

User’s guide

All you need to know about using mod_perl 2.0

Last modified Thu Jan 29 08:29:29 2004 GMT

129 Jan 2004

Table of Contents:User’s guide

Part I: Introduction

 1. Getting Your Feet Wet with mod_perl
This chapter gives you the bare minimum information to get you started with mod_perl 2.0. For most
people it’s sufficient to get going.

 2. Overview of mod_perl 2.0
This chapter should give you a general idea about what mod_perl 2.0 is and how it differs from
mod_perl 1.0. This chapter presents the new features of Apache 2.0, Perl 5.6.0 -- 5.8.0 and their influ-
ence on mod_perl 2.0. The new MPM models from Apache 2.0 are discussed.

 3. Notes on the design and goals of mod_perl-2.0
Notes on the design and goals of mod_perl-2.0.

Part II: Installation

 4. Installing mod_perl 2.0
This chapter provides an in-depth mod_perl 2.0 installation coverage.

 5. mod_perl 2.0 Server Configuration
This chapter provides an in-depth mod_perl 2.0 configuration details.

 6. Apache Server Configuration Customization in Perl
This chapter explains how to create custom Apache configuration directives in Perl.

Part III: Coding

 7. Writing mod_perl Handlers and Scripts
This chapter covers the mod_perl coding specifics, different from normal Perl coding. Most other
perl coding issues are covered in the perl manpages and rich literature.

 8. Cooking Recipes
As the chapter’s title implies, here you will find ready-to-go mod_perl 2.0 recipes.

Part IV: Porting

 9. Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
This document describes the various options for porting a mod_perl 1.0 Apache module so that it
runs on a Apache 2.0 / mod_perl 2.0 server. It’s also helpful to those who start developing mod_perl
2.0 handlers.

 10. A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.
This chapter is a reference for porting code and configuration files from mod_perl 1.0 to mod_perl
2.0.

Part V: mod_perl Handlers

29 Jan 20042

Table of Contents:

 11. Introducing mod_perl Handlers
This chapter provides an introduction into mod_perl handlers.

 12. Server Life Cycle Handlers
This chapter discusses server life cycle and the mod_perl handlers participating in it.

 13. Protocol Handlers
This chapter explains how to implement Protocol (Connection) Handlers in mod_perl.

 14. HTTP Handlers
This chapter explains how to implement the HTTP protocol handlers in mod_perl.

 15. Input and Output Filters
This chapter discusses mod_perl’s input and output filter handlers.

 16. General Handlers Issues
This chapter discusses issues relevant too any kind of handlers.

Part VI: Performance

 17. Preventive Measures for Performance Enhancement
This chapter explains what should or should not be done in order to keep the performance high

 18. Performance Considerations Under Different MPMs
This chapter discusses how to choose the right MPM to use (on platforms that have such a choice),
and how to get the best performance out of it.

Part VII: Troubleshooting

 19. Troubleshooting mod_perl problems
Frequently encountered problems (warnings and fatal errors) and their troubleshooting.

 20. User Help
This chapter is for those needing help using mod_perl and related software.

329 Jan 2004

Table of Contents:User’s guide

1 Getting Your Feet Wet with mod_perl

29 Jan 20044

1 Getting Your Feet Wet with mod_perl

1.1 Description
This chapter gives you the bare minimum information to get you started with mod_perl 2.0. For most
people it’s sufficient to get going.

1.2 Installation
If you are a Win32 user, please refer to the Win32 installation document.

First, download the mod_perl 2.0 source.

Before installing mod_perl, you need check that you have the mod_perl 2.0 prerequisites installed.
Apache and the right Perl version have to be built and installed before you can proceed with building
mod_perl.

In this chapter we assume that httpd and all helper files were installed under $HOME/httpd/prefork, if your
distribution doesn’t install all the files under the same tree, please refer to the complete installation instruc-
tions.

Now, configure mod_perl:

 % tar -xvzf mod_perl-2.x.xx.tar.gz
 % cd modperl-2.0
 % perl Makefile.PL MP_APXS=$HOME/httpd/prefork/bin/apxs MP_INST_APACHE2=1

where MP_APXS is the full path to the apxs executable, normally found in the same directory as the
httpd executable, but could be put in a different path as well.

Finally, build, test and install mod_perl:

 % make && make test && make install

Become root before doing make install if installing system-wide.

If something goes wrong or you need to enable optional features please refer to the complete installation
instructions.

1.3 Configuration
If you are a Win32 user, please refer to the Win32 configuration document.

Enable mod_perl built as DSO, by adding to httpd.conf:

 LoadModule perl_module modules/mod_perl.so

Next, tell Perl where to find mod_perl2 libraries:

529 Jan 2004

1.1 DescriptionGetting Your Feet Wet with mod_perl

 PerlModule Apache2

There are many other configuration options which you can find in the configuration manual.

If you want to run mod_perl 1.0 code on mod_perl 2.0 server enable the compatibility layer:

 PerlModule Apache::compat

For more information see: Migrating from mod_perl 1.0 to mod_perl 2.0.

1.4 Server Launch and Shutdown
Apache is normally launched with apachectl:

 % $HOME/httpd/prefork/bin/apachectl start

and shut down with:

 % $HOME/httpd/prefork/bin/apachectl stop

Check $HOME/httpd/prefork/logs/error_log to see that the server has started and it’s a right one. It should
say something similar to:

 [Thu May 29 12:22:12 2003] [notice] Apache/2.0.46-dev (Unix)
 mod_perl/1.99_10-dev Perl/v5.9.0 mod_ssl/2.0.46-dev OpenSSL/0.9.7
 DAV/2 configured -- resuming normal operations

1.5 Registry Scripts
To enable registry scripts add to httpd.conf:

 Alias /perl/ /home/httpd/httpd-2.0/perl/
 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlOptions +ParseHeaders
 Options +ExecCGI
 </Location>

and now assuming that we have the following script:

 #!/usr/bin/perl
 print "Content-type: text/plain\n\n";
 print "mod_perl 2.0 rocks!\n";

saved in /home/httpd/httpd-2.0/perl/rock.pl. Make the script executable and readable by everybody:

 % chmod a+rx /home/httpd/httpd-2.0/perl/rock.pl

29 Jan 20046

1.4 Server Launch and Shutdown

Of course the path to the script should be readable by the server too. In the real world you probably want
to have a tighter permissions, but for the purpose of testing that things are working this is just fine.

Now restart the server and issue a request to http://localhost/perl/rock.pl and you should get the response:

 mod_perl 2.0 rocks!

If that didn’t work check the error_log file.

For more information on the registry scripts refer to the ModPerl::Registry manapage. (XXX: on
day there will a tutorial on registry, should port it from 1.0’s docs).

1.6 Handler Modules
Finally check that you can run mod_perl handlers. Let’s write a response handler similar to the registry
script from the previous section:

 #file:MyApache/Rocks.pm
 #----------------------
 package MyApache::Rocks;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 print "mod_perl 2.0 rocks!\n";

 return Apache::OK;
 }
 1;

Save the code in the file MyApache/Rocks.pm, somewhere where mod_perl can find it. For example let’s
put it under /home/httpd/httpd-2.0/perl/MyApache/Rocks.pm, and we tell mod_perl that
/home/httpd/httpd-2.0/perl/ is in @INC, via a startup file which includes just:

 use lib qw(/home/httpd/httpd-2.0/perl);
 1;

and loaded from httpd.conf:

 PerlRequire /home/httpd/httpd-2.0/perl/startup.pl

729 Jan 2004

1.6 Handler ModulesGetting Your Feet Wet with mod_perl

http://localhost/perl/rock.pl

Now we can configure our module in httpd.conf:

 <Location /rocks>
 SetHandler perl-script
 PerlResponseHandler MyApache::Rocks
 </Location>

Now restart the server and issue a request to http://localhost/rocks and you should get the response:

 mod_perl 2.0 rocks!

If that didn’t work check the error_log file.

1.7 Troubleshooting
If after reading the complete installation and configuration chapters you are still having problems, take a
look at the troubleshooting sections. If the problem persist, please report them using the following guide-
lines.

1.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.9 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 20048

1.7 Troubleshooting

http://localhost/rocks

2 Overview of mod_perl 2.0

929 Jan 2004

2 Overview of mod_perl 2.0Overview of mod_perl 2.0

2.1 Description
This chapter should give you a general idea about what mod_perl 2.0 is and how it differs from mod_perl
1.0. This chapter presents the new features of Apache 2.0, Perl 5.6.0 -- 5.8.0 and their influence on
mod_perl 2.0. The new MPM models from Apache 2.0 are discussed.

2.2 Version Naming Conventions
In order to keep things simple, here and in the rest of the documentation we refer to mod_perl 1.x series as
mod_perl 1.0 and to 2.0.x series as mod_perl 2.0. Similarly we call Apache 1.3.x series as Apache 1.3 and
2.0.x as Apache 2.0. There is also Apache 2.1, which is a development track towards Apache 2.2.

2.3 Why mod_perl, The Next Generation
mod_perl was introduced in early 1996, both Perl and Apache have changed a great deal since that time.
mod_perl has adjusted to both along the way over the past 4 and a half years or so using the same code
base. Over this course of time, the mod_perl sources have become more and more diffi cult to maintain, in
large part to provide compatibility between the many different flavors of Apache and Perl. And, compati-
bility across these versions and flavors is a more diffi cult goal for mod_perl to reach that a typical Apache
or Perl module, since mod_perl reaches a bit deeper into the corners of Apache and Perl internals than
most. Discussions of the idea to rewrite mod_perl as version 2.0 started in 1998, but never made it much
further than an idea. When Apache 2.0 development was underway it became clear that a rewrite of
mod_perl would be required to adjust to the new Apache architecture and API.

Of the many changes happening in Apache 2.0, the one which has the most significant impact on
mod_perl is the introduction of threads to the overall design. Threads have been a part of Apache on the
win32 side since the Apache port was introduced. The mod_perl port to win32 happened in version
1.00b1, released in June of 1997. This port enabled mod_perl to compile and run in a threaded windows
environment, with one major caveat: only one concurrent mod_perl request could be handled at any given
time. This was due to the fact that Perl did not introduce thread-safe interpreters until version 5.6.0,
released in March of 2000. Contrary to popular belief, the "threads support" implemented in Perl 5.005
(released July 1998), did not make Perl thread-safe internally. Well before that version, Perl had the notion
of "Multi plicity", which allowed multiple interpreter instances in the same process. However, these
instances were not thread safe, that is, concurrent callbacks into multiple interpreters were not supported.

It just so happens that the release of Perl 5.6.0 was nearly at the same time as the first alpha version of
Apache 2.0. The development of mod_perl 2.0 was underway before those releases, but as both Perl 5.6.0
and Apache 2.0 were reaching stability, mod_perl 2.0 was becoming more of a reality. In addition to the
adjustments for threads and Apache 2.0 API changes, this rewrite of mod_perl is an opportunity to clean
up the source tree. This includes both removing the old backward compatibility bandaids and building a
smarter, stronger and faster implementation based on lessons learned over the 4.5 years since mod_perl
was introduced.

29 Jan 200410

2.1 Description

The new version includes a mechanism for an automatic building of the Perl interface to Apache API,
which allowed us to easily adjust mod_perl 2.0 to ever changing Apache 2.0 API, during its development
period. Another important feature is the Apache::Test framework, which was originally developed for
mod_perl 2.0, but then was adopted by Apache 2.0 developers to test the core server features and third
party modules. Moreover the tests written using the Apache::Test framework could be run with
Apache 1.0 and 2.0, assuming that both supported the same features.

There are multiple other interesting changes that have already happened to mod_perl in version 2.0 and
more will be developed in the future. Some of these are discussed in this chapter, others can be found in
the rest of the mod_perl 2.0 documentation.

2.4 What’s new in Apache 2.0
Apache 2.0 has introduced numerous new features and enhancements. Here are the most important new
features:

Apache Portable Runtime (APR)

Apache 1.3 has been ported to a very large number of platforms including various flavors of unix,
win32, os/2, the list goes on. However, in 1.3 there was no clear-cut, pre-designed portability layer
for third-party modules to take advantage of. APR provides this API layer in a very clean way. APR
assists a great deal with mod_perl portability. Combined with the portablity of Perl, mod_perl 2.0
needs only to implement a portable build system, the rest comes "for free". A Perl interface is
provided for certain areas of APR, such as the shared memory abstraction, but the majority of APR is
used by mod_perl "under the covers".

The APR uses the concept of memory pools, which significantly simplifies the memory management
code and reduces the possibility of having memory leaks, which always haunt C programmers.

I/O Filtering

Filtering of Perl modules output has been possible for years since tied filehandle support was added
to Perl. There are several modules, such as Apache::Filter and Apache::OutputChain
which have been written to provide mechanisms for filtering the STDOUT stream. There are several
of these modules because no one’s approach has quite been able to offer the ease of use one would
expect, which is due simply to limitations of the Perl tied filehandle design. Another problem is that
these filters can only filter the output of other Perl modules. C modules in Apache 1.3 send data
directly to the client and there is no clean way to capture this stream. Apache 2.0 has solved this
problem by introducing a filtering API. With the baseline I/O stream tied to this filter mechansim,
any module can filter the output of any other module, with any number of filters in between. Using
this new feature things like SSL, data (de-)compression and other data manipulations are done very
easily.

Multi Processing Model modules (MPMs).

In Apache 1.3 concurrent requests were handled by multiple processes, and the logic to manage these
processes lived in one place, http_main.c, 7700 some odd lines of code. If Apache 1.3 is compiled on

1129 Jan 2004

2.4 What’s new in Apache 2.0Overview of mod_perl 2.0

a Win32 system large parts of this source file are redefined to handle requests using threads. Now
suppose you want to change the way Apache 1.3 processes requests, say, into a DCE RPC listener. This is
possible only by slicing and dicing http_main.c into more pieces or by redefining the stan-
dalone_main function, with a -DSTANDALONE_MAIN=your_function compile time flag.
Neither of which is a clean, modular mechanism.

Apache-2.0 solves this problem by introducing Multi Processing Model modules, better known as
MPMs. The task of managing incoming requests is left to the MPMs, shrinking http_main.c to less
than 500 lines of code. Now it’s possible to write different processing modules specific to various
platforms. For example the Apache 2.0 on Windows is much more efficient now, since it uses
mpm_winnt which deploys the native Windows features.

Here is a partial list of major MPMs available as of this writing.

prefork

The prefork MPM emulates Apache 1.3’s preforking model, where each request is handled by a
different forked child process.

worker

The worker MPM implements a hybrid multi-process multi-threaded approach based on the
pthreads standard. It uses one acceptor thread, multiple worker threads.

mpmt_os2, netware, winnt and beos

These MPMs also implement the hybrid multi-process/multi-threaded model, with each based
on native OS thread implementations.

perchild

The perchild MPM is similar to the worker MPM, but is extended with a mechanism which
allows mapping of requests to virtual hosts to a process running under the user id and group
configured for that host. This provides a robust replacement for the suexec mechanism.

META: as of this writing this mpm is not working

On platforms that support more than one MPM, it’s possible to switch the used MPMs as the need
change. For example on Unix it’s possible to start with a preforked module. Then when the demand is
growing and the code matures, it’s possible to migrate to a more efficient threaded MPM, assuming
that the code base is capable of running in the threaded environment.

New Hook Scheme

In Apache 1.3, modules were registered using the module structure, normally static to mod_foo.c.
This structure contains pointers to the command table, configuration creation and merging functions,
response handler table and function pointers for all of the other hooks, such as child_init and
check_user_id. In Apache 2.0, this structure has been pruned down to the first three items mentioned
and a new function pointer added called register_hooks. It is the job of register_hooks to register

29 Jan 200412

2.4 What’s new in Apache 2.0

functions for all other hooks (such as child_init and check_user_id). Not only is hook registration
now dynamic, it is also possible for modules to register more than one function per hook, unlike 1.3.
The new hook mechanism also makes it possible to sort registered functions, unlike 1.3 with function
pointers hardwired into the module structure, and each module structure into a linked list. Order in
1.3 depended on this list, which was possible to order using compile-time and startup-time configura-
tion, but that was left to the user. Whereas in 2.0, the add_hook functions accept an order preference
parameter, those commonly used are:

FIRST
MIDDLE
LAST

For mod_perl, dynamic registration provides a cleaner way to bypass the Perl*Handler configu-
ration directives. By simply adding this configuration:

 PerlModule Apache::Foo

Apache::Foo can register hooks itself at server startup:

 Apache::Hook->add(PerlAuthenHandler => \&authenticate,
 Apache::Hook::MIDDLE);
 Apache::Hook->add(PerlLogHandler => \&logger,
 Apache::Hook::LAST);

META: Not implemented yet (API will change?)

However, this means that Perl subroutines registered via this mechanism will be called for every
request. It will be left to that subroutine to decide if it was to handle or decline the given phase. As
there is overhead in entering the Perl runtime, it will most likely be to your advantage to continue
using Perl*Handler configuration directives to reduce this overhead. If it is the case that your
Perl*Handler should be invoked for every request, the hook registration mechanism will save
some configuration keystrokes.

Protocol Modules

Apache 1.3 is hardwired to speak only one protocol, HTTP. Apache 2.0 has moved to more of a
"server framework" architecture making it possible to plugin handlers for protocols other than HTTP.
The protocol module design also abstracts the transport layer so protocols such as SSL can be hooked
into the server without requiring modifications to the Apache source code. This allows Apache to be
extended much further than in the past, making it possible to add support for protocols such as FTP,
SMTP, RPC flavors and the like. The main advantage being that protocol plugins can take advantage
of Apache’s portability, process/thread management, configuration mechanism and plugin API.

Parsed Configuration Tree

When configuration files are read by Apache 1.3, it hands off the parsed text to module configuration
directive handlers and discards that text afterwards. With Apache 2.0, the configuration files are first
parsed into a tree structure, which is then walked to pass data down to the modules. This tree is then
left in memory with an API for accessing it at request time. The tree can be quite useful for other

1329 Jan 2004

2.4 What’s new in Apache 2.0Overview of mod_perl 2.0

modules. For example, in 1.3, mod_info has its own configuration parser and parses the configuration
files each time you access it. With 2.0 there is already a parse tree in memory, which mod_info can then
walk to output its information.

If a mod_perl 1.0 module wants access to configuration information, there are two approaches. A
module can "subclass" directive handlers, saving a copy of the data for itself, then returning
DECLINE_CMD so the other modules are also handed the info. Or, the
$Apache::Server::SaveConfig variable can be set to save <Perl> configuration in the
%Apache::ReadConfig:: namespace. Both methods are rather kludgy, version 2.0 provides a
Perl interface to the Apache configuration tree.

All these new features boost the Apache performance, scalability and flexibility. The APR helps the
overall performance by doing lots of platform specific optimizations in the APR internals, and giving the
developer the API which was already greatly optimized.

Apache 2.0 now includes special modules that can boost performance. For example the mod_mmap_static
module loads webpages into the virtual memory and serves them directly avoiding the overhead of open()
and read() system calls to pull them in from the filesystem.

The I/O layering is helping performance too, since now modules don’t need to waste memory and CPU
cycles to manually store the data in shared memory or pnotes in order to pass the data to another module,
e.g., in order to provide response’s gzip compression.

And of course a not least important impact of these features is the simplification and added flexibility for
the core and third party Apache module developers.

2.5 What’s new in Perl 5.6.0 - 5.8.0
As we have mentioned earlier Perl 5.6.0 is the minimum requirement for mod_perl 2.0. Though as we will
see later certain new features work only with Perl 5.8.0 and higher.

These are the important changes in the recent Perl versions that had an impact on mod_perl. For a
complete list of changes see the corresponding to the used version perldelta manpages
(http://perldoc.com/perl5.8.0/pod/perl56delta.html, http://perldoc.com/perl5.8.0/pod/perl561delta.html
and http://perldoc.com/perl5.8.0/pod/perldelta.html).

The 5.6 Perl generation has introduced the following features:

The beginnings of support for running multiple interpreters concurrently in different threads. In
conjunction with the perl_clone() API call, which can be used to selectively duplicate the state of any
given interpreter, it is possible to compile a piece of code once in an interpreter, clone that interpreter
one or more times, and run all the resulting interpreters in distinct threads. See the perlembed
(http://perldoc.com/perl5.6.1/pod/perlembed.html) and perl561delta
(http://perldoc.com/perl5.6.1/pod/perl561delta.html) manpages.

29 Jan 200414

2.5 What’s new in Perl 5.6.0 - 5.8.0

http://perldoc.com/perl5.8.0/pod/perl56delta.html
http://perldoc.com/perl5.8.0/pod/perl561delta.html
http://perldoc.com/perl5.8.0/pod/perldelta.html
http://perldoc.com/perl5.6.1/pod/perlembed.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html

The core support for declaring subroutine attributes, which is used by mod_perl 2.0’s method
handlers. See the attributes manpage.

The warnings pragma, which allows to force the code to be super clean, via the setting:

 use warnings FATAL => ’all’;

which will abort any code that generates warnings. This pragma also allows a fine control over what
warnings should be reported. See the perllexwarn
(http://perldoc.com/perl5.6.1/pod/perllexwarn.html) manpage.

Certain CORE:: functions now can be overridden via CORE::GLOBAL:: namespace. For example
mod_perl now can override CORE::exit() via CORE::GLOBAL::exit. See the perlsub
(http://perldoc.com/perl5.6.1/pod/perlsub.html) manpage.

The XSLoader extension as a simpler alternative to DynaLoader. See the XSLoader manpage.

The large file support. If you have filesystems that support "large files" (files larger than 2 gigabytes),
you may now also be able to create and access them from Perl. See the perl561delta
(http://perldoc.com/perl5.6.1/pod/perl561delta.html) manpage.

Multiple performance enhancements were made. See the perl561delta
(http://perldoc.com/perl5.6.1/pod/perl561delta.html) manpage.

Numerous memory leaks were fixed. See the perl561delta
(http://perldoc.com/perl5.6.1/pod/perl561delta.html) manpage.

Improved security features: more potentially unsafe operations taint their results for improved secu-
rity. See the perlsec (http://perldoc.com/perl5.6.1/pod/perlsec.html) and perl561delta
(http://perldoc.com/perl5.6.1/pod/perl561delta.html) manpages.

Available on new platforms: GNU/Hurd, Rhapsody/Darwin, EPOC.

Overall multiple bugs and problems very fixed in the Perl 5.6.1, so if you plan on running the 5.6 genera-
tion, you should run at least 5.6.1. It is possible that when this tutorial is printed 5.6.2 will be out.

The Perl 5.8.0 has introduced the following features:

The introduced in 5.6.0 experimental PerlIO layer has been stabilized and become the default IO
layer in 5.8.0. Now the IO stream can be filtered through multiple layers. See the perlapio
(http://perldoc.com/perl5.8.0/pod/perlapio.html) and perliol
(http://perldoc.com/perl5.8.0/pod/perliol.html) manpages.

For example this allows mod_perl to inter-operate with the APR IO layer and even use the APR IO
layer in Perl code. See the APR::PerlIO manpage.

Another example of using the new feature is the extension of the open() functionality to create
anonymous temporary files via:

1529 Jan 2004

2.5 What’s new in Perl 5.6.0 - 5.8.0Overview of mod_perl 2.0

http://perldoc.com/perl5.6.1/pod/perllexwarn.html
http://perldoc.com/perl5.6.1/pod/perlsub.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.6.1/pod/perlsec.html
http://perldoc.com/perl5.6.1/pod/perl561delta.html
http://perldoc.com/perl5.8.0/pod/perlapio.html
http://perldoc.com/perl5.8.0/pod/perliol.html

 open my $fh, "+>", undef or die $!;

That is a literal undef(), not an undefined value. See the open() entry in the perlfunc manpage
(http://perldoc.com/perl5.8.0/pod/func/open.html).

More overridable via CORE::GLOBAL:: keywords. See the perlsub
(http://perldoc.com/perl5.8.0/pod/perlsub.html) manpage.

The signal handling in Perl has been notoriously unsafe because signals have been able to arrive at
inopportune moments leaving Perl in inconsistent state. Now Perl delays signal handling until it is
safe.

File::Temp was added to allow a creation of temporary files and directories in an easy, portable,
and secure way. See the File::Temp manpage.

A new command-line option, -t is available. It is the little brother of -T: instead of dying on taint
violations, lexical warnings are given. This is only meant as a temporary debugging aid while secur-
ing the code of old legacy applications. This is not a substitute for -T. See the perlrun
(http://perldoc.com/perl5.8.0/pod/perlrun.html) manpage.

A new special variable ${^TAINT} was introduced. It indicates whether taint mode is enabled. See
the perlvar (http://perldoc.com/perl5.8.0/pod/perlvar.html) manpage.

Threads implementation is much improved since 5.6.

A much better support for Unicode.

Numerous bugs and memory leaks fixed. For example now you can localize the tied Apache::DBI
filehandles without leaking memory.

Available on new platforms: AtheOS, Mac OS Classic, Mac OS X, MinGW, NCR MP-RAS,
NonStop-UX, NetWare and UTS. The following platforms are again supported: BeOS, DYNIX/ptx,
POSIX-BC, VM/ESA, z/OS (OS/390).

2.6 What’s new in mod_perl 2.0
The new features introduced by Apache 2.0 and Perl 5.6 and 5.8 generations provide the base of the new
mod_perl 2.0 features. In addition mod_perl 2.0 re-implements itself from scratch providing such new
features as new build and testing framework. Let’s look at the major changes since mod_perl 1.0.

2.6.1 Threads Support

In order to adapt to the Apache 2.0 threads architecture (for threaded MPMs), mod_perl 2.0 needs to use
thread-safe Perl interpreters, also known as "ithreads" (Interpreter Threads). This mechanism can be
enabled at compile time and ensures that each Perl interpreter uses its private PerlInterpreter struc-
ture for storing its symbol tables, stacks and other Perl runtime mechanisms. When this separation is
engaged any number of threads in the same process can safely perform concurrent callbacks into Perl. This
of course requires each thread to have its own PerlInterpreter object, or at least that each instance

29 Jan 200416

2.6 What’s new in mod_perl 2.0

http://perldoc.com/perl5.8.0/pod/func/open.html
http://perldoc.com/perl5.8.0/pod/perlsub.html
http://perldoc.com/perl5.8.0/pod/perlrun.html
http://perldoc.com/perl5.8.0/pod/perlvar.html

is only accessed by one thread at any given time.

The first mod_perl generation has only a single PerlInterpreter, which is constructed by the parent
process, then inherited across the forks to child processes. mod_perl 2.0 has a configurable number of
PerlInterpreters and two classes of interpreters, parent and clone. A parent is like that in mod_perl
1.0, where the main interpreter created at startup time compiles any pre-loaded Perl code. A clone is
created from the parent using the Perl API perl_clone()
(http://www.perldoc.com/perl5.8.0/pod/perlapi.html#Cloning-an-interpreter) function. At request time,
parent interpreters are only used for making more clones, as the clones are the interpreters which actually
handle requests. Care is taken by Perl to copy only mutable data, which means that no runtime locking is
required and read-only data such as the syntax tree is shared from the parent, which should reduce the
overall mod_perl memory footprint.

Rather than create a PerlInterperter per-thread by default, mod_perl creates a pool of interpreters.
The pool mechanism helps cut down memory usage a great deal. As already mentioned, the syntax tree is
shared between all cloned interpreters. If your server is serving more than mod_perl requests, having a
smaller number of PerlInterpreters than the number of threads will clearly cut down on memory usage.
Finally and perhaps the biggest win is memory re-use: as calls are made into Perl subroutines, memory
allocations are made for variables when they are used for the first time. Subsequent use of variables may
allocate more memory, e.g. if a scalar variable needs to hold a longer string than it did before, or an array
has new elements added. As an optimization, Perl hangs onto these allocations, even though their values
"go out of scope". mod_perl 2.0 has a much better control over which PerlInterpreters are used for incom-
ing requests. The interpreters are stored in two linked lists, one for available interpreters and another for
busy ones. When needed to handle a request, one interpreter is taken from the head of the available list and
put back into the head of the same list when done. This means if for example you have 10 interpreters
configured to be cloned at startup time, but no more than 5 are ever used concurrently, those 5 continue to
reuse Perl’s allocations, while the other 5 remain much smaller, but ready to go if the need arises.

Various attributes of the pools are configurable using threads mode specific directives.

The interpreters pool mechanism has been abstracted into an API known as "tipool", Thread Item Pool.
This pool can be used to manage any data structure, in which you wish to have a smaller number than the
number of configured threads. For example a replacement for Apache::DBI based on the tipool will
allow to reuse database connections between multiple threads of the same process.

2.6.2 Thread-environment Issues

While mod_perl itself is thread-safe, you may have issues with the thread-safety of your code. For more
information refer to Threads Coding Issues Under mod_perl.

Another issue is that "global" variables are only global to the interpreter in which they are created. It’s
possible to share variables between several threads running in the same process. For more information see:
Shared Variables.

1729 Jan 2004

2.6.2 Thread-environment IssuesOverview of mod_perl 2.0

http://www.perldoc.com/perl5.8.0/pod/perlapi.html#Cloning-an-interpreter

2.6.3 Perl Interface to the APR and Apache APIs

As we have mentioned earlier, Apache 2.0 uses two APIs:

the Apache Portable APR (APR) API, which implements a portable and efficient API to handle
generically work with files, sockets, threads, processes, shared memory, etc.

the Apache API, which handles issues specific to the web server.

In mod_perl 1.0, the Perl interface back into the Apache API and data structures was done piecemeal. As
functions and structure members were found to be useful or new features were added to the Apache API,
the XS code was written for them here and there.

mod_perl 2.0 generates the majority of XS code and provides thin wrappers were needed to make the API
more Perlish. As part of this goal, nearly the entire APR and Apache API, along with their public data
structures are covered from the get-go. Certain functions and structures which are considered "private" to
Apache or otherwise un-useful to Perl aren’t glued. Most of the API behaves just as it did in mod_perl 1.0,
so users of the API will not notice the difference, other than the addition of many new methods. Where
API has changed a special back compatibility module can be used.

In mod_perl 2.0 the APR API resides in the APR:: namespace, and obviously the Apache:: namespace
is mapped to the Apache API.

And in the case of APR, it is possible to use APR modules outside of Apache, for example:

 % perl -MApache2 -MAPR -MAPR::UUID -le ’print APR::UUID->new->format’
 b059a4b2-d11d-b211-bc23-d644b8ce0981

The mod_perl 2.0 generator is a custom suite of modules specifically tuned for gluing Apache and allows
for complete control over everything, providing many possibilities none of xsubpp, SWIG or Inline.pm are
designed to do. Advantages to generating the glue code include:

Not tied tightly to xsubpp

Easy adjustment to Apache 2.0 API/structure changes

Easy adjustment to Perl changes (e.g., Perl 6)

Ability to "discover" hookable third-party C modules.

Cleanly take advantage of features in newer Perls

Optimizations can happen across-the-board with one-shot

Possible to AUTOLOAD XSUBs

Documentation can be generated from code

29 Jan 200418

2.6.3 Perl Interface to the APR and Apache APIs

Code can be generated from documentation

2.7 Integration with 2.0 Filtering
The mod_perl 2.0 interface to the Apache filter API comes in two flavors. First, similar to the C API,
where bucket brigades need to be manipulated. Second, streaming filtering, is much simpler than the C
API, since it hides most of the details underneath. For a full discussion on filters and implementation
examples refer to the Input and Output Filters chapter.

2.7.1 Other New Features

In addition to the already mentioned new features, the following are of a major importance:

Apache 2.0 protocol modules are supported. Later we will see an example of a protocol module
running on top of mod_perl 2.0.

mod_perl 2.0 provides a very simply to use interface to the Apache filtering API. We will present a
filter module example later on.

A feature-full and flexible Apache::Test framework was developed especially for mod_perl
testing. While used to test the core mod_perl features, it is used by third-party module writers to
easily test their modules. Moreover Apache::Test was adopted by Apache and currently used to
test both Apache 1.3, 2.0 and other ASF projects. Anything that runs top of Apache can be tested
with Apache::Test, be the target written in Perl, C, PHP, etc.

The support of the new MPMs model makes mod_perl 2.0 can scale better on wider range of plat-
forms. For example if you’ve happened to try mod_perl 1.0 on Win32 you probably know that the
requests had to be serialized, i.e. only a single request could be processed at a time, rendering the
Win32 platform unusable with mod_perl as a heavy production service. Thanks to the new Apache
MPM design, now mod_perl 2.0 can be used efficiently on Win32 platforms using its native win32
MPM.

2.7.2 Optimizations

The rewrite of mod_perl gives us the chances to build a smarter, stronger and faster implementation based
on lessons learned over the 4.5 years since mod_perl was introduced. There are optimizations which can
be made in the mod_perl source code, some which can be made in the Perl space by optimizing its syntax
tree and some a combination of both. In this section we’ll take a brief look at some of the optimizations
that are being considered.

The details of these optimizations from the most part are hidden from mod_perl users, the exception being
that some will only be turned on with configuration directives. A few of which include:

"Compiled" Perl*Handlers

1929 Jan 2004

2.7 Integration with 2.0 FilteringOverview of mod_perl 2.0

Inlined Apache::*.xs calls

Use of Apache pools for memory allocations

2.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

2.9 Authors
Doug MacEachern <dougm (at) covalent.net>

Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200420

2.8 Maintainers

3 Notes on the design and goals of mod_perl-2.0

2129 Jan 2004

3 Notes on the design and goals of mod_perl-2.0Notes on the design and goals of mod_perl-2.0

3.1 Description
Notes on the design and goals of mod_perl-2.0.

We try to keep this doc in sync with the development, so some items discussed here were already imple-
mented, while others are only planned. If you find some inconsistencies in this document please let the list
know.

3.2 Introduction
In version 2.0 of mod_perl, the basic concept of 1.0 still applies:

 Provide complete access to the Apache C API
 via the Perl programming language.

Rather than "porting" mod_perl-1.0 to Apache 2.0, mod_perl-2.0 is being implemented as a complete
re-write from scratch.

For a more detailed introduction and functionality overview, see Overview.

3.3 Interpreter Management
In order to support mod_perl in a multi-threaded environment, mod_perl-2.0 will take advantage of Perl’s
ithreads feature, new to Perl version 5.6.0. This feature encapsulates the Perl runtime inside a thread-safe
PerlInterpreter structure. Each thread which needs to serve a mod_perl request will need its own PerlIn-
terpreter instance.

Rather than create a one-to-one mapping of PerlInterpreter per-thread, a configurable pool of interpreters
is managed by mod_perl. This approach will cut down on memory usage simply by maintaining a minimal
number of intepreters. It will also allow re-use of allocations made within each interpreter by recycling
those which have already been used. This was not possible in the 1.3.x model, where each child has its
own interpreter and no control over which child Apache dispatches the request to.

The interpreter pool is only enabled if Perl is built with -Dusethreads otherwise, mod_perl will behave just
as 1.0, using a single interpreter, which is only useful when Apache is configured with the prefork mpm.

When the server is started, a Perl interpreter is constructed, compiling any code specified in the configura-
tion, just as 1.0 does. This interpreter is referred to as the "parent" interpreter. Then, for the number of
PerlInterpStart configured, a (thread-safe) clone of the parent interpreter is made (via perl_clone()) and
added to the pool of interpreters. This clone copies any writeable data (e.g. the symbol table) and shares
the compiled syntax tree. From my measurements of a startup.pl including a few random modules:

29 Jan 200422

3.1 Description

 use CGI ();
 use POSIX ();
 use IO ();
 use SelfLoader ();
 use AutoLoader ();
 use B::Deparse ();
 use B::Terse ();
 use B ();
 use B::C ();

The parent adds 6M size to the process, each clone adds less than half that size, ~2.3M, thanks to the
shared syntax tree.

NOTE: These measurements were made prior to finding memory leaks related to perl_clone() in 5.6.0 and
the GvSHARED optimization.

At request time, If any Perl*Handlers are configured, an available interpreter is selected from the pool. As
there is a conn_rec and request_rec per thread, a pointer is saved in either the conn_rec->pool or
request_rec->pool, which will be used for the lifetime of that request. For handlers that are called when
threads are not running (PerlChild{Init,Exit}Handler), the parent interpreter is used. Several
configuration directives control the interpreter pool management:

PerlInterpStart

The number of intepreters to clone at startup time.

PerlInterpMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle the request, up
until this number of interpreters is reached. when PerlIn terp Max is reached, mod_perl will block
(via COND_WAIT()) until one becomes available (signaled via COND_SIGNAL())

PerlInterpMinSpare

The minimum number of available interpreters this parameter will clone interpreters up to PerlIn -
terp Max, before a request comes in.

PerlInterpMaxSpare

mod_perl will throttle down the number of interpreters to this number as those in use become avail-
able

PerlInterpMaxRequests

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh one.

PerlInterpScope

2329 Jan 2004

3.3 Interpreter ManagementNotes on the design and goals of mod_perl-2.0

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be
pulled from the interpreter pool. The interpreter is then only available to the thread that selected it,
until it is released back into the interpreter pool. By default, an interpreter will be held for the lifetime
of the request, equivalent to this configuration:

 PerlInterpScope request

For example, if a PerlAc cessHan dler is configured, an interpreter will be selected before it is
run and not released until after the logging phase.

Intepreters will be shared across subrequests by default, however, it is possible to configure the
intepreter scope to be per-subrequest on a per-directory basis:

 PerlInterpScope subrequest

With this configuration, an autoindex generated page for example would select an interpreter for each
item in the listing that is configured with a Perl*Handler.

It is also possible to configure the scope to be per-handler:

 PerlInterpScope handler

With this configuration, an interpreter will be selected before PerlAc cessHan dlers are run, and
putback immediately afterwards, before Apache moves onto the authentication phase. If a Perl -
Fix upHandler is configured further down the chain, another interpreter will be selected and again
putback afterwards, before Perl Respon se Handler is run.

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and provide a request_rec record. In this case,
the default scope is that of the request. Should a mod_perl handler want to maintain state for the life-
time of an ftp connection, it is possible to do so on a per-virtualhost basis:

 PerlInterpScope connection

3.3.1 TIPool

The interpreter pool is implemented in terms of a "TIPool" (Thread Item Pool), a generic api which can be
reused for other data such as database connections. A Perl interface will be provided for the TIPool mech-
anism, which, for example, will make it possible to share a pool of DBI connections.

3.3.2 Virtual Hosts

The interpreter management has been implemented in a way such that each <Virtu al Host > can have
its own parent Perl interpreter and/or MIP (Mod_perl Interpreter Pool). It is also possible to disable
mod_perl for a given virtual host.

29 Jan 200424

3.3.1 TIPool

3.3.3 Further Enhancements

The interpreter pool management could be moved into its own thread.

A "garbage collector", which could also run in its own thread, examining the padlists of idle inter-
preters and deciding to release and/or report large strings, array/hash sizes, etc., that Perl is keeping
around as an optimization.

3.4 Hook Code and Callbacks
The code for hooking mod_perl in the various phases, including Perl*Handler directives is generated
by the ModPerl::Code module. Access to all hooks will be provided by mod_perl in both the tradi-
tional Perl*Handler configuration fashion and via dynamic registration methods (the ap_hook_* func-
tions).

When a mod_perl hook is called for a given phase, the glue code has an index into the array of handlers,
so it knows to return DECLINED right away if no handlers are configured, without entering the Perl
runtime as 1.0 did. The handlers are also now stored in an apr_array_header_t, which is much lighter and
faster than using a Perl AV, as 1.0 did. And more importantly, keeps us out of the Perl runtime until we’re
sure we need to be there.

Perl*Handlers are now "compiled", that is, the various forms of:

 PerlResponseHandler MyModule->handler
 # defaults to MyModule::handler or MyModule->handler
 PerlResponseHandler MyModule
 PerlResponseHandler $MyObject->handler
 PerlResponseHandler ’sub { print "foo\n"; return OK }’

are only parsed once, unlike 1.0 which parsed every time the handler was used. There will also be an
option to parse the handlers at startup time. Note: this feature is currently not enabled with threads, as each
clone needs its own copy of Perl structures.

A "method handler" is now specified using the ‘method’ sub attribute, e.g.

 sub handler : method {};

instead of 1.0’s

 sub handler ($$) {}

3.5 Perl interface to the Apache API and Data Structures
In 1.0, the Perl interface back into the Apache API and data structures was done piecemeal. As functions
and structure members were found to be useful or new features were added to the Apache API, the xs code
was written for them here and there.

2529 Jan 2004

3.4 Hook Code and CallbacksNotes on the design and goals of mod_perl-2.0

The goal for 2.0 is to generate the majority of xs code and provide thin wrappers where needed to make
the API more Perlish. As part of this goal, nearly the entire APR and Apache API, along with their public
data structures is covered from the get-go. Certain functions and structures which are considered "private"
to Apache or otherwise un-useful to Perl don’t get glued.

The Apache header tree is parsed into Perl data structures which live in the generated Apache::Func -
tionTable and Apache::Struc tureTable modules. For example, the following function proto-
type:

 AP_DECLARE(int) ap_meets_conditions(request_rec *r);

is parsed into the following Perl structure:

 {
 ’name’ => ’ap_meets_conditions’
 ’return_type’ => ’int’,
 ’args’ => [
 {
 ’name’ => ’r’,
 ’type’ => ’request_rec *’
 }
],
 },

and the following structure:

 typedef struct {
 uid_t uid;
 gid_t gid;
 } ap_unix_identity_t;

is parsed into:

 {
 ’type’ => ’ap_unix_identity_t’
 ’elts’ => [
 {
 ’name’ => ’uid’,
 ’type’ => ’uid_t’
 },
 {
 ’name’ => ’gid’,
 ’type’ => ’gid_t’
 }
],
 }

Similar is done for the mod_perl source tree, building ModPerl::Func tionTable and
ModPerl::Struc tureTable .

Three files are used to drive these Perl structures into the generated xs code:

29 Jan 200426

3.5 Perl interface to the Apache API and Data Structures

lib/ModPerl/function.map

Specifies which functions are made available to Perl, along with which modules and classes they
reside in. Many functions will map directly to Perl, for example the following C code:

 static int handler (request_rec *r) {
 int rc = ap_meets_conditions(r);
 ...

maps to Perl like so:

 sub handler {
 my $r = shift;
 my $rc = $r->meets_conditions;
 ...

The function map is also used to dispatch Apache/APR functions to thin wrappers, rewrite arguments
and rename functions which make the API more Perlish where applicable. For example, C code such
as:

 char uuid_buf[APR_UUID_FORMATTED_LENGTH+1];
 apr_uuid_t uuid;
 apr_uuid_get(&uuid)
 apr_uuid_format(uuid_buf, &uuid);
 printf("uuid=%s\n", uuid_buf);

is remapped to a more Perlish convention:

 printf "uuid=%s\n", APR::UUID->new->format;

lib/ModPerl/structure.map

Specifies which structures and members of each are made available to Perl, along with which
modules and classes they reside in.

lib/ModPerl/type.map

This file defines how Apache/APR types are mapped to Perl types and vice-versa. For example:

 apr_int32_t => SvIV
 apr_int64_t => SvNV
 server_rec => SvRV (Perl object blessed into the Apache::Server class)

3.5.1 Advantages to generating XS code

Not tied tightly to xsubpp

Easy adjustment to Apache 2.0 API/structure changes

Easy adjustment to Perl changes (e.g., Perl 6)

2729 Jan 2004

3.5.1 Advantages to generating XS codeNotes on the design and goals of mod_perl-2.0

Ability to "discover" hookable third-party C modules.

Cleanly take advantage of features in newer Perls

Optimizations can happen across-the-board with one-shot

Possible to AUTOLOAD XSUBs

Documentation can be generated from code

Code can be generated from documentation

3.5.2 Lvalue methods

A new feature to Perl 5.6.0 is lvalue subroutines, where the return value of a subroutine can be directly
modified. For example, rather than the following code to modify the uri:

 $r->uri($new_uri);

the same result can be accomplished with the following syntax:

 $r->uri = $new_uri;

mod_perl-2.0 will support lvalue subroutines for all methods which access Apache and APR data struc-
tures.

3.6 Filter Hooks
mod_perl 2.0 provides two interfaces to filtering, a direct mapping to buckets and bucket brigades and a
simpler, stream-oriented interface. This is discussed in the Chapter on filters.

3.7 Directive Handlers
mod_perl 1.0 provides a mechanism for Perl modules to implement first-class directive handlers, but
requires an XS file to be generated and compiled. The 2.0 version provides the same functionality, but
does not require the generated XS module (i.e. everything is implemented in pure Perl).

3.8 <Perl> Configuration Sections
The ability to write configuration in Perl carries over from 1.0, but but implemented much different inter-
nally. The mapping of a Perl symbol table fits cleanly into the new ap_directive_t API, unlike the hoop
jumping required in mod_perl 1.0.

29 Jan 200428

3.6 Filter Hooks

3.9 Protocol Module Support
Protocol module support is provided out-of-the-box, as the hooks and API are covered by the generated
code blankets. Any functionality for assisting protocol modules should be folded back into Apache if
possible.

3.10 mod_perl MPM
It will be possible to write an MPM (Multi-Processing Module) in Perl. mod_perl will provide a
mod_perl_mpm.c framework which fits into the server/mpm standard convention. The rest of the function-
ality needed to write an MPM in Perl will be covered by the generated xs code blanket.

3.11 Build System
The biggest mess in 1.0 is mod_perl’s Makefile.PL, the majority of logic has been broken down and
moved to the Apache::Build module. The Makefile.PL will construct an Apache::Build object
which will have all the info it needs to generate scripts and Makefiles that apache-2.0 needs. Regardless of
what that scheme may be or change to, it will be easy to adapt to with build logic/variables/etc., divorced
from the actual Makefiles and configure scripts. In fact, the new build will stay as far away from the
Apache build system as possible. The module library (libmodperl.so or libmodperl.a) is built with as little
help from Apache as possible, using only the INCLUDEDIR provided by apxs.

The new build system will also "discover" XS modules, rather than hard-coding the XS module names.
This allows for switchabilty between static and dynamic builds, no matter where the xs modules live in the
source tree. This also allows for third-party xs modules to be unpacked inside the mod_perl tree and built
static without modification to the mod_perl Makefiles.

For platforms such as Win32, the build files are generated similar to how unix-flavor Makefiles are.

3.12 Test Framework
Similar to 1.0, mod_perl-2.0 provides a ’make test’ target to exercise as many areas of the API and module
features as possible.

The test framework in 1.0, like several other areas of mod_perl, was cobbled together over the years.
mod_perl 2.0 provides a test framework that is usable not only for mod_perl, but for third-party
Apache::* modules and Apache itself. See Apache::Test.

3.13 CGI Emulation
As a side-effect of embedding Perl inside Apache and caching compiled code, mod_perl has been popular
as a CGI accelerator. In order to provide a CGI-like environment, mod_perl must manage areas of the
runtime which have a longer lifetime than when running under mod_cgi. For example, the %ENV environ-
ment variable table, END blocks, @INC include paths, etc.

2929 Jan 2004

3.9 Protocol Module SupportNotes on the design and goals of mod_perl-2.0

CGI emulation is supported in mod_perl 2.0, but done so in a way that it is encapsulated in its own
handler. Rather than 1.0 which uses the same response handler, regardless if the module requires CGI
emulation or not. With an ithreads enabled Perl, it’s also possible to provide more robust namespace
protection.

Notice that ModPerl::Registry is used instead of 1.0’s Apache::Registry, and similar for other
registry groups. ModPerl::RegistryCooker makes it easy to write your own customizable registry
handler.

3.14 Apache::* Library
The majority of the standard Apache::* modules in 1.0 are supported in 2.0. The main goal being that
the non-core CGI emulation components of these modules are broken into small, re-usable pieces to
subclass Apache::Registry like behavior.

3.15 Perl Enhancements
Most of the following items were projected for inclusion in perl 5.8.0, but that didn’t happen. While these
enhancements do not preclude the design of mod_perl-2.0, they could make an impact if they were imple-
mented/accepted into the Perl development track.

3.15.1 GvSHARED

(Note: This item wasn’t implemented in Perl 5.8.0)

As mentioned, the perl_clone() API will create a thread-safe interpreter clone, which is a copy of all
mutable data and a shared syntax tree. The copying includes subroutines, each of which take up around
255 bytes, including the symbol table entry. Multiply that number times, say 1200, is around 300K, times
10 interpreter clones, we have 3Mb, times 20 clones, 6Mb, and so on. Pure perl subroutines must be
copied, as the structure includes the PADLIST of lexical variables used within that subroutine. However,
for XSUBs, there is no PADLIST, which means that in the general case, perl_clone() will copy the
subroutine, but the structure will never be written to at runtime. Other common global variables, such as
@EXPORT and %EXPORT_OK are built at compile time and never modified during runtime.

Clearly it would be a big win if XSUBs and such global variables were not copied. However, we do not
want to introduce locking of these structures for performance reasons. Perl already supports the concept of
a read-only variable, a flag which is checked whenever a Perl variable will be written to. A patch has been
submitted to the Perl development track to support a feature known as GvSHARED. This mechanism
allows XSUBs and global variables to be marked as shared, so perl_clone() will not copy these structures,
but rather point to them.

29 Jan 200430

3.14 Apache::* Library

3.15.2 Shared SvPVX

The string slot of a Perl scalar is known as the SvPVX. As Perl typically manages the string a variable
points to, it must make a copy of it. However, it is often the case that these strings are never written to. It
would be possible to implement copy-on-write strings in the Perl core with little performance overhead.

3.15.3 Compile-time method lookups

A known disadvantage to Perl method calls is that they are slower than direct function calls. It is possible
to resolve method calls at compile time, rather than runtime, making method calls just as fast as subroutine
calls. However, there is certain information required for method look ups that are only known at runtime.
To work around this, compile-time hints can be used, for example:

 my Apache::Request $r = shift;

Tells the Perl compiler to expect an object in the Apache::Request class to be assigned to $r. A
patch has already been submitted to use this information so method calls can be resolved at compile time.
However, the implementation does not take into account sub-classing of the typed object. Since the
mod_perl API consists mainly of methods, it would be advantageous to re-visit the patch to find an accept-
able solution.

3.15.4 Memory management hooks

Perl has its own memory management system, implemented in terms of malloc and free. As an optimiza-
tion, Perl will hang onto allocations made for variables, for example, the string slot of a scalar variable. If
a variable is assigned, for example, a 5k chunk of HTML, Perl will not release that memory unless the
variable is explicitly undefed. It would be possible to modify Perl in such a way that the management of
these strings are pluggable, and Perl could be made to allocate from an APR memory pool. Such a feature
would maintain the optimization Perl attempts (to avoid malloc/free), but would greatly reduce the process
size as pool resources are able to be re-used elsewhere.

3.15.5 Opcode hooks

Perl already has internal hooks for optimizing opcode trees (syntax tree). It would be quite possible for
extensions to add their own optimizations if these hooks were plugable, for example, optimizing calls to
print, so they directly call the Apache ap_rwrite function, rather than proxy via a tied filehandle.

Another optimization that was implemented is "inlined" XSUB calls. Perl has a generic opcode for calling
subroutines, one which does not know the number of arguments coming into and being passed out of a
subroutine. As the majority of mod_perl API methods have known in/out argument lists, mod_perl imple-
ments a much faster version of the Perl pp_entersub routine.

3129 Jan 2004

3.15.2 Shared SvPVXNotes on the design and goals of mod_perl-2.0

3.16 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Doug MacEachern <dougm (at) covalent.net>

3.17 Authors
Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200432

3.16 Maintainers

4 Installing mod_perl 2.0

3329 Jan 2004

4 Installing mod_perl 2.0Installing mod_perl 2.0

4.1 Description
This chapter provides an in-depth mod_perl 2.0 installation coverage.

4.2 Prerequisites
Before building mod_perl 2.0 you need to have its prerequisites installed. If you don’t have them, down-
load and install them first, using the information in the following sections. Otherwise proceed directly to
the mod_perl building instructions.

The mod_perl 2.0 prerequisites are:

Apache

Apache 2.0 is required. mod_perl 2.0 does not work with Apache 1.3.

Perl
prefork MPM

Requires at least Perl version 5.6.0. But we strongly suggest to use at least version 5.6.1, since
5.6.0 is quite buggy. The only reason we support 5.6.0 is for development reasons (so the build
can be tested on systems having only 5.6.0) and those users who want to give it a try, without
first having the hassle of updating their perl version.

You don’t need to have threads-support enabled in Perl. If you do have it, it must be ithreads
and not 5005threads! If you have:

 % perl5.8.0 -V:use5005threads
 use5005threads=’define’;

you must rebuild Perl without threads enabled or with -Dusethreads. Remember that
threads-support slows things down and on some platforms it’s unstable (e.g., FreeBSD), so don’t
enable it unless you really need it.

threaded MPMs

Require at least Perl version 5.8.0 with ithreads support built-in. That means that it should
report:

 % perl5.8.0 -V:useithreads -V:usemultiplicity
 useithreads=’define’;
 usemultiplicity=’define’;

If that’s not what you see rebuild Perl with -Dusethreads.

threads.pm

29 Jan 200434

4.1 Description

If you want to run applications that take benefit of Perl’s threads.pm Perl version 5.8.1 or higher
w/ithreads enabled is required. Perl 5.8.0’s threads.pm doesn’t work with mod_perl 2.0.

CPAN Perl Modules

The mod_perl 2.0 test suite has several requirements on its own. If you don’t satisfy them, the tests
depending on these requirements will be skipped, which is OK, but you won’t get to run these tests
and potential problems, which may exhibit themselves in your own code, could be missed. We don’t
require them from Makefile.PL, which could have been automated the requirements installation,
in order to have less dependencies to get mod_perl 2.0 installed.

Also if your code uses any of these modules, chances are that you will need to use at least the version
numbers listed here.

CGI.pm 3.01
Compress::Zlib 1.09

4.2.1 Downloading Stable Release Sources

If you are going to install mod_perl on a production site, you want to use the officially released stable
components. Since the latest stable versions change all the time you should check for the latest stable
version at the listed below URLs:

Perl

Download from: http://cpan.org/src/README.html

This direct link which symlinks to the latest release should work too:
http://cpan.org/src/stable.tar.gz.

For the purpose of examples in this chapter we will use the package named perl-5.8.x.tar.gz, where x
should be replaced with the real version number.

Apache

Download from: http://www.apache.org/dist/httpd/

For the purpose of examples in this chapter we will use the package named httpd-2.x.xx.tar.gz, where
x.xx should be replaced with the real version number.

4.2.2 Getting Bleeding Edge CVS Sources

If you really know what you are doing you can use the cvs versions of the components. Chances are that
you don’t want to them on a production site. You have been warned!

Perl

3529 Jan 2004

4.2.1 Downloading Stable Release SourcesInstalling mod_perl 2.0

http://cpan.org/src/README.html
http://cpan.org/src/stable.tar.gz
http://www.apache.org/dist/httpd/

 # (--delete to ensure a clean state)
 % rsync -acvz --delete --force \
 rsync://ftp.linux.activestate.com/perl-current/ perl-current

If you are re-building Perl after rsync-ing, make sure to cleanup first:

 % make distclean

before running ./Configure.

You’ll also want to install (at least) LWP if you want to fully test mod_perl. You can install LWP
with CPAN.pm shell:

 % perl -MCPAN -e ’install("LWP")’

Apache

To download the cvs version of httpd-2.0 and bring it to the same state of the distribution package,
execute the following commands:

 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login

The password is "anoncvs". Now extract the APACHE_2_0_BRANCH branch of httpd-2.0.xx. If you
don’t use this branch you will get httpd-2.1.xx which at this moment is not supported. Similarly you
need APR_0_9_BRANCH and APU_0_9_BRANCH cvs branches for apr and apr-util projects,
respectively.

