mod_perl 2.0 Source Code Explained 1 mod_perl 2.0 Source Code Explained

1 mod_perl 2.0 Source Code Explained

29 Jan 2004 1

1.1 Description

1.1 Description|

This documentexplains how taavigatethe mod_perl source code, modify and rebuildgkising code
and mostmportant how to add neviunctionality.

1.2 |Project’s Filesystem L ayout

In its pristine state the project is comprised of fo#owing diredories and filesresidng at the rootirec
tory of theproject:

Apache- Test/ - test kit for nod_perl and Apache::* nodul es
ModPer| - Regi stry/ - ModPerl:: Registry sub-project

bui | d/ - utilities used during project build
docs/ - documentation

lib/ - Perl nodul es

src/ - C code that builds |ibnmodperl.so

t/ - nod_perl tests

t odo/ - things to be done

util/ - useful utilities for devel opers

xs/ - source xs code and maps

Changes - Changes file

LI CENSE - ASF LI CENSE docunent

Makefile. PL - generates all the needed Makefiles

After building the project, théollowing rootdiredoriesand files gegeneated

Makefil e - Makefile
W apXs/ - autogenerated XS code
bl i b/ - ready to install version of the package

1.3 |Directory src

1.3.1 [Directory src/modules/per]|/

Thediredory src/modules/per| includes the C source files needed to builditreodper| library.
Notice that several files in thdiredory areautayereratedduring theperl Makefile stage.

When adding new source files to thiiseaory you should add their names to 1@ _sr ¢c_nanes vari-
ablein lib/ModPerl/Code.pm, so they will be picked up by tleeitayereratedMakefile.

1.4 |Directory X9/

Apache/ Apache specific XS code
APR/ - APR specific XS code
ModPer | / ModPer| specific XS code
maps/ -

tabl es/ -

Makefile. PL -

2 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.4.1 xs/Apache, xAPR and x5/M odPerl

nodper| _xs_sv_convert.h -
nodper | _xs_typedefs. h -
nmodper| _xs_util.h -
typenmap -

1.4.1 xs/Apache, xYAPR and xs/M odPer ||

The xs/Apache, xAPR and xs'ModPer!| directories include .h files which have C and XS code in them.
They al have the .h extension because they are aways #i ncl ude- d, never compiled into their own
object file. and only the file that #i ncl ude-s an .h file from these directories should be able to see
what’ s in there. Anything else belongs in a src/modul es/perl/foo.c public API.

1.4.2

The xs/maps directory includes mapping files which describe how Apache Perl API should be constructed
and various X S typemapping.

These files get modified whenever:

e anew function is added or the API of the existing one is modified.

® anew struct isadded or the existing one is modified

® anew C datatype or Perl typemap is added or an existing one is modified.
The execution of:

% make source_scan
or:

% per| buil d/ source_scan. pl

converts these map files into their Perl table representation in the xs/tables/current/ directory. This Perl
representation is then used during per | Makefi | e. PL to generate the XS code in the ./WrapX¥ direc-
tory by the xs_generate() function. This XS code is combined of the Apache API Perl glue and mod_perl
specific extensions.

NOTE: source_scan requires C::Scan 0.75, which at the moment is unreleased, there is a working copy
here: |http://perl.apache.org/~dougm/Scan.pm|

If you need to skip certain unwanted C defines from being picked by the source scanning you can add
themto the array $Apache: : Par seSour ce: : def i nes_unwant ed in lib/Apache/ParseSource.pm.

Notice that source_scan target is normally not run during the project build process, since the source scan-
ning is not stable yet, therefore everytime the map files change, make sour ce_scan should be run
manually and the updated files ending up in the xg/tables/current/ directory should be committed to the
Cvs repository.

29 Jan 2004 3

http://perl.apache.org/~dougm/Scan.pm

1.4.2 xgdmaps

The source_scan make target is actually to run build/source scan.pl, which can be run directly without
needing to create Makefile first.

There are three different types of map filesin the xs/maps/ directory:

® Functions Mapping
apache_functi ons. map

nmodper | _functi ons. map
apr _functions. map

® Structures Mapping

apache_struct ures. map
apr_structures. map

e TypesMapping
apache_t ypes. nap

apr_types. map
nodper | _types. nap

The following sections describe the syntax of the files in each group

1.4.2.1 [Functions M appingd

The functions mapping file is comprised of groups of function definitions. Each group starts with a header
similar to XS syntax:

MODULE=. .. PACKAGE=... PREFIX=... BOOT=... |SA=...
where:
e MODULE

the module name where the functions should be put. eg. MODULE Apache: : Connecti on will
place the functions into WrapXSApache/Connection.{pm,xs}.

