

Developer’s guide

This guide is aimed for mod_perl 2.0 core and 3rd party
modules developers.

Last modified Thu Jan 29 08:37:12 2004 GMT

129 Jan 2004

Table of Contents:Developer’s guide

Part I: mod_perl 2.0 Core Development

 1. mod_perl 2.0 Source Code Explained
This document explains how to navigate the mod_perl source code, modify and rebuild the existing
code and most important: how to add new functionality.

 2. mod_perl internals: Apache 2.0 Integration
This document should help to understand the initialization, request processing and shutdown process
of the mod_perl module. This knowledge is essential for a less-painful debugging experience. It
should also help to know where a new code should be added when a new feature is added.

 3. mod_perl internals: mod_perl-specific functionality flow
This document attempts to help understand the code flow for certain features. This should help to
debug problems and add new features.

 4. MPMs - Multi-Processing Model Modules
Discover what are the available MPMs and how they work with mod_perl.

 5. mod_perl Coding Style Guide
This document explains the coding style used in the core mod_perl development and which should be
followed by all core developers.

Part II: 3rd party modules Development with mod_perl 2.0

 6. Porting Apache:: XS Modules from mod_perl 1.0 to 2.0
This document talks mainly about porting modules using XS code. It’s also helpful to those who start
developing mod_perl 2.0 packages.

Part III: Core Performance Issues

 7. Measure sizeof() of Perl’s C Structures
This document describes the sizeof various structures, as determined by util/sizeof.pl. These measure-
ments are mainly for research purposes into making Perl things smaller, or rather, how to use less
Perl things.

 8. Which Coding Technique is Faster
This document tries to show more efficient coding styles by benchmarking various styles.

Part IV: Debugging

 9. Porting Apache:: XS Modules from mod_perl 1.0 to 2.0
This document talks mainly about porting modules using XS code. It’s also helpful to those who start
developing mod_perl 2.0 packages.

 10. Debugging mod_perl Perl Internals
This document explains how to debug Perl code under mod_perl.

29 Jan 20042

Table of Contents:

 11. Debugging mod_perl C Internals
This document explains how to debug C code under mod_perl, including mod_perl core itself.

Part V: Help

 12. Getting Help with mod_perl 2.0 Core Development
This document covers the resources available to the mod_perl 2.0 core developer. Please notice that
you probably want to read the user’s help documentation if you have problems using mod_perl 2.0.

329 Jan 2004

Table of Contents:Developer’s guide

1 mod_perl 2.0 Source Code Explained

29 Jan 20044

1 mod_perl 2.0 Source Code Explained

1.1 Description
This document explains how to navigate the mod_perl source code, modify and rebuild the existing code
and most important: how to add new functionality.

1.2 Project’s Filesystem Layout
In its pristine state the project is comprised of the following directories and files residing at the root direc-
tory of the project:

 Apache-Test/ - test kit for mod_perl and Apache::* modules
 ModPerl-Registry/ - ModPerl::Registry sub-project
 build/ - utilities used during project build
 docs/ - documentation
 lib/ - Perl modules
 src/ - C code that builds libmodperl.so
 t/ - mod_perl tests
 todo/ - things to be done
 util/ - useful utilities for developers
 xs/ - source xs code and maps
 Changes - Changes file
 LICENSE - ASF LICENSE document
 Makefile.PL - generates all the needed Makefiles

After building the project, the following root directories and files get generated:

 Makefile - Makefile
 WrapXS/ - autogenerated XS code
 blib/ - ready to install version of the package

1.3 Directory src

1.3.1 Directory src/modules/perl/

The directory src/modules/perl includes the C source files needed to build the libmodperl library.

Notice that several files in this directory are autogenerated during the perl Makefile stage.

When adding new source files to this directory you should add their names to the @c_src_names vari-
able in lib/ModPerl/Code.pm, so they will be picked up by the autogenerated Makefile.

1.4 Directory xs/
 Apache/ - Apache specific XS code
 APR/ - APR specific XS code
 ModPerl/ - ModPerl specific XS code
 maps/ -
 tables/ -
 Makefile.PL -

529 Jan 2004

1.1 Descriptionmod_perl 2.0 Source Code Explained

 modperl_xs_sv_convert.h -
 modperl_xs_typedefs.h -
 modperl_xs_util.h -
 typemap -

1.4.1 xs/Apache, xs/APR and xs/ModPerl

The xs/Apache, xs/APR and xs/ModPerl directories include .h files which have C and XS code in them.
They all have the .h extension because they are always #include-d, never compiled into their own
object file. and only the file that #include-s an .h file from these directories should be able to see
what’s in there. Anything else belongs in a src/modules/perl/foo.c public API.

1.4.2 xs/maps

The xs/maps directory includes mapping files which describe how Apache Perl API should be constructed
and various XS typemapping.

These files get modified whenever:

a new function is added or the API of the existing one is modified.

a new struct is added or the existing one is modified

a new C datatype or Perl typemap is added or an existing one is modified.

The execution of:

 % make source_scan

or:

 % perl build/source_scan.pl

converts these map files into their Perl table representation in the xs/tables/current/ directory. This Perl
representation is then used during perl Makefile.PL to generate the XS code in the ./WrapXS/ direc-
tory by the xs_generate() function. This XS code is combined of the Apache API Perl glue and mod_perl
specific extensions.

NOTE: source_scan requires C::Scan 0.75, which at the moment is unreleased, there is a working copy
here: http://perl.apache.org/~dougm/Scan.pm

If you need to skip certain unwanted C defines from being picked by the source scanning you can add
them to the array $Apache::ParseSource::defines_unwanted in lib/Apache/ParseSource.pm.

Notice that source_scan target is normally not run during the project build process, since the source scan-
ning is not stable yet, therefore everytime the map files change, make source_scan should be run
manually and the updated files ending up in the xs/tables/current/ directory should be committed to the
cvs repository.

29 Jan 20046

1.4.1 xs/Apache, xs/APR and xs/ModPerl

http://perl.apache.org/~dougm/Scan.pm

The source_scan make target is actually to run build/source_scan.pl, which can be run directly without
needing to create Makefile first.

There are three different types of map files in the xs/maps/ directory:

Functions Mapping

 apache_functions.map
 modperl_functions.map
 apr_functions.map

Structures Mapping

 apache_structures.map
 apr_structures.map

Types Mapping

 apache_types.map
 apr_types.map
 modperl_types.map

The following sections describe the syntax of the files in each group

1.4.2.1 Functions Mapping

The functions mapping file is comprised of groups of function definitions. Each group starts with a header
similar to XS syntax:

 MODULE=... PACKAGE=... PREFIX=... BOOT=... ISA=...

where:

MODULE

the module name where the functions should be put. e.g. MODULE Apache::Connection will
place the functions into WrapXS/Apache/Connection.{pm,xs}.

PACKAGE

the package name functions belong to, defaults to MODULE. The value of guess indicates that package
name should be guessed based on first argument found that maps to a Perl class. If the value is not
defined and the function’s name starts with ap_ the Apache package will be used, if it starts with
apr_ then the APR package is used.

PREFIX

prefix string to be stripped from the function name. If not specified it defaults to PACKAGE,
converted to C name convention, e.g. APR::Base64 makes the prefix: apr_base64_. If the
converted prefix does not match, defaults to ap_ or apr_.

729 Jan 2004

1.4.2 xs/mapsmod_perl 2.0 Source Code Explained

BOOT

The BOOT directive tells the XS generator, whether to add the boot function to the autogenerated XS
file or not. If the value of BOOT is not true or it’s simply not declared, the boot function won’t be
added.

If the value is true, a boot function will be added to the XS file. Note, that this function is not
declared in the map file.

The boot function name must be constructed from three parts:

 ’mpxs_’ . MODULE . ’_BOOT’

where MODULE is the one declared with MODULE= in the map file.

For example if we want to have an XS boot function for a class APR::IO, we create this function in
xs/APR/IO/APR__IO.h:

 static void mpxs_APR__IO_BOOT(pTHX)
 {
 /* boot code here */
 }

and now we add the BOOT=1 declaration to the xs/maps/modperl_functions.map file:

 MODULE=APR::IO PACKAGE=APR::IO BOOT=1

Notice that the PACKAGE= declaration is a must.

When make xs_generate is run (after running make source_scan), it autogenerates
Wrap/APR/IO/IO.xs and amongst other things will include:

 BOOT:
 mpxs_APR__IO_BOOT(aTHXo);

ISA

META: complete

Every function definition is declared on a separate line (use \ if the line is too long), using the following
format:

 C function name | Dispatch function name | Argspec | Perl alias

where:

C function name

The name of the real C function.

29 Jan 20048

1.4.2 xs/maps

Function names that do not begin with /^\w/ are skipped. For details see:
%ModPerl::MapUtil::disabled_map.

The return type can be specified before the C function name. It defaults to return_type in
{Apache,ModPerl}::FunctionTable.

META: DEFINE nuances

Dispatch function name

Dispatch function name defaults to C function name. If the dispatch name is just a prefix (mpxs_,
MPXS_) the C function name is appended to it.

See the explanation about function naming and arguments passing.

Argspec

The argspec defaults to arguments in {Apache,ModPerl}::FunctionTable. Argument types
can be specified to override those in the FunctionTable. Default values can be specified, e.g.
arg=default_value. Argspec of ... indicates passthru, calling the function with (aTHX_
I32 items, SP **sp, SV **MARK).

Perl alias

the Perl alias will be created in the current PACKAGE.

1.4.2.2 Structures Mapping

META: complete

1.4.2.3 Types Mapping

META: complete

1.4.2.4 Modifying Maps

As explained in the beginning of this section, whenever the map file is modified you need first to run:

 % make source_scan

Next check that the conversion to Perl tables is properly done by verifying the resulting corresponding file
in xs/tables/current. For example xs/maps/modperl_functions.map is converted into
xs/tables/current/ModPerl/FunctionTable.pm.

If you want to do a visual check on how XS code will be generated, run:

 % make xs_generate

929 Jan 2004

1.4.2 xs/mapsmod_perl 2.0 Source Code Explained

and verify that the autogenerated XS code under the directory ./WrapXS is correct. Notice that for func-
tions, whose arguments or return types can’t be resolved, the XS glue won’t be generated and a warning
will be printed. If that’s the case add the missing type’s typemap to the types map file as explained in
Adding Typemaps for new C Data Types and run the XS generation stage again.

You can also build the project normally:

 % perl Makefile.PL ...

which runs the XS generation stage.

1.4.3 XS generation process

As mentioned before XS code is generated in the WrapXS directory either during perl Makefile.PL
via xs_generate() if MP_GENERATE_XS=1 is used (which is the default) or explicitly via:

 % make xs_generate

In addition it creates a number of files in the xs/ directory:

 modperl_xs_sv_convert.h
 modperl_xs_typedefs.h

1.5 Gluing Existing APIs
If you have an API that you simply want to provide the Perl interface without writing any code...

META: complete

WrapXS allows you to adjust some arguments and supply default values for function arguments without
writing any code

META: complete

MPXS_ functions are final XSUBs and always accept:

 aTHX_ I32 items, SP **sp, SV **MARK

as their arguments. Whereas mpxs_ functions are either intermediate thin wrappers for the existing C
functions or functions that do something by themselves. MPXS_ functions also can be used for writing thin
wrappers for C macros.

1.6 Adding Wrappers for existing APIs and Creating New
APIs

29 Jan 200410

1.5 Gluing Existing APIs

In certain cases the existing APIs need to be adjusted. There are a few reasons for doing this.

First, is to make the given C API more Perlish. For example C functions cannot return more than one
value, and the pass by reference technique is used. This is not Perlish. Perl has no problem returning a list
of value, and passing by reference is used only when an array or a hash in addition to any other variables
need to be passes or returned from the function. Therefore we may want to adjust the C API to return a list
rather than passing a reference to a return value, which is not intuitive for Perl programmers.

Second, is to adjust the functionality, i.e. we still use the C API but may want to adjust its arguments
before calling the original function, or do something with return values. And of course optionally adding
some new code.

Third, is to create completely new APIs. It’s quite possible that we need more functionality built on top of
the existing API. In that case we simply create new APIs.

The following sections discuss various techniques for retrieving function arguments and returning values
to the caller. They range from using usual C argument passing and returning to more complex Perl argu-
ments’ stack manipulation. Once you know how to retrieve the arguments in various situations and how to
put the return values on the stack, the rest is usually normal C programming potentially involving using
Perl APIs.

Let’s look at various ways we can declare functions and what options various declarions provide to us:

1.6.1 Functions Returning a Single Value (or Nothing)

If its know deterministically what the function returns and there is only a single return value (or nothing is
returned == void), we are on the C playground and we don’t need to manipulate the returning stack.
However if the function may return a single value or nothing at all, depending on the inputs and the code,
we have to manually manipulate the stack and therefore this section doesn’t apply.

Let’s look at various requirements and implement these using simple examples. The following testing
code exercises the interfaces we are about to develop, so refer to this code to see how the functions are
invoked from Perl and what is returned:

 file:t/response/TestApache/coredemo.pm
 --
 package TestApache::coredemo;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Const -compile => ’OK’;

 use Apache::Test;
 use Apache::TestUtil;

 use Apache::CoreDemo;

 sub handler {
 my $r = shift;

1129 Jan 2004

1.6.1 Functions Returning a Single Value (or Nothing)mod_perl 2.0 Source Code Explained

 plan $r, tests => 7;

 my $a = 7;
 my $b = 3;
 my ($add, $subst);

 $add = Apache::CoreDemo::print($a, $b);
 t_debug "print";
 ok !$add;

 $add = Apache::CoreDemo::add($a, $b);
 ok t_cmp($a + $b, $add, "add");

 $add = Apache::CoreDemo::add_sv($a, $b);
 ok t_cmp($a + $b, $add, "add: return sv");

 $add = Apache::CoreDemo::add_sv_sv($a, $b);
 ok t_cmp($a + $b, $add, "add: pass/return svs");

 ($add, $subst) = @{ Apache::CoreDemo::add_subst($a, $b) };
 ok t_cmp($a + $b, $add, "add_subst: add");
 ok t_cmp($a - $b, $subst, "add_subst: subst");

 $subst = Apache::CoreDemo::subst_sp($a, $b);
 ok t_cmp($a - $b, $subst, "subst via SP");

 Apache::OK;
 }

 1;

The first case is the simplest: pass two integer arguments, print these to the STDERR stream and return
nothing:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static MP_INLINE
 void mpxs_Apache__CoreDemo_print(int a, int b)
 {
 fprintf(stderr, "%d, %d\n", a, b);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_print

Now let’s say that the b argument is optional and in case it wasn’t provided, we want to use a default
value, e.g. 0. In that case we don’t need to change the code, but simply adjust the map file to be:

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_print | | a, b=0

29 Jan 200412

1.6.1 Functions Returning a Single Value (or Nothing)

In the previous example, we didn’t list the arguments in the map file since they were automatically
retrieved from the source code. In this example we tell WrapXS to assign a value of 0 to the argument b, if
it wasn’t supplied by the caller. All the arguments must be listed and in the same order as they are defined
in the function.

You may add an extra test that test teh default value assignment:

 $add = Apache::CoreDemo::add($a);
 ok t_cmp($a + 0, $add, "add (b=0 default)");

The second case: pass two integer arguments and return their sum:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static MP_INLINE
 int mpxs_Apache__CoreDemo_add(int a, int b)
 {
 return a + b;
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_add

The third case is similar to the previous one, but we return the sum as as a Perl scalar. Though in C we say
SV*, in the Perl space we will get a normal scalar:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static MP_INLINE
 SV *mpxs_Apache__CoreDemo_add_sv(pTHX_ int a, int b)
 {
 return newSViv(a + b);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_add_sv

In the second example the XSUB function was converting the returned int value to a Perl scalar behind the
scenes. In this example we return the scalar ourselves. This is of course to demonstrate that you can return
a Perl scalar, which can be a reference to a complex Perl datastructure, which we will see in the fifth
example.

The forth case demonstrates that you can pass Perl variables to your functions without needing XSUB to
do the conversion. In all previous examples XSUB was automatically converting Perl scalars in the argu-
ment list to the corresponding C variables, using the typemap definitions.

1329 Jan 2004

1.6.1 Functions Returning a Single Value (or Nothing)mod_perl 2.0 Source Code Explained

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static MP_INLINE
 SV *mpxs_Apache__CoreDemo_add_sv_sv(pTHX_ SV *a_sv, SV *b_sv)
 {
 int a = (int)SvIV(a_sv);
 int b = (int)SvIV(b_sv);

 return newSViv(a + b);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_add_sv_sv

So this example is the same simple case of addition, though we manually convert the Perl variables to C
variables, perform the addition operation, convert the result to a Perl Scalar of kind IV (Integer Value) and
return it directly to the caller.