 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co \
 -r APACHE_2_0_BRANCH -d httpd-2.0 httpd-2.0
 % cd httpd-2.0/srclib
 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co \
 -r APR_0_9_BRANCH -d apr apr
 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co \
 -r APU_0_9_BRANCH -d apr-util apr-util
 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co \
 -r APU_0_9_BRANCH -d apr-iconv apr-iconv
 % cd ..
 % ./buildconf

Once extracted, whenever you want to sync with the latest httpd-2.0 version and rebuild, run:

 % cd httpd-2.0
 % cvs up -dP
 % make distclean && ./buildconf

4.2.3 Configuring and Installing Prerequisites

If you don’t have the prerequisites installed yet, install them now.

Perl

29 Jan 200436

4.2.3 Configuring and Installing Prerequisites

 % cd perl-5.8.x
 % ./Configure -des

If you need the threads support, run:

 % ./Configure -des -Dusethreads

If you want to debug mod_perl segmentation faults, add the following ./Configure options:

 -Doptimize=’-g’ -Dusedevel

Now build it:

 % make && make test && make install

Apache

 % cd httpd-2.x.xx
 % ./configure --prefix=$HOME/httpd/prefork --with-mpm=prefork
 % make && make install

4.3 Installing mod_perl from Binary Packages
As of this writing only the binaries for the Win32 platform are available, kindly prepared and maintained
by Randy Kobes. See the documentation on Win32 binaries for details.

Some RPM packages can be found using rpmfind services, e.g.:

http://www.rpmfind.net/linux/rpm2html/search.php?query=mod_perl&submit=Search+... However if you
have problems using them, you have to contact those who have created them.

4.4 Installing mod_perl from Source
Building from source is the best option, because it ensures a binary compatibility with Apache and Perl.
However it’s possible that your distribution provides a solid binary mod_perl 2.0 package.

For Win32 specific details, see the documentation on Win32 installation.

4.4.1 Downloading the mod_perl Source

First download the mod_perl source.

Stable Release

Download from: http://perl.apache.org/download/

This direct link which symlinks to the latest release should work too:
http://perl.apache.org/dist/mod_perl-2.0-current.tar.gz.

3729 Jan 2004

4.3 Installing mod_perl from Binary PackagesInstalling mod_perl 2.0

http://www.rpmfind.net/linux/rpm2html/search.php?query=mod_perl&submit=Search+
http://perl.apache.org/download/
http://perl.apache.org/dist/mod_perl-2.0-current.tar.gz

For the purpose of examples in this chapter we will use the package named mod_perl-2.x.xx.tar.gz,
where x.xx should be replaced with the real version number.

Open the package with:

 % tar -xvzf mod_perl-2.x.xx.tar.gz

or an equivalent command.

CVS Bleeding-Edge Version

To download the cvs version of modperl-2.0 execute the following commands:

 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login

The password is "anoncvs".

 % cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co modperl-2.0

You can also try the latest CVS snapshot:

http://cvs.apache.org/snapshots/modperl-2.0/

4.4.2 Configuring mod_perl

Before you proceed make sure that Apache 2.0 has been built and installed. mod_perl cannot be built
before that.

Like any other Perl module, mod_perl is configured via the Makefile.PL file, but requires one or more
configuration options:

 % cd modperl-1.99_xx
 % perl Makefile.PL <options>

where options is an optional list of (key,value) pairs.

The following sections give the details about all the available options, but let’s mention first the most
important ones.

If you want to have mod_perl 1.0 and 2.0 installed under the same perl tree you need to enable
MP_INST_APACHE2:

 % perl Makefile.PL MP_INST_APACHE2=1 <other options>

It seems that most users use pre-packaged Apache installation, most of which tend to spread the Apache
files across many directories (i.e. not using --enable-layout=Apache, which puts all the files under the
same directory). If Apache 2.0 files are spread under different directories, you need to use at least the
MP_APXS option, which should be set to a full path to the apxs executable. For example:

29 Jan 200438

4.4.2 Configuring mod_perl

http://cvs.apache.org/snapshots/modperl-2.0/

 % perl Makefile.PL MP_INST_APACHE2=1 MP_APXS=/path/to/apxs

For example RedHat Linux system installs the httpd binary, the apxs and apr-config scripts (the
latter two are needed to build mod_perl) all in different locations, therefore they configure mod_perl 2.0
as:

 % perl Makefile.PL MP_INST_APACHE2=1 MP_APXS=/path/to/apxs \
 MP_APR_CONFIG=/another/path/to/apr-config <other options>

However a correctly built Apache shouldn’t require the MP_APR_CONFIG option, since MP_APXS
should provide the location of this script.

If however all Apache 2.0 files were installed under the same directory, mod_perl 2.0’s build only needs
to know the path to that directory, passed via the MP_AP_PREFIX option:

 % perl Makefile.PL MP_INST_APACHE2=1 MP_AP_PREFIX=$HOME/httpd/prefork

These and other options are discussed in the following sections.

4.4.2.1 Boolean Build Options

The following options are boolean and can be set with MP_XXX=1 or unset with MP_XXX=0, where XXX
is the name of the option.

4.4.2.1.1 MP_PROMPT_DEFAULT

Accept default values for all would-be prompts.

4.4.2.1.2 MP_GENERATE_XS

Generate XS code from parsed source headers in xs/tables/$httpd_version. Default is 1, set to 0 to disable.

4.4.2.1.3 MP_USE_DSO

Build mod_perl as a DSO (mod_perl.so). This is the default. It’ll be turned off if MP_USE_STATIC=1 is
used.

4.4.2.1.4 MP_USE_STATIC

Build static mod_perl (mod_perl.a). This is the default. It’ll be turned off if MP_USE_DSO=1 is used.

MP_USE_DSO and MP_USE_STATIC are both enabled by default. So mod_perl is built once as
mod_perl.a and mod_perl.so, but afterwards you can choose which of the two to use.

META: The following is not implemented yet.

 mod_perl and ends up with a src/modules/perl/mod_perl.{so,a} and
 src/modules/perl/ldopts. to link modperl static with httpd, we just
 need some config.m4 magic to add ‘ldopts‘ and mod_perl.a to the build.
 so one could then build httpd like so:

3929 Jan 2004

4.4.2 Configuring mod_perlInstalling mod_perl 2.0

 ln -s ~/apache/modperl-2.0/src/modules/perl $PWD/src/modules
 ./configure --with-mpm=prefork --enable-perl=static ...

 we not be configuring/building httpd for the user as 1.x attempted.

 downside is one will need to have configured httpd first, so that
 headers generated. so it will probably be more like:

 ./configure --with-mpm=prefork ...
 (go build modperl)
 ./config.nice --enable-perl=static && make

 we could of course provide a wrapper script todo this, but don’t want
 to have this stuff buried and tangled like it is in 1.x

4.4.2.1.5 MP_STATIC_EXTS

Build Apache::*.xs as static extensions.

4.4.2.1.6 MP_USE_GTOP

Link with libgtop and enable libgtop reporting.

4.4.2.1.7 MP_COMPAT_1X

MP_COMPAT_1X=1 or a lack of it enables several mod_perl 1.0 back-compatibility features, which are
deprecated in mod_perl 2.0. It’s enabled by default, but can be disabled with MP_COMPAT_1X=0 during
the build process.

When this option is disabled, the following things will happen:

Environment variable GATEWAY_INTERFACE will be enabled only if PerlOp tions +Setu -
pEnv is enabled and its value would be the default:

 CGI/1.1

and not:

 CGI-Perl/1.1

The use of $ENV{GATEWAY_INTERFACE} is deprecated and the existance of $ENV{MOD_PERL}
should be checked instead.

Deprecated special variable, $Apache::__T won’t be available. Use ${^TAINT} instead.

$ServerRoot and $ServerRoot/lib/perl won’t be appended to @INC. Instead use:

 PerlSwitches -I/path/to/server -I/path/to/server/lib/perl

29 Jan 200440

4.4.2 Configuring mod_perl

in httpd.conf or:

 use Apache::Server ();
 use Apache::ServerUtil ();
 use Apache::Process ();
 my $pool = Apache->server->process->pool;
 push @INC, Apache::Server::server_root_relative($pool, "");
 push @INC, Apache::Server::server_root_relative($pool, "lib/perl");

in startup.pl.

The following deprecated configuration directives won’t be recognized by Apache:

 PerlSendHeader
 PerlSetupEnv
 PerlHandler
 PerlTaintCheck
 PerlWarn

Use their 2.0 equivalents instead.

4.4.2.1.8 MP_DEBUG

Turn on debugging (-g -lperld) and tracing.

4.4.2.1.9 MP_MAINTAINER

Enable maintainer compile mode, which sets MP_DEBUG=1 and adds the following gcc flags:

 -DAP_DEBUG -Wall -Wmissing-prototypes -Wstrict-prototypes \
 -Wmissing-declarations \
 -DAP_DEBUG -DAP_HAVE_DESIGNATED_INITIALIZER

To use this mode Apache must be build with --enable-maintainer-mode.

4.4.2.1.10 MP_TRACE

Enable tracing

4.4.2.1.11 MP_INST_APACHE2

Install all the *.pm modules relative to the Apache2/ directory.

4.4.2.2 Non-Boolean Build Options

set the non-boolen options with MP_XXX=value.

4129 Jan 2004

4.4.2 Configuring mod_perlInstalling mod_perl 2.0

4.4.2.2.1 MP_APXS

Path to apxs. For example if you’ve installed Apache 2.0 under /home/httpd/httpd-2.0 as DSO, the
default location would be /home/httpd/httpd-2.0/bin/apxs.

4.4.2.2.2 MP_AP_PREFIX

Apache installation prefix, under which the include/ directory with Apache C header files can be found.
For example if you’ve have installed Apache 2.0 in directory \Apache2 on Win32, you should use:

 MP_AP_PREFIX=\Apache2

If Apache is not installed yet, you can point to the Apache 2.0 source directory, but only after you’ve built
or configured Apache in it. For example:

 MP_AP_PREFIX=/home/stas/apache.org/httpd-2.0

Though in this case make test won’t automatically find httpd, therefore you should run t/TEST
instead and pass the location of apxs or httpd, e.g.:

 % t/TEST -apxs /home/stas/httpd/prefork/bin/apxs

or

 % t/TEST -httpd /home/stas/httpd/prefork/bin/httpd

4.4.2.2.3 MP_APR_CONFIG

If APR wasn’t installed under the same file tree as httpd, you may need to tell the build process where it
can find the executable apr-config, which can then be used to figure out where the apr and aprutil
include/ and lib/ directories can be found.

4.4.2.2.4 MP_CCOPTS

Add to compiler flags, e.g.:

 MP_CCOPTS=-Werror

(Notice that -Werror will work only with the Perl version 5.7 and higher.)

4.4.2.2.5 MP_OPTIONS_FILE

Read build options from given file. e.g.:

 MP_OPTIONS_FILE=~/.my_mod_perl2_opts

29 Jan 200442

4.4.2 Configuring mod_perl

4.4.2.3 mod_perl-specific Compiler Options

4.4.2.3.1 -DMP_IOBUFSIZE

Change the default mod_perl’s 8K IO buffer size, e.g. to 16K:

 MP_CCOPTS=-DMP_IOBUFSIZE=16384

4.4.2.4 mod_perl Options File

Options can also be specified in the file makepl_args.mod_perl2 or .makepl_args.mod_perl2. The file can
be placed under $ENV{HOME}, the root of the source package or its parent directory. So if you unpack the
mod_perl source into /tmp/mod_perl-2.x/ and your home is /home/foo/, the file will be searched in:

 /tmp/mod_perl-2.x/makepl_args.mod_perl2
 /tmp/makepl_args.mod_perl2
 /home/foo/makepl_args.mod_perl2
 /tmp/mod_perl-2.x/.makepl_args.mod_perl2
 /tmp/.makepl_args.mod_perl2
 /home/foo/.makepl_args.mod_perl2

If the file specified in MP_OPTIONS_FILE is found the makepl_args.mod_perl2 will be ignored.

Options specified on the command line override those from makepl_args.mod_perl2 and those from
MP_OPTIONS_FILE.

If your terminal supports colored text you may want to set the environment variable
APACHE_TEST_COLOR to 1 to enable the colored tracing which makes it easier to tell the reported errors
and warnings, from the rest of the notifications.

4.4.3 Re-using Configure Options

Since mod_perl remembers what build options were used to build it if first place, you can use this knowl-
edge to rebuild itself using the same options. Simply chdir(1) to the mod_perl source directory and
run:

 % cd modperl-2.x.xx
 % perl -MApache::Build -e rebuild

4.4.4 Compiling mod_perl

Next stage is to build mod_perl:

 % make

4329 Jan 2004

4.4.3 Re-using Configure OptionsInstalling mod_perl 2.0

4.4.5 Testing mod_perl

When mod_perl has been built, it’s very important to test that everything works on your machine:

 % make test

If something goes wrong with the test phase and want to figure out how to run individual tests and pass
various options to the test suite, see the corresponding sections of the bug reporting guidelines or the
Apache::Test Framework tutorial.

4.4.6 Installing mod_perl

Once the test suite has passed, it’s a time to install mod_perl.

 % make install

If you install mod_perl system wide, you probably need to become root prior to doing the installation:

 % su
 # make install

4.5 If Something Goes Wrong
If something goes wrong during the installation, try to repeat the installation process from scratch, while
verifying all the steps with this document.

If the problem persists report the problem.

4.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

4.7 Authors
Stas Bekman <stas (at) stason.org>

Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200444

4.5 If Something Goes Wrong

5 mod_perl 2.0 Server Configuration

4529 Jan 2004

5 mod_perl 2.0 Server Configurationmod_perl 2.0 Server Configuration

5.1 Description
This chapter provides an in-depth mod_perl 2.0 configuration details.

5.2 mod_perl configuration directives
Similar to mod_perl 1.0, in order to use mod_perl 2.0 a few configuration settings should be added to
httpd.conf. They are quite similar to 1.0 settings but some directives were renamed and new directives
were added.

5.3 Enabling mod_perl
To enable mod_perl built as DSO add to httpd.conf:

 LoadModule perl_module modules/mod_perl.so

This setting specifies the location of the mod_perl module relative to the ServerRoot setting, therefore
you should put it somewhere after ServerRoot is specified.

If mod_perl has been statically linked it’s automatically enabled.

For Win32 specific details, see the documentation on Win32 configuration.

5.4 Accessing the mod_perl 2.0 Modules
In order to prevent from inadvertently loading mod_perl 1.0 modules mod_perl 2.0 Perl modules are
installed into dedicated directories under Apache2/. The Apache2 module prepends the locations of the
mod_perl 2.0 libraries to @INC, which are the same as the core @INC, but with Apache2/ appended. This
module has to be loaded just after mod_perl has been enabled. This can be accomplished with:

 use Apache2 ();

in the startup file. Only if you don’t use a startup file you can add:

 PerlModule Apache2

to httpd.conf, due to the order the PerlRequire and PerlModule directives are processed.

5.5 Startup File
Next usually a startup file with Perl code is loaded:

 PerlRequire "/home/httpd/httpd-2.0/perl/startup.pl"

29 Jan 200446

5.1 Description

It’s used to adjust Perl modules search paths in @INC, pre-load commonly used modules, pre-compile
constants, etc. Here is a typical startup.pl for mod_perl 2.0:

 file:startup.pl

 use Apache2 ();

 use lib qw(/home/httpd/perl);

 # enable if the mod_perl 1.0 compatibility is needed
 # use Apache::compat ();

 # preload all mp2 modules
 # use ModPerl::MethodLookup;
 # ModPerl::MethodLookup::preload_all_modules();

 use ModPerl::Util (); #for CORE::GLOBAL::exit

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();

 use Apache::Server ();
 use Apache::ServerUtil ();
 use Apache::Connection ();
 use Apache::Log ();

 use APR::Table ();

 use ModPerl::Registry ();

 use Apache::Const -compile => ’:common’;
 use APR::Const -compile => ’:common’;

 1;

In this file the Apache2 modules is loaded, so the 2.0 modules will be found. Afterwards @INC in
adjusted to include non-standard directories with Perl modules:

 use lib qw(/home/httpd/perl);

If you need to use the backwards compatibility layer load:

 use Apache::compat ();

Next we preload the commonly used mod_perl 2.0 modules and precompile common constants.

Finally as usual the startup.pl file must be terminated with 1;.

4729 Jan 2004

5.5 Startup Filemod_perl 2.0 Server Configuration

5.6 Server Configuration Directives

5.6.1 PerlRequire
 META: to be written

5.6.2 PerlModule
 META: to be written

5.6.3 PerlLoadModule
 META: to be written
 discused somewhere in docs::2.0::user::config::custom

5.6.4 PerlSetVar
 META: to be written

5.6.5 PerlAddVar
 META: to be written

5.6.6 PerlSetEnv
 META: to be written

5.6.7 PerlPassEnv
 META: to be written

5.6.8 <Perl> Sections

With <Perl>...</Perl> sections, it is possible to configure your server entirely in Perl.

Please refer to the Apache::PerlSections manpage for more information.

META: a dedicated chapter with examples?

5.6.9 PerlSwitches

Now you can pass any Perl’s command line switches in httpd.conf using the PerlSwitches directive.
For example to enable warnings and Taint checking add:

29 Jan 200448

5.6 Server Configuration Directives

 PerlSwitches -wT

As an alternative to using use lib in startup.pl to adjust @INC, now you can use the command line
switch -I to do that:

 PerlSwitches -I/home/stas/modperl

You could also use -Mlib=/home/stas/modperl which is the exact equivalent as use lib, but
it’s broken on certain platforms/version (e.g. Darwin/5.6.0). use lib is removing duplicated entries,
whereas -I does not.

5.6.10 SetHandler

mod_perl 2.0 provides two types of SetHandler handlers: modperl and perl-script. The
SetHandler directive is only relevant for response phase handlers. It doesn’t affect other phases.

5.6.10.1 modperl

Configured as:

 SetHandler modperl

The bare mod_perl handler type, which just calls the Perl*Handler’s callback function. If you don’t
need the features provided by the perl-script handler, with the modperl handler, you can gain even more
performance. (This handler isn’t available in mod_perl 1.0.)

Unless the Perl*Handler callback, running under the modperl handler, is configured with:

 PerlOptions +SetupEnv

or calls:

 $r->subprocess_env;

in a void context (which has the same effect as PerlOptions +SetupEnv for the handler that called
it), only the following environment variables are accessible via %ENV:

MOD_PERL (always)

PATH and TZ (if you had them defined in the shell or httpd.conf)

Therefore if you don’t want to add the overhead of populating %ENV, when you simply want to pass some
configuration variables from httpd.conf, consider using PerlSetVar and PerlAddVar instead of
PerlSetEnv and PerlPassEnv. In your code you can retrieve the values using the dir_config()
method. For example if you set in httpd.conf:

 <Location /print_env2>
 SetHandler modperl
 PerlResponseHandler Apache::VarTest
 PerlSetVar VarTest VarTestValue
 </Location>

4929 Jan 2004

5.6.10 SetHandlermod_perl 2.0 Server Configuration

this value can be retrieved inside Apache::VarTest::handler() with:

 $r->dir_config(’VarTest’);

Alternatively use the Apache core directives SetEnv and PassEnv, which always populate
r->subprocess_env, but this doesn’t happen until the Apache fixups phase, which could be too late
for your needs.

5.6.10.2 perl-script

Configured as:

 SetHandler perl-script

Most mod_perl handlers use the perl-script handler. Among other things it does:

PerlOptions +GlobalRequest is in effect only during the PerlResponseHandler phase
unless:

 PerlOptions -GlobalRequest

is specified.

PerlOptions +SetupEnv is in effect unless:

 PerlOptions -SetupEnv

is specified.

STDIN and STDOUT get tied to the request object $r, which makes possible to read from STDIN
and print directly to STDOUT via CORE::print(), instead of implicit calls like $r->puts().

Several special global Perl variables are saved before the handler is called and restored afterwards
(similar to mod_perl 1.0). This includes: %ENV, @INC, $/, STDOUT’s $| and END blocks array
(PL_endav).

5.6.10.3 Examples

Let’s demonstrate the differences between the modperl and the perl-script core handlers in the
following example, which represents a simple mod_perl response handler which prints out the environ-
ment variables as seen by it:

 file:MyApache/PrintEnv1.pm

 package MyApache::PrintEnv1;
 use strict;

 use Apache::RequestRec (); # for $r->content_type
 use Apache::RequestIO (); # for print
 use Apache::Const -compile => ’:common’;

 sub handler {

29 Jan 200450

5.6.10 SetHandler

 my $r = shift;

 $r->content_type(’text/plain’);
 for (sort keys %ENV){
 print "$_ => $ENV{$_}\n";
 }

 return Apache::OK;
 }

 1;

This is the required configuration:

 PerlModule MyApache::PrintEnv1
 <Location /print_env1>
 SetHandler perl-script
 PerlResponseHandler MyApache::PrintEnv1
 </Location>

Now issue a request to http://localhost/print_env1 and you should see all the environment variables
printed out.

Here is the same response handler, adjusted to work with the modperl core handler:

 file:MyApache/PrintEnv2.pm

 package MyApache::PrintEnv2;
 use strict;

 use Apache::RequestRec (); # for $r->content_type
 use Apache::RequestIO (); # for $r->print

 use Apache::Const -compile => ’:common’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->subprocess_env;
 for (sort keys %ENV){
 $r->print("$_ => $ENV{$_}\n");
 }

 return Apache::OK;
 }

 1;

The configuration now will look as:

 PerlModule MyApache::PrintEnv2
 <Location /print_env2>
 SetHandler modperl
 PerlResponseHandler MyApache::PrintEnv2
 </Location>

5129 Jan 2004

5.6.10 SetHandlermod_perl 2.0 Server Configuration

http://localhost/print_env1

MyApache::Print Env2 cannot use print() and therefore uses $r->print() to generate a
response. Under the modperl core handler %ENV is not populated by default, therefore subpro -
cess _env() is called in a void context. Alternatively we could configure this section to do:

 PerlOptions +SetupEnv

If you issue a request to http://localhost/print_env2, you should see all the environment variables printed
out as with http://localhost/print_env1.

5.6.11 PerlOptions

The directive PerlOp tions provides fine-grained configuration for what were compile-time only
options in the first mod_perl generation. It also provides control over what class of PerlIn ter preter
is used for a <Virtu al Host > or location configured with <Loca tion >, <Direc tory >, etc.

$r->is_perl_option_enabled($option) and $s->is_perl_option_enabled($option) can be used at run-time to
check whether a certain $option has been enabled. (META: probably need to add/move this to the
coding chapter)

Options are enabled by prepending + and disabled with - .

The available options are:

5.6.11.1 Enable

On by default, can be used to disable mod_perl for a given Virtu al Host . For example:

 <VirtualHost ...>
 PerlOptions -Enable
 </VirtualHost>

5.6.11.2 Clone

Share the parent Perl interpreter, but give the Virtu al Host its own interpreter pool. For example
should you wish to fine tune interpreter pools for a given virtual host:

 <VirtualHost ...>
 PerlOptions +Clone
 PerlInterpStart 2
 PerlInterpMax 2
 </VirtualHost>

This might be worthwhile in the case where certain hosts have their own sets of large-ish modules, used
only in each host. By tuning each host to have its own pool, that host will continue to reuse the Perl alloca-
tions in their specific modules.

When cloning a Perl interpreter, to inherit base Perl interpreter’s Perl Switches use:

29 Jan 200452

5.6.11 PerlOptions

http://localhost/print_env2
http://localhost/print_env1

 <VirtualHost ...>
 ...
 PerlSwitches +inherit
 </VirtualHost>

5.6.11.3 Parent

Create a new parent Perl interpreter for the given Virtu al Host and give it its own interpreter pool
(implies the Clone option).

A common problem with mod_perl 1.0 was the shared namespace between all code within the process.
Consider two developers using the same server and each wants to run a different version of a module with
the same name. This example will create two parent Perl interpreters, one for each <Virtu al Host >,
each with its own namespace and pointing to a different paths in @INC:

META: is -Mlib portable? (problems with -Mlib on Darwin/5.6.0?)

 <VirtualHost ...>
 ServerName dev1
 PerlOptions +Parent
 PerlSwitches -Mlib=/home/dev1/lib/perl
 PerlModule Apache2
 </VirtualHost>

 <VirtualHost ...>
 ServerName dev2
 PerlOptions +Parent
 PerlSwitches -Mlib=/home/dev2/lib/perl
 PerlModule Apache2
 </VirtualHost>

Remember that +Parent gives you a completely new Perl interpreters pool, so all your modifications to
@INC and preloading of the modules should be done again. Consider using PerlOptions +Clone if you
want to inherit from the parent Perl interpreter.

Or even for a given location, for something like "dirty" cgi scripts:

 <Location /cgi-bin>
 PerlOptions +Parent
 PerlInterpMaxRequests 1
 PerlInterpStart 1
 PerlInterpMax 1
 PerlResponseHandler ModPerl::Registry
 </Location>

will use a fresh interpreter with its own namespace to handle each request.

5.6.11.4 Perl*Handler

Disable Perl*Handler s, all compiled-in handlers are enabled by default. The option name is derived
from the Perl*Handler name, by stripping the Perl and Handler parts of the word. So Perl -
LogHandler becomes Log which can be used to disable Perl LogHandler :

5329 Jan 2004

5.6.11 PerlOptionsmod_perl 2.0 Server Configuration

 PerlOptions -Log

Suppose one of the hosts does not want to allow users to configure PerlAu then Handler , PerlAu -
thzHan dler , PerlAc cessHan dler and <Perl> sections:

 <VirtualHost ...>
 PerlOptions -Authen -Authz -Access -Sections
 </VirtualHost>

Or maybe everything but the response handler:

 <VirtualHost ...>
 PerlOptions None +Response
 </VirtualHost>

5.6.11.5 AutoLoad

Resolve Perl*Handlers at startup time, which includes loading the modules from disk if not already
loaded.

In mod_perl 1.0, configured Perl*Handlers which are not a fully qualified subroutine names are
resolved at request time, loading the handler module from disk if needed. In mod_perl 2.0, configured
Perl*Handlers are resolved at startup time. By default, modules are not auto-loaded during
startup-time resolution. It is possible to enable this feature with:

 PerlOptions +Autoload

Consider this configuration:

 PerlResponseHandler Apache::Magick

In this case, Apache::Magick is the package name, and the subroutine name will default to handler. If
the Apache::Magick module is not already loaded, PerlOp tions +Autoload will attempt to pull
it in at startup time. With this option enabled you don’t have to explicitly load the handler modules. For
example you don’t need to add:

 PerlModule Apache::Magick

in our example.

5.6.11.6 GlobalRequest

Setup the global request_rec for use with Apache->request .

This setting is enabled by default during the PerlResponseHandler phase for sections configured as:

 <Location ...>
 SetHandler perl-script
 ...
 </Location>

29 Jan 200454

5.6.11 PerlOptions

And can be disabled with:

 <Location ...>
 SetHandler perl-script
 PerlOptions -GlobalRequest
 ...
 </Location>

Notice that if you need the global request object during other phases, you will need to explicitly enable it
in the configuration file.

You can also set that global object from the handler code, like so:

 sub handler {
 my $r = shift;
 Apache->request($r);
 ...
 }

The +GlobalRequest setting is needed for example if you use older versions of CGI.pm to process
the incoming request. Starting from version 2.93, CGI.pm optionally accepts $r as an argument to
new(), like so:

 sub handler {
 my $r = shift;
 my $q = CGI->new($r);
 ...
 }

Remember that inside registry scripts you can always get $r at the beginning of the script, since it gets
wrapped inside a subroutine and accepts $r as the first and the only argument. For example:

 #!/usr/bin/perl
 use CGI;
 my $r = shift;
 my $q = CGI->new($r);
 ...

of course you won’t be able to run this under mod_cgi, so you may need to do:

 #!/usr/bin/perl
 use CGI;
 my $q = $ENV{MOD_PERL} ? CGI->new(shift @_) : CGI->new();
 ...

in order to have the script running under mod_perl and mod_cgi.

5.6.11.7 ParseHeaders

Scan output for HTTP headers, same functionality as mod_perl 1.0’s PerlSendHeader, but more
robust. This option is usually needs to be enabled for registry scripts which send the HTTP header with:

5529 Jan 2004

5.6.11 PerlOptionsmod_perl 2.0 Server Configuration

 print "Content-type: text/html\n\n";

5.6.11.8 MergeHandlers

Turn on merging of Perl*Handler arrays. For example with a setting:

 PerlFixupHandler Apache::FixupA

 <Location /inside>
 PerlFixupHandler Apache::FixupB
 </Location>

a request for /inside only runs Apache::FixupB (mod_perl 1.0 behavior). But with this configuration:

 PerlFixupHandler Apache::FixupA

 <Location /inside>
 PerlOptions +MergeHandlers
 PerlFixupHandler Apache::FixupB
 </Location>

a request for /inside will run both Apache::FixupA and Apache::FixupB handlers.

5.6.11.9 SetupEnv

Set up environment variables for each request ala mod_cgi.

When this option is enabled, mod_perl fiddles with the environment to make it appear as if the code is
called under the mod_cgi handler. For example, the $ENV{QUERY_STRING} environment variable is
initialized with the contents of Apache::args(), and the value returned by Apache::server_hostname() is
put into $ENV{SERVER_NAME}.

But %ENV population is expensive. Those who have moved to the Perl Apache API no longer need this
extra %ENV population, and can gain by disabling it. A code using the CGI.pm module require PerlOp -
tions +Setu pEnv because that module relies on a properly populated CGI environment table.

This option is enabled by default for sections configured as:

 <Location ...>
 SetHandler perl-script
 ...
 </Location>

Since this option adds an overhead to each request, if you don’t need this functionality you can turn it off
for a certain section:

 <Location ...>
 SetHandler perl-script
 PerlOptions -SetupEnv
 ...
 </Location>

29 Jan 200456

5.6.11 PerlOptions

or globally:

 PerlOptions -SetupEnv
 <Location ...>
 ...
 </Location>

and then it’ll affect the whole server. It can still be enabled for sections that need this functionality.

When this option is disabled you can still read environment variables set by you. For example when you
use the following configuration:

 PerlOptions -SetupEnv
 PerlModule ModPerl::Registry
 <Location /perl>
 PerlSetEnv TEST hi
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 </Location>

and you issue a request for this script:

 setupenvoff.pl

 use Data::Dumper;
 my $r = Apache->request();
 $r->content_type(’text/plain’);
 print Dumper(\%ENV);

you should see something like this:

 $VAR1 = {
 ’GATEWAY_INTERFACE’ => ’CGI-Perl/1.1’,
 ’MOD_PERL’ => ’mod_perl/2.0.1’,
 ’PATH’ => ’bin:/usr/bin’,
 ’TEST’ => ’hi’
 };

Notice that we have got the value of the environment variable TEST.

5.7 Server Life Cycle Handlers Directives
See Server life cycle.

5.7.1 PerlOpenLogsHandler

See PerlOpenLogsHandler.

5729 Jan 2004

5.7 Server Life Cycle Handlers Directivesmod_perl 2.0 Server Configuration

5.7.2 PerlPostConfigHandler

See PerlPostConfigHandler.

5.7.3 PerlChildInitHandler

See PerlChildInitHandler.

5.7.4 PerlChildExitHandler

See PerlChildExitHandler.

5.8 Protocol Handlers Directives
See Protocol handlers.

5.8.1 PerlPreConnectionHandler

See PerlPreConnectionHandler.

5.8.2 PerlProcessConnectionHandler

See PerlProcessConnectionHandler.

5.9 Filter Handlers Directives
mod_perl filters are described in the filter handlers tutorial, Apache::Filter and
Apache::FilterRec manpages.

The following filter handler configuration directives are available:

5.9.1 PerlInputFilterHandler

See PerlInputFilterHandler.

5.9.2 PerlOutputFilterHandler

See PerlOutputFilterHandler.

29 Jan 200458

5.8 Protocol Handlers Directives

5.9.3 PerlSetInputFilter

See PerlSetInputFilter.

5.9.4 PerlSetOutputFilter

See PerlSetInputFilter.

5.10 HTTP Protocol Handlers Directives
See HTTP protocol handlers.

5.10.1 PerlPostReadRequestHandler

See PerlPostReadRequestHandler.

5.10.2 PerlTransHandler

See PerlTransHandler.

5.10.3 PerlMapToStorageHandler

See PerlMapToStorageHandler.

5.10.4 PerlInitHandler

See PerlInitHandler.

5.10.5 PerlHeaderParserHandler

See PerlHeaderParserHandler.

5.10.6 PerlAccessHandler

See PerlAccessHandler.

5.10.7 PerlAuthenHandler

See PerlAuthenHandler.

5929 Jan 2004

5.10 HTTP Protocol Handlers Directivesmod_perl 2.0 Server Configuration

5.10.8 PerlAuthzHandler

See PerlAuthzHandler.

5.10.9 PerlTypeHandler

See PerlTypeHandler.

5.10.10 PerlFixupHandler

See PerlFixupHandler.

5.10.11 PerlResponseHandler

See PerlResponseHandler.

5.10.12 PerlLogHandler

See PerlLogHandler.

5.10.13 PerlCleanupHandler

See PerlCleanupHandler.

5.11 Threads Mode Specific Directives
These directives are enabled only in a threaded mod_perl+Apache combo:

5.11.1 PerlInterpStart

The number of interpreters to clone at startup time.

Default value: 3

5.11.2 PerlInterpMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle the request, up until
this number of interpreters is reached. when PerlInterpMax is reached, mod_perl will block (via
COND_WAIT()) until one becomes available (signaled via COND_SIGNAL()).

Default value: 5

29 Jan 200460

5.11 Threads Mode Specific Directives

5.11.3 PerlInterpMinSpare

The minimum number of available interpreters this parameter will clone interpreters up to PerlIn -
terp Max, before a request comes in.

Default value: 3

5.11.4 PerlInterpMaxSpare

mod_perl will throttle down the number of interpreters to this number as those in use become available.

Default value: 3

5.11.5 PerlInterpMaxRequests

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh clone.

Default value: 2000

5.11.6 PerlInterpScope

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be pulled
from the interpreter pool. The interpreter is then only available to the thread that selected it, until it is
released back into the interpreter pool. By default, an interpreter will be held for the lifetime of the
request, equivalent to this configuration:

 PerlInterpScope request

For example, if a PerlAc cessHan dler is configured, an interpreter will be selected before it is run
and not released until after the logging phase.

Interpreters will be shared across sub-requests by default, however, it is possible to configure the inter-
preter scope to be per-sub-request on a per-directory basis:

 PerlInterpScope subrequest

With this configuration, an autoindex generated page, for example, would select an interpreter for each
item in the listing that is configured with a Perl*Handler.

It is also possible to configure the scope to be per-handler:

 PerlInterpScope handler

For example if PerlAc cessHan dler is configured, an interpreter will be selected before running the
handler, and put back immediately afterwards, before Apache moves onto the next phase. If a Perl Fix -
upHandler is configured further down the chain, another interpreter will be selected and again put back
afterwards, before Perl Respon se Handler is run.

6129 Jan 2004

5.11.3 PerlInterpMinSparemod_perl 2.0 Server Configuration

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and provide a request_rec record. In this case, the
default scope is that of the request. Should a mod_perl handler want to maintain state for the lifetime of an
ftp connection, it is possible to do so on a per-virtualhost basis:

 PerlInterpScope connection

Default value: request

5.12 Debug Directives

5.12.1 PerlTrace

The PerlTrace is used for tracing the mod_perl execution. This directive is enabled when mod_perl is
compiled with the MP_TRACE=1 option.

To enable tracing, add to httpd.conf:

 PerlTrace [level]

where level is either:

 all

which sets maximum logging and debugging levels;

a combination of one or more option letters from the following list:

 a Apache API interaction
 c configuration for directive handlers
 d directive processing
 f filters
 e environment variables
 g Perl runtime interaction
 h handlers
 i interpreter pool management
 m memory allocations
 o I/O
 s Perl sections
 t benchmark-ish timings

Tracing options add to the previous setting and don’t override it. So for example:

 PerlTrace c
 ...
 PerlTrace f

will set tracing level first to ’c’ and later to ’cf’. If you wish to override settings, unset any previous setting
by assigning 0 (zero), like so:

29 Jan 200462

5.12 Debug Directives

 PerlTrace c
 ...
 PerlTrace 0
 PerlTrace f

now the tracing level is set only to ’f’. You can’t mix the number 0 with letters, it must be alone.

When PerlTrace is not specified, the tracing level will be set to the value of the
$ENV{MOD_PERL_TRACE} environment variable.

5.13 mod_perl Directives Argument Types and Allowed
Location
The following table shows where in the configuration files mod_perl configuration directives are allowed
to appear, what kind and how many arguments they expect:

General directives:

 Directive Arguments Scope
 --
 PerlSwitches ITERATE SRV
 PerlRequire ITERATE SRV
 PerlModule ITERATE SRV
 PerlLoadModule RAW_ARGS SRV
 PerlOptions ITERATE DIR
 PerlSetVar TAKE2 DIR
 PerlAddVar ITERATE2 DIR
 PerlSetEnv TAKE2 DIR
 PerlPassEnv TAKE1 SRV
 <Perl> Sections RAW_ARGS SRV
 PerlTrace TAKE1 SRV

Handler assignment directives:

 Directive Arguments Scope
 --
 PerlOpenLogsHandler ITERATE SRV
 PerlPostConfigHandler ITERATE SRV
 PerlChildInitHandler ITERATE SRV
 PerlChildExitHandler ITERATE SRV

 PerlPreConnectionHandler ITERATE SRV
 PerlProcessConnectionHandler ITERATE SRV

 PerlPostReadRequestHandler ITERATE SRV
 PerlTransHandler ITERATE SRV
 PerlMapToStorageHandler ITERATE SRV
 PerlInitHandler ITERATE DIR
 PerlHeaderParserHandler ITERATE DIR
 PerlAccessHandler ITERATE DIR
 PerlAuthenHandler ITERATE DIR
 PerlAuthzHandler ITERATE DIR
 PerlTypeHandler ITERATE DIR

6329 Jan 2004

5.13 mod_perl Directives Argument Types and Allowed Locationmod_perl 2.0 Server Configuration

 PerlFixupHandler ITERATE DIR
 PerlResponseHandler ITERATE DIR
 PerlLogHandler ITERATE DIR
 PerlCleanupHandler ITERATE DIR

 PerlInputFilterHandler ITERATE DIR
 PerlOutputFilterHandler ITERATE DIR
 PerlSetInputFilter ITERATE DIR
 PerlSetOutputFilter ITERATE DIR

Perl Interpreter management directives:

 Directive Arguments Scope
 --
 PerlInterpStart TAKE1 SRV
 PerlInterpMax TAKE1 SRV
 PerlInterpMinSpare TAKE1 SRV
 PerlInterpMaxSpare TAKE1 SRV
 PerlInterpMaxRequests TAKE1 SRV
 PerlInterpScope TAKE1 DIR

mod_perl 1.0 back-compatibility directives:

 Directive Arguments Scope
 --
 PerlHandler ITERATE DIR
 PerlSendHeader FLAG DIR
 PerlSetupEnv FLAG DIR
 PerlTaintCheck FLAG SRV
 PerlWarn FLAG SRV

The Arguments column represents the type of arguments directives accepts, where:

ITERATE

Expects a list of arguments.

ITERATE2

Expects one argument, followed by at least one or more arguments.

TAKE1

Expects one argument only.

TAKE2

Expects two arguments only.

FLAG

One of On or Off (case insensitive).

29 Jan 200464

5.13 mod_perl Directives Argument Types and Allowed Location

RAW_ARGS

The function parses the command line by itself.

The Scope column shows the location the directives are allowed to appear in:

SRV

Global configuration and <VirtualHost> (mnemonic: SeRVer). These directives are defined as
RSRC_CONF in the source code.

DIR

<Directory>, <Location>, <Files> and all their regular expression variants (mnemonic:
DIRectory). These directives can also appear in .htaccess files. These directives are defined as
OR_ALL in the source code.

These directives can also appear in the global server configuration and <VirtualHost>.

Apache specifies other allowed location types which are currently not used by the core mod_perl direc-
tives and their definition can be found in include/httpd_config.h (hint: search for RSRC_CONF).

Also see Stacked Handlers.

5.14 Server Startup Options Retrieval
Inside httpd.conf one can do conditional configuration based on the define options passed at the server
startup. For example:

 <IfDefine PERLDB>
 <Perl>
 use Apache::DB ();
 Apache::DB->init;
 </Perl>

 <Location />
 PerlFixupHandler Apache::DB
 </Location>
 </IfDefine>

So only when the server is started as:

 % httpd C<-DPERLDB> ...

The configuration inside IfDefine will have an effect. If you want to have some configuration section
to have an effect if a certain define wasn’t defined use !, for example here is the opposite of the previous
example:

6529 Jan 2004

5.14 Server Startup Options Retrievalmod_perl 2.0 Server Configuration

 <IfDefine !PERLDB>
 # ...
 </IfDefine>

If you need to access any of the startup defines in the Perl code you use
Apache::Server::exists_config_define. For example in a startup file you can say:

 use Apache::ServerUtil ();
 if (Apache::Server::exists_config_define("PERLDB")) {
 require Apache::DB;
 Apache::DB->init;
 }

For example to check whether the server has been started in a single mode use:

 if (Apache::Server::exists_config_define("ONE_PROCESS")) {
 print "Running in a single mode";
 }

5.14.1 MODPERL2 Define Option

When running under mod_perl 2.0 a special configuration "define" symbol MODPERL2 is enabled inter-
nally, as if the server had been started with -DMODPERL2. For example this can be used to write a config-
uration file which needs to do something different whether it’s running under mod_perl 1.0 or 2.0:

 <IfDefine MODPERL2>
 # 2.0 configuration
 </IfDefine>
 <IfDefine !MODPERL2>
 # else
 </IfDefine>

From within Perl code this can be tested with Apache::Server::exists_config_define(),
for example:

 if (Apache::Server::exists_config_define("MODPERL2")) {
 # some 2.0 specific code
 }

5.15 Perl Interface to the Apache Configuration Tree
For now refer to the Apache::Directive manpage and the test t/response/TestApache/conftree.pm in the
mod_perl source distribution.

META: need help to write the tutorial section on this with examples.

29 Jan 200466

5.15 Perl Interface to the Apache Configuration Tree

5.16 Adjusting @INC
You can always adjust contents of @INC before the server starts. There are several ways to do that.

startup.pl

In the startup file you can use the lib pragma like so:

 use lib qw(/home/httpd/project1/lib /tmp/lib);
 use lib qw(/home/httpd/project2/lib);

httpd.conf

In httpd.conf you can use the PerlSwitches directive to pass arguments to perl as you do from the
command line, e.g.:

 PerlSwitches -I/home/httpd/project1/lib -I/tmp/lib
 PerlSwitches -I/home/httpd/project2/lib

5.16.1 PERL5LIB and PERLLIB Environment Variables

The effect of the PERL5LIB and PERLLIB environment variables on @INC is described in the perlrun
manpage. mod_perl 2.0 doesn’t do anything special about them.

It’s important to remind that both PERL5LIB and PERLLIB are ignored when the taint mode (Perl-
Switches -T) is in effect. Since you want to make sure that your mod_perl server is running under the
taint mode, you can’t use the PERL5LIB and PERLLIB environment variables.

However there is the perl5lib module on CPAN, which, if loaded, bypasses perl’s security and will affect
@INC. Use it only if you know what you are doing.

5.16.2 Modifying @INC on a Per-VirtualHost

If Perl used with mod_perl was built with ithreads support one can specify different @INC values for
different VirtualHosts, using a combination of PerlOptions +Parent and PerlSwitches. For
example:

 <VirtualHost ...>
 ServerName dev1
 PerlOptions +Parent
 PerlSwitches -I/home/dev1/lib/perl
 PerlModule Apache2
 </VirtualHost>

 <VirtualHost ...>
 ServerName dev2
 PerlOptions +Parent
 PerlSwitches -I/home/dev2/lib/perl
 PerlModule Apache2
 </VirtualHost>

6729 Jan 2004

5.16 Adjusting @INCmod_perl 2.0 Server Configuration

5.17 General Issues

5.18 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

5.19 Authors
Doug MacEachern <dougm (at) covalent.net>

Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200468

5.17 General Issues

6 Apache Server Configuration Customization in Perl

6929 Jan 2004

6 Apache Server Configuration Customization in PerlApache Server Configuration Customization in Perl

6.1 Description
This chapter explains how to create custom Apache configuration directives in Perl.

6.2 Incentives
mod_perl provides several ways to pass custom configuration information to the modules.

The simplest way to pass custom information from the configuration file to the Perl module is to use the
PerlSetVar and PerlAddVar directives. For example:

 PerlSetVar Secret "Matrix is us"

and in the mod_perl code this value can be retrieved as:

 my $secret = $r->dir_config("Secret");

Another alternative is to add custom configuration directives. There are several reasons for choosing this
approach:

When the expected value is not a simple argument, but must be supplied using a certain syntax,
Apache can verify at startup time that this syntax is valid and abort the server start up if the syntax is
invalid.

Custom configuration directives are faster because their values are parsed at the startup time, whereas
PerlSetVar and PerlAddVar values are parsed at the request time.

It’s possible that some other modules have accidentally chosen to use the same key names but for
absolutely different needs. So the two now can’t be used together. Of course this collision can be
avoided if a unique to your module prefix is used in the key names. For example:

 PerlSetVar ApacheFooSecret "Matrix is us"

Finally, modules can be configured in pure Perl using <Perl> Sections or a startup file, by simply
modifying the global variables in the module’s package. This approach could be undesirable because it
requires a use of globals, which we all try to reduce. A bigger problem with this approach is that you can’t
have different settings for different sections of the site (since there is only one version of a global vari-
able), something that the previous two approaches easily achieve.

6.3 Creating and Using Custom Configuration Directives
In mod_perl 2.0, adding new configuration directives is a piece of cake, because it requires no XS code
and Makefile.PL, needed in case of mod_perl 1.0. In mod_perl 2.0, custom directives are implemented in
pure Perl.

29 Jan 200470

6.1 Description

Here is a very basic module that declares two new configuration directives: MyParameter, which
accepts one or more arguments, and MyOtherParameter which accepts a single argument.

 #file:MyApache/MyParameters.pm
 #-----------------------------
 package MyApache::MyParameters;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Test;
 use Apache::TestUtil;

 use Apache::Const -compile => qw(OR_ALL ITERATE);

 use Apache::CmdParms ();
 use Apache::Module ();

 our @APACHE_MODULE_COMMANDS = (
 {
 name => ’MyParameter’,
 func => __PACKAGE__ . ’::MyParameter’,
 req_override => Apache::OR_ALL,
 args_how => Apache::ITERATE,
 errmsg => ’MyParameter Entry1 [Entry2 ... [EntryN]]’,
 },
 {
 name => ’MyOtherParameter’,
 },
);

 sub MyParameter {
 my($self, $parms, @args) = @_;
 $self->{MyParameter} = \@args;
 }
 1;

And here is how to use it in httpd.conf:

 # first load the module so Apache will recognize the new directives
 PerlLoadModule MyApache::MyParameters

 MyParameter one two three
 MyOtherParameter Foo
 <Location /perl>
 MyParameter eleven twenty
 MyOtherParameter Bar
 </Location>

The following sections discuss this and more advanced modules in detail.

A minimal configuration module is comprised of two groups of elements:

7129 Jan 2004

6.3 Creating and Using Custom Configuration DirectivesApache Server Configuration Customization in Perl

A global array @APACHE_MODULE_COMMANDS for declaring the new directives and their
behavior.
A subroutine per each new directive, which is called when the directive is seen

6.3.1 @APACHE_MODULE_COMMANDS

@APACHE_MODULE_COMMANDS is a global array of hash references. Each hash represents a separate
new configuration directive. In our example we had:

 our @APACHE_MODULE_COMMANDS = (
 {
 name => ’MyParameter’,
 func => __PACKAGE__ . ’::MyParameter’,
 req_override => Apache::OR_ALL,
 args_how => Apache::ITERATE,
 errmsg => ’MyParameter Entry1 [Entry2 ... [EntryN]]’,
 },
 {
 name => ’MyOtherParameter’,
 },
);

This structure declares two new directives: MyParameter and MyOtherParameter. You have to
declare at least the name of the new directive, which is how we have declared the MyOtherParameter
directive. mod_perl will fill in the rest of the configuration using the defaults described next.

These are the attributes that can be used to define the directives behavior: name, func, args_how,
req_override and errmsg. They are discussed in the following sections.

6.3.1.1 name

This is the only required attribute. And it declares the name of the new directive as it’ll be used in
httpd.conf.

6.3.1.2 func

The func attribute expects a reference to a function or a function name. This function is called by httpd
every time it encounters the directive that is described by this entry while parsing the configuration file.
Therefore it’s invoked once for every instance of the directive at the server startup, and once per request
per instance in the .htaccess file.

This function accepts two or more arguments, depending on the args_how attribute’s value.

This attribute is optional. If not supplied, mod_perl will try to use a function in the current package whose
name is the same as of the directive in question. In our example with MyOtherParameter, mod_perl
will use:

29 Jan 200472

6.3.1 @APACHE_MODULE_COMMANDS

 __PACKAGE__ . ’::MyOtherParameter’

as a name of a subroutine and it anticipates that it exists in that package.

6.3.1.3 req_override

The attribute defines the valid scope in which this directive can appear. There are several constants which
map onto the corresponding Apache macros. These constants should be imported from the
Apache::Const package.

For example, to use the OR_ALL constant, which allows directives to be defined anywhere, first, it needs
to be imported:

 use Apache::Const -compile => qw(OR_ALL);

and then assigned to the req_override attribute:

 req_override => Apache::OR_ALL,

It’s possible to combine several options using the unary operators. For example, the following setting:

 req_override => Apache::RSRC_CONF | Apache::ACCESS_CONF

will allow the directive to appear anywhere in httpd.conf, but forbid it from ever being used in .htaccess
files:

This attribute is optional. If not supplied, the default value of Apache::OR_ALL is used.

6.3.1.4 args_how

Directives can receive zero, one or many arguments. In order to help Apache validate that the number of
arguments is valid, the args_how attribute should be set to the desired value. Similar to the req_override
attribute, the Apache::Const package provides special constants which map to the corresponding
Apache macros. There are several constants to choose from.

In our example, the directive MyParameter accepts one or more arguments, therefore we have the
Apache::ITERATE constant:

 args_how => Apache::ITERATE,

This attribute is optional. If not supplied, the default value of Apache::TAKE1 is used.

META: the default may change to use a constant corresponding to the func prototype.

6.3.1.5 errmsg

The errmsg attribute provides a short but succinct usage statement that summarizes the arguments that the
directive takes. It’s used by Apache to generate a descriptive error message, when the directive is config-
ured with a wrong number of arguments.

7329 Jan 2004

6.3.1 @APACHE_MODULE_COMMANDSApache Server Configuration Customization in Perl

In our example, the directive MyParameter accepts one or more arguments, therefore we have chosen
the following usage string:

 errmsg => ’MyParameter Entry1 [Entry2 ... [EntryN]]’,

This attribute is optional. If not supplied, the default value of will be a string based on the directive’s name
and args_how attributes.

6.3.1.6 cmd_data

Sometimes it is useful to pass information back to the directive handler callback. For instance, if you use
the func parameter to specify the same callback for two different directives you might want to know which
directive is being called currently. To do this, you can use the cmd_data parameter, which allows you to
store arbitrary strings for later retrieval from your directive handler. For instance:

 our @APACHE_MODULE_COMMANDS = (
 {
 name => ’<Location’,
 # func defaults to Redirect()
 req_override => Apache::RSRC_CONF,
 args_how => Apache::RAW_ARGS,
 },
 {
 name => ’<LocationMatch’,
 func => Redirect,
 req_override => Apache::RSRC_CONF,
 args_how => Apache::RAW_ARGS,
 cmd_data => ’1’,
 },
);

Here, we are using the Location() function to process both the Location and LocationMatch
directives. In the Location() callback we can check the data in the cmd_data slot to see whether the
directive being processed is LocationMatch and alter our logic accordingly. How? Through the
info() method exposed by the Apache::CmdParms class.

 use Apache::CmdParms ();

 sub Location {

 my ($cfg, $parms, $data) = @_;

 # see if we were called via LocationMatch
 my $regex = $parms->info;

 # continue along
 }

In case you are wondering, Location and LocationMatch were chosen for a reason - this is exactly
how httpd core handles these two directives.

29 Jan 200474

6.3.1 @APACHE_MODULE_COMMANDS

6.3.2 Directive Scope Definition Constants

The req_override attribute specifies the configuration scope in which it’s valid to use a given configura-
tion directive. This attribute’s value can be any of or a combination of the following constants:

(these constants are declared in httpd-2.0/include/http_config.h.)

6.3.2.1 Apache::OR_NONE

The directive cannot be overridden by any of the AllowOverride options.

6.3.2.2 Apache::OR_LIMIT

The directive can appear within directory sections, but not outside them. It is also allowed within .htaccess
files, provided that AllowOverride Limit is set for the current directory.

6.3.2.3 Apache::OR_OPTIONS

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
AllowOverride Options is set for the current directory.

6.3.2.4 Apache::OR_FILEINFO

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
AllowOverride FileInfo is set for the current directory.

6.3.2.5 Apache::OR_AUTHCFG

The directive can appear within directory sections, but not outside them. It is also allowed within .htaccess
files, provided that AllowOverride AuthConfig is set for the current directory.

6.3.2.6 Apache::OR_INDEXES

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
AllowOverride Indexes is set for the current directory.

6.3.2.7 Apache::OR_UNSET

META: details? "unset a directive (in Allow)"

6.3.2.8 Apache::ACCESS_CONF

The directive can appear within directory sections. The directive is not allowed in .htaccess files.

7529 Jan 2004

6.3.2 Directive Scope Definition ConstantsApache Server Configuration Customization in Perl

6.3.2.9 Apache::RSRC_CONF

The directive can appear in httpd.conf outside a directory section (<Directory>, <Location> or
<Files>; also <FilesMatch> and kin). The directive is not allowed in .htaccess files.

6.3.2.10 Apache::OR_EXEC_ON_READ

Force directive to execute a command which would modify the configuration (like including another file,
or IFModule).

Normally, Apache first parses the configuration tree and then executes the directives it has encountered
(e.g., SetEnv). But there are directives that must be executed during the initial parsing, either because
they affect the configuration tree (e.g., Include may load extra configuration) or because they tell
Apache about new directives (e.g., IfModule or PerlLoadModule, may load a module, which installs
handlers for new directives). These directives must have the Apache::OR_EXEC_ON_READ turned on.

6.3.2.11 Apache::OR_ALL

The directive can appear anywhere. It is not limited in any way.

6.3.3 Directive Callback Subroutine

Depending on the value of the args_how attribute the callback subroutine, specified with the func attribute,
will be called with two or more arguments. The first two arguments are always $self and $parms. A
typical callback function which expects a single value (Apache::TAKE1) might look like the following:

 sub MyParam {
 my($self, $parms, $arg) = @_;
 $self->{MyParam} = $arg;
 }

In this function we store the passed single value in the configuration object, using the directive’s name
(assuming that it was MyParam) as the key.

Let’s look at the subroutine arguments in detail:

1. $self is the current container’s configuration object.

This configuration object is a reference to a hash, in which you can store arbitrary key/value pairs.
When the directive callback function is invoked it may already include several key/value pairs
inserted by other directive callbacks or during the SERVER_CREATE and DIR_CREATE functions,
which will be explained later.

Usually the callback function stores the passed argument(s), which later will be read by
SERVER_MERGE and DIR_MERGE, which will be explained later, and of course at request time.

29 Jan 200476

6.3.3 Directive Callback Subroutine

The convention is use the name of the directive as the hash key, where the received values are stored.
The value can be a simple scalar, or a reference to a more complex structure. So for example you can
store a reference to an array, if there is more than one value to store.

This object can be later retrieved at request time via:

 my $dir_cfg = $self->get_config($s, $r->per_dir_config);

You can retrieve the server configuration object via:

 my $srv_cfg = $self->get_config($s);

if invoked inside the virtual host, the virtual host’s configuration object will be returned.

2. $parms is an Apache::CmdParms object from which you can retrieve various other information
about the configuration. For example to retrieve the server object:

 my $s = $parms->server;

See Apache::CmdParms for more information.