® PACKAGE

the package name functions belong to, defaults to MODULE. The value of guessindicates that package
name should be guessed based on first argument found that maps to a Perl class. If the value is not
defined and the function’s name starts with ap_ the Apache package will be used, if it starts with
apr__then the APR packageis used.

® PREFI X

prefix string to be stripped from the function name. If not specified it defaults to PACKAGE,
converted to C name convention, eg. APR. : Base64 makes the prefix: apr_base64 . If the
converted prefix does not match, defaultsto ap_or apr_.

4 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.4.2 xgdmaps

e BOOT

The BOOT directive tells the XS generator, whether to add the boot function to the autogenerated XS
file or not. If the value of BOOT is not true or it's simply not declared, the boot function won't be
added.

If the value is true, a boot function will be added to the XS file. Note, that this function is not
declared in the map file.

The boot function name must be constructed from three parts:
'npxs_’ . MODULE . ’ _BOOT
where MODULE is the one declared with MODULE= in the map file.

For example if we want to have an XS boot function for aclass APR: : | O we create this function in
x5APR/IO/APR__10O.h:

static void npxs_APR__| O BOOT(pTHX)
{

}

/* boot code here */

and now we add the BOOT=1 declaration to the xsmaps/modper|_functions.map file:
MODULE=APR: : | O PACKAGE=APR : | O BOOT=1
Notice that the PACKAGE= declaration is a must.

When make xs generate is run (after running make source scan), it autogenerates
Wrap/APR/10/10.xs and amongst other things will include:

BOOT:
npxs_APR__| O BOOT(aTHXo) ;

® | SA
META: complete

Every function definition is declared on a separate line (use\ if the line is too long), using the following
format:

C function nane | Dispatch function name | Argspec | Perl alias
where:
e C function name

The name of thereal C function.

29 Jan 2004 5

1.4.2 xgdmaps

Function names that do not begin with /™\w are skipped. For details see
%vbdPer| :: MapUtil:: disabl ed _map.

The return type can be specified before the C function name. It defaults to return type in
{ Apache, ModPer| }:: FunctionTabl e.

META: DEFINE nuances
® Dispatch function name

Dispatch function name defaults to C function name. If the dispatch name is just a prefix (mpxs_,
MPXS) the C function name is appended to it.

See the explanation about function naming and arguments passing.
® Argspec

The argspec defaults to argumentsin { Apache, ModPer | }: : Funct i onTabl e. Argument types
can be specified to override those in the Funct i onTabl e. Default values can be specified, e.g.
ar g=def aul t _val ue. Argspec of ... indicates passthru, caling the function with (aTHX
132 itens, SP **sp, SV **MARK).

® Perl alias

the Perl alias will be created in the current PACKAGE.

1.4.2.2 (Structures M apping

META: complete

1.4.2.3 [Types Mapping

META: complete

1.4.2.4 Modifying Mapg

As explained in the beginning of this section, whenever the map file is modified you need first to run:

% make source_scan

Next check that the conversion to Perl tables is properly done by verifying the resulting corresponding file
in xgtables/current. For example xdmaps/modper] _functionsmap is converted into
xs/tables/current/ModPer|/FunctionTable.pm.

If you want to do avisual check on how XS code will be generated, run:

% nake xs_generate

6 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.5 Gluing Existing APIs

and verify that the autogenerated XS code under the directory ./WrapXSis correct. Notice that for func-
tions, whose arguments or return types can’t be resolved, the XS glue won't be generated and a warning
will be printed. If that's the case add the missing type's typemap to the types map file as explained in
[Adding Typemaps for new C Data Typegand run the XS generation stage again.

Y ou can aso build the project normally:

% per|l Makefile.PL ..

which runs the XS generation stage.

1.4.3 [XS generation procesy

As mentioned before XS code is generated in the WrapXS directory either during per| Makefil e. PL
viaxs_generate() if MP_CGENERATE_XS=1 isused (which isthe default) or explicitly via

% nmake xs_generate

In addition it creates a number of filesin the xs/ directory:

nmodper| _xs_sv_convert.h
nmodper| _xs_typedefs. h

1.5 |Gluing Existing API S

If you have an API that you simply want to provide the Perl interface without writing any code...