In case where more than one value needs to be returned, we can still implement this without directly
manipulating the stack before a function returns. The fifth case demonstrates a function that returns the
result of addition and substruction operations on its arguments:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static MP_INLINE
 SV *mpxs_Apache__CoreDemo_add_subst(pTHX_ int a, int b)
 {
 AV *av = newAV();

 av_push(av, newSViv(a + b));
 av_push(av, newSViv(a - b));

 return newRV_noinc((SV*)av);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_add_subst

If you look at the corresponding testing code:

 ($add, $subst) = @{ Apache::CoreDemo::add_subst($a, $b) };
 ok t_cmp($a + $b, $add, "add_subst: add");
 ok t_cmp($a - $b, $subst, "add_subst: subst");

you can see that this technique comes at a price of needing to dereference the return value to turn it into a
list. The actual code is very similar to the Apache::CoreDemo::add_sv function which was doing
only the addition operation and returning a Perl scalar. Here we perform the addition and the substraction
operation and push the two results into a previously created AV* data structure, which represents an array.
Since only the SV datastructures are allowed to be put on stack, we take a reference RV (which is of an SV
kind) to the existing AV and return it.

29 Jan 200414

1.6.1 Functions Returning a Single Value (or Nothing)

The sixth case demonstrates a situation where the number of arguments or their types may vary and aren’t
known at compile time. Though notice that we still know that we are returning at compile time (zero or
one arguments), int in this example:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static MP_INLINE
 int mpxs_Apache__CoreDemo_subst_sp(pTHX_ I32 items, SV **MARK, SV **SP)
 {
 int a, b;

 if (items != 2) {
 Perl_croak(aTHX_ "usage: ...");
 }

 a = mp_xs_sv2_int(*MARK);
 b = mp_xs_sv2_int(*(MARK+1));

 return a - b;
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 mpxs_Apache__CoreDemo_subst_sp | | ...

In the map file we use a special token ... which tells the XSUB constructor to pass items, MARK and
SP arguments to the function. The macro MARK points to the first argument passed by the caller in the Perl
namespace. For example to access the second argument to retrieve the value of b we use *(MARK+1),
which if you remember represented as an SV variable, which nees to be converted to the corresponding C
type.

In this example we use the macro mp_xs_sv2_int, automatically generated based on the data from the
xs/typemap and xs/maps/*_types.map files, and placed into the xs/modperl_xs_sv_convert.h file. In the
case of int C type the macro is:

 #define mp_xs_sv2_int(sv) (int)SvIV(sv)

which simply converts the SV variable on the stack and generates an int value.

While in this example you have an access to the stack, you cannot manipulate the return values, because
the XSUB wrapper expects a single return value of type int, so even if you put something on the stack it
will be ignored.

1.6.2 Functions Returning Variable Number of Values

We saw earlier that if we want to return an array one of the ways to go is to return a reference to an array
as a single return value, which fits the C paradigm. So we simply declare the return value as SV*.

1529 Jan 2004

1.6.2 Functions Returning Variable Number of Valuesmod_perl 2.0 Source Code Explained

This section talks about cases where it’s unknown at compile time how many return values will be or it’s
known that there will be more than one return value--something that C cannot handle via its return mecha-
nism.

Let’s rewrite the function mpxs_Apache__CoreDemo_add_subst from the earlier section to return
two results instead of a reference to a list:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 static XS(MPXS_Apache__CoreDemo_add_subst_sp)
 {
 dXSARGS;
 int a, b;

 if (items != 2) {
 Perl_croak(aTHX_ "usage: Apache::CoreDemo::add_subst_sp($a, $b)");
 }
 a = mp_xs_sv2_int(ST(0));
 b = mp_xs_sv2_int(ST(1));

 SP -= items;

 if (GIMME == G_ARRAY) {
 EXTEND(sp, 2);
 PUSHs(sv_2mortal(newSViv(a + b)));
 PUSHs(sv_2mortal(newSViv(a - b)));
 }
 else {
 XPUSHs(sv_2mortal(newSViv(a + b)));
 }

 PUTBACK;
 }

Before explaining the function here is the prototype we add to the map file:

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 DEFINE_add_subst_sp | MPXS_Apache__CoreDemo_add_subst_sp | ...

The mpxs_ functions declare in the third column the arguments that they expect to receive (and optionally
the default values). The MPXS functions are the real XSUBs and therefore they always accept:

 aTHX_ I32 items, SP **sp, SV **MARK

as their arguments. Thefore it doesn’t matter what is placed in this column when the MPXS_ function is
declared. Usually for documentation the Perl side arguments are listed. For example you can say:

 DEFINE_add_subst_sp | MPXS_Apache__CoreDemo_add_subst_sp | x, y

In this function we manually manipulate the stack to retrieve the arguments passed on the Perl side and put
the results back onto the stack. Therefore the first thing we do is to initialize a few special variables using
the dXSARGS macro defined in XSUB.h, which in fact calls a bunch of other macros. These variables help

29 Jan 200416

1.6.2 Functions Returning Variable Number of Values

to manipulate the stack. dSP is one of these macros and it declares and initial- izes a local copy of the Perl
stack pointer sp which . This local copy should always be accessed as SP.

We retrieve the original function arguments using the ST() macros. ST(0) and ST(1) point to the first
and the second argument on the stack, respectively. But first we check that we have exactly two arguments
on the stack, and if not we abort the function. The items variable is the function argument.

Once we have retrieved all the arguments from the stack we set the local stack pointer SP to point to the
bottom of the stack (like there are no items on the stack):

 SP -= items;

Now we can do whatever processing is needed and put the results back on the stack. In our example we
return the results of addition and substraction operations if the function is called in the list context. In the
scalar context the function returns only the result of the addition operation. We use the GIMME macro
which tells us the context.

In the list context we make sure that we have two spare slots on the stack since we are going to push two
items, and then we push them using the PUSHs macro:

 EXTEND(sp, 2);
 PUSHs(sv_2mortal(newSViv(a + b)));
 PUSHs(sv_2mortal(newSViv(a - b)));

Alternatively we could use:

 XPUSHs(sv_2mortal(newSViv(a + b)));
 XPUSHs(sv_2mortal(newSViv(a - b)));

The XPUSHs macro eXtends the stack before pushing the item into it if needed. If we plan to push more
than a single item onto the stack, it’s more efficient to extend the stack in one call.

In the scalar context we push only one item, so here we use the XPUSHs macro:

 XPUSHs(sv_2mortal(newSViv(a + b)));

The last command we call is:

 PUTBACK;

which makes the local stack pointer global. This is a must call if the state of the stack was changed when
the function is about to return. The stack changes if something was popped from or pushed to it, or both
and changed the number of items on the stack.

In our example we don’t need to call PUTBACK if the function is called in the list context. Because in this
case we return two variables, the same as two function arguments, the count didn’t change. Though in the
scalar context we push onto the stack only one argument, so the function won’t return what is expected.
The simplest way to avoid errors here is to always call PUTBACK when the stack is changed.

1729 Jan 2004

1.6.2 Functions Returning Variable Number of Valuesmod_perl 2.0 Source Code Explained

For more information refer to the perlcall manpage which explains the stack manipulation process in great
details.

Finally we test the function in the list and scalar contexts:

 file:t/response/TestApache/coredemo.pm
 --
 ...
 my $a = 7;
 my $b = 3;
 my ($add, $subst);

 # list context
 ($add, $subst) = Apache::CoreDemo::add_subst_sp($a, $b);
 ok t_cmp($a + $b, $add, "add_subst_sp list context: add");
 ok t_cmp($a - $b, $subst, "add_subst_sp list context: subst");

 # scalar context
 $add = Apache::CoreDemo::add_subst_sp($a, $b);
 ok t_cmp($a + $b, $add, "add_subs_spt scalar context: add");
 ...

1.6.3 Wrappers Functions for C Macros

Let’s say you have a C macro which you want to provide a Perl interface for. For example let’s take a
simple macro which performs the power of function:

 file:xs/Apache/CoreDemo/Apache__CoreDemo.h
 --
 #define mpxs_Apache__CoreDemo_power(x, y) pow(x, y)

To create the XS glue code we use the following entry in the map file:

 file:xs/maps/modperl_functions.map

 MODULE=Apache::CoreDemo
 double:DEFINE_power | | double:x, double:y

This works very similar to the MPXS_Apache__CoreDemo_add_subst_sp function presented
earlier. But since this is a macro the XS wrapper needs to know the types of the arguments and the return
type, so these are added. The return type is added just before the function name and separated from it by
the colon (:), the argument types are specified in the third column. The type is always separated from the
name of the variable by the colon (:).

And of course finally we need to test that the function works in Perl:

29 Jan 200418

1.6.3 Wrappers Functions for C Macros

 file:t/response/TestApache/coredemo.pm
 --
 ...
 my $a = 7;
 my $b = 3;
 my $power = Apache::CoreDemo::power($a, $b);
 ok t_cmp($a ** $b, $power, "power macro");
 ...

1.7 Wrappers for modperl_, apr_ and ap_ APIs
If you already have a C function whose name starts from modperl_, apr_ or ap_ and you want to do some-
thing before calling the real C function, you can write a XS wrapper using the same method as in the
MPXS_Apache__CoreDemo_add_subst_sp . The only difference is that it’ll be clearly seen in the map file
that this is a wrapper for an existing C API.

Let’s say that we have an existing C function apr_power(), this is how we declare its wrapper:

 file:xs/maps/apr_functions.map

 MODULE=APR::Foo
 apr_power | MPXS_ | x, y

The first column specifies the existing function’s name, the second tells that the XS wrapper will use the
MPXS_ prefix, which means that the wrapper must be called MPXS_apr_power. The third column spec-
ifies the argument names, but for MPXS_ no matter what you specify there the ... will be passed:

 aTHX_ I32 items, SP **sp, SV **MARK

so you can leave that column empty, but here we use x and y to remind us that these two arguments are
passed from Perl.

If the forth column is empty this function will be called APR::Foo::power in the Perl namespace. But
you can use that column to give a different Perl name, e.g with:

 apr_power | MPXS_ | x, y | pow

This function will be available from Perl as APR::Foo::pow.

Similarly you can write a MPXS_modperl_power wrapper for a modperl_power() function but
here you have to explicitly give the Perl function’s name in the forth column:

 file:xs/maps/apr_functions.map

 MODULE=Apache::CoreDemo
 modperl_power | MPXS_ | x, y | mypower

and the Perl function will be called Apache::CoreDemo::mypower.

1929 Jan 2004

1.7 Wrappers for modperl_, apr_ and ap_ APIsmod_perl 2.0 Source Code Explained

The MPXS_ wrapper’s implementation is similar to MPXS_Apache__CoreDemo_add_subst_sp .

1.8 MP_INLINE vs C Macros vs Normal Functions
To make the code maintainable and reusable functions and macros are used in when programming in C
(and other languages :).

When function is marked as inlined it’s merely a hint to the compiler to replace the call to a function with
the code inside this function (i.e. inlined). Not every function can be inlined. Some typical reasons why
inlining is sometimes not done include:

the function calls itself, that is, is recursive

the function contains loops such as for(;;) or while()

the function size is too large

Most of the advantage of inline functions comes from avoiding the overhead of calling an actual function.
Such overhead includes saving registers, setting up stack frames, etc. But with large functions the over-
head becomes less important.

Use the MP_INLINE keyword in the declaration of the functions that are to be inlined. The functions
should be inlined when:

Only ever called once (the wrappers that are called from .xs files), no matter what the size of code is.

Short bodies of code called in a hot code (like modperl_env_hv_store, which is called many times
inside of a loop), where it is cleaner to see the code in function form rather than macro with lots of
\’s. Remember that an inline function takes much more space than a normal functions if called from
many places in the code.

Of course C macros are a bit faster then inlined functions, since there is not even short jump to be made,
the code is literally copied into the place it’s called from. However using macros comes at a price:

Also unlike macros, in functions argument types are checked, and necessary conversions are
performed correctly. With macros it’s possible that weird things will happen if the caller has passed
arguments of the wrong type when calling a macro.

One should be careful to pass only absolute values as "arguments" to macros. Consider a macro that
returns an absolute value of the passed argument:

 #define ABS(v) ((v) >= 0 ? (v) : -(v))

In our example if you happen to pass a function it will be called twice:

 abs_val = ABS(f());

29 Jan 200420

1.8 MP_INLINE vs C Macros vs Normal Functions

Since it’ll be extended as:

 abs_val = f() >= 0 ? f() : -f();

You cannot do simple operation like increment--in our example it will be called twice:

 abs_val = ABS(i++);

Because it becomes:

 abs_val = i++ >= 0 ? i++ : -i++;

It’s dangerous to use the if() condition without enclosing the code in {}, since the macro may be
called from inside another if-else condition, which may cause the else part called if the if() part from
the macro fails.

But we always use {} for the code inside the if-else condition, so it’s not a problem here.

A multi-line macro can cause problems if someone uses the macro in a context that demands a single
statement.

 while (foo) MYMACRO(bar);

But again, we always enclose any code in conditional with {}, so it’s not a problem for us.

Inline functions present a problem for debuggers and profilers, because the function is expanded at
the point of call and loses its identity. This makes the debugging process a nightmare.

A compiler will typically have some option available to disable inlining.

In all other cases use normal functions.

1.9 Adding New Interfaces

1.9.1 Adding Typemaps for new C Data Types

Sometimes when a new interface is added it may include C data types for which we don’t have corre-
sponding XS typemaps yet. In such a case, the first thing to do is to provide the required typemaps.

Let’s add a prototype for the typedef struct scoreboard data type defined in httpd-2.0/include/score-
board.h.

First we include the relevant header files in src/modules/perl/modperl_apache_includes.h:

 #include "scoreboard.h"

If you want to specify your own type and don’t have a header file for it (e.g. if you extend some existing
datatype within mod_perl) you may add the typedef to src/modules/perl/modperl_types.h.

2129 Jan 2004

1.9 Adding New Interfacesmod_perl 2.0 Source Code Explained

After deciding that Apache::Scoreboard is the Perl class will be used for manipulating C scoreboard
data structures, we map the scoreboard data structure to the Apache::Scoreboard class. Therefore
we add to xs/maps/apache_types.map:

 struct scoreboard | Apache::Scoreboard

Since we want the scoreboard data structure to be an opaque object on the perl side, we simply let
mod_perl use the default T_PTROBJ typemap. After running make xs_generate you can check the
assigned typemap in the autogenerated WrapXS/typemap file.

If you need to do some special handling while converting from C to Perl and back, you need to add the
conversion functions to the xs/typemap file. For example the Apache::RequestRec objects need
special handling, so you can see the special INPUT and OUTPUT typemappings for the corresponding
T_APACHEOBJ object type.

Now we run make xs_generate and find the following definitions in the autogenerated files:

 file:xs/modperl_xs_typedefs.h

 typedef scoreboard * Apache__Scoreboard;

 file:xs/modperl_xs_sv_convert.h

 #define mp_xs_sv2_Apache__Scoreboard(sv) \
 ((SvROK(sv) && (SvTYPE(SvRV(sv)) == SVt_PVMG)) \
 || (Perl_croak(aTHX_ "argument is not a blessed reference \
 (expecting an Apache::Scoreboard derived object)"),0) ? \
 (scoreboard *)SvIV((SV*)SvRV(sv)) : (scoreboard *)NULL)

 #define mp_xs_Apache__Scoreboard_2obj(ptr) \
 sv_setref_pv(sv_newmortal(), "Apache::Scoreboard", (void*)ptr)

The file xs/modperl_xs_typedefs.h declares the typemapping from C to Perl and equivalent to the
TYPEMAP section of the XS’s typemap file. The second file xs/modperl_xs_sv_convert.h generates two
macros. The first macro is used to convert from Perl to C datatype and equivalent to the typemap file’s
INPUT section. The second macro is used to convert from C to Perl datatype and equivalent to the
typemap’s OUTPUT section.

Now proceed on adding the glue code for the new interface.

1.9.2 Importing Constants and Enums into Perl API

To import httpd and APR constants and enums into Perl API, edit lib/Apache/ParseSource.pm. To add a
new type of DEFINE constants adjust the %defines_wanted variable, for enums modify
%enums_wanted.

For example to import all DEFINEs starting with APR_FLOCK_ add:

29 Jan 200422

1.9.2 Importing Constants and Enums into Perl API

 my %defines_wanted = (
 ...
 APR => {
 ...
 flock => [qw{APR_FLOCK_}],
 ...
 },
);

When deciding which constants are to be exported, the regular expression will be used, so in our example
all matches /^APR_FLOCK_/ will be imported into the Perl API.

For example to import an read_type_e enum for APR, add:

 my %enums_wanted = (
 APR => { map { $_, 1 } qw(apr_read_type) },
);

Notice that _e part at the end of the enum name has gone.