3. The rest of the arguments whose number depends on the args_how’s value are covered in the next
section.

6.3.4 Directive Syntax Definition Constants

The following values of the args_how attribute define how many arguments and what kind of arguments
directives can accept. These values are constants that can be imported from the Apache::Const
package. For example:

 use Apache::Const -compile => qw(TAKE1 TAKE23);

6.3.4.1 Apache::NO_ARGS

The directive takes no arguments. The callback will be invoked once each time the directive is encoun-
tered. For example:

 sub MyParameter {
 my($self, $parms) = @_;
 $self->{MyParameter}++;
 }

6.3.4.2 Apache::TAKE1

The directive takes a single argument. The callback will be invoked once each time the directive is
encountered, and its argument will be passed as the third argument. For example:

 sub MyParameter {
 my($self, $parms, $arg) = @_;
 $self->{MyParameter} = $arg;
 }

7729 Jan 2004

6.3.4 Directive Syntax Definition ConstantsApache Server Configuration Customization in Perl

6.3.4.3 Apache::TAKE2

The directive takes two arguments. They are passed to the callback as the third and fourth arguments. For
example:

 sub MyParameter {
 my($self, $parms, $arg1, $arg2) = @_;
 $self->{MyParameter} = {$arg1 => $arg2};
 }

6.3.4.4 Apache::TAKE3

This is like Apache::TAKE1 and Apache::TAKE2, but the directive takes three mandatory argu-
ments. For example:

 sub MyParameter {
 my($self, $parms, @args) = @_;
 $self->{MyParameter} = \@args;
 }

6.3.4.5 Apache::TAKE12

This directive takes one mandatory argument, and a second optional one. This can be used when the
second argument has a default value that the user may want to override. For example:

 sub MyParameter {
 my($self, $parms, $arg1, $arg2) = @_;
 $self->{MyParameter} = {$arg1 => $arg2||’default’};
 }

6.3.4.6 Apache::TAKE23

Apache::TAKE23 is just like Apache::TAKE12, except now there are two mandatory arguments and
an optional third one.

6.3.4.7 Apache::TAKE123

In the Apache::TAKE123 variant, the first argument is mandatory and the other two are optional. This
is useful for providing defaults for two arguments.

6.3.4.8 Apache::ITERATE

Apache::ITERATE is used when a directive can take an unlimited number of arguments. The callback
is invoked repeatedly with a single argument, once for each argument in the list. It’s done this way for
interoperability with the C API, which doesn’t have the flexible argument passing that Perl provides. For
example:

 sub MyParameter {
 my($self, $parms, $args) = @_;
 push @{ $self->{MyParameter} }, $arg;
 }

29 Jan 200478

6.3.4 Directive Syntax Definition Constants

6.3.4.9 Apache::ITERATE2

Apache::ITERATE2 is used for directives that take a mandatory first argument followed by a list of
arguments to be applied to the first. A familiar example is the AddType directive, in which a series of file
extensions are applied to a single MIME type:

 AddType image/jpeg JPG JPEG JFIF jfif

Apache will invoke your callback once for each item in the list. Each time Apache runs your callback, it
passes the routine the constant first argument ("image/jpeg" in the example above), and the current item in
the list ("JPG" the first time around, "JPEG" the second time, and so on). In the example above, the
configuration processing routine will be run a total of four times.

For example:

 sub MyParameter {
 my($self, $parms, $key, $val) = @_;
 push @{ $self->{MyParameter}{$key} }, $val;
 }

6.3.4.10 Apache::RAW_ARGS

An args_how of Apache::RAW_ARGS instructs Apache to turn off parsing altogether. Instead it simply
passes your callback function the line of text following the directive. Leading and trailing whitespace is
stripped from the text, but it is not otherwise processed. Your callback can then do whatever processing it
wishes to perform.

This callback receives three arguments (similar to Apache::TAKE1), the third of which is a
string-valued scalar containing the text following the directive.

 sub MyParameter {
 my($self, $parms, $val) = @_;
 # process $val
 }

If this mode is used to implement a custom "container" directive, the attribute req_override needs to OR
Apache::OR_EXEC_ON_READ. e.g.:

 req_override => Apache::OR_ALL | Apache::OR_EXEC_ON_READ,

META: complete the details, which are new to 2.0.

There is one other trick to making configuration containers work. In order to be recognized as a valid
directive, the name attribute must contain the leading <. This token will be stripped by the code that
handles the custom directive callbacks to Apache. For example:

 name => ’<MyContainer’,

7929 Jan 2004

6.3.4 Directive Syntax Definition ConstantsApache Server Configuration Customization in Perl

One other trick that is not required, but can provide some more user friendliness is to provide a handler for
the container end token. In our example, the Apache configuration gears will never see the </MyCon-
tainer> token, as our Apache::RAW_ARGS handler will read in that line and stop reading when it is
seen. However in order to catch cases in which the </MyContainer> text appears without a preceding
<MyContainer> opening section, we need to turn the end token into a directive that simply reports an
error and exits. For example:

 {
 name => ’</MyContainer>’,
 func => __PACKAGE__ . "::MyContainer_END",
 errmsg => ’end of MyContainer without beginning?’,
 args_how => Apache::NO_ARGS,
 req_override => Apache::OR_ALL,
 },
 ...
 my $EndToken = "</MyContainer>";
 sub MyContainer_END {
 die "$EndToken outside a <MyContainer> container\n";
 }

Now, should the server administrator misplace the container end token, the server will not start, complain-
ing with this error message:

 Syntax error on line 54 of httpd.conf:
 </MyContainer> outside a <MyContainer> container

6.3.4.11 Apache::FLAG

When Apache::FLAG is used, Apache will only allow the argument to be one of two values, On or
Off. This string value will be converted into an integer, 1 if the flag is On, 0 if it is Off. If the configura-
tion argument is anything other than On or Off, Apache will complain:

 Syntax error on line 73 of httpd.conf:
 MyFlag must be On or Off

For example:

 sub MyFlag {
 my($self, $parms, $arg) = @_;
 $self->{MyFlag} = $arg; # 1 or 0
 }

6.3.5 Enabling the New Configuration Directives

As seen in the first example, the module needs to be loaded before the new directives can be used. A
special directive PerlLoadModule is used for this purpose. For example:

 PerlLoadModule MyApache::MyParameters

29 Jan 200480

6.3.5 Enabling the New Configuration Directives

This directive is similar to PerlModule, but it require()’s the Perl module immediately, causing an early
mod_perl startup. After loading the module it let’s Apache know of the new directives and installs the
callbacks to be called when the corresponding directives are encountered.

6.3.6 Creating and Merging Configuration Objects

By default mod_perl creates a simple hash to store each container’s configuration values, which are popu-
lated by directive callbacks, invoked when the httpd.conf and the .htaccess files are parsed and the corre-
sponding directive are encountered. It’s possible to pre-populate the hash entries when the data structure is
created, e.g., to provide reasonable default values for cases where they weren’t set in the configuration
file. To accomplish that the optional SERVER_CREATE and DIR_CREATE functions can be supplied.

When a request is mapped to a container, Apache checks if that container has any ancestor containers. If
that’s the case, it allows mod_perl to call special merging functions, which decide whether configurations
in the parent containers should be inherited, appended or overridden in the child container. The custom
configuration module can supply custom merging functions SERVER_MERGE and DIR_MERGE, which
can override the default behavior. If these functions are not supplied the following default behavior takes
place: The child container inherits its parent configuration, unless it specifies its own and then it overrides
its parent configuration.

6.3.6.1 SERVER_CREATE

SERVER_CREATE is called once for the main server, and once more for each virtual host defined in
httpd.conf. It’s called with two arguments: $class, the package name it was created in and $parms the
already familiar Apache::CmdParms object. The object is expected to return a reference to a blessed
hash, which will be used by configuration directives callbacks to set the values assigned in the configura-
tion file. But it’s possible to preset some values here:

For example, in the following example the object assigns a default value, which can be overridden during
merge if a the directive was used to assign a custom value:

 package MyApache::MyParameters;
 ...
 use Apache::Module ();
 use Apache::CmdParms ();
 our @APACHE_MODULE_COMMANDS = (...);
 ...
 sub SERVER_CREATE {
 my($class, $parms) = @_;
 return bless {
 name => __PACKAGE__,
 }, $class;
 }

To retrieve that value later, you can use:

 use Apache::Module ();
 ...
 my $srv_cfg = Apache::Module->get_config(’MyApache::MyParameters’, $s);
 print $srv_cfg->{name};

8129 Jan 2004

6.3.6 Creating and Merging Configuration ObjectsApache Server Configuration Customization in Perl

If a request is made to a resource inside a virtual host, $srv_cfg will contain the object of the virtual
host’s server. To reach the main server’s configuration object use:

 use Apache::Module ();
 use Apache::Server ();
 use Apache::ServerUtil ();
 ...
 if ($s->is_virtual) {
 my $base_srv_cfg = Apache::Module->get_config(’MyApache::MyParameters’,
 Apache->server);
 print $base_srv_cfg->{name};
 }

If the function SERVER_CREATE is not supplied by the module, a function that returns a blessed into the
current package reference to a hash is used.

6.3.6.2 SERVER_MERGE

During the configuration parsing virtual hosts are given a chance to inherit the configuration from the
main host, append to or override it. The SERVER_MERGE subroutine can be supplied to override the
default behavior, which simply overrides the main server’s configuration.

The custom subroutine accepts two arguments: $base, a blessed reference to the main server configura-
tion object, and $add, a blessed reference to a virtual host configuration object. It’s expected to return a
blessed object after performing the merge of the two objects it has received. Here is the skeleton of a
merging function:

 sub merge {
 my($base, $add) = @_;
 my %mrg = ();
 # code to merge %$base and %$add
 return bless \%mrg, ref($base);
 }

The section Merging at Work provides an extensive example of a merging function.

6.3.6.3 DIR_CREATE

Similarly to SERVER_CREATE, this optional function, is used to create an object for the directory
resource. If the function is not supplied mod_perl will use an empty hash variable as an object.

Just like SERVER_CREATE, it’s called once for the main server and one more time for each virtual host.
In addition it’ll be called once more for each resource (<Location>, <Directory> and others). All
this happens during the startup. At request time it might be called for each parsed .htaccess file and for
each resource defined in it.

The DIR_CREATE function’s skeleton is identical to SERVER_CREATE. Here is an example:

 package MyApache::MyParameters;
 ...
 use Apache::Module ();
 use Apache::CmdParms ();

29 Jan 200482

6.3.6 Creating and Merging Configuration Objects

 our @APACHE_MODULE_COMMANDS = (...);
 ...
 sub DIR_CREATE {
 my($class, $parms) = @_;
 return bless {
 foo => ’bar’,
 }, $class;
 }

To retrieve that value later, you can use:

 use Apache::Module ();
 ...
 my $dir_cfg = Apache::Module->get_config(’MyApache::MyParameters’,
 $s, $r->per_dir_config);
 print $dir_cfg->{foo};

The only difference in the retrieving the directory configuration object. Here the third argument
$r->per_dir_config tells Apache::Module to get the directory configuration object.

6.3.6.4 DIR_MERGE

Similarly to SERVER_MERGE, DIR_MERGE merges the ancestor and the current node’s directory config-
uration objects. At the server startup DIR_MERGE is called once for each virtual host. At request time, the
merging of the objects of resources, their sub-resources and the virtual host/main server merge happens.
Apache caches the products of merges, so you may see certain merges happening only once.

The section Merging Order Consequences discusses in detail the merging order.

The section Merging at Work provides an extensive example of a merging function.

6.4 Examples

6.4.1 Merging at Work

In the following example we are going to demonstrate in details how merging works, by showing various
merging techniques.

Here is an example Perl module, which, when loaded, installs four custom directives into Apache.

 #file:MyApache/CustomDirectives.pm
 #---------------------------------
 package MyApache::CustomDirectives;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::CmdParms ();
 use Apache::Module ();
 use Apache::ServerUtil ();

8329 Jan 2004

6.4 ExamplesApache Server Configuration Customization in Perl

 use Apache::Const -compile => qw(OK);

 our @APACHE_MODULE_COMMANDS = (
 { name => ’MyPlus’ },
 { name => ’MyList’ },
 { name => ’MyAppend’ },
 { name => ’MyOverride’ },
);

 sub MyPlus { set_val(’MyPlus’, @_) }
 sub MyAppend { set_val(’MyAppend’, @_) }
 sub MyOverride { set_val(’MyOverride’, @_) }
 sub MyList { push_val(’MyList’, @_) }

 sub DIR_MERGE { merge(@_) }
 sub SERVER_MERGE { merge(@_) }

 sub set_val {
 my($key, $self, $parms, $arg) = @_;
 $self->{$key} = $arg;
 unless ($parms->path) {
 my $srv_cfg = Apache::Module->get_config($self,
 $parms->server);
 $srv_cfg->{$key} = $arg;
 }
 }

 sub push_val {
 my($key, $self, $parms, $arg) = @_;

 push @{ $self->{$key} }, $arg;
 unless ($parms->path) {
 my $srv_cfg = Apache::Module->get_config($self,
 $parms->server);
 push @{ $srv_cfg->{$key} }, $arg;
 }
 }

 sub merge {
 my($base, $add) = @_;

 my %mrg = ();
 for my $key (keys %$base, %$add) {
 next if exists $mrg{$key};
 if ($key eq ’MyPlus’) {
 $mrg{$key} = ($base->{$key}||0) + ($add->{$key}||0);
 }
 elsif ($key eq ’MyList’) {
 push @{ $mrg{$key} },
 @{ $base->{$key}||[] }, @{ $add->{$key}||[] };
 }
 elsif ($key eq ’MyAppend’) {
 $mrg{$key} = join " ", grep defined, $base->{$key},
 $add->{$key};
 }
 else {
 # override mode

29 Jan 200484

6.4.1 Merging at Work

 $mrg{$key} = $base->{$key} if exists $base->{$key};
 $mrg{$key} = $add->{$key} if exists $add->{$key};
 }
 }

 return bless \%mrg, ref($base);
 }

 1;
 __END__

It’s probably a good idea to specify all the attributes for the @APACHE_MODULE_COMMANDS entries, but
here for simplicity we have only assigned to the name directive, which is a must. Since all our directives
take a single argument, Apache::TAKE1, the default args_how, is what we need. We also allow the
directives to appear anywhere, so Apache::OR_ALL, the default for req_override, is good for us as
well.

We use the same callback for the directives MyPlus, MyAppend and MyOverride, which simply
assigns the specified value to the hash entry with the key of the same name as the directive.

The MyList directive’s callback stores the value in the list, a reference to which is stored in the hash,
again using the name of the directive as the key. This approach is usually used when the directive is of
type Apache::ITERATE, so you may have more than one value of the same kind inside a single
container. But in our example we choose to have it of the type Apache::TAKE1.

In both callbacks in addition to storing the value in the current directory configuration, if the value is
configured in the main server or the virtual host (which is when $parms->path is false), we also store
the data in the same way in the server configuration object. This is done in order to be able to query the
values assigned at the server and virtual host levels, when the request is made to one of the sub-resources.
We will show how to access that information in a moment.

Finally we use the same merge function for merging directory and server configuration objects. For the
key MyPlus (remember we have used the same key name as the name of the directive), the merging func-
tion performs, the obvious, summation of the ancestor’s merged value (base) and the current resource’s
value (add). MyAppend joins the values into a string, MyList joins the lists and finally MyOverride
(the default) overrides the value with the current one if any. Notice that all four merging methods take into
account that the values in the ancestor or the current configuration object might be unset, which is the case
when the directive wasn’t used by all ancestors or for the current resource.

At the end of the merging, a blessed reference to the merged hash is returned. The reference is blessed into
the same class, as the base or the add objects, which is MyApache::CustomDirectives in our
example. That hash is used as the merged ancestor’s object for a sub-resource of the resource that has just
undergone merging.

Next we supply the following httpd.conf configuration section, so we can demonstrate the features of this
example:

8529 Jan 2004

6.4.1 Merging at WorkApache Server Configuration Customization in Perl

 PerlLoadModule MyApache::CustomDirectives
 MyPlus 5
 MyList "MainServer"
 MyAppend "MainServer"
 MyOverride "MainServer"
 Listen 8081
 <VirtualHost _default_:8081>
 MyPlus 2
 MyList "VHost"
 MyAppend "VHost"
 MyOverride "VHost"
 <Location /custom_directives_test>
 MyPlus 3
 MyList "Dir"
 MyAppend "Dir"
 MyOverride "Dir"
 SetHandler modperl
 PerlResponseHandler MyApache::CustomDirectivesTest
 </Location>
 <Location /custom_directives_test/subdir>
 MyPlus 1
 MyList "SubDir"
 MyAppend "SubDir"
 MyOverride "SubDir"
 </Location>
 </VirtualHost>
 <Location /custom_directives_test>
 SetHandler modperl
 PerlResponseHandler MyApache::CustomDirectivesTest
 </Location>

PerlLoadModule loads the Perl module MyApache::CustomDirectives and then installs a new
Apache module named MyApache::CustomDirectives, using the callbacks provided by the Perl
module. In our example functions SERVER_CREATE and DIR_CREATE aren’t provided, so by default an
empty hash will be created to represent the configuration object for the merging functions. If we don’t
provide merging functions, Apache will simply skip the merging. Though you must provide a callback
function for each directive you add.

After installing the new module, we add a virtual host container, containing two resources (which at other
times called locations, directories, sections, etc.), one being a sub-resource of the other, plus one another
resource which resides in the main server.

We assign different values in all four containers, but the last one. Here we refer to the four containers as
MainServer, VHost, Dir and SubDir, and use these names as values for all configuration directives, but
MyPlus, to make it easier understand the outcome of various merging methods and the merging order. In
the last container used by <Location /custom_directives_test>, we don’t specify any direc-
tives so we can verify that all the values are inherited from the main server.

For all three resources we are going to use the same response handler, which will dump the values of
configuration objects that in its reach. As we will see that different resources will see see certain things
identically, while others differently. So here it the handler:

29 Jan 200486

6.4.1 Merging at Work

 #file:MyApache/CustomDirectivesTest.pm
 #-------------------------------------
 package MyApache::CustomDirectivesTest;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::Server ();
 use Apache::ServerUtil ();
 use Apache::Module ();

 use Apache::Const -compile => qw(OK);

 sub get_config {
 Apache::Module->get_config(’MyApache::CustomDirectives’, @_);
 }

 sub handler {
 my($r) = @_;
 my %secs = ();

 $r->content_type(’text/plain’);

 my $s = $r->server;
 my $dir_cfg = get_config($s, $r->per_dir_config);
 my $srv_cfg = get_config($s);

 if ($s->is_virtual) {
 $secs{"1: Main Server"} = get_config(Apache->server);
 $secs{"2: Virtual Host"} = $srv_cfg;
 $secs{"3: Location"} = $dir_cfg;
 }
 else {
 $secs{"1: Main Server"} = $srv_cfg;
 $secs{"2: Location"} = $dir_cfg;
 }

 $r->printf("Processing by %s.\n",

 $s->is_virtual ? "virtual host" : "main server");

 for my $sec (sort keys %secs) {
 $r->print("\nSection $sec\n");
 for my $k (sort keys %{ $secs{$sec}||{} }) {
 my $v = exists $secs{$sec}->{$k}
 ? $secs{$sec}->{$k}
 : ’UNSET’;
 $v = ’[’ . (join ", ", map {qq{"$_"}} @$v) . ’]’
 if ref($v) eq ’ARRAY’;
 $r->printf("%-10s : %s\n", $k, $v);
 }
 }

 return Apache::OK;

8729 Jan 2004

6.4.1 Merging at WorkApache Server Configuration Customization in Perl

 }

 1;
 __END__

The handler is relatively simple. It retrieves the current resource (directory) and the server’s configuration
objects. If the server is a virtual host, it also retrieves the main server’s configuration object. Once these
objects are retrieved, we simply dump the contents of these objects, so we can verify that our merging
worked correctly. Of course we nicely format the data that we print, taking a special care of array refer-
ences, which we know is the case with the key MyList, but we use a generic code, since Perl tells us when
a reference is a list.

It’s a show time. First we issue a request to a resource residing in the main server:

 % GET http://localhost:8002/custom_directives_test/

 Processing by main server.

 Section 1: Main Server
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

 Section 2: Location
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

Since we didn’t have any directives in that resource’s configuration, we confirm that our merge worked
correctly and the directory configuration object contains the same data as its ancestor, the main server. In
this case the merge has simply inherited the values from its ancestor.

The next request is for the resource residing in the virtual host:

 % GET http://localhost:8081/custom_directives_test/

 Processing by virtual host.

 Section 1: Main Server
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

 Section 2: Virtual Host
 MyAppend : MainServer VHost
 MyList : ["MainServer", "VHost"]
 MyOverride : VHost
 MyPlus : 7

 Section 3: Location

29 Jan 200488

6.4.1 Merging at Work

 MyAppend : MainServer VHost Dir
 MyList : ["MainServer", "VHost", "Dir"]
 MyOverride : Dir
 MyPlus : 10

That’s where the real fun starts. We can see that the merge worked correctly in the virtual host, and so it
did inside the <Location> resource. It’s easy to see that MyAppend and MyList are correct, the same
for MyOverride. For MyPlus, we have to work harder and perform some math. Inside the virtual host
we have main(5)+vhost(2)=7, and inside the first resource vhost_merged(7)+resource(3)=10.

So far so good, the last request is made to the sub-resource of the resource we have requested previously:

 % GET http://localhost:8081/custom_directives_test/subdir/

 Processing by virtual host.

 Section 1: Main Server
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

 Section 2: Virtual Host
 MyAppend : MainServer VHost
 MyList : ["MainServer", "VHost"]
 MyOverride : VHost
 MyPlus : 7

 Section 3: Location
 MyAppend : MainServer VHost Dir SubDir
 MyList : ["MainServer", "VHost", "Dir", "SubDir"]
 MyOverride : SubDir
 MyPlus : 11

No surprises here. By comparing the configuration sections and the outcome, it’s clear that the merging is
correct for most directives. The only harder verification is for MyPlus, all we need to do is to add 1 to 10,
which was the result we saw in the previous request, or to do it from scratch, summing up all the ancestors
of this sub-resource: 5+2+3+1=11.

6.4.1.1 Merging Entries Whose Values Are References

When merging entries whose values are references and not scalars, it’s important to make a deep copy and
not a shallow copy, when the references gets copied. In our example we merged two references to lists, by
explicitly extracting the values of each list:

 push @{ $mrg{$key} },
 @{ $base->{$key}||[] }, @{ $add->{$key}||[] };

While seemingly the following snippet is doing the same:

8929 Jan 2004

6.4.1 Merging at WorkApache Server Configuration Customization in Perl

 $mrg{$key} = $base->{$key};
 push @{ $mrg{$key} }, @{ $add->{$key}||[] };

it won’t do what you expect if the same merge (with the same $base and $add arguments) is called
more than once, which is the case in certain cases. What happens in the latter implementation, is that the
first line makes both $mrg{$key} and $base->{$key} point to the same reference. When the second
line expands the @{ $mrg{$key} }, it also affects @{ $base->{$key} }. Therefore when the
same merge is called second time, the $base argument is not the same anymore.

Certainly we could workaround this problem in the mod_perl core, by freezing the arguments before the
merge call and restoring them afterwards, but this will incur a performance hit. One simply has to remem-
ber that the arguments and the references they point to, should stay unmodified through the function call,
and then the right code can be supplied.

6.4.1.2 Merging Order Consequences

Sometimes the merging logic can be influenced by the order of merging. It’s desirable that the logic will
work properly regardless of the merging order.

In Apache 1.3 the merging was happening in the following order:

 (((base_srv -> vhost) -> section) -> subsection)

Whereas as of this writing Apache 2.0 performs:

 ((base_srv -> vhost) -> (section -> subsection))

A product of subsections merge (which happen during the request) is merged with the product of the
server and virtual host merge (which happens at the startup time). This change was done to improve the
configuration merging performance.

So for example, if you implement a directive MyExp which performs the exponential:
$mrg=$base**$add, and let’s say there directive is used four times in httpd.conf:

 MyExp 5
 <VirtualHost _default_:8001>
 MyExp 4
 <Location /section>
 MyExp 3
 </Location>
 <Location /section/subsection>
 MyExp 2
 </Location>

The merged configuration for a request http://localhost:8001/section/subsection will see:

 (5 ** 4) ** (3 ** 2) = 1.45519152283669e+25

under Apache 2.0, whereas under Apache 1.3 the result would be:

29 Jan 200490

6.4.1 Merging at Work

http://localhost:8001/section/subsection

 ((5 ** 4) ** 3) ** 2 = 5.96046447753906e+16

which is not quite the same.

Chances are that your merging rules work identically, regardless of the merging order. But you should be
aware of this behavior.

6.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

6.6 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

9129 Jan 2004

6.5 MaintainersApache Server Configuration Customization in Perl

7 Writing mod_perl Handlers and Scripts

29 Jan 200492

7 Writing mod_perl Handlers and Scripts

7.1 Description
This chapter covers the mod_perl coding specifics, different from normal Perl coding. Most other perl
coding issues are covered in the perl manpages and rich literature.

7.2 Prerequisites

7.3 Where the Methods Live
mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the modules
containing them have to be loaded first. If you don’t do that mod_perl will complain that it can’t find the
methods in question. The module ModPerl::MethodLookup can be used to find out which modules
need to be used.

7.4 Method Handlers
In mod_perl 2.0 method handlers are declared using the method attribute:

 package Bird;
 @ISA = qw(Eagle);

 sub handler : method {
 my($class, $r) = @_;
 ...;
 }

See the attributes manpage.

If Class->method syntax is used for a Perl*Handler, the :method attribute is not required.

META: need to port the method handlers document from mp1 guide, may be keep it as a separate docu-
ment. Meanwhile refer to that document, though replace the $$ prototype with the :method attribute .

7.5 Goodies Toolkit

7.5.1 Environment Variables

mod_perl sets the following environment variables:

$ENV{MOD_PERL} - is set to the mod_perl version the server is running under. e.g.:

 mod_perl/1.99_03-dev

If $ENV{MOD_PERL} doesn’t exist, most likely you are not running under mod_perl.

9329 Jan 2004

7.1 DescriptionWriting mod_perl Handlers and Scripts

 die "I refuse to work without mod_perl!" unless exists $ENV{MOD_PERL};

However to check which version is used it’s better to use the following technique:

 use mod_perl;
 use constant MP2 => ($mod_perl::VERSION >= 1.99);
 # die "I want mod_perl 2.0!" unless MP2;

$ENV{GATEWAY_INTERFACE} - is set to CGI-Perl/1.1 for compatibility with mod_perl 1.0.
This variable is deprecated in mod_perl 2.0. Use $ENV{MOD_PERL} instead.

mod_perl passes (exports) the following shell environment variables (if they are set) :

PATH - Executables search path.

TZ - Time Zone.

Any of these environment variables can be accessed via %ENV.

7.5.2 Threaded MPM or not?

If the code needs to behave differently depending on whether it’s running under one of the threaded
MPMs, or not, the class method Apache::MPM->is_threaded can be used. For example:

 use Apache::MPM ();
 if (Apache::MPM->is_threaded) {
 require APR::OS;
 my $tid = APR::OS::thread_current();
 print "current thread id: $tid (pid: $$)";
 }
 else {
 print "current process id: $$";
 }

This code prints the current thread id if running under a threaded MPM, otherwise it prints the process id.

7.5.3 Writing MPM-specific Code

If you write a CPAN module it’s a bad idea to write code that won’t run under all MPMs, and developers
should strive to write a code that works with all mpms. However it’s perfectly fine to perform different
things under different mpms.

If you don’t develop CPAN modules, it’s perfectly fine to develop your project to be run under a specific
MPM.

 use Apache::MPM ();
 my $mpm = lc Apache::MPM->show;
 if ($mpm eq ’prefork’) {
 # prefork-specific code
 }
 elsif ($mpm eq ’worker’) {
 # worker-specific code

29 Jan 200494

7.5.2 Threaded MPM or not?

 }
 elsif ($mpm eq ’winnt’) {
 # winnt-specific code
 }
 else {
 # others...
 }

7.6 Code Developing Nuances

7.6.1 Auto-Reloading Modified Modules with Apache::Reload

META: need to port Apache::Reload notes from the guide here. but the gist is:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 #PerlPreConnectionHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache::*"

Use:

 PerlInitHandler Apache::Reload

if you need to debug HTTP protocol handlers. Use:

 PerlPreConnectionHandler Apache::Reload

for any handlers.

Though notice that we have started to practice the following style in our modules:

 package Apache::Whatever;

 use strict;
 use warnings FATAL => ’all’;

FATAL => ’all’ escalates all warnings into fatal errors. So when Apache::Whatever is modified
and reloaded by Apache::Reload the request is aborted. Therefore if you follow this very healthy style
and want to use Apache::Reload, flex the strictness by changing it to:

 use warnings FATAL => ’all’;
 no warnings ’redefine’;

but you probably still want to get the redefine warnings, but downgrade them to be non-fatal. The follow-
ing will do the trick:

 use warnings FATAL => ’all’;
 no warnings ’redefine’;
 use warnings ’redefine’;

9529 Jan 2004

7.6 Code Developing NuancesWriting mod_perl Handlers and Scripts

Perl 5.8.0 allows to do all this in one line:

 use warnings FATAL => ’all’, NONFATAL => ’redefine’;

but if your code may be used with older perl versions, you probably don’t want to use this new functional-
ity.

Refer to the perllexwarn manpage for more information.

7.7 Integration with Apache Issues
In the following sections we discuss the specifics of Apache behavior relevant to mod_perl developers.

7.7.1 Sending HTTP Response Headers

Apache 2.0 doesn’t provide a method to force HTTP response headers sending (what used to be done by
send_http_header() in Apache 1.3). HTTP response headers are sent as soon as the first bits of the
response body are seen by the special core output filter that generates these headers. When the response
handler send the first chunks of body it may be cached by the mod_perl internal buffer or even by some of
the output filters. The response handler needs to flush in order to tell all the components participating in
the sending of the response to pass the data out.

For example if the handler needs to perform a relatively long-running operation (e.g. a slow db lookup)
and the client may timeout if it receives nothing right away, you may want to start the handler by setting
the Content-Type header, following by an immediate flush:

 sub handler {
 my $r = shift;
 $r->content_type(’text/html’);
 $r->rflush; # send the headers out

 $r->print(long_operation());
 return Apache::OK;
 }

If this doesn’t work, check whether you have configured any third-party output filters for the resource in
question. Improperly written filter may ignore the orders to flush the data.

META: add a link to the notes on how to write well-behaved filters at handlers/filters

7.7.2 Sending HTTP Response Body

In mod_perl 2.0 a response body can be sent only during the response phase. Any attempts to do that in
the earlier phases will fail with an appropriate explanation logged into the error_log file.

This happens due to the Apache 2.0 HTTP architecture specifics. One of the issues is that the HTTP
response filters are not setup before the response phase.

29 Jan 200496

7.7 Integration with Apache Issues

7.8 Perl Specifics in the mod_perl Environment
In the following sections we discuss the specifics of Perl behavior under mod_perl.

7.8.1 Request-localized Globals

mod_perl 2.0 provides two types of SetHandler handlers: modperl and perl-script. Remember
that the SetHandler directive is only relevant for the response phase handlers, it neither needed nor
affects non-response phases.

Under the handler:

 SetHandler perl-script

several special global Perl variables are saved before the handler is called and restored afterwards. This
includes: %ENV, @INC, $/, STDOUT’s $| and END blocks array (PL_endav).

Under:

 SetHandler modperl

nothing is restored, so you should be especially careful to remember localize all special Perl variables so
the local changes won’t affect other handlers.

7.8.2 exit()

In the normal Perl code exit() is used to stop the program flow and exit the Perl interpreter. However
under mod_perl we only want the stop the program flow without killing the Perl interpreter.

You should take no action if your code includes exit() calls and it’s OK to continue using them. mod_perl
worries to override the exit() function with its own version which stops the program flow, and performs all
the necessary cleanups, but doesn’t kill the server. This is done by overriding:

 *CORE::GLOBAL::exit = \&ModPerl::Util::exit;

so if you mess up with *CORE::GLOBAL::exit yourself you better know what you are doing.

You can still call CORE::exit to kill the interpreter, again if you know what you are doing.

7.9 Threads Coding Issues Under mod_perl
The following sections discuss threading issues when running mod_perl under a threaded MPM.

9729 Jan 2004

7.8 Perl Specifics in the mod_perl EnvironmentWriting mod_perl Handlers and Scripts

7.9.1 Thread-environment Issues

The "only" thing you have to worry about your code is that it’s thread-safe and that you don’t use func-
tions that affect all threads in the same process.

Perl 5.8.0 itself is thread-safe. That means that operations like push(), map(), chomp(), =, /, +=, etc.
are thread-safe. Operations that involve system calls, may or may not be thread-safe. It all depends on
whether the underlying C libraries used by the perl functions are thread-safe.

For example the function localtime() is not thread-safe when the implementation of asctime(3) is
not thread-safe. Other usually problematic functions include readdir(), srand(), etc.

Another important issue that shouldn’t be missed is what some people refer to as thread-locality. Certain
functions executed in a single thread affect the whole process and therefore all other threads running
inside that process. For example if you chdir() in one thread, all other thread now see the current
working directory of that thread that chdir()’ed to that directory. Other functions with similar effects
include umask(), chroot(), etc. Currently there is no cure for this problem. You have to find these
functions in your code and replace them with alternative solutions which don’t incur this problem.

For more information refer to the perlthrtut (http://perldoc.com/perl5.8.0/pod/perlthrtut.html) manpage.

7.9.2 Deploying Threads

This is actually quite unrelated to mod_perl 2.0. You don’t have to know much about Perl threads, other
than Thread-environment Issues, to have your code properly work under threaded MPM mod_perl.

If you want to spawn your own threads, first of all study how the new ithreads Perl model works, by
reading the perlthrtut, threads (http://search.cpan.org/search?query=threads) and threads::shared
(http://search.cpan.org/search?query=threads%3A%3Ashared) manpages.

Artur Bergman wrote an article which explains how to port pure Perl modules to work properly with Perl
ithreads. Issues with chdir() and other functions that rely on shared process’ datastructures are
discussed. http://www.perl.com/lpt/a/2002/06/11/threads.html.

7.9.3 Shared Variables

Global variables are only global to the interpreter in which they are created. Other interpreters from other
threads can’t access that variable. Though it’s possible to make existing variables shared between several
threads running in the same process by using the function threads::shared::share(). New vari-
ables can be shared by using the shared attribute when creating them. This feature is documented in the
threads::shared (http://search.cpan.org/search?query=threads%3A%3Ashared) manpage.

29 Jan 200498

7.9.1 Thread-environment Issues

http://perldoc.com/perl5.8.0/pod/perlthrtut.html
http://search.cpan.org/search?query=threads
http://search.cpan.org/search?query=threads%3A%3Ashared
http://www.perl.com/lpt/a/2002/06/11/threads.html
http://search.cpan.org/search?query=threads%3A%3Ashared

7.10 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

7.11 Authors

Only the major authors are listed above. For contributors see the Changes file.

9929 Jan 2004

7.10 MaintainersWriting mod_perl Handlers and Scripts

8 Cooking Recipes

29 Jan 2004100

8 Cooking Recipes

8.1 Description
As the chapter’s title implies, here you will find ready-to-go mod_perl 2.0 recipes.

If you know a useful recipe, not yet listed here, please post it to the mod_perl mailing list and we will add
it here.

8.2 Sending Cookies in REDIRECT Response
(ModPerl::Registry)
 use CGI::Cookie ();
 use Apache::RequestRec ();
 use APR::Table ();

 use Apache::Const -compile => qw(REDIRECT);

 my $location = "http://example.com/final_destination/";

 sub handler {
 my $r = shift;

 my $cookie = CGI::Cookie->new(-name => ’mod_perl’,
 -value => ’awesome’);

 $r->err_headers_out->add(’Set-Cookie’ => $cookie);
 $r->headers_out->set(Location => $location);
 $r->status(Apache::REDIRECT);

 return Apache::REDIRECT;
 }
 1;

8.3 Sending Cookies in REDIRECT Response (handlers)
 use CGI::Cookie ();
 use Apache::RequestRec ();
 use APR::Table ();

 use Apache::Const -compile => qw(REDIRECT);

 my $location = "http://example.com/final_destination/";

 sub handler {
 my $r = shift;

 my $cookie = CGI::Cookie->new(-name => ’mod_perl’,
 -value => ’awesome’);

 $r->err_headers_out->add(’Set-Cookie’ => $cookie);
 $r->headers_out->set(Location => $location);

10129 Jan 2004

8.1 DescriptionCooking Recipes

 return Apache::REDIRECT;
 }
 1;

note that this example differs from the Registry example only in that it does not attempt to fiddle with
$r->status() - ModPerl::Registry uses $r->status() as a hack, but handlers should never
manipulate the status field in the request record.

8.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

8.5 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 2004102

8.4 Maintainers

9 Porting Apache:: Perl Modules from mod_perl 1.0
to 2.0

10329 Jan 2004

9 Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

9.1 Description
This document describes the various options for porting a mod_perl 1.0 Apache module so that it runs on a
Apache 2.0 / mod_perl 2.0 server. It’s also helpful to those who start developing mod_perl 2.0 handlers.

Developers who need to port modules using XS code, should also read about porting Apache:: XS
modules.

There is also: Porting CPAN modules to mod_perl 2.0 Status.

9.2 Introduction
In the vast majority of cases, a perl Apache module that runs under mod_perl 1.0 will not run under
mod_perl 2.0 without at least some degree of modification.

Even a very simple module that does not in itself need any changes will at least need the mod_perl 2.0
Apache modules loaded, because in mod_perl 2.0 basic functionality, such as access to the request object
and returning an HTTP status, is not found where, or implemented how it used to be in mod_perl 1.0.

Most real-life modules will in fact need to deal with the following changes:

methods that have moved to a different (new) package

methods that must be called differently (due to changed prototypes)

methods that have ceased to exist (functionality provided in some other way)

Do not be alarmed! One way to deal with all of these issues is to load the Apache::compat compati-
bility layer bundled with mod_perl 2.0. This magic spell will make almost any 1.0 module run under 2.0
without further changes. It is by no means the solution for every case, however, so please read carefully
the following discussion of this and other options.

There are three basic options for porting. Let’s take a quick look at each one and then discuss each in more
detail.

1. Run the module on 2.0 under Apache::compat with no further changes

As we have said mod_perl 2.0 ships with a module, Apache::compat, that provides a complete
drop-in compatibility layer for 1.0 modules. Apache::compat does the following:

Loads all the mod_perl 2.0 Apache:: modules

Adjusts method calls where the prototype has changed

Provides Perl implementation for methods that no longer exist in 2.0

29 Jan 2004104

9.1 Description

The drawback to using Apache::compat is the performance hit, which can be significant.

Authors of CPAN and other publicly distributed modules should not use Apache::compat since
this forces its use in environments where the administrator may have chosen to optimize memory use
by making all code run natively under 2.0.

2. Modify the module to run only under 2.0

If you are not interested in providing backwards compatibility with mod_perl 1.0, or if you plan to
leave your 1.0 module in place and develop a new version compatible with 2.0, you will need to
make changes to your code. How significant or widespread the changes are depends largely of course
on your existing code.

Several sections of this document provide detailed information on how to rewrite your code for
mod_perl 2.0 Several tools are provided to help you, and it should be a relatively painless task and
one that you only have to do once.

3. Modify the module so that it runs under both 1.0 and 2.0

You need to do this if you want to keep the same version number for your module, or if you distribute
your module on CPAN and want to maintain and release just one codebase.

This is a relatively simple enhancement of option (2) above. The module tests to see which version of
mod_perl is in use and then executes the appropriate method call.

The following sections provide more detailed information and instructions for each of these three porting
strategies.

9.3 Using Apache::porting
META: to be written. this is a new package which makes chunks of this doc simpler. for now see the
Apache::porting manpage.

9.4 Using the Apache::compat Layer
The Apache::compat module tries to hide the changes in API prototypes between version 1.0 and 2.0
of mod_perl, and implements "virtual methods" for the methods and functions that actually no longer
exist.

Apache::compat is extremely easy to use. Either add at the very beginning of startup.pl:

 use Apache2;
 use Apache::compat;

or add to httpd.conf:

10529 Jan 2004

9.3 Using Apache::portingPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 PerlModule Apache2
 PerlModule Apache::compat

That’s all there is to it. Now you can run your 1.0 module unchanged.

Remember, however, that using Apache::compat will make your module run slower. It can create a
larger memory footprint than you need and it implements functionality in pure Perl that is provided in
much faster XS in mod_perl 1.0 as well as in 2.0. This module was really designed to assist in the transi-
tion from 1.0 to 2.0. Generally you will be better off if you port your code to use the mod_perl 2.0 API.

It’s also especially important to repeat that CPAN module developers are requested not
to use this module in their code, since this takes the control over performance away from
users.

9.5 Porting a Perl Module to Run under mod_perl 2.0
Note: API changes are listed in the mod_perl 1.0 backward compatibility document.

The following sections will guide you through the steps of porting your modules to mod_perl 2.0.

9.5.1 Using ModPerl::MethodLookup to Discover Which
mod_perl 2.0 Modules Need to Be Loaded

It would certainly be nice to have our mod_perl 1.0 code run on the mod_perl 2.0 server unmodified. So
first of all, try your luck and test the code.

It’s almost certain that your code won’t work when you try, however, because mod_perl 2.0 splits func-
tionality across many more modules than version 1.0 did, and you have to load these modules before the
methods that live in them can be used. So the first step is to figure out which these modules are and
use() them.

The ModPerl::MethodLookup module provided with mod_perl 2.0 allows you to find out which
module contains the functionality you are looking for. Simply provide it with the name of the mod_perl
1.0 method that has moved to a new module, and it will tell you what the module is.

For example, let’s say we have a mod_perl 1.0 code snippet:

 $r->content_type(’text/plain’);
 $r->print("Hello cruel world!");

If we run this, mod_perl 2.0 will complain that the method content_type() can’t be found. So we use
ModPerl::MethodLookup to figure out which module provides this method. We can just run this
from the command line:

 % perl -MApache2 -MModPerl::MethodLookup -e print_method content_type

29 Jan 2004106

9.5 Porting a Perl Module to Run under mod_perl 2.0

This prints:

 to use method ’content_type’ add:
 use Apache::RequestRec ();

We do what it says and add this use() statement to our code, restart our server (unless we’re using
Apache::Reload), and mod_perl will no longer complain about this particular method.

Since you may need to use this technique quite often you may want to define an alias. Once
defined the last command line lookup can be accomplished with:

 % lookup content_type

ModPerl::MethodLookup also provides helper functions for finding which methods are
defined in a given module, or which methods can be invoked on a given
object.

9.5.1.1 Handling Methods Existing In More Than One Package

Some methods exists in several classes. For example this is the case with the print() method. We know
the drill:

 % lookup print

This prints:

 There is more than one class with method ’print’
 try one of:
 use Apache::RequestIO ();
 use Apache::Filter ();

So there is more than one package that has this method. Since we know that we call the print() method
with the $r object, it must be the Apache::RequestIO module that we are after. Indeed, loading this
module solves the problem.

9.5.1.2 Using ModPerl::MethodLookup Programmatically

The issue of picking the right module, when more than one matches, can be resolved when using
ModPerl::MethodLookup programmatically -- lookup_method accepts an object as an optional
second argument, which is used if there is more than one module that contains the method in question.
ModPerl::MethodLookup knows that Apache::RequestIO and and Apache::Filter expect
an object of type Apache::RequestRec and type Apache::Filter respectively. So in a program
running under mod_perl we can call:

 ModPerl::MethodLookup::lookup_method(’print’, $r);

Now only one module will be matched.

10729 Jan 2004

9.5.1 Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be LoadedPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

This functionality can be used in AUTOLOAD, for example, although most users will not have a need for
this robust of solution.

9.5.1.3 Pre-loading All mod_perl 2.0 Modules

Now if you use a wide range of methods and functions from the mod_perl 1.0 API, the process of finding
all the modules that need to be loaded can be quite frustrating. In this case you may find the function
preload_all_modules() to be the right tool for you. This function preloads all mod_perl 2.0
modules, implementing their API in XS.

While useful for testing and development, it is not recommended to use this function in production
systems. Before going into production you should remove the call to this function and load only the
modules that are used, in order to save memory.

CPAN module developers should not be tempted to call this function from their modules, because it
prevents the user of their module from optimizing her system’s memory usage.

9.5.2 Handling Missing and Modified mod_perl 1.0 Methods and
Functions

The mod_perl 2.0 API is modeled even more closely upon the Apache API than was mod_perl version
1.0. Just as the Apache 2.0 API is substantially different from that of Apache 1.0, therefore, the mod_perl
2.0 API is quite different from that of mod_perl 1.0. Unfortunately, this means that certain method calls
and functions that were present in mod_perl version 1.0 are missing or modified in mod_perl 2.0.

If mod_perl 2.0 tells you that some method is missing and it can’t be found using ModPerl::Method-
Lookup, it’s most likely because the method doesn’t exist in the mod_perl 2.0 API. It’s also possible that
the method does still exist, but nevertheless it doesn’t work, since its usage has changed (e.g. its prototype
has changed, or it requires different arguments, etc.).

In either of these cases, refer to the backwards compatibility document for an exhaustive list of API calls
that have been modified or removed.

9.5.2.1 Methods that No Longer Exist

Some methods that existed in mod_perl 1.0 simply do not exist anywhere in version 2.0 and you must
therefore call a different method o methods to get the functionality you want.

For example, suppose we have a mod_perl 1.0 code snippet:

 $r->log_reason("Couldn’t open the session file: $@");

If we try to run this under mod_perl 2.0 it will complain about the call to log_reason(). But when we
use ModPerl::MethodLookup to see which module to load in order to call that method, nothing is
found:

29 Jan 2004108

9.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions

 % perl -MApache2 -MModPerl::MethodLookup -le \
 ’print((ModPerl::MethodLookup::lookup_method(shift))[0])’ \
 log_reason

This prints:

 don’t know anything about method ’log_reason’

Looks like we are calling a non-existent method! Our next step is to refer to the backwards compatibility
document, wherein we find that as we suspected, the method log_reason() no longer exists, and that
instead we should use the other standard logging functions provided by the Apache::Log module.

9.5.2.2 Methods Whose Usage Has Been Modified

Some methods still exist, but their usage has been modified, and your code must call them in the new
fashion or it will generate an error. Most often the method call requires new or different arguments.

For example, say our mod_perl 1.0 code said:

 $parsed_uri = Apache::URI->parse($r, $r->uri);

This code causes mod_perl 2.0 to complain first about not being able to load the method parse() via the
package Apache::URI. We use the tools described above to discover that the package containing our
method has moved and change our code to load and use APR::URI:

 $parsed_uri = APR::URI->parse($r, $r->uri);

But we still get an error. It’s a little cryptic, but it gets the point across:

 p is not of type APR::Pool at /path/to/OurModule.pm line 9.

What this is telling us is that the method parse requires an APR::Pool object as its first argument. (Some
methods whose usage has changed emit more helpful error messages prefixed with "Usage: ...") So we
change our code to:

 $parsed_uri = APR::URI->parse($r->pool, $r->uri);

and all is well in the world again.

9.5.3 Requiring a specific mod_perl version.

To require a module to run only under 2.0, simply add:

 use Apache2;
 use mod_perl 2.0;

META: In fact, before 2.0 is released you really have to say:

10929 Jan 2004

9.5.3 Requiring a specific mod_perl version.Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 use Apache2;
 use mod_perl 1.99;

And you can even require a specific version (for example when a certain API has been added only starting
from that version). For example to require version 1.99_08, you can say:

 use mod_perl 1.9908;

9.5.4 Should the Module Name Be Changed?

If it is not possible to make your code run under both mod_perl versions (see below), you will have to
maintain two separate versions of your own code. While you can change the name of the module for the
new version, it’s best to try to preserve the name and use some workarounds.

Let’s say that you have a module Apache::Friendly whose release version compliant with mod_perl
1.0 is 1.57. You keep this version on CPAN and release a new version, 2.01, which is compliant with
mod_perl 2.0 and preserves the name of the module. It’s possible that a user may need to have both
versions of the module on the same machine. Since the two have the same name they obviously cannot
live under the same tree.

One attempt to solve this problem is to use Makefile.PL’s MP_INST_APACHE2 option. If the module is
configured as:

 % perl Makefile.PL MP_INST_APACHE2=1

it’ll be installed relative to the Apache2/ directory.

META: but of course this won’t work in non-core mod_perl, since a generic Makefile.PL has no idea
what to do about MP_INST_APACHE2=1. Need to provide copy-n-paste recipe for this. Or even add to
the core a supporting module that will handle this functionality.

The second step is to change the documentation of your 2.0 compliant module to instruct users to use
Apache2 (); in their code (or in startup.pl or via PerlModule Apache2 in httpd.conf) before the
module is required. This will cause @INC to be modified to include the Apache2/ directory first.

The introduction of the Apache2/ directory is similar to how Perl installs its modules in a version specific
directory. For example:

 lib/5.7.1
 lib/5.7.2

9.5.5 Using Apache::compat As a Tutorial

Even if you have followed the recommendation and eschewed use of the Apache::compat module,
you may find it useful to learn how the API has been changed and how to modify your own code. Simply
look at the Apache::compat source code and see how the functionality should be implemented in
mod_perl 2.0.

29 Jan 2004110

9.5.4 Should the Module Name Be Changed?

For example, mod_perl 2.0 doesn’t provide the Apache->gensym method. As we can see if we look at
the Apache/compat.pm source, the functionality is now available via the core Perl module Symbol
and its gensym() function. (Since mod_perl 2.0 works only with Perl versions 5.6 and higher, and
Symbol.pm is included in the core Perl distribution since version 5.6.0, there was no reason to keep
providing Apache->gensym.)

So if the original code looked like:

 my $fh = Apache->gensym;
 open $fh, $file or die "Can’t open $file: $!";

in order to port it mod_perl 2.0 we can write:

 my $fh = Symbol::gensym;
 open $fh, $file or die "Can’t open $file: $!";

Or we can even skip loading Symbol.pm, since under Perl version 5.6 and higher we can just do:

 open my $fh, $file or die "Can’t open $file: $!";

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Apache::MP3 is an elaborate application that uses a lot of mod_perl API. After porting it, I have real-
ized that if you go through the notes or even better try to do it by yourself, referring to the notes only when
in trouble, you will most likely be able to port any other mod_perl 1.0 module to run under mod_perl 2.0.
So here the log of what I have done while doing the porting.

Please notice that this tutorial should be considered as-is and I’m not claiming that I have got everything
polished, so if you still find problems, that’s absolutely OK. What’s important is to try to learn from the
process, so you can attack other modules on your own.

I’ve started to work with Apache::MP3 version 3.03 which you can retrieve from Lincoln’s CPAN
directory: http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz Even though by
the time you’ll read this there will be newer versions available it’s important that you use the same version
as a starting point, since if you don’t, the notes below won’t make much sense.

9.5.6.1 Preparations

First of all, I scratched most of mine httpd.conf and startup.pl leaving the bare minimum to get mod_perl
started. This is needed to ensure that once I’ve completed the porting, the module will work correct on
other users systems. For example if my httpd.conf and startup.pl were loading some other modules, which
in turn may load modules that a to-be-ported module may rely on, the ported module may work for me,
but once released, it may not work for others. It’s the best to create a new httpd.conf when doing the
porting putting only the required bits of configuration into it.

11129 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz

9.5.6.1.1 httpd.conf

Next, I configure the Apache::Reload module, so we don’t have to constantly restart the server after
we modify Apache::MP3. In order to do that add to httpd.conf:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache::*"
 PerlSetVar ReloadConstantRedefineWarnings Off

You can refer to the Apache::Reload manpage for more information if you aren’t familiar with
this module. The part:

 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache::*"

tells Apache::Reload to monitor only modules in the ModPerl:: and Apache:: namespaces. So
Apache::MP3 will be monitored. If your module is named Foo::Bar, make sure to include the right
pattern for the ReloadModules directive. Alternatively simply have:

 PerlSetVar ReloadAll On

which will monitor all modules in %INC, but will be a bit slower, as it’ll have to stat(3) many more
modules on each request.

Finally, Apache::MP3 uses constant subroutines. Because of that you will get lots of warnings every
time the module is modified, which I wanted to avoid. I can safely shut those warnings off, since I’m not
going to change those constants. Therefore I’ve used the setting

 PerlSetVar ReloadConstantRedefineWarnings Off

If you do change those constants, refer to the section on ReloadConstantRedefineWarnings .

Next I configured Apache::MP3. In my case I’ve followed the Apache::MP3 documentation, created
a directory mp3/ under the server document root and added the corresponding directives to httpd.conf.

Now my httpd.conf looked like this:

 #file:httpd.conf
 #---------------
 Listen 127.0.0.1:8002
 #... standard Apache configuration bits omitted ...

 LoadModule perl_module modules/mod_perl.so

 PerlSwitches -wT

 PerlRequire "/home/httpd/2.0/perl/startup.pl"

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off

29 Jan 2004112

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 PerlSetVar ReloadModules "ModPerl::* Apache::*"
 PerlSetVar ReloadConstantRedefineWarnings Off

 AddType audio/mpeg mp3 MP3
 AddType audio/playlist m3u M3U
 AddType audio/x-scpls pls PLS
 AddType application/x-ogg ogg OGG
 <Location /mp3>
 SetHandler perl-script
 PerlResponseHandler Apache::MP3
 PerlSetVar PlaylistImage playlist.gif
 PerlSetVar StreamBase http://localhost:8002
 PerlSetVar BaseDir /mp3
 </Location>

9.5.6.1.2 startup.pl

Since chances are that no mod_perl 1.0 module will work out of box without at least preloading some
modules, I’ve enabled the Apache::compat module. Now my startup.pl looked like this:

 #file:startup.pl
 #---------------
 use Apache2 ();
 use lib qw(/home/httpd/2.0/perl);
 use Apache::compat;

9.5.6.1.3 Apache/MP3.pm

Before I even started porting Apache::MP3, I’ve added the warnings pragma to Apache/MP3.pm (which
wasn’t there because mod_perl 1.0 had to work with Perl versions prior to 5.6.0, which is when the
warnings pragma was added):

 #file:apache_mp3_prep.diff
 --- Apache/MP3.pm.orig 2003-06-03 18:44:21.000000000 +1000
 +++ Apache/MP3.pm 2003-06-03 18:44:47.000000000 +1000
 @@ -4,2 +4,5 @@
 use strict;
 +use warnings;
 +no warnings ’redefine’; # XXX: remove when done with porting
 +

From now on, I’m going to use unified diffs which you can apply using patch(1). Though you may
have to refer to its manpage on your platform since the usage flags may vary. On linux I’d apply the above
patch as:

 % cd ~/perl/blead-ithread/lib/site_perl/5.9.0/
 % patch -p0 < apache_mp3_prep.diff

(note: I’ve produced the above patch and one more below with diff -u1, to avoid the RCS Id tag
geting into this document. Normally I produce diffs with diff -u which uses the default context of 3.)

11329 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

assuming that Apache/MP3.pm is located in the directory ~/perl/blead-ithread/lib/site_perl/5.9.0/.

I’ve enabled the warnings pragma even though I did have warnings turned globally in httpd.conf with:

 PerlSwitches -wT

it’s possible that some badly written module has done:

 $^W = 0;

without localizing the change, affecting other code. Also notice that the taint mode was enabled from
httpd.conf, something that you shouldn’t forget to do.

I have also told the warnings pragma not to complain about redefined subs via:

 no warnings ’redefine’; # XXX: remove when done with porting

I will remove that code, once porting is completed.

At this point I was ready to start the porting process and I have started the server.