META: complete

WrapXS alows you to adjust some arguments and supply default values for function arguments without
writing any code

META: complete
MPXS_ functions are final XSUBs and aways accept:
aTHX_ 132 items, SP **sp, SV **MARK

as their arguments. Whereas npxs__ functions are either intermediate thin wrappers for the existing C
functions or functions that do something by themselves. MPXS __ functions also can be used for writing thin
wrappers for C macros.

1.6 |Adding Wrappersfor existing APlIsand Creating New
API S

29 Jan 2004 7

1.6.1 Functions Returning a Single Value (or Nothing)

In certain cases the existing APIs need to be adjusted. There are afew reasons for doing this.

First, is to make the given C APl more Perlish. For example C functions cannot return more than one
value, and the pass by reference technique is used. Thisis not Perlish. Perl has no problem returning alist
of value, and passing by reference is used only when an array or a hash in addition to any other variables
need to be passes or returned from the function. Therefore we may want to adjust the C API to return alist
rather than passing a reference to areturn value, which is not intuitive for Perl programmers.

Second, is to adjust the functionality, i.e. we till use the C API but may want to adjust its arguments
before calling the origina function, or do something with return values. And of course optionally adding
some new code.

Third, isto create completely new APIs. It’s quite possible that we need more functionality built on top of
the existing API. In that case we simply create new APIs.

The following sections discuss various techniques for retrieving function arguments and returning values
to the caller. They range from using usual C argument passing and returning to more complex Perl argu-
ments’ stack manipulation. Once you know how to retrieve the arguments in various situations and how to
put the return values on the stack, the rest is usually norma C programming potentially involving using
Perl APIs.

Let’ slook at various ways we can declare functions and what options various declarions provide to us:

1.6.1 [Functions Returning a Single Value (or Nothing)|

If its know deterministically what the function returns and there is only a single return value (or nothing is
returned == void), we are on the C playground and we don't need to manipulate the returning stack.
However if the function may return a single value or nothing at all, depending on the inputs and the code,
we have to manually manipulate the stack and therefore this section doesn’t apply.

Let's look at various requirements and implement these using simple examples. The following testing
code exercises the interfaces we are about to develop, so refer to this code to see how the functions are
invoked from Perl and what is returned:

file:t/response/ Test Apache/ cor edenp. pm

package Test Apache: : cor edeno;

use strict;
use warni ngs FATAL => "al |’

use Apache:: Const -conpile => 'K

use Apache: : Test;
use Apache:: Test Uil

use Apache: : Cor eDenv;

sub handl er {
ny $r = shift;

8 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.1 Functions Returning a Single Vaue (or Nothing)

plan $r, tests => 7;

ny ($add, $subst)

$add = Apache:: CoreDeno: : print($a, $b);
t _debug "print";
ok ! $add;

$add = Apache: : CoreDenp: : add($a, $b);
ok t_cmp(%$a + $b, $add, "add");

$add = Apache:: CoreDeno: : add_sv(%$a, $b);
ok t_cmp(%$a + $b, $add, "add: return sv");

$add = Apache:: CoreDeno: : add_sv_sv($a, $b);
ok t_cmp($a + $b, $add, "add: pass/return svs");

($add, $subst) = @ Apache:: CoreDenp:: add_subst ($a, $b) };
ok t_cmp($a + $b, $add, "add_subst: add");
ok t_cmp($a - $b, $subst, "add_subst: subst");

$subst = Apache: : CoreDeno: : subst _sp($a, $b);
ok t_cnp($a - $b, $subst, "subst via SP")

Apache: : OK;
}

1;

The first case is the simplest: pass two integer arguments, print these to the STDERR stream and return
nothing:

file:xs/ Apache/ Cor eDeno/ Apache__ Cor eDeno. h

static MP_I NLI NE
voi d npxs_Apache__CoreDeno_print(int a, int b)
{

}

fprintf(stderr, "%, %l\n", a, b);

file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_pri nt

Now let's say that the b argument is optional and in case it wasn’t provided, we want to use a default
value, e.g. 0. In that case we don’t need to change the code, but simply adjust the map file to be:

file:xs/ maps/ nodper| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__CoreDenmo_print | | a, b=0

29 Jan 2004 9

1.6.1 Functions Returning a Single Value (or Nothing)

In the previous example, we didn’t list the arguments in the map file since they were automatically
retrieved from the source code. In this example we tell WrapXS to assign avalue of 0 to the argument b, if
it wasn't supplied by the caller. All the arguments must be listed and in the same order as they are defined
in the function.