After adding/modifying the datastructures make sure to run make source_scan or perl
build/source_scan.pl and verify that the wanted constant or enum were picked by the source
scanning process. Simply grep xs/tables/current for the wanted string. For example after adding
apr_read_type_e enum we can check:

 % more xs/tables/current/Apache/ConstantsTable.pm
 ...
 ’read_type’ => [
 ’APR_BLOCK_READ’,
 ’APR_NONBLOCK_READ’
],

Of course the newly added constant or enum’s typemap should be declared in the appropriate
xs/maps/*_types.map files, so the XS conversion of arguments will be performed correctly. For example
apr_read_type is an APR enum so it’s declared in xs/maps/apr_types.map:

 apr_read_type | IV

IV is used as a typemap, Since enum is just an integer. In more complex cases the typemap can be differ-
ent. (META: examples)

1.10 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

2329 Jan 2004

1.10 Maintainersmod_perl 2.0 Source Code Explained

1.11 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200424

1.11 Authors

2 mod_perl internals: Apache 2.0 Integration

2529 Jan 2004

2 mod_perl internals: Apache 2.0 Integrationmod_perl internals: Apache 2.0 Integration

2.1 Description
This document should help to understand the initialization, request processing and shutdown process of
the mod_perl module. This knowledge is essential for a less-painful debugging experience. It should also
help to know where a new code should be added when a new feature is added.

Internals of mod_perl-specific features are discussed in mod_perl internals: mod_perl-specific functional-
ity flow.

Make sure to read also: Debugging mod_perl C Internals.

2.2 Startup
Apache starts itself and immediately restart itself. The following sections discuss what happens to
mod_perl during this period.

2.2.1 The Link Between mod_perl and httpd

mod_perl.c includes a special data structure:

 module AP_MODULE_DECLARE_DATA perl_module = {
 STANDARD20_MODULE_STUFF,
 modperl_config_dir_create, /* dir config creater */
 modperl_config_dir_merge, /* dir merger --- default is to override */
 modperl_config_srv_create, /* server config */
 modperl_config_srv_merge, /* merge server config */
 modperl_cmds, /* table of config file commands */
 modperl_register_hooks, /* register hooks */
 };

Apache uses this structure to hook mod_perl in, and it specifies six custom callbacks which Apache will
call at various stages that will be explained later.

STANDARD20_MODULE_STUFF is a standard macro defined in httpd-2.0/include/http_config.h.
Currently its main use is for attaching Apache version magic numbers, so the previously compiled module
won’t be attempted to be used with newer Apache versions, whose API may have changed.

modperl_cmds is a struct, that defines the mod_perl configuration directives and the callbacks to be
invoked for each of these.

2.3 Configuration Tree Building
At the ap_read_config stage the configuration file is parsed and stored in a parsed configuration tree
is created. Some sections are stored unmodified in the parsed configuration tree to be processed after the
pre_config hooks were run. Other sections are processed right away (e.g., the Include directive
includes extra configuration and has to include it as soon as it was seen) and they may or may not add a
subtree to the configuration tree.

29 Jan 200426

2.1 Description

ap_build_config feeds the configuration file lines from to ap_build_config_sub , which
tokenizes the input, and uses the first token as a potential directive (command). It then calls
ap_find_command_in_modules() to find a module that has registered that command (remember
mod_perl has registered the directives in the modperl_cmds command_rec array, which was passed
to ap_add_module inside the perl_module struct?). If that command is found and it has the
EXEC_ON_READ flag set in its req_override field, the callback for that command is invoked. Depending
on the command, it may perform some action and return (e.g., User foo), or it may continue reading
from the configuration file and recursively execute other nested commands till it’s done (e.g., <Loca -
tion ...>). If the command is found but the EXEC_ON_READ flag is not set or the command is not
found, the current node gets added to the configuration tree and will be processed during the
ap_process_config_tree() stage, after the pre_config stage will be over.

If the command needs to be executed at this stage as it was just explained, execute_now() invokes the
corresponding callback with invoke_cmd .

Since Load Module directive has the EXEC_ON_READ flag set, that directive is executed as soon as it’s
seen and the modules its supposed to load get loaded right away.

For mod_perl loaded as a DSO object, this is when mod_perl starts its game.

2.3.1 Enabling the mod_perl Module and Installing its Callbacks

mod_perl can be loaded as a DSO object at startup time, or be prelinked at compile time.

For statically linked mod_perl, Apache enables mod_perl by calling ap_add_module() , which
happens during the ap_setup_prelinked_modules() stage. The latter is happening before the
configuration file is parsed.

When mod_perl is loaded as DSO:

 <IfModule !mod_perl.c>
 LoadModule perl_module "modules/mod_perl.so"
 </IfModule>

mod_dso’s load_module first loads the shared mod_perl object, and then immediately calls
ap_add_loaded_module() which calls ap_add_module() to enable mod_perl.

ap_add_module() adds the perl_module structure to the top of chained module list and calls
ap_regis ter _hooks() which calls the modperl_regis ter _hooks() callback. This is the very
first mod_perl hook that’s called by Apache.

modperl_regis ter _hooks() registers all the hooks that it wants to be called by Apache when the
appropriate time comes. That includes configuration hooks, filter, connection and http protocol hooks.
From now on most of the relationship between httpd and mod_perl is done via these hooks. Remember
that in addition to these hooks, there are four hooks that were registered with ap_add_module() , and
there are: modperl_config_srv_create , modperl_config_srv_merge ,
modperl_config_dir_create and modperl_config_dir_merge .

2729 Jan 2004

2.3.1 Enabling the mod_perl Module and Installing its Callbacksmod_perl internals: Apache 2.0 Integration

Finally after the hooks were registered, ap_single_module_config ure () (called from mod_dso’s
load_module in case of DSO) runs the configuration process for the module. First it calls the
modperl_config_srv_create callback for the main server, followed by the
modperl_config_dir_create callback to create a directory structure for the main server. Notice
that it passes NULL for the directory path, since we at the very top level.

If you need to do something as early as possible at mod_perl’s startup, the modperl_regis -
ter _hooks() is the right place to do that. For example we add a MODPERL2 define to the
ap_server_config_defines here:

 *(char **)apr_array_push(ap_server_config_defines) =
 apr_pstrdup(p, "MODPERL2");

so the following code will work under mod_perl 2.0 enabled Apache without explicitly passing -DMOD-
PERL2 at the server startup:

 <IfDefine MODPERL2>
 # 2.0 configuration
 PerlSwitches -wT
 </IfDefine>

This section, of course, will see the define only if inserted after the Load Module perl_module ... ,
because that’s when modperl_regis ter _hooks is called.

One inconvenience with using that hook, is that the server object is not among its arguments, so if you
need to access that object, the next earliest function is modperl_config_srv_create() . However
remember that it’ll be called once for the main server and one more time for each virtual host, that has
something to do with mod_perl. So if you need to invoke it only for the main server, you can use a
s->is_virtual conditional. For example we need to enable the debug tracing as early as possible, but
we need the server object in order to do that, so we perform this setting in
modperl_config_srv_create() :

 if (!s->is_virtual) {
 modperl_trace_level_set(s, NULL);
 }

2.4 The pre_config Phase
After Apache processes its command line arguments, creates various pools and reads the configuration file
in, it runs the registered pre_config hooks by calling ap_run_pre_config() . That’s when
modperl_hook_pre_config is called. And it does nothing.

2.4.1 Configuration Tree Processing

ap_process_config_tree calls ap_walk_config , which scans through all directives in the
parsed configuration tree, and executes each one by calling ap_walk_config_sub . This is a recursive
process with many twists.

29 Jan 200428

2.4 The pre_config Phase

Similar to ap_build_config_sub for each command (directive) in the configuration tree, it calls
ap_find_command_in_modules to find a module that registered that command. If the command is
not found the server dies. Otherwise the callback for that command is invoked with invoke_cmd, after
fetching the current directory configuration:

 invoke_cmd(cmd, parms, dir_config, current->args);

The invoke_cmd command is the one that invokes mod_perl’s directives callbacks, which reside in
modperl_cmd.c. invoke_cmd knows how the arguments should be passed to the callbacks, based on the
information in the modperl_cmds array that we have just mentioned.

Notice that before invoke_cmd is invoked, ap_set_config_vectors() is called which sets the
current server and section configuration objects for the module in which the directive has been found. If
these objects were’t created yet, it calls the registered callbacks as create_dir_config and
create_server_config, which are modperl_config_dir_create and
modperl_config_srv_create for the mod_perl module. (If you write your custom module in Perl,
these correspond to the DIR_CREATE and SERVER_CREATE Perl subroutines.)

The command callback won’t be invoked if it has the EXEC_ON_READ flag set, because it was already
invoked earlier when the configuration tree was parsed. ap_set_config_vectors() is called in any
case, because it wasn’t called during the ap_build_config.

So we have modperl_config_srv_create and modperl_config_dir_create both called
once for the main server (at the end of processing the LoadModule perl_module ... directive),
and one more time for each virtual host in which at least one mod_perl directive is encountered. In addi-
tion modperl_config_dir_create is called for every section and subsection that includes
mod_perl directives (META: or inherits from such a section even though specifies no mod_perl directives
in it?).

2.4.2 Virtual Hosts Fixup

After the configuration tree is processed, ap_fixup_virtual_hosts() is called. One of the respon-
sibilities of this function is to merge the virtual hosts configuration objects with the base server’s object. If
there are virtual hosts, merge_server_configs() calls modperl_config_srv_merge() and
modperl_config_dir_merge() for each virtual host, to perform this merge for mod_perl configu-
ration objects.

META: is that’s the place where everything restarts? it doesn’t restart under debugger since we run with
NODETACH I believe.

2.4.3 The open_logs Phase

After Apache processes the configuration it’s time for the open_logs phase, executed by
ap_run_open_logs(). mod_perl has registered the modperl_hook_init() hook to be called for
this phase.

2929 Jan 2004

2.4.2 Virtual Hosts Fixupmod_perl internals: Apache 2.0 Integration

META: complete what happens at this stage in mod_perl

META: why is it called modperl_hook_init and not open_logs? is it because it can be called from other
functions?

2.4.4 The post_config Phase

Immediately after open_logs, the post_config phase follows. Here ap_run_post_config() calls
modperl_hook_post_config()

2.5 Request Processing
META: need to write

2.6 Shutdown
META: need to write

2.7 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

2.8 Authors

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200430

2.5 Request Processing

3 mod_perl internals: mod_perl-specific functionality
flow

3129 Jan 2004

3 mod_perl internals: mod_perl-specific functionality flowmod_perl internals: mod_perl-specific functionality flow

3.1 Description
This document attempts to help understand the code flow for certain features. This should help to debug
problems and add new features.

This document auguments mod_perl internals: Apache 2.0 Integration and discusses the internals of the
mod_perl-specific features.

Make sure to read also: Debugging mod_perl C Internals.

META: these notes are a bit out of sync with the latest cvs, but will be updated once the innovation dust
settles down.

3.2 Perl Interpreters
How and when Perl interpreters are created:

1. modperl_hook_init is invoked by one of two paths: Either normally, during the open_logs phase, or
during the configuration parsing if a directive needs perl at the early stage (e.g. PerlLoadModule).

 ap_hook_open_logs() -> # normal mod_perl startup
 load_module() -> modperl_run() -> # early startup caused by PerlLoadModule

2. modperl_hook_init() -> modperl_init():

 o modperl_startup()
 - parent perl is created and started ("-e0"),
 - top level PerlRequire and PerlModule are run

 o modperl_interp_init()
 - modperl_tipool_new() # create/init tipool
 - modperl_interp_new() # no new perls are created at this stage

 o modperl_init_vhost() # vhosts are booted, for each vhost run:
 if +Parent
 - modperl_startup() # vhost gets its own parent perl (not perl_clone()!)
 else
 - vhost’s PerlModule/PerlRequire directives are run if any
 if +(Parent|Clone)
 - modperl_interp_init() (new tipool, no new perls created)

3. Next the post_config hook is run. It immediately returns for non-threaded mpms. Otherwise that’s
where all the first clones are created (and later their are created on demand when there aren’t enough
in the pool and more are needed).

29 Jan 200432

3.1 Description

 o modperl_init_clones() creates pools of clones
 - modperl_tipool_init() (clones the PerlStartInterp number of perls)
 - interp_pool_grow()
 - modperl_interp_new()
 ~ this time perl_clone() is called
 ~ PL_ptr_table is scratched
 modperl_xs_dl_handles_clear

3.3 Filters
Apache filters work in the following way. First of all, a filter must be registered by its name, in addition
providing a pointer to a function that should be executed when the filter is called and the type of resources
it should be called on (e.g., only request’s body, the headers, both and others). Once registered, the filter
can be inserted into a chain of filters to be executed at run time.

For example in the pre_connection phase we can add connection phase filters, and using the
ap_hook_insert_filter we can call functions that add the current request’s filters. The filters are added
using their registered name and a special context variable, which is typed to (void *) so modules can store
anything they want there. You can add more than one filter with the same name to the same filter chain.

Here is how mod_perl uses this infrastructure:

There can be many filters inserted via mod_perl, but they all seen by Apache by four filter names:

 MODPERL_REQUEST_OUTPUT
 MODPERL_REQUEST_INPUT
 MODPERL_CONNECTION_OUTPUT
 MODPERL_CONNECTION_INPUT

XXX: which actually seems to be lowercased by Apache (saw it in gdb), (it handles these in the case
insensitive manner?). how does then modperl_filter_add_request works, as it compares *fname with M.

These four filter names are registered in modperl_register_hooks():

 ap_register_output_filter(MP_FILTER_REQUEST_OUTPUT_NAME,
 MP_FILTER_HANDLER(modperl_output_filter_handler),
 AP_FTYPE_RESOURCE);

 ap_register_input_filter(MP_FILTER_REQUEST_INPUT_NAME,
 MP_FILTER_HANDLER(modperl_input_filter_handler),
 AP_FTYPE_RESOURCE);

 ap_register_output_filter(MP_FILTER_CONNECTION_OUTPUT_NAME,
 MP_FILTER_HANDLER(modperl_output_filter_handler),
 AP_FTYPE_CONNECTION);

 ap_register_input_filter(MP_FILTER_CONNECTION_INPUT_NAME,
 MP_FILTER_HANDLER(modperl_input_filter_handler),
 AP_FTYPE_CONNECTION);

3329 Jan 2004

3.3 Filtersmod_perl internals: mod_perl-specific functionality flow

At run time input filter handlers are always called by modperl_input_filter_handler() and output filter
handler by modperl_output_filter_handler(). For example if there are three MODPERL_CONNEC-
TION_INPUT filters in the filters chain, modperl_input_filter_handler() will be called three times.

The real Perl filter handler (callback) is stored in ctx->handler, which is retrieved by
modperl_{output|input}_filter_handler and run as a normal Perl handler by modperl_run_filter() via
modperl_callback():

 retrieve ctx->handler
 modperl_output_filter_handler -> modperl_run_filter -> modperl_callback

This trick allows to have more than one filter handler in the filters chain using the same Apache filter
name (the real filter’s name is stored in ctx->handler->name.

Now the only missing piece in the puzzle is how and when mod_perl filter handlers are inserted into the
filter chain. It happens in three stages.

1. When the configuration file is parsed, every time a PerlInputFilterHandler or a PerlOutputFilterHan-
dler directive is encountered, its argument (filter handler) is inserted into dcfg->handlers_per_dir[idx]
by modperl_cmd_input_filter_handlers() and modperl_cmd_output_filter_handlers(). idx is either
MP_INPUT_FILTER_HANDLER or MP_OUTPUT_FILTER_HANDLER. Since they are stored in
the dcfg struct, normal merging of parent and child directories applies.

2. Next, modperl_hook_post_config calls modperl_mgv_hash_handlers which works through
dcfg->handlers_per_dir[idx] and resolves the handlers (via modperl_mgv_resolve), so they are
resolved by the time filter handlers are added to the chain in the next step (e.g. the attributes are set if
any).

3. Now all is left is to add the filters to the appropriate chains at the appropriate time.

modperl_register_hooks() adds a pre_connection hook modperl_hook_pre_connection() which inserts
connection filters via:

 modperl_input_filter_add_connection();
 modperl_output_filter_add_connection();

modperl_hook_pre_connection() is called during the pre_connection phase.

modperl_register_hooks() directly registers the request filters via ap_hook_insert_filter():

 modperl_output_filter_add_request
 modperl_input_filter_add_request

functions registered with ap_hook_insert_filter(), will be called when the request record is created
and they are supposed to insert request filters if any.