 % hup2

I’m using the following aliases to save typing:

 alias err2 "tail -f ~/httpd/prefork/logs/error_log"
 alias acc2 "tail -f ~/httpd/prefork/logs/access_log"
 alias stop2 "~/httpd/prefork/bin/apachectl stop"
 alias start2 "~/httpd/prefork/bin/apachectl start"
 alias restart2 "~/httpd/prefork/bin/apachectl restart"
 alias graceful2 "~/httpd/prefork/bin/apachectl graceful"
 alias hup2 "stop2; sleep 3; start2; err2"

(I also have a similar set of aliases for mod_perl 1.0)

9.5.6.2 Porting with Apache::compat

I have configured my server to listen on port 8002, so I issue a request http://localhost:8002/mp3/ in one
console:

 % lynx --dump http://localhost:8002/mp3/

keeping the error_log open in the other:

 % err2

which expands to:

 % tail -f ~/httpd/prefork/logs/error_log

29 Jan 2004114

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

http://localhost:8002/mp3/

When the request is issued, the error_log file tells me:

 [Thu Jun 05 15:29:45 2003] [error] [client 127.0.0.1]
 Usage: Apache::RequestRec::new(classname, c, base_pool=NULL)
 at .../Apache/MP3.pm line 60.

Looking at the code:

 58: sub handler ($$) {
 59: my $class = shift;
 60: my $obj = $class->new(@_) or die "Can’t create object: $!";

The problem is that handler wasn’t invoked as method, but had $r passed to it (we can tell because
new() was invoked as Apache::RequestRec::new(), whereas it should have been
Apache::MP3::new(). Why Apache::MP3 wasn’t passed as the first argument? I go to the mod_perl
1.0 backward compatibility document and find that method handlers are now marked using the method
subroutine attribute. So I modify the code:

 --- Apache/MP3.pm.0 2003-06-05 15:29:19.000000000 +1000
 +++ Apache/MP3.pm 2003-06-05 15:38:41.000000000 +1000
 @@ -55,7 +55,7 @@
 my $NO = ’^(no|false)$’; # regular expression
 my $YES = ’^(yes|true)$’; # regular expression

 -sub handler ($$) {
 +sub handler : method {
 my $class = shift;
 my $obj = $class->new(@_) or die "Can’t create object: $!";
 return $obj->run();

and issue the request again (no server restart needed).

This time we get a bunch of looping redirect responses, due to a bug in mod_dir which kicks in to handle
the existing dir and messing up with $r->path_info keeping it empty at all times. I thought I could
work around this by not having the same directory and location setting, e.g. by moving the location to be
/songs/ while keeping the physical directory with mp3 files as $DocumentRoot/mp3/, but Apache::MP3
won’t let you do that. So a solution suggested by Justin Erenkrantz is to simply shortcut that piece of code
with:

 --- Apache/MP3.pm.1 2003-06-06 14:50:59.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 14:51:11.000000000 +1000
 @@ -253,7 +253,7 @@
 my $self = shift;
 my $dir = shift;

 - unless ($self->r->path_info){
 + unless ($self->r->path_info eq ’’){
 #Issue an external redirect if the dir isn’t tailed with a ’/’
 my $uri = $self->r->uri;
 my $query = $self->r->args;

11529 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

which is equivalent to removing this code, until the bug is fixed (it was still there as of Apache 2.0.46).
But the module still works without this code, because if you issue a request to /mp3 (w/o trailing slash)
mod_dir, will do the redirect for you, replacing the code that we just removed. In any case this got me past
this problem.

Since I have turned on the warnings pragma now I was getting loads of uninitialized value warnings from
$r->dir_config() whose return value were used without checking whether they are defined or not.
But you’d get them with mod_perl 1.0 as well, so they are just an example of not-so clean code, not really
a relevant obstacle in my pursuit to port this module to mod_perl 2.0. Unfortunately they were cluttering
the log file so I had to fix them. I’ve defined several convenience functions:

 sub get_config {
 my $val = shift->r->dir_config(shift);
 return defined $val ? $val : ’’;
 }

 sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
 sub config_no { shift->get_config(shift) !~ /$NO/oi; }

and replaced them as you can see in this patch: code/apache_mp3_2.diff:

--- Apache/MP3.pm.2 2003-06-06 15:17:22.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 15:16:21.000000000 +1000
@@ -55,6 +55,14 @@
 my $NO = ’^(no|false)$’; # regular expression
 my $YES = ’^(yes|true)$’; # regular expression

+sub get_config {
+ my $val = shift->r->dir_config(shift);
+ return defined $val ? $val : ’’;
+}
+
+sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
+sub config_no { shift->get_config(shift) !~ /$NO/oi; }
+
 sub handler : method {
 my $class = shift;
 my $obj = $class->new(@_) or die "Can’t create object: $!";
@@ -70,7 +78,7 @@
 my @lang_tags;
 push @lang_tags,split /,\s+/,$r->header_in(’Accept-language’)
 if $r->header_in(’Accept-language’);
- push @lang_tags,$r->dir_config(’DefaultLanguage’) || ’en-US’;
+ push @lang_tags,$new->get_config(’DefaultLanguage’) || ’en-US’;

 $new->{’lh’} ||=
 Apache::MP3::L10N->get_handle(@lang_tags)
@@ -343,7 +351,7 @@
 my $file = $subr->filename;
 my $type = $subr->content_type;
 my $data = $self->fetch_info($file,$type);
- my $format = $self->r->dir_config(’DescriptionFormat’);
+ my $format = $self->get_config(’DescriptionFormat’);
 if ($format) {
 $r->print(’#EXTINF:’ , $data->{seconds} , ’,’);

29 Jan 2004116

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 (my $description = $format) =~ s{%([atfglncrdmsqS%])}
@@ -1204,7 +1212,7 @@
 # get fields to display in list of MP3 files
 sub fields {
 my $self = shift;
- my @f = split /\W+/,$self->r->dir_config(’Fields’);
+ my @f = split /\W+/,$self->get_config(’Fields’);
 return map { lc $_ } @f if @f; # lower case
 return qw(title artist duration bitrate); # default
 }
@@ -1340,7 +1348,7 @@
 sub get_dir {
 my $self = shift;
 my ($config,$default) = @_;
- my $dir = $self->r->dir_config($config) || $default;
+ my $dir = $self->get_config($config) || $default;
 return $dir if $dir =~ m!^/!; # looks like a path
 return $dir if $dir =~ m!^\w+://!; # looks like a URL
 return $self->default_dir . ’/’ . $dir;
@@ -1348,22 +1356,22 @@

 # return true if downloads are allowed from this directory
 sub download_ok {
- shift->r->dir_config(’AllowDownload’) !~ /$NO/oi;
+ shift->config_no(’AllowDownload’);
 }

 # return true if streaming is allowed from this directory
 sub stream_ok {
- shift->r->dir_config(’AllowStream’) !~ /$NO/oi;
+ shift->config_no(’AllowStream’);
 }

 # return true if playing locally is allowed
 sub playlocal_ok {
- shift->r->dir_config(’AllowPlayLocally’) =~ /$YES/oi;
+ shift->config_yes(’AllowPlayLocally’);
 }

 # return true if we should check that the client can accomodate streaming
 sub check_stream_client {
- shift->r->dir_config(’CheckStreamClient’) =~ /$YES/oi;
+ shift->config_yes(’CheckStreamClient’);
 }

 # return true if client can stream
@@ -1378,48 +1386,48 @@

 # whether to read info for each MP3 file (might take a long time)
 sub read_mp3_info {
- shift->r->dir_config(’ReadMP3Info’) !~ /$NO/oi;
+ shift->config_no(’ReadMP3Info’);
 }

 # whether to time out streams
 sub stream_timeout {
- shift->r->dir_config(’StreamTimeout’) || 0;

11729 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

+ shift->get_config(’StreamTimeout’) || 0;
 }

 # how long an album list is considered so long we should put buttons
 # at the top as well as the bottom
-sub file_list_is_long { shift->r->dir_config(’LongList’) || 10 }
+sub file_list_is_long { shift->get_config(’LongList’) || 10 }

 sub home_label {
 my $self = shift;
- my $home = $self->r->dir_config(’HomeLabel’) ||
+ my $home = $self->get_config(’HomeLabel’) ||
 $self->x(’Home’);
 return lc($home) eq ’hostname’ ? $self->r->hostname : $home;
 }

 sub path_style { # style for the path to parent directories
- lc(shift->r->dir_config(’PathStyle’)) || ’staircase’;
+ lc(shift->get_config(’PathStyle’)) || ’staircase’;
 }

 # where is our cache directory (if any)
 sub cache_dir {
 my $self = shift;
- return unless my $dir = $self->r->dir_config(’CacheDir’);
+ return unless my $dir = $self->get_config(’CacheDir’);
 return $self->r->server_root_relative($dir);
 }

 # columns to display
-sub subdir_columns {shift->r->dir_config(’SubdirColumns’) || SUBDIRCOLUMNS }
-sub playlist_columns {shift->r->dir_config(’PlaylistColumns’) || PLAYLISTCOLUMNS }
+sub subdir_columns {shift->get_config(’SubdirColumns’) || SUBDIRCOLUMNS }
+sub playlist_columns {shift->get_config(’PlaylistColumns’) || PLAYLISTCOLUMNS }

 # various configuration variables
-sub default_dir { shift->r->dir_config(’BaseDir’) || BASE_DIR }
+sub default_dir { shift->get_config(’BaseDir’) || BASE_DIR }
 sub stylesheet { shift->get_dir(’Stylesheet’, STYLESHEET) }
 sub parent_icon { shift->get_dir(’ParentIcon’,PARENTICON) }
 sub cd_list_icon {
 my $self = shift;
 my $subdir = shift;
- my $image = $self->r->dir_config(’CoverImageSmall’) || COVERIMAGESMALL;
+ my $image = $self->get_config(’CoverImageSmall’) || COVERIMAGESMALL;
 my $directory_specific_icon = $self->r->filename."/$subdir/$image";
 return -e $directory_specific_icon
 ? join ("/",$self->r->uri,escape($subdir),$image)
@@ -1427,7 +1435,7 @@
 }
 sub playlist_icon {
 my $self = shift;
- my $image = $self->r->dir_config(’PlaylistImage’) || PLAYLISTIMAGE;
+ my $image = $self->get_config(’PlaylistImage’) || PLAYLISTIMAGE;
 my $directory_specific_icon = $self->r->filename."/$image";
 warn $directory_specific_icon;
 return -e $directory_specific_icon

29 Jan 2004118

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

@@ -1444,7 +1452,7 @@
 sub cd_icon {
 my $self = shift;
 my $dir = shift;
- my $coverimg = $self->r->dir_config(’CoverImage’) || COVERIMAGE;
+ my $coverimg = $self->get_config(’CoverImage’) || COVERIMAGE;
 if (-e "$dir/$coverimg") {
 $coverimg;
 } else {
@@ -1453,7 +1461,7 @@
 }
 sub missing_comment {
 my $self = shift;
- my $missing = $self->r->dir_config(’MissingComment’);
+ my $missing = $self->get_config(’MissingComment’);
 return if $missing eq ’off’;
 $missing = $self->lh->maketext(’unknown’) unless $missing;
 $missing;
@@ -1464,7 +1472,7 @@
 my $self = shift;
 my $data = shift;
 my $description;
- my $format = $self->r->dir_config(’DescriptionFormat’);
+ my $format = $self->get_config(’DescriptionFormat’);
 if ($format) {
 ($description = $format) =~ s{%([atfglncrdmsqS%])}
 {$1 eq ’%’ ? ’%’
@@ -1495,7 +1503,7 @@
 }
 }

- if ((my $basename = $r->dir_config(’StreamBase’)) && !$self->is_localnet()) {
+ if ((my $basename = $self->get_config(’StreamBase’)) && !$self->is_localnet()) {
 $basename =~ s!http://!http://$auth_info! if $auth_info;
 return $basename;
 }
@@ -1536,7 +1544,7 @@
 sub is_localnet {
 my $self = shift;
 return 1 if $self->is_local; # d’uh
- my @local = split /\s+/,$self->r->dir_config(’LocalNet’) or return;
+ my @local = split /\s+/,$self->get_config(’LocalNet’) or return;

 my $remote_ip = $self->r->connection->remote_ip . ’.’;
 foreach (@local) {

, it was 194 lines long so I didn’t inline it here, but it was quick to create with a few regexes
search-n-replace manipulations in xemacs.

Now I have the browsing of the root /mp3/ directory and its sub-directories working. If I click on ’Fetch’
of a particular song it works too. However if I try to ’Stream’ a song, I get a 500 response with error_log
telling me:

11929 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 [Fri Jun 06 15:33:33 2003] [error] [client 127.0.0.1] Bad arg length
 for Socket::unpack_sockaddr_in, length is 31, should be 16 at
 .../5.9.0/i686-linux-thread-multi/Socket.pm line 370.

It would be certainly nice for Socket.pm to use Carp::carp() instead of warn() so we will know
where in the Apache::MP3 code this problem was triggered. However reading the Socket.pm manpage
reveals that sockaddr_in() in the list context is the same as calling an explicit unpack_sock-
addr_in(), and in the scalar context it’s calling pack_sockaddr_in(). So I have found sock-
addr_in was the only Socket.pm function used in Apache::MP3 and I have found this code in the
function is_local():

 my $r = $self->r;
 my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);
 my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
 return $serveraddr eq $remoteaddr;

Since something is wrong with function calls $r->connection->local_addr and/or
$r->connection->remote_addr and I referred to the mod_perl 1.0 backward compatibility docu-
ment and found the relevant entry on these two functions. Indeed the API have changed. Instead of return-
ing a packed SOCKADDR_IN string, Apache now returns an APR::SocketAddr object, which I can
query to get the bits of information I’m interested in. So I applied this patch:

 --- Apache/MP3.pm.3 2003-06-06 15:36:15.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 15:56:32.000000000 +1000
 @@ -1533,10 +1533,9 @@
 # allows the player to fast forward, pause, etc.
 sub is_local {
 my $self = shift;
 - my $r = $self->r;
 - my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);
 - my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
 - return $serveraddr eq $remoteaddr;
 + my $c = $self->r->connection;
 + require APR::SockAddr;
 + return $c->local_addr->ip_get eq $c->remote_addr->ip_get;
 }

 # Check if the requesting client is on the local network, as defined by

And voila, the streaming option now works. I get a warning on ’Use of uninitialized value’ on line 1516
though, but again this is unrelated to the porting issues, just a flow logic problem, which wasn’t triggered
without the warnings mode turned on. I have fixed it with:

 --- Apache/MP3.pm.4 2003-06-06 15:57:15.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 16:04:48.000
 @@ -1492,7 +1492,7 @@
 my $suppress_auth = shift;
 my $r = $self->r;

 - my $auth_info;
 + my $auth_info = ’’;
 # the check for auth_name() prevents an anno
 # the apache server log when authentication
 if ($r->auth_name && !$suppress_auth) {

29 Jan 2004120

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 @@ -1509,10 +1509,9 @@
 }

 my $vhost = $r->hostname;
 - unless ($vhost) {
 - $vhost = $r->server->server_hostname;
 - $vhost .= ’:’ . $r->get_server_port unless
 - }
 + $vhost = $r->server->server_hostname unless
 + $vhost .= ’:’ . $r->get_server_port unless $
 +
 return "http://${auth_info}${vhost}";
 }

This completes the first part of the porting. I have tried to use all the visible functions of the interface and
everything seemed to work and I haven’t got any warnings logged. Certainly I may have missed some
usage patterns which may be still problematic. But this is good enough for this tutorial.

9.5.6.3 Getting Rid of the Apache::compat Dependency

The final stage is going to get rid of Apache::compat since this is a CPAN module, which must not
load Apache::compat on its own. I’m going to make Apache::MP3 work with mod_perl 2.0 all by
itself.

The first step is to comment out the loading of Apache::compat in startup.pl:

 #file:startup.pl
 #---------------
 use Apache2 ();
 use lib qw(/home/httpd/2.0/perl);
 #use Apache::compat ();

9.5.6.4 Ensuring that Apache::compat is not loaded

The second step is to make sure that Apache::compat doesn’t get loaded indirectly, through some
other module. So I’ve added this line of code to Apache/MP3.pm:

 --- Apache/MP3.pm.5 2003-06-06 16:17:50.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 16:21:14.000000000 +1000
 @@ -3,2 +3,6 @@

 +BEGIN {
 + die "Apache::compat is loaded loaded" if $INC{’Apache/compat.pm’};
 +}
 +
 use strict;

and indeed, even though I’ve commented out the loading of Apache::compat from startup.pl, this
module was still getting loaded. I knew that because the request to /mp3 were failing with the error
message:

12129 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 Apache::compat is loaded loaded at ...

There are several ways to find the guilty party, you can grep(1) for it in the perl libraries, you can over-
ride CORE::GLOBAL::require() in startup.pl:

 BEGIN {
 use Carp;
 *CORE::GLOBAL::require = sub {
 Carp::cluck("Apache::compat is loaded") if $_[0] =~ /compat/;
 CORE::require(@_);
 };
 }

or you can modify Apache/compat.pm and make it print the calls trace when it gets compiled:

 --- Apache/compat.pm.orig 2003-06-03 16:11:07.000000000 +1000
 +++ Apache/compat.pm 2003-06-03 16:11:58.000000000 +1000
 @@ -1,5 +1,9 @@
 package Apache::compat;

 +BEGIN {
 + use Carp;
 + Carp::cluck("Apache::compat is loaded by");
 +}

I’ve used this last technique, since it’s the safest one to use. Remember that Apache::compat can also
be loaded with:

 do "Apache/compat.pm";

in which case, neither grep(1)’ping for Apache::compat, nor overriding require() will do the
job.

When I’ve restarted the server and tried to use Apache::MP3 (I wasn’t preloading it at the server startup
since I wanted the server to start normally and cope with problem when it’s running), the error_log had an
entry:

 Apache::compat is loaded by at .../Apache2/Apache/compat.pm line 6
 Apache::compat::BEGIN() called at .../Apache2/Apache/compat.pm line 8
 eval {...} called at .../Apache2/Apache/compat.pm line 8
 require Apache/compat.pm called at .../5.9.0/CGI.pm line 169
 require CGI.pm called at .../site_perl/5.9.0/Apache/MP3.pm line 8
 Apache::MP3::BEGIN() called at .../Apache2/Apache/compat.pm line 8

(I’ve trimmed the whole paths of the libraries and the trace itself, to make it easier to understand.)

We could have used Carp::carp() which would have told us only the fact that Apache::compat
was loaded by CGI.pm, but by using Carp::cluck() we’ve obtained the whole stack backtrace so we
also can learn which module has loaded CGI.pm.

Here I’ve learned that I had an old version of CGI.pm (2.89) which automatically loaded
Apache::compat (which should be never done by CPAN modules). Once I’ve upgraded CGI.pm to
version 2.93 and restarted the server, Apache::compat wasn’t getting loaded any longer.

29 Jan 2004122

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

9.5.6.5 Installing the ModPerl::MethodLookup Helper

Now that Apache::compat is not loaded, I need to deal with two issues: modules that need to be
loaded and APIs that have changed.

For the second issue I’ll have to refer to the the mod_perl 1.0 backward compatibility document.

But the first issue can be easily worked out using ModPerl::MethodLookup. As explained in the
section Using ModPerl::MethodLookup Programmatically I’ve added the AUTOLOAD code to my
startup.pl so it’ll automatically lookup the packages that I need to load based on the request method and
the object type.

So now my startup.pl looked like:

 #file:startup.pl
 #---------------
 use Apache2 ();
 use lib qw(/home/httpd/2.0/perl);

 {
 package ModPerl::MethodLookupAuto;
 use ModPerl::MethodLookup;

 use Carp;
 sub handler {

 # look inside mod_perl:: Apache:: APR:: ModPerl:: excluding DESTROY
 my $skip = ’^(?!DESTROY$’;
 *UNIVERSAL::AUTOLOAD = sub {
 my $method = $AUTOLOAD;
 return if $method =~ /DESTROY/;
 my ($hint, @modules) =
 ModPerl::MethodLookup::lookup_method($method, @_);
 $hint ||= "Can’t find method $AUTOLOAD";
 croak $hint;
 };
 return 0;
 }
 }
 1;

and I add to my httpd.conf:

 PerlChildInitHandler ModPerl::MethodLookupAuto

9.5.6.6 Adjusting the code to run under mod_perl 2

I restart the server and off I go to complete the second porting stage.

The first error that I’ve received was:

12329 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 [Fri Jun 06 16:28:32 2003] [error] failed to resolve handler ‘Apache::MP3’
 [Fri Jun 06 16:28:32 2003] [error] [client 127.0.0.1] Can’t locate
 object method "boot" via package "mod_perl" at .../Apache/Constants.pm
 line 8. Compilation failed in require at .../Apache/MP3.pm line 12.

I go to line 12 and find the following code:

 use Apache::Constants qw(:common REDIRECT HTTP_NO_CONTENT
 DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);

Notice that I did have mod_perl 1.0 installed, so the Apache::Constant module from mod_perl 1.0
couldn’t find the boot() method which doesn’t exist in mod_perl 2.0. If you don’t have mod_perl 1.0
installed the error would simply say, that it can’t find Apache/Constants.pm in @INC. In any case, we are
going to replace this code with mod_perl 2.0 equivalent:

 --- Apache/MP3.pm.6 2003-06-06 16:33:05.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 17:03:43.000000000 +1000
 @@ -9,7 +9,9 @@
 use warnings;
 no warnings ’redefine’; # XXX: remove when done with porting

 -use Apache::Constants qw(:common REDIRECT HTTP_NO_CONTENT DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);
 +use Apache::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT
 + DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);
 +
 use Apache::MP3::L10N;
 use IO::File;
 use Socket ’sockaddr_in’;

and I also had to adjust the constants, since what used to be OK, now has to be Apache::OK, mainly
because in mod_perl 2.0 there is an enormous amount of constants (coming from Apache and APR) and
most of them are grouped in Apache:: or APR:: namespaces. The Apache::Const and
APR::Const manpage provide more information on available constants.

This search and replace accomplished the job:

 % perl -pi -e ’s/return\s(OK|DECLINED|FORBIDDEN| \
 REDIRECT|HTTP_NO_CONTENT|DIR_MAGIC_TYPE| \
 HTTP_NOT_MODIFIED)/return Apache::$1/xg’ Apache/MP3.pm

As you can see the regex explicitly lists all constants that were used in Apache::MP3. Your situation
may vary. Here is the patch: code/apache_mp3_7.diff:

--- Apache/MP3.pm.7 2003-06-06 17:04:27.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:13:26.000000000 +1000
@@ -129,7 +129,7 @@
 my $self = shift;

 $self->r->send_http_header($self->html_content_type);
- return OK if $self->r->header_only;
+ return Apache::OK if $self->r->header_only;

 print start_html(
 -lang => $self->lh->language_tag,
@@ -246,20 +246,20 @@
 $self->send_playlist(\@matches);

29 Jan 2004124

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 }

- return OK;
+ return Apache::OK;
 }

 # this is called to generate a playlist for selected files
 if (param(’Play Selected’)) {
- return HTTP_NO_CONTENT unless my @files = param(’file’);
+ return Apache::HTTP_NO_CONTENT unless my @files = param(’file’);
 my $uri = dirname($r->uri);
 $self->send_playlist([map { "$uri/$_" } @files]);
- return OK;
+ return Apache::OK;
 }

 # otherwise don’t know how to deal with this
 $self->r->log_reason(’Invalid parameters -- possible attempt to circumvent checks.’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 }

 # this generates the top-level directory listing
@@ -273,7 +273,7 @@
 my $query = $self->r->args;
 $query = "?" . $query if defined $query;
 $self->r->header_out(Location => "$uri/$query");
- return REDIRECT;
+ return Apache::REDIRECT;
 }

 return $self->list_directory($dir);
@@ -289,9 +289,9 @@

 if ($is_audio && !$self->download_ok) {
 $self->r->log_reason(’File downloading is forbidden’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 } else {
- return DECLINED; # allow Apache to do its standard thing
+ return Apache::DECLINED; # allow Apache to do its standard thing
 }

 }
@@ -302,17 +302,17 @@
 my $self = shift;
 my $r = $self->r;

- return DECLINED unless -e $r->filename; # should be $r->finfo
+ return Apache::DECLINED unless -e $r->filename; # should be $r->finfo

 unless ($self->stream_ok) {
 $r->log_reason(’AllowStream forbidden’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 }

 if ($self->check_stream_client and !$self->is_stream_client) {
 my $useragent = $r->header_in(’User-Agent’);

12529 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 $r->log_reason("CheckStreamClient is true and $useragent is not a streaming client");
- return FORBIDDEN;
+ return Apache::FORBIDDEN;
 }

 return $self->send_stream($r->filename,$r->uri);
@@ -322,12 +322,12 @@
 sub send_playlist {
 my $self = shift;
 my ($urls,$shuffle) = @_;
- return HTTP_NO_CONTENT unless @$urls;
+ return Apache::HTTP_NO_CONTENT unless @$urls;
 my $r = $self->r;
 my $base = $self->stream_base;

 $r->send_http_header(’audio/mpegurl’);
- return OK if $r->header_only;
+ return Apache::OK if $r->header_only;

 # local user
 my $local = $self->playlocal_ok && $self->is_local;
@@ -377,7 +377,7 @@
 $r->print ("$base$_?$stream_parms$CRLF");
 }
 }
- return OK;
+ return Apache::OK;
 }

 sub stream_parms {
@@ -468,7 +468,7 @@
 my $self = shift;
 my $dir = shift;

- return DECLINED unless -d $dir;
+ return Apache::DECLINED unless -d $dir;

 my $last_modified = (stat(_))[9];

@@ -478,15 +478,15 @@
 my ($time, $ver) = $check =~ /^([a-f0-9]+)-([0-9.]+)$/;

 if ($check eq ’*’ or (hex($time) == $last_modified and $ver == $VERSION)) {
- return HTTP_NOT_MODIFIED;
+ return Apache::HTTP_NOT_MODIFIED;
 }
 }

- return DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)
+ return Apache::DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)
 = $self->read_directory($dir);

 $self->r->send_http_header($self->html_content_type);
- return OK if $self->r->header_only;
+ return Apache::OK if $self->r->header_only;

 $self->page_top($dir);
 $self->directory_top($dir);
@@ -514,7 +514,7 @@

29 Jan 2004126

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 print hr unless %$mp3s;
 print "\n\n";
 $self->directory_bottom($dir);
- return OK;
+ return Apache::OK;
 }

 # print the HTML at the top of the page
@@ -1268,8 +1268,8 @@

 my $mime = $r->content_type;
 my $info = $self->fetch_info($file,$mime);
- return DECLINED unless $info; # not a legit mp3 file?
- my $fh = $self->open_file($file) || return DECLINED;
+ return Apache::DECLINED unless $info; # not a legit mp3 file?
+ my $fh = $self->open_file($file) || return Apache::DECLINED;
 binmode($fh); # to prevent DOS text-mode foolishness

 my $size = -s $file;
@@ -1317,7 +1317,7 @@
 $r->print("Content-Length: $size$CRLF");
 $r->print("Content-Type: $mime$CRLF");
 $r->print("$CRLF");
- return OK if $r->header_only;
+ return Apache::OK if $r->header_only;

 if (my $timeout = $self->stream_timeout) {
 my $seconds = $info->{seconds};
@@ -1330,12 +1330,12 @@
 $bytes -= $b;
 $r->print($data);
 }
- return OK;
+ return Apache::OK;
 }

 # we get here for untimed transmits
 $r->send_fd($fh);
- return OK;
+ return Apache::OK;
 }

 # called to open the MP3 file

.

I had to manually fix the DIR_MAGIC_TYPE constant which didn’t fit the regex pattern:

 --- Apache/MP3.pm.8 2003-06-06 17:24:33.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 17:26:29.000000000 +1000
 @@ -1055,7 +1055,7 @@

 my $mime = $self->r->lookup_file("$dir/$d")->content_type;

 - push(@directories,$d) if !$seen{$d}++ && $mime eq DIR_MAGIC_TYPE;
 + push(@directories,$d) if !$seen{$d}++ && $mime eq Apache::DIR_MAGIC_TYPE;

 # .m3u files should be configured as audio/playlist MIME types in your apache .conf file
 push(@playlists,$d) if $mime =~ m!^audio/(playlist|x-mpegurl|mpegurl|x-scpls)$!;

12729 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

And I move on, the next error is:

 [Fri Jun 06 17:28:00 2003] [error] [client 127.0.0.1]
 Can’t locate object method "header_in" via package
 "Apache::RequestRec" at .../Apache/MP3.pm line 85.

The porting document quickly reveals me that header_in() and its brothers header_out() and
err_header_out() are R.I.P. and that I have to use the corresponding functions headers_in(),
headers_out() and err_headers_out() which are available in mod_perl 1.0 API as well.

So I adjust the code to use the new API:

 % perl -pi -e ’s|header_in\((.*?)\)|headers_in->{$1}|g’ Apache/MP3.pm
 % perl -pi -e ’s|header_out\((.*?)\s*=>\s*(.*?)\);|headers_out->{$1} = $2;|g’ Apache/MP3.pm

which results in this patch: code/apache_mp3_9.diff:

--- Apache/MP3.pm.9 2003-06-06 17:27:45.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:55:14.000000000 +1000
@@ -82,8 +82,8 @@
 $new->{’r’} ||= $r if $r;

 my @lang_tags;
- push @lang_tags,split /,\s+/,$r->header_in(’Accept-language’)
- if $r->header_in(’Accept-language’);
+ push @lang_tags,split /,\s+/,$r->headers_in->{’Accept-language’}
+ if $r->headers_in->{’Accept-language’};
 push @lang_tags,$new->get_config(’DefaultLanguage’) || ’en-US’;

 $new->{’lh’} ||=
@@ -272,7 +272,7 @@
 my $uri = $self->r->uri;
 my $query = $self->r->args;
 $query = "?" . $query if defined $query;
- $self->r->header_out(Location => "$uri/$query");
+ $self->r->headers_out->{Location} = "$uri/$query";
 return Apache::REDIRECT;
 }

@@ -310,7 +310,7 @@
 }

 if ($self->check_stream_client and !$self->is_stream_client) {
- my $useragent = $r->header_in(’User-Agent’);
+ my $useragent = $r->headers_in->{’User-Agent’};
 $r->log_reason("CheckStreamClient is true and $useragent is not a streaming client");
 return Apache::FORBIDDEN;
 }
@@ -472,9 +472,9 @@

 my $last_modified = (stat(_))[9];

- $self->r->header_out(’ETag’ => sprintf("%lx-%s", $last_modified, $VERSION));
+ $self->r->headers_out->{’ETag’} = sprintf("%lx-%s", $last_modified, $VERSION);

- if (my $check = $self->r->header_in("If-None-Match")) {
+ if (my $check = $self->r->headers_in->{"If-None-Match"}) {

29 Jan 2004128

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 my ($time, $ver) = $check =~ /^([a-f0-9]+)-([0-9.]+)$/;

 if ($check eq ’*’ or (hex($time) == $last_modified and $ver == $VERSION)) {
@@ -1283,8 +1283,8 @@
 my $genre = $info->{genre} || $self->lh->maketext(’unknown’);

 my $range = 0;
- $r->header_in("Range")
- and $r->header_in("Range") =~ m/bytes=(\d+)/
+ $r->headers_in->{"Range"}
+ and $r->headers_in->{"Range"} =~ m/bytes=(\d+)/
 and $range = $1
 and seek($fh,$range,0);

@@ -1383,11 +1383,11 @@
 # return true if client can stream
 sub is_stream_client {
 my $r = shift->r;
- $r->header_in(’Icy-MetaData’) # winamp/xmms
- || $r->header_in(’Bandwidth’) # realplayer
- || $r->header_in(’Accept’) =~ m!\baudio/mpeg\b! # mpg123 and others
- || $r->header_in(’User-Agent’) =~ m!^NSPlayer/! # Microsoft media player
- || $r->header_in(’User-Agent’) =~ m!^xmms/!;
+ $r->headers_in->{’Icy-MetaData’} # winamp/xmms
+ || $r->headers_in->{’Bandwidth’} # realplayer
+ || $r->headers_in->{’Accept’} =~ m!\baudio/mpeg\b! # mpg123 and others
+ || $r->headers_in->{’User-Agent’} =~ m!^NSPlayer/! # Microsoft media player
+ || $r->headers_in->{’User-Agent’} =~ m!^xmms/!;
 }

 # whether to read info for each MP3 file (might take a long time)

.

On the next error ModPerl::MethodLookup’s AUTOLOAD kicks in. Instead of complaining:

 [Fri Jun 06 18:35:53 2003] [error] [client 127.0.0.1]
 Can’t locate object method "FETCH" via package "APR::Table"
 at .../Apache/MP3.pm line 85.

I now get:

 [Fri Jun 06 18:36:35 2003] [error] [client 127.0.0.1]
 to use method ’FETCH’ add:
 use APR::Table ();
 at .../Apache/MP3.pm line 85

So I follow the suggestion and load APR::Table():

12929 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 --- Apache/MP3.pm.10 2003-06-06 17:57:54.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 18:37:33.000000000 +1000
 @@ -9,6 +9,8 @@
 use warnings;
 no warnings ’redefine’; # XXX: remove when done with porting

 +use APR::Table ();
 +
 use Apache::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT
 DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);

I continue issuing the request and adding the missing modules again and again till I get no more
complaints. During this process I’ve added the following modules:

 --- Apache/MP3.pm.11 2003-06-06 18:38:47.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 18:39:10.000000000 +1000
 @@ -9,6 +9,14 @@
 use warnings;
 no warnings ’redefine’; # XXX: remove when done with porting

 +use Apache::Connection ();
 +use Apache::SubRequest ();
 +use Apache::Access ();
 +use Apache::RequestIO ();
 +use Apache::RequestUtil ();
 +use Apache::RequestRec ();
 +use Apache::ServerUtil ();
 +use Apache::Log;
 use APR::Table ();

 use Apache::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT

The AUTOLOAD code helped me to trace the modules that contain the existing APIs, however I still have
to deal with APIs that no longer exist. Rightfully the helper code says that it doesn’t know which module
defines the method: send_http_header() because it no longer exists in Apache 2.0 vocabulary:

 [Fri Jun 06 18:40:34 2003] [error] [client 127.0.0.1]
 Don’t know anything about method ’send_http_header’
 at .../Apache/MP3.pm line 498

So I go back to the porting document and find the relevant entry. In 2.0 lingo, we just need to set the
content_type():

 --- Apache/MP3.pm.12 2003-06-06 18:43:42.000000000 +1000
 +++ Apache/MP3.pm 2003-06-06 18:51:23.000000000 +1000
 @@ -138,7 +138,7 @@
 sub help_screen {
 my $self = shift;

 - $self->r->send_http_header($self->html_content_type);
 + $self->r->content_type($self->html_content_type);
 return Apache::OK if $self->r->header_only;

 print start_html(
 @@ -336,7 +336,7 @@

29 Jan 2004130

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

 my $r = $self->r;
 my $base = $self->stream_base;

 - $r->send_http_header(’audio/mpegurl’);
 + $r->content_type(’audio/mpegurl’);
 return Apache::OK if $r->header_only;

 # local user
 @@ -495,7 +495,7 @@
 return Apache::DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)
 = $self->read_directory($dir);

 - $self->r->send_http_header($self->html_content_type);
 + $self->r->content_type($self->html_content_type);
 return Apache::OK if $self->r->header_only;

 $self->page_top($dir);

also I’ve noticed that there was this code:

 return Apache::OK if $self->r->header_only;

This technique is no longer needed in 2.0, since Apache 2.0 automatically discards the body if the request
is of type HEAD -- the handler should still deliver the whole body, which helps to calculate the
content-length if this is relevant to play nicer with proxies. So you may decide not to make a special case
for HEAD requests.

At this point I was able to browse the directories and play files via most options without relying on
Apache::compat.

There were a few other APIs that I had to fix in the same way, while trying to use the application, looking
at the error_log referring to the porting document and applying the suggested fixes. I’ll make sure to send
all these fixes to Lincoln Stein, so the new versions will work correctly with mod_perl 2.0. I also had to
fix other Apache::MP3:: files, which come as a part of the Apache-MP3 distribution, pretty much
using the same techniques explained here. A few extra fixes of interest in Apache::MP3 were:

send_fd()

As of this writing we don’t have this function in the core, because Apache 2.0 doesn’t have it (it’s in
Apache::compat but implemented in a slow way). However we may provide one in the future.
Currently one can use the function sendfile() which requires a filename as an argument and not
the file descriptor. So I have fixed the code:

 - if($r->request($r->uri)->content_type eq ’audio/x-scpls’){
 - open(FILE,$r->filename) || return 404;
 - $r->send_fd(*FILE);
 - close(FILE);
 +
 + if($r->content_type eq ’audio/x-scpls’){
 + $r->sendfile($r->filename) || return Apache::NOT_FOUND;

log_reason

13129 Jan 2004

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

log_reason is now log_error:

 - $self->r->log_reason(’Invalid parameters -- possible attempt to circumvent checks.’);
 + $r->log_error(’Invalid parameters -- possible attempt to circumvent checks.’)
;

I have found the porting process to be quite interesting, especially since I have found several bugs in
Apache 2.0 and documented a few undocumented API changes. It was also fun, because I’ve got to listen
to mp3 files when I did things right, and was getting silence in my headphones and a visual irritation in the
form of error_log messages when I didn’t ;)

9.6 Porting a Module to Run under both mod_perl 2.0 and
mod_perl 1.0
Sometimes code needs to work with both mod_perl versions. For example this is the case with CPAN
module developers who wish to continue to maintain a single code base, rather than supplying two sepa-
rate implementations.

9.6.1 Making Code Conditional on Running mod_perl Version

In this case you can test for which version of mod_perl your code is running under and act appropriately.

To continue our example above, let’s say we want to support opening a filehandle in both mod_perl 2.0
and mod_perl 1.0. Our code can make use of the variable $mod_perl::VERSION:

 use mod_perl;
 use constant MP2 => ($mod_perl::VERSION >= 1.99);
 # ...
 require Symbol if MP2;
 # ...

 my $fh = MP2 ? Symbol::gensym : Apache->gensym;
 open $fh, $file or die "Can’t open $file: $!";

Though, make sure that you don’t use $mod_perl::VERSION string anywhere in the code before you
have declared your module’s own $VERSION, since PAUSE will pick the wrong version when you
submit the module on CPAN. It requires that module’s $VERSION will be declared first. You can verify
whether it’ll pick the Foo.pm’s version correctly, by running this code:

 % perl -MExtUtils::MakeMaker -le ’print MM->parse_version(shift)’ Foo.pm

There is more information about this issue here:
http://pause.perl.org/pause/query?ACTION=pause_04about#conventions

Some modules, like CGI.pm may work under mod_perl and without it, and will want to use the mod_perl
1.0 API if that’s available, or mod_perl 2.0 API otherwise. So the following idiom could be used for this
purpose.

29 Jan 2004132

9.6 Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0

http://pause.perl.org/pause/query?ACTION=pause_04about#conventions

 use constant MP_GEN => $ENV{MOD_PERL}
 ? eval { require mod_perl; $mod_perl::VERSION >= 1.99 ? 2 : 1 }
 : 0;

It sets the constant MP_GEN to 0 if mod_perl is not available, to 1 if running under mod_perl 1.0 and 2 for
mod_perl 2.0.

Here’s another way to find out the mod_perl version. In the server configuration file you can use a special
configuration "define" symbol MODPERL2, which is magically enabled internally, as if the server had
been started with -DMODPERL2.

 # in httpd.conf
 <IfDefine MODPERL2>
 # 2.0 configuration
 </IfDefine>
 <IfDefine !MODPERL2>
 # else
 </IfDefine>

From within Perl code this can be tested with Apache::Server::exists_config_define().
For example, we can use this method to decide whether or not to call $r->send_http_header(),
which no longer exists in mod_perl 2.0:

 sub handler {
 my $r = shift;
 $r->content_type(’text/html’);
 $r->send_http_header() unless Apache::Server::exists_config_define("MODPERL2");
 ...
 }

Relevant links to other places in the porting documents:

mod_perl 1.0 and 2.0 Constants Coexistence

9.6.2 Method Handlers

Method handlers in mod_perl are declared using the ’method’ attribute. However if you want to have the
same code base for mod_perl 1.0 and 2.0 applications, whose handler has to be a method, you will need to
do the following trick:

 sub handler_mp1 ($$) { ... }
 sub handler_mp2 : method { ... }
 *handler = MP2 ? \&handler_mp2 : \&handler_mp1;

Note that this requires at least Perl 5.6.0, the :method attribute is not supported by older Perl versions,
which will fail to compile such code.

Here are two complete examples. The first example implements MyApache::Method which has a
single method that works for both mod_perl generations:

13329 Jan 2004

9.6.2 Method HandlersPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

The configuration:

 PerlModule MyApache::Method
 <Location /method>
 SetHandler perl-script
 PerlHandler MyApache::Method->handler
 </Location>

The code:

 #file:MyApache/Method.pm
 package MyApache::Method;

 # PerlModule MyApache::Method
 # <Location /method>
 # SetHandler perl-script
 # PerlHandler MyApache::Method->handler
 # </Location>

 use strict;
 use warnings;

 use mod_perl;
 use constant MP2 => $mod_perl::VERSION < 1.99 ? 0 : 1;

 BEGIN {
 if (MP2) {
 require Apache::RequestRec;
 require Apache::RequestIO;
 require Apache::Const;
 Apache::Const->import(-compile => ’OK’);
 }
 else {
 require Apache;
 require Apache::Constants;
 Apache::Constants->import(’OK’);
 }
 }

 sub handler_mp1 ($$) { &run }
 sub handler_mp2 : method { &run }
 *handler = MP2 ? \&handler_mp2 : \&handler_mp1;

 sub run {
 my($class, $r) = @_;
 MP2 ? $r->content_type(’text/plain’)
 : $r->send_http_header(’text/plain’);
 print "$class was called\n";
 return MP2 ? Apache::OK : Apache::Constants::OK;
 }

Here are two complete examples. The second example implements MyApache::Method2, which is
very similar to MyApache::Method, but uses separate methods for mod_perl 1.0 and 2.0 servers.

29 Jan 2004134

9.6.2 Method Handlers

The configuration is the same:

 PerlModule MyApache::Method2
 <Location /method2>
 SetHandler perl-script
 PerlHandler MyApache::Method2->handler
 </Location>

The code:

 #file:MyApache/Method2.pm
 package MyApache::Method2;

 # PerlModule MyApache::Method
 # <Location /method>
 # SetHandler perl-script
 # PerlHandler MyApache::Method->handler
 # </Location>

 use strict;
 use warnings;

 use mod_perl;
 use constant MP2 => $mod_perl::VERSION < 1.99 ? 0 : 1;

 BEGIN {
 warn "running $mod_perl::VERSION!\n";
 if (MP2) {
 require Apache::RequestRec;
 require Apache::RequestIO;
 require Apache::Const;
 Apache::Const->import(-compile => ’OK’);
 }
 else {
 require Apache;
 require Apache::Constants;
 Apache::Constants->import(’OK’);
 }
 }

 sub handler_mp1 ($$) { &mp1 }
 sub handler_mp2 : method { &mp2 }

 *handler = MP2 ? \&handler_mp2 : \&handler_mp1;

 sub mp1 {
 my($class, $r) = @_;
 $r->send_http_header(’text/plain’);
 $r->print("mp1: $class was called\n");
 return Apache::Constants::OK();

13529 Jan 2004

9.6.2 Method HandlersPorting Apache:: Perl Modules from mod_perl 1.0 to 2.0

 }

 sub mp2 {
 my($class, $r) = @_;
 $r->content_type(’text/plain’);
 $r->print("mp2: $class was called\n");
 return Apache::OK();
 }

Assuming that mod_perl 1.0 is listening on port 8001 and mod_perl 2.0 on 8002, we get the following
results:

 % lynx --source http://localhost:8001/method
 MyApache::Method was called

 % lynx --source http://localhost:8001/method2
 mp1: MyApache::Method2 was called

 % lynx --source http://localhost:8002/method
 MyApache::Method was called

 % lynx --source http://localhost:8002/method2
 mp2: MyApache::Method2 was called

9.7 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

9.8 Authors
Nick Tonkin <nick (at) tonkinresolutions.com>

Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 2004136

9.7 Maintainers

10 A Reference to mod_perl 1.0 to mod_perl 2.0
Migration.

13729 Jan 2004

10 A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.1 Description
This chapter is a reference for porting code and configuration files from mod_perl 1.0 to mod_perl 2.0.

To learn about the porting process you should first read about porting Perl modules (and may be about
porting XS modules).

As will be explained in details later loading Apache::compat at the server startup, should make the
code running properly under 1.0 work under mod_perl 2.0. If you want to port your code to mod_perl 2.0
or writing from scratch and not concerned about backwards compatibility, this document explains what
has changed compared to mod_perl 1.0.

Several configuration directives were changed, renamed or removed. Several APIs have changed,
renamed, removed, or moved to new packages. Certain functions while staying exactly the same as in
mod_perl 1.0, now reside in different packages. Before using them you need to find out those packages
and load them.

You should be able to find the destiny of the functions that you cannot find any more or which behave
differently now under the package names the functions belong in mod_perl 1.0.

10.2 Configuration Files Porting
To migrate the configuration files to the mod_perl 2.0 syntax, you may need to do certain adjustments.
Several configuration directives are deprecated in 2.0, but still available for backwards compatibility with
mod_perl 1.0 unless 2.0 was built with MP_COMPAT_1X=0. If you don’t need the backwards compatibil-
ity consider using the directives that have replaced them.

10.2.1 PerlHandler

PerlHandler was replaced with PerlResponseHandler.

10.2.2 PerlSendHeader

PerlSendHeader was replaced with PerlOptions +/-ParseHeaders directive.

 PerlSendHeader On => PerlOptions +ParseHeaders
 PerlSendHeader Off => PerlOptions -ParseHeaders

10.2.3 PerlSetupEnv

PerlSetupEnv was replaced with PerlOptions +/-SetupEnv directive.

 PerlSetupEnv On => PerlOptions +SetupEnv
 PerlSetupEnv Off => PerlOptions -SetupEnv

29 Jan 2004138

10.1 Description

10.2.4 PerlTaintCheck

The taint mode now can be turned on with:

 PerlSwitches -T

As with standard Perl, by default the taint mode is disabled and once enabled cannot be turned off inside
the code.

10.2.5 PerlWarn

Warnings now can be enabled globally with:

 PerlSwitches -w

10.2.6 PerlFreshRestart

PerlFreshRestart is a mod_perl 1.0 legacy and doesn’t exist in mod_perl 2.0. A full teardown and
startup of interpreters is done on restart.

If you need to use the same httpd.conf for 1.0 and 2.0, use:

 <IfDefine !MODPERL2>
 PerlFreshRestart
 </IfDefine>

10.2.7 Apache Configuration Customization

mod_perl 2.0 has slightly changed the mechanism for adding custom configuration directives and now
also makes it easy to access an Apache parsed configuration tree’s values.

META: add to the config tree access when it’ll be written.

10.2.8 @INC Manipulation

Directories Added Automatically to @INC

Only if mod_perl was built with MP_COMPAT_1X=1, two directories: $ServerRoot and $Server-
Root/lib/perl are pushed onto @INC. $ServerRoot is as defined by the ServerRoot directive in
httpd.conf.

PERL5LIB and PERLLIB Environment Variables

mod_perl 2.0 doesn’t do anything special about PERL5LIB and PERLLIB Environment Variables.
If -T is in effect these variables are ignored by Perl. There are several other ways to adjust @INC.

13929 Jan 2004

10.2.4 PerlTaintCheckA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.3 Code Porting
mod_perl 2.0 is trying hard to be back compatible with mod_perl 1.0. However some things (mostly APIs)
have been changed. In order to gain a complete compatibilty with 1.0 while running under 2.0, you should
load the compatibility module as early as possible:

 use Apache::compat;

at the server startup. And unless there are forgotten things or bugs, your code should work without any
changes under 2.0 series.

However, unless you want to keep the 1.0 compatibility, you should try to remove the compatibility layer
and adjust your code to work under 2.0 without it. You want to do it mainly for the performance improve-
ment.

This document explains what APIs have changed and what new APIs should be used instead.

If you have mod_perl 1.0 and 2.0 installed on the same system and the two use the same perl libraries
directory (e.g. /usr/lib/perl5), to use mod_perl 2.0 make sure to load first the Apache2 module which will
perform the necessary adjustments to @INC.

 use Apache2; # if you have 1.0 and 2.0 installed
 use Apache::compat;

So if before loading Apache2.pm the @INC array consisted of:

 /home/stas/perl/ithread/lib/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/5.8.0
 /home/stas/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/site_perl/5.8.0
 /home/stas/perl/ithread/lib/site_perl
 .

It will now look as:

 /home/stas/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi/Apache2
 /home/stas/perl/ithread/lib/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/5.8.0
 /home/stas/perl/ithread/lib/site_perl/5.8.0/i686-linux-thread-multi
 /home/stas/perl/ithread/lib/site_perl/5.8.0
 /home/stas/perl/ithread/lib/site_perl
 .

Notice that a new directory was prepended to the search path, so if for example the code attempts to load
Apache::RequestRec and there are two versions of this module undef
/home/stas/perl/ithread/lib/site_perl/:

 5.8.0/i686-linux-thread-multi/Apache/RequestRec.pm
 5.8.0/i686-linux-thread-multi/Apache2/Apache/RequestRec.pm

29 Jan 2004140

10.3 Code Porting

The mod_perl 2.0 version will be loaded first, because the directory
5.8.0/i686-linux-thread-multi/Apache2 is coming before the directory 5.8.0/i686-linux-thread-multi in
@INC.

Finally, mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the
modules containing them have to be loaded first. The module ModPerl::MethodLookup can be used
to find out which modules need to be used. This module also provides a function
preload_all_modules() that will load all mod_perl 2.0 modules, implementing their API in XS,
which is useful when one starts to port their mod_perl 1.0 code, though preferrably avoided in the produc-
tion environment if you want to save memory.

10.4 Apache::Registry, Apache::PerlRun and
Friends
Apache::Registry, Apache::PerlRun and other modules from the registry family now live in the
ModPerl:: namespace. In mod_perl 2.0 we put mod_perl specific functionality into the ModPerl::
namespace, similar to APR:: and Apache:: which are used for apr and apache features, respectively.

At this moment ModPerl::Registry (and others) doesn’t chdir() into the script’s dir like
Apache::Registry does, because chdir() affects the whole process under threads. This should be
resolved by the time mod_perl 2.0 is released. Arthur Bergman works on the solution in form of:
ex::threads::cwd. See: http://www.perl.com/pub/a/2002/06/11/threads.html?page=2 Someone
should pick up and complete this module to make it really useful.

Meanwhile if you are using a prefork MPM and you have to rely on mod_perl performing chdir to the
script’s directory, you can use the following subclass of ModPerl::Registry:

 #file:ModPerl/RegistryPrefork.pm
 #-------------------------------
 package ModPerl::RegistryPrefork;

 use strict;
 use warnings FATAL => ’all’;

 our $VERSION = ’0.01’;

 use base qw(ModPerl::Registry);

 use File::Basename ();

 sub handler : method {
 my $class = (@_ >= 2) ? shift : __PACKAGE__;
 my $r = shift;
 return $class->new($r)->default_handler();
 }

 sub chdir_file {
 my $file = @_ == 2 ? $_[1] : $_[0]->{FILENAME};
 my $dir = File::Basename::dirname($file);
 chdir $dir or die "Can’t chdir to $dir: $!";

14129 Jan 2004

10.4 Apache::Registry, Apache::PerlRun and FriendsA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

http://www.perl.com/pub/a/2002/06/11/threads.html?page=2

 }

 1;
 __END__

Adjust your httpd.conf to have:

 Alias /perl /path/to/perl/scripts
 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::RegistryPrefork
 Options +ExecCGI
 PerlOptions +ParseHeaders
 </Location>

Otherwise ModPerl::Registry modules are configured and used similarly to Apache::Registry
modules. Refer to one of the following manpages for more information:
ModPerl::RegistryCooker, ModPerl::Registry, ModPerl::RegistryBB and
ModPerl::PerlRun.

10.4.1 ModPerl::RegistryLoader

In mod_perl 1.0 it was only possible to preload scripts as Apache::Registry handlers. In 2.0 the
loader can use any of the registry classes to preload into. The old API works as before, but new options
can be passed. See the ModPerl::RegistryLoader manpage for more information.

10.5 Apache::Constants
Apache::Constants has been replaced by three classes:

Apache::Const

Apache constants

APR::Const

Apache Portable Runtime constants

ModPerl::Const

mod_perl specific constants

See the manpages of the respective modules to figure out which constants they provide.

META: add the info how to perform the transition. XXX: may be write a script, which can tell you how to
port the constants to 2.0? Currently Apache::compat doesn’t provide a complete back compatibility
layer.

29 Jan 2004142

10.5 Apache::Constants

10.5.1 mod_perl 1.0 and 2.0 Constants Coexistence

If the same codebase is used for both mod_perl generations, the following technique can be used for using
constants:

 package MyApache::Foo;

 use strict;
 use warnings;

 use mod_perl;
 use constant MP2 => $mod_perl::VERSION >= 1.99;

 BEGIN {
 if (MP2) {
 require Apache::Const;
 Apache::Const->import(-compile => qw(OK DECLINED));
 }
 else {
 require Apache::Constants;
 Apache::Constants->import(qw(OK DECLINED));
 }
 }

 sub handler {
 # ...
 return MP2 ? Apache::OK : Apache::Constants::OK;
 }
 1;

Notice that if you don’t use the idiom:

 return MP2 ? Apache::OK : Apache::Constants::OK;

but something like the following:

 sub handler1 {
 ...
 return Apache::Constants::OK();
 }
 sub handler2 {
 ...
 return Apache::OK();
 }

You need to add (). If you don’t do that, let’s say that you run under mod_perl 2.0, perl will complain
about mod_perl 1.0 constant:

 Bareword "Apache::Constants::OK" not allowed while "strict subs" ...

Adding () prevents this warning.

14329 Jan 2004

10.5.1 mod_perl 1.0 and 2.0 Constants CoexistenceA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.5.2 Deprecated Constants

REDIRECT and similar constants have been deprecated in Apache for years, in favor of the HTTP_*
names (they no longer exist Apache 2.0). mod_perl 2.0 API performs the following aliasing behind the
scenes:

 NOT_FOUND => ’HTTP_NOT_FOUND’,
 FORBIDDEN => ’HTTP_FORBIDDEN’,
 AUTH_REQUIRED => ’HTTP_UNAUTHORIZED’,
 SERVER_ERROR => ’HTTP_INTERNAL_SERVER_ERROR’,
 REDIRECT => ’HTTP_MOVED_TEMPORARILY’,

but we suggest moving to use the HTTP_* names. For example if running in 1.0 compatibility mode
change:

 use Apache::Constants qw(REDIRECT);

to:

 use Apache::Constants qw(HTTP_MOVED_TEMPORARILY);

This will work in both mod_perl generations.

10.5.3 SERVER_VERSION()

Apache::Constants::SERVER_VERSION() has been replaced with:

 Apache::Server::get_server_version();

10.5.4 export()

Apache::Constants::export() has no replacement in 2.0 as it’s not needed.

10.6 Issues with Environment Variables
There are several thread-safety issues with setting environment variables.

Environment variables set during request time won’t be seen by C code. See the DBD::Oracle issue for
possible workarounds.

Forked processes (including backticks) won’t see CGI emulation environment variables. (META: This
will hopefully be resolved in the future, it’s documented in modperl_env.c:modperl_env_magic_set_all.)

29 Jan 2004144

10.6 Issues with Environment Variables

10.7 Special Environment Variables

10.7.1 $ENV{GATEWAY_INTERFACE}

The environment variable $ENV{GATEWAY_INTERFACE} is deprecated in mod_perl 2.0 (See:
MP_COMPAT_1X=0). Instead use $ENV{MOD_PERL} (available in both mod_perl generations), which is
set to something like this:

 mod_perl/1.99_03-dev

However to check the version it’s better to use $mod_perl::VERSION:

 use mod_perl;
 use constant MP2 => ($mod_perl::VERSION >= 1.99);

10.8 Apache:: Methods

10.8.1 Apache->request

Apache->request usage should be avoided under mod_perl 2.0 $r should be passed around as an
argument instead (or in the worst case maintain your own global variable). Since your application may run
under under threaded mpm, the Apache->request usage involves storage and retrieval from the thread
local storage, which is expensive.

