Controlling and Monitoring the Server 1 Controlling and Monitoring the Server

1 Controlling and Monitoring the Server

29 Jan 2004 1

1.1 Description

1.1 Description|

Covers techniques to restart mod_perl enabled Apache, SUID scripts, monitoring, and other maintenance
chores, as well as some specific setups.

1.2 |Restarting Techniques

All of these techniques require that you know the server processid (PID). The easiest way to find the PID
isto look it up in the httpd.pid file. It's easy to discover where to look, by looking in the httpd.conf file.
Open thefile and locate the entry Pi dFi | e. Hereisthe line from one of my own httpd.conf files:

PidFile /usr/local/var/httpd_perl/run/httpd.pid
Asyou see, with my configuration the file is /usr/local /var/httpd_per|/run/httpd.pid.

Another way isto use the ps and gr ep utilities. Assuming that the binary is called httpd_perl, we would
do:

% ps auxc | grep httpd_perl

or maybe:
% ps -ef | grep httpd_perl

This will produce alist of al the ht t pd_per| (parent and children) processes. Y ou are looking for the
parent process. If you run your server as root, you will easily locate it since it belongs to root. If you run
the server as some other user (when you don’t have root access, the processes will belong to that user
unless defined differently in httpd.conf. It's till easy to find which is the parent--usualy it's the process
with the smallest PID.

You will see several ht t pd processes running on your system, but you should never need to send signals
to any of them except the parent, whose pid is in the PidFile. There are three signals that you can send to
the parent: SI GTERM SI GHUP, and SI GUSR1.

Some folks prefer to specify signals using numerical values, rather than using symbols. If you are looking
for these, check out your ki | | (1) man page. My page points to /usr/include/linux/signal.h, the relevant
entries are:

#defi ne Sl GHUP 1 /* hangup, generated when term nal disconnects */
#define SI&KILL 9 /* last resort */

#define SI GTERM 15 /* software termnation signal */

#define Sl GUSRL 30 /* user defined signal 1 */

Note that to send these signals from the command line the SI G prefix must be omitted and under some
operating systems they will need to be preceded by a minus sign, eg. kill -15or kill -TERM
followed by the PID.

2 29 Jan 2004

Controlling and Monitoring the Server 1.3 Server Stopping and Restarting

1.3 |Server Stopping and Restarting

We will concetrate here on thémplicaions of sendingTERM HUP, andUSR1 signals (asrgumentsto
kill(1)) to a mod_perl enabled server. $ag://www.apache.org/docs/stmpg.htm| for docunertation
on theimplicaions of sending these signals to a plain Apasberer.

® TERM Signal: Stop Now

Sending th&' ERMsignal to the parent causes iirfamediately attempt to kill off all itschildren Any
requests in progress ae¥minated and no further requests are served. This process may take quite a
few seconds to complete. To stop a child, the parent send® B&dJP signal. If that fails it sends
another. If that fails it sends ti& GTERMsignal, and as a last resort it sendsShéxl LL signal.

For each failed attempt to kill a child it makes an entry irether_log.

When all the child processes weeeminated the parent itself exits and any open log files are closed.
This is when all theaccunulated END blocks, apart from the ones located in scripts running under
Apache: : Regi stry or Apache:: Perl Run handlers. In the latter cas&ND blocks are
executed after each requessésved.

e HUP Signal: Restart Now

Sending théHUP signal to the parent causes it to kill off dsildrenas if theTERM signal had been
sent, i.e. any requests in progress tareninated but the parent does not exit. Instead, the parent
re-reads iteonfiguration files, spawns a new set of child processescamtinuesto serve requests. It

is almostequivalent to stopping and therrestaring theserver.

If the configuration files contain errors when restart is signaled, the parent will exit, soriptatant
to check theconfiguration files for errors before issuing a restart. How to perform the check will be
coveredshortly;

Somdimesusing this approach to restart mod_perl enabled Apache may cause the processes memory
incremertal growth after each restart. This happens when Perl code loaded in memory is not
completely torn down, leading to a memdegk.

® USRI Signal: Gracefully Restart Now

The USR1 signal causes the parent process to adviseltildrento exit after serving their current
requests, or to eximmediately if they’re not serving a request. The parent re-readitfguration

files and re-opens its log files. As each child dies off the parent replaces it with a child from the new
genestion (the newchildrenuse the neveonfiguration) and it begins serving new requestsnedi-

ately.