All four functions perform a similar thing: loop through dcfg->handlers_per_dir[idx], where idx is
per filter type: MP_{INPUT|OUTPUT}_FILTER_HANDLER, pick the filters of the appropriate type
and insert them to filter chain using one of the two Apache functions that add filters. Since we have
connection and request filters there are four different combinations:

29 Jan 200434

3.3 Filters

 ap_add_input_filter(name, (void*)ctx, NULL, c);
 ap_add_output_filter(name, (void*)ctx, NULL, c);
 ap_add_input_filter(name, (void*)ctx, r, r->connection);
 ap_add_output_filter(name, (void*)ctx, r, r->connection);

Here the name is one of:

 MODPERL_REQUEST_OUTPUT
 MODPERL_REQUEST_INPUT
 MODPERL_CONNECTION_OUTPUT
 MODPERL_CONNECTION_INPUT

ctx, storing three things:

 SV *data;
 modperl_handler_t *handler;
 PerlInterpreter *perl;

we have mentioned ctx->handler already, that’s where the real Perl filter handler is stored. ctx->perl
stores the current perl interpreter (used only in the threaded environment).

the last two arguments are the request and connection records.

notice that dcfg->handlers_per_dir[idx] stores connection and request filters in the same array, so we
have only two arrays, one for input and one for output filters. We know to distinguish between
connection and request filters by looking at ctx->handler->attrs record, which is derived from the
handler subroutine’s attributes. Remember that we can have:

 sub Foo : FilterRequestHandler {}

and:

 sub Bar : FilterConnectionHandler {}

For example we can figure out what kind of handler is that via:

 if (ctx->handler->attrs & MP_FILTER_CONNECTION_HANDLER)) {
 /* Connection handler */
 }
 else if (ctx->handler->attrs & MP_FILTER_REQUEST_HANDLER)) {
 /* Request handler */
 }
 else {
 /* Unknown */
 }

3.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

3529 Jan 2004

3.4 Maintainersmod_perl internals: mod_perl-specific functionality flow

Stas Bekman <stas (at) stason.org>

3.5 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200436

3.5 Authors

4 MPMs - Multi-Processing Model Modules

3729 Jan 2004

4 MPMs - Multi-Processing Model ModulesMPMs - Multi-Processing Model Modules

4.1 Description
Discover what are the available MPMs and how they work with mod_perl.

META: This doc is under construction. Owners are wanted.

4.2 MPMs Overview

4.3 The Worker MPM
META: incomplete

You can test whether running under threaded env via: ?

 #ifdef USE_ITHREADS
 /* whatever */
 #endif

When the server is running under the threaded mpm scfg->threaded_mpm is set to true.

Caveats:

All per-server data is shared between threads, regardless of locking, changing the value of something like
ap_document_root changes it for all threads. Not just the current process/request, the way it was in 1.3. So
we can’t really support modification of things like ap_document_root at request time, unless the mpm is
prefork. we could support modification of modperl per-server data by using r->request_config in the same
way push_handlers et al is implemented. But it is not possible to use this approach for anything outside of
modperl (ap_document_root for example).

4.4 The Prefork MPM
META: incomplete

4.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

4.6 Authors
Stas Bekman <stas (at) stason.org>

29 Jan 200438

4.1 Description

Only the major authors are listed above. For contributors see the Changes file.

3929 Jan 2004

4.6 AuthorsMPMs - Multi-Processing Model Modules

5 mod_perl Coding Style Guide

29 Jan 200440

5 mod_perl Coding Style Guide

5.1 Description
This document explains the coding style used in the core mod_perl development and which should be
followed by all core developers.

5.2 Coding Style Guide
We try hard to code mod_perl using an identical style. Because everyone in the team should be able to
read and understand the code as quickly and easily as possible. Some will have to adjust their habits for
the benefit of all.

C code

mod_perl’s C code follows the Apache style guide: http://dev.apache.org/styleguide.html

XS code

C code inside XS modules also follows the Apache style guide.

Perl code

mod_perl’s Perl code also follows the Apache style guide, in terms of indentation, braces, etc. Style
issues not covered by Apache style of guide should be looked up in the perlstyle manpage.

Here are the rough guidelines with more stress on the Perl coding style.

Indentation and Tabs

Do use 4 characters indentation.

Do NOT use tabs.

Here is how to setup your editor to do the right thing:

x?emacs: cperl-mode

 .xemacs/custom.el:

 (custom-set-variables
 ’(cperl-indent-level 4)
 ’(cperl-continued-statement-offset 4)
 ’(cperl-tab-always-indent t)
 ’(indent-tabs-mode nil)
)

vim

4129 Jan 2004

5.1 Descriptionmod_perl Coding Style Guide

http://dev.apache.org/styleguide.html

 .vimrc:

 set expandtab " replaces any tab keypress with the appropriate number of spaces
 set tabstop=4 " sets tabs to 4 spaces

Block Braces

Do use a style similar to K&R style, not the same. The following example is the best guide:

Do:

 sub foo {
 my($self, $cond, $baz, $taz) = @_;

 if ($cond) {
 bar();
 }
 else {
 $self->foo("one", 2, "...");
 }

 return $self;
 }

Don’t:

 sub foo
 {
 my ($self,$bar,$baz,$taz)=@_;
 if($cond)
 {
 &bar();
 } else { $self->foo ("one",2,"..."); }
 return $self;
 }

Lists and Arrays

Whenever you create a list or an array, always add a comma after the last item. The reason for doing
this is that it’s highly probable that new items will be appended to the end of the list in the future. If
the comma is missing and this isn’t noticed, there will be an error.

Do:

 my @list = (
 "item1",
 "item2",
 "item3",
);

Don’t:

29 Jan 200442

5.2 Coding Style Guide

 my @list = (
 "item1",
 "item2",
 "item3"
);

Last Statement in the Block

The same goes for ; in the last statement of the block. Almost always add it even if it’s not required,
so when you add a new statement you don’t have to remember to add ; on a previous line.

Do:

 sub foo {
 statement1;
 statement2;
 statement3;
 }

Don’t:

 sub foo {
 statement1;
 statement2;
 statement3
 }

5.3 Function and Variable Prefixes Convention
modperl_

The prefix for mod_perl C API functions.

MP_

The prefix for mod_perl C macros.

mpxs_

The prefix for mod_perl XS utility functions.

mp_xs_

The prefix for mod_perl generated XS utility functions.

MPXS_

The prefix for mod_perl XSUBs with an XS() prototype.

4329 Jan 2004

5.3 Function and Variable Prefixes Conventionmod_perl Coding Style Guide

5.4 Coding Guidelines
The following are the Perl coding guidelines:

5.4.1 Global Variables

avoid globals in general
avoid $&, $’, $‘

See Devel::SawAmpersand’s README that explains the evilness. Under mod_perl everybody
suffers when one is seen anywhere since the interpreter is never shutdown.

5.4.2 Modules

Exporting/Importing

Avoid too much exporting/importing (glob aliases eat up memory)

When you do wish to import from a module try to use an explicit list or tag whenever possible, e.g.:

 use POSIX qw(strftime);

When you do not wish to import from a module, always use an empty list to avoid any import, e.g.:

 use IO::File ();

(explain how to use Apache::Status to find imported/exported functions)

5.4.3 Methods

indirect vs direct method calls

Avoid indirect method calls, e.g.

Do:

 CGI::Cookie->new

Don’t:

 new CGI::Cookie

5.4.4 Inheritance

Avoid inheriting from certain modules

29 Jan 200444

5.4 Coding Guidelines

Exporter. To avoid inheriting AutoLoader::AUTOLOAD

Do:

 *import = \&Exporter::import;

Don’t:

 @MyClass::ISA = qw(Exporter);

5.4.5 Symbol tables

%main::

stay away from main:: to avoid namespace clashes

5.4.6 Use of $_ in loops

Avoid using $_ in loops unless it’s a short loop and you don’t call any subs from within the loop. If the
loop started as short and then started to grow make sure to remove the use of $_:

Do:

 for my $idx (1..100) {
 more than few lines...
 foo($idx);

 }

Don’t:

 for (1..100) {
 more than a few statements...
 foo();

 }

Because foo() might change $_ if foo()’s author didn’t localize $_.

This is OK:

 for (1..100) {
 a few statements with no subs called
 # do something with $_

 }

4529 Jan 2004

5.4.5 Symbol tablesmod_perl Coding Style Guide

5.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas *at* stason.org>

5.6 Authors
Doug MacEachern<dougm (at) covalent.net>

Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200446

5.5 Maintainers

6 Porting Apache:: XS Modules from mod_perl 1.0 to
2.0

4729 Jan 2004

6 Porting Apache:: XS Modules from mod_perl 1.0 to 2.0Porting Apache:: XS Modules from mod_perl 1.0 to 2.0

6.1 Description
This document talks mainly about porting modules using XS code. It’s also helpful to those who start
developing mod_perl 2.0 packages.

Also make sure to first read about porting Apache:: Perl modules.

6.2 Porting Makefile.PL
It’s only an issue if it was using Apache::src. A new configuration system is in works. So watch this
space for updates on this issue.

ModPerl::MM is the new replacement of Apache::src.

6.3 Porting XS Code
If your module’s XS code relies on the Apache and mod_perl C APIs, it’s very likely that you will have to
adjust the XS code to the Apache 2.0 and mod_perl 2.0 C API.

The C API has changed a lot, so chances are that you are much better off not to mix the two APIs in the
same XS file. However if you do want to mix the two you will have to use something like the following:

 #include ap_mmn.h
 /* ... */
 #if AP_MODULE_MAGIC_AT_LEAST(20020903,3)
 /* 2.0 code */
 #else
 /* 1.0 code */
 #endif

The 20020903,3 is the value of the magic version number matching Apache 2.0.46, the earliest Apache
version supported by mod_perl 2.0.

6.4 Thread Safety
META: to be written

 #ifdef MP_THREADED
 /* threads specific code goes here */
 #endif

For now see: http://httpd.apache.org/docs-2.0/developer/thread_safety.html

29 Jan 200448

6.1 Description

http://httpd.apache.org/docs-2.0/developer/thread_safety.html

6.5 PerlIO
PerlIO layer has become usable only in perl 5.8.0, so if you plan on working with PerlIO, you can use the
PERLIO_LAYERS constant. e.g.:

 #ifdef PERLIO_LAYERS
 #include "perliol.h"
 #else
 #include "iperlsys.h"
 #endif

6.6 ’make test’ Suite
The Apache::Test testing framework that comes together with mod_perl 2.0 works with 1.0 and 2.0
mod_perl versions. Therefore you should consider porting your test suite to use the Apache::Test Frame-
work.

6.7 Apache C Code Specific Notes
Most of the documentation covering migration to Apache 2.0 can be found at:
http://httpd.apache.org/docs-2.0/developer/

The Apache 2.0 API documentation now resides in the C header files, which can be conveniently browsed
via http://docx.webperf.org/.

The APR API documentation can be found here http://apr.apache.org/.

The new Apache and APR APIs include many new functions. Though certain functions have been
preserved, either as is or with a changed prototype (for example to work with pools), others have been
renamed. So if you are porting your code and the function that you’ve used doesn’t seem to exist in
Apache 2.0, first refer to the "compat" header files, such as: include/ap_compat.h,
srclib/apr/include/apr_compat.h, and srclib/apr-util/include/apu_compat.h, which list functions whose
names have changed but which are otherwise the same. If this fails, proceed to look in other headers files
in the following directories:

ap_ functions in include/

apr_ functions in srclib/apr/include/ and srclib/apr-util/include/

6.7.1 ap_soft_timeout(), ap_reset_timeout(), ap_hard_timeout() and
ap_kill_timeout()

If the C part of the module in 1.0 includes ap_soft_timeout(), ap_reset_timeout(),
ap_hard_timeout() and ap_kill_timeout() functions simply remove these in 2.0. There is no
replacement for these functions because Apache 2.0 uses non-blocking I/O. As a side-effect of this
change, Apache 2.0 no longer uses SIGALRM, which has caused conflicts in mod_perl 1.0.

4929 Jan 2004

6.5 PerlIOPorting Apache:: XS Modules from mod_perl 1.0 to 2.0

http://httpd.apache.org/docs-2.0/developer/
http://docx.webperf.org/
http://apr.apache.org/

6.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

6.9 Authors
Stas Bekman <stas (at) stason.org>

Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200450

6.8 Maintainers

7 Measure sizeof() of Perl’s C Structures

5129 Jan 2004

7 Measure sizeof() of Perl’s C StructuresMeasure sizeof() of Perl’s C Structures

7.1 Description
This document describes the sizeof various structures, as determined by util/sizeof.pl. These measurements
are mainly for research purposes into making Perl things smaller, or rather, how to use less Perl things.

7.2 Perl Structures
Structures diagrams are courtesy gdb (print pretty) and a bit of hand crafting.

CV - 229 minimum, 254 minimum w/ symbol table entry

 cv = {
 sv_any = { // XPVCV *
 xpv_pv = 0x0, // char *
 xpv_cur = 0, // STRLEN
 xpv_len = 0, // STRLEN
 xof_off = 0 , // IV
 xnv_nv = 0, // NV
 xmg_magic = 0x0, // MAGIC *
 xmg_stash = 0x0, // HV *
 xcv_stash = 0x0, // HV *
 xcv_start = 0x0, // OP *
 xcv_root = 0x0, // OP *
 xcv_xsub = 0x0, // void (*)(register PerlInterpreter *, CV *)
 xcv_xsubany = { // ANY
 any_ptr = 0x0,
 any_i32 = 0,
 any_iv = 0,
 any_long = 0,
 any_dptr = 0,
 any_dxptr = 0
 },
 xcv_gv = { // GV *
 sv_any = { // void *
 xpv_pv = 0x0, // char *
 xpv_cur = 0, // STRLEN
 xpv_len = 0, // STRLEN
 xiv_iv = 0, // IV
 xnv_nv = 0, // NV
 xmg_magic = { // MAGIC *
 mg_moremagic = 0x0, // MAGIC *
 mg_virtual = 0x0, // MGVTBL *
 mg_private = 0, // U16
 mg_type = 0, // char
 mg_flags = 0, // U8
 mg_obj = 0x0, // SV *
 mg_ptr = 0x0, // char *
 mg_len = 0, // I32
 },
 xmg_stash = 0x0, // HV *
 xgv_gp = { // GP *

29 Jan 200452

7.1 Description

 gp_sv = { // SV *
 sv_any = 0x0, // void *
 sv_refcnt = 0, // U32
 sv_flags = 0 // U32
 },
 gp_refcnt = 0, // U32
 gp_io = 0x0, // struct io *
 gp_form = 0x0, // CV *
 gp_av = 0x0, // AV *
 gp_hv = 0x0, // HV *
 gp_egv = 0x0, // GV *
 gp_cv = 0x0, // CV *
 gp_cvgen = 0, // U32
 gp_flags = 0, // U32
 gp_line = 0, // line_t
 gp_file = 0x0, // char *
 },
 xgv_name = 0x0, // char *
 xgv_namelen = 0, // STRLEN
 xgv_stash = 0x0, // void *
 xgv_flags = 0, // U8
 },
 sv_refcnt = 0, // U32
 sv_flags = 0, // U32
 },
 xcv_file = 0x0, // char *
 xcv_depth = 0, // long
 xcv_padlist = 0x0, // AV *
 xcv_outside = 0x0, // CV *
 xcv_flags = 0, // cv_flags_t
 }
 sv_refcnt = 0, // U32
 sv_flags = 0, // U32
 };

In addition to the minimum bytes:

name of the subroutine: GvNAMELEN(CvGV(cv))+1
symbol table entry: HvENTRY (25 + GvNAMELEN(CvGV(cv))+1)
minimum sizeof(AV) * 3: xcv_padlist if !CvXSUB(cv)
CvROOT(cv) optree

HV - 60 minmum

 hv = {
 sv_any = { // SV *
 xhv_array = 0x0, // char *
 xhv_fill = 0, // STRLEN
 xhv_max = 0, // STRLEN
 xhv_keys = 0, // IV
 xnv_nv = 0, // NV
 xmg_magic = 0x0, // MAGIC *
 xmg_stash = 0x0, // HV *
 xhv_riter = 0, // I32
 xhv_eiter = 0x0, // HE *
 xhv_pmroot = 0x0, // PMOP *

5329 Jan 2004

7.2 Perl StructuresMeasure sizeof() of Perl’s C Structures

 xhv_name = 0x0 // char *
 },
 sv_refcnt = 0, // U32
 sv_flags = 0, // U32
 };

Each entry adds sizeof(HvENTRY), minimum of 7 (initial xhv_max). Note that keys of the same
value share sizeof(HEK), across all hashes.