You may add an extratest that test teh default val ue assignment:

$add = Apache: : Cor eDeno: : add($a) ;
ok t_cmp(%$a + 0, $add, "add (b=0 default)");

The second case: pass two integer arguments and return their sum:

file:xs/ Apache/ Cor eDeno/ Apache__Cor eDenp. h

static MP_I NLI NE
i nt nmpxs_Apache__CoreDeno_add(int a, int b)

{
}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_add

return a + b;

Thethird case is similar to the previous one, but we return the sum as as a Perl scalar. Though in C we say
SV*, in the Perl space we will get anormal scalar:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

static MP_I NLI NE
SV *npxs_Apache__CoreDenp_add_sv(pTHX_int a, int b)

{
}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_add_sv

return newSViv(a + b);

In the second example the XSUB function was converting the returned int value to a Perl scalar behind the
scenes. In this example we return the scalar ourselves. Thisis of course to demonstrate that you can return
a Perl scalar, which can be a reference to a complex Perl datastructure, which we will see in the fifth

example.

The forth case demonstrates that you can pass Perl variables to your functions without needing XSUB to
do the conversion. In all previous examples XSUB was automatically converting Perl scalars in the argu-
ment list to the corresponding C variables, using the typemap definitions.

10 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.1 Functions Returning a Single Vaue (or Nothing)

file: xs/ Apache/ Cor eDeno/ Apache__Cor eDenp. h

static MP_I NLINE
SV *npxs_Apache__CoreDenp_add_sv_sv(pTHX_ SV *a_sv, SV *b_sv)

{
int a = (int)SvlV(a_sv);
int b = (int)SvliV(b_sv);
return newSviv(a + b);

}

file:xs/ maps/ nodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_add_sv_sv

So this example is the same simple case of addition, though we manually convert the Perl variables to C
variables, perform the addition operation, convert the result to a Perl Scalar of kind IV (Integer Value) and
return it directly to the caller.

In case where more than one value needs to be returned, we can still implement this without directly
manipulating the stack before a function returns. The fifth case demonstrates a function that returns the
result of addition and substruction operations on its arguments:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

static MP_I NLI NE
SV *nmpxs_Apache__CoreDenp_add_subst (pTHX_ int a, int b)

{
AV *av = newAV();
av_push(av, newSViv(a + b));
av_push(av, newSViv(a - b));
return newRV_noi nc((SV*)av);
}

file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDeno_add_subst

If you look at the corresponding testing code:

($add, $subst) = @ Apache:: CoreDenp:: add_subst ($a, $b) };
ok t_cmp($a + $b, $add, "add_subst: add");
ok t_cmp($a - $b, $subst, "add_subst: subst");

you can see that this technique comes at a price of needing to dereference the return value to turn it into a
list. The actual code is very similar to the Apache: : Cor eDenp: : add_sv function which was doing
only the addition operation and returning a Perl scalar. Here we perform the addition and the substraction
operation and push the two results into a previously created AV* data structure, which represents an array.
Since only the SV datastructures are allowed to be put on stack, we take a reference RV (which is of an SV
kind) to the existing AV and return it.

29 Jan 2004 11

1.6.2 Functions Returning Variable Number of VValues

The sixth case demonstrates a situation where the number of arguments or their types may vary and aren’t
known at compile time. Though notice that we still know that we are returning at compile time (zero or
one arguments), int in this example:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

static MP_I NLI NE
i nt npxs_Apache__CoreDenp_subst _sp(pTHX_ 132 itenms, SV **MARK, SV **SP)

{

int a, b;

if (items !'= 2) {

Per| _croak(aTHX_"usage: ...");
}
a = np_xs_sv2_int (*MARK);
b = nmp_xs_sv2_int(*(MARK+1));

return a - b;

}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenpo_subst _sp | |

In the map file we use a specia token . . . which tells the XSUB constructor to passi t ens, MARK and
SP arguments to the function. The macro MARK points to the first argument passed by the caller in the Perl
namespace. For example to access the second argument to retrieve the value of b we use * (MARK+1) ,
which if you remember represented as an SV variable, which nees to be converted to the corresponding C

type.

In this example we use the macro mp_xs sv2_int, automatically generated based on the data from the
xgtypemap and xs/maps/*_types.map files, and placed into the xs/modperl_xs sv_convert.h file. In the
case of int C type the macrois:

#define np_xs_sv2_int(sv) (int)SvlV(sv)
which simply converts the SV variable on the stack and generates an int value.

While in this example you have an access to the stack, you cannot manipulate the return values, because
the XSUB wrapper expects a single return value of type int, so even if you put something on the stack it
will be ignored.