The onlydifferencebetweerJSR1 andHUP is thatUSR1 allows thechildrento complete any current
requests prior to killing them off and there isinterruption in the services compared to the killing

with HUP signal, where it might take a few seconds for a restart to get completed and there is no real
service at thisime.

29 Jan 2004 3

http://www.apache.org/docs/stopping.html

1.4 Speeding up the Apache Termination and Restart

By default, if a server is restarted (usikigl | -USR1 ‘cat | ogs/httpd. pid‘ or with theHUP
signal), Perl scripts and modules are not reloaded. To réeatl Requi r es, Per | Modul es, other
use() 'd modules and flush thdpache: : Regi st ry cache, use thidiredive in httpd.conf:

Per| FreshRestart On

Make sure you reaBvil things might happen when usiRgrFreshRestart

1.4 |Speeding up the Apache Termination and Restart

We've already mentioned that restartterminaion cansomeimestake quite a long time, (e.g. tens of
seconds), for a mod_perl server. The reason for that is a call pethe destruct () Perl APlfunc
tion during the child exit phase. This will cause propgecuion of END blocks found during server
startup and will invoke thBESTROY method on global objects which are siive.

It is alsopossble that thisopeition may take a long time to finish, causing a long delay during a restart.
Soméimesthis will be followed by a series of messaggpeaing in the serveerror_log file, warning

that certain child processes did not exit as expected. This happens when after a few adtaamgshe

child process to quit, the child is still in the middle of perl_destruct(), and a Idthal signal is sent,
abortng anyopeition the child has happened to execute landally killing it.

If your code does not contain aBND blocks orDESTROY methods which need to be run during child
servershutlown, or may have these, but ifissignificantto execute them, thdestrution can be avoided
by setting the?PERL_DESTRUCT _LEVEL environmentvariableto - 1. For example add this setting to the
httpd.conf file:

Per | Set Env PERL_DESTRUCT_LEVEL -1

What consttutesa significantcleanup? Any change of state outside of the current process that would not
be handled by thepeiting system itself. Seommiting databas¢ransadions andremoning the lock on
some resource asignificantopemtions, but closing amrdinaryfile isn't.

1.5 |Using apachect| to Control the Server

The Apachedistribution comes with a script to control the server. It's callgthchect| and it is
installed into the samlecation as the httpd executable. We will assume for the sake axaumplesthat
itsin/usr/local /sbin/httpd_perl/apachectl:

To starthttpd_perl:

% /usr/ 1 ocal /sbin/httpd_perl/apachect| start

To stophttpd_perl:

% /usr/ 1 ocal /sbin/httpd_perl/apachect!l stop

4 29 Jan 2004

Controlling and Monitoring the Server 1.6 Safe Code Updates on a Live Production Server

To restart httpd_perl (if it is running, seBHdGHUP; if it is not already running just stat}:

% [usr/ | ocal /shin/httpd_perl/apachect| restart
Do agracdul restart by sending@l GUSRL, or start if notrunning:
% /usr/ 1 ocal /sbin/httpd_perl/apachect!| graceful
To do aconfiguration test:
% /usr/ | ocal /sbin/httpd_perl/apachect| configtest
Replaceht t pd_per | with htt pd_docs in the above calls to control thé t pd_docs server.
There are other options fapachect | , use thénel p option to see therall.

It's importantto remenberthatapachect | uses the PID file, which spedfied by thePl DFI LE direc
tive in httpd.conf. If you delete the PID file by hand while the server is runnaggchect | will be
unable to stop or restart teerver.

1.6 |Safe Code Updateson a Live Production Server

You have prepared a new version of code, uploaded it iptodudion server, restarted it and it doesn’t
work. What could be worse than that? You also cannot go back, because yavdravitten the good
working code.

It's quite easy to prevent it, just dowmvemrite thepreviousworkingfiles!

Personlly | do all updates on the live server with flsiowing sequence. Assume that the server root
diredory is /home/httpd/perl/rel. When I'm about to update the files | create a ndinedory
/home/httpd/perl/beta, copy the old files fronthome/httpd/perl/rel and update it with the new files. Then |
do some last sanity checks (check permisionsare [read+executable], and rpar| -c on the new
modules to make sure there no errors in them). When | think I'm rezdaly |

% cd / hore/ htt pd/ perl
%m rel old & nmv beta rel && stop && sleep 3 && restart && err

Let me explain what thidoes.