HvENTRY - 25 + HeKLEN+1

 sizeof(HE *) + sizeof(HE) + sizeof(HEK)

HE - 12

 he = {
 hent_next = 0x0, // HE *
 hent_hek = 0x0, // HEK *
 hent_val = 0x0 // SV *
 };

HEK - 9 + hek_len

 hek = {
 hek_hash = 0, // U32
 hek_len = 0, // I32
 hek_key = 0, // char
 };

AV - 53

 av = {
 sv_any = { // SV *
 xav_array = 0x0, // char *
 xav_fill = 0, // size_t
 xav_max = 0, // size_t
 xof_off = 0, // IV
 xnv_nv = 0, // NV
 xmg_magic = 0x0, // MAGIC *
 xmg_stash = 0x0, // HV *
 xav_alloc = 0x0, // SV **
 xav_arylen = 0x0, // SV *
 xav_flags = 0, // U8
 },
 sv_refcnt = 0, // U32
 sv_flags = 0 // U32
 };

In addition to the minimum bytes:

AvFILL(av) * sizeof(SV *)

29 Jan 200454

7.2 Perl Structures

7.3 SEE ALSO
perlguts(3), B::Size(3),

http://gisle.aas.no/perl/illguts/

7.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Doug MacEachern <dougm (at) covalent.net>

7.5 Authors
Doug MacEachern <dougm (at) covalent.net>

5529 Jan 2004

7.3 SEE ALSOMeasure sizeof() of Perl’s C Structures

http://gisle.aas.no/perl/illguts/

8 Which Coding Technique is Faster

29 Jan 200456

8 Which Coding Technique is Faster

8.1 Description
This document tries to show more efficient coding styles by benchmarking various styles.

WARNING: This doc is under construction

META: for now these are just unprocessed snippets from the mailing list. Please help me to make these
into useful essays.

8.2 backticks vs XS
META: unprocessed yet.

compare the difference of calling an xsub that does _nothing_ vs. a backticked program that does
nothing.

 /* file:test.c */
 int main(int argc, char **argv, char **env)
 {
 return 1;
 }

 /* file:TickTest.xs */
 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = TickTest PACKAGE = TickTest

 void
 foo()

 CODE:

 # file:test.pl
 use blib;
 use TickTest ();

 use Benchmark;

 timethese(100_000, {
 backtick => sub { ‘./test‘ },
 xs => sub { TickTest::foo() },
 });

Results:

 Benchmark: timing 100000 iterations of backtick, xs...
 backtick: 292 wallclock secs (18.68 usr 43.93 sys + 142.43 cusr 84.00 csys = 289.04 CPU) @ 1597.19/s (n=100000)
 xs: -1 wallclock secs (0.25 usr + 0.00 sys = 0.25 CPU) @ 400000.00/s (n=100000)
 (warning: too few iterations for a reliable count)

5729 Jan 2004

8.1 DescriptionWhich Coding Technique is Faster

8.3 sv_catpvn vs. fprintf
META: unprocessed yet.

and what i’m trying to say is that if both the xs code and external program are doing the same thing, xs
will be heaps faster than backticking a program. your xsub and external program are not doing the same
thing.

i’m guessing part of the difference in your code is due to fprintf having a pre-allocated buffer, whereas the
SV’s SvPVX has not been pre-allocated and gets realloc-ed each time you call sv_catpv. have a look at the
code below, fprintf is faster than sv_catpvn, but if the SvPVX is preallocated, sv_catpvn becomes faster
than fprintf:

 timethese(1_000, {
 fprintf => sub { TickTest::fprintf() },
 svcat => sub { TickTest::svcat() },
 svcat_pre => sub { TickTest::svcat_pre() },
 });

 Benchmark: timing 1000 iterations of fprintf, svcat, svcat_pre...
 fprintf: 9 wallclock secs (8.72 usr + 0.00 sys = 8.72 CPU) @ 114.68/s (n=1000)
 svcat: 13 wallclock secs (12.82 usr + 0.00 sys = 12.82 CPU) @ 78.00/s (n=1000)
 svcat_pre: 2 wallclock secs (2.75 usr + 0.00 sys = 2.75 CPU) @ 363.64/s (n=1000)

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 static FILE *devnull;

 MODULE = TickTest PACKAGE = TickTest

 BOOT:
 devnull = fopen("/dev/null", "w");

 void
 fprintf()

 CODE:
 {
 int i;
 char buffer[8292];

 for (i=0; i<sizeof(buffer); i++) {
 fprintf(devnull, "a");
 }
 }

 void
 svcat()

 CODE:
 {

29 Jan 200458

8.3 sv_catpvn vs. fprintf

 int i;
 char buffer[8292];
 SV *sv = newSV(0);

 for (i=0; i<sizeof(buffer); i++) {
 sv_catpvn(sv, "a", 1);
 }

 SvREFCNT_dec(sv);
 }

 void
 svcat_pre()

 CODE:
 {
 int i;
 char buffer[8292];
 SV *sv = newSV(sizeof(buffer)+1);

 for (i=0; i<sizeof(buffer); i++) {
 sv_catpvn(sv, "a", 1);
 }

 SvREFCNT_dec(sv);
 }

8.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

8.5 Authors
Stas Bekman <stas (at) stason.org>

Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

5929 Jan 2004

8.4 MaintainersWhich Coding Technique is Faster

9 Porting Apache:: XS Modules from mod_perl 1.0 to
2.0

29 Jan 200460

9 Porting Apache:: XS Modules from mod_perl 1.0 to 2.0

9.1 Description
This document talks mainly about porting modules using XS code. It’s also helpful to those who start
developing mod_perl 2.0 packages.

Also make sure to first read about porting Apache:: Perl modules.

9.2 Porting Makefile.PL
It’s only an issue if it was using Apache::src. A new configuration system is in works. So watch this
space for updates on this issue.

ModPerl::MM is the new replacement of Apache::src.

9.3 Porting XS Code
If your module’s XS code relies on the Apache and mod_perl C APIs, it’s very likely that you will have to
adjust the XS code to the Apache 2.0 and mod_perl 2.0 C API.

The C API has changed a lot, so chances are that you are much better off not to mix the two APIs in the
same XS file. However if you do want to mix the two you will have to use something like the following:

 #include ap_mmn.h
 /* ... */
 #if AP_MODULE_MAGIC_AT_LEAST(20020903,3)
 /* 2.0 code */
 #else
 /* 1.0 code */
 #endif

The 20020903,3 is the value of the magic version number matching Apache 2.0.46, the earliest Apache
version supported by mod_perl 2.0.

9.4 Thread Safety
META: to be written

 #ifdef MP_THREADED
 /* threads specific code goes here */
 #endif

For now see: http://httpd.apache.org/docs-2.0/developer/thread_safety.html

6129 Jan 2004

9.1 DescriptionPorting Apache:: XS Modules from mod_perl 1.0 to 2.0

http://httpd.apache.org/docs-2.0/developer/thread_safety.html

9.5 PerlIO
PerlIO layer has become usable only in perl 5.8.0, so if you plan on working with PerlIO, you can use the
PERLIO_LAYERS constant. e.g.:

 #ifdef PERLIO_LAYERS
 #include "perliol.h"
 #else
 #include "iperlsys.h"
 #endif

9.6 ’make test’ Suite
The Apache::Test testing framework that comes together with mod_perl 2.0 works with 1.0 and 2.0
mod_perl versions. Therefore you should consider porting your test suite to use the Apache::Test Frame-
work.

9.7 Apache C Code Specific Notes
Most of the documentation covering migration to Apache 2.0 can be found at:
http://httpd.apache.org/docs-2.0/developer/

The Apache 2.0 API documentation now resides in the C header files, which can be conveniently browsed
via http://docx.webperf.org/.

The APR API documentation can be found here http://apr.apache.org/.

The new Apache and APR APIs include many new functions. Though certain functions have been
preserved, either as is or with a changed prototype (for example to work with pools), others have been
renamed. So if you are porting your code and the function that you’ve used doesn’t seem to exist in
Apache 2.0, first refer to the "compat" header files, such as: include/ap_compat.h,
srclib/apr/include/apr_compat.h, and srclib/apr-util/include/apu_compat.h, which list functions whose
names have changed but which are otherwise the same. If this fails, proceed to look in other headers files
in the following directories:

ap_ functions in include/

apr_ functions in srclib/apr/include/ and srclib/apr-util/include/

9.7.1 ap_soft_timeout(), ap_reset_timeout(), ap_hard_timeout() and
ap_kill_timeout()

If the C part of the module in 1.0 includes ap_soft_timeout(), ap_reset_timeout(),
ap_hard_timeout() and ap_kill_timeout() functions simply remove these in 2.0. There is no
replacement for these functions because Apache 2.0 uses non-blocking I/O. As a side-effect of this
change, Apache 2.0 no longer uses SIGALRM, which has caused conflicts in mod_perl 1.0.

29 Jan 200462

9.5 PerlIO

http://httpd.apache.org/docs-2.0/developer/
http://docx.webperf.org/
http://apr.apache.org/

9.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

9.9 Authors
Stas Bekman <stas (at) stason.org>

Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

6329 Jan 2004

9.8 MaintainersPorting Apache:: XS Modules from mod_perl 1.0 to 2.0

10 Debugging mod_perl Perl Internals

29 Jan 200464

10 Debugging mod_perl Perl Internals

10.1 Description
This document explains how to debug Perl code under mod_perl.

10.2 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

10.3 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

6529 Jan 2004

10.1 DescriptionDebugging mod_perl Perl Internals

11 Debugging mod_perl C Internals

29 Jan 200466

11 Debugging mod_perl C Internals

11.1 Description
This document explains how to debug C code under mod_perl, including mod_perl core itself.

For certain debugging purposes you may find useful to read first the following notes on mod_perl inter-
nals: Apache 2.0 Integration and mod_perl-specific functionality flow.

11.2 Debug notes
META: needs more organization

META: there is a new directive CoreDumpDirectory in 2.0.45, need to check whether we should mention
it.

META: there is a new compile-time option in perl-5.9.0+: -DDEBUG_LEAKING_SCALARS, which
prints out the addresses of leaked SVs and new_SV() can be used to discover where those SVs were allo-
cated. (see perlhack.pod for more info)

META: httpd has quite a lot of useful debug info: http://httpd.apache.org/dev/debugging.html (need to add
this link to mp1 docs as well)

META: profiling: need a new entry of profiling. + running mod_perl under gprof: Defining GPROF when
compiling uses the moncontrol() function to disable gprof profiling in the parent, and enable it only for
request processing in children (or in one_process mode).

META: Jeff Trawick wrote a few useful debug modules, for httpd-2.1: mod_backtrace (similar to bt in
gdb, but doesn’t require the core file) and mod_whatkilledus (gives the info about the request that caused
the segfault). http://httpd.apache.org/~trawick/exception_hook.html

11.2.1 Setting gdb breakpoints with mod_perl built as DSO

If mod_perl is built as a DSO module, you cannot set the breakpoint in the mod_perl source files when the
httpd program gets loaded into the debugger. The reason is simple: At this moment httpd has no idea about
mod_perl module yet. After the configuration file is processed and the mod_perl DSO module is loaded
then the breakpoints in the source of mod_perl itself can be set.

The trick is to break at apr_dso_load, let it load libmodperl.so, then you can set breakpoints anywhere in
the modperl code:

 % gdb httpd
 (gdb) b apr_dso_load
 (gdb) run -DONE_PROCESS
 [New Thread 1024 (LWP 1600)]
 [Switching to Thread 1024 (LWP 1600)]

6729 Jan 2004

11.1 DescriptionDebugging mod_perl C Internals

http://httpd.apache.org/dev/debugging.html
http://httpd.apache.org/~trawick/exception_hook.html

 Breakpoint 1, apr_dso_load (res_handle=0xbfffb48c, path=0x811adcc
 "/home/stas/apache.org/modperl-perlmodule/src/modules/perl/libmodperl.so",
 pool=0x80e1a3c) at dso.c:138
 141 void *os_handle = dlopen(path, RTLD_NOW | RTLD_GLOBAL);
 (gdb) finish
 ...
 Value returned is $1 = 0
 (gdb) b modperl_hook_init
 (gdb) continue

This example shows how to set a breakpoint at modperl_hook_init.

To automate things you can put those in the .gdb-jump-to-init file:

 b apr_dso_load
 run -DONE_PROCESS -d ‘pwd‘/t -f ‘pwd‘/t/conf/httpd.conf
 finish
 b modperl_hook_init
 continue

and then start the debugger with:

 % gdb /home/stas/httpd-2.0/bin/httpd -command \
 ‘pwd‘/t/.gdb-jump-to-init

11.2.2 Starting the Server Fast under gdb

When the server is started under gdb, it first loads the symbol tables of the dynamic libraries that it sees
going to be used. Some versions of gdb may take ages to complete this task, which makes the debugging
very irritating if you have to restart the server all the time and it doesn’t happen immediately.

The trick is to set the auto-solib-add flag to 0:

 set auto-solib-add 0

as early as possible in ~/.gdbinit file.

With this setting in effect, you can load only the needed dynamic libraries with sharedlibrary gdb
command. Remember that in order to set a breakpoint and step through the code inside a certain dynamic
library you have to load it first. For example consider this gdb commands file:

 .gdb-commands

 file ~/httpd/prefork/bin/httpd
 handle SIGPIPE pass
 handle SIGPIPE nostop
 set auto-solib-add 0
 b ap_run_pre_config
 run -d ‘pwd‘/t -f ‘pwd‘/t/conf/httpd.conf \
 -DONE_PROCESS -DAPACHE2 -DPERL_USEITHREADS
 sharedlibrary mod_perl
 b modperl_hook_init
 # start: modperl_hook_init

29 Jan 200468

11.2.2 Starting the Server Fast under gdb

 continue
 # restart: ap_run_pre_config
 continue
 # restart: modperl_hook_init
 continue
 b apr_poll
 continue

 # load APR/PerlIO/PerlIO.so
 sharedlibrary PerlIO
 b PerlIOAPR_open

which can be used as:

 % gdb -command=.gdb-commands

This script stops in modperl_hook_init(), so you can step through the mod_perl startup. We had to use the
ap_run_pre_config so we can load the libmodperl.so library as explained earlier. Since httpd restarts on
the start, we have to continue until we hit modperl_hook_init second time, where we can set the breakpoint
at apr_poll, the very point where httpd polls for new request and run again continue so it’ll stop at
apr_poll. This particular script passes over modperl_hook_init(), since we run the continue command a
few times to reach the apr_poll breakpoint. See the Precooked gdb Startup Scripts section for standalone
script examples.

When gdb stops at the function apr_poll it’s a time to start the client, that will issue a request that will
exercise the server execution path we want to debug. For example to debug the implementation of
APR::Pool we may run:

 % t/TEST -run apr/pool

which will trigger the run of a handler in t/response/TestAPR/pool.pm which in turn tests the APR::Pool
code.

But before that if we want to debug the server response we need to set breakpoints in the libraries we want
to debug. For example if we want to debug the function PerlIOAPR_open which resides in
APR/PerlIO/PerlIO.so we first load it and then we can set a breakpoint in it. Notice that gdb may not be
able to load a library if it wasn’t referenced by any of the code. In this case we have to load this library at
the server startup. In our example we load:

 PerlModule APR::PerlIO

in httpd.conf. To check which libraries’ symbol tables can be loaded in gdb, run (when the server has been
started):

 gdb> info sharedlibrary

which also shows which libraries are loaded already.

Also notice that you don’t have to type the full path of the library when trying to load them, even a partial
name will suffice. In our commands file example we have used sharedlibrary mod_perl instead
of saying sharedlibrary mod_perl.so.

6929 Jan 2004

11.2.2 Starting the Server Fast under gdbDebugging mod_perl C Internals

If you want to set breakpoints and step through the code in the Perl and APR core libraries you should
load their appropriate libraries:

 gdb> sharedlibrary libperl
 gdb> sharedlibrary libapr
 gdb> sharedlibrary libaprutil

Setting auto-solib-add to 0 makes the debugging process unusual, since originally gdb was loading the
dynamic libraries automatically, whereas now it doesn’t. This is the price one has to pay to get the debug-
ger starting the program very fast. Hopefully the future versions of gdb will improve.

Just remember that if you try to step-in and debugger doesn’t do anything, that means that the library the
function is located in wasn’t loaded. The solution is to create a commands file as explained in the begin-
ning of this section and craft the startup script the way you need to avoid extra typing and mistakes when
repeating the same debugging process again and again.

Under threaded mpms (e.g. worker), it’s possible that you won’t be able to debug unless you tell gdb to
load the symbols from the threads library. So for example if on your OS that library is called libpthread.so
make sure to run:

 sharedlibrary libpthread

somewhere after the program has started. See the Precooked gdb Startup Scripts section for examples.

Another important thing is that whenever you want to be able to see the source code for the code you are
stepping through, the library or the executable you are in must have the debug symbols present. That
means that the code has to be compiled with -g option for the gcc compiler. For example if I want to set a
breakpoint in /lib/libc.so, I can do that by loading:

 gdb> sharedlibrary /lib/libc.so

But most likely that this library has the debug symbols stripped off, so while gdb will be able to break at
the breakpoint set inside this library, you won’t be able to step through the code. In order to do so, recom-
pile the library to add the debug symbols.