1.6.2 [Functions Returning Variable Number of Valueg

We saw earlier that if we want to return an array one of the ways to go is to return a reference to an array
as asingle return value, which fits the C paradigm. So we simply declare the return value as SV* .

12 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.2 Functions Returning Variable Number of Values

This section talks about cases where it’s unknown at compile time how many return values will be or it's
known that there will be more than one return value--something that C cannot handle via its return mecha-
nism.

Let’'s rewrite the function npxs_Apache__ Cor eDenp_add_subst from the earlier section to return
two results instead of areferenceto alist:

file:xs/ Apache/ Cor eDenn/ Apache__Cor eDenp. h
static XS(MPXS_Apache__CoreDenpo_add_subst _sp)
{

dXSARGS;

int a, b;

if (itens !'= 2) {

Perl _croak(aTHX_ "usage: Apache:: CoreDenp:: add_subst _sp($a, $b)");
}
a
b

np_xs_sv2_int (ST(0));
np_xs_sv2_int(ST(1));

SP -= itens;

if (G@ME == G ARRAY) {

EXTEND(sp, 2);

PUSHs(sv_2nortal (newSViv(a + b)

PUSHs(sv_2nortal (newSViv(a - b)
}
el se {

XPUSHs(sv_2nortal (newSViv(a + b)));

}

PUTBACK;

)
)

}
Before explaining the function here is the prototype we add to the map file:
file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
DEFI NE_add_subst _sp | MPXS_Apache__Cor eDenp_add_subst _sp |

The nmpxs__ functions declare in the third column the arguments that they expect to receive (and optionally
the default values). The MPXS functions are the real XSUBs and therefore they always accept:

aTHX_ 132 itenms, SP **sp, SV **NMARK

as their arguments. Thefore it doesn’t matter what is placed in this column when the MPXS_ function is
declared. Usually for documentation the Perl side arguments are listed. For example you can say:

DEFI NE_add_subst _sp | MPXS_Apache__CoreDenpo_add_subst _sp | x, ¥y

In this function we manually manipulate the stack to retrieve the arguments passed on the Perl side and put
the results back onto the stack. Therefore the first thing we do is to initialize a few special variables using
the dXSARGS macro defined in XSUB.h, which in fact calls a bunch of other macros. These variables help

29 Jan 2004 13

1.6.2 Functions Returning Variable Number of Values

to manipulate the stack. dSP is one of these macros and it declares and initial- izes alocal copy of the Perl
stack pointer sp which . Thislocal copy should always be accessed as SP.

We retrieve the original function arguments using the ST() macros. ST(0) and ST(1) point to the first
and the second argument on the stack, respectively. But first we check that we have exactly two arguments
on the stack, and if not we abort the function. Thei t ens variable is the function argument.

Once we have retrieved al the arguments from the stack we set the local stack pointer SP to point to the
bottom of the stack (like there are no items on the stack):

SP -=itens;

Now we can do whatever processing is needed and put the results back on the stack. In our example we
return the results of addition and substraction operations if the function is called in the list context. In the
scalar context the function returns only the result of the addition operation. We use the G MVE macro
which tells us the context.

In the list context we make sure that we have two spare sots on the stack since we are going to push two
items, and then we push them using the PUSHs macro:

EXTEND(sp, 2);

PUSHs(sv_2nortal (newSViv(a + b)
PUSHs(sv_2nortal (newSViv(a - b)

));
));
Alternatively we could use:

XPUSHs(sv_2mortal (newsSViv(a + b)));
XPUSHs(sv_2mortal (newsSViv(a - b)));

The XPUSHs macro eXtends the stack before pushing the item into it if needed. If we plan to push more
than a single item onto the stack, it’s more efficient to extend the stack in one call.

In the scalar context we push only one item, so here we use the XPUSHs macro:

XPUSHs(sv_2nortal (newsSViv(a + b)));

The last command we call is:

PUTBACK;

which makes the local stack pointer global. Thisis amust call if the state of the stack was changed when
the function is about to return. The stack changes if something was popped from or pushed to it, or both
and changed the number of items on the stack.

In our example we don't need to call PUTBACK if the function is called in the list context. Because in this
case we return two variables, the same as two function arguments, the count didn’t change. Though in the
scalar context we push onto the stack only one argument, so the function won't return what is expected.
The simplest way to avoid errors here isto always call PUTBACK when the stack is changed.