It’s possible to use $r even in CGI scripts running under Registry modules, without breaking the mod_cgi
compatibility. Registry modules convert a script like:

 print "Content-type: text/plain";
 print "Hello";

into something like:

 package Foo;
 sub handler {
 print "Content-type: text/plain\n\n";
 print "Hello";
 return Apache::OK;
 }

where the handler() function always receives $r as an argument, so if you change your script to be:

 my $r;
 $r = shift if $ENV{MOD_PERL};
 if ($r) {
 $r->content_type(’text/plain’);
 }
 else {
 print "Content-type: text/plain\n\n";
 }
 print "Hello"

14529 Jan 2004

10.7 Special Environment VariablesA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

it’ll really be converted into something like:

 package Foo;
 sub handler {
 my $r;
 $r = shift if $ENV{MOD_PERL};
 if ($r) {
 $r->content_type(’text/plain’);
 }
 else {
 print "Content-type: text/plain\n\n";
 }
 print "Hello"
 return Apache::OK;
 }

The script works under both mod_perl and mod_cgi.

For example CGI.pm 2.93 or higher accepts $r as an argument to its new() function. So does
CGI::Cookie::fetch from the same distribution.

Moreover, user’s configuration may preclude from Apache->request being available at run time. For
any location that uses Apache->request and uses SetHandler modperl, the configuration
should either explicitly enable this feature:

 <Location ...>
 SetHandler modperl
 PerlOptions +GlobalRequest
 ...
 </Location>

It’s already enabled for SetHandler perl-script:

 <Location ...>
 SetHandler perl-script
 ...
 </Location>

This configuration makes Apache->request available only during the response phase (PerlRe-
sponseHandler). Other phases can make Apache->request available, by explicitly setting it in the
handler that has an access to $r. For example the following skeleton for an authen phase handler makes
the Apache->request available in the calls made from it:

 package MyApache::Auth;

 # PerlAuthenHandler MyApache::Auth

 use Apache::RequestUtil ();
 #...
 sub handler {
 my $r = shift;

29 Jan 2004146

10.8.1 Apache->request

 Apache->request($r);
 # do some calls that rely on Apache->request being available
 #...
 }

10.8.2 Apache->define

Apache->define has been replaced with Apache::Server::exists_config_define()
residing inside Apache::ServerUtil.

See the Apache::ServerUtil manpage.

10.8.3 Apache->can_stack_handlers

Apache->can_stack_handlers is no longer needed, as mod_perl 2.0 can always stack handlers.

10.8.4 Apache->untaint

Apache->untaint has moved to Apache::ServerUtil and now is a function, rather a class
method. It’ll will untaint all its arguments. You shouldn’t be using this function unless you know what you
are doing. Refer to the perlsec manpage for more information.

Apache::compat provides the backward compatible with mod_perl 1.0 implementation.

10.8.5 Apache->get_handlers

To get handlers for the server level, mod_perl 2.0 code should use:

 $s->get_handlers(...);

or:

 Apache->server->get_handlers(...);

Apache->get_handlers is avalable via Apache::compat.

10.8.6 Apache->push_handlers

To push handlers at the server level, mod_perl 2.0 code should use:

 $s->push_handlers(...);

or:

 Apache->server->push_handlers(...);

14729 Jan 2004

10.8.2 Apache->defineA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

Apache->push_handlers is avalable via Apache::compat.

10.8.7 Apache->set_handlers

To set handlers at the server level, mod_perl 2.0 code should use:

 $s->set_handlers(...);

or:

 Apache->server->set_handlers(...);

Apache->set_handlers is avalable via Apache::compat.

10.8.8 Apache->httpd_conf

Apache->httpd_conf is now $s->add_config or $r->add_config. e.g.:

 require Apache::ServerUtil;
 Apache->server->add_config([’require valid-user’]);

See the Apache::ServerUtil manpage.

Apache->httpd_conf is avalable via Apache::compat.

10.8.9 Apache::exit()

Apache::exit() has been replaced with ModPerl::Util::exit(), which is a function (not a
method) and accepts a single optional argument: status, whose default is 0 (== do nothing).

See the ModPerl::Util manpage.

10.8.10 Apache::gensym()

Since Perl 5.6.1 filehandlers are autovivified and there is no need for Apache::gensym() function,
since now it can be done with:

 open my $fh, "foo" or die $!;

Though the C function modperl_perl_gensym() is available for XS/C extensions writers.

10.8.11 Apache::module()

Apache::module() has been replaced with the function Apache::Module::loaded(), which
now accepts a single argument: the module name.

29 Jan 2004148

10.8.7 Apache->set_handlers

10.8.12 Apache::log_error()

Apache::log_error() is not available in mod_perl 2.0 API. You can use:

 Apache->server->log_error

instead. See the Apache::Log manpage.

10.9 Apache:: Variables

10.9.1 $Apache::__T

$Apache::__T is deprecated in mod_perl 2.0. Use ${^TAINT} instead.

10.10 Apache::Server:: Methods and Variables

10.10.1 $Apache::Server::CWD

$Apache::Server::CWD is deprecated and exists only in Apache::compat.

10.10.2 $Apache::Server::AddPerlVersion

$Apache::Server::AddPerlVersion is deprecated and exists only in Apache::compat.

10.11 Server Object Methods

10.11.1 $s->register_cleanup

$s->register_cleanup has been replaced with APR::Pool::cleanup_register() which
accepts the pool object as the first argument instead of the server object. e.g.:

 sub cleanup_callback { my $data = shift; ... }
 $s->pool->cleanup_register(\&cleanup_callback, $data);

where the last argument $data is optional, and if supplied will be passed as the first argument to the call-
back function.

See the APR::Pool manpage.

10.11.2 $s->uid

See the next entry.

14929 Jan 2004

10.9 Apache:: VariablesA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.11.3 $s->gid

apache-1.3 had server_rec records for server_uid and server_gid. httpd-2.0 doesn’t have them, because in
httpd-2.0 the directives User and Group are platform specific. And only UNIX supports it:
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#user

It’s possible to emulate mod_perl 1.0 API doing:

 sub Apache::Server::uid { $< }
 sub Apache::Server::gid { $(}

but the problem is that if the server is started as root, but its child processes are run under a different user-
name, e.g. nobody, at the startup the above function will report the uid and gid values of root and not
nobody, i.e. at startup it won’t be possible to know what the User and Group settings are in httpd.conf.

META: though we can probably access the parsed config tree and try to fish these values from there. The
real problem is that these values won’t be available on all platforms and therefore we should probably not
support them and let developers figure out how to code around it (e.g. by using $< and $().

10.12 Request Object Methods

10.12.1 $r->cgi_env

See the next item

10.12.2 $r->cgi_var

$r->cgi_env and $r->cgi_var should be replaced with $r->subprocess_env, which works
identically in both mod_perl generations.

10.12.3 $r->current_callback

$r->current_callback is now simply a Apache::current_callback and can be called for
any of the phases, including those where $r simply doesn’t exist.

Apache::compat implements $r->current_callback for backwards compatibility.

10.12.4 $r->get_remote_host

get_remote_host() is now invoked on the connection object:

 use Apache::Connection;
 $r->connection->get_remote_host();

29 Jan 2004150

10.12 Request Object Methods

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#user

$r->get_remote_host is available through Apache::compat.

10.12.5 $r->cleanup_for_exec

$r->cleanup_for_exec doesn’t exist in the Apache 2.0 API, it is now being internally called by the
Apache process spawning functions. For more information see Apache::SubProcess manpage.

There is $pool->cleanup_for_exec, but it’s not the same as $r->cleanup_for_exec in the
mod_perl 1.0 API.

10.12.6 $r->content

See the next item.

10.12.7 $r->args in an Array Context

$r->args in 2.0 returns the query string without parsing and splitting it into an array. You can also set
the query string by passing a string to this method.

$r->content and $r->args in an array context were mistakes that never should have been part of the
mod_perl 1.0 API. There are multiple reason for that, among others:

does not handle multi-value keys

does not handle multi-part content types

does not handle chunked encoding

slurps $r->headers_in->{’content-length’} into a single buffer (bad for performance,
memory bloat, possible dos attack, etc.)

in general duplicates functionality (and does so poorly) that is done better in Apache::Request.

if one wishes to simply read POST data, there is the more modern
{setup,should,get}_client_block API, and even more modern filter API, along with
continued support for read(STDIN, ...) and $r->read($buf,
$r->headers_in->{’content-length’})

For now you can use CGI.pm or the code in Apache::compat (it’s slower).

META: when Apache::Request will be ported to mod_perl 2.0, you will have the fast C implementa-
tion of these functions.

15129 Jan 2004

10.12.5 $r->cleanup_for_execA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.12.8 $r->chdir_file

chdir() cannot be used in the threaded environment, therefore $r->chdir_file is not in the
mod_perl 2.0 API.

For more information refer to: Threads Coding Issues Under mod_perl.

10.12.9 $r->is_main

$r->is_main is not part of the mod_perl 2.0 API. Use !$r->main instead.

Refer to the Apache::RequestRec manpage.

10.12.10 $r->finfo

As Apache 2.0 doesn’t provide an access to the stat structure, but hides it in the opaque object
$r->finfo now returns an APR::Finfo object. You can then invoke the APR::Finfo accessor
methods on it.

It’s also possible to adjust the mod_perl 1.0 code using Apache::compat’s overriding. For example:

 use Apache::compat;
 Apache::compat::override_mp2_api(’Apache::RequestRec::finfo’);
 my $is_writable = -w $r->finfo;
 Apache::compat::restore_mp2_api(’Apache::RequestRec::finfo’);

which internally does just the following:

 stat $r->filename and return *_;

So may be it’s easier to just change the code to use this directly, so the above example can be adjusted to
be:

 my $is_writable = -w $r->filename;

with the performance penalty of an extra stat() system call. If you don’t want this extra call, you’d
have to write:

 use APR::Finfo;
 use Apache::RequestRec;
 use APR::Const -compile => qw(WWRITE);
 my $is_writable = $r->finfo->protection & APR::WWRITE,

See the APR::Finfo manpage for more information.

29 Jan 2004152

10.12.8 $r->chdir_file

10.12.11 $r->notes

Similar to headers_in(), headers_out() and err_headers_out() in mod_perl 2.0,
$r->notes() returns an APR::Table object, which can be used as a tied hash or calling its
get()/set()/add()/unset() methods.

It’s also possible to adjust the mod_perl 1.0 code using Apache::compat’s overriding:

 use Apache::compat;
 Apache::compat::override_mp2_api(’Apache::RequestRec::notes’);
 $r->notes($key => $val);
 $val = $r->notes($key);
 Apache::compat::restore_mp2_api(’Apache::RequestRec::notes’);

See the Apache::RequestRec manpage.

10.12.12 $r->header_in

See the next item.

10.12.13 $r->header_out

See the next item.

10.12.14 $r->err_header_out

header_in(), header_out() and err_header_out() are not available in 2.0. Use
headers_in(), headers_out() and err_headers_out() instead (which should be used in 1.0
as well). For example you need to replace:

 $r->err_header_out("Pragma" => "no-cache");

with:

 $r->err_headers_out->{’Pragma’} = "no-cache";

See the Apache::RequestRec manpage.

10.12.15 $r->log_reason

$r->log_reason is not available in mod_perl 2.0 API. Use the other standard logging functions
provided by the Apache::Log module. For example:

 $r->log_error("it works!");

See the Apache::Log manpage.

15329 Jan 2004

10.12.11 $r->notesA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.12.16 $r->register_cleanup

$r->register_cleanup has been replaced with APR::Pool::cleanup_register() which
accepts the pool object as the first argument instead of the request object. e.g.:

 sub cleanup_callback { my $data = shift; ... }
 $r->pool->cleanup_register(\&cleanup_callback, $data);

where the last argument $data is optional, and if supplied will be passed as the first argument to the call-
back function.

See the APR::Pool manpage.

10.12.17 $r->post_connection

$r->post_connection has been replaced with:

 $r->connection->pool->cleanup_register();

See the APR::Pool manpage.

10.12.18 $r->request

Use Apache->request.

10.12.19 $r->send_fd

Apache 2.0 provides a new method sendfile() instead of send_fd, so if your code used to do:

 open my $fh, "<$file" or die "$!";
 $r->send_fd($fh);
 close $fh;

now all you need is:

 $r->sendfile($fh);

There is also a compatibility implementation in pure perl in Apache::compat.

10.12.20 $r->send_fd_length

currently available only in the 1.0 compatibility layer. The problem is that Apache has changed the API
and its functionality. See the implementation in Apache::compat.

XXX: needs a better resolution

29 Jan 2004154

10.12.16 $r->register_cleanup

10.12.21 $r->send_http_header

This method is not needed in 2.0, though available in Apache::compat. 2.0 handlers only need to set
the Content-type via $r->content_type($type).

10.12.22 $r->server_root_relative

Apache::Server::server_root_relative is a function in 2.0 and its first argument is the pool
object. For example:

 # during request
 my $conf_dir = Apache::Server::server_root_relative($r->pool, ’conf’);
 # during startup
 my $conf_dir = Apache::Server::server_root_relative($s->pool, ’conf’);

Alternatively:

 # during request
 my $conf_dir = $r->server_root_relative(’conf’);
 # during startup
 my $conf_dir = $c->server_root_relative(’conf’);

Note that the old form

 my $conf_dir = Apache->server_root_relative(’conf’);

is no longer valid - Apache::Server::server_root_relative must be called from either one
of $r, $s, or $c, or be explicitly passed a pool.

See the Apache::ServerUtil manpage.

10.12.23 $r->hard_timeout

See the next item.

10.12.24 $r->reset_timeout

See the next item.

10.12.25 $r->soft_timeout

See the next item.

15529 Jan 2004

10.12.21 $r->send_http_headerA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10.12.26 $r->kill_timeout

The functions $r->hard_timeout, $r->reset_timeout, $r->soft_timeout and
$r->kill_timeout aren’t needed in mod_perl 2.0.

10.12.27 $r->set_byterange

See the next item.

10.12.28 $r->each_byterange

The functions $r->set_byterange and $r->each_byterange aren’t in the Apache 2.0 API, and
therefore don’t exist in mod_perl 2.0. The byterange serving functionality is now implemented in the
ap_byterange_filter, which is a part of the core http module, meaning that it’s automatically taking care of
serving the requested ranges off the normal complete response. There is no need to configure it. It’s
executed only if the appropriate request headers are set. These headers aren’t listed here, since there are
several combinations of them, including the older ones which are still supported. For a complete info on
these see modules/http/http_protocol.c.

10.13 Apache::Connection

10.13.1 $connection->auth_type

The record auth_type doesn’t exist in the Apache 2.0’s connection struct. It exists only in the request
record struct. The new accessor in 2.0 API is $r->ap_auth_type.

Apache::compat provides a back compatibility method, though it relies on the availability of the
global Apache->request, which requires the configuration to have:

 PerlOptions +GlobalRequest

to set it up for earlier stages than response handler.

10.13.2 $connection->user

This method is deprecated in mod_perl 1.0 and $r->user should be used instead for both versions of
mod_perl. $r->user() method is available since mod_perl version 1.24_01.

10.13.3 $connection->local_addr

See the next item.

29 Jan 2004156

10.13 Apache::Connection

10.13.4 $connection->remote_addr

$connection->local_addr and $connection->remote_addr return an APR::Sock e-
tAddr object and you can use this object’s methods to retrieve the wanted bits of information, so if you
had a code like:

 use Socket ’sockaddr_in’;
 my ($serverport, $serverip) = sockaddr_in($r->connection->local_addr);
 my ($remoteport, $remoteip) = sockaddr_in($r->connection->remote_addr);

now it’ll be written as:

 require APR::SockAddr;
 my $serverport = $c->local_addr->port;
 my $serverip = $c->local_addr->ip_get;
 my $remoteport = $c->remote_addr->port;
 my $remoteip = $c->remote_addr->ip_get;

It’s also possible to adjust the code using Apache::compat’s overriding:

 use Socket ’sockaddr_in’;
 use Apache::compat;

 Apache::compat::override_mp2_api(’Apache::Connection::local_addr’);
 my ($serverport, $serverip) = sockaddr_in($r->connection->local_addr);
 Apache::compat::restore_mp2_api(’Apache::Connection::local_addr’);

 Apache::compat::override_mp2_api(’Apache::Connection::remote_addr’);
 my ($remoteport, $remoteip) = sockaddr_in($r->connection->remote_addr);
 Apache::compat::restore_mp2_api(’Apache::Connection::remote_addr’);

10.14 Apache::File
The methods from mod_perl 1.0’s module Apache::File have been either moved to other packages or
removed.

10.14.1 open() and close()

The methods open() and close() were removed. See the back compatibility implementation in the
module Apache::compat.

10.14.2 tmpfile()

The method tmpfile() was removed since Apache 2.0 doesn’t have the API for this method anymore.

See File::Temp, or the back compatibility implementation in the module Apache::compat.

15729 Jan 2004

10.14 Apache::FileA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

With Perl v5.8.0 you can create anonymous temporary files:

 open $fh, "+>", undef or die $!;

That is a literal undef, not an undefined value.

10.15 Apache::Util
A few Apache::Util functions have changed their interface.

10.15.1 Apache::Util::size_string()

Apache::Util::size_string() has been replaced with APR::String::format_size(),
which returns formatted strings of only 4 characters long. See the APR::String manpage.

10.15.2 Apache::Util::escape_uri()

Apache::Util::escape_uri() has been replaced with Apache::Util::escape_path()
and requires a pool object as a second argument. For example:

 $escaped_path = Apache::Util::escape_path($path, $r->pool);

10.15.3 Apache::Util::unescape_uri()

Apache::Util::unescape_uri() has been replaced with
Apache::URI::unescape_url().

10.15.4 Apache::Util::escape_html()

Apache::Util::escape_html currently is available only via Apache::compat until
ap_escape_html is reworked to not require a pool.

10.15.5 Apache::Util::parsedate()

Apache::Util::parsedate() has been replaced with APR::Date::parse_http().

10.15.6 Apache::Util::ht_time()

Apache::Util::ht_time() has been replaced (temporary?) with
Apache::Util::format_time(), which requires a pool object as a forth argument. All four argu-
ments are now required.

For example:

29 Jan 2004158

10.15 Apache::Util

 use Apache::Util ();
 $fmt = ’%a, %d %b %Y %H:%M:%S %Z’;
 $gmt = 1;
 $fmt_time = Apache::Util::format_time(time(), $fmt, $gmt, $r->pool);

See the Apache::Util manpage.

10.15.7 Apache::Util::validate_password()

Apache::Util::validate_password() has been replaced with APR::password_vali-
date(). For example:

 my $ok = Apache::Util::password_validate("stas", "ZeO.RAc3iYvpA");

10.16 Apache::URI

10.16.1 Apache::URI->parse($r, [$uri])

parse() and its associate methods have moved into the APR::URI package. For example:

 my $curl = $r->construct_url;
 APR::URI->parse($r->pool, $curl);

See the APR::URI manpage.

10.16.2 unparse()

Other than moving to the APR::URI package, unparse is now protocol-agnostic. Apache won’t use
http as the default protocol if hostname was set, but scheme wasn’t not. So the following code:

 # request http://localhost.localdomain:8529/TestAPI::uri
 my $parsed = $r->parsed_uri;
 $parsed->hostname($r->get_server_name);
 $parsed->port($r->get_server_port);
 print $parsed->unparse;

prints:

 //localhost.localdomain:8529/TestAPI::uri

forcing you to make sure that the scheme is explicitly set. This will do the right thing:

 # request http://localhost.localdomain:8529/TestAPI::uri
 my $parsed = $r->parsed_uri;
 $parsed->hostname($r->get_server_name);
 $parsed->port($r->get_server_port);
 $parsed->scheme(’http’);
 print $parsed->unparse;

15929 Jan 2004

10.16 Apache::URIA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

prints:

 http://localhost.localdomain:8529/TestAPI::uri

See the APR::URI manpage for more information.

It’s also possible to adjust the behavior to be mod_perl 1.0 compatible using Apache::compat’s overriding,
in which case unparse() will transparently set scheme to http.

 # request http://localhost.localdomain:8529/TestAPI::uri
 Apache::compat::override_mp2_api(’APR::URI::unparse’);
 my $parsed = $r->parsed_uri;
 # set hostname, but not the scheme
 $parsed->hostname($r->get_server_name);
 $parsed->port($r->get_server_port);
 print $parsed->unparse;
 Apache::compat::restore_mp2_api(’APR::URI::unparse’);

prints:

 http://localhost.localdomain:8529/TestAPI::uri

10.17 Miscellaneous

10.17.1 Method Handlers

In mod_perl 1.0 the method handlers could be specified by using the ($$) prototype:

 package Bird;
 @ISA = qw(Eagle);

 sub handler ($$) {
 my($class, $r) = @_;
 ...;
 }

mod_perl 2.0 doesn’t handle callbacks with ($$) prototypes differently than other callbacks (as it did in
mod_perl 1.0), mainly because several callbacks in 2.0 have more arguments than just $r, so the ($$)
prototype doesn’t make sense anymore. Therefore if you want your code to work with both mod_perl
generations and you can allow the luxury of:

 require 5.6.0;

or if you need the code to run only on mod_perl 2.0, use the method subroutine attribute. (The subroutine
attributes are supported in Perl since version 5.6.0.)

Here is the same example rewritten using the method subroutine attribute:

29 Jan 2004160

10.17 Miscellaneous

 package Bird;
 @ISA = qw(Eagle);

 sub handler : method {
 my($class, $r) = @_;
 ...;
 }

See the attributes manpage.

If Class->method syntax is used for a Perl*Handler, the :method attribute is not required.

The porting tutorial provides examples on how to use the same code base under both mod_perl genera-
tions when the handler has to be a method.

10.17.2 Stacked Handlers

Both mod_perl 1.0 and 2.0 support the ability to register more than one handler in each runtime phase, a
feature known as stacked handlers. For example,

 PerlAuthenHandler My::First My::Second

The behavior of stacked Perl handlers differs between mod_perl 1.0 and 2.0. In 2.0, mod_perl respects the
run-type of the underlying hook - it does not run all configured Perl handlers for each phase but instead
behaves in the same way as Apache does when multiple handlers are configured, respecting (or ignoring)
the return value of each handler as it is called.

See Stacked Handlers for a complete description of each hook and its run-type.

10.18 Apache::src
For those who write 3rd party modules using XS, this module was used to supply mod_perl specific
include paths, defines and other things, needed for building the extensions. mod_perl 2.0 makes things
transparent with ModPerl::MM.

Here is how to write a simple Makefile.PL for modules wanting to build XS code against mod_perl 2.0:

 use Apache2;
 use mod_perl 1.99;
 use ModPerl::MM ();

 ModPerl::MM::WriteMakefile(
 NAME => "Foo",
);

and everything will be done for you.

META: we probably will have a compat layer at some point.

16129 Jan 2004

10.18 Apache::srcA Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

META: move this section to the devel/porting and link there instead

10.19 Apache::Table
Apache::Table has been renamed to APR::Table.

10.20 Apache::SIG
Apache::SIG currently exists only Apache::compat and it does nothing.

10.21 Apache::StatINC
Apache::StatINC has been replaced by Apache::Reload, which works for both mod_perl genera-
tions. To migrate to Apache::Reload simply replace:

 PerlInitHandler Apache::StatINC

with:

 PerlInitHandler Apache::Reload

However Apache::Reload provides an extra functionality, covered in the module’s manpage.

10.22 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

10.23 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 2004162

10.19 Apache::Table

11 Introducing mod_perl Handlers

16329 Jan 2004

11 Introducing mod_perl HandlersIntroducing mod_perl Handlers

11.1 Description
This chapter provides an introduction into mod_perl handlers.

11.2 What are Handlers?
Apache distinguishes between numerous phases for which it provides hooks (because the C functions are
called ap_hook_<phase_name>) where modules can plug various callbacks to extend and alter the default
behavior of the webserver. mod_perl provides a Perl interface for most of the available hooks, so
mod_perl modules writers can change the Apache behavior in Perl. These callbacks are usually referred to
as handlers and therefore the configuration directives for the mod_perl handlers look like: Perl-
FooHandler, where Foo is one of the handler names. For example PerlResponseHandler config-
ures the response callback.

A typical handler is simply a perl package with a handler subroutine. For example:

 file:MyApache/CurrentTime.pm

 package MyApache::CurrentTime;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->print("Now is: " . scalar(localtime) . "\n");

 return Apache::OK;
 }
 1;

This handler simply returns the current date and time as a response.

Since this is a response handler, we configure it as a such in httpd.conf:

 PerlResponseHandler MyApache::CurrentTime

Since the response handler should be configured for a specific location, let’s write a complete configura-
tion section:

 PerlModule MyApache::CurrentTime
 <Location /time>
 SetHandler modperl
 PerlResponseHandler MyApache::CurrentTime
 </Location>

29 Jan 2004164

11.1 Description

Now when a request is issued to http://localhost/time this response handler is executed and a response that
includes the current time is returned to the client.

11.3 Handler Return Values
Different handler groups are supposed to return different values. The only value that can be returned by all
handlers is Apache::OK, which tells Apache that the handler has successfully finished its execution.

Apache::DECLINED is another return value that indicates success, but it’s only relevant for phases of
type RUN_FIRST.

HTTP handlers may also return Apache::DONE which tells Apache to stop the normal HTTP request
cycle and fast forward to the PerlLogHandler, followed by PerlCleanupHandler. HTTP
handlers may return any HTTP status, which similarly to Apache::DONE will cause an abort of the
request cycle, by also will be interpreted as an error. Therefore you don’t want to return
Apache::HTTP_OK from your HTTP response handler, but Apache::OK and Apache will send the
200 OK status by itself.

Filter handlers return Apache::OK to indicate that the filter has successfully finished. If the return value
is Apache::DECLINED, mod_perl will read and forward the data on behalf of the filter. Please notice
that this feature is specific to mod_perl. If there is some problem with obtaining or sending the bucket
brigades, or the buckets in it, filters need to return the error returned by the method that tried to manipulate
the bucket brigade or the bucket. Normally it’d be an APR:: constant.

Protocol handler return values aren’t really handled by Apache, the handler is supposed to take care of any
errors by itself. The only special case is the PerlPreConnectionHandler handler, which, if return-
ing anything but Apache::OK or Apache::DONE, will prevent from PerlConnectionHandler to
be run. PerlPreConnectionHandler handlers should always return Apache::OK.

11.4 mod_perl Handlers Categories
The mod_perl handlers can be divided by their application scope in several categories:

Server life cycle
PerlOpenLogsHandler
PerlPostConfigHandler
PerlChildInitHandler
PerlChildExitHandler

Protocols
PerlPreConnectionHandler
PerlProcessConnectionHandler

Filters
PerlInputFilterHandler
PerlOutputFilterHandler

HTTP Protocol

16529 Jan 2004

11.3 Handler Return ValuesIntroducing mod_perl Handlers

http://localhost/time

PerlPostReadRequestHandler
PerlTransHandler
PerlMapToStorageHandler
PerlInitHandler
PerlHeaderParserHandler
PerlAccessHandler
PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlResponseHandler
PerlLogHandler
PerlCleanupHandler

11.5 Stacked Handlers
For each phase there can be more than one handler assigned (also known as hooks, because the C func-
tions are called ap_hook_<phase_name>). Phases’ behavior varies when there is more then one handler
registered to run for the same phase. The following table specifies each handler’s behavior in this situa-
tion:

 Directive Type

 PerlOpenLogsHandler RUN_ALL
 PerlPostConfigHandler RUN_ALL
 PerlChildInitHandler VOID
 PerlChildExitHandler VOID

 PerlPreConnectionHandler RUN_ALL
 PerlProcessConnectionHandler RUN_FIRST

 PerlPostReadRequestHandler RUN_ALL
 PerlTransHandler RUN_FIRST
 PerlMapToStorageHandler RUN_FIRST
 PerlInitHandler RUN_ALL
 PerlHeaderParserHandler RUN_ALL
 PerlAccessHandler RUN_ALL
 PerlAuthenHandler RUN_FIRST
 PerlAuthzHandler RUN_FIRST
 PerlTypeHandler RUN_FIRST
 PerlFixupHandler RUN_ALL
 PerlResponseHandler RUN_FIRST
 PerlLogHandler RUN_ALL
 PerlCleanupHandler RUN_ALL

 PerlInputFilterHandler VOID
 PerlOutputFilterHandler VOID

29 Jan 2004166

11.5 Stacked Handlers

Note: PerlChildExitHandler and PerlCleanupHandler are not real Apache hooks, but to
mod_perl users they behave as all other hooks.

And here is the description of the possible types:

11.5.1 VOID

Handlers of the type VOID will be all executed in the order they have been registered disregarding their
return values. Though in mod_perl they are expected to return Apache::OK.

11.5.2 RUN_FIRST

Handlers of the type RUN_FIRST will be executed in the order they have been registered until the first
handler that returns something other than Apache::DECLINED. If the return value is
Apache::DECLINED, the next handler in the chain will be run. If the return value is Apache::OK the
next phase will start. In all other cases the execution will be aborted.

11.5.3 RUN_ALL

Handlers of the type RUN_ALL will be executed in the order they have been registered until the first
handler that returns something other than Apache::OK or Apache::DECLINED.

For C API declarations see include/ap_config.h, which includes other types which aren’t exposed by
mod_perl handlers.

Also see mod_perl Directives Argument Types and Allowed Location

11.6 Hook Ordering (Position)
The following constants specify how the new hooks (handlers) are inserted into the list of hooks when
there is at least one hook already registered for the same phase.

META: Not working yet.

META: need to verify the following:

APR::HOOK_REALLY_FIRST

run this hook first, before ANYTHING.

APR::HOOK_FIRST

run this hook first.

APR::HOOK_MIDDLE

16729 Jan 2004

11.6 Hook Ordering (Position)Introducing mod_perl Handlers

run this hook somewhere.

APR::HOOK_LAST

run this hook after every other hook which is defined.

APR::HOOK_REALLY_LAST

run this hook last, after EVERYTHING.

META: more information in mod_example.c talking about position/predecessors, etc.

11.7 Bucket Brigades
Apache 2.0 allows multiple modules to filter both the request and the response. Now one module can pipe
its output as an input to another module as if another module was receiving the data directly from the TCP
stream. The same mechanism works with the generated response.

With I/O filtering in place, simple filters, like data compression and decompression, can be easily imple-
mented and complex filters, like SSL, are now possible without needing to modify the the server code
which was the case with Apache 1.3.

In order to make the filtering mechanism efficient and avoid unnecessary copying, while keeping the data
abstracted, the Bucket Brigades technology was introduced. It’s also used in protocol handlers.

A bucket represents a chunk of data. Buckets linked together comprise a brigade. Each bucket in a brigade
can be modified, removed and replaced with another bucket. The goal is to minimize the data copying
where possible. Buckets come in different types, such as files, data blocks, end of stream indicators, pools,
etc. To manipulate a bucket one doesn’t need to know its internal representation.

The stream of data is represented by bucket brigades. When a filter is called it gets passed the brigade that
was the output of the previous filter. This brigade is then manipulated by the filter (e.g., by modifying
some buckets) and passed to the next filter in the stack.

The following figure depicts an imaginary bucket brigade:

29 Jan 2004168

11.7 Bucket Brigades

The figure tries to show that after the presented bucket brigade has passed through several filters some
buckets were removed, some modified and some added. Of course the handler that gets the brigade cannot
tell the history of the brigade, it can only see the existing buckets in the brigade.

Bucket brigades are discussed in detail in the protocol handlers and I/O filtering chapters.

11.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

11.9 Authors

Only the major authors are listed above. For contributors see the Changes file.

16929 Jan 2004

11.8 MaintainersIntroducing mod_perl Handlers

12 Server Life Cycle Handlers

29 Jan 2004170

12 Server Life Cycle Handlers

12.1 Description
This chapter discusses server life cycle and the mod_perl handlers participating in it.

12.2 Server Life Cycle
The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are avail-
able to mod_perl 2.0:

Apache 2.0 starts by parsing the configuration file. After the configuration file is parsed, the PerlOpen-
LogsHandler handlers are executed if any. After that it’s a turn of PerlPostConfigHandler
handlers to be run. When the post_config phase is finished the server immediately restarts, to make sure

17129 Jan 2004

12.1 DescriptionServer Life Cycle Handlers

that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes and a mixture of both. For example the worker MPM
spawns a number of processes, each running a number of threads. When each child process is started
PerlChildInit handlers are executed. Notice that they are run for each starting process, not a thread.

From that moment on each working thread processes connections until it’s killed by the server or the
server is shutdown.

12.2.1 Startup Phases Demonstration Module

Let’s look at the following example that demonstrates all the startup phases:

 file:MyApache/StartupLog.pm

 package MyApache::StartupLog;

 use strict;
 use warnings;

 use Apache::Log ();
 use Apache::ServerUtil ();

 use File::Spec::Functions;

 use Apache::Const -compile => ’OK’;

 my $log_file = catfile "logs", "startup_log";
 my $log_fh;

 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::Server::server_root_relative($conf_pool, $log_file);

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
 }

 sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
 }

 sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
 }

29 Jan 2004172

12.2.1 Startup Phases Demonstration Module

 sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
 }

 sub say {
 my($caller) = (caller(1))[3] =~ /([^:]+)$/;
 if (defined $log_fh) {
 printf $log_fh "[%s] - %-11s: %s\n",
 scalar(localtime), $caller, $_[0];
 }
 else {
 # when the log file is not open
 warn __PACKAGE__ . " says: $_[0]\n";
 }
 }

 END {
 say("process $$ is shutdown\n");
 }

 1;

And the httpd.conf configuration section:

 <IfModule prefork.c>
 StartServers 4
 MinSpareServers 4
 MaxSpareServers 4
 MaxClients 10
 MaxRequestsPerChild 0
 </IfModule>

 PerlModule MyApache::StartupLog
 PerlOpenLogsHandler MyApache::StartupLog::open_logs
 PerlPostConfigHandler MyApache::StartupLog::post_config
 PerlChildInitHandler MyApache::StartupLog::child_init
 PerlChildExitHandler MyApache::StartupLog::child_exit

When we perform a server startup followed by a shutdown, the logs/startup_log is created if it didn’t exist
already (it shares the same directory with error_log and other standard log files), and each stage appends
to it its log information. So when we perform:

 % bin/apachectl start && bin/apachectl stop

the following is getting logged to logs/startup_log:

 [Thu May 29 13:11:08 2003] - open_logs : process 21823 is born to reproduce
 [Thu May 29 13:11:08 2003] - post_config: configuration is completed
 [Thu May 29 13:11:09 2003] - END : process 21823 is shutdown

 [Thu May 29 13:11:10 2003] - open_logs : process 21825 is born to reproduce
 [Thu May 29 13:11:10 2003] - post_config: configuration is completed
 [Thu May 29 13:11:11 2003] - child_init : process 21830 is born to serve

17329 Jan 2004

12.2.1 Startup Phases Demonstration ModuleServer Life Cycle Handlers

 [Thu May 29 13:11:11 2003] - child_init : process 21831 is born to serve
 [Thu May 29 13:11:11 2003] - child_init : process 21832 is born to serve
 [Thu May 29 13:11:11 2003] - child_init : process 21833 is born to serve
 [Thu May 29 13:11:12 2003] - child_exit : process 21833 now exits
 [Thu May 29 13:11:12 2003] - child_exit : process 21832 now exits
 [Thu May 29 13:11:12 2003] - child_exit : process 21831 now exits
 [Thu May 29 13:11:12 2003] - child_exit : process 21830 now exits
 [Thu May 29 13:11:12 2003] - END : process 21825 is shutdown

First of all, we can clearly see that Apache always restart itself after the first post_config phase is over.
The logs show that the post_config phase is preceded by the open_logs phase. Only after Apache has
restarted itself and has completed the open_logs and post_config phase again the child_init phase is run for
each child process. In our example we have had the setting StartServers=4, therefore you can see
four child processes were started.

Finally you can see that on server shutdown, the child_exit phase is run for each child process and the END
{} block is executed by the parent process only.

Apache also specifies the pre_config phase, which is executed before the configuration files are parsed,
but this is of no use to mod_perl, because mod_perl is loaded only during the configuration phase.

Now let’s discuss each of the mentioned startup handlers and their implementation in the
MyApache::StartupLog module in detail.

12.2.2 PerlOpenLogsHandler

The open_logs phase happens just before the post_config phase.

Handlers registered by PerlOpenLogsHandler are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

As we have seen in the MyApache::StartupLog::open_logs handler, the open_logs phase
handlers accept four arguments: the configuration pool, the logging stream pool, the temporary pool and
the server object:

29 Jan 2004174

12.2.2 PerlOpenLogsHandler

 sub open_logs {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 my $log_path = Apache::Server::server_root_relative($conf_pool, $log_file);

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache::OK;
 }

In our example the handler uses the function Apache::Server::server_root_relative() to
set the full path to the log file, which is then opened for appending and set to unbuffered mode. Finally it
logs the fact that it’s running in the parent process.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlOpenLogsHandler MyApache::StartupLog::open_logs

12.2.3 PerlPostConfigHandler

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree
(via Apache::Directive).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the post_config() handler:

 sub post_config {
 my($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache::OK;
 }

As you can see, its arguments are identical to the open_logs phase’s handler. In this example handler we
don’t do much but logging that the configuration was completed and returning right away.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlPostConfigHandler MyApache::StartupLog::post_config

17529 Jan 2004

12.2.3 PerlPostConfigHandlerServer Life Cycle Handlers

12.2.4 PerlChildInitHandler

The child_init phase happens immediately after the child process is spawned. Each child process (not a
thread!) will run the hooks of this phase only once in their life-time.

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For example Apache::DBI pre-opens database connections during this phase and
Apache::Resource sets the process’ resources limits.

This phase is of type VOID.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the child_init() handler:

 sub child_init {
 my($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache::OK;
 }

The child_init() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child process it’s run in and returns.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildInitHandler MyApache::StartupLog::child_init

12.2.5 PerlChildExitHandler

Opposite to the child_init phase, the child_exit phase is executed before the child process exits. Notice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

In our MyApache::StartupLog example we used the child_exit() handler:

 sub child_exit {
 my($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache::OK;
 }

The child_exit() handler accepts two arguments: the child process pool and the server object. The example
handler logs the pid of the child process it’s run in and returns.

29 Jan 2004176

12.2.4 PerlChildInitHandler

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildExitHandler MyApache::StartupLog::child_exit

12.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

12.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

17729 Jan 2004

12.3 MaintainersServer Life Cycle Handlers

13 Protocol Handlers

29 Jan 2004178

13 Protocol Handlers

13.1 Description
This chapter explains how to implement Protocol (Connection) Handlers in mod_perl.

13.2 Connection Cycle Phases
As we saw earlier, each child server (be it a thread or a process) is engaged in processing connections.
Each connection may be served by different connection protocols, e.g., HTTP, POP3, SMTP, etc. Each
connection may include more than one request, e.g., several HTTP requests can be served over a single
connection, when several images are requested for the same webpage.

The following diagram depicts the connection life cycle and highlights which handlers are available to
mod_perl 2.0:

17929 Jan 2004

13.1 DescriptionProtocol Handlers

When a connection is issued by a client, it’s first run through PerlPreConnectionHandler and then
passed to the PerlProcessConnectionHandler, which generates the response. When PerlPro-
cessConnectionHandler is reading data from the client, it can be filtered by connection input
filters. The generated response can be also filtered though connection output filters. Filters are usually
used for modifying the data flowing though them, but can be used for other purposes as well (e.g., logging
interesting information). For example the following diagram shows the connection cycle mapped to the
time scale:

The arrows show the program control. In addition, the black-headed arrows also show the data flow. This
diagram matches an interactive protocol, where a client send something to the server, the server filters the
input, processes it and send it out through output filters. This cycle is repeated till the client or the server
don’t tell each other to go away or abort the connection. Before the cycle starts any registered pre_connec-
tion handlers are run.

Now let’s discuss each of the PerlPreConnectionHandler and PerlProcessConnection-
Handler handlers in detail.

13.2.1 PerlPreConnectionHandler

The pre_connection phase happens just after the server accepts the connection, but before it is handed off
to a protocol module to be served. It gives modules an opportunity to modify the connection as soon as
possible and insert filters if needed. The core server uses this phase to setup the connection record based
on the type of connection that is being used. mod_perl itself uses this phase to register the connection
input and output filters.

In mod_perl 1.0 during code development Apache::Reload was used to automatically reload modified
since the last request Perl modules. It was invoked during post_read_request, the first HTTP
request’s phase. In mod_perl 2.0 pre_connection is the earliest phase, so if we want to make sure that all

29 Jan 2004180

13.2.1 PerlPreConnectionHandler

modified Perl modules are reloaded for any protocols and its phases, it’s the best to set the scope of the
Perl interpreter to the lifetime of the connection via:

 PerlInterpScope connection

and invoke the Apache::Reload handler during the pre_connection phase. However this develop-
ment-time advantage can become a disadvantage in production--for example if a connection, handled by
HTTP protocol, is configured as KeepAlive and there are several requests coming on the same connec-
tion and only one handled by mod_perl and the others by the default images handler, the Perl interpreter
won’t be available to other threads while the images are being served.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because it’s not known yet which resource the request will be
mapped to.

A pre_connection handler accepts a connection record at its argument:

 sub handler {
 my $c = shift;
 # ...
 return Apache::OK;
 }

[META: There is another argument passed (the actual client socket), but it currently an undef]

Here is a useful pre_connection phase example: provide a facility to block remote clients by their IP,
before too many resources were consumed. This is almost as good as a firewall blocking, as it’s executed
before Apache has started to do any work at all.

MyApache::BlockIP2 retrieves client’s remote IP and looks it up in the black list (which should
certainly live outside the code, e.g. dbm file, but a hardcoded list is good enough for our example).

 #file:MyApache/BlockIP2.pm
 #-------------------------
 package MyApache::BlockIP2;

 use strict;
 use warnings;

 use Apache::Connection ();

 use Apache::Const -compile => qw(FORBIDDEN OK);

 my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

 sub handler {
 my Apache::Connection $c = shift;

 my $ip = $c->remote_ip;
 if (exists $bad_ips{$ip}) {
 warn "IP $ip is blocked\n";
 return Apache::FORBIDDEN;

18129 Jan 2004

13.2.1 PerlPreConnectionHandlerProtocol Handlers

 }

 return Apache::OK;
 }

 1;

This all happens during the pre_connection phase:

 PerlPreConnectionHandler MyApache::BlockIP2

If a client connects from a blacklisted IP, Apache will simply abort the connection without sending any
reply to the client, and move on to serving the next request.

13.2.2 PerlProcessConnectionHandler

The process_connection phase is used to process incoming connections. Only protocol modules should
assign handlers for this phase, as it gives them an opportunity to replace the standard HTTP processing
with processing for some other protocols (e.g., POP3, FTP, etc.).

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV. Therefore the only way to run protocol servers different than
the core HTTP is inside dedicated virtual hosts.

A process_connection handler accepts a connection record object as its only argument, a socket object can
be retrieved from the connection record object.

 sub handler {
 my ($c) = @_;
 my $socket = $c->client_socket;
 # ...
 return Apache::OK;
 }

Now let’s look at the following two examples of connection handlers. The first using the connection
socket to read and write the data and the second using bucket brigades to accomplish the same and allow
for connection filters to do their work.

13.2.2.1 Socket-based Protocol Module

To demonstrate the workings of a protocol module, we’ll take a look at the MyApache::EchoSocket
module, which simply echoes the data read back to the client. In this module we will use the implementa-
tion that works directly with the connection socket and therefore bypasses connection filters if any.

A protocol handler is configured using the PerlProcessConnectionHandler directive and we will
use the Listen and <VirtualHost> directives to bind to the non-standard port 8010:

29 Jan 2004182

13.2.2 PerlProcessConnectionHandler

 Listen 8010
 <VirtualHost _default_:8010>
 PerlModule MyApache::EchoSocket
 PerlProcessConnectionHandler MyApache::EchoSocket
 </VirtualHost>

MyApache::EchoSocket is then enabled when starting Apache:

 panic% httpd

And we give it a whirl:

 panic% telnet localhost 8010
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello
 Hello

 fOo BaR
 fOo BaR

 Connection closed by foreign host.

Here is the code:

 file:MyApache/EchoSocket.pm

 package MyApache::EchoSocket;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Socket ();

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

 sub handler {
 my $c = shift;
 my $socket = $c->client_socket;

 my $buff;
 while (1) {
 my $rlen = BUFF_LEN;
 $socket->recv($buff, $rlen);

 last if $rlen <= 0 or $buff =~ /^[\r\n]+$/;

 my $wlen = $rlen;
 $socket->send($buff, $wlen);

 last if $wlen != $rlen;
 }

18329 Jan 2004

13.2.2 PerlProcessConnectionHandlerProtocol Handlers

 Apache::OK;
 }
 1;

The example handler starts with the standard package declaration and of course, use strict;. As with
all Perl*Handlers, the subroutine name defaults to handler. However, in the case of a protocol
handler, the first argument is not a request_rec, but a conn_rec blessed into the
Apache::Connection class. We have direct access to the client socket via Apache::Connec-
tion’s client_socket method. This returns an object blessed into the APR::Socket class.

Inside the read/send loop, the handler attempts to read BUFF_LEN bytes from the client socket into the
$buff buffer. The $rlen parameter will be set to the number of bytes actually read. The
APR::Socket::recv() method returns an APR status value, but we need only to check the read
length to break out of the loop if it is less than or equal to 0 bytes. The handler also breaks the loop after
processing an input including nothing but new lines characters, which is how we abort the connection in
the interactive mode.

If the handler receives some data, it sends it unmodified back to the client with the
APR::Socket::send() method. When the loop is finished the handler returns Apache::OK, telling
Apache to terminate the connection. As mentioned earlier since this handler is working directly with the
connection socket, no filters can be applied.

13.2.2.2 Bucket Brigades-based Protocol Module

Now let’s look at the same module, but this time implemented by manipulating bucket brigades, and
which runs its output through a connection output filter that turns all uppercase characters into their lower-
case equivalents.

The following configuration defines a virtual host listening on port 8011 and which enables the
MyApache::EchoBB connection handler, which will run its output through
MyApache::EchoBB::lowercase_filter filter:

 Listen 8011
 <VirtualHost _default_:8011>
 PerlModule MyApache::EchoBB
 PerlProcessConnectionHandler MyApache::EchoBB
 PerlOutputFilterHandler MyApache::EchoBB::lowercase_filter
 </VirtualHost>

As before we start the httpd server:

 panic% httpd

And try the new connection handler in action:

29 Jan 2004184

13.2.2 PerlProcessConnectionHandler

 panic% telnet localhost 8011
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello
 hello

 fOo BaR
 foo bar

 Connection closed by foreign host.

As you can see the response now was all in lower case, because of the output filter.

And here is the implementation of the connection and the filter handlers.

 file:MyApache/EchoBB.pm

 package MyApache::EchoBB;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Bucket ();
 use APR::Brigade ();
 use APR::Util ();

 use APR::Const -compile => qw(SUCCESS EOF);
 use Apache::Const -compile => qw(OK MODE_GETLINE);

 sub handler {
 my $c = shift;

 my $bb_in = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $bb_out = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $last = 0;

 while (1) {
 my $rv = $c->input_filters->get_brigade($bb_in, Apache::MODE_GETLINE);
 if ($rv != APR::SUCCESS && $rv != APR::EOF) {
 my $error = APR::strerror($rv);
 warn __PACKAGE__ . ": get_brigade: $error\n";
 last;
 }

 last if $bb_in->empty;

 while (!$bb_in->empty) {
 my $bucket = $bb_in->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_out->insert_tail($bucket);
 last;

18529 Jan 2004

13.2.2 PerlProcessConnectionHandlerProtocol Handlers

 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status == APR::SUCCESS;

 if ($data) {
 $last++ if $data =~ /^[\r\n]+$/;
 # could do something with the data here
 $bucket = APR::Bucket->new($data);
 }

 $bb_out->insert_tail($bucket);
 }

 my $b = APR::Bucket::flush_create($c->bucket_alloc);
 $bb_out->insert_tail($b);
 $c->output_filters->pass_brigade($bb_out);
 last if $last;
 }

 $bb_in->destroy;

 Apache::OK;
 }

 use base qw(Apache::Filter);
 use constant BUFF_LEN => 1024;

 sub lowercase_filter : FilterConnectionHandler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $filter->print(lc $buffer);
 }

 return Apache::OK;
 }

 1;

For the purpose of explaining how this connection handler works, we are going to simplify the handler.
The whole handler can be represented by the following pseudo-code:

 while ($bb_in = get_brigade()) {
 while ($bucket_in = $bb_in->get_bucket()) {
 my $data = $bucket_in->read();
 # do something with data
 $bucket_out = new_bucket($data);

 $bb_out->insert_tail($bucket_out);
 }
 $bb_out->insert_tail($flush_bucket);
 pass_brigade($bb_out);
 }

29 Jan 2004186

13.2.2 PerlProcessConnectionHandler

The handler receives the incoming data via bucket bridges, one at a time in a loop. It then process each
bridge, by retrieving the buckets contained in it, reading the data in, then creating new buckets using the
received data, and attaching them to the outgoing brigade. When all the buckets from the incoming bucket
brigade were transformed and attached to the outgoing bucket brigade, a flush bucket is created and added
as the last bucket, so when the outgoing bucket brigade is passed out to the outgoing connection filters, it
won’t be buffered but sent to the client right away.

If you look at the complete handler, the loop is terminated when one of the following conditions occurs: an
error happens, the end of stream bucket has been seen (no more input at the connection) or when the
received data contains nothing but new line characters which we used to to tell the server to terminate the
connection.

Notice that this handler could be much simpler, since we don’t modify the data. We could simply pass the
whole brigade unmodified without even looking at the buckets. But from this example you can see how to
write a connection handler where you actually want to read and/or modify the data. To accomplish that
modification simply add a code that transforms the data which has been read from the bucket before it’s
inserted to the outgoing brigade.

We will skip the filter discussion here, since we are going to talk in depth about filters in the dedicated to
filters sections. But all you need to know at this stage is that the data sent from the connection handler is
filtered by the outgoing filter and which transforms it to be all lowercase.

13.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

13.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

18729 Jan 2004

13.3 MaintainersProtocol Handlers

14 HTTP Handlers

29 Jan 2004188

14 HTTP Handlers

14.1 Description
This chapter explains how to implement the HTTP protocol handlers in mod_perl.

14.2 HTTP Request Handler Skeleton
All HTTP Request handlers have the following structure:

 package MyApache::MyHandlerName;

 # load modules that are going to be used
 use ...;

 # compile (or import) constants
 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 # handler code comes here

 return Apache::OK; # or another status constant
 }
 1;

First, the package is declared. Next, the modules that are going to be used are loaded and constants
compiled.

The handler itself coming next and usually it receives the only argument: the Apache::RequestRec
object. If the handler is declared as a method handler :

 sub handler : method {
 my($class, $r) = @_;

the handler receives two arguments: the class name and the Apache::RequestRec object.

The handler ends with a return code and the file is ended with 1; to return true when it gets loaded.

14.3 HTTP Request Cycle Phases
Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be almost identical
to the mod_perl 1.0’s model. The only difference is in the response phase which now includes filtering.
Also the PerlHandler directive has been renamed to PerlResponseHandler to better match the
corresponding Apache phase name (response).

The following diagram depicts the HTTP request life cycle and highlights which handlers are available to
mod_perl 2.0:

18929 Jan 2004

14.1 DescriptionHTTP Handlers

From the diagram it can be seen that an HTTP request is processes by 11 phases, executed in the following
order:

1. PerlPostReadRequestHandler (PerlInitHandler)
2. PerlTransHandler
3. PerlMapToStorageHandler
4. PerlHeaderParserHandler (PerlInitHandler)
5. PerlAccessHandler
6. PerlAuthenHandler
7. PerlAuthzHandler
8. PerlTypeHandler
9. PerlFixupHandler

29 Jan 2004190

14.3 HTTP Request Cycle Phases

10. PerlResponseHandler
11. PerlLogHandler
12. PerlCleanupHandler

It’s possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens. In that case Apache skips to the logging phase (mod_perl executes all registered PerlLogHan-
dler handlers) and finally the cleanup phase happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it’s sent to the client.
We will talk about filters in detail later in this chapter.

Before discussing each handler in detail remember that if you use the stacked handlers feature all handlers
in the chain will be run as long as they return Apache::OK or Apache::DECLINED. Because stacked
handlers is a special case. So don’t be surprised if you’ve returned Apache::OK and the next handler
was still executed. This is a feature, not a bug.

Now let’s discuss each of the mentioned handlers in detail.

14.3.1 PerlPostReadRequestHandler

The post_read_request phase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

This phase is usually used to do processing that must happen once per request. For example
Apache::Reload is usually invoked at this phase to reload modified Perl modules.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Now, let’s look at an example. Consider the following registry script:

 touch.pl

 use strict;
 use warnings;

 use Apache::ServerUtil ();
 use File::Spec::Functions qw(catfile);

 my $r = shift;
 $r->content_type(’text/plain’);

 my $conf_file = catfile Apache::Server::server_root_relative($r->pool, ’conf’),
 "httpd.conf";

 printf "$conf_file is %0.2f minutes old", 60*24*(-M $conf_file);

19129 Jan 2004

14.3.1 PerlPostReadRequestHandlerHTTP Handlers

This registry script is supposed to print when the last time httpd.conf has been modified, compared to the
start of the request process time. If you run this script several times you might be surprised that it reports
the same value all the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won’t be reported correctly.

This happens because the -M operator reports the difference between file’s modification time and the
value of a special Perl variable $^T. When we run scripts from the command line, this variable is always
set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like
-M, -C and -A are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we
need to reset $^T to the request’s start time, before -M is used. We can change the script itself, but what if
we need to do the same change for several other scripts and handlers? A simple PerlPostRead-
RequestHandler handler, which will be executed as the very first thing of each requests, comes handy
here:

 file:MyApache/TimeReset.pm

 package MyApache::TimeReset;

 use strict;
 use warnings;

 use Apache::RequestRec ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;
 $^T = $r->request_time;
 return Apache::OK;
 }
 1;

We could do:

 $^T = time();

But to make things more efficient we use $r->request_time since the request object $r already
stores the request’s start time, so we get it without performing an additional system call.

To enable it just add to httpd.conf:

 PerlPostReadRequestHandler MyApache::TimeReset

either to the global section, or to the <VirtualHost> section if you want this handler to be run only for
a specific virtual host.

29 Jan 2004192

14.3.1 PerlPostReadRequestHandler

14.3.2 PerlTransHandler

The translate phase is used to perform the translation of a request’s URI into an corresponding filename.
If no custom handler is provided, the server’s standard translation rules (e.g., Alias directives,
mod_rewrite, etc.) will continue to be used. A PerlTransHandler handler can alter the default trans-
lation mechanism or completely override it.

In addition to doing the translation, this stage can be used to modify the URI itself and the request method.
This is also a good place to register new handlers for the following phases based on the URI.