If debug code in response handler you usually start the client after the server was started, when doing this
a lot you may find it annoying to need to wait before the client can be started. Therefore you can use a few
tricks to do it in one command. If the server starts fast you can use sleep():

 % ddd -command=.debug-modperl-init & ; \
 sleep 2 ; t/TEST -verbose -run apr/pool

or the Apache::Test framework’s -ping=block option:

 % ddd -command=.debug-modperl-init & ; \
 t/TEST -verbose -run -ping=block apr/pool

which will block till the server starts responding, and only then will try to run the test.

29 Jan 200470

11.2.2 Starting the Server Fast under gdb

11.2.3 Precooked gdb Startup Scripts

Here are a few startup scripts you can use with gdb to accomplish one of the common debugging tasks. To
execute the startup script, simply run:

 % gdb -command=.debug-script-filename

They can be run under gdb and any of the gdb front-ends. For example to run the scripts under ddd substi-
tute gdb with ddd:

 % ddd -command=.debug-script-filename

Debugging mod_perl Initialization

The code/.debug-modperl-init:

This gdb startup script breaks at the modperl_hook_init() function,
which is useful for debug things at the modperl init phase.
#
Invoke as:
gdb -command=.debug-modperl-init
#
see ADJUST notes for things that may need to be adjusted

ADJUST: the path to the httpd executable if needed
file ~/httpd/worker/bin/httpd
handle SIGPIPE nostop
handle SIGPIPE pass
set auto-solib-add 0

define myrun
 tbreak main
 break ap_run_pre_config
 # ADJUST: the httpd.conf file’s path if needed
 # ADJUST: add -DPERL_USEITHREADS to debug threaded mpms
 run -d ‘pwd‘/t -f ‘pwd‘/t/conf/httpd.conf -DONE_PROCESS -DAPACHE2
 continue
end

define modperl_init
 sharedlibrary mod_perl
 b modperl_hook_init
 continue
end

define sharedap
 # ADJUST: uncomment next line to debug threaded mpms
 #sharedlibrary libpthread
 sharedlibrary apr
 sharedlibrary aprutil
 #sharedlibrary mod_ssl.so
 continue
end

define sharedperl

7129 Jan 2004

11.2.3 Precooked gdb Startup ScriptsDebugging mod_perl C Internals

 sharedlibrary libperl
end

start the server and run till modperl_hook_init on start
myrun
modperl_init

ADJUST: uncomment to reach modperl_hook_init on restart
#continue
#continue

ADJUST: uncomment if you need to step through the code in apr libs
#sharedap

ADJUST: uncomment if you need to step through the code in perlib
#sharedperl

startup script breaks at the modperl_hook_init() function, which is useful for debugging code
at the modperl’s initialization phase.

Debugging mod_perl’s Hooks Registeration With httpd

Similar to the previous startup script, the code/.debug-modperl-register:

This gdb startup script allows to break at the very first invocation
of mod_perl initialization, just after it was loaded. When the
perl_module is loaded, and its pointer struct is added via
ap_add_module(), the first hook that will be called is
modperl_register_hooks().
#
Invoke as:
gdb -command=.debug-modperl-register
#
see ADJUST notes for things that may need to be adjusted

define sharedap
 sharedlibrary apr
 sharedlibrary aprutil
 #sharedlibrary mod_ssl.so
end

define sharedperl
 sharedlibrary libperl
end

Run

ADJUST: the path to the httpd executable if needed
file ~/httpd/prefork/bin/httpd
handle SIGPIPE nostop
handle SIGPIPE pass
set auto-solib-add 0

tbreak main

assuming that mod_dso is compiled in

29 Jan 200472

11.2.3 Precooked gdb Startup Scripts

b load_module

ADJUST: the httpd.conf file’s path if needed
ADJUST: add -DPERL_USEITHREADS to debug threaded mpms
run -d ‘pwd‘/t -f ‘pwd‘/t/conf/httpd.conf \
-DONE_PROCESS -DNO_DETACH -DAPACHE2

skip over ’tbreak main’
continue

In order to set the breakpoint in mod_perl.so, we need to get to
the point where it’s loaded.
#
With static mod_perl, the bp can be set right away
#

With DSO mod_perl, mod_dso’s load_module() loads the mod_perl.so
object and it immediately calls ap_add_module(), which calls
modperl_register_hooks(). So if we want to bp at the latter, we need
to stop at load_module(), set the ’bp modperl_register_hooks’ and
then continue.

Assuming that ’LoadModule perl_module’ is the first LoadModule
directive in httpd.conf, you need just one ’continue’ after
’ap_add_module’. If it’s not the first one, you need to add as many
’continue’ commands as the number of ’LoadModule foo’ before
perl_module, but before setting the ’ap_add_module’ bp.
#
If mod_perl is compiled statically, everything is already preloaded,
so you can set modperl_* the breakpoints right away

b ap_add_module
continue

sharedlibrary mod_perl
b modperl_register_hooks
continue

#b modperl_hook_init
#b modperl_config_srv_create
#b modperl_startup
#b modperl_init_vhost
#b modperl_dir_config
#b modperl_cmd_load_module
#modperl_config_apply_PerlModule

ADJUST: uncomment next line to debug threaded mpms
#sharedlibrary libpthread

ADJUST: uncomment if you need to step through the code in apr libs
#sharedap

ADJUST: uncomment if you need to step through the code in perlib
#sharedperl

7329 Jan 2004

11.2.3 Precooked gdb Startup ScriptsDebugging mod_perl C Internals

startup script breaks at the modperl_register_hooks(), which is the very first hook called in
the mod_perl land. Therefore use this one if you need to start debugging at an even earlier entry point
into mod_perl.

Refer to the notes inside the script to adjust it for a specific httpd.conf file.

Debugging mod_perl XS Extensions

The code/.debug-modperl-xs:

This gdb startup script breaks at the mpxs_Apache__Filter_print()
function from the XS code, as an example how you can debug the code
in XS extensions.
#
Invoke as:
gdb -command=.debug-modperl-xs
and then run:
t/TEST -v -run -ping=block filter/api
#
see ADJUST notes for things that may need to be adjusted

ADJUST: the path to the httpd executable if needed
file /home/stas/httpd/worker/bin/httpd
handle SIGPIPE nostop
handle SIGPIPE pass
set auto-solib-add 0

define myrun
 tbreak main
 break ap_run_pre_config
 # ADJUST: the httpd.conf file’s path if needed
 # ADJUST: add -DPERL_USEITHREADS to debug threaded mpms
 run -d ‘pwd‘/t -f ‘pwd‘/t/conf/httpd.conf \
 -DONE_PROCESS -DNO_DETACH -DAPACHE2
 continue
end

define sharedap
 # ADJUST: uncomment next line to debug threaded mpms
 #sharedlibrary libpthread
 sharedlibrary apr
 sharedlibrary aprutil
 #sharedlibrary mod_ssl.so
 continue
end

define sharedperl
 sharedlibrary libperl
end

define gopoll
 b apr_poll
 continue

29 Jan 200474

11.2.3 Precooked gdb Startup Scripts

 continue
end

define mybp
 # load Apache/Filter.so
 sharedlibrary Filter
 b mpxs_Apache__Filter_print
 # no longer needed and they just make debugging harder under threads
 disable 2
 disable 3
 continue
end

myrun
gopoll
mybp

ADJUST: uncomment if you need to step through the code in apr libs
#sharedap

ADJUST: uncomment if you need to step through the code in perlib
#sharedperl

startup script breaks at the mpxs_Apache__Filter_print() function implemented in
xs/Apache/Filter/Apache__Filter.h. This is an example of debugging code in XS Extensions. For this
particular example the complete test case is:

 % ddd -command=.debug-modperl-xs & \
 t/TEST -v -run -ping=block filter/api

When filter/api test is running it calls mpxs_Apache__Filter_print() which is when the breakpoint is
reached.

Debugging code in shared objects created by Inline.pm

This is not strictly related to mod_perl, but sometimes when trying to reproduce a problem (e.g. for a
p5p bug-report) outside mod_perl, the code has to be written in C. And in certain cases, Inline can be
just the right tool to do it quickly. However if you want to interactively debug the library that it
creates, it might get tricky. So similar to the previous sections, here is a gdb code/.debug-inline:

save this file as .debug and execute this as:
gdb -command=.debug
or if you prefer gui
ddd -command=.debug
#
NOTE: Adjust the path to the perl executable
also this perl should be built with debug enabled
file /usr/bin/perl

If you need to debug with gdb a live script and not a library, you
are going to have a hard time to set any breakpoint in the C code.
the workaround is force Inline to compile and load .so, by putting
all the code in the BEGIN {} block and call Inline->init from there.
#
you also need to prevent from Inline deleting autogenerated .xs so

7529 Jan 2004

11.2.3 Precooked gdb Startup ScriptsDebugging mod_perl C Internals

you can step through the C source code, and of course you need to
add ’-g’ so .so won’t be stripped of debug info
#
here is a sample perl script that can be used with this gdb script
#
test.pl
#-----#
use strict;
use warnings;
#
BEGIN {
use Inline Config =>
#FORCE_BUILD => 1,
CLEAN_AFTER_BUILD => 0;

use Inline C => Config =>
OPTIMIZE => ’-g’;

use Inline C => <init;

}
#
my_bp();

tb main
NOTE: adjust the name of the script that you run
run test.pl

when Perl_runops_debug breakpoint is hit Inline will already load
the autogenerated .so, so we can set the bp in it (that’s only if
you have run ’Inline->init’ inside the BEGIN {} block

b S_run_body
continue
b Perl_runops_debug
continue

here you set your breakpoints
b my_bp
continue

startup script that will save you a lot of time. All the details and a sample perl script are inside the
gdb script.

11.3 Analyzing Dumped Core Files
META: need to review (unfinished)

When your application dies with the Segmentation fault error (which generates a SIGSEGV signal) and
optionally generates a core file you can use gdb or a similar debugger to find out what caused the
Segmentation fault (or segfault as we often call it).

29 Jan 200476

11.3 Analyzing Dumped Core Files

11.3.1 Getting Ready to Debug

In order to debug the core file we may need to recompile Perl and mod_perl with debugging symbols
inside. Usually you have to recompile only mod_perl, but if the core dump happens in the libmodperl.so
library and you want to see the whole backtrace, you probably want to recompile Perl as well.

Recompile Perl with -DDEBUGGING during the ./Configure stage (or even better with -Doptimize="-g"
which in addition to adding the -DDEBUGGING option, adds the -g options which allows you to debug the
Perl interpreter itself).

After recompiling Perl, recompile mod_perl with MP_DEBUG=1 during the Makefile.PL stage.

Building mod_perl with PERL_DEBUG=1 will:

1. add ‘-g’ to EXTRA_CFLAGS

2. turn on MP_TRACE (tracing)

3. Set PERL_DESTRUCT_LEVEL=2

4. Link against libperld if -e $Config{archlibexp}/CORE/libperld$Config{lib_ext}

If you build a static mod_perl, remember that during make install Apache strips all the debugging
symbols. To prevent this you should use the Apache --without-execstrip ./configure option. So if you
configure Apache via mod_perl, you should do:

 panic% perl Makefile.PL USE_APACI=1 \
 APACI_ARGS=’--without-execstrip’ [other options]

Alternatively you can copy the unstripped binary manually. For example we did this to give us an Apache
binary called httpd_perl which contains debugging symbols:

 panic# cp httpd-2.x/httpd /home/httpd/httpd_perl/bin/httpd_perl

Now the software is ready for a proper debug.

11.3.2 Creating a Faulty Package

META: no longer need to create the package, use Debug::DumpCore from CPAN. Need to adjust the
rest of the document to use it.

Next stage is to create a package that aborts abnormally with the Segmentation fault error. We will write
faulty code on purpose, so you will be able to reproduce the problem and exercise the debugging tech-
nique explained here. Of course in a real case you will have some real bug to debug, so in that case you
may want to skip this stage of writing a program with a deliberate bug.

We will use the Inline.pm module to embed some code written in C into our Perl script. The faulty
function that we will add is this:

7729 Jan 2004

11.3.1 Getting Ready to DebugDebugging mod_perl C Internals

 void segv() {
 int *p;
 p = NULL;
 printf("%d", *p); /* cause a segfault */
 }

For those of you not familiar with C programming, p is a pointer to a segment of memory. Setting it to
NULL ensures that we try to read from a segment of memory to which the operating system does not allow
us access, so of course dereferencing NULL pointer causes a segmentation fault. And that’s what we want.

So let’s create the Bad::Segv package. The name Segv comes from the SIGSEGV (segmentation viola-
tion signal) that is generated when the Segmentation fault occurs.

First we create the installation sources:

 panic% h2xs -n Bad::Segv -A -O -X
 Writing Bad/Segv/Segv.pm
 Writing Bad/Segv/Makefile.PL
 Writing Bad/Segv/test.pl
 Writing Bad/Segv/Changes
 Writing Bad/Segv/MANIFEST

Now we modify the Segv.pm file to include the C code. Afterwards it looks like this:

 package Bad::Segv;

 use strict;
 BEGIN {
 $Bad::Segv::VERSION = ’0.01’;
 }

 use Inline C => <<’END_OF_C_CODE’;
 void segv() {
 int *p;
 p = NULL;
 printf("%d", *p); /* cause a segfault */
 }

 END_OF_C_CODE

 1;

Finally we modify test.pl:

 use Inline SITE_INSTALL;

 BEGIN { $| = 1; print "1..1\n"; }
 END {print "not ok 1\n" unless $loaded;}
 use Bad::Segv;

 $loaded = 1;
 print "ok 1\n";

29 Jan 200478

11.3.2 Creating a Faulty Package

Note that we don’t test Bad::Segv::segv() in test.pl, since this will abort the make test stage abnormally,
and we don’t want this.

Now we build and install the package:

 panic% perl Makefile.PL
 panic% make && make test
 panic% su
 panic# make install

Running make test is essential for Inline.pm to prepare the binary object for the installation during
make install.

META: stopped here!

Now we can test the package:

 panic% ulimit -c unlimited
 panic% perl -MBad::Segv -e ’Bad::Segv::segv()’
 Segmentation fault (core dumped)
 panic% ls -l core
 -rw------- 1 stas stas 1359872 Feb 6 14:08 core

Indeed, we can see that the core file was dumped, which will be used to present the debug techniques.

11.3.3 Getting the core File Dumped

Now let’s get the core file dumped from within the mod_perl server. Sometimes the program aborts abnor-
mally via the SIGSEGV signal (Segmentation Fault), but no core file is dumped. And without the core file
it’s hard to find the cause of the problem, unless you run the program inside gdb or another debugger in
first place. In order to get the core file, the application has to:

have the effective UID the same as real UID (the same goes for GID). Which is the case of mod_perl
unless you modify these settings in the program.

be running from a directory which at the moment of the Segmentation fault is writable by the process.
Notice that the program might change its current directory during its run, so it’s possible that the core
file will need to be dumped in a different directory from the one the program was started from. For
example when mod_perl runs an Apache::Registry script it changes its directory to the one in
which the script source is located.

be started from a shell process with sufficient resource allocations for the core file to be dumped.
You can override the default setting from within a shell script if the process is not started manually.
In addition you can use BSD::Resource to manipulate the setting from within the code as well.

You can use ulimit for bash and limit for csh to check and adjust the resource allocation. For
example inside bash, you may set the core file size to unlimited:

7929 Jan 2004

11.3.3 Getting the core File DumpedDebugging mod_perl C Internals

 panic% ulimit -c unlimited

or for csh:

 panic% limit coredumpsize unlimited

For example you can set an upper limit on the core file size to 8MB with:

 panic% ulimit -c 8388608

So if the core file is bigger than 8MB it will be not created.

Of course you have to make sure that you have enough disk space to create a big core file (mod_perl
core files tend to be of a few MB in size).

Note that when you are running the program under a debugger like gdb, which traps the SIGSEGV signal,
the core file will not be dumped. Instead it allows you to examine the program stack and other things
without having the core file.

So let’s write a simple script that uses Bad::Segv:

 core_dump.pl

 use strict;
 use Bad::Segv ();
 use Cwd()

 my $r = shift;
 $r->content_type(’text/plain’);

 my $dir = getcwd;
 $r->print("The core should be found at $dir/core\n");
 Bad::Segv::segv();

In this script we load the Bad::Segv and Cwd modules. After that we acquire the request object and
send the HTTP header. Now we come to the real part--we get the current working directory, print out the
location of the core file that we are about to dump and finally we call Bad::Segv::segv() which dumps the
core file.