14 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.3 Wrappers Functions for C Macros

For more information refer to the perlcall manpage which explains the stack manipulation processin great
details.

Finally we test the function in the list and scalar contexts:

file:t/response/ Test Apache/ coredenn. pm

ny $a =
rry$b=

ny ($add, $subst)

list context

($add, $subst) = Apache:: CoreDeno: : add_subst _sp($a, $b);

ok t_cmp($a + $b, $add, "add_subst _sp list context: add");
ok t_cnmp($a - $b, $subst, "add_subst_sp list context: subst");

scal ar context
$add = Apache: : Cor eDenp: : add_subst _sp($a, $b);
ok t_cmp($a + $b, $add, "add_subs_spt scal ar context: add");

1.6.3 Wrappers Functionsfor C Macros

Let's say you have a C macro which you want to provide a Perl interface for. For example let's take a
simple macro which performs the power of function:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

#defi ne npxs_Apache__CoreDeno_power (X, y) pow x, V)

To create the XS glue code we use the following entry in the map file:

file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
doubl e: DEFI NE_power | | double:x, double:y

This works very similar to the MPXS_Apache__ Cor eDenp_add_subst _sp function presented
earlier. But since this is a macro the XS wrapper needs to know the types of the arguments and the return
type, so these are added. The return type is added just before the function name and separated from it by
the colon (:), the argument types are specified in the third column. The type is always separated from the
name of the variable by the colon (:).

And of course finally we need to test that the function worksin Perl:

29 Jan 2004 15

1.7 Wrappers for modperl_, apr_and ap_ APIs

file:t/response/ Test Apache/ cor edenp. pm

ny $a
nmy $b 3;

ny $power = Apache: : Cor eDeno: : power ($a, $b);
ok t_cmp(%$a ** $b, $power, "power macro");

1.7 Wrappersfor modperl ,apr andap APIg

If you already have a C function whose name starts from modper|_, apr_ or ap_ and you want to do some-
thing before calling the real C function, you can write a XS wrapper using the same method as in the
[MPXS Apache CoreDemo_add subst_sp] The only differenceis that it'll be clearly seen in the map file
that thisis awrapper for an existing C API.

Let’s say that we have an existing C function apr_power(), thisis how we declare its wrapper:
file:xs/ maps/apr_functions. map
MODULE=APR: : Foo
apr_power | MPXS_ | x, Yy

The first column specifies the existing function’s name, the second tells that the XS wrapper will use the
MPXS_ prefix, which means that the wrapper must be called MPXS_apr _power . The third column spec-
ifies the argument names, but for MPXS_ no matter what you specify therethe. . . will be passed:

aTHX_ 132 items, SP **sp, SV **MARK

S0 you can leave that column empty, but here we use x and y to remind us that these two arguments are
passed from Perl.

If the forth column is empty this function will be called APR: : Foo: : power in the Perl namespace. But
you can use that column to give a different Perl name, e.g with:

apr_power | MPXS_ | x, y | pow
Thisfunction will be available from Perl as APR: : Foo: : pow.

Similarly you can write a MPXS_nodper | _power wrapper for a mrodper | _power () function but
here you have to explicitly give the Perl function’s name in the forth column:

file:xs/ maps/apr_functions. map

MODULE=Apache: : Cor eDenp
nodper| _power | MPXS_ | x, y | nypower

and the Perl function will be called Apache: : Cor eDeno: : mypower .

16 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.8 MP_INLINE vs C Macros vs Normal Functions

The MPXS_ wrapper’simplementation is similar to[MPXS Apache CoreDemo add subst spl

1.8 MP INLINE vs C Macrosvs Normal Functions

To make the code maintainable and reusable functions and macros are used in when programming in C
(and other languages :).

When function is marked as inlined it's merely a hint to the compiler to replace the call to a function with
the code inside this function (i.e. inlined). Not every function can be inlined. Some typical reasons why
inlining is sometimes not done include:

e thefunction callsitself, that is, is recursive
e thefunction containsloopssuch asf or (; ;) orwhil e()
e thefunction sizeistoo large

Most of the advantage of inline functions comes from avoiding the overhead of calling an actual function.
Such overhead includes saving registers, setting up stack frames, etc. But with large functions the over-
head becomes less important.

Use the MP_I NLI NE keyword in the declaration of the functions that are to be inlined. The functions
should be inlined when:

® Only ever called once (the wrappers that are called from .xs files), no matter what the size of codeis.