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

There are many useful things that can be performed at this stage. Let’s look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-site was originally
made of static pages, and now you have moved to a dynamic page generation chances are that you don’t
want to change the old URIs, because you don’t want to break links for those who link to your site. If the
URI:

 http://example.com/news/20021031/09/index.html

is now handled by:

 http://example.com/perl/news.pl?date=20021031&id=09&page=index.html

the following handler can do the rewriting work transparent to news.pl, so you can still use the former URI
mapping:

 file:MyApache/RewriteURI.pm

 package MyApache::RewriteURI;

 use strict;
 use warnings;

 use Apache::RequestRec ();

 use Apache::Const -compile => qw(DECLINED);

 sub handler {
 my $r = shift;

 my ($date, $id, $page) = $r->uri =~ m|^/news/(\d+)/(\d+)/(.*)|;
 $r->uri("/perl/news.pl");
 $r->args("date=$date&id=$id&page=$page");

 return Apache::DECLINED;
 }
 1;

19329 Jan 2004

14.3.2 PerlTransHandlerHTTP Handlers

The handler matches the URI and assigns a new URI via $r->uri() and the query string via
$r->args(). It then returns Apache::DECLINED, so the next translation handler will get invoked, if
more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

To configure this module simply add to httpd.conf:

 PerlTransHandler +MyApache::RewriteURI

14.3.3 PerlMapToStorageHandler META: add something here

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

14.3.4 PerlHeaderParserHandler

The header_parser phase is the first phase to happen after the request has been mapped to its <Loca-
tion> (or an equivalent container). At this phase the handler can examine the request headers and to take
a special action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

This phase is very similar to PerlPostReadRequestHandler, with the only difference that it’s run
after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can take any PerlPostReadRequestHandler and
turn it into PerlHeaderParserHandler by simply changing the directive name in httpd.conf and
moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a special directive PerlInitHandler which if found outside resource containers behaves as
PerlPostReadRequestHandler, otherwise as PerlHeaderParserHandler.

You already know that Apache handles the HEAD, GET, POST and several other HTTP methods. But did
you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages: they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the
EMAIL method. We can enable this protocol extension and push the real content handler during the
PerlHeaderParserHandler phase:

 <Location /email>
 PerlHeaderParserHandler MyApache::SendEmail
 </Location>

29 Jan 2004194

14.3.3 PerlMapToStorageHandler META: add something here

and here is the MyApache::SendEmail handler:

 file:MyApache/SendEmail.pm

 package MyApache::SendEmail;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(DECLINED OK);

 use constant METHOD => ’EMAIL’;
 use constant SMTP_HOSTNAME => "localhost";

 sub handler {
 my $r = shift;

 return Apache::DECLINED unless $r->method eq METHOD;

 Apache::Server::method_register($r->pool, METHOD);
 $r->handler("perl-script");
 $r->push_handlers(PerlResponseHandler => \&send_email_handler);

 return Apache::OK;
 }

 sub send_email_handler {
 my $r = shift;

 my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
 my $content = content($r);

 my $status = send_email(\%headers, \$content);

 $r->content_type(’text/plain’);
 $r->print($status ? "ACK" : "NACK");
 return Apache::OK;
 }

 sub content {
 my $r = shift;

 $r->setup_client_block;
 return ’’ unless $r->should_client_block;
 my $len = $r->headers_in->get(’content-length’);
 my $buf;
 $r->get_client_block($buf, $len);

 return $buf;
 }

 sub send_email {

19529 Jan 2004

14.3.4 PerlHeaderParserHandlerHTTP Handlers

 my($rh_headers, $r_body) = @_;

 require MIME::Lite;
 MIME::Lite->send("smtp", SMTP_HOSTNAME, Timeout => 60);

 my $msg = MIME::Lite->new(%$rh_headers, Data => $$r_body);
 #warn $msg->as_string;
 $msg->send;
 }

 1;

Let’s get the less interesting code out of the way. The function content() grabs the request body. The func-
tion send_email() sends the email over SMTP. You should adjust the constant SMTP_HOSTNAME to point
to your outgoing SMTP server. You can replace this function with your own if you prefer to use a differ-
ent method to send email.

Now to the more interesting functions. The function handler() returns immediately and passes the
control to the next handler if the request method is not equal to EMAIL (set in the METHOD constant):

 return Apache::DECLINED unless $r->method eq METHOD;

Next it tells Apache that this new method is a valid one and that the perl-script handler will do the
processing. Finally it pushes the function send_email_handler() to the PerlResponseHan-
dler list of handlers:

 Apache::Server::method_register($r->pool, METHOD);
 $r->handler("perl-script");
 $r->push_handlers(PerlResponseHandler => \&send_email_handler);

The function terminates the header_parser phase by:

 return Apache::OK;

All other phases run as usual, so you can reuse any HTTP protocol hooks, such as authentication and fixup
phases.

When the response phase starts send_email_handler() is invoked, assuming that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email headers
To, From and Subject, and the body of the message:

 my %headers = map {$_ => $r->headers_in->get($_)} qw(To From Subject);
 my $content = $r->content;

Then send the email:

 my $status = send_email(\%headers, \$content);

Finally return to the client a simple response acknowledging that email has been sent and finish the
response phase by returning Apache::OK:

29 Jan 2004196

14.3.4 PerlHeaderParserHandler

 $r->content_type(’text/plain’);
 $r->print($status ? "ACK" : "NACK");
 return Apache::OK;

Of course you will want to add extra validations if you want to use this code in production. This is just a
proof of concept implementation.

As already mentioned when you extend an HTTP protocol you need to have a client that knows how to use
the extension. So here is a simple client that uses LWP::UserAgent to issue an EMAIL method request
over HTTP protocol:

 file:send_http_email.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 require LWP::UserAgent;

 my $url = "http://localhost:8000/email/";

 my %headers = (
 From => ’example@example.com’,
 To => ’example@example.com’,
 Subject => ’3 weeks in Tibet’,
);

 my $content = <<EOI;
 I didn’t have an email software,
 but could use HTTP so I’m sending it over HTTP
 EOI

 my $headers = HTTP::Headers->new(%headers);
 my $req = HTTP::Request->new("EMAIL", $url, $headers, $content);
 my $res = LWP::UserAgent->new->request($req);
 print $res->is_success ? $res->content : "failed";

most of the code is just a custom data. The code that does something consists of four lines at the very end.
Create HTTP::Headers and HTTP::Request object. Issue the request and get the response. Finally
print the response’s content if it was successful or just "failed" if not.

Now save the client code in the file send_http_email.pl, adjust the To field, make the file executable and
execute it, after you have restarted the server. You should receive an email shortly to the address set in the
To field.

14.3.5 PerlInitHandler

When configured inside any container directive, except <VirtualHost>, this handler is an alias for
PerlHeaderParserHandler described earlier. Otherwise it acts as an alias for PerlPostRead-
RequestHandler described earlier.

19729 Jan 2004

14.3.5 PerlInitHandlerHTTP Handlers

It is the first handler to be invoked when serving a request.

This phase is of type RUN_ALL.

The best example here would be to use Apache::Reload which takes the benefit of this directive.
Usually Apache::Reload is configured as:

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache::*"

which during the current HTTP request will monitor and reload all MyApache::* modules that have
been modified since the last HTTP request. However if we move the global configuration into a <Loca-
tion> container:

 <Location /devel>
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache::*"
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 </Location>

Apache::Reload will reload the modified modules, only when a request to the /devel namespace is
issued, because PerlInitHandler plays the role of PerlHeaderParserHandler here.

14.3.6 PerlAccessHandler

The access_checker phase is the first of three handlers that are involved in what’s known as AAA:
Authentication and Authorization, and Access control.

This phase can be used to restrict access from a certain IP address, time of the day or any other rule not
connected to the user’s identity.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

The concept behind access checker handler is very simple, return Apache::FORBIDDEN if the access is
not allowed, otherwise return Apache::OK.

The following example handler denies requests made from IPs on the blacklist.

 file:MyApache/BlockByIP.pm

 package MyApache::BlockByIP;

 use strict;
 use warnings;

 use Apache::RequestRec ();

29 Jan 2004198

14.3.6 PerlAccessHandler

 use Apache::Connection ();

 use Apache::Const -compile => qw(FORBIDDEN OK);

 my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

 sub handler {
 my $r = shift;

 return exists $bad_ips{$r->connection->remote_ip}
 ? Apache::FORBIDDEN
 : Apache::OK;
 }

 1;

The handler retrieves the connection’s IP address, looks it up in the hash of blacklisted IPs and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler simply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base location /perl add:

 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAccessHandler MyApache::BlockByIP
 Options +ExecCGI
 </Location>

It’s important to notice that PerlAccessHandler can be configured for any subsection of the site, no
matter whether it’s served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server simply add to httpd.conf:

 <Location />
 PerlAccessHandler MyApache::BlockByIP
 </Location>

14.3.7 PerlAuthenHandler

The check_user_id (authen) phase is called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated with AuthName, AuthType and at least one
require directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should return Apache::OK. Otherwise the handler returns
Apache::HTTP_UNAUTHORIZED to indicate that the user has not authenticated successfully. When
Apache sends the HTTP header with this code, the browser will normally pop up a dialog box that
prompts the user for login information.

19929 Jan 2004

14.3.7 PerlAuthenHandlerHTTP Handlers

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space equals to the
secret length, specified by the constant SECRET_LENGTH.

 file:MyApache/SecretLengthAuth.pm

 package MyApache::SecretLengthAuth;

 use strict;
 use warnings;

 use Apache::Access ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(OK DECLINED HTTP_UNAUTHORIZED);

 use Apache::Access();

 use constant SECRET_LENGTH => 14;

 sub handler {
 my $r = shift;

 my ($status, $password) = $r->get_basic_auth_pw;
 return $status unless $status == Apache::OK;

 return Apache::OK
 if SECRET_LENGTH == length join " ", $r->user, $password;

 $r->note_basic_auth_failure;
 return Apache::HTTP_UNAUTHORIZED;
 }

 1;

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set to Apache::OK only when the user has supplied the username and the password credentials. If the
status is different, we just let Apache handle this situation for us, which will usually challenge the client so
it’ll supply the credentials.

Note that get_basic_auth_pw() does a few things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use
get_basic_auth_pw(). First, is checks the value of the configured AuthType for the request,
making sure it is Basic. Then it makes sure that the Authorization (or Proxy-Authorization) header is
formatted for Basic authentication. Finally, after isolating the user and password from the header, it
populates the ap_auth_type slot in the request record with Basic. For the first and last parts of this
process, mod_perl offers an API. $r->auth_type returns the configured authentication type for the
current request - whatever was set via the AuthType configuration directive. $r->ap_auth_type
populates the ap_auth_type slot in the request record, which should be done after it has been confirmed

29 Jan 2004200

14.3.7 PerlAuthenHandler

that the request is indeed using Basic authentication. (Note: $r->ap_auth_type was
$r->connection->auth_type in the mod_perl 1.0 API.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTH long (14 in our example). So for example the pair mod_perl/rules authenticates
correctly, whereas secret/password does not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it’s fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note_basic_auth_failure() and returns
Apache::HTTP_UNAUTHORIZED, which sets the proper HTTP response headers that tell the client that
its user that the authentication has failed and the credentials should be supplied again.

It’s not enough to enable this handler for the authentication to work. You have to tell Apache what authen-
tication scheme to use (Basic or Digest), which is specified by the AuthType directive, and you
should also supply the AuthName -- the authentication realm, which is really just a string that the client
usually uses as a title in the pop-up box, where the username and the password are inserted. Finally the
Require directive is needed to specify which usernames are allowed to authenticate. If you set it to
valid-user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts from /perl/:

 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAuthenHandler MyApache::SecretLengthAuth
 Options +ExecCGI

 AuthType Basic
 AuthName "The Gate"
 Require valid-user
 </Location>

Just like PerlAccessHandler and other mod_perl handlers, PerlAuthenHandler can be config-
ured for any subsection of the site, no matter whether it’s served by a mod_perl response handler or not.
For example to use the authentication handler from the last example for any requests to the site, simply
use:

 <Location />
 PerlAuthenHandler MyApache::SecretLengthAuth
 AuthType Basic
 AuthName "The Gate"
 Require valid-user
 </Location>

20129 Jan 2004

14.3.7 PerlAuthenHandlerHTTP Handlers

14.3.8 PerlAuthzHandler

The auth_checker (authz) phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only called when the requested resource is password protected, similar to the auth phase. The handler is
expected to return Apache::DECLINED to defer the decision, Apache::OK to indicate its acceptance
of the user’s authorization, or Apache::HTTP_UNAUTHORIZED to indicate that the user is not autho-
rized to access the requested document.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Here is the MyApache::SecretResourceAuthz handler which grants access to certain resources
only to certain users who have already properly authenticated:

 file:MyApache/SecretResourceAuthz.pm

 package MyApache::SecretResourceAuthz;

 use strict;
 use warnings;

 use Apache::Access ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(OK HTTP_UNAUTHORIZED);

 use Apache::Access ();

 my %protected = (
 ’admin’ => [’stas’],
 ’report’ => [qw(stas boss)],
);

 sub handler {
 my $r = shift;

 my $user = $r->user;
 if ($user) {
 my($section) = $r->uri =~ m|^/company/(\w+)/|;
 if (defined $section && exists $protected{$section}) {
 my $users = $protected{$section};
 return Apache::OK if grep { $_ eq $user } @$users;
 }
 else {
 return Apache::OK;
 }
 }

29 Jan 2004202

14.3.8 PerlAuthzHandler

 $r->note_basic_auth_failure;
 return Apache::HTTP_UNAUTHORIZED;
 }

 1;

This authorization handler is very similar to the authentication handler from the previous section. Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under
/company/admin/ can be accessed only by the user stas, /company/report/ can be accessed by users stas
and boss, whereas any other resources under /company/ can be accessed by everybody who has reached so
far. If for some reason we don’t get the username, we or the user is not authorized to access the resource
the handler does the same thing as it does when the authentication fails, i.e, calls:

 $r->note_basic_auth_failure;
 return Apache::HTTP_UNAUTHORIZED;

The configuration is similar to the one in the previous section, this time we just add the PerlAu-
thzHandler setting. The rest doesn’t change.

 Alias /company/ /home/httpd/httpd-2.0/perl/
 <Location /company/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAuthenHandler MyApache::SecretLengthAuth
 PerlAuthzHandler MyApache::SecretResourceAuthz
 Options +ExecCGI

 AuthType Basic
 AuthName "The Secret Gate"
 Require valid-user
 </Location>

And if you want to run the authentication and authorization for the whole site, simply add:

 <Location />
 PerlAuthenHandler MyApache::SecretLengthAuth
 PerlAuthzHandler MyApache::SecretResourceAuthz
 AuthType Basic
 AuthName "The Secret Gate"
 Require valid-user
 </Location>

14.3.9 PerlTypeHandler

The type_checker phase is used to set the response MIME type (Content-type) and sometimes other
bits of document type information like the document language.

For example mod_autoindex, which performs automatic directory indexing, uses this phase to map the
filename extensions to the corresponding icons which will be later used in the listing of files.

20329 Jan 2004

14.3.9 PerlTypeHandlerHTTP Handlers

Of course later phases may override the mime type set in this phase.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

The most important thing to remember when overriding the default type_checker handler, which is usually
the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’t work. mod_mime does that based on SetHandler and
AddHandler directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

 $r->handler(’perl-script’);
 $r->set_handlers(PerlResponseHandler => \&handler);

or:

 $r->handler(’modperl’);
 $r->set_handlers(PerlResponseHandler => \&handler);

depending on which type of response handler is wanted.

Writing a PerlTypeHandler handler which sets the content-type value and returns
Apache::DECLINED so that the default handler will do the rest of the work, is not a good idea, because
mod_mime will probably override this and other settings.

Therefore it’s the easiest to leave this stage alone and do any desired settings in the fixups phase.

14.3.10 PerlFixupHandler

The fixups phase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this phase mod_env populates the environment with
variables configured with SetEnv and PassEnv directives.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’s URI.

 file:MyApache/FileExtDispatch.pm

 package MyApache::FileExtDispatch;

 use strict;
 use warnings;

 use Apache::RequestIO ();
 use Apache::RequestRec ();

29 Jan 2004204

14.3.10 PerlFixupHandler

 use Apache::Const -compile => ’OK’;

 use constant HANDLER => 0;
 use constant CALLBACK => 1;

 my %exts = (
 cgi => [’perl-script’, \&cgi_handler],
 pl => [’modperl’, \&pl_handler],
 tt => [’perl-script’, \&tt_handler],
 txt => [’default-handler’, undef],
);

 sub handler {
 my $r = shift;

 my($ext) = $r->uri =~ /\.(\w+)$/;
 $ext = ’txt’ unless defined $ext and exists $exts{$ext};

 $r->handler($exts{$ext}->[HANDLER]);

 if (defined $exts{$ext}->[CALLBACK]) {
 $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
 }

 return Apache::OK;
 }

 sub cgi_handler { content_handler($_[0], ’cgi’) }
 sub pl_handler { content_handler($_[0], ’pl’) }
 sub tt_handler { content_handler($_[0], ’tt’) }

 sub content_handler {
 my($r, $type) = @_;

 $r->content_type(’text/plain’);
 $r->print("A handler of type ’$type’ was called");

 return Apache::OK;
 }

 1;

In the example we have used the following mapping.

 my %exts = (
 cgi => [’perl-script’, \&cgi_handler],
 pl => [’modperl’, \&pl_handler],
 tt => [’perl-script’, \&tt_handler],
 txt => [’default-handler’, undef],
);

So that .cgi requests will be handled by the perl-script handler and the cgi_handler() callback,
.pl requests by modperl and pl_handler(), .tt (template toolkit) by perl-script and the
tt_handler(), finally .txt request by the default-handler handler, which requires no callback.

20529 Jan 2004

14.3.10 PerlFixupHandlerHTTP Handlers

Moreover the handler assumes that if the request’s URI has no file extension or it does, but it’s not in its
mapping, the default-handler will be used, as if the txt extension was used.

After doing the mapping, the handler assigns the handler:

 $r->handler($exts{$ext}->[HANDLER]);

and the callback if needed:

 if (defined $exts{$ext}->[CALLBACK]) {
 $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
 }

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real
things.

Here is how this handler is configured:

 Alias /dispatch/ /home/httpd/httpd-2.0/htdocs/
 <Location /dispatch/>
 PerlFixupHandler MyApache::FileExtDispatch
 </Location>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings
dynamically at run-time.

14.3.11 PerlResponseHandler

The handler (response) phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

This is the only phase that requires two directives under mod_perl. For example:

 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler MyApache::WorldDomination
 </Location>

SetHandler set to perl-script or modperl tells Apache that mod_perl is going to handle the
response generation. PerlResponseHandler tells mod_perl which callback is going to do the job.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Most of the Apache:: modules on CPAN are dealing with this phase. In fact most of the developers
spend the majority of their time working on handlers that generate response content.

29 Jan 2004206

14.3.11 PerlResponseHandler

Let’s write a simple response handler, that just generates some content. This time let’s do something more
interesting than printing "Hello world". Let’s write a handler that prints itself:

 file:MyApache/Deparse.pm

 package MyApache::Deparse;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use B::Deparse ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->print(’sub handler ’, B::Deparse->new->coderef2text(\&handler));

 return Apache::OK;
 }
 1;

To enable this handler add to httpd.conf:

 <Location /deparse>
 SetHandler modperl
 PerlResponseHandler MyApache::Deparse
 </Location>

Now when the server is restarted and we issue a request to http://localhost/deparse we get the following
response:

 sub handler {
 package MyApache::Deparse;
 my $r = shift @_;
 $r->content_type(’text/plain’);
 $r->print(’sub handler ’, ’B::Deparse’->new->coderef2text(\&handler));
 return 0;
 }

If you compare it to the source code, it’s pretty much the same code. B::Deparse is fun to play with!

14.3.12 PerlLogHandler

The log_transaction phase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

20729 Jan 2004

14.3.12 PerlLogHandlerHTTP Handlers

http://localhost/deparse

By this phase all the information about the request and the response is known, therefore the logging
handlers usually record this information in various ways (e.g., logging to a flat file or a database).

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Imagine a situation where you have to log requests into individual files, one per user. Assuming that all
requests start with /users/username/, so it’s easy to categorize requests by the second URI path compo-
nent. Here is the log handler that does that:

 file:MyApache/LogPerUser.pm

 package MyApache::LogPerUser;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::Connection ();
 use Fcntl qw(:flock);

 use Apache::Const -compile => qw(OK DECLINED);

 sub handler {
 my $r = shift;

 my($username) = $r->uri =~ m|^/users/([^/]+)|;
 return Apache::DECLINED unless defined $username;

 my $entry = sprintf qq(%s [%s] "%s" %d %d\n),
 $r->connection->remote_ip, scalar(localtime),
 $r->uri, $r->status, $r->bytes_sent;

 my $log_path = Apache::Server::server_root_relative($r->pool,
 "logs/$username.log");
 open my $fh, ">>$log_path" or die "can’t open $log_path: $!";
 flock $fh, LOCK_EX;
 print $fh $entry;
 close $fh;

 return Apache::OK;
 }
 1;

First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it
simply returns Apache::DECLINED, letting other log handlers to do the logging. Though it could return
Apache::OK since all other log handlers will be run anyway.

Next it builds the log entry, similar to the default access_log entry. It’s comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

29 Jan 2004208

14.3.12 PerlLogHandler

Finally the handler appends this entry to the log file for the user the request was issued for. Usually it’s
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before
performing the writing.

To configure the handler simply enable the module with the PerlLogHandler directive, inside the
wanted section, which was /users/ in our example:

 <Location /users/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlLogHandler MyApache::LogPerUser
 Options +ExecCGI
 </Location>

After restarting the server and issuing requests to the following URIs:

 http://localhost/users/stas/test.pl
 http://localhost/users/eric/test.pl
 http://localhost/users/stas/date.pl

The MyApache::LogPerUser handler will append to logs/stas.log:

 127.0.0.1 [Sat Aug 31 01:50:38 2002] "/users/stas/test.pl" 200 8
 127.0.0.1 [Sat Aug 31 01:50:40 2002] "/users/stas/date.pl" 200 44

and to logs/eric.log:

 127.0.0.1 [Sat Aug 31 01:50:39 2002] "/users/eric/test.pl" 200 8

It’s important to notice that PerlLogHandler can be configured for any subsection of the site, no
matter whether it’s served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server, simply add to httpd.conf:

 <Location />
 PerlLogHandler MyApache::LogPerUser
 </Location>

Since the PerlLogHandler phase is of type RUN_ALL, all other logging handlers will be called as
well.

14.3.13 PerlCleanupHandler

There is no cleanup Apache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase instead of PerlLogHandler if the
logging operation is time consuming. This approach allows to free the client as soon as the response is
sent.

20929 Jan 2004

14.3.13 PerlCleanupHandlerHTTP Handlers

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

There are two ways to register and run cleanup handlers:

1. Using the PerlCleanupHandler phase

 PerlCleanupHandler MyApache::Cleanup

or:

 $r->push_handlers(PerlCleanupHandler => \&cleanup);

This method is identical to all other handlers.

In this technique the cleanup() callback accepts $r as its only argument.

2. Using cleanup_register() acting on the request object’s pool

Since a request object pool is destroyed at the end of each request, we can register a cleanup callback
which will be executed just before the pool is destroyed. For example:

 $r->pool->cleanup_register(\&cleanup, $arg);

The important difference from using the PerlCleanupHandler handler, is that here you can pass
an optional arbitrary argument to the callback function, and no $r argument is passed by default.
Therefore if you need to pass any data other than $r you may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
running ls -l and stores the output in temporary file, which is then used by $r->sendfile to send
the file’s contents. We use push_handlers() to push PerlCleanupHandler to unlink the file at
the end of the request.

 #file:MyApache/Cleanup1.pm
 #-------------------------
 package MyApache::Cleanup1;

 use strict;
 use warnings FATAL => ’all’;

 use File::Spec::Functions qw(catfile);

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’SUCCESS’;

 my $file = catfile "/tmp", "data";

 sub handler {

29 Jan 2004210

14.3.13 PerlCleanupHandler

 my $r = shift;

 $r->content_type(’text/plain’);

 local @ENV{qw(PATH BASH_ENV)};
 qx(/bin/ls -l > $file);

 my $status = $r->sendfile($file);
 die "sendfile has failed" unless $status == APR::SUCCESS;

 $r->push_handlers(PerlCleanupHandler => \&cleanup);

 return Apache::OK;
 }

 sub cleanup {
 my $r = shift;

 die "Can’t find file: $file" unless -e $file;
 unlink $file or die "failed to unlink $file";

 return Apache::OK;
 }
 1;

Next we add the following configuration:

 <Location /cleanup1>
 SetHandler modperl
 PerlResponseHandler MyApache::Cleanup1
 </Location>

Now when a request to /cleanup1 is made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the process id $$ to the file’s name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same process and the $$
trick won’t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes:

 sub unique_id {
 require Apache::MPM;
 require APR::OS;
 return Apache::MPM->is_threaded
 ? "$$." . ${ APR::OS::thread_current() }
 : $$;
 }

In the threaded environment it will return a string containing the process ID, followed by a thread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perl’s rand, some CPAN module or the APR’s APR::UUID:

21129 Jan 2004

14.3.13 PerlCleanupHandlerHTTP Handlers

 sub unique_id {
 require APR::UUID;
 return APR::UUID->new->format;
 }

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the $r->notes table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

 #file:MyApache/Cleanup2.pm
 #-------------------------
 package MyApache::Cleanup2;

 use strict;
 use warnings FATAL => ’all’;

 use File::Spec::Functions qw(catfile);

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use Apache::RequestUtil ();
 use APR::UUID ();
 use APR::Pool ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’SUCCESS’;

 my $file_base = catfile "/tmp", "data-";

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $file = $file_base . APR::UUID->new->format;

 local @ENV{qw(PATH BASH_ENV)};
 qx(/bin/ls -l > $file);

 my $status = $r->sendfile($file);
 die "sendfile has failed" unless $status == APR::SUCCESS;

 $r->pool->cleanup_register(\&cleanup, $file);

 return Apache::OK;
 }

 sub cleanup {
 my $file = shift;

29 Jan 2004212

14.3.13 PerlCleanupHandler

 die "Can’t find file: $file" unless -e $file;
 unlink $file or die "failed to unlink $file";

 return Apache::OK;
 }
 1;

Similarly to the first handler, we add the configuration:

 <Location /cleanup2>
 SetHandler modperl
 PerlResponseHandler MyApache::Cleanup2
 </Location>

And now when requesting /cleanup2 we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up as well.

14.4 Handling HEAD Requests
In order to avoid the overhead of sending the data to the client when the request is of type HEAD in
mod_perl 1.0 we used to return early from the handler:

 return OK if $r->header_only;

This logic is no longer needed in mod_perl 2.0, because Apache 2.0 automatically discards the response
body for HEAD requests. (You can also read the comment in for ap_http_header_filter() in
modules/http/http_protocol.c in the Apache 2.0 source.)

14.5 Extending HTTP Protocol
Extending HTTP under mod_perl is a trivial task. Look at the example of adding a new method EMAIL
for details.

14.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

14.7 Authors

Only the major authors are listed above. For contributors see the Changes file.

21329 Jan 2004

14.4 Handling HEAD RequestsHTTP Handlers

15 Input and Output Filters

29 Jan 2004214

15 Input and Output Filters

15.1 Description
This chapter discusses mod_perl’s input and output filter handlers.

If all you need is to lookup the filtering API proceed directly to the Apache::Filter and
Apache::FilterRec manpages.

15.2 Your First Filter
You certainly already know how filters work. That’s because you encounter filters so often in real life. If
you are unfortunate to live in smog-filled cities like Saigon or Bangkok you are probably used to wear a
dust filter mask:

If you are smoker, chances are that you smoke cigarettes with filters:

If you are a coffee gourmand, you have certainly tried a filter coffee:

21529 Jan 2004

15.1 DescriptionInput and Output Filters

The shower that you use, may have a water filter:

When the sun is too bright, you protect your eyes by wearing sun goggles with UV filter:

If are a photographer you can’t go a step without using filter lenses:

29 Jan 2004216

15.2 Your First Filter

If you love music, you might be unaware of it, but your super-modern audio system is literally loaded with
various electronic filters:

There are many more places in our lives where filters are used. The purpose of all filters is to apply some
transformation to what’s coming into the filter, letting something different out of the filter. Certainly in
some cases it’s possible to modify the source itself, but that makes things unflexible, and but most of the
time we have no control over the source. The advantage of using filters to modify something is that they
can be replaced when requirements change Filters also can be stacked, which allows us to make each filter
do simple transformations. For example by combining several different filters, we can apply multiple
transformations. In certain situations combining several filters of the same kind let’s us achieve a better
quality output.

The mod_perl filters are not any different, they receive some data, modify it and send it out. In the case of
filtering the output of the response handler, we could certainly change the response handler’s logic to do
something different, since we control the response handler. But this may make the code unnecessary
complex. If we can apply transformations to the response handler’s output, it certainly gives us more flexi-
bility and simplifies things. For example if a response needs to be compressed before sent out, it’d be very
inconvenient and inefficient to code in the response handler itself. Using a filter for that purpose is a
perfect solution. Similarly, in certain cases, using an input filter to transform the incoming request data is
the most wise solution. Think of the same example of having the incoming data coming compressed.

Just like with real life filters, you can pipe several filters to modify each other’s output. You can also
customize a selection of different filters at run time.

Without much further ado, let’s write a simple but useful obfuscation filter for our HTML documents.

We are going to use a very simple obfuscation -- turn an HTML document into a one liner, which will
make it harder to read its source without a special processing. To accomplish that we are going to remove
characters \012 (\n) and \015 (\r), which depending on the platform alone or as a combination represent
the end of line and a carriage return.

And here is the filter handler code:

 #file:MyApache/FilterObfuscate.pm
 #--------------------------------
 package MyApache::FilterObfuscate;

 use strict;
 use warnings;

21729 Jan 2004

15.2 Your First FilterInput and Output Filters

 use Apache::Filter ();
 use Apache::RequestRec ();
 use APR::Table ();

 use Apache::Const -compile => qw(OK);

 use constant BUFF_LEN => 1024;

 sub handler {
 my $f = shift;

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer =~ s/[\r\n]//g;
 $f->print($buffer);
 }

 return Apache::OK;
 }
 1;

Next we configure Apache to apply the MyApache::FilterObfuscate filter to all requests that get
mapped to files with an ".html" extension:

 <Files ~ "\.html">
 PerlOutputFilterHandler MyApache::FilterObfuscate
 </Files>

Filter handlers are similar to HTTP handlers, they are expected to return Apache::OK or
Apache::DECLINED, but instead of receiving $r (the request object) as the first argument, they receive
$f (the filter object).

The filter starts by unsetting of the Content-Length response header, because it modifies the length of
the response body (shrinks it). If the response handler had set the Content-Length header and the
filter hasn’t unset it, the client may have problems receiving the response since it’d expect more data than
it was sent.

The core of this filter is a read-modify-print expression in a while loop. The logic is very simple: read at
most BUFF_LEN characters of data into $buffer, apply the regex to remove any occurences of \n and
\r in it, and print the resulting data out. The input data may come from a response handler, or from an
upstream filter. The output data goes to the next filter in the output chain. Even though in this example we
haven’t configured any more filters, internally Apache by itself uses several core filters to manipulate the
data and send it out to the client.

As we are going to explain in great detail in the next sections, the same filter may be called many times
during a single request, every time receiving a chunk of data. For example if the POSTed request data is
64k long, an input filter could be invoked 8 times, each time receiving 8k of data. The same may happen
during response phase, where an upstream filter may split 64k output in 8 8k chunks. The while loop that

29 Jan 2004218

15.2 Your First Filter

we just saw is going to read each of these 8k in 8 calls, since it requests 1k on every read() call.

Since it’s enough to unset the Content-Length header when the filter is called the first time, we need
to have some flag telling us whether we have done the job. The method ctx() provides this functional-
ity:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

the unset() call will be made only on the first filter call for each request. Of course you can store any
kind of a Perl data structure in $f->ctx and retrieve it later in subsequent filter invocations of the same
request. We will show plenty of examples using this method in the following sections.

Of course the MyApache::FilterObfuscate filter logic should take into account situations where
removing new line characters will break the correct rendering, as is the case if there are multi-line
<pre>...</pre> entries, but since it escalates the complexity of the filter, we will disregard this require-
ment for now.

A positive side effect of this obfuscation algorithm is in shortening the amount of the data sent to the
client. If you want to look at the production ready implementation, which takes into account the HTML
markup specifics, the Apache::Clean module, available from CPAN, does just that.

mod_perl I/O filtering follows the Perl’s principle of making simple things easy and difficult things possi-
ble. You have seen that it’s trivial to write simple filters. As you read through this tutorial you will see that
much more difficult things are possible, even though a more elaborated code will be needed.

15.3 I/O Filtering Concepts
Before introducing the APIs, mod_perl provides for Apache Filtering, there are several important concepts
to understand.

15.3.1 Two Methods for Manipulating Data

Apache 2.0 considers all incoming and outgoing data as chunks of information, disregarding their kind and
source or storage methods. These data chunks are stored in buckets, which form bucket brigades. Input and
output filters massage the data in bucket brigades. Response and protocol handlers also receive and send
data using bucket brigades, though in most cases this is hidden behind wrappers, such as read() and
print().

mod_perl 2.0 filters can directly manipulate the bucket brigades or use the simplified streaming interface
where the filter object acts similar to a filehandle, which can be read from and printed to.

Even though you don’t use bucket brigades directly when you use the streaming filter interface (which
works on bucket brigades behind the scenes), it’s still important to understand bucket brigades. For
example you need to know that an output filter will be invoked as many times as the number of bucket
brigades sent from an upstream filter or a content handler. Or you need to know that the end of stream

21929 Jan 2004

15.3 I/O Filtering ConceptsInput and Output Filters

indicator (EOS) is sometimes sent in a separate bucket brigade, so it shouldn’t be a surprise that the filter
was invoked even though no real data went through. As we delve into the filter details you will see that
understanding bucket brigades, will help to understand how filters work.

Moreover you will need to understand bucket brigades if you plan to implement protocol modules.

15.3.2 HTTP Request Versus Connection Filters

HTTP request filters are applied when Apache serves an HTTP request.

HTTP request input filters get invoked on the body of the HTTP request only if the body is consumed by
the content handler. HTTP request headers are not passed through the HTTP request input filters.

HTTP response output filters get invoked on the body of the HTTP response if the content handler has
generated one. HTTP response headers are not passed through the HTTP response output filters.

Connection level filters are applied at the connection level.

A connection may be configured to serve one or more HTTP requests, or handle other protocols. Connec-
tion filters see all the incoming and outgoing data. If an HTTP request is served, connection filters can
modify the HTTP headers and the body of request and response. If a different protocol is served over
connection (e.g. IMAP), the data could have a completely different pattern, than the HTTP protocol
(headers + body).

Apache supports several other filter types, which mod_perl 2.0 may support in the future.

15.3.3 Multiple Invocations of Filter Handlers

Unlike other Apache handlers, filter handlers may get invoked more than once during the same request.
Filters get invoked as many times as the number of bucket brigades sent from an upstream filter or a
content provider.

For example if a content generation handler sends a string, and then forces a flush, following by more
data:

 # assuming buffered STDOUT ($|==0)
 $r->print("foo");
 $r->rflush;
 $r->print("bar");

Apache will generate one bucket brigade with two buckets (there are several types of buckets which
contain data, one of them is transient):

 bucket type data

 1st transient foo
 2nd flush

29 Jan 2004220

15.3.2 HTTP Request Versus Connection Filters

and send it to the filter chain. Then assuming that no more data was sent after print("bar"), it will
create a last bucket brigade containing data:

 bucket type data

 1st transient bar

and send it to the filter chain. Finally it’ll send yet another bucket brigade with the EOS bucket indicating
that there will be no more data sent:

 bucket type data

 1st eos

Notice that the EOS bucket may come attached to the last bucket brigade with data, instead of coming in
its its own bucket brigade. Filters should never make an assumption that the EOS bucket is arriving alone
in a bucket brigade. Therefore the first output filter will be invoked two or three times (three times if EOS
is coming in its own brigade), depending on the number of bucket brigades sent by the response handler.

A user may install an upstream filter, and that filter may decide to insert extra bucket brigades or collect
all the data in all bucket brigades passing through it and send it all down in one brigade. What’s important
to remember is when coding a filter, one should never assume that the filter is always going to be invoked
once, or a fixed number of times. Neither one can make assumptions on the way the data is going to come
in. Therefore a typical filter handler may need to split its logic in three parts.

Jumping ahead we will show some pseudo-code that represents all three parts. This is how a typical
stream-oriented filter handler looks like:

 sub handler {
 my $f = shift;

 # runs on first invocation
 unless ($f->ctx) {
 init($f);
 $f->ctx(1);
 }

 # runs on all invocations
 process($f);

 # runs on the last invocation
 if ($f->seen_eos) {
 finalize($f);
 }

 return Apache::OK;
 }
 sub init { ... }
 sub process { ... }
 sub finalize { ... }

22129 Jan 2004

15.3.3 Multiple Invocations of Filter HandlersInput and Output Filters

The following diagram depicts all three parts:

Let’s explain each part using this pseudo-filter.

1. Initialization

During the initialization, the filter runs all the code that should be performed only once across multi-
ple invocations of the filter (this is during a single request). The filter context is used to accomplish
that task. For each new request the filter context is created before the filter is called for the first time
and its destroyed at the end of the request.

 unless ($f->ctx) {
 init($f);
 $f->ctx(1);
 }

When the filter is invoked for the first time $f->ctx returns undef and the custom function init()
is called. This function could, for example, retrieve some configuration data, set in httpd.conf or
initialize some datastructure to its default value.

To make sure that init() won’t be called on the following invocations, we must set the filter context
before the first invocation is completed:

 $f->ctx(1);

29 Jan 2004222

15.3.3 Multiple Invocations of Filter Handlers

In practice, the context is not just served as a flag, but used to store real data. For example the follow-
ing filter handler counts the number of times it was invoked during a single request:

 sub handler {
 my $f = shift;

 my $ctx = $f->ctx;
 $ctx->{invoked}++;
 $f->ctx($ctx);
 warn "filter was invoked $ctx->{invoked} times\n";

 return Apache::DECLINED;
 }

Since this filter handler doesn’t consume the data from the upstream filter, it’s important that this
handler returns Apache::DECLINED, in which case mod_perl passes the current bucket brigade to
the next filter. If this handler returns Apache::OK, the data will be simply lost. And if that data
included a special EOS token, this may wreck havoc.

Unsetting the Content-Length header for filters that modify the response body length is a good
example of the code to be used in the initialization phase:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

We will see more of initialization examples later in this chapter.

2. Processing

The next part:

 process($f);

is unconditionally invoked on every filter invocation. That’s where the incoming data is read, modi-
fied and sent out to the next filter in the filter chain. Here is an example that lowers the case of the
characters passing through:

 use constant READ_SIZE => 1024;
 sub process {
 my $f = shift;
 while ($f->read(my $data, READ_SIZE)) {
 $f->print(lc $data);
 }
 }

Here the filter operates only on a single bucket brigade. Since it manipulates every character sepa-
rately the logic is really simple.

22329 Jan 2004

15.3.3 Multiple Invocations of Filter HandlersInput and Output Filters

In more complicated filters the filters may need to buffer data first before the transformation can be
applied. For example if the filter operates on html tokens (e.g., ’’), it’s possible
that one brigade will include the beginning of the token (’<img ’) and the remainder of the token
(’src="me.jpg">’) will come in the next bucket brigade (on the next filter invocation). In certain cases
it may involve more than two bucket brigades to get the whole token. In such a case the filter will have to
store the remainder of unprocessed data in the filter context and then reuse it on the next invocation.
Another good example is a filter that performs data compression (compression is usually effective
only when applied to relatively big chunks of data), so if a single bucket brigade doesn’t contain
enough data, the filter may need to buffer the data in the filter context till it collects enough of it.

We will see the implementation examples in this chapter.

3. Finalization

Finally, some filters need to know when they are invoked for the last time, in order to perform
various cleanups and/or flush any remaining data. As mentioned earlier, Apache indicates this event
by a special end of stream "token", represented by a bucket of type EOS. If the filter is using the
streaming interface, rather than manipulating the bucket brigades directly, and it was calling read() in
a while loop, it can check whether this is the last time it’s invoked, using the $f->seen_eos
method:

 if ($f->seen_eos) {
 finalize($f);
 }

This check should be done at the end of the filter handler, because sometimes the EOS "token" comes
attached to the tail of data (the last invocation gets both the data and EOS) and sometimes it comes all
alone (the last invocation gets only EOS). So if this test is performed at the beginning of the handler
and the EOS bucket was sent in together with the data, the EOS event may be missed and filter won’t
function properly.

Jumping ahead, filters, directly manipulating bucket brigades, have to look for a bucket whose type is
EOS to accomplish this. We will see examples later in the chapter.

Some filters may need to deploy all three parts of the described logic, others will need to do only initial-
ization and processing, or processing and finalization, while the simplest filters might perform only the
normal processing (as we saw in the example of the filter handler that lowers the case of the characters
going through it).

15.3.4 Blocking Calls

All filters (excluding the core filter that reads from the network and the core filter that writes to it) block at
least once when invoked. Depending on whether this is an input or an output filter, the blocking happens
when the bucket brigade is requested from the upstream filter or when the bucket brigade is passed to the
downstream filter.

29 Jan 2004224

15.3.4 Blocking Calls

First of all, the input and output filters differ in the ways they acquire the bucket brigades (which includes
the data that they filter). Even though when a streaming API is used the difference can’t be seen, it’s
important to understand how things work underneath. Therefore we are going to show examples of trans-
parent filters, which pass data through them unmodified. Instead of reading the data in and printing it out
the bucket brigades are now passed as is.

Here is a code for a transparent input filter:

 #file:MyApache/FilterTransparent.pm (first part)
 #---
 package MyApache::FilterTransparent;

 use Apache::Const -compile => qw(OK);
 use APR::Const -compile => ’:common’;

 sub in {
 my ($f, $bb, $mode, $block, $readbytes) = @_;

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 return Apache::OK;
 }

When the input filter in() is invoked, it first asks the upstream filter for the next bucket brigade (using the
get_brigade() call). That upstream filter is in turn going to ask for the bucket brigade from the next
upstream filter in chain, etc., till the last filter (called core_in), that reads from the network is reached.
The core_in filter reads, using a socket, a portion of the incoming data from the network, processes it
and sends it to its downstream filter, which will process the data and send it to its downstream filter, etc.,
till it reaches the very first filter who has asked for the data. (In reality some other handler triggers the
request for the bucket brigade, e.g., an HTTP response handler, or a protocol module, but for our discus-
sion it’s good enough to assume that it’s the first filter that issues the get_brigade() call.)

The following diagram depicts a typical input filters chain data flow in addition to the program control
flow.

22529 Jan 2004

15.3.4 Blocking CallsInput and Output Filters

The black- and white-headed arrows show when the control is switched from one filter to another. In addi-
tion the black-headed arrows show the actual data flow. The diagram includes some pseudo-code, both for
in Perl for the mod_perl filters and in C for the internal Apache filters. You don’t have to understand C to
understand this diagram. What’s important to understand is that when input filters are invoked they first
call each other via the get_brigade() call and then block (notice the brick wall on the diagram),
waiting for the call to return. When this call returns all upstream filters have already completed finishing
their filtering task.

As mentioned earlier, the streaming interface hides these details, however the first $f->read() call will
block, as underneath it performs the get_brigade() call.

The diagram shows a part of the actual input filter chain for an HTTP request, the ... shows that there
are more filters in between the mod_perl filter and http_in.

Now let’s look at what happens in the output filters chain. Here the first filter acquires the bucket brigades
containing the response data, from the content handler (or another protocol handler if we aren’t talking
HTTP), it then may apply some modification and pass the data to the next filter (using the
pass_brigade() call), which in turn applies its modifications and sends the bucket brigade to the next
filter, etc., all the way down to the last filter (called core) which writes the data to the network, via the
socket the client is listening to. Even though the output filters don’t have to wait to acquire the bucket
brigade (since the upstream filter passes it to them as an argument), they still block in a similar fashion to
input filters, since they have to wait for the pass_brigade() call to return.

Here is an example of a transparent output filter:

29 Jan 2004226

15.3.4 Blocking Calls

 #file:MyApache/FilterTransparent.pm (continued)
 #---
 sub out {
 my ($f, $bb) = @_;

 my $rv = $f->next->pass_brigade($bb);
 return $rv unless $rv == APR::SUCCESS;

 return Apache::OK;
 }
 1;

The out() filter passes $bb to the downstream filter unmodified and if you add debug prints before and
after the pass_brigade() call and configure the same filter twice, the debug print will show the block-
ing call.

The following diagram depicts a typical output filters chain data flow in addition to the program control
flow:

Similar to the input filters chain diagram, the arrows show the program control flow and in addition the
black-headed arrows show the data flow. Again, it uses a Perl pseudo-code for the mod_perl filter and C
pseudo-code for the Apache filters, similarly the brick walls represent the waiting. And again, the diagram
shows a part of the real HTTP response filters chain, where ... stands for the omitted filters.

15.4 mod_perl Filters Declaration and Configuration
Now let’s see how mod_perl filters are declared and configured.

22729 Jan 2004

15.4 mod_perl Filters Declaration and ConfigurationInput and Output Filters

15.4.1 Filter Priority Types

When Apache filters are configured they are inserted into the filters chain according to their priority/type.
In most cases when using one or two filters things will just work, however if you find that the order of
filter invocation is wrong, the filter priority type should be consulted. Unfortunately this information is
available only by consulting the source code, unless it’s documented in the module man pages. Numerical
definitions of priority types, such as AP_FTYPE_CONTENT_SET, AP_FTYPE_RESOURCE, can be
found in include/util_filter.h.

As of this writing Apache comes with two core filters: DEFLATE and INCLUDES. For example in the
following configuration:

 SetOutputFilter DEFLATE
 SetOutputFilter INCLUDES

the DEFLATE filter will be inserted in the filters chain after the INCLUDES filter, even though it was
configured before it. This is because the DEFLATE filter is of type AP_FTYPE_CONTENT_SET (20),
whereas the INCLUDES filter is of type AP_FTYPE_RESOURCE (10).

As of this writing mod_perl provides two kind of filters with fixed priority type:

 Handler Priority Value

 FilterRequestHandler AP_FTYPE_RESOURCE 10
 FilterConnectionHandler AP_FTYPE_PROTOCOL 30

Therefore FilterRequestHandler filters (10) will be always invoked before the DEFLATE filter
(20), whereas FilterConnectionHandler filters (30) after it. The INCLUDES filter (10) has the
same priority as FilterRequestHandler filters (10), and therefore it’ll be inserted according to the
configuration order, when PerlSetOutputFilter or PerlSetInputFilter is used.

15.4.2 PerlInputFilterHandler

The PerlInputFilterHandler directive registers a filter, and inserts it into the relevant input filters
chain.

This handler is of type VOID.

The handler’s configuration scope is DIR.

The following sections include several examples that use the PerlInputFilterHandler handler.

15.4.3 PerlOutputFilterHandler

The PerlOutputFilterHandler directive registers a filter, and inserts it into the relevant output
filters chain.

29 Jan 2004228

15.4.1 Filter Priority Types

This handler is of type VOID.

The handler’s configuration scope is DIR.

The following sections include several examples that use the PerlOutputFilterHandler handler.

15.4.4 PerlSetInputFilter

The SetInputFilter directive, documented at
http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter sets the filter or filters which will process
client requests and POST input when they are received by the server (in addition to any filters configured
earlier).

To mix mod_perl and non-mod_perl input filters of the same priority nothing special should be done. For
example if we have an imaginary Apache filter FILTER_FOO and mod_perl filter
MyApache::FilterInputFoo, this configuration:

 SetInputFilter FILTER_FOO
 PerlInputFilterHandler MyApache::FilterInputFoo

will add both filters, however the order of their invocation might be not the one that you’ve expected. To
make the invocation order the same as the insertion order replace SetInputFilter with PerlSet-
InputFilter, like so:

 PerlSetInputFilter FILTER_FOO
 PerlInputFilterHandler MyApache::FilterInputFoo

now FILTER_FOO filter will be always executed before the MyApache::FilterInputFoo filter,
since it was configured before MyApache::FilterInputFoo (i.e., it’ll apply its transformations on
the incoming data last). Here is a diagram input filters chain and the data flow from the network to the
response handler for the presented configuration:

 response handler
 /\
 ||
 FILTER_FOO
 /\
 ||
 MyApache::FilterInputFoo
 /\
 ||
 core input filters
 /\
 ||
 network

As explained in the section Filter Priority Types this directive won’t affect filters of different priority. For
example assuming that MyApache::FilterInputFoo is a FilterRequestHandler filter, the
configurations:

22929 Jan 2004

15.4.4 PerlSetInputFilterInput and Output Filters

http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter

 PerlInputFilterHandler MyApache::FilterInputFoo
 PerlSetInputFilter DEFLATE

and

 PerlSetInputFilter DEFLATE
 PerlInputFilterHandler MyApache::FilterInputFoo

are equivalent, because mod_deflate’s DEFLATE filter has a higher priority than MyApache::Filter-
InputFoo, thefore it’ll always be inserted into the filter chain after MyApache::FilterInputFoo,
(i.e. the DEFLATE filter will apply its transformations on the incoming data first). Here is a diagram input
filters chain and the data flow from the network to the response handler for the presented configuration:

 response handler
 /\
 ||
 MyApache::FilterInputFoo
 /\
 ||
 DEFLATE
 /\
 ||
 core input filters
 /\
 ||
 network

SetInputFilter’s ; semantics are supported as well. For example, in the following configuration:

 PerlInputFilterHandler MyApache::FilterInputFoo
 PerlSetInputFilter FILTER_FOO;FILTER_BAR

MyApache::FilterOutputFoo will be executed first, followed by FILTER_FOO and finally by
FILTER_BAR (again, assuming that all three filters have the same priority).

The PerlSetInputFilter directives’s configuration scope is DIR.

15.4.5 PerlSetOutputFilter

The SetOutputFilter directive, documented at
http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter sets the filters which will process
responses from the server before they are sent to the client (in addition to any filters configured earlier).

To mix mod_perl and non-mod_perl output filters of the same priority nothing special should be done.
This configuration:

 SetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

will add all two filters to the filter chain, however the order of their invocation might be not the one that
you’ve expected. To preserve the insertion order replace SetOutputFilter with PerlSetOutput-
Filter, like so:

29 Jan 2004230

15.4.5 PerlSetOutputFilter

http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter

 PerlSetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

now mod_include’s INCLUDES filter will be always executed before the MyApache::FilterOut-
putFoo filter. Here is a diagram input filters chain and the data flow from the response handler to the
network for the presented configuration:

 response handler
 ||
 \/
 INCLUDES
 ||
 \/
 MyApache::FilterOutputFoo
 ||
 \/
 core output filters
 ||
 \/
 network

SetOutputFilter’s ; semantics are supported as well. For example, in the following configuration:

 PerlOutputFilterHandler MyApache::FilterOutputFoo
 PerlSetOutputFilter INCLUDES;FILTER_FOO

MyApache::FilterOutputFoo will be executed first, followed by INCLUDES and finally by
FILTER_FOO (again, assuming that all three filters have the same priority).

Just as explained in the PerlSetInputFilter section, if filters have different priorities, the insertion
order might be different. For example in the following configuration:

 PerlSetOutputFilter DEFLATE
 PerlSetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

mod_include’s INCLUDES filter will be always executed before the MyApache::FilterOutputFoo
filter. The latter will be followed by mod_deflate’s DEFLATE filter, even though it was configured before
the other two filters. This is because it has a higher priority. And the corresponding diagram looks like so:

 response handler
 ||
 \/
 INCLUDES
 ||
 \/
 MyApache::FilterOutputFoo
 ||
 \/
 DEFLATE
 ||
 \/

23129 Jan 2004

15.4.5 PerlSetOutputFilterInput and Output Filters

 core output filters
 ||
 \/
 network

The PerlSetOutputFilter directives’s configuration scope is DIR.

15.4.6 HTTP Request vs. Connection Filters

mod_perl 2.0 supports connection and HTTP request filtering. mod_perl filter handlers specify the type of
the filter using the method attributes.

HTTP request filter handlers are declared using the FilterRequestHandler attribute. Consider the
following request input and output filters skeleton:

 package MyApache::FilterRequestFoo;
 use base qw(Apache::Filter);

 sub input : FilterRequestHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 #...
 }

 sub output : FilterRequestHandler {
 my($f, $bb) = @_;
 #...
 }

 1;

If the attribute is not specified, the default FilterRequestHandler attribute is assumed. Filters spec-
ifying subroutine attributes must subclass Apache::Filter, others only need to:

 use Apache::Filter ();

The request filters are usually configured in the <Location> or equivalent sections:

 PerlModule MyApache::FilterRequestFoo
 PerlModule MyApache::NiceResponse
 <Location /filter_foo>
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 PerlInputFilterHandler MyApache::FilterRequestFoo::input
 PerlOutputFilterHandler MyApache::FilterRequestFoo::output
 </Location>

Now we have the request input and output filters configured.

The connection filter handler uses the FilterConnectionHandler attribute. Here is a similar
example for the connection input and output filters.

29 Jan 2004232

15.4.6 HTTP Request vs. Connection Filters

 package MyApache::FilterConnectionBar;
 use base qw(Apache::Filter);

 sub input : FilterConnectionHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 #...
 }

 sub output : FilterConnectionHandler {
 my($f, $bb) = @_;
 #...
 }

 1;

This time the configuration must be done outside the <Location> or equivalent sections, usually within
the <VirtualHost> or the global server configuration:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlModule MyApache::FilterConnectionBar
 PerlModule MyApache::NiceResponse

 PerlInputFilterHandler MyApache::FilterConnectionBar::input
 PerlOutputFilterHandler MyApache::FilterConnectionBar::output
 <Location />
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 </Location>

 </VirtualHost>

This accomplishes the configuration of the connection input and output filters.

Notice that for HTTP requests the only difference between connection filters and request filters is that the
former see everything: the headers and the body, whereas the latter see only the body.

mod_perl provides two interfaces to filtering: a direct bucket brigades manipulation interface and a
simpler, stream-oriented interface. The examples in the following sections will help you to understand the
difference between the two interfaces.

15.4.7 Filter Initialization Phase

Like in any cool application, there is a hidden door, that let’s you do cool things. mod_perl is not an
exception.

where you can plug yet another callback. This init callback runs immediately after the filter handler is
inserted into the filter chain, before it was invoked for the first time. Here is a skeleton of an init handler:

23329 Jan 2004

15.4.7 Filter Initialization PhaseInput and Output Filters

 sub init : FilterInitHandler {
 my $f = shift;
 #...
 return Apache::OK;
 }

The attribute FilterInitHandler marks the Perl function suitable to be used as a filter initialization
callback, which is called immediately after a filter is inserted to the filter chain and before it’s actually
called.

For example you may decide to dynamically remove a filter before it had a chance to run, if some condi-
tion is true:

 sub init : FilterInitHandler {
 my $f = shift;
 $f->remove() if should_remove_filter();
 return Apache::OK;
 }

Not all Apache::Filter methods can be used in the init handler, because it’s not a filter. Hence you
can use methods that operate on the filter itself, such as remove() and ctx() or retrieve request infor-
mation, such as r() and c(). But not methods that operate on data, such as read() and print().

In order to hook an init filter handler, the real filter has to assign this callback using the Filter-
HasInitHandler which accepts a reference to the callback function, similar to push_handlers().
The used callback function has to have the FilterInitHandler attribute. For example:

 package MyApache::FilterBar;
 use base qw(Apache::Filter);
 sub init : FilterInitHandler { ... }
 sub filter : FilterRequestHandler FilterHasInitHandler(\&init) {
 my ($f, $bb) = @_;
 # ...
 return Apache::OK;
 }

While attributes are parsed during the code compilation (it’s really a sort of source filter), the argument to
the FilterHasInitHandler() attribute is compiled at a later stage once the module is compiled.

The argument to FilterHasInitHandler() can be any Perl code which when eval()’ed returns a
code reference. For example:

 package MyApache::OtherFilter;
 use base qw(Apache::Filter);
 sub init : FilterInitHandler { ... }

 package MyApache::FilterBar;
 use MyApache::OtherFilter;
 use base qw(Apache::Filter);
 sub get_pre_handler { \&MyApache::OtherFilter::init }
 sub filter : FilterHasInitHandler(get_pre_handler()) { ... }

29 Jan 2004234

15.4.7 Filter Initialization Phase

Here the MyApache::FilterBar::filter handler is configured to run the MyApache::Other-
Filter::init init handler.