Before we run the script we make sure that the shell sets the core file size to be unlimited, start the server
in single server mode as a non-root user and generate a request to the script:

 panic% cd /home/httpd/httpd_perl/bin
 panic% limit coredumpsize unlimited
 panic% ./httpd_perl -X
 # issue a request here
 Segmentation fault (core dumped)

Our browser prints out:

29 Jan 200480

11.3.3 Getting the core File Dumped

 The core should be found at /home/httpd/perl/core

And indeed the core file appears where we were told it will (remember that Apache::Registry scripts
change their directory to the location of the script source):

 panic% ls -l /home/httpd/perl/core
 -rw------- 1 stas httpd 3227648 Feb 7 18:53 /home/httpd/perl/core

As you can see it’s a 3MB core file. Notice that mod_perl was started as user stas, which had write
permission for directory /home/httpd/perl.

11.3.4 Analyzing the core File

First we start gdb:

 panic% gdb /home/httpd/httpd_perl/bin/httpd_perl /home/httpd/perl/core

with the location of the mod_perl executable and the core file as the arguments.

To see the backtrace you run the where or the bt command:

 (gdb) where
 #0 0x4025ea08 in XS_Apache__Segv_segv ()
 from /usr/lib/perl5/site_perl/5.6.0/i386-linux/auto/Bad/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39.so
 #1 0x40136528 in PL_curcopdb ()
 from /usr/lib/perl5/5.6.0/i386-linux/CORE/libperl.so

Well, you can see the last commands, but our perl and mod_perl are probably without the debug symbols.
So we recompile Perl and mod_perl with debug symbols as explained earlier in this chapter.

Now when we repeat the process of starting the server, issuing a request and getting the core file, after
which we run gdb again against the executable and the dumped core file.

 panic% gdb /home/httpd/httpd_perl/bin/httpd_perl /home/httpd/perl/core

Now we can see the whole backtrace:

 (gdb) bt
 #0 0x40323a30 in segv () at Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39.xs:9
 #1 0x40323af8 in XS_Apache__Segv_segv (cv=0x85f2b28)
 at Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39.xs:24
 #2 0x400fcbda in Perl_pp_entersub () at pp_hot.c:2615
 #3 0x400f2c56 in Perl_runops_debug () at run.c:53
 #4 0x4008b088 in S_call_body (myop=0xbffff788, is_eval=0) at perl.c:1796
 #5 0x4008ac4f in perl_call_sv (sv=0x82fc2e4, flags=4) at perl.c:1714
 #6 0x807350e in perl_call_handler ()
 #7 0x80729cd in perl_run_stacked_handlers ()
 #8 0x80701b4 in perl_handler ()
 #9 0x809f409 in ap_invoke_handler ()
 #10 0x80b3e8f in ap_some_auth_required ()
 #11 0x80b3efa in ap_process_request ()
 #12 0x80aae60 in ap_child_terminate ()
 #13 0x80ab021 in ap_child_terminate ()

8129 Jan 2004

11.3.4 Analyzing the core FileDebugging mod_perl C Internals

 #14 0x80ab19c in ap_child_terminate ()
 #15 0x80ab80c in ap_child_terminate ()
 #16 0x80ac03c in main ()
 #17 0x401b8cbe in __libc_start_main () from /lib/libc.so.6

Reading the trace from bottom to top, we can see that it starts with Apache calls, followed by Perl syscalls.
At the top we can see the segv() call which was the one that caused the Segmentation fault, we can also
see that the faulty code was at line 9 of Segv.xs file (with MD5 signature of the code in the name of the
file, because of the way Inline.pm works). It’s a little bit tricky with Inline.pm since we have never
created any .xs files ourselves, (Inline.pm does it behind the scenes). The solution in this case is to tell
Inline.pm not to cleanup the build directory, so we can see the created .xs file.

We go back to the directory with the source of Bad::Segv and force the recompilation, while telling
Inline.pm not to cleanup after the build and to print a lot of other useful info:

 panic# cd Bad/Segv
 panic# perl -MInline=FORCE,NOCLEAN,INFO Segv.pm
 Information about the processing of your Inline C code:

 Your module is already compiled. It is located at:
 /home/httpd/perl/Bad/Segv/_Inline/lib/auto/Bad/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39.so

 But the FORCE_BUILD option is set, so your code will be recompiled.
 I’ll use this build directory:
 /home/httpd/perl/Bad/Segv/_Inline/build/Bad/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39/

 and I’ll install the executable as:
 /home/httpd/perl/Bad/Segv/_Inline/lib/auto/Bad/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39/Segv_C_0_01_e6b5959d800f515de36a7e7eeab28b39.so

 The following Inline C function(s) have been successfully bound to Perl:
 void segv()

It tells us that the code was already compiled, but since we have forced it to recompile we can look at the
files after the build. So we go into the build directory reported by Inline.pm and find the .xs file there,
where on line 9 we indeed find the faulty code:

 9: printf("%d",*p); // cause a segfault

Notice that in our example we knew what script has caused the Segmentation fault. In a real world the
chances are that you will find the core file without any clue to which of handler or script has triggered it.
The special curinfo gdb macro comes to help:

 panic% gdb /home/httpd/httpd_perl/bin/httpd_perl /home/httpd/perl/core
 (gdb) source mod_perl-x.xx/.gdbinit
 (gdb) curinfo
 9:/home/httpd/perl/core_dump.pl

We start the gdb debugger as before. .gdbinit, the file with various useful gdb macros is located in the
source tree of mod_perl. We use the gdb source() function to load these macros, and when we run the
curinfo macro we learn that the core was dumped when /home/httpd/perl/core_dump.pl was executing the
code at line 9.

These are the bits of information that are important in order to reproduce and resolve a problem: the file-
name and line where the faulty function was called (the faulty function is Bad::Segv::segv() in our case)
and the actual line where the Segementation fault occured (the printf("%d",*p) call in XS code). The
former is important for problem reproducing, it’s possible that if the same function was called from a
different script the problem won’t show up (not the case in our example, where the using of a value deref-
erenced from the NULL pointer will always cause the Segmentation fault).

29 Jan 200482

11.3.4 Analyzing the core File

11.3.5 Obtaining core Files under Solaris

There are two ways to get core files under Solaris. The first is by configuring the system to allow core
dumps, the second is by stopping the process when it receives the SIGSEGV signal and "manually"
obtaining the core file.

11.3.5.1 Configuring Solaris to Allow core Dumps

By default, Solaris 8 won’t allow a setuid process to write a core file to the file system. Since apache starts
as root and spawns children as ’nobody’, core dumps won’t produce core files unless you modify the
system settings.

To see the current settings, run the coreadm command with no parameters and you’ll see:

 % coreadm
 global core file pattern:
 init core file pattern: core
 global core dumps: disabled
 per-process core dumps: enabled
 global setid core dumps: disabled
 per-process setid core dumps: disabled
 global core dump logging: disabled

These settings are stored in the /etc/coreadm.conf file, but you should set them with the coreadm utility.
As super-user, you can run coreadm with -g to set the pattern and path for core files (you can use a few
variables here) and -e to enable some of the disabled items. After setting a new pattern, enabling global,
global-setid, and log, and rebooting the system (reboot is required), the new settings look like:

 % coreadm
 global core file pattern: /usr/local/apache/cores/core.%f.%p
 init core file pattern: core
 global core dumps: enabled
 per-process core dumps: enabled
 global setid core dumps: enabled
 per-process setid core dumps: disabled
 global core dump logging: enabled

Now you’ll start to see core files in the designated cores directory and they will look like core.httpd.2222
where httpd is the name of the executable and the 2222 is the process id. The new core files will be
read/write for root only to maintain some security, and you should probably do this on development
systems only.

11.3.5.2 Manually Obtaining core Dumps

On Solaris the following method can be used to generate a core file.

1. Use truss(1) as root to stop a process on a segfault:

8329 Jan 2004

11.3.5 Obtaining core Files under SolarisDebugging mod_perl C Internals

 panic% truss -f -l -t \!all -s \!SIGALRM -S SIGSEGV -p <pid>

or, to monitor all httpd processes (from bash):

 panic% for pid in ‘ps -eaf -o pid,comm | fgrep httpd | cut -d’/’ -f1‘;
 do truss -f -l -t \!all -s \!SIGALRM -S SIGSEGV -p $pid 2>&1 &
 done

The used truss(1) options are:

-f - follow forks.

-l - (that’s an el) includes the thread-id and the pid (the pid is what we want).

-t - specifies the syscalls to trace,

!all - turns off the tracing of syscalls specified by -t

-s - specifies signals to trace and the !SIGALRM turns off the numerous alarms Apache
creates.

-S - specifies signals that stop the process.

-p - is used to specify the pid.

Instead of attaching to the process, you can start it under truss(1):

 panic% truss -f -l -t \!all -s \!SIGALRM -S SIGSEGV \
 /usr/local/bin/httpd -f httpd.conf 2>&1 &

2. Watch the error_log file for reaped processes, as when they get SISSEGV signals. When the process
is reaped it’s stopped but not killed.

3. Use gcore(1) to get a core of stopped process or attach to it with gdb(1). For example if the process id
is 662:

 %panic gcore 662
 gcore: core.662 dumped

Now you can load this core file in gdb(1).

4. kill -9 the stopped process. Kill the truss(1) processes as well, if you don’t need to trap other
segfaults.

Obviously, this isn’t great to be doing on a production system since truss(1) stops the process after it
dumps core and prevents Apache from reaping it. So, you could hit the clients/threads limit if you segfault
a lot.

29 Jan 200484

11.3.5 Obtaining core Files under Solaris

11.4 Debugging Threaded MPMs

11.4.1 Useful Information from gdb Manual

Debugging programs with multiple threads: http://sources.redhat.com/gdb/current/online-
docs/gdb_5.html#SEC25

Stopping and starting multi-thread programs: http://sources.redhat.com/gdb/current/online-
docs/gdb_6.html#SEC40

11.4.2 libpthread

when using:

 set auto-solib-add 0

make sure to:

 sharedlibrary libpthread

(or whatever the shared library is used on your OS) without which you may have problems to debug the
threaded mpm mod_perl.

11.5 Defining and Using Custom gdb Macros
GDB provides two ways to store sequences of commands for execution as a unit: user-defined commands
and command files. See: http://sources.redhat.com/gdb/current/onlinedocs/gdb_21.html

Apache 2.0 source comes with a nice pack of macros and can be found in httpd-2.0/.gdbinit. To use it
issue:

 gdb> source /wherever/httpd-2.0/.gdbinit

Now if for example you want to dump the contents of the bucket brigade, you can do:

 gdb> dump_brigade my_brigade

where my_brigade is the pointer to the bucket brigade that you want to debug.

mod_perl 1.0 has a similar file (modperl/.gdbinit) mainly including handy macros for dumping Perl datas-
tructures, however it works only with non-threaded Perls. But otherwise it’s useful in debugging mod_perl
2.0 as well.

8529 Jan 2004

11.4 Debugging Threaded MPMsDebugging mod_perl C Internals

http://sources.redhat.com/gdb/current/onlinedocs/gdb_5.html#SEC25
http://sources.redhat.com/gdb/current/onlinedocs/gdb_5.html#SEC25
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html#SEC40
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html#SEC40
http://sources.redhat.com/gdb/current/onlinedocs/gdb_21.html

11.6 Expanding C Macros
Perl, mod_perl and httpd C code makes an extensive use of C macros, which sometimes use many other
macros in their definitions, so it becomes quite a task to figure out how to figure out what a certain macro
expands to, especially when the macro expands to different values in differnt environments. Luckily there
are ways to automate the expansion process.

11.6.1 Expanding C Macros with make

The mod_perl Makefile’s include a rule for macro expansions which you can find by looking for the c.i.
rule. To expand all macros in a certain C file, you should run make filename.i, which will create
filename.i with all macros expanded in it. For example to create apr_perlio.i with all macros used in
apr_perlio.c:

 % cd modperl-2.0/xs/APR/PerlIO
 % make apr_perlio.i

the apr_perlio.i file now lists all the macros:

 % less apr_perlio.i
 # 1 "apr_perlio.c"
 # 1 "<built-in>"
 #define __VERSION__ "3.1.1 (Mandrake Linux 8.3 3.1.1-0.4mdk)"
 ...

11.6.2 Expanding C Macros with gdb

With gcc-3.1 or higher and gdb-5.2-dev or higher you can expand macros in gdb, when you step through
the code. e.g.:

 (gdb) macro expand pTHX_
 expands to: PerlInterpreter *my_perl __attribute__((unused)),
 (gdb) macro expand PL_dirty
 expands to: (*Perl_Tdirty_ptr(my_perl))

For each library that you want to use this feature with you have to compile it with:

 CFLAGS="-gdwarf-2 -g3"

or whatever is appropriate for your system, refer to the gcc manpage for more info.

To compile perl with this debug feature, pass -Doptimize=’-gdwarf-2 -g3’ to ./Configure.
For Apache run:

 CFLAGS="-gdwarf-2 -g3" ./configure [...]

for mod_perl you don’t have to do anything, as it’ll pick the $Config{optimize} Perl flags automati-
cally, if Perl is compiled with -DDEBUGGING (which is implied on most systems, if you use -Dopti-
mize=’-g’ or similar.)

29 Jan 200486

11.6 Expanding C Macros

Notice that this will make your libraries huge! e.g. on Linux 2.4 Perl 5.8.0’s normal libperl.so is about
0.8MB on linux, compiled with -Doptimize=’-g’ about 2.7MB and with -Dopti-
mize=’-gdwarf-2 -g3’ 12.5MB. httpd is also becomes about 10 times bigger with this feature
enabled. mod_perl.so instead of 0.2k becomes 11MB. You get the idea. Of course since you may want this
only during the development/debugging, that shouldn’t be a problem.

The complete details are at: http://sources.redhat.com/gdb/current/onlinedocs/gdb_10.html#SEC69

11.7 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

11.8 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

8729 Jan 2004

11.7 MaintainersDebugging mod_perl C Internals

http://sources.redhat.com/gdb/current/onlinedocs/gdb_10.html#SEC69

12 Getting Help with mod_perl 2.0 Core Development

29 Jan 200488

12 Getting Help with mod_perl 2.0 Core Development

12.1 Description
This document covers the resources available to the mod_perl 2.0 core developer. Please notice that you
probably want to read the user’s help documentation if you have problems using mod_perl 2.0.

The following mailing lists and resources can be of a major interest to the mod_perl 2.0 developers.

12.2 mod_perl

12.2.1 Submitting Patches

If you submit patches the Porting/patching.pod manpage can be very useful. You can find it
perl-5.7.0/Porting/patching.pod or similar or read it online at http://sunsite.ualberta.ca/Documenta-
tion/Misc/perl-5.6.1/Porting/patching.html.

Note that we prefer the patches inlined into an email. This makes easier to comment on them. If your
email client mangles the spacing and wraps lines, then send them as MIME attachments.

12.2.2 mod_perl 2.0 Core Development Discussion List

This list is used by the mod_perl 2.0 core developers to discuss design issues, solve problems, munch on
patches and exchange ideas.

mailing list subscription: mailto:dev-subscribe@perl.apache.org

archive: http://marc.theaimsgroup.com/?l=apache-modperl-dev&r=1&w=2#apache-modperl-dev

When reporting problems, be sure to include the output of:

 % perl build/config.pl

which generates the output from:

perl -V
httpd -V
Makefile.PL options

Please use the output generated by t/REPORT utility.

If you get segmentation faults please send the stack backtrace to the modperl developers list.

12.2.3 mod_perl 2.0 Core Development CVS Commits List

This list’s traffic is comprised of solely cvs commits, so this is the place to be if you want to see mod_perl
2.0 evolve before your eyes.

8929 Jan 2004

12.1 DescriptionGetting Help with mod_perl 2.0 Core Development

http://sunsite.ualberta.ca/Documentation/Misc/perl-5.6.1/Porting/patching.html
http://sunsite.ualberta.ca/Documentation/Misc/perl-5.6.1/Porting/patching.html
http://marc.theaimsgroup.com/?l=apache-modperl-dev&r=1&w=2#apache-modperl-dev

mailing list subscription: mailto:modperl-cvs-subscribe@perl.apache.org

archive: http://marc.theaimsgroup.com/?l=apache-modperl-cvs&r=1&w=2#apache-modperl-cvs

12.2.4 Apache-Test

The Apache-Test project, originally developed as a part of mod_perl 2.0, is now a part of the Apache
httpd-test project. You get this repository automatically when checking out the mod_perl-2.0 cvs
repository.

To retrieve the whole httpd-test project, run:

 cvs co httpd-test

discussion/problems report:

mailing list subscription: mailto:test-dev-subscribe@httpd.apache.org

archive: META: ???

cvs commits

mailing list subscription: mailto:test-cvs-subscribe@httpd.apache.org

archive: META: ???