® Short bodies of code called in a hot code (like modperl_env_hv_store, which is called many times
inside of aloop), where it is cleaner to see the code in function form rather than macro with lots of
\ ’s. Remember that an inline function takes much more space than a normal functions if called from
many placesin the code.

Of course C macros are a bit faster then inlined functions, since there is not even short jump to be made,
the codeisliteraly copied into the placeit’s called from. However using macros comes at a price:

® Also unlike macros, in functions argument types are checked, and necessary conversions are
performed correctly. With macros it's possible that weird things will happen if the caller has passed
arguments of the wrong type when calling a macro.

® One should be careful to pass only absolute values as "arguments' to macros. Consider a macro that
returns an absol ute value of the passed argument:

#define ABS(v) ((v) >=0 2 (v) : -(v))
In our exampleif you happen to pass afunction it will be called twice:

abs_val = ABS(f());

29 Jan 2004 17

1.9 Adding New Interfaces

Sinceit’'ll be extended as:
abs_val =f() >=07?f() : -f();

Y ou cannot do simple operation like increment--in our example it will be called twice:
abs_val = ABS(i++);

Because it becomes:
abs val = i++ >= 0 ? i++ : -i++4

® |t's dangerous to use the if() condition without enclosing the code in {}, since the macro may be
called from inside another if-else condition, which may cause the else part called if the if() part from
the macro fails.

But we dwaysuse{} for the codeinside the if-else condition, so it's hot a problem here.

® A multi-line macro can cause problems if someone uses the macro in a context that demands a single
statement.

while (foo) MYMACRO(bar);
But again, we always enclose any code in conditional with{}, soit’s not a problem for us.

e [nline functions present a problem for debuggers and profilers, because the function is expanded at
the point of call and losesits identity. This makes the debugging process a nightmare.

A compiler will typically have some option available to disable inlining.

In all other cases use normal functions.

1.9 |Adding New I nterfaces

1.9.1 |Adding Typemaps for new C Data Typeq

Sometimes when a new interface is added it may include C data types for which we don't have corre-
sponding X S typemaps yet. In such a case, the first thing to do is to provide the required typemaps.

Let's add a prototype for the typedef structscoréboard data type defined in httpd-2.0/include/score
boardh.

First we include the relevant header filesin src/modules/perl/modperl_apache_includes.h

#i ncl ude "scoreboard. h"

If you want to specify your own type and don’'t have a header file for it (e.g. if you extend some existing
datatype within mod_perl) you may add the typedefto src/modules/perl/modperl_types.h

18 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.9.2 Importing Constants and Enumsinto Perl API

After deciding that Apache: : Scor eboar d isthe Perl classwill be used for manipulating C scoreboard
data structures, we map the scoreboard data structure to the Apache: : Scor eboar d class. Therefore
we add to xsmaps/apache_types.map:

struct scoreboard | Apache: : Scor eboard

Since we want the scoreboard data structure to be an opaque object on the perl side, we ssimply let
mod_perl use the default T_PTROBJ typemap. After running meke xs_gener at e you can check the
assigned typemap in the autogenerated WrapXS'typemap file.

If you need to do some special handling while converting from C to Perl and back, you need to add the
conversion functions to the xs/'typemap file. For example the Apache: : Request Rec abjects need
special handling, so you can see the special | NPUT and OUTPUT typemappings for the corresponding
T_APACHEQOBJ object type.

Now werunmake Xxs_gener at e and find the following definitions in the autogenerated files:

file:xs/nodperl _xs_typedefs.h

typedef scoreboard * Apache__Scoreboard;

file:xs/nodperl _xs_sv_convert.h

#defi ne np_xs_sv2_Apache__Scoreboard(sv) \

((SVROK(sv) && (SvVTYPE(SVRV(sv)) == SVt _PVM3) \

|| (Perl _croak(aTHX_ "argument is not a bl essed reference \
(expecting an Apache:: Scoreboard derived object)"),0) 2\
(scoreboard *)SvlV((SV*)SvRV(sv)) : (scoreboard *) NULL)

#defi ne np_xs_Apache__Scoreboard_2obj (ptr) \
sv_setref _pv(sv_newnortal (), "Apache:: Scoreboard", (void*)ptr)

The file xs/modperl_xs typedefs.h declares the typemapping from C to Perl and equivalent to the
TYPEMAP section of the XS's typemap file. The second file xs/modper|_xs sv_convert.h generates two
macros. The first macro is used to convert from Perl to C datatype and equivalent to the typemap file's
| NPUT section. The second macro is used to convert from C to Perl datatype and equivalent to the
typemap’s OUTPUT section.

