

1 Performance Considerations Under Differ ent
MPMs

129 Jan 2004

1 Performance Considerations Under Different MPMsPerformance Considerations Under Different MPMs

1.1 Description
This chapter discusses how to choose the right MPM to use (on platforms that have such a choice), and
how to get the best performance out of it.

Certain kind of applications may show a better performance when running under one mpm, but not the
other. Results also may vary from platform to platform.

CPAN module developers have to strive making their modules function correctly regardless the mpm they
are being deployed under. However they may choose to indentify what MPM the code is running under
and do better decisions better on this information, as long as it doesn’t break the functionality for other
platforms. For examples if a developer provides thread-unsafe code, the module will work correctly under
the prefork mpm, but may malfunction under threaded mpms.

1.2 Memory Requirements
Since the very beginning mod_perl users have enjoyed the tremendous speed boost mod_perl was provid-
ing, but there is no free lunch -- mod_perl has quite big memory requirements, since it has to store the
compiled code in the memory to avoid the code loading and recompilation overhead for each request.

1.2.1 Memory Requirements in Prefork MPM

For those familiar with mod_perl 1.0, mod_perl 2.0 has not much new to offer. We still rely on shared
memory, try to preload as many things as possible at the server startup and limit the amount of used
memory using specially designed for that purpose tools.

The new thing is that the core API has been spread across multiply modules, which can be loaded only
when needed (this of course works only when mod_perl is builts as DSO). This allows to save some
memory. However the savings are not big, since all these modules are writen in C, making them into the
text segments of the memory, which is perfectly shared. The savings are more significant at the startup
speed, since the startup time, when DSO modules are loaded, is growing almost quadratically as the
number of loaded DSO modules grows (because of symbol relocations).

1.2.2 Memory Requirements in Threaded MPM

The threaded MPM is a totally new beast for mod_perl users. If you run several processes, the same
memory sharing techniques apply, but usually you want to run as few processes as possible and to have as
many threads as possible. Remember that mod_perl 2.0 allows you to have just a few Perl interpreters in
the process which otherwise runs multiple threads. So using more threads doesn’t mean using significantly
more memory, if the maximum number of available Perl interpreters is limited.

Even though memory sharing is not applicable inside the same process, mod_perl gets a significant
memory saving, because Perl interpreters have a shared opcode tree. Similar to the preforked model, all
the code that was loaded at the server startup, before Perl interpreters are cloned, will be shared. But there
is a significant difference between the two. In the prefork case, the normal memory sharing applies: if a
single byte of the memory page gets unshared, the whole page is unshared, meaning that with time less

29 Jan 20042

1.1 Description

and less memory is shared. In the threaded mpm case, the opcode tree is shared and this doesn’t change as
the code runs.

Moreover, since Perl Interpreter pools are used, and the FIFO model is used, if the pool contains three Perl
interpreters, but only one is used at any given time, only that interpreter will be ever used, making the
other two interpreters consuming very little memory. So if with prefork MPM, you’d think twice before
loading mod_perl if all you need is trans handler, with threaded mpm you can do that without paying the
price of the significanly increased memory demands. You can have 256 light Apache threads serving static
requests, and let’s say three Perl interpreters running quick trans handlers, or even heavy but infrequest
dynamic requests, when needed.

It’s not clear yet, how one will be able to control the amount of running Perl interepreters, based on the
memory consumption, because it’s not possible to get the memory usage information per thread. However
we are thinking about running a garbage collection thread which will cleanup Perl interpreters and occa-
sionaly kill off the unused ones to free up used memory.

1.3 Work with DataBases

1.3.1 Work with DataBases under Prefork MPM

Apache::DBI works as with mod_perl 1.0, to share database connections.

1.3.2 Work with DataBases under Threaded MPM

The current Apache::DBI should be usable under threaded mpm, though it doesn’t share connections
across threads. Each Perl interpreter has its own cache, just like in the prefork mpm.

DBI::Pool is a work in progress, which should bring the sharing of database connections across threads
of the same process. Watch the mod_perl and dbi-dev lists for updates on this work. Once DBI::Pool is
completed it’ll either replace Apache::DBI or will be used by it.

1.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.5 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

329 Jan 2004

1.3 Work with DataBasesPerformance Considerations Under Different MPMs

Table of Contents:
.......... 11 Performance Considerations Under Different MPMs
................... 21.1 Description
................ 21.2 Memory Requirements
........... 21.2.1 Memory Requirements in Prefork MPM
........... 21.2.2 Memory Requirements in Threaded MPM
................ 31.3 Work with DataBases
........... 31.3.1 Work with DataBases under Prefork MPM
.......... 31.3.2 Work with DataBases under Threaded MPM
................... 31.4 Maintainers
................... 31.5 Authors

i29 Jan 2004

Table of Contents:Performance Considerations Under Different MPMs

	1€€Performance Considerations Under Different MPMs
	1.1€€Description
	1.2€€Memory Requirements
	1.2.1€€Memory Requirements in Prefork MPM
	1.2.2€€Memory Requirements in Threaded MPM

	1.3€€Work with DataBases
	1.3.1€€Work with DataBases under Prefork MPM
	1.3.2€€Work with DataBases under Threaded MPM

	1.4€€Maintainers
	1.5€€Authors