12.3 Apache

12.3.1 httpd 2.0

discussion/problems report:

mailing list subscription: mailto:dev-subscribe@httpd.apache.org

archive: http://marc.theaimsgroup.com/?l=apache-new-httpd&r=1&w=

cvs commits

mailing list subscription: mailto:httpd-2.0-cvs-subscribe@perl.apache.org

archive: http://marc.theaimsgroup.com/?l=apache-cvs&r=1&w=2

Apache source code cross-reference (LXR): http://lxr.webperf.org/

Apache source code through Doxygen documentation system:

29 Jan 200490

12.3 Apache

http://marc.theaimsgroup.com/?l=apache-modperl-cvs&r=1&w=2#apache-modperl-cvs
http://marc.theaimsgroup.com/?l=apache-new-httpd&r=1&w=
http://marc.theaimsgroup.com/?l=apache-cvs&r=1&w=2
http://lxr.webperf.org/

http://docx.webperf.org/

12.3.2 Apache Portable Runtime (APR)

The Apache Portable Run-time libraries have been designed to provide a common interface to low level
routines across any platform. mod_perl comes with a partial Perl APR API.

discussion/problems report:

mailing list subscription: mailto:apr-dev-subscribe@perl.apache.org

archive: http://marc.theaimsgroup.com/?l=apr-dev&r=1&w=2

cvs commits

mailing list subscription: mailto:apr-cvs-subscribe@perl.apache.org

archive: http://marc.theaimsgroup.com/?l=apr-cvs&r=1&w=2

12.3.3 Perl 5

Currently mod_perl 2.0 requires perl 5.6.1 and higher.

If you think you have found a bug in perl 5 report it to the perl5-porters mailing list. Otherwise please
choose the appropriate list from the extensive perl related lists: http://lists.perl.org/.

discussion/problems reports:

mailing list subscription: mailto:perl5-porters-subscribe@perl.org

archive: http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/ and http://archive.devel-
ooper.com/perl5-porters@perl.org/

news gateway: news://news.perl.com/perl.porters-gw/

Perl Dev Resources

http://dev.perl.org/

perforce

Perl uses perforce for its source revision control, see Porting/repository.pod manpage coming
with Perl for more information.

the perforce repository: http://public.activestate.com/gsar/APC/ or ftp://ftp.linux.actives-
tate.com/pub/staff/gsar/APC/

9129 Jan 2004

12.3.2 Apache Portable Runtime (APR)Getting Help with mod_perl 2.0 Core Development

http://docx.webperf.org/
http://marc.theaimsgroup.com/?l=apr-dev&r=1&w=2
http://marc.theaimsgroup.com/?l=apr-cvs&r=1&w=2
http://lists.perl.org/
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/
http://archive.develooper.com/perl5-porters@perl.org/
http://archive.develooper.com/perl5-porters@perl.org/
news://news.perl.com/perl.porters-gw/
http://dev.perl.org/
http://public.activestate.com/gsar/APC/
ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/
ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/

the Perl Repository Browser: http://public.activestate.com/cgi-bin/perlbrowse

the Perl cross-reference: http://pxr.perl.org/source/

mailing list subscription: perl5-changes-subscribe@perl.org

archive: http://archive.develooper.com/perl5-changes@perl.org/

12.4 More Help
There is a parallel help document in the user documentation set which covers mod_perl user’s issues.

12.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

12.6 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200492

12.4 More Help

http://public.activestate.com/cgi-bin/perlbrowse
http://pxr.perl.org/source/
http://archive.develooper.com/perl5-changes@perl.org/

Table of Contents:
.................. 1Developer’s guide
.............. 4mod_perl 2.0 Source Code Explained
............. 41 mod_perl 2.0 Source Code Explained
.................. 51.1 Description
.............. 51.2 Project’s Filesystem Layout
.................. 51.3 Directory src
............. 51.3.1 Directory src/modules/perl/
.................. 51.4 Directory xs/
............ 61.4.1 xs/Apache, xs/APR and xs/ModPerl
.................. 61.4.2 xs/maps
.............. 71.4.2.1 Functions Mapping
.............. 91.4.2.2 Structures Mapping
............... 91.4.2.3 Types Mapping
............... 91.4.2.4 Modifying Maps
............... 101.4.3 XS generation process
................ 101.5 Gluing Existing APIs
....... 101.6 Adding Wrappers for existing APIs and Creating New APIs
......... 111.6.1 Functions Returning a Single Value (or Nothing)
......... 151.6.2 Functions Returning Variable Number of Values
............ 181.6.3 Wrappers Functions for C Macros
........... 191.7 Wrappers for modperl_, apr_ and ap_ APIs
.......... 201.8 MP_INLINE vs C Macros vs Normal Functions
............... 211.9 Adding New Interfaces
.......... 211.9.1 Adding Typemaps for new C Data Types
......... 221.9.2 Importing Constants and Enums into Perl API
.................. 231.10 Maintainers
.................. 241.11 Authors
............ 25mod_perl internals: Apache 2.0 Integration
............ 252 mod_perl internals: Apache 2.0 Integration
.................. 262.1 Description
................... 262.2 Startup
........... 262.2.1 The Link Between mod_perl and httpd
.............. 262.3 Configuration Tree Building
...... 272.3.1 Enabling the mod_perl Module and Installing its Callbacks
............... 282.4 The pre_config Phase
............. 282.4.1 Configuration Tree Processing
............... 292.4.2 Virtual Hosts Fixup
............... 292.4.3 The open_logs Phase
............... 302.4.4 The post_config Phase
................ 302.5 Request Processing
.................. 302.6 Shutdown
.................. 302.7 Maintainers
................... 302.8 Authors

i29 Jan 2004

Table of Contents:Getting Help with mod_perl 2.0 Core Development

.......... 31mod_perl internals: mod_perl-specific functionality flow

.......... 313 mod_perl internals: mod_perl-specific functionality flow

................... 323.1 Description

.................. 323.2 Perl Interpreters

.................... 333.3 Filters

................... 353.4 Maintainers

.................... 363.5 Authors

.............. 37MPMs - Multi-Processing Model Modules

............. 374 MPMs - Multi-Processing Model Modules

................... 384.1 Description

.................. 384.2 MPMs Overview

.................. 384.3 The Worker MPM

.................. 384.4 The Prefork MPM

................... 384.5 Maintainers

.................... 384.6 Authors

................. 40mod_perl Coding Style Guide

................ 405 mod_perl Coding Style Guide

................... 415.1 Description

................. 415.2 Coding Style Guide

............ 435.3 Function and Variable Prefixes Convention

................. 445.4 Coding Guidelines

................. 445.4.1 Global Variables

................... 445.4.2 Modules

................... 445.4.3 Methods

.................. 445.4.4 Inheritance

.................. 455.4.5 Symbol tables

................. 455.4.6 Use of $_ in loops

................... 465.5 Maintainers

.................... 465.6 Authors

........... 60Porting Apache:: XS Modules from mod_perl 1.0 to 2.0

.......... 476 Porting Apache:: XS Modules from mod_perl 1.0 to 2.0

................... 486.1 Description

................. 486.2 Porting Makefile.PL

.................. 486.3 Porting XS Code

................... 486.4 Thread Safety

.................... 496.5 PerlIO

.................. 496.6 ’make test’ Suite

............... 496.7 Apache C Code Specific Notes

... 496.7.1 ap_soft_timeout(), ap_reset_timeout(), ap_hard_timeout() and ap_kill_timeout()

................... 506.8 Maintainers

.................... 506.9 Authors

............... 51Measure sizeof() of Perl’s C Structures

.............. 517 Measure sizeof() of Perl’s C Structures

................... 527.1 Description

.................. 527.2 Perl Structures

................... 557.3 SEE ALSO

................... 557.4 Maintainers

29 Jan 2004ii

Table of Contents:

.................... 557.5 Authors

............... 56Which Coding Technique is Faster

............... 568 Which Coding Technique is Faster

................... 578.1 Description

.................. 578.2 backticks vs XS

................. 588.3 sv_catpvn vs. fprintf

................... 598.4 Maintainers

.................... 598.5 Authors

........... 60Porting Apache:: XS Modules from mod_perl 1.0 to 2.0

.......... 609 Porting Apache:: XS Modules from mod_perl 1.0 to 2.0

................... 619.1 Description

................. 619.2 Porting Makefile.PL

.................. 619.3 Porting XS Code

................... 619.4 Thread Safety

.................... 629.5 PerlIO

.................. 629.6 ’make test’ Suite

............... 629.7 Apache C Code Specific Notes

... 629.7.1 ap_soft_timeout(), ap_reset_timeout(), ap_hard_timeout() and ap_kill_timeout()

................... 639.8 Maintainers

.................... 639.9 Authors

............... 64Debugging mod_perl Perl Internals

.............. 6410 Debugging mod_perl Perl Internals

................... 6510.1 Description

................... 6510.2 Maintainers

.................... 6510.3 Authors

................ 66Debugging mod_perl C Internals

............... 6611 Debugging mod_perl C Internals

................... 6711.1 Description

................... 6711.2 Debug notes

......... 6711.2.1 Setting gdb breakpoints with mod_perl built as DSO

............. 6811.2.2 Starting the Server Fast under gdb

.............. 7111.2.3 Precooked gdb Startup Scripts

............... 7611.3 Analyzing Dumped Core Files

............... 7711.3.1 Getting Ready to Debug

............... 7711.3.2 Creating a Faulty Package

.............. 7911.3.3 Getting the core File Dumped

............... 8111.3.4 Analyzing the core File

............. 8311.3.5 Obtaining core Files under Solaris

.......... 8311.3.5.1 Configuring Solaris to Allow core Dumps

............ 8311.3.5.2 Manually Obtaining core Dumps

............... 8511.4 Debugging Threaded MPMs

............ 8511.4.1 Useful Information from gdb Manual

.................. 8511.4.2 libpthread

............ 8511.5 Defining and Using Custom gdb Macros

................. 8611.6 Expanding C Macros

............. 8611.6.1 Expanding C Macros with make

............. 8611.6.2 Expanding C Macros with gdb

iii29 Jan 2004

Table of Contents:Getting Help with mod_perl 2.0 Core Development

................... 8711.7 Maintainers

.................... 8711.8 Authors

............ 88Getting Help with mod_perl 2.0 Core Development

........... 8812 Getting Help with mod_perl 2.0 Core Development

................... 8912.1 Description

................... 8912.2 mod_perl

................ 8912.2.1 Submitting Patches

.......... 8912.2.2 mod_perl 2.0 Core Development Discussion List

......... 8912.2.3 mod_perl 2.0 Core Development CVS Commits List

.................. 9012.2.4 Apache-Test

.................... 9012.3 Apache

.................. 9012.3.1 httpd 2.0

............. 9112.3.2 Apache Portable Runtime (APR)

................... 9112.3.3 Perl 5

................... 9212.4 More Help

................... 9212.5 Maintainers

.................... 9212.6 Authors

29 Jan 2004iv

Table of Contents:

	1€€mod_perl 2.0 Source Code Explained
	1.1€€Description
	1.2€€Project's Filesystem Layout
	1.3€€Directory src
	1.3.1€€Directory src/modules/perl/

	1.4€€Directory xs/
	1.4.1€€xs/Apache, xs/APR and xs/ModPerl
	1.4.2€€xs/maps
	1.4.2.1€€Functions Mapping
	1.4.2.2€€Structures Mapping
	1.4.2.3€€Types Mapping
	1.4.2.4€€Modifying Maps

	1.4.3€€XS generation process

	1.5€€Gluing Existing APIs
	1.6€€Adding Wrappers for existing APIs and Creating New APIs
	1.6.1€€Functions Returning a Single Value †or Nothing‡
	1.6.2€€Functions Returning Variable Number of Values
	1.6.3€€Wrappers Functions for C Macros

	1.7€€Wrappers for modperl_, apr_ and ap_ APIs
	1.8€€MP_INLINE vs C Macros vs Normal Functions
	1.9€€Adding New Interfaces
	1.9.1€€Adding Typemaps for new C Data Types
	1.9.2€€Importing Constants and Enums into Perl API

	1.10€€Maintainers
	1.11€€Authors

	2€€mod_perl internals: Apache 2.0 Integration
	2.1€€Description
	2.2€€Startup
	2.2.1€€The Link Between mod_perl and httpd

	2.3€€Configuration Tree Building
	2.3.1€€Enabling the mod_perl Module and Installing its Callbacks

	2.4€€The pre_config Phase
	2.4.1€€Configuration Tree Processing
	2.4.2€€Virtual Hosts Fixup
	2.4.3€€The open_logs Phase
	2.4.4€€The post_config Phase

	2.5€€Request Processing
	2.6€€Shutdown
	2.7€€Maintainers
	2.8€€Authors

	3€€mod_perl internals: mod_perl-specific functionality flow
	3.1€€Description
	3.2€€Perl Interpreters
	3.3€€Filters
	3.4€€Maintainers
	3.5€€Authors

	4€€MPMs - Multi-Processing Model Modules
	4.1€€Description
	4.2€€MPMs Overview
	4.3€€The Worker MPM
	4.4€€The Prefork MPM
	4.5€€Maintainers
	4.6€€Authors

	5€€mod_perl Coding Style Guide
	5.1€€Description
	5.2€€Coding Style Guide
	5.3€€Function and Variable Prefixes Convention
	5.4€€Coding Guidelines
	5.4.1€€Global Variables
	5.4.2€€Modules
	5.4.3€€Methods
	5.4.4€€Inheritance
	5.4.5€€Symbol tables
	5.4.6€€Use of $_ in loops

	5.5€€Maintainers
	5.6€€Authors

	6€€Porting Apache:: XS Modules from mod_perl 1.0 to 2.0
	6.1€€Description
	6.2€€Porting Makefile.PL
	6.3€€Porting XS Code
	6.4€€Thread Safety
	6.5€€PerlIO
	6.6€€'make test' Suite
	6.7€€Apache C Code Specific Notes
	6.7.1€€ap_soft_timeout†‡, ap_reset_timeout†‡, ap_hard_timeout†‡ and ap_kill_timeout†‡

	6.8€€Maintainers
	6.9€€Authors

	7€€Measure sizeof†‡ of Perl's C Structures
	7.1€€Description
	7.2€€Perl Structures
	7.3€€SEE ALSO
	7.4€€Maintainers
	7.5€€Authors

	8€€Which Coding Technique is Faster
	8.1€€Description
	8.2€€backticks vs XS
	8.3€€sv_catpvn vs. fprintf
	8.4€€Maintainers
	8.5€€Authors

	9€€Porting Apache:: XS Modules from mod_perl 1.0 to 2.0
	9.1€€Description
	9.2€€Porting Makefile.PL
	9.3€€Porting XS Code
	9.4€€Thread Safety
	9.5€€PerlIO
	9.6€€'make test' Suite
	9.7€€Apache C Code Specific Notes
	9.7.1€€ap_soft_timeout†‡, ap_reset_timeout†‡, ap_hard_timeout†‡ and ap_kill_timeout†‡

	9.8€€Maintainers
	9.9€€Authors

	10€€Debugging mod_perl Perl Internals
	10.1€€Description
	10.2€€Maintainers
	10.3€€Authors

	11€€Debugging mod_perl C Internals
	11.1€€Description
	11.2€€Debug notes
	11.2.1€€Setting gdb breakpoints with mod_perl built as DSO
	11.2.2€€Starting the Server Fast under gdb
	11.2.3€€Precooked gdb Startup Scripts

	11.3€€Analyzing Dumped Core Files
	11.3.1€€Getting Ready to Debug
	11.3.2€€Creating a Faulty Package
	11.3.3€€Getting the core File Dumped
	11.3.4€€Analyzing the core File
	11.3.5€€Obtaining core Files under Solaris
	11.3.5.1€€Configuring Solaris to Allow core Dumps
	11.3.5.2€€Manually Obtaining core Dumps

	11.4€€Debugging Threaded MPMs
	11.4.1€€Useful Information from gdb Manual
	11.4.2€€libpthread

	11.5€€Defining and Using Custom gdb Macros
	11.6€€Expanding C Macros
	11.6.1€€Expanding C Macros with make
	11.6.2€€Expanding C Macros with gdb

	11.7€€Maintainers
	11.8€€Authors

	12€€Getting Help with mod_perl 2.0 Core Development
	12.1€€Description
	12.2€€mod_perl
	12.2.1€€Submitting Patches
	12.2.2€€mod_perl 2.0 Core Development Discussion List
	12.2.3€€mod_perl 2.0 Core Development CVS Commits List
	12.2.4€€Apache-Test

	12.3€€Apache
	12.3.1€€httpd 2.0
	12.3.2€€Apache Portable Runtime †APR‡
	12.3.3€€Perl 5

	12.4€€More Help
	12.5€€Maintainers
	12.6€€Authors