Now proceed on adding the glue code for the new interface.

1.9.2 [[mporting Constants and Enums into Per| API|

To import httpd and APR constants and enums into Perl API, edit lib/Apache/ParseSource.pm. To add a
new type of DEFI NE constants adjust the %lefi nes_want ed variable, for enunms modify
%enuns_want ed.

For example to import all DEFI NEs starting with APR_FLOCK _ add:

29 Jan 2004 19

1.10 Maintainers

nmy %lefines_wanted = (
APR => {

f1 ock => [qw{ APR_FLOCK }],

)

When deciding which constants are to be exported, the regular expression will be used, so in our example
all matches/ *"APR_FLOCK / will beimported into the Perl API.

For exampleto import an read_type eenumfor APR, add:

my %enuns_wanted = (
APR =>{ map { $_, 1 } gw(apr_read_type) },
E

Notice that _e part at the end of the enum name has gone.

After adding/modifying the datastructures make sure to run make source_scan or perl
bui | d/ source_scan. pl and verify that the wanted constant or enum were picked by the source
scanning process. Simply grep xs/tables/current for the wanted string. For example after adding
apr_read type e enum we can check:

% nor e xs/tabl es/current/Apache/ Const ant sTabl e. pm

‘read_type’ => |

" APR_BLOCK_READ

" APR_NONBLOCK _READ
1,

Of course the newly added constant or enum’'s typemap should be declared in the appropriate
xs/maps*_types.map files, so the XS conversion of arguments will be performed correctly. For example
apr_read typeisan APR enum so it’' s declared in xs/maps/apr_types.map:

apr _read_type | 1V

| Visused as atypemap, Since enum isjust an integer. In more complex cases the typemap can be differ-
ent. (META: examples)

1.10 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

20 29 Jan 2004

mod_perl 2.0 Source Code Explained

1.11

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004

Authorg

1.11 Authors

21

mod_perl 2.0 Source Code Explained

Table of Contents:

1 | mod jﬂl 2. 0 Source Code Explained |

1.1 [Description

1.2 |PrOJect S Fllasystem Layouﬂ

1.3 [Directory sid

131 |D|rectory src/modules/perl/l

1.4 [Directory xs

1.4.1 [xgApache, XYAPR and xs/M odPerII
1.4.2 [xs/maps .
1421 IFunctlons Mappl nq
1.4.2.2 [Structures Mapping| .
14.2.3 .
1.4.2.4 Modifying Mapg
1.4.3 [XS generation procesy
1.5 |Gluing Existing APIg

1.6 |[Adding Wrappers for existing APIs and Creatl nq Nevv APISI .

1.6.1 |Functions Returning a Single Vaue (or Nothing)|
1.6.2 |Functions Returning Variable Number of Valueq
1.6.3 |Wrappers Functions for C Macroyg.
1.7 \Wrappers for modperl , apr andap APIg
1.8 [MP INLINE vs C Macros vs Normal Functiond
1.9 |JAdding New Interfaceg
1.9.1 |Adding Typemaps for new C Data Typ%i
1.9.2 [Importing Constants and Enums into Perl API| .
110
1.11

29 Jan 2004

Table of Contents:

R T e e
RPOOWWOWOMNOUINONNNOOOODWWNNNNNR

	1€€mod_perl 2.0 Source Code Explained
	1.1€€Description
	1.2€€Project's Filesystem Layout
	1.3€€Directory src
	1.3.1€€Directory src/modules/perl/

	1.4€€Directory xs/
	1.4.1€€xs/Apache, xs/APR and xs/ModPerl
	1.4.2€€xs/maps
	1.4.2.1€€Functions Mapping
	1.4.2.2€€Structures Mapping
	1.4.2.3€€Types Mapping
	1.4.2.4€€Modifying Maps

	1.4.3€€XS generation process

	1.5€€Gluing Existing APIs
	1.6€€Adding Wrappers for existing APIs and Creating New APIs
	1.6.1€€Functions Returning a Single Value †or Nothing‡
	1.6.2€€Functions Returning Variable Number of Values
	1.6.3€€Wrappers Functions for C Macros

	1.7€€Wrappers for modperl_, apr_ and ap_ APIs
	1.8€€MP_INLINE vs C Macros vs Normal Functions
	1.9€€Adding New Interfaces
	1.9.1€€Adding Typemaps for new C Data Types
	1.9.2€€Importing Constants and Enums into Perl API

	1.10€€Maintainers
	1.11€€Authors

