded
	1.5.6.5€€Installing the ModPerl::MethodLookup Helper
	1.5.6.6€€Adjusting the code to run under mod_perl 2

	1.6€€Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0
	1.6.1€€Making Code Conditional on Running mod_perl Version
	1.6.2€€Method Handlers

	1.7€€Maintainers
	1.8€€Authors