Notice that the argument to FilterHasInitHandler() is always eval()’ed in the package of the
real filter handler (not the init handler). So the above code leads to the following evaluation:

 $init_sub = eval "package MyApache::FilterBar; get_pre_handler()";

though, this is done in C, using the eval_pv() C call.

META: currently only one initialization callback can be registered per filter handler. If the need to register
more than one arises it should be very easy to extend the functionality.

15.5 All-in-One Filter
Before we delve into the details of how to write filters that do something with the data, lets first write a
simple filter that does nothing but snooping on the data that goes through it. We are going to develop the
MyApache::FilterSnoop handler which can snoop on request and connection filters, in input and
output modes.

But first let’s develop a simple response handler that simply dumps the request’s args and content as
strings:

 file:MyApache/Dump.pm

 package MyApache::Dump;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use APR::Table ();

 use Apache::Const -compile => qw(OK M_POST);

 sub handler {
 my $r = shift;
 $r->content_type(’text/plain’);

 $r->print("args:\n", $r->args, "\n");

 if ($r->method_number == Apache::M_POST) {
 my $data = content($r);
 $r->print("content:\n$data\n");
 }

 return Apache::OK;
 }

 sub content {
 my $r = shift;

23529 Jan 2004

15.5 All-in-One FilterInput and Output Filters

 $r->setup_client_block;

 return ’’ unless $r->should_client_block;

 my $len = $r->headers_in->get(’content-length’);
 my $buf;
 $r->get_client_block($buf, $len);

 return $buf;
 }

 1;

which is configured as:

 PerlModule MyApache::Dump
 <Location /dump>
 SetHandler modperl
 PerlResponseHandler MyApache::Dump
 </Location>

If we issue the following request:

 % echo "mod_perl rules" | POST ’http://localhost:8002/dump?foo=1&bar=2’

the response will be:

 args:
 foo=1&bar=2
 content:
 mod_perl rules

As you can see it simply dumped the query string and the posted data.

Now let’s write the snooping filter:

 file:MyApache/FilterSnoop.pm

 package MyApache::FilterSnoop;

 use strict;
 use warnings;

 use base qw(Apache::Filter);
 use Apache::FilterRec ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’:common’;

 sub connection : FilterConnectionHandler { snoop("connection", @_) }
 sub request : FilterRequestHandler { snoop("request", @_) }

 sub snoop {

29 Jan 2004236

15.5 All-in-One Filter

 my $type = shift;
 my($f, $bb, $mode, $block, $readbytes) = @_; # filter args

 # $mode, $block, $readbytes are passed only for input filters
 my $stream = defined $mode ? "input" : "output";

 # read the data and pass-through the bucket brigades unchanged
 if (defined $mode) {
 # input filter
 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;
 bb_dump($type, $stream, $bb);
 }
 else {
 # output filter
 bb_dump($type, $stream, $bb);
 my $rv = $f->next->pass_brigade($bb);
 return $rv unless $rv == APR::SUCCESS;
 }

 return Apache::OK;

 }

 sub bb_dump {
 my($type, $stream, $bb) = @_;

 my @data;
 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 $b->read(my $bdata);
 $bdata = ’’ unless defined $bdata;
 push @data, $b->type->name, $bdata;
 }

 # send the sniffed info to STDERR so not to interfere with normal
 # output
 my $direction = $stream eq ’output’ ? ">>>" : "<<<";
 print STDERR "\n$direction $type $stream filter\n";

 my $c = 1;
 while (my($btype, $data) = splice @data, 0, 2) {
 print STDERR " o bucket $c: $btype\n";
 print STDERR "[$data]\n";
 $c++;
 }
 }
 1;

This package provides two filter handlers, one for connection and another for request filtering:

 sub connection : FilterConnectionHandler { snoop("connection", @_) }
 sub request : FilterRequestHandler { snoop("request", @_) }

Both handlers forward their arguments to the snoop() function that does the real job. We needed to add
these two subroutines in order to assign the two different attributes. Plus the functions pass the filter type
to snoop() as the first argument, which gets shifted off @_ and the rest of the @_ are the arguments that

23729 Jan 2004

15.5 All-in-One FilterInput and Output Filters

were originally passed to the filter handler.

It’s easy to know whether a filter handler is running in the input or the output mode. The arguments $f
and $bb are always passed, whereas the arguments $mode, $block, and $readbytes are passed only
to input filter handlers.

If we are in the input mode, in the same call we retrieve the bucket brigade from the previous filter on the
input filters stack and immediately link it to the $bb variable which makes the bucket brigade available to
the next input filter when the filter handler returns. If we forget to perform this linking our filter will
become a black hole in which data simply disappears. Next we call bb_dump() which dumps the type of
the filter and the contents of the bucket brigade to STDERR, without influencing the normal data flow.

If we are in the output mode, the $bb variable already points to the current bucket brigade. Therefore we
can read the contents of the brigade right away. After that we pass the brigade to the next filter.

Let’s snoop on connection and request filter levels in both directions by applying the following configura-
tion:

 Listen 8008
 <VirtualHost _default_:8008>
 PerlModule MyApache::FilterSnoop
 PerlModule MyApache::Dump

 # Connection filters
 PerlInputFilterHandler MyApache::FilterSnoop::connection
 PerlOutputFilterHandler MyApache::FilterSnoop::connection

 <Location /dump>
 SetHandler modperl
 PerlResponseHandler MyApache::Dump
 # Request filters
 PerlInputFilterHandler MyApache::FilterSnoop::request
 PerlOutputFilterHandler MyApache::FilterSnoop::request
 </Location>

 </VirtualHost>

Notice that we use a virtual host because we want to install connection filters.

If we issue the following request:

 % echo "mod_perl rules" | POST ’http://localhost:8008/dump?foo=1&bar=2’

We get the same response, when using MyApache::FilterSnoop, because our snooping filter didn’t
change anything. Though there was a lot of output printed to error_log. We present it all here, since it
helps a lot to understand how filters work.

First we can see the connection input filter at work, as it processes the HTTP headers. We can see that for
this request each header is put into a separate brigade with a single bucket. The data is conveniently
enclosed by [] so you can see the new line characters as well.

29 Jan 2004238

15.5 All-in-One Filter

 <<< connection input filter
 o bucket 1: HEAP
 [POST /dump?foo=1&bar=2 HTTP/1.1
]

 <<< connection input filter
 o bucket 1: HEAP
 [TE: deflate,gzip;q=0.3
]

 <<< connection input filter
 o bucket 1: HEAP
 [Connection: TE, close
]

 <<< connection input filter
 o bucket 1: HEAP
 [Host: localhost:8008
]

 <<< connection input filter
 o bucket 1: HEAP
 [User-Agent: lwp-request/2.01
]

 <<< connection input filter
 o bucket 1: HEAP
 [Content-Length: 14
]

 <<< connection input filter
 o bucket 1: HEAP
 [Content-Type: application/x-www-form-urlencoded
]

 <<< connection input filter
 o bucket 1: HEAP
 [
]

Here the HTTP header has been terminated by a double new line. So far all the buckets were of the HEAP
type, meaning that they were allocated from the heap memory. Notice that the HTTP request input filters
will never see the bucket brigades with HTTP headers, as it has been consumed by the last core connection
filter.

The following two entries are generated when MyApache::Dump::handler reads the POSTed
content:

23929 Jan 2004

15.5 All-in-One FilterInput and Output Filters

 <<< connection input filter
 o bucket 1: HEAP
 [mod_perl rules]

 <<< request input filter
 o bucket 1: HEAP
 [mod_perl rules]
 o bucket 2: EOS
 []

as we saw earlier on the diagram, the connection input filter is run before the request input filter. Since our
connection input filter was passing the data through unmodified and no other custom connection input
filter was configured, the request input filter sees the same data. The last bucket in the brigade received by
the request input filter is of type EOS, meaning that all the input data from the current request has been
received.

Next we can see that MyApache::Dump::handler has generated its response. However we can see
that only the request output filter gets run at this point:

 >>> request output filter
 o bucket 1: TRANSIENT
 [args:
 foo=1&bar=2
 content:
 mod_perl rules
]

This happens because Apache hasn’t sent yet the response HTTP headers to the client. The request filter
sees a bucket brigade with a single bucket of type TRANSIENT which is allocated from the stack memory.

The moment the first bucket brigade of the response body has entered the connection output filters,
Apache injects a bucket brigade with the HTTP headers. Therefore we can see that the connection output
filter is filtering the brigade with HTTP headers (notice that the request output filters don’t see it):

 >>> connection output filter
 o bucket 1: HEAP
 [HTTP/1.1 200 OK
 Date: Tue, 19 Nov 2002 15:59:32 GMT
 Server: Apache/2.0.44-dev (Unix) mod_perl/1.99_08-dev
 Perl/v5.8.0 mod_ssl/2.0.44-dev OpenSSL/0.9.6d DAV/2
 Connection: close
 Transfer-Encoding: chunked
 Content-Type: text/plain; charset=ISO-8859-1

]

and followed by the first response body’s brigade:

 >>> connection output filter
 o bucket 1: TRANSIENT
 [2b
]
 o bucket 2: TRANSIENT
 [args:

29 Jan 2004240

15.5 All-in-One Filter

 foo=1&bar=2
 content:
 mod_perl rules

]
 o bucket 3: IMMORTAL
 [
]

If the response is large, the request and connection filters will filter chunks of the response one by one.

META: what’s the size of the chunks? 8k?

Finally, Apache sends a series of the bucket brigades to finish off the response, including the end of
stream meta-bucket to tell filters that they shouldn’t expect any more data, and flush buckets to flush the
data, to make sure that any buffered output is sent to the client:

 >>> connection output filter
 o bucket 1: IMMORTAL
 [0

]
 o bucket 2: EOS
 []

 >>> connection output filter
 o bucket 1: FLUSH
 []

 >>> connection output filter
 o bucket 1: FLUSH
 []

This module helps to understand that each filter handler can be called many time during each request and
connection. It’s called for each bucket brigade.

Also it’s important to mention that HTTP request input filters are invoked only if there is some POSTed
data to read and it’s consumed by a content handler.

15.6 Input Filters
mod_perl supports Connection and HTTP Request input filters:

15.6.1 Connection Input Filters

Let’s say that we want to test how our handlers behave when they are requested as HEAD requests, rather
than GET. We can alter the request headers at the incoming connection level transparently to all handlers.

This example’s filter handler looks for data like:

24129 Jan 2004

15.6 Input FiltersInput and Output Filters

 GET /perl/test.pl HTTP/1.1

and turns it into:

 HEAD /perl/test.pl HTTP/1.1

The following input filter handler does that by directly manipulating the bucket brigades:

 file:MyApache/InputFilterGET2HEAD.pm

 package MyApache::InputFilterGET2HEAD;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterConnectionHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 return Apache::DECLINED if $f->ctx;

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 my $data;
 my $status = $b->read($data);
 return $status unless $status == APR::SUCCESS;
 warn("data: $data\n");

 if ($data and $data =~ s|^GET|HEAD|) {
 my $bn = APR::Bucket->new($data);
 $b->insert_after($bn);
 $b->remove; # no longer needed
 $f->ctx(1); # flag that that we have done the job
 last;
 }
 }

 Apache::OK;
 }

 1;

The filter handler is called for each bucket brigade, which in turn includes buckets with data. The gist of
any input filter handler is to request the bucket brigade from the upstream filter, and return it downstream
filter using the second argument $bb. It’s important to remember that you can call methods on this argu-
ment, but you shouldn’t assign to this argument, or the chain will be broken. You have two techniques to

29 Jan 2004242

15.6.1 Connection Input Filters

choose from to retrieve-modify-return bucket brigades:

1. Create a new empty bucket brigade $ctx_bb, pass it to the upstream filter via get_brigade()
and wait for this call to return. When it returns, $ctx_bb is populated with buckets. Now the filter
should move the bucket from $ctx_bb to $bb, on the way modifying the buckets if needed. Once
the buckets are moved, and the filter returns, the downstream filter will receive the populated bucket
brigade.

2. Pass $bb to get_brigade() to the upstream filter, so it will be populated with buckets. Once
get_brigade() returns, the filter can go through the buckets and modify them in place, or it can
do nothing and just return (in which case, the downstream filter will receive the bucket brigade
unmodified).

Both techniques allow addition and removal of buckets. Though the second technique is more efficient
since it doesn’t have the overhead of create the new brigade and moving the bucket from one brigade to
another. In this example we have chosen to use the second technique, in the next example we will see the
first technique.

Our filter has to perform the substitution of only one HTTP header (which normally resides in one
bucket), so we have to make sure that no other data gets mangled (e.g. there could be POSTED data and it
may match /^GET/ in one of the buckets). We use $f->ctx as a flag here. When it’s undefined the
filter knows that it hasn’t done the required substitution, though once it completes the job it sets the
context to 1.

To optimize the speed, the filter immediately returns Apache::DECLINED when it’s invoked after the
substitution job has been done:

 return Apache::DECLINED if $f->ctx;

In that case mod_perl will call get_brigade() internally which will pass the bucket brigade to the
downstream filter. Alternatively the filter could do:

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;
 return Apache::OK if $f->ctx;

but this is a bit less efficient.

[META: the most efficient thing to do is to remove the filter itself once the job is done, so it won’t be even
invoked after the job has been done.

 if ($f->ctx) {
 $f->remove;
 return Apache::DECLINED;
 }

However, this can’t be used with Apache 2.0.46 and lower, since it has a bug when trying to remove the
edge connection filter (it doesn’t remove it). Don’t know if it’s going to be fixed in 2.0.47]

24329 Jan 2004

15.6.1 Connection Input FiltersInput and Output Filters

If the job wasn’t done yet, the filter calls get_brigade, which populates the $bb bucket brigade. Next,
the filter steps through the buckets looking for the bucket that matches the regex: /^GET/. If that
happens, a new bucket is created with the modified data (s/^GET/HEAD/. Now it has to be inserted in
place of the old bucket. In our example we insert the new bucket after the bucket that we have just modi-
fied and immediately remove that bucket that we don’t need anymore:

 $b->insert_after($bn);
 $b->remove; # no longer needed

Finally we set the context to 1, so we know not to apply the substitution on the following data and break
from the for loop.

The handler returns Apache::OK indicating that everything was fine. The downstream filter will receive
the bucket brigade with one bucket modified.

Now let’s check that the handler works properly. For example, consider the following response handler:

 file:MyApache/RequestType.pm

 package MyApache::RequestType;

 use strict;
 use warnings;

 use Apache::RequestIO ();
 use Apache::RequestRec ();
 use Apache::Response ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $response = "the request type was " . $r->method;
 $r->set_content_length(length $response);
 $r->print($response);

 Apache::OK;
 }

 1;

which returns to the client the request type it has issued. In the case of the HEAD request Apache will
discard the response body, but it’ll will still set the correct Content-Length header, which will be 24
in case of the GET request and 25 for HEAD. Therefore if this response handler is configured as:

 Listen 8005
 <VirtualHost _default_:8005>
 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

29 Jan 2004244

15.6.1 Connection Input Filters

and a GET request is issued to /:

 panic% perl -MLWP::UserAgent -le \
 ’$r = LWP::UserAgent->new()->get("http://localhost:8005/"); \
 print $r->headers->content_length . ": ". $r->content’
 24: the request type was GET

where the response’s body is:

 the request type was GET

And the Content-Length header is set to 24.

However if we enable the MyApache::InputFilterGET2HEAD input connection filter:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlInputFilterHandler +MyApache::InputFilterGET2HEAD

 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

And issue the same GET request, we get only:

 25:

which means that the body was discarded by Apache, because our filter turned the GET request into a
HEAD request and if Apache wasn’t discarding the body on HEAD, the response would be:

 the request type was HEAD

that’s why the content length is reported as 25 and not 24 as in the real GET request.

15.6.2 HTTP Request Input Filters

Request filters are really non-different from connection filters, other than that they are working on request
and response bodies and have an access to a request object.

15.6.3 Bucket Brigade-based Input Filters

Let’s look at the request input filter that lowers the case of the request’s body: MyApache::InputRe-
questFilterLC:

 file:MyApache/InputRequestFilterLC.pm

 package MyApache::InputRequestFilterLC;

 use strict;
 use warnings;

24529 Jan 2004

15.6.2 HTTP Request Input FiltersInput and Output Filters

 use base qw(Apache::Filter);

 use Apache::Connection ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterRequestHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 my $c = $f->c;
 my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $rv = $f->next->get_brigade($bb_ctx, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 while (!$bb_ctx->empty) {
 my $b = $bb_ctx->first;

 $b->remove;

 if ($b->is_eos) {
 $bb->insert_tail($b);
 last;
 }

 my $data;
 my $status = $b->read($data);
 return $status unless $status == APR::SUCCESS;

 $b = APR::Bucket->new(lc $data) if $data;

 $bb->insert_tail($b);
 }

 Apache::OK;
 }

 1;

As promised, in this filter handler we have used the first technique of bucket brigade modification. The
handler creates a temporary bucket brigade (ctx_bb), populates it with data using get_brigade(),
and then moves buckets from it to the bucket brigade $bb, which is then retrieved by the downstream
filter when our handler returns.

This filter doesn’t need to know whether it was invoked for the first time or whether it has already done
something. It’s state-less handler, since it has to lower case everything that passes through it. Notice that
this filter can’t be used as the connection filter for HTTP requests, since it will invalidate the incoming
request headers; for example the first header line:

29 Jan 2004246

15.6.3 Bucket Brigade-based Input Filters

 GET /perl/TEST.pl HTTP/1.1

will become:

 get /perl/test.pl http/1.1

which messes up the request method, the URL and the protocol.

Now if we use the MyApache::Dump response handler, we have developed before in this chapter, which
dumps the query string and the content body as a response, and configure the server as follows:

 <Location /lc_input>
 SetHandler modperl
 PerlResponseHandler +MyApache::Dump
 PerlInputFilterHandler +MyApache::InputRequestFilterLC
 </Location>

When issuing a POST request:

 % echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/lc_input?FoO=1&BAR=2’

we get a response:

 args:
 FoO=1&BAR=2
 content:
 mod_perl rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
You can see that the query string wasn’t changed.

15.6.4 Stream-oriented Input Filters

Let’s now look at the same filter implemented using the stream-oriented API.

 file:MyApache/InputRequestFilterLC2.pm

 package MyApache::InputRequestFilterLC2;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

 sub handler : FilterRequestHandler {
 my $f = shift;

 while ($f->read(my $buffer, BUFF_LEN)) {
 $f->print(lc $buffer);
 }

24729 Jan 2004

15.6.4 Stream-oriented Input FiltersInput and Output Filters

 Apache::OK;
 }
 1;

Now you probably ask yourself why did we have to go through the bucket brigades filters when this all
can be done so much simpler. The reason is that we wanted you to understand how the filters work under-
neath, which will assist a lot when you will need to debug filters or optimize their speed. In certain cases a
bucket brigade filter may be more efficient than the stream-oriented. For example if the filter applies trans-
formation to selected buckets, certain buckets may contain open filehandles or pipes, rather than real data.
And when you call read() the buckets will be forced to read that data in. But if you didn’t want to modify
these buckets you could pass them as they are and let Apache do faster techniques for sending data from
the file handles or pipes.

The logic is very simple here, the filter reads in loop, and prints the modified data, which at some point
will be sent to the next filter. This point happens every time the internal mod_perl buffer is full or when
the filter returns.

read() populates $buffer to a maximum of BUFF_LEN characters (1024 in our example). Assuming
that the current bucket brigade contains 2050 chars, read() will get the first 1024 characters, then 1024
characters more and finally the remaining 2 characters. Notice that even though the response handler may
have sent more than 2050 characters, every filter invocation operates on a single bucket brigade so you
have to wait for the next invocation to get more input. In one of the earlier examples we have shown that
you can force the generation of several bucket brigades in the content handler by using rflush(). For
example:

 $r->print("string");
 $r->rflush();
 $r->print("another string");

It’s only possible to get more than one bucket brigade from the same filter handler invocation if the filter
is not using the streaming interface and by simply calling get_brigade() as many times as needed or
till EOS is received.

The configuration section is pretty much identical:

 <Location /lc_input2>
 SetHandler modperl
 PerlResponseHandler +MyApache::Dump
 PerlInputFilterHandler +MyApache::InputRequestFilterLC2
 </Location>

When issuing a POST request:

 % echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/lc_input2?FoO=1&BAR=2’

we get a response:

29 Jan 2004248

15.6.4 Stream-oriented Input Filters

 args:
 FoO=1&BAR=2
 content:
 mod_perl rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
You can see that the query string wasn’t changed.

15.7 Output Filters
mod_perl supports Connection and HTTP Request output filters:

15.7.1 Connection Output Filters

Connection filters filter all the data that is going through the server. Therefore if the connection is of
HTTP request type, connection output filters see the headers and the body of the response, whereas
request output filters see only the response body.

META: for now see the request output filter explanations and examples, connection output filter examples
will be added soon. Interesting ideas for such filters are welcome (possible ideas: mangling output headers
for HTTP requests, pretty much anything for protocol modules).

15.7.2 HTTP Request Output Filters

As mentioned earlier output filters can be written using the bucket brigades manipulation or the simplified
stream-oriented interface.

First let’s develop a response handler that sends two lines of output: numerals 1234567890 and the
English alphabet in a single string:

 file:MyApache/SendAlphaNum.pm

 package MyApache::SendAlphaNum;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);

 $r->print(1..9, "0\n");
 $r->print(’a’..’z’, "\n");

24929 Jan 2004

15.7 Output FiltersInput and Output Filters

 Apache::OK;
 }
 1;

The purpose of our filter handler is to reverse every line of the response body, preserving the new line
characters in their places. Since we want to reverse characters only in the response body, without breaking
the HTTP headers, we will use the HTTP request output filter.

15.7.2.1 Stream-oriented Output Filters

The first filter implementation is using the stream-oriented filtering API:

 file:MyApache/FilterReverse1.pm

 package MyApache::FilterReverse1;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Const -compile => qw(OK);

 use constant BUFF_LEN => 1024;

 sub handler : FilterRequestHandler {
 my $f = shift;

 while ($f->read(my $buffer, BUFF_LEN)) {
 for (split "\n", $buffer) {
 $f->print(scalar reverse $_);
 $f->print("\n");
 }
 }

 Apache::OK;
 }
 1;

Next, we add the following configuration to httpd.conf:

 PerlModule MyApache::FilterReverse1
 PerlModule MyApache::SendAlphaNum
 <Location /reverse1>
 SetHandler modperl
 PerlResponseHandler MyApache::SendAlphaNum
 PerlOutputFilterHandler MyApache::FilterReverse1
 </Location>

Now when a request to /reverse1 is made, the response handler MyApache::SendAl-
phaNum::handler() sends:

29 Jan 2004250

15.7.2 HTTP Request Output Filters

 1234567890
 abcdefghijklmnopqrstuvwxyz

as a response and the output filter handler MyApache::FilterReverse1::handler reverses the
lines, so the client gets:

 0987654321
 zyxwvutsrqponmlkjihgfedcba

The Apache::Filter module loads the read() and print() methods which encapsulate the
stream-oriented filtering interface.

The reversing filter is quite simple: in the loop it reads the data in the readline() mode in chunks up to the
buffer length (1024 in our example), and then prints each line reversed while preserving the new line
control characters at the end of each line. Behind the scenes $f->read() retrieves the incoming brigade
and gets the data from it, and $f->print() appends to the new brigade which is then sent to the next
filter in the stack. read() breaks the while loop, when the brigade is emptied or the end of stream is
received.

In order not to distract the reader from the purpose of the example the used code is oversimplified and
won’t handle correctly input lines which are longer than 1024 characters and possibly using a different
line termination token (could be "\n", "\r" or "\r\n" depending on a platform). Moreover a single line may
be split between across two or even more bucket brigades, so we have to store the unprocessed string in
the filter context, so it can be used on the following invocations. So here is an example of a more complete
handler, which does takes care of these issues:

 sub handler {
 my $f = shift;

 my $leftover = $f->ctx;
 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer = $leftover . $buffer if defined $leftover;
 $leftover = undef;
 while ($buffer =~ /([^\r\n]*)([\r\n]*)/g) {
 $leftover = $1, last unless $2;
 $f->print(scalar(reverse $1), $2);
 }
 }

 if ($f->seen_eos) {
 $f->print(scalar reverse $leftover) if defined $leftover;
 }
 else {
 $f->ctx($leftover) if defined $leftover;
 }

 return Apache::OK;
 }

The handler uses the $leftover variable to store unprocessed data as long as it fails to assemble a
complete line or there is an incomplete line following the new line token. On the next handler invocation
this data is then prepended to the next chunk that is read. When the filter is invoked on the last time, it

25129 Jan 2004

15.7.2 HTTP Request Output FiltersInput and Output Filters

unconditionally reverses and flushes any remaining data.

15.7.2.2 Bucket Brigade-based Output Filters

The following filter implementation is using the bucket brigades API to accomplish exactly the same task
as the first filter.

 file:MyApache/FilterReverse2.pm

 package MyApache::FilterReverse2;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterRequestHandler {
 my($f, $bb) = @_;

 my $c = $f->c;
 my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);

 while (!$bb->empty) {
 my $bucket = $bb->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_ctx->insert_tail($bucket);
 last;
 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status == APR::SUCCESS;

 if ($data) {
 $data = join "",
 map {scalar(reverse $_), "\n"} split "\n", $data;
 $bucket = APR::Bucket->new($data);
 }

29 Jan 2004252

15.7.2 HTTP Request Output Filters

 $bb_ctx->insert_tail($bucket);
 }

 my $rv = $f->next->pass_brigade($bb_ctx);
 return $rv unless $rv == APR::SUCCESS;

 Apache::OK;
 }
 1;

and the corresponding configuration:

 PerlModule MyApache::FilterReverse2
 PerlModule MyApache::SendAlphaNum
 <Location /reverse2>
 SetHandler modperl
 PerlResponseHandler MyApache::SendAlphaNum
 PerlOutputFilterHandler MyApache::FilterReverse2
 </Location>

Now when a request to /reverse2 is made, the client gets:

 0987654321
 zyxwvutsrqponmlkjihgfedcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the stream-oriented one. The
handler receives the incoming bucket brigade $bb as its second argument. Since when the handler is
completed it must pass a brigade to the next filter in the stack, we create a new bucket brigade into which
we are going to put the modified buckets and which eventually we pass to the next filter.

The core of the handler is in removing buckets from the head of the bucket brigade $bb while there are
some, reading the data from the buckets, reversing and putting it into a newly created bucket which is
inserted to the end of the new bucket brigade. If we see a bucket which designates the end of stream, we
insert that bucket to the tail of the new bucket brigade and break the loop. Finally we pass the created
brigade with modified data to the next filter and return.

Similarly to the original version of MyApache::FilterReverse1::handler, this filter is not
smart enough to handle incomplete lines. However the exercise of making the filter foolproof should be
trivial by porting a better matching rule and using the $leftover buffer from the previous section is
trivial and left as an exercise to the reader.

15.8 Filter Applications
The following sections provide various filter applications and their implementation.

25329 Jan 2004

15.8 Filter ApplicationsInput and Output Filters

15.8.1 Handling Data Underruns

Sometimes filters need to read at least N bytes before they can apply their transformation. It’s quite possi-
ble that reading one bucket brigade is not enough. But two or more are needed. This situation is sometimes
referred to as an underrun.

Let’s take an input filter as an example. When the filter realizes that it doesn’t have enough data in the
current bucket brigade, it can store the read data in the filter context, and wait for the next invocation of
itself, which may or may not satisfy its needs. Meanwhile it must return an empty bb to the upstream input
filter. This is not the most efficient technique to resolve underruns.

Instead of returning an empty bb, the input filter can initiate the retrieval of extra bucket brigades, until the
underrun condition gets resolved. Notice that this solution is absolutely transparent to any filters before or
after the current filter.

Consider this HTTP request:

 % perl -MLWP::UserAgent -le ’ \
 $r = LWP::UserAgent->new()->post("http://localhost:8011/", \
 [content => "x" x (40 * 1024 + 7)]); \
 print $r->is_success ? $r->content : "failed: " . $r->code’
 read 40975 chars

This client POSTs just a little bit more than 40kb of data to the server. Normally Apache splits incoming
POSTed data into 8kb chunks, putting each chunk into a separate bucket brigade. Therefore we expect to
get 5 brigades of 8kb, and one brigade with just a few bytes (a total of 6 bucket brigades).

Now let’s say that the filter needs to have 1024*16 + 5 bytes to have a complete token and then it can start
its processing. The extra 5 bytes are just so we don’t perfectly fit into 8bk bucket brigades, making the
example closer to real situations. Having 40975 bytes of input and a token size of 16389 bytes, we will
have 2 full tokens and 8197 remainder.

Jumping ahead let’s look at the filter debug output:

 filter called
 asking for a bb
 asking for a bb
 asking for a bb
 storing the remainder: 7611 bytes

 filter called
 asking for a bb
 asking for a bb
 storing the remainder: 7222 bytes

 filter called
 asking for a bb
 seen eos, flushing the remaining: 8197 bytes

29 Jan 2004254

15.8.1 Handling Data Underruns

So we can see that the filter was invoked three times. The first time it has consumed three bucket brigades,
collecting one full token of 16389 bytes and has a remainder of 7611 bytes to be processed on the next
invocation. The second time it needed only two more bucket brigades and this time after completing the
second token, 7222 bytes have remained. Finally on the third invocation it has consumed the last bucket
brigade (total of six, just as we have expected), however it didn’t have enough for the third token and since
EOS has been seen (no more data expected), it has flushed the remaining 8197 bytes as we have calculated
earlier.

It is clear from the debugging output that the filter was invoked only three times, instead of six times
(there were six bucket brigades). Notice that the upstread input filter (if any) wasn’t aware that there were
six bucket brigades, since it saw only three. Our example filter didn’t do much with those tokens, so it has
only repackaged data from 8kb per bucket brigade, to 16389 bytes per bucket brigade. But of course in
real world some transformation is applied on these tokens.

Now you understand what did we want from the filter, it’s time for the implementation details. First let’s
look at the response() handler (the first part of the module):

 #file:MyApache/Underrun.pm
 #-------------------------
 package MyApache::Underrun;

 use strict;
 use warnings;

 use constant IOBUFSIZE => 8192;

 use Apache::Const -compile => qw(MODE_READBYTES OK M_POST);
 use APR::Const -compile => qw(SUCCESS BLOCK_READ);

 sub response {
 my $r = shift;

 $r->content_type(’text/plain’);

 if ($r->method_number == Apache::M_POST) {
 my $data = read_post($r);
 #warn "HANDLER READ: $data\n";
 my $length = length $data;
 $r->print("read $length chars");
 }

 return Apache::OK;
 }

 sub read_post {
 my $r = shift;
 my $debug = shift || 0;

 my @data = ();
 my $seen_eos = 0;
 my $filters = $r->input_filters();
 my $ba = $r->connection->bucket_alloc;
 my $bb = APR::Brigade->new($r->pool, $ba);

25529 Jan 2004

15.8.1 Handling Data UnderrunsInput and Output Filters

 do {
 my $rv = $filters->get_brigade($bb,
 Apache::MODE_READBYTES, APR::BLOCK_READ, IOBUFSIZE);

 if ($rv != APR::SUCCESS) {
 return $rv;
 }

 while (!$bb->empty) {
 my $buf;
 my $b = $bb->first;

 $b->remove;

 if ($b->is_eos) {
 warn "EOS bucket:\n" if $debug;
 $seen_eos++;
 last;
 }

 my $status = $b->read($buf);
 warn "DATA bucket: [$buf]\n" if $debug;
 if ($status != APR::SUCCESS) {
 return $status;
 }
 push @data, $buf;
 }

 $bb->destroy;

 } while (!$seen_eos);

 return join ’’, @data;
 }

The response() handler is trivial -- it reads the POSTed data and prints how many bytes it has read.
read_post() sucks all POSTed data without parsing it.

Now comes the filter (which lives in the same package):

 #file:MyApache/Underrun.pm (continued)
 #-------------------------------------
 use Apache::Filter ();

 use Apache::Const -compile => qw(OK M_POST);

 use constant TOKEN_SIZE => 1024*16 + 5; # ~16k

 sub filter {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 my $ba = $f->r->connection->bucket_alloc;
 my $ctx = $f->ctx;
 my $buffer = defined $ctx ? $ctx : ’’;
 $ctx = ’’; # reset
 my $seen_eos = 0;

29 Jan 2004256

15.8.1 Handling Data Underruns

 my $data;
 warn "\nfilter called\n";

 # fetch and consume bucket brigades untill we have at least TOKEN_SIZE
 # bytes to work with
 do {
 my $tbb = APR::Brigade->new($f->r->pool, $ba);
 my $rv = $f->next->get_brigade($tbb, $mode, $block, $readbytes);
 warn "asking for a bb\n";
 ($data, $seen_eos) = flatten_bb($tbb);
 $tbb->destroy;
 $buffer .= $data;
 } while (!$seen_eos && length($buffer) < TOKEN_SIZE);

 # now create a bucket per chunk of TOKEN_SIZE size and put the remainder
 # in ctx
 for (split_buffer($buffer)) {
 if (length($_) == TOKEN_SIZE) {
 $bb->insert_tail(APR::Bucket->new($_));
 }
 else {
 $ctx .= $_;
 }
 }

 my $len = length($ctx);
 if ($seen_eos) {
 # flush the remainder
 $bb->insert_tail(APR::Bucket->new($ctx));
 $bb->insert_tail(APR::Bucket::eos_create($ba));
 warn "seen eos, flushing the remaining: $len bytes\n";
 }
 else {
 # will re-use the remainder on the next invocation
 $f->ctx($ctx);
 warn "storing the remainder: $len bytes\n";
 }

 return Apache::OK;
 }

 # split a string into tokens of TOKEN_SIZE bytes and a remainder
 sub split_buffer {
 my $buffer = shift;
 if ($] < 5.007) {
 my @tokens = $buffer =~ /(.{@{[TOKEN_SIZE]}}|.+)/g;
 return @tokens;
 }
 else {
 # available only since 5.7.x+
 return unpack "(A" . TOKEN_SIZE . ")*", $buffer;
 }
 }

 sub flatten_bb {
 my ($bb) = shift;

25729 Jan 2004

15.8.1 Handling Data UnderrunsInput and Output Filters

 my $seen_eos = 0;

 my @data;
 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 $seen_eos++, last if $b->is_eos;
 $b->read(my $bdata);
 $bdata = ’’ unless defined $bdata;
 push @data, $bdata;

 }
 return (join(’’, @data), $seen_eos);
 }

 1;

The filter calls get_brigade() in a do-while loop till it reads enough data or sees EOS. Notice that it
may get underruns for several times, and then suddenly receive a lot of data at once, which will be enough
for more than one minimal size token, so we have to take care this into an account. Once the underrun
condition is satisfied (we have at least one complete token) the tokens are put into a bucket brigade and
returned to the upstream filter for processing, keeping any remainders in the filter context, for the next
invocations or flushing all the remaining data if EOS has been seen.

Notice that this won’t be possible with streaming filters where every invocation gives the filter exactly one
bucket brigade to work with and provides not facilities to fetch extra brigades. (META: however this can
be fixed, by providing a method which will fetch the next bucket brigade, so the read in a while loop can
be repeated)

And here is the configuration for this setup:

 PerlModule MyApache::Underrun
 <Location />
 PerlInputFilterHandler MyApache::Underrun::filter
 SetHandler modperl
 PerlResponseHandler MyApache::Underrun::response
 </Location>

15.9 Filter Tips and Tricks
Various tips to use in filters.

15.9.1 Altering the Content-Type Response Header

Let’s say that you want to modify the Content-Type header in the request output filter:

 sub handler : FilterRequestHandler {
 my $f = shift;
 ...
 $f->r->content_type("text/html; charset=$charset");
 ...

29 Jan 2004258

15.9 Filter Tips and Tricks

Request filters have an access to the request object, so we simply modify it.

15.10 Writing Well-Behaving Filters
Filter writers must follow the following rules:

15.10.1 Adjusting HTTP Headers

The following information is relevant for HTTP filters

Unsetting the Content-Length header

HTTP response filters modifying the length of the body they process must unset the
Content-Length header. For example, a compression filter modifies the body length, whereas a
lowercasing filter doesn’t; therefore the former has to unset the header, and the latter doesn’t have to.

The header must be unset before any output is sent from the filter. If this rule is not followed, an
HTTP response header with incorrect Content-Length value might be sent.

Since you want to run this code once during the multiple filter invocations, use the ctx() method to
set the flag:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

META: Same goes for last-modified/etags, which may need to be unset, "vary" might need to be
added if you want caching to work properly (depending on what your filter does.

15.10.2 Other issues

META: to be written. Meanwhile collecting important inputs from various sources.

[

This one will be expanded by Geoff at some point:

HTTP output filter developers are ought to handle conditional GETs properly... (mostly for the reason of
efficiency?)

]

[

talk about issues like not losing meta-buckets. e.g. if the filter runs a switch statement and propagates
buckets types that were known at the time of writing, it may drop buckets of new types which may be
added later, so it’s important to ensure that there is a default cause where the bucket is passed as is.

25929 Jan 2004

15.10 Writing Well-Behaving FiltersInput and Output Filters

of course mention the fact where things like EOS buckets must be passed, or the whole chain will be
broken. Or if some filter decides to inject an EOS bucket by itself, it should probably consume and destroy
the rest of the incoming bb. need to check on this issue.

]

[

Need to document somewhere (concepts?) that the buckets should never be modified directly, because the
filter can’t know ho else could be referencing it at the same time. (shared mem/cache/memory mapped
files are examples on where you don’t want to modify the data). Instead the data should be moved into a
new bucket.

Also it looks like we need to $b->destroy (need to add the API) in addition to $b->remove. Which can be
done in one stroke using $b->delete (need to add the API).

]

[

Mention mod_bucketeer as filter debugging tool (in addition to FilterSnoop)

]

15.11 Writing Efficient Filters
META: to be written

[

As of this writing the network input filter reads in 8000B chunks (not 8192B!), and making each bucket
8000B in size, so it seems that the most efficient reading technique is:

 use constant BUFF_LEN => 8000;
 while ($f->read(my $buffer, BUFF_LEN)) {
 # manip $buffer
 $f->print($buffer);
 }

however if there is some filter in between, it may change the size of the buckets. Also this number may
change in the future.

Hmm, I’ve also seen it read in 7819 chunks. I suppose this is not very reliable. But it’s probably a good
idea to ask at least 8k, so if a bucket brigade has < 8k, nothing will need to be stored in the internal buffer.
i.e. read() will return less than asked for.

]

29 Jan 2004260

15.11 Writing Efficient Filters

[

Bucket Brigades are used to make the data flow between filters and handlers more efficient. e.g. a file
handle can be put in a bucket and the read from the file can be postponed to the very moment when the
data is sent to the client, thus saving a lot of memory and CPU cycles. though filters writers should be
aware that if they call $bucket->read(), or any other operation that internally forces the bucket to read the
information into the memory (like the length() op) and thus making the data handling inefficient. therefore
a care should be taken so not to read the data in, unless it’s really necessary.

]

15.12 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

15.13 Authors

Only the major authors are listed above. For contributors see the Changes file.

26129 Jan 2004

15.12 MaintainersInput and Output Filters

16 General Handlers Issues

29 Jan 2004262

16 General Handlers Issues

16.1 Description
This chapter discusses issues relevant too any kind of handlers.

16.2 Handlers Communication
Apache handlers can communicate between themselves by writing and reading notes. It doesn’t matter in
what language the handlers were implemented as long as they can access the notes table.

For example inside a request handler we can say:

 my $r = shift;
 my $c = $r->connection;
 $c->notes->set(mod_perl => ’rules’);

and then later in a mod_perl filter handler this note can be retrieved with:

 my $f = shift;
 my $c = $f->c;
 my $is = $c->notes->get("mod_perl");
 $f->print("mod_perl $is");

16.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

16.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

26329 Jan 2004

16.1 DescriptionGeneral Handlers Issues

17 Preventive Measures for Performance Enhance-
ment

29 Jan 2004264

17 Preventive Measures for Performance Enhancement

17.1 Description
This chapter explains what should or should not be done in order to keep the performance high

17.2 Memory Leakage
Memory leakage in 1.0 docs.

17.2.1 Proper Memory Pools Usage

Several mod_perl 2.0 APIs are using Apache memory pools for memory management. Mainly because the
underlying C API requires that. So every time Apache needs to allocate memory it allocates it using the
pool object that is passed as an argument. Apache doesn’t frees allocated memory, this happens automati-
cally when a pool ends its life.

Different pools have different life lengths. Request pools ($r->pool) are destroyed at the end of each
request. Connection pools ($c->pool) are destroyed when the connection is closed. Server pools
$s->pool) and the global pools (accessible in the server startup phases, like PerlOpenLogsHan-
dler handlers) are destroyed only when the server exits.

Therefore always use the pool of the shortest possible life if you can. Never use server pools during
request, when you can use a request pool. For example inside an HTTP handler, don’t call:

 my $conf_dir = Apache::Server::server_root_relative($s->pool, ’conf’);

when you can call:

 my $conf_dir = Apache::Server::server_root_relative($r->pool, ’conf’);

Of course on special occasions, you may want to have something allocated off the server pool if you want
the allocated memory to survive through several subsequent requests or connections. But this is normally
doesn’t apply to the core mod_perl 2.0, but rather for 3rd party extensions.

17.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

17.4 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

26529 Jan 2004

17.1 DescriptionPreventive Measures for Performance Enhancement

18 Performance Considerations Under Different
MPMs

29 Jan 2004266

18 Performance Considerations Under Different MPMs

18.1 Description
This chapter discusses how to choose the right MPM to use (on platforms that have such a choice), and
how to get the best performance out of it.

Certain kind of applications may show a better performance when running under one mpm, but not the
other. Results also may vary from platform to platform.

CPAN module developers have to strive making their modules function correctly regardless the mpm they
are being deployed under. However they may choose to indentify what MPM the code is running under
and do better decisions better on this information, as long as it doesn’t break the functionality for other
platforms. For examples if a developer provides thread-unsafe code, the module will work correctly under
the prefork mpm, but may malfunction under threaded mpms.

18.2 Memory Requirements
Since the very beginning mod_perl users have enjoyed the tremendous speed boost mod_perl was provid-
ing, but there is no free lunch -- mod_perl has quite big memory requirements, since it has to store the
compiled code in the memory to avoid the code loading and recompilation overhead for each request.

18.2.1 Memory Requirements in Prefork MPM

For those familiar with mod_perl 1.0, mod_perl 2.0 has not much new to offer. We still rely on shared
memory, try to preload as many things as possible at the server startup and limit the amount of used
memory using specially designed for that purpose tools.

The new thing is that the core API has been spread across multiply modules, which can be loaded only
when needed (this of course works only when mod_perl is builts as DSO). This allows to save some
memory. However the savings are not big, since all these modules are writen in C, making them into the
text segments of the memory, which is perfectly shared. The savings are more significant at the startup
speed, since the startup time, when DSO modules are loaded, is growing almost quadratically as the
number of loaded DSO modules grows (because of symbol relocations).

18.2.2 Memory Requirements in Threaded MPM

The threaded MPM is a totally new beast for mod_perl users. If you run several processes, the same
memory sharing techniques apply, but usually you want to run as few processes as possible and to have as
many threads as possible. Remember that mod_perl 2.0 allows you to have just a few Perl interpreters in
the process which otherwise runs multiple threads. So using more threads doesn’t mean using significantly
more memory, if the maximum number of available Perl interpreters is limited.

Even though memory sharing is not applicable inside the same process, mod_perl gets a significant
memory saving, because Perl interpreters have a shared opcode tree. Similar to the preforked model, all
the code that was loaded at the server startup, before Perl interpreters are cloned, will be shared. But there
is a significant difference between the two. In the prefork case, the normal memory sharing applies: if a
single byte of the memory page gets unshared, the whole page is unshared, meaning that with time less

26729 Jan 2004

18.1 DescriptionPerformance Considerations Under Different MPMs

and less memory is shared. In the threaded mpm case, the opcode tree is shared and this doesn’t change as
the code runs.

Moreover, since Perl Interpreter pools are used, and the FIFO model is used, if the pool contains three Perl
interpreters, but only one is used at any given time, only that interpreter will be ever used, making the
other two interpreters consuming very little memory. So if with prefork MPM, you’d think twice before
loading mod_perl if all you need is trans handler, with threaded mpm you can do that without paying the
price of the significanly increased memory demands. You can have 256 light Apache threads serving static
requests, and let’s say three Perl interpreters running quick trans handlers, or even heavy but infrequest
dynamic requests, when needed.

It’s not clear yet, how one will be able to control the amount of running Perl interepreters, based on the
memory consumption, because it’s not possible to get the memory usage information per thread. However
we are thinking about running a garbage collection thread which will cleanup Perl interpreters and occa-
sionaly kill off the unused ones to free up used memory.

18.3 Work with DataBases

18.3.1 Work with DataBases under Prefork MPM

Apache::DBI works as with mod_perl 1.0, to share database connections.

18.3.2 Work with DataBases under Threaded MPM

The current Apache::DBI should be usable under threaded mpm, though it doesn’t share connections
across threads. Each Perl interpreter has its own cache, just like in the prefork mpm.

DBI::Pool is a work in progress, which should bring the sharing of database connections across threads
of the same process. Watch the mod_perl and dbi-dev lists for updates on this work. Once DBI::Pool is
completed it’ll either replace Apache::DBI or will be used by it.

18.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

18.5 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 2004268

18.3 Work with DataBases

19 Troubleshooting mod_perl problems

26929 Jan 2004

19 Troubleshooting mod_perl problemsTroubleshooting mod_perl problems

19.1 Description
Frequently encountered problems (warnings and fatal errors) and their troubleshooting.

19.2 Building and Installation

19.3 Configuration and Startup

19.3.1 (28)No space left on device

httpd-2.0 is not very helpful at telling which device has run out of precious space. Most of the time when
you get an error like:

 (28)No space left on device:
 mod_rewrite: could not create rewrite_log_lock

it means that your system have run out of semaphore arrays. Sometimes it’s full with legitimate
semaphores at other times it’s because some application has leaked semaphores and haven’t cleaned them
up during the shutdown (which is usually the case when an application segfaults).

Use the relevant application to list the ipc facilities usage. On most Unix platforms this is usually an
ipcs(1) utility. For example linux to list the semaphore arrays you should execute:

 % ipcs -s
 ------ Semaphore Arrays --------
 key semid owner perms nsems
 0x00000000 2686976 stas 600 1
 0x00000000 2719745 stas 600 1
 0x00000000 2752514 stas 600 1

Next you have to figure out what are the dead ones and remove them. For example to remove the semid
2719745 execute:

 % ipcrm -s 2719745

Instead of manually removing each (and sometimes there can be many of them), and if you know that
none of listed the semaphores is really used (all leaked), you can try to remove them all:

 % ipcs -s | perl -ane ’‘ipcrm -s $F[1]‘’

httpd-2.0 seems to use the key 0x00000000 for its semaphores on Linux, so to remove only those that
match that key you can use:

 % ipcs -s | perl -ane ’/^0x00000000/ && ‘ipcrm -s $F[1]‘’

Notice that on other platforms the output of ipcs -s might be different, so you may need to apply a
different Perl one-liner.

29 Jan 2004270

19.1 Description

19.3.2 Segmentation Fault when Using DBI

Update DBI to at least version 1.31.

19.3.3 <Perl> directive missing closing ’>’

See the Apache::PerlSections manpage.

19.3.4 ’Invalid per-unknown PerlOption: ParseHeaders’ on HP-UX
11 for PA-RISC

When building mod_perl 2.0 on HP-UX 11 for PA-RISC architecture, using the HP ANSI C compiler,
please make sure you have installed patches PHSS_29484 and PHSS_29485. Once installed the issue
should go away.

19.4 Shutdown and Restart

19.5 Code Parsing and Compilation

19.6 Runtime

19.6.1 C Libraries Don’t See %ENV Entries Set by Perl Code

For example some people have reported problems with DBD::Oracle (whose guts are implemented in
C), which doesn’t see environment variables (like ORACLE_HOME, ORACLE_SID, etc.) set in the perl
script and therefore fails to connect.

The issue is that the C array environ[] is not thread-safe. Therefore mod_perl 2.0 unties %ENV from
the underlying environ[] array under the perl-script handler.

The DBD::Oracle driver or client library uses getenv() (which fetches from the environ[]
array). When %ENV is untied from environ[], Perl code will see %ENV changes, but C code will not.

The modperl handler does not untie %ENV from environ[]. Still one should avoid setting %ENV values
whenever possible. And if it is required, should be done at startup time.

In the particular case of the DBD:: drivers, you can set the variables that don’t change
($ENV{ORACLE_HOME} and $ENV{NLS_LANG} in the startup file, and those that change pass via the
connect() method, e.g.:

27129 Jan 2004

19.4 Shutdown and RestartTroubleshooting mod_perl problems

 my $sid = ’ynt0’;
 my $dsn = ’dbi:Oracle:’;
 my $user = ’username/password’;
 my $password = ’’;
 $dbh = DBI->connect("$dsn$sid", $user, $password)
 or die "Cannot connect: " . $DBI::errstr;

Also remember that DBD::Oracle requires that ORACLE_HOME (and any other stuff like NSL_LANG
stuff) be in %ENV when DBD::Oracle is loaded (which might happen indirectly via the DBI module.
Therefore you need to make sure that wherever that load happens %ENV is properly set by that time.

19.6.2 Error about not finding Apache.pm with CGI.pm

You need to install at least version 2.87 of CGI.pm to work under mod_perl 2.0, as earlier CGI.pm
versions aren’t mod_perl 2.0 aware.

19.6.3 20014:Error string not specified yet

This error is reported when some undefined Apache error happens. The known cases are:

when using mod_deflate

A bug in mod_deflate was triggering this error, when a response handler would flush the data that
was flushed earlier: http://nagoya.apache.org/bugzilla/show_bug.cgi?id=22259 It has been fixed in
httpd-2.0.48.

19.6.4 (22)Invalid argument: core_output_filter: writing data to the
network

Apache uses the sendfile syscall on platforms where it is available in order to speed sending of responses.
Unfortunately, on some systems, Apache will detect the presence of sendfile at compile-time, even when it
does not work properly. This happens most frequently when using network or other non-standard
file-system.

The whole story and the solutions are documented at:
http://httpd.apache.org/docs-2.0/faq/error.html#error.sendfile

19.6.5 undefined symbol: apr_table_compress

After a successful mod_perl build, sometimes during the startup or a runtime you’d get an "undefined
symbol: foo" error. The following is one possible scenario to encounter this problem and possible ways to
resolve it.

Let’s say you ran mod_perl’s test suite:

29 Jan 2004272

19.6.2 Error about not finding Apache.pm with CGI.pm

http://nagoya.apache.org/bugzilla/show_bug.cgi?id=22259
http://httpd.apache.org/docs-2.0/faq/error.html#error.sendfile

 % make test

and got errors, and you looked in the error_log file (t/logs/error_log) and saw one or more "undefined
symbol" errors, e.g.

 % undefined symbol: apr_table_compress

Step 1

From the source directory (same place you ran "make test") run:

 % ldd blib/arch/auto/APR/APR.so | grep apr-

META: ldd is not available on all platforms, e.g. not on Darwin/OS X

You you should get a full path, for example:

 libapr-0.so.0 => /usr/local/apache2/lib/libapr-0.so.0 (0x40003000)

or

 libapr-0.so.0 => /some/path/to/apache/lib/libapr-0.so.0 (0x40003000)

or something like that. It’s that full path to libapr-0.so.0 that you want.

Step 2

Do:

 % nm /path/to/your/libapr-0.so.0 | grep table_compress

for example:

 % nm /usr/local/apache2/lib/libapr-0.so.0 | grep table_compress

You should get something like this:

 0000d010 T apr_table_compress

Note that the "grep table_compress" is only an example, the exact string you are looking for is the
name of the "undefined symbol" from the error_log. So, if you got "undefined symbol:
apr_holy_grail" then you would do

 % nm /usr/local/apache2/lib/libapr-0.so.0 | grep holy_grail

Step 3

Now, let’s see what shared libraries your apache binary has. So, if in step 1 you got
/usr/local/apache2/lib/libapr-0.so.0 then you will do:

27329 Jan 2004

19.6.5 undefined symbol: apr_table_compressTroubleshooting mod_perl problems

 % ldd /usr/local/apache2/bin/httpd

if in step 1 you got /foo/bar/apache/lib/libapr-0.so.0 then you do:

 % ldd /foo/bar/apache/bin/httpd

The output should look something like this:

 libssl.so.2 => /lib/libssl.so.2 (0x40023000)
 libcrypto.so.2 => /lib/libcrypto.so.2 (0x40054000)
 libaprutil-0.so.0 => /usr/local/apache2/lib/libaprutil-0.so.0 (0x40128000)
 libgdbm.so.2 => /usr/lib/libgdbm.so.2 (0x4013c000)
 libdb-4.0.so => /lib/libdb-4.0.so (0x40143000)
 libexpat.so.0 => /usr/lib/libexpat.so.0 (0x401eb000)
 libapr-0.so.0 => /usr/local/apache2/lib/libapr-0.so.0 (0x4020b000)
 librt.so.1 => /lib/librt.so.1 (0x40228000)
 libm.so.6 => /lib/i686/libm.so.6 (0x4023a000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x4025c000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x40289000)
 libdl.so.2 => /lib/libdl.so.2 (0x4029f000)
 libpthread.so.0 => /lib/i686/libpthread.so.0 (0x402a2000)
 libc.so.6 => /lib/i686/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Those are name => value pairs showing the shared libraries used by the httpd binary.

Take note of the value for libapr-0.so.0 and compare it to what you got in step 1. They should be the
same, if not, then mod_perl was compiled pointing to the wrong Apache installation. You should run
"make clean" and then

 % perl Makefile.pl MP_APACHE_CONFIG=/path/to/apache/bin/apr-config

using the correct path for the Apache installation.

Step 4

You should also search for extra copies of libapr-0.so.0. If you find one in /usr/lib or /usr/local/lib
that will explain the problem. Most likely you have an old pre-installed apr package which gets
loaded before the copy you found in step 1.

On most Linux (and Mac OS X) machines you can do a fast search with:

 % locate libapr-0.so.0

which searches a database of files on your machine. The "locate" database isn’t always up-to-date so
a slower, more comprehensive search can be run (as root if possible):

 % find / -name "libapr-0.so.0*"

or

29 Jan 2004274

19.6.5 undefined symbol: apr_table_compress

 % find /usr/local -name "libapr-0.so.0*"

You might get output like this:

 /usr/local/apache2.0.47/lib/libapr-0.so.0.9.4
 /usr/local/apache2.0.47/lib/libapr-0.so.0
 /usr/local/apache2.0.45/lib/libapr-0.so.0.9.3
 /usr/local/apache2.0.45/lib/libapr-0.so.0

in which case you would want to make sure that you are configuring and compiling mod_perl with
the latest version of apache, for example using the above output, you would do:

 % perl Makefile.PL MP_AP_CONFIG=/usr/local/apache2.0.47
 % make
 % make test

There could be other causes, but this example shows you how to act when you encounter this problem.

19.7 Issues with APR Used Outside of mod_perl
It doesn’t strictly belong to this document, since it’s talking about APR usages outside of mod_perl, so this
may move to its own dedicated page, some time later.

Whenever using an APR:: package outside of mod_perl, you need to:

 use APR;

in order to load the XS subroutines. For example:

 % perl -MApache2 -MAPR -MAPR::UUID -le ’print APR::UUID->new->format’

19.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman

19.9 Authors
Stas Bekman

Only the major authors are listed above. For contributors see the Changes file.

27529 Jan 2004

19.7 Issues with APR Used Outside of mod_perlTroubleshooting mod_perl problems

20 User Help

29 Jan 2004276

20 User Help

20.1 Description
This chapter is for those needing help using mod_perl and related software.

There is a parallel Getting Help document written mainly for mod_perl core developers, but may be found
useful to non-core problems as well.

20.2 Reporting Problems
Whenever you want to report a bug or a problem remember that in order to help you, you need to provide
us the information about the software that you are using and other relevant details. Please follow the
instructions in the following sections when reporting problems.

The most important thing to understand is that you should try hard to provide all the information that
may assist to understand and reproduce the problem. When you prepare a bug report, put yourself in the
position of a person who is going to try to help you, realizing that a guess-work on behalf of that helpful
person, more often doesn’t work than it does. Unfortunately most people don’t realize that, and it takes
several emails to squeeze the needed details from the person reporting the bug, a process which may drag
for days.

20.2.1 Wrong Apache/mod_perl combination

First of all:

 Apache 2.0 doesn’t work with mod_perl 1.0.
 Apache 1.0 doesn’t work with mod_perl 2.0.

So if you aren’t using Apache 2.x with mod_perl 2.0 please do not send any bug reports.

META: mod_perl-1.99_xx is mod_perl 2.0 to-be.

20.2.2 Before Posting a Report

Before you post the report, make sure that you’ve checked the error_log file (t/logs/error_log in case of
the failing test suite). Usually the errors are self-descriptive and if you remember to always check this file
whenever you have a problem, chances are that you won’t need to ask for help.

20.2.3 Test with the Latest mod_perl 2.0 Version

If you are using an older version than the most recently released one, chances are that a bug that you are
about to report has already been fixed. If possible, save us and yourself time and try first to upgrade to the
latest version, and only if the bug persists report it.

Reviewing the Changes file may help as well. Here is the Changes file of the most recenly released
version: http://perl.apache.org/dist/mod_perl-2.0-current/Changes .

27729 Jan 2004

20.1 DescriptionUser Help

http://perl.apache.org/dist/mod_perl-2.0-current/Changes

If the problem persists with the latest version, you may also want to try to reproduce the problem with the
latest development version. It’s possible that the problem was resolved since the last release has been
made. Of course if this version solves the problem, don’t rush to put it in production unless you know
what you are doing. Instead ask the developers when the new version will be released.

20.2.4 Use a Proper Subject

Make sure to include a good subject like explaining the problem in a few words. Also please mention that
this a problem with mod_perl 2.0 and not mod_perl 1.0. Here is an example of a good subject:

 Subject: [mp2] protocol module doesn’t work with filters

This is especially important now that we support mod_perl versions 1.0 and 2.0 on the same list.

20.2.5 Send the Report Inlined

When sending the bug report, please inline it and don’t attach it to the email. It’s hard following up on the
attachments.

20.2.6 Important Information

Whenever you send a bug report make sure to include the information about your system by doing the
following:

 % cd modperl-2.0
 % t/REPORT > mybugreport

where modperl-2.0 is the source directory where mod_perl was built. The t/REPORT utility is auto-
generated when perl Makefile.PL is run, so you should have it already after building mod_perl.

META: soon we will have mp2bug report script which will be installed system-wide. For now, if you
don’t have the source, you can create the report by running the following:

 % perl -MApache2 -MApache::TestReportPerl \
 -le ’Apache::TestReportPerl->new->run’

Now add the problem description to the report and send it to the list.

20.2.7 Problem Description

If the problem incurs with your own code, please try to reduce the code to the very minimum and include
it in the bug report. Remember that if you include a long code, chances that somebody will look at it are
low. If the problem is with some CPAN module, just provide its name.

Also remember to include the relevant part of httpd.conf and of startup.pl if applicable. Don’t include
whole files, only the parts that should aid to understand and reproduce the problem.

29 Jan 2004278

20.2.4 Use a Proper Subject

Finally don’t forget to copy-n-paste (not type!) the relevant part of the error_log file (not the whole file!).

To further increase the chances that bugs your code exposes will be investigated, try using
Apache-Test to create a self-contained test that core developers can easily run. To get you started, an
Apache-Test bug skeleton has been created:

http://perl.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz

Detailed instructions are contained within the README.

20.2.8 ’make test’ Failures

If when running ’make test’ some of the tests fail, please re-run them in the verbose mode and post the
output of the run and the contents of the error_log file to the list.

For example if ’make test’ reports:

 Failed Test Stat Wstat Total Fail Failed List of Failed
 --
 compat/apache_util.t 15 1 6.67% 13
 modperl/pnotes.t 5 1 20% 2

Do the following:

 % cd modperl-1.99_xx
 % make test TEST_VERBOSE=1 \
 TEST_FILES="compat/apache_util.t modperl/pnotes.t"

or use an altenative way:

 % cd modperl-1.99_xx
 % rm t/logs/error_log
 % t/TEST -verbose compat/apache_util.t modperl/pnotes.t

If you are using the latter, remember to remove the error_log file before running tests, so you won’t have
clutter from the previous run. make test always removes the old error_log file for you.

Also please notice that there is more than one make test run. The first one is running at the top direc-
tory, the second inside a sub-directory ModPerl-Registry/. The first logs errors to t/logs/error_log, the
second to ModPerl-Registry/t/logs/error_log. Therefore if you get failures in the second run, make sure to
chdir() to that directory before you look at the t/logs/error_log file and re-run tests in the verbose mode.
For example:

 % cd modperl-1.99_xx/ModPerl-Registry
 % rm t/logs/error_log
 % t/TEST -verbose closure.t

27929 Jan 2004

20.2.8 ’make test’ FailuresUser Help

http://perl.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz

20.2.9 Resolving Segmentation Faults

If during make test or the use of mod_perl you get a segmentation fault you should send to the list a
stack backtrace. This section explains how to extract this backtrace.

Of course to generate a useful backtrace you need to have mod_perl with debugging symbols in it (and
probably perl and/or httpd too) and also to be able to see the arguments in the calls trace. To accomplish
that do:

mod_perl

rebuild mod_perl with MP_DEBUG=1.

 % perl Makefile.PL MP_DEBUG=1 ...
 % make && make test && make install

httpd

If the segfault happens inside ap_ or apr_ calls, rebuild httpd with --enable-main-
tainer-mode:

 % ./configure --enable-maintainer-mode ...
 % make && make install

perl

If the segfault happens inside Perl_ calls, rebuild perl with -Doptimize=’-g’:

 % ./Configure -Doptimize=’-g’ ...
 % make && make test && make install

3rd party perl modules

if the trace happens in one of the 3rd party perl modules, make sure to rebuild them, now that you’ve
perl re-built with debugging flags. They will automatically pick the right compile flags from perl.

Once a proper stack backtrace is obtained append it to the bug report as explained in the previous section.

20.2.10 Please Ask Only Questions Related to mod_perl

If you have general Apache questions, please refer to: http://httpd.apache.org/lists.html.

If you have general Perl questions, please refer to: http://lists.perl.org/.

For other remotely related to mod_perl questions see the references to other documentation.

Finally, if you are not familiar with the modperl list etiquette, please refer to the mod_perl mailing lists’
Guidelines before posting.

29 Jan 2004280

20.2.9 Resolving Segmentation Faults

http://httpd.apache.org/lists.html
http://lists.perl.org/

20.3 Help on Related Topics
When developing with mod_perl, you often find yourself having questions regarding other projects and
topics like Apache, Perl, SQL, etc. This document will help you find the right resource where you can find
the answers to your questions.

20.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman

20.5 Authors
Stas Bekman

Only the major authors are listed above. For contributors see the Changes file.

28129 Jan 2004

20.3 Help on Related TopicsUser Help

Table of Contents:
................... 1User’s guide
............. 4Getting Your Feet Wet with mod_perl
............ 41 Getting Your Feet Wet with mod_perl
.................. 51.1 Description
.................. 51.2 Installation
................. 51.3 Configuration
.............. 61.4 Server Launch and Shutdown
................. 61.5 Registry Scripts
................ 71.6 Handler Modules
................. 81.7 Troubleshooting
.................. 81.8 Maintainers
.................. 81.9 Authors
................ 9Overview of mod_perl 2.0
............... 92 Overview of mod_perl 2.0
.................. 102.1 Description
.............. 102.2 Version Naming Conventions
............ 102.3 Why mod_perl, The Next Generation
.............. 112.4 What’s new in Apache 2.0
............. 142.5 What’s new in Perl 5.6.0 - 5.8.0
.............. 162.6 What’s new in mod_perl 2.0
................ 162.6.1 Threads Support
............. 172.6.2 Thread-environment Issues
.......... 182.6.3 Perl Interface to the APR and Apache APIs
.............. 192.7 Integration with 2.0 Filtering
............... 192.7.1 Other New Features
................ 192.7.2 Optimizations
.................. 202.8 Maintainers
.................. 202.9 Authors
........... 21Notes on the design and goals of mod_perl-2.0
........... 213 Notes on the design and goals of mod_perl-2.0
.................. 223.1 Description
.................. 223.2 Introduction
............... 223.3 Interpreter Management
.................. 243.3.1 TIPool
................ 243.3.2 Virtual Hosts
.............. 253.3.3 Further Enhancements
.............. 253.4 Hook Code and Callbacks
......... 253.5 Perl interface to the Apache API and Data Structures
............ 273.5.1 Advantages to generating XS code
................ 283.5.2 Lvalue methods
................. 283.6 Filter Hooks
................ 283.7 Directive Handlers
............. 283.8 <Perl> Configuration Sections
............... 293.9 Protocol Module Support

i29 Jan 2004

Table of Contents:User Help

.................. 293.10 mod_perl MPM

.................. 293.11 Build System

.................. 293.12 Test Framework

.................. 293.13 CGI Emulation

................. 303.14 Apache::* Library

................. 303.15 Perl Enhancements

................. 303.15.1 GvSHARED

................. 313.15.2 Shared SvPVX

.............. 313.15.3 Compile-time method lookups

.............. 313.15.4 Memory management hooks

................. 313.15.5 Opcode hooks

................... 323.16 Maintainers

.................... 323.17 Authors

.................. 33Installing mod_perl 2.0

................. 334 Installing mod_perl 2.0

................... 344.1 Description

................... 344.2 Prerequisites

............ 354.2.1 Downloading Stable Release Sources

............ 354.2.2 Getting Bleeding Edge CVS Sources

............ 364.2.3 Configuring and Installing Prerequisites

............ 374.3 Installing mod_perl from Binary Packages

.............. 374.4 Installing mod_perl from Source

............. 374.4.1 Downloading the mod_perl Source

................ 384.4.2 Configuring mod_perl

............... 394.4.2.1 Boolean Build Options

............. 394.4.2.1.1 MP_PROMPT_DEFAULT

.............. 394.4.2.1.2 MP_GENERATE_XS

............... 394.4.2.1.3 MP_USE_DSO

.............. 394.4.2.1.4 MP_USE_STATIC

.............. 404.4.2.1.5 MP_STATIC_EXTS

............... 404.4.2.1.6 MP_USE_GTOP

.............. 404.4.2.1.7 MP_COMPAT_1X

................ 414.4.2.1.8 MP_DEBUG

.............. 414.4.2.1.9 MP_MAINTAINER

................ 414.4.2.1.10 MP_TRACE

............. 414.4.2.1.11 MP_INST_APACHE2

............. 414.4.2.2 Non-Boolean Build Options

................ 424.4.2.2.1 MP_APXS

............... 424.4.2.2.2 MP_AP_PREFIX

.............. 424.4.2.2.3 MP_APR_CONFIG

................ 424.4.2.2.4 MP_CCOPTS

.............. 424.4.2.2.5 MP_OPTIONS_FILE

............ 434.4.2.3 mod_perl-specific Compiler Options

.............. 434.4.2.3.1 -DMP_IOBUFSIZE

............... 434.4.2.4 mod_perl Options File

.............. 434.4.3 Re-using Configure Options

................ 434.4.4 Compiling mod_perl

29 Jan 2004ii

Table of Contents:

................. 444.4.5 Testing mod_perl

................ 444.4.6 Installing mod_perl

................ 444.5 If Something Goes Wrong

................... 444.6 Maintainers

.................... 444.7 Authors

............... 45mod_perl 2.0 Server Configuration

............... 455 mod_perl 2.0 Server Configuration

................... 465.1 Description

.............. 465.2 mod_perl configuration directives

................. 465.3 Enabling mod_perl

............. 465.4 Accessing the mod_perl 2.0 Modules

................... 465.5 Startup File

............... 485.6 Server Configuration Directives

................. 485.6.1 PerlRequire

................. 485.6.2 PerlModule

................ 485.6.3 PerlLoadModule

................. 485.6.4 PerlSetVar

................. 485.6.5 PerlAddVar

................. 485.6.6 PerlSetEnv

................. 485.6.7 PerlPassEnv

................. 485.6.8 <Perl> Sections

................. 485.6.9 PerlSwitches

................. 495.6.10 SetHandler

................. 495.6.10.1 modperl

................ 505.6.10.2 perl-script

................. 505.6.10.3 Examples

................. 525.6.11 PerlOptions

................. 525.6.11.1 Enable

.................. 525.6.11.2 Clone

................. 535.6.11.3 Parent

............... 535.6.11.4 Perl*Handler

................. 545.6.11.5 AutoLoad

............... 545.6.11.6 GlobalRequest

............... 555.6.11.7 ParseHeaders

............... 565.6.11.8 MergeHandlers

................. 565.6.11.9 SetupEnv

............. 575.7 Server Life Cycle Handlers Directives

.............. 575.7.1 PerlOpenLogsHandler

.............. 585.7.2 PerlPostConfigHandler

.............. 585.7.3 PerlChildInitHandler

.............. 585.7.4 PerlChildExitHandler

............... 585.8 Protocol Handlers Directives

............. 585.8.1 PerlPreConnectionHandler

........... 585.8.2 PerlProcessConnectionHandler

................ 585.9 Filter Handlers Directives

............. 585.9.1 PerlInputFilterHandler

............. 585.9.2 PerlOutputFilterHandler

iii29 Jan 2004

Table of Contents:User Help

............... 595.9.3 PerlSetInputFilter

.............. 595.9.4 PerlSetOutputFilter

............. 595.10 HTTP Protocol Handlers Directives

............ 595.10.1 PerlPostReadRequestHandler

............... 595.10.2 PerlTransHandler

............. 595.10.3 PerlMapToStorageHandler

............... 595.10.4 PerlInitHandler

............. 595.10.5 PerlHeaderParserHandler

............... 595.10.6 PerlAccessHandler

............... 595.10.7 PerlAuthenHandler

............... 605.10.8 PerlAuthzHandler

............... 605.10.9 PerlTypeHandler

............... 605.10.10 PerlFixupHandler

.............. 605.10.11 PerlResponseHandler

............... 605.10.12 PerlLogHandler

.............. 605.10.13 PerlCleanupHandler

.............. 605.11 Threads Mode Specific Directives

............... 605.11.1 PerlInterpStart

................ 605.11.2 PerlInterpMax

.............. 615.11.3 PerlInterpMinSpare

.............. 615.11.4 PerlInterpMaxSpare

............. 615.11.5 PerlInterpMaxRequests

............... 615.11.6 PerlInterpScope

................. 625.12 Debug Directives

................. 625.12.1 PerlTrace

........ 635.13 mod_perl Directives Argument Types and Allowed Location

.............. 655.14 Server Startup Options Retrieval

.............. 665.14.1 MODPERL2 Define Option

........... 665.15 Perl Interface to the Apache Configuration Tree

.................. 675.16 Adjusting @INC

......... 675.16.1 PERL5LIB and PERLLIB Environment Variables

............ 675.16.2 Modifying @INC on a Per-VirtualHost

.................. 685.17 General Issues

................... 685.18 Maintainers

.................... 685.19 Authors

........... 69Apache Server Configuration Customization in Perl

........... 696 Apache Server Configuration Customization in Perl

................... 706.1 Description

................... 706.2 Incentives

.......... 706.3 Creating and Using Custom Configuration Directives

............. 726.3.1 @APACHE_MODULE_COMMANDS

.................. 726.3.1.1 name

.................. 726.3.1.2 func

................ 736.3.1.3 req_override

................. 736.3.1.4 args_how

.................. 736.3.1.5 errmsg

................. 746.3.1.6 cmd_data

29 Jan 2004iv

Table of Contents:

............ 756.3.2 Directive Scope Definition Constants

............... 756.3.2.1 Apache::OR_NONE

.............. 756.3.2.2 Apache::OR_LIMIT

.............. 756.3.2.3 Apache::OR_OPTIONS

............. 756.3.2.4 Apache::OR_FILEINFO

.............. 756.3.2.5 Apache::OR_AUTHCFG

.............. 756.3.2.6 Apache::OR_INDEXES

.............. 756.3.2.7 Apache::OR_UNSET

............. 756.3.2.8 Apache::ACCESS_CONF

.............. 766.3.2.9 Apache::RSRC_CONF

............ 766.3.2.10 Apache::OR_EXEC_ON_READ

............... 766.3.2.11 Apache::OR_ALL

.............. 766.3.3 Directive Callback Subroutine

............ 776.3.4 Directive Syntax Definition Constants

............... 776.3.4.1 Apache::NO_ARGS

............... 776.3.4.2 Apache::TAKE1

............... 786.3.4.3 Apache::TAKE2

............... 786.3.4.4 Apache::TAKE3

............... 786.3.4.5 Apache::TAKE12

............... 786.3.4.6 Apache::TAKE23

............... 786.3.4.7 Apache::TAKE123

............... 786.3.4.8 Apache::ITERATE

.............. 796.3.4.9 Apache::ITERATE2

.............. 796.3.4.10 Apache::RAW_ARGS

............... 806.3.4.11 Apache::FLAG

........... 806.3.5 Enabling the New Configuration Directives

........... 816.3.6 Creating and Merging Configuration Objects

............... 816.3.6.1 SERVER_CREATE

................ 826.3.6.2 SERVER_MERGE

................ 826.3.6.3 DIR_CREATE

................. 836.3.6.4 DIR_MERGE

................... 836.4 Examples

................. 836.4.1 Merging at Work

......... 896.4.1.1 Merging Entries Whose Values Are References

............. 906.4.1.2 Merging Order Consequences

................... 916.5 Maintainers

.................... 916.6 Authors

.............. 92Writing mod_perl Handlers and Scripts

.............. 927 Writing mod_perl Handlers and Scripts

................... 937.1 Description

................... 937.2 Prerequisites

................ 937.3 Where the Methods Live

.................. 937.4 Method Handlers

.................. 937.5 Goodies Toolkit

................ 937.5.1 Environment Variables

............... 947.5.2 Threaded MPM or not?

.............. 947.5.3 Writing MPM-specific Code

v29 Jan 2004

Table of Contents:User Help

................ 957.6 Code Developing Nuances

........ 957.6.1 Auto-Reloading Modified Modules with Apache::Reload

............... 967.7 Integration with Apache Issues

............. 967.7.1 Sending HTTP Response Headers

.............. 967.7.2 Sending HTTP Response Body

............ 977.8 Perl Specifics in the mod_perl Environment

............... 977.8.1 Request-localized Globals

................... 977.8.2 exit()

............. 977.9 Threads Coding Issues Under mod_perl

............... 987.9.1 Thread-environment Issues

................ 987.9.2 Deploying Threads

................. 987.9.3 Shared Variables

................... 997.10 Maintainers

.................... 997.11 Authors

.................... 100Cooking Recipes

................... 1008 Cooking Recipes

................... 1018.1 Description

........ 1018.2 Sending Cookies in REDIRECT Response (ModPerl::Registry)

.......... 1018.3 Sending Cookies in REDIRECT Response (handlers)

................... 1028.4 Maintainers

.................... 1028.5 Authors

.......... 103Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

.......... 1039 Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

................... 1049.1 Description

................... 1049.2 Introduction

............... 1059.3 Using Apache::porting

............. 1059.4 Using the Apache::compat Layer

........... 1069.5 Porting a Perl Module to Run under mod_perl 2.0
9.5.1 Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be

.................... 106Loaded

....... 1079.5.1.1 Handling Methods Existing In More Than One Package

....... 1079.5.1.2 Using ModPerl::MethodLookup Programmatically

........... 1089.5.1.3 Pre-loading All mod_perl 2.0 Modules

..... 1089.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions

............. 1089.5.2.1 Methods that No Longer Exist

.......... 1099.5.2.2 Methods Whose Usage Has Been Modified

............ 1099.5.3 Requiring a specific mod_perl version.

............ 1109.5.4 Should the Module Name Be Changed?

........... 1109.5.5 Using Apache::compat As a Tutorial

.......... 1119.5.6 How Apache::MP3 was Ported to mod_perl 2.0

................. 1119.5.6.1 Preparations

................ 1129.5.6.1.1 httpd.conf

................. 1139.5.6.1.2 startup.pl

............... 1139.5.6.1.3 Apache/MP3.pm

............ 1149.5.6.2 Porting with Apache::compat

........ 1219.5.6.3 Getting Rid of the Apache::compat Dependency

......... 1219.5.6.4 Ensuring that Apache::compat is not loaded

29 Jan 2004vi

Table of Contents:

........ 1239.5.6.5 Installing the ModPerl::MethodLookup Helper

.......... 1239.5.6.6 Adjusting the code to run under mod_perl 2

...... 1329.6 Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0

........ 1329.6.1 Making Code Conditional on Running mod_perl Version

................. 1339.6.2 Method Handlers

................... 1369.7 Maintainers

.................... 1369.8 Authors

.......... 137A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

......... 13710 A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

................... 13810.1 Description

............... 13810.2 Configuration Files Porting

................. 13810.2.1 PerlHandler

................ 13810.2.2 PerlSendHeader

................ 13810.2.3 PerlSetupEnv

................ 13910.2.4 PerlTaintCheck

.................. 13910.2.5 PerlWarn

............... 13910.2.6 PerlFreshRestart

............ 13910.2.7 Apache Configuration Customization

................ 13910.2.8 @INC Manipulation

.................. 14010.3 Code Porting

........ 14110.4 Apache::Registry, Apache::PerlRun and Friends

............. 14210.4.1 ModPerl::RegistryLoader

................ 14210.5 Apache::Constants

.......... 14310.5.1 mod_perl 1.0 and 2.0 Constants Coexistence

................ 14410.5.2 Deprecated Constants

............... 14410.5.3 SERVER_VERSION()

.................. 14410.5.4 export()

.............. 14410.6 Issues with Environment Variables

.............. 14510.7 Special Environment Variables

............. 14510.7.1 $ENV{GATEWAY_INTERFACE}

................. 14510.8 Apache:: Methods

............... 14510.8.1 Apache->request

................ 14710.8.2 Apache->define

............ 14710.8.3 Apache->can_stack_handlers

............... 14710.8.4 Apache->untaint

.............. 14710.8.5 Apache->get_handlers

............. 14710.8.6 Apache->push_handlers

.............. 14810.8.7 Apache->set_handlers

.............. 14810.8.8 Apache->httpd_conf

................ 14810.8.9 Apache::exit()

............... 14810.8.10 Apache::gensym()

............... 14810.8.11 Apache::module()

.............. 14910.8.12 Apache::log_error()

................ 14910.9 Apache:: Variables

................ 14910.9.1 $Apache::__T

.......... 14910.10 Apache::Server:: Methods and Variables

............. 14910.10.1 $Apache::Server::CWD

vii29 Jan 2004

Table of Contents:User Help

.......... 14910.10.2 $Apache::Server::AddPerlVersion

................ 14910.11 Server Object Methods

............. 14910.11.1 $s->register_cleanup

.................. 14910.11.2 $s->uid

.................. 15010.11.3 $s->gid

................ 15010.12 Request Object Methods

................ 15010.12.1 $r->cgi_env

................ 15010.12.2 $r->cgi_var

............. 15010.12.3 $r->current_callback

.............. 15010.12.4 $r->get_remote_host

............. 15110.12.5 $r->cleanup_for_exec

................ 15110.12.6 $r->content

............. 15110.12.7 $r->args in an Array Context

............... 15210.12.8 $r->chdir_file

................ 15210.12.9 $r->is_main

................. 15210.12.10 $r->finfo

................. 15310.12.11 $r->notes

................ 15310.12.12 $r->header_in

............... 15310.12.13 $r->header_out

.............. 15310.12.14 $r->err_header_out

............... 15310.12.15 $r->log_reason

............. 15410.12.16 $r->register_cleanup

.............. 15410.12.17 $r->post_connection

................ 15410.12.18 $r->request

................ 15410.12.19 $r->send_fd

.............. 15410.12.20 $r->send_fd_length

............. 15510.12.21 $r->send_http_header

............ 15510.12.22 $r->server_root_relative

............... 15510.12.23 $r->hard_timeout

.............. 15510.12.24 $r->reset_timeout

............... 15510.12.25 $r->soft_timeout

............... 15610.12.26 $r->kill_timeout

.............. 15610.12.27 $r->set_byterange

.............. 15610.12.28 $r->each_byterange

............... 15610.13 Apache::Connection

............. 15610.13.1 $connection->auth_type

.............. 15610.13.2 $connection->user

............ 15610.13.3 $connection->local_addr

............ 15710.13.4 $connection->remote_addr

................. 15710.14 Apache::File

............... 15710.14.1 open() and close()

................. 15710.14.2 tmpfile()

................. 15810.15 Apache::Util

........... 15810.15.1 Apache::Util::size_string()

........... 15810.15.2 Apache::Util::escape_uri()

........... 15810.15.3 Apache::Util::unescape_uri()

........... 15810.15.4 Apache::Util::escape_html()

29 Jan 2004viii

Table of Contents:

............ 15810.15.5 Apache::Util::parsedate()

............ 15810.15.6 Apache::Util::ht_time()

......... 15910.15.7 Apache::Util::validate_password()

................. 15910.16 Apache::URI

.......... 15910.16.1 Apache::URI->parse($r, [$uri])

................. 15910.16.2 unparse()

.................. 16010.17 Miscellaneous

................ 16010.17.1 Method Handlers

................ 16110.17.2 Stacked Handlers

................. 16110.18 Apache::src

................. 16210.19 Apache::Table

................. 16210.20 Apache::SIG

................ 16210.21 Apache::StatINC

.................. 16210.22 Maintainers

................... 16210.23 Authors

................ 163Introducing mod_perl Handlers

............... 16311 Introducing mod_perl Handlers

................... 16411.1 Description

................. 16411.2 What are Handlers?

................ 16511.3 Handler Return Values

............... 16511.4 mod_perl Handlers Categories

................. 16611.5 Stacked Handlers

................... 16711.5.1 VOID

................. 16711.5.2 RUN_FIRST

.................. 16711.5.3 RUN_ALL

................ 16711.6 Hook Ordering (Position)

.................. 16811.7 Bucket Brigades

................... 16911.8 Maintainers

.................... 16911.9 Authors

................. 170Server Life Cycle Handlers

................ 17012 Server Life Cycle Handlers

................... 17112.1 Description

................. 17112.2 Server Life Cycle

............ 17212.2.1 Startup Phases Demonstration Module

............... 17412.2.2 PerlOpenLogsHandler

............... 17512.2.3 PerlPostConfigHandler

................ 17612.2.4 PerlChildInitHandler

................ 17612.2.5 PerlChildExitHandler

................... 17712.3 Maintainers

.................... 17712.4 Authors

................... 178Protocol Handlers

.................. 17813 Protocol Handlers

................... 17913.1 Description

................ 17913.2 Connection Cycle Phases

.............. 18013.2.1 PerlPreConnectionHandler

............. 18213.2.2 PerlProcessConnectionHandler

............. 18213.2.2.1 Socket-based Protocol Module

ix29 Jan 2004

Table of Contents:User Help

.......... 18413.2.2.2 Bucket Brigades-based Protocol Module

................... 18713.3 Maintainers

.................... 18713.4 Authors

.................... 188HTTP Handlers

................... 18814 HTTP Handlers

................... 18914.1 Description

.............. 18914.2 HTTP Request Handler Skeleton

............... 18914.3 HTTP Request Cycle Phases

.............. 19114.3.1 PerlPostReadRequestHandler

................ 19314.3.2 PerlTransHandler

........ 19414.3.3 PerlMapToStorageHandler META: add something here

............... 19414.3.4 PerlHeaderParserHandler

................. 19714.3.5 PerlInitHandler

................ 19814.3.6 PerlAccessHandler

................ 19914.3.7 PerlAuthenHandler

................ 20214.3.8 PerlAuthzHandler

................. 20314.3.9 PerlTypeHandler

................ 20414.3.10 PerlFixupHandler

............... 20614.3.11 PerlResponseHandler

................. 20714.3.12 PerlLogHandler

................ 20914.3.13 PerlCleanupHandler

............... 21314.4 Handling HEAD Requests

................ 21314.5 Extending HTTP Protocol

................... 21314.6 Maintainers

.................... 21314.7 Authors

.................. 214Input and Output Filters

................. 21415 Input and Output Filters

................... 21515.1 Description

.................. 21515.2 Your First Filter

................ 21915.3 I/O Filtering Concepts

............ 21915.3.1 Two Methods for Manipulating Data

........... 22015.3.2 HTTP Request Versus Connection Filters

............ 22015.3.3 Multiple Invocations of Filter Handlers

................. 22415.3.4 Blocking Calls

........... 22715.4 mod_perl Filters Declaration and Configuration

................ 22815.4.1 Filter Priority Types

............. 22815.4.2 PerlInputFilterHandler

............. 22815.4.3 PerlOutputFilterHandler

.............. 22915.4.4 PerlSetInputFilter

.............. 23015.4.5 PerlSetOutputFilter

............ 23215.4.6 HTTP Request vs. Connection Filters

............... 23315.4.7 Filter Initialization Phase

.................. 23515.5 All-in-One Filter

................... 24115.6 Input Filters

............... 24115.6.1 Connection Input Filters

.............. 24515.6.2 HTTP Request Input Filters

............. 24515.6.3 Bucket Brigade-based Input Filters

29 Jan 2004x

Table of Contents:

.............. 24715.6.4 Stream-oriented Input Filters

.................. 24915.7 Output Filters

............... 24915.7.1 Connection Output Filters

.............. 24915.7.2 HTTP Request Output Filters

............. 25015.7.2.1 Stream-oriented Output Filters

........... 25215.7.2.2 Bucket Brigade-based Output Filters

................. 25315.8 Filter Applications

............... 25415.8.1 Handling Data Underruns

................. 25815.9 Filter Tips and Tricks

.......... 25815.9.1 Altering the Content-Type Response Header

.............. 25915.10 Writing Well-Behaving Filters

.............. 25915.10.1 Adjusting HTTP Headers

................. 25915.10.2 Other issues

................ 26015.11 Writing Efficient Filters

.................. 26115.12 Maintainers

................... 26115.13 Authors

.................. 262General Handlers Issues

................. 26216 General Handlers Issues

................... 26316.1 Description

................ 26316.2 Handlers Communication

................... 26316.3 Maintainers

.................... 26316.4 Authors

........... 264Preventive Measures for Performance Enhancement

.......... 26417 Preventive Measures for Performance Enhancement

................... 26517.1 Description

................. 26517.2 Memory Leakage

.............. 26517.2.1 Proper Memory Pools Usage

................... 26517.3 Maintainers

.................... 26517.4 Authors

........... 266Performance Considerations Under Different MPMs

.......... 26618 Performance Considerations Under Different MPMs

................... 26718.1 Description

................ 26718.2 Memory Requirements

........... 26718.2.1 Memory Requirements in Prefork MPM

........... 26718.2.2 Memory Requirements in Threaded MPM

................ 26818.3 Work with DataBases

........... 26818.3.1 Work with DataBases under Prefork MPM

.......... 26818.3.2 Work with DataBases under Threaded MPM

................... 26818.4 Maintainers

.................... 26818.5 Authors

............... 269Troubleshooting mod_perl problems

.............. 26919 Troubleshooting mod_perl problems

................... 27019.1 Description

................ 27019.2 Building and Installation

................ 27019.3 Configuration and Startup

.............. 27019.3.1 (28)No space left on device

............ 27119.3.2 Segmentation Fault when Using DBI

xi29 Jan 2004

Table of Contents:User Help

............ 27119.3.3 <Perl> directive missing closing ’>’

... 27119.3.4 ’Invalid per-unknown PerlOption: ParseHeaders’ on HP-UX 11 for PA-RISC

................ 27119.4 Shutdown and Restart

............... 27119.5 Code Parsing and Compilation

................... 27119.6 Runtime

........ 27119.6.1 C Libraries Don’t See %ENV Entries Set by Perl Code

.......... 27219.6.2 Error about not finding Apache.pm with CGI.pm

............ 27219.6.3 20014:Error string not specified yet

..... 27219.6.4 (22)Invalid argument: core_output_filter: writing data to the network

............ 27219.6.5 undefined symbol: apr_table_compress

............ 27519.7 Issues with APR Used Outside of mod_perl

................... 27519.8 Maintainers

.................... 27519.9 Authors

..................... 276User Help

.................... 27620 User Help

................... 27720.1 Description

................. 27720.2 Reporting Problems

............ 27720.2.1 Wrong Apache/mod_perl combination

............... 27720.2.2 Before Posting a Report

........... 27720.2.3 Test with the Latest mod_perl 2.0 Version

................ 27820.2.4 Use a Proper Subject

............... 27820.2.5 Send the Report Inlined

............... 27820.2.6 Important Information

................ 27820.2.7 Problem Description

............... 27920.2.8 ’make test’ Failures

............. 28020.2.9 Resolving Segmentation Faults

......... 28020.2.10 Please Ask Only Questions Related to mod_perl

................ 28120.3 Help on Related Topics

................... 28120.4 Maintainers

.................... 28120.5 Authors

29 Jan 2004xii

Table of Contents:

	1€€Getting Your Feet Wet with mod_perl
	1.1€€Description
	1.2€€Installation
	1.3€€Configuration
	1.4€€Server Launch and Shutdown
	1.5€€Registry Scripts
	1.6€€Handler Modules
	1.7€€Troubleshooting
	1.8€€Maintainers
	1.9€€Authors

	2€€Overview of mod_perl 2.0
	2.1€€Description
	2.2€€Version Naming Conventions
	2.3€€Why mod_perl, The Next Generation
	2.4€€What's new in Apache 2.0
	2.5€€What's new in Perl 5.6.0 - 5.8.0
	2.6€€What's new in mod_perl 2.0
	2.6.1€€Threads Support
	2.6.2€€Thread-environment Issues
	2.6.3€€Perl Interface to the APR and Apache APIs

	2.7€€Integration with 2.0 Filtering
	2.7.1€€Other New Features
	2.7.2€€Optimizations

	2.8€€Maintainers
	2.9€€Authors

	3€€Notes on the design and goals of mod_perl-2.0
	3.1€€Description
	3.2€€Introduction
	3.3€€Interpreter Management
	3.3.1€€TIPool
	3.3.2€€Virtual Hosts
	3.3.3€€Further Enhancements

	3.4€€Hook Code and Callbacks
	3.5€€Perl interface to the Apache API and Data Structures
	3.5.1€€Advantages to generating XS code
	3.5.2€€Lvalue methods

	3.6€€Filter Hooks
	3.7€€Directive Handlers
	3.8€€<Perl> Configuration Sections
	3.9€€Protocol Module Support
	3.10€€mod_perl MPM
	3.11€€Build System
	3.12€€Test Framework
	3.13€€CGI Emulation
	3.14€€Apache::* Library
	3.15€€Perl Enhancements
	3.15.1€€GvSHARED
	3.15.2€€Shared SvPVX
	3.15.3€€Compile-time method lookups
	3.15.4€€Memory management hooks
	3.15.5€€Opcode hooks

	3.16€€Maintainers
	3.17€€Authors

	4€€Installing mod_perl 2.0
	4.1€€Description
	4.2€€Prerequisites
	4.2.1€€Downloading Stable Release Sources
	4.2.2€€Getting Bleeding Edge CVS Sources
	4.2.3€€Configuring and Installing Prerequisites

	4.3€€Installing mod_perl from Binary Packages
	4.4€€Installing mod_perl from Source
	4.4.1€€Downloading the mod_perl Source
	4.4.2€€Configuring mod_perl
	4.4.2.1€€Boolean Build Options
	4.4.2.1.1€€MP_PROMPT_DEFAULT
	4.4.2.1.2€€MP_GENERATE_XS
	4.4.2.1.3€€MP_USE_DSO
	4.4.2.1.4€€MP_USE_STATIC
	4.4.2.1.5€€MP_STATIC_EXTS
	4.4.2.1.6€€MP_USE_GTOP
	4.4.2.1.7€€MP_COMPAT_1X
	4.4.2.1.8€€MP_DEBUG
	4.4.2.1.9€€MP_MAINTAINER
	4.4.2.1.10€€MP_TRACE
	4.4.2.1.11€€MP_INST_APACHE2

	4.4.2.2€€Non-Boolean Build Options
	4.4.2.2.1€€MP_APXS
	4.4.2.2.2€€MP_AP_PREFIX
	4.4.2.2.3€€MP_APR_CONFIG
	4.4.2.2.4€€MP_CCOPTS
	4.4.2.2.5€€MP_OPTIONS_FILE

	4.4.2.3€€mod_perl-specific Compiler Options
	4.4.2.3.1€€-DMP_IOBUFSIZE

	4.4.2.4€€mod_perl Options File

	4.4.3€€Re-using Configure Options
	4.4.4€€Compiling mod_perl
	4.4.5€€Testing mod_perl
	4.4.6€€Installing mod_perl

	4.5€€If Something Goes Wrong
	4.6€€Maintainers
	4.7€€Authors

	5€€mod_perl 2.0 Server Configuration
	5.1€€Description
	5.2€€mod_perl configuration directives
	5.3€€Enabling mod_perl
	5.4€€Accessing the mod_perl 2.0 Modules
	5.5€€Startup File
	5.6€€Server Configuration Directives
	5.6.1€€PerlRequire
	5.6.2€€PerlModule
	5.6.3€€PerlLoadModule
	5.6.4€€PerlSetVar
	5.6.5€€PerlAddVar
	5.6.6€€PerlSetEnv
	5.6.7€€PerlPassEnv
	5.6.8€€<Perl> Sections
	5.6.9€€PerlSwitches
	5.6.10€€SetHandler
	5.6.10.1€€modperl
	5.6.10.2€€perl-script
	5.6.10.3€€Examples

	5.6.11€€PerlOptions
	5.6.11.1€€Enable
	5.6.11.2€€Clone
	5.6.11.3€€Parent
	5.6.11.4€€Perl*Handler
	5.6.11.5€€AutoLoad
	5.6.11.6€€GlobalRequest
	5.6.11.7€€ParseHeaders
	5.6.11.8€€MergeHandlers
	5.6.11.9€€SetupEnv

	5.7€€Server Life Cycle Handlers Directives
	5.7.1€€PerlOpenLogsHandler
	5.7.2€€PerlPostConfigHandler
	5.7.3€€PerlChildInitHandler
	5.7.4€€PerlChildExitHandler

	5.8€€Protocol Handlers Directives
	5.8.1€€PerlPreConnectionHandler
	5.8.2€€PerlProcessConnectionHandler

	5.9€€Filter Handlers Directives
	5.9.1€€PerlInputFilterHandler
	5.9.2€€PerlOutputFilterHandler
	5.9.3€€PerlSetInputFilter
	5.9.4€€PerlSetOutputFilter

	5.10€€HTTP Protocol Handlers Directives
	5.10.1€€PerlPostReadRequestHandler
	5.10.2€€PerlTransHandler
	5.10.3€€PerlMapToStorageHandler
	5.10.4€€PerlInitHandler
	5.10.5€€PerlHeaderParserHandler
	5.10.6€€PerlAccessHandler
	5.10.7€€PerlAuthenHandler
	5.10.8€€PerlAuthzHandler
	5.10.9€€PerlTypeHandler
	5.10.10€€PerlFixupHandler
	5.10.11€€PerlResponseHandler
	5.10.12€€PerlLogHandler
	5.10.13€€PerlCleanupHandler

	5.11€€Threads Mode Specific Directives
	5.11.1€€PerlInterpStart
	5.11.2€€PerlInterpMax
	5.11.3€€PerlInterpMinSpare
	5.11.4€€PerlInterpMaxSpare
	5.11.5€€PerlInterpMaxRequests
	5.11.6€€PerlInterpScope

	5.12€€Debug Directives
	5.12.1€€PerlTrace

	5.13€€mod_perl Directives Argument Types and Allowed Location
	5.14€€Server Startup Options Retrieval
	5.14.1€€MODPERL2 Define Option

	5.15€€Perl Interface to the Apache Configuration Tree
	5.16€€Adjusting @INC
	5.16.1€€PERL5LIB and PERLLIB Environment Variables
	5.16.2€€Modifying @INC on a Per-VirtualHost

	5.17€€General Issues
	5.18€€Maintainers
	5.19€€Authors

	6€€Apache Server Configuration Customization in Perl
	6.1€€Description
	6.2€€Incentives
	6.3€€Creating and Using Custom Configuration Directives
	6.3.1€€@APACHE_MODULE_COMMANDS
	6.3.1.1€€name
	6.3.1.2€€func
	6.3.1.3€€req_override
	6.3.1.4€€args_how
	6.3.1.5€€errmsg
	6.3.1.6€€cmd_data

	6.3.2€€Directive Scope Definition Constants
	6.3.2.1€€Apache::OR_NONE
	6.3.2.2€€Apache::OR_LIMIT
	6.3.2.3€€Apache::OR_OPTIONS
	6.3.2.4€€Apache::OR_FILEINFO
	6.3.2.5€€Apache::OR_AUTHCFG
	6.3.2.6€€Apache::OR_INDEXES
	6.3.2.7€€Apache::OR_UNSET
	6.3.2.8€€Apache::ACCESS_CONF
	6.3.2.9€€Apache::RSRC_CONF
	6.3.2.10€€Apache::OR_EXEC_ON_READ
	6.3.2.11€€Apache::OR_ALL

	6.3.3€€Directive Callback Subroutine
	6.3.4€€Directive Syntax Definition Constants
	6.3.4.1€€Apache::NO_ARGS
	6.3.4.2€€Apache::TAKE1
	6.3.4.3€€Apache::TAKE2
	6.3.4.4€€Apache::TAKE3
	6.3.4.5€€Apache::TAKE12
	6.3.4.6€€Apache::TAKE23
	6.3.4.7€€Apache::TAKE123
	6.3.4.8€€Apache::ITERATE
	6.3.4.9€€Apache::ITERATE2
	6.3.4.10€€Apache::RAW_ARGS
	6.3.4.11€€Apache::FLAG

	6.3.5€€Enabling the New Configuration Directives
	6.3.6€€Creating and Merging Configuration Objects
	6.3.6.1€€SERVER_CREATE
	6.3.6.2€€SERVER_MERGE
	6.3.6.3€€DIR_CREATE
	6.3.6.4€€DIR_MERGE

	6.4€€Examples
	6.4.1€€Merging at Work
	6.4.1.1€€Merging Entries Whose Values Are References
	6.4.1.2€€Merging Order Consequences

	6.5€€Maintainers
	6.6€€Authors

	7€€Writing mod_perl Handlers and Scripts
	7.1€€Description
	7.2€€Prerequisites
	7.3€€Where the Methods Live
	7.4€€Method Handlers
	7.5€€Goodies Toolkit
	7.5.1€€Environment Variables
	7.5.2€€Threaded MPM or not?
	7.5.3€€Writing MPM-specific Code

	7.6€€Code Developing Nuances
	7.6.1€€Auto-Reloading Modified Modules with Apache::Reload

	7.7€€Integration with Apache Issues
	7.7.1€€Sending HTTP Response Headers
	7.7.2€€Sending HTTP Response Body

	7.8€€Perl Specifics in the mod_perl Environment
	7.8.1€€Request-localized Globals
	7.8.2€€exit†‡

	7.9€€Threads Coding Issues Under mod_perl
	7.9.1€€Thread-environment Issues
	7.9.2€€Deploying Threads
	7.9.3€€Shared Variables

	7.10€€Maintainers
	7.11€€Authors

	8€€Cooking Recipes
	8.1€€Description
	8.2€€Sending Cookies in REDIRECT Response †ModPerl::Registry‡
	8.3€€Sending Cookies in REDIRECT Response †handlers‡
	8.4€€Maintainers
	8.5€€Authors

	9€€Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
	9.1€€Description
	9.2€€Introduction
	9.3€€Using Apache::porting
	9.4€€Using the Apache::compat Layer
	9.5€€Porting a Perl Module to Run under mod_perl 2.0
	9.5.1€€Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be Loaded
	9.5.1.1€€Handling Methods Existing In More Than One Package
	9.5.1.2€€Using ModPerl::MethodLookup Programmatically
	9.5.1.3€€Pre-loading All mod_perl 2.0 Modules

	9.5.2€€Handling Missing and Modified mod_perl 1.0 Methods and Functions
	9.5.2.1€€Methods that No Longer Exist
	9.5.2.2€€Methods Whose Usage Has Been Modified

	9.5.3€€Requiring a specific mod_perl version.
	9.5.4€€Should the Module Name Be Changed?
	9.5.5€€Using Apache::compat As a Tutorial
	9.5.6€€How Apache::MP3 was Ported to mod_perl 2.0
	9.5.6.1€€Preparations
	9.5.6.1.1€€httpd.conf
	9.5.6.1.2€€startup.pl
	9.5.6.1.3€€Apache/MP3.pm

	9.5.6.2€€Porting with Apache::compat
	9.5.6.3€€Getting Rid of the Apache::compat Dependency
	9.5.6.4€€Ensuring that Apache::compat is not loaded
	9.5.6.5€€Installing the ModPerl::MethodLookup Helper
	9.5.6.6€€Adjusting the code to run under mod_perl 2

	9.6€€Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0
	9.6.1€€Making Code Conditional on Running mod_perl Version
	9.6.2€€Method Handlers

	9.7€€Maintainers
	9.8€€Authors

	10€€A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.
	10.1€€Description
	10.2€€Configuration Files Porting
	10.2.1€€PerlHandler
	10.2.2€€PerlSendHeader
	10.2.3€€PerlSetupEnv
	10.2.4€€PerlTaintCheck
	10.2.5€€PerlWarn
	10.2.6€€PerlFreshRestart
	10.2.7€€Apache Configuration Customization
	10.2.8€€@INC Manipulation

	10.3€€Code Porting
	10.4€€Apache::Registry, Apache::PerlRun and Friends
	10.4.1€€ModPerl::RegistryLoader

	10.5€€Apache::Constants
	10.5.1€€mod_perl 1.0 and 2.0 Constants Coexistence
	10.5.2€€Deprecated Constants
	10.5.3€€SERVER_VERSION†‡
	10.5.4€€export†‡

	10.6€€Issues with Environment Variables
	10.7€€Special Environment Variables
	10.7.1€€$ENV{GATEWAY_INTERFACE}

	10.8€€Apache:: Methods
	10.8.1€€Apache->request
	10.8.2€€Apache->define
	10.8.3€€Apache->can_stack_handlers
	10.8.4€€Apache->untaint
	10.8.5€€Apache->get_handlers
	10.8.6€€Apache->push_handlers
	10.8.7€€Apache->set_handlers
	10.8.8€€Apache->httpd_conf
	10.8.9€€Apache::exit†‡
	10.8.10€€Apache::gensym†‡
	10.8.11€€Apache::module†‡
	10.8.12€€Apache::log_error†‡

	10.9€€Apache:: Variables
	10.9.1€€$Apache::__T

	10.10€€Apache::Server:: Methods and Variables
	10.10.1€€$Apache::Server::CWD
	10.10.2€€$Apache::Server::AddPerlVersion

	10.11€€Server Object Methods
	10.11.1€€$s->register_cleanup
	10.11.2€€$s->uid
	10.11.3€€$s->gid

	10.12€€Request Object Methods
	10.12.1€€$r->cgi_env
	10.12.2€€$r->cgi_var
	10.12.3€€$r->current_callback
	10.12.4€€$r->get_remote_host
	10.12.5€€$r->cleanup_for_exec
	10.12.6€€$r->content
	10.12.7€€$r->args in an Array Context
	10.12.8€€$r->chdir_file
	10.12.9€€$r->is_main
	10.12.10€€$r->finfo
	10.12.11€€$r->notes
	10.12.12€€$r->header_in
	10.12.13€€$r->header_out
	10.12.14€€$r->err_header_out
	10.12.15€€$r->log_reason
	10.12.16€€$r->register_cleanup
	10.12.17€€$r->post_connection
	10.12.18€€$r->request
	10.12.19€€$r->send_fd
	10.12.20€€$r->send_fd_length
	10.12.21€€$r->send_http_header
	10.12.22€€$r->server_root_relative
	10.12.23€€$r->hard_timeout
	10.12.24€€$r->reset_timeout
	10.12.25€€$r->soft_timeout
	10.12.26€€$r->kill_timeout
	10.12.27€€$r->set_byterange
	10.12.28€€$r->each_byterange

	10.13€€Apache::Connection
	10.13.1€€$connection->auth_type
	10.13.2€€$connection->user
	10.13.3€€$connection->local_addr
	10.13.4€€$connection->remote_addr

	10.14€€Apache::File
	10.14.1€€open†‡ and close†‡
	10.14.2€€tmpfile†‡

	10.15€€Apache::Util
	10.15.1€€Apache::Util::size_string†‡
	10.15.2€€Apache::Util::escape_uri†‡
	10.15.3€€Apache::Util::unescape_uri†‡
	10.15.4€€Apache::Util::escape_html†‡
	10.15.5€€Apache::Util::parsedate†‡
	10.15.6€€Apache::Util::ht_time†‡
	10.15.7€€Apache::Util::validate_password†‡

	10.16€€Apache::URI
	10.16.1€€Apache::URI->parse†$r, [$uri]‡
	10.16.2€€unparse†‡

	10.17€€Miscellaneous
	10.17.1€€Method Handlers
	10.17.2€€Stacked Handlers

	10.18€€Apache::src
	10.19€€Apache::Table
	10.20€€Apache::SIG
	10.21€€Apache::StatINC
	10.22€€Maintainers
	10.23€€Authors

	11€€Introducing mod_perl Handlers
	11.1€€Description
	11.2€€What are Handlers?
	11.3€€Handler Return Values
	11.4€€mod_perl Handlers Categories
	11.5€€Stacked Handlers
	11.5.1€€VOID
	11.5.2€€RUN_FIRST
	11.5.3€€RUN_ALL

	11.6€€Hook Ordering †Position‡
	11.7€€Bucket Brigades
	11.8€€Maintainers
	11.9€€Authors

	12€€Server Life Cycle Handlers
	12.1€€Description
	12.2€€Server Life Cycle
	12.2.1€€Startup Phases Demonstration Module
	12.2.2€€PerlOpenLogsHandler
	12.2.3€€PerlPostConfigHandler
	12.2.4€€PerlChildInitHandler
	12.2.5€€PerlChildExitHandler

	12.3€€Maintainers
	12.4€€Authors

	13€€Protocol Handlers
	13.1€€Description
	13.2€€Connection Cycle Phases
	13.2.1€€PerlPreConnectionHandler
	13.2.2€€PerlProcessConnectionHandler
	13.2.2.1€€Socket-based Protocol Module
	13.2.2.2€€Bucket Brigades-based Protocol Module

	13.3€€Maintainers
	13.4€€Authors

	14€€HTTP Handlers
	14.1€€Description
	14.2€€HTTP Request Handler Skeleton
	14.3€€HTTP Request Cycle Phases
	14.3.1€€PerlPostReadRequestHandler
	14.3.2€€PerlTransHandler
	14.3.3€€PerlMapToStorageHandler META: add something here
	14.3.4€€PerlHeaderParserHandler
	14.3.5€€PerlInitHandler
	14.3.6€€PerlAccessHandler
	14.3.7€€PerlAuthenHandler
	14.3.8€€PerlAuthzHandler
	14.3.9€€PerlTypeHandler
	14.3.10€€PerlFixupHandler
	14.3.11€€PerlResponseHandler
	14.3.12€€PerlLogHandler
	14.3.13€€PerlCleanupHandler

	14.4€€Handling HEAD Requests
	14.5€€Extending HTTP Protocol
	14.6€€Maintainers
	14.7€€Authors

	15€€Input and Output Filters
	15.1€€Description
	15.2€€Your First Filter
	15.3€€I/O Filtering Concepts
	15.3.1€€Two Methods for Manipulating Data
	15.3.2€€HTTP Request Versus Connection Filters
	15.3.3€€Multiple Invocations of Filter Handlers
	15.3.4€€Blocking Calls

	15.4€€mod_perl Filters Declaration and Configuration
	15.4.1€€Filter Priority Types
	15.4.2€€PerlInputFilterHandler
	15.4.3€€PerlOutputFilterHandler
	15.4.4€€PerlSetInputFilter
	15.4.5€€PerlSetOutputFilter
	15.4.6€€HTTP Request vs. Connection Filters
	15.4.7€€Filter Initialization Phase

	15.5€€All-in-One Filter
	15.6€€Input Filters
	15.6.1€€Connection Input Filters
	15.6.2€€HTTP Request Input Filters
	15.6.3€€Bucket Brigade-based Input Filters
	15.6.4€€Stream-oriented Input Filters

	15.7€€Output Filters
	15.7.1€€Connection Output Filters
	15.7.2€€HTTP Request Output Filters
	15.7.2.1€€Stream-oriented Output Filters
	15.7.2.2€€Bucket Brigade-based Output Filters

	15.8€€Filter Applications
	15.8.1€€Handling Data Underruns

	15.9€€Filter Tips and Tricks
	15.9.1€€Altering the Content-Type Response Header

	15.10€€Writing Well-Behaving Filters
	15.10.1€€Adjusting HTTP Headers
	15.10.2€€Other issues

	15.11€€Writing Efficient Filters
	15.12€€Maintainers
	15.13€€Authors

	16€€General Handlers Issues
	16.1€€Description
	16.2€€Handlers Communication
	16.3€€Maintainers
	16.4€€Authors

	17€€Preventive Measures for Performance Enhancement
	17.1€€Description
	17.2€€Memory Leakage
	17.2.1€€Proper Memory Pools Usage

	17.3€€Maintainers
	17.4€€Authors

	18€€Performance Considerations Under Different MPMs
	18.1€€Description
	18.2€€Memory Requirements
	18.2.1€€Memory Requirements in Prefork MPM
	18.2.2€€Memory Requirements in Threaded MPM

	18.3€€Work with DataBases
	18.3.1€€Work with DataBases under Prefork MPM
	18.3.2€€Work with DataBases under Threaded MPM

	18.4€€Maintainers
	18.5€€Authors

	19€€Troubleshooting mod_perl problems
	19.1€€Description
	19.2€€Building and Installation
	19.3€€Configuration and Startup
	19.3.1€€†28‡No space left on device
	19.3.2€€Segmentation Fault when Using DBI
	19.3.3€€<Perl> directive missing closing '>'
	19.3.4€€'Invalid per-unknown PerlOption: ParseHeaders' on HP-UX 11 for PA-RISC

	19.4€€Shutdown and Restart
	19.5€€Code Parsing and Compilation
	19.6€€Runtime
	19.6.1€€C Libraries Don't See %ENV Entries Set by Perl Code
	19.6.2€€Error about not finding Apache.pm with CGI.pm
	19.6.3€€20014:Error string not specified yet
	19.6.4€€†22‡Invalid argument: core_output_filter: writing data to the network
	19.6.5€€undefined symbol: apr_table_compress

	19.7€€Issues with APR Used Outside of mod_perl
	19.8€€Maintainers
	19.9€€Authors

	20€€User Help
	20.1€€Description
	20.2€€Reporting Problems
	20.2.1€€Wrong Apache/mod_perl combination
	20.2.2€€Before Posting a Report
	20.2.3€€Test with the Latest mod_perl 2.0 Version
	20.2.4€€Use a Proper Subject
	20.2.5€€Send the Report Inlined
	20.2.6€€Important Information
	20.2.7€€Problem Description
	20.2.8€€'make test' Failures
	20.2.9€€Resolving Segmentation Faults
	20.2.10€€Please Ask Only Questions Related to mod_perl

	20.3€€Help on Related Topics
	20.4€€Maintainers
	20.5€€Authors