Firstly, note that | put all the commands on one lgspaatedby &&, and only then press tiimt er key.

As | am working remotely, this ensures that if | suddenly losecompetion (sadly this happensome

timeg | won't leave the server down if only tls¢ op command squeezed i&& also ensures that if any
command fails, the rest won't be executed. | am using aliases (which | have already defined) to make the
typing easier:

29 Jan 2004 5

1.6 Safe Code Updates on a Live Production Server

% alias | grep apachectl

graceful /usr/local/apache/bin/apachect!| graceful
rehup /usr/local / apache/ sbin/ apachect!| restart
restart /usr/local/apache/bin/apachect!| restart
start /usr/ | ocal / apache/ bi n/ apachect| start
stop /usr/ | ocal / apache/ bi n/ apachect| stop

%alias err
tail -f /usr/local/apache/logs/error_|og

Taking the line apart piece by piece:
m/ rel old &&
back up the working directory to old
mv/ beta rel &&
put the new onein its place
stop &&
stop the server
sleep 3 &&
give it afew seconds to shut down (it might take even longer)

restart &&

restart theserver

err
view of thetail of theerror_log filein order to see that everything is OK

apachect | generates the status messages a little too early (e.g. when you issue apachect| stop it
says the server has been stopped, while in fact it's still running) so don't rely on it, rely on the
error _| og fileinstead.

Also noticethat | user est art and not just st art . | do this because of Apache’s potentially long stop-
ping times (it depends on what you do with it of coursel). If you use st art and Apache hasn't yet
released the port it’s listening to, the start would fail and er r or _| og would tell you that the port isin
use, eg.:

Address already in use: make_sock: could not bind to port 8080

Butif youuser est art, it will wait for the server to quit and then will cleanly restart it.

Now what happens if the new modules are broken? First of al, | see immediately an indication of the
problems reported in the err or _I og file, which I tail -f immediately after a restart command. If
there’'saproblem, | just put everything back asit was before:

6 29 Jan 2004

Controlling and Monitoring the Server 1.7 An Intentional Disabling of Live Scripts

%m rel bad & mv old rel && stop && sleep 3 && restart && err

Usually everything will be fine, and | have had only about 10 seconds of downtime, which is pretty good!

1.7 |An Intentional Disabling of Live Scripts

What happens if you really must take down the server or disable the scripts? This situation might happen
when you need to do some maintenance work on your database server. If you have to take your database
down then any scripts that use it will fail.

If you do nothing, the user will see either the grey An Error has happened message or perhaps a
customized error message if you have added code to trap and customize the errors. See Redirecting Errors
to the Client instead of to the error_log for the latter case.

A much friendlier approach is to confess to your users that you are doing some maintenance work and
plead for patience, promising (keep the promise!) that the service will become fully functiona in X
minutes. There are afew ways to do this:

Thefirst doesn’t require messing with the server. It works when you have to disable a script running under
Apache: : Regi st ry andrelies on the fact that it checks whether the file was modified before using the
cached version. Obviously it won't work under other handlers because these serve the compiled version of
the code and don’t check to see if there was a change in the code on the disk.

So if you want to disable an Apache: : Regi st ry script, prepare alittle script like this:

/ hone/ htt p/ perl/ mai nt enance. pl

#!/usr/bin/perl -Tw

use strict;

use Cd;

ny $g = new C4d;

print $g->header, $g->p(

"Sorry, the service is tenporarily down for nmintenance.
It will be back in ten to fifteen m nutes.

Pl ease, bear with us.

Thank you!");

So if you now have to disable a script for example/ home/ ht t p/ per |/ chat . pl , just do this:

% mv [home/ http/perl/chat.pl /hone/http/perl/chat.pl.orig
%Il n -s /honel/ http/perl/maintenance. pl /home/http/perl/chat. pl

Of course you server configuration should allow symbolic links for this trick to work. Make sure you have
the directive

Opti ons Fol | owSynLi nks

29 Jan 2004 7

1.7 An Intentional Disabling of Live Scripts

inthe<Locat i on> or <Di r ect or y> section of your httpd.conf.

When you're done, it's easy to restore the previous setup. Just do this:

% nmv [hone/ http/perl/chat.pl.orig /hone/http/perl/chat.pl
which overwrites the symbolic link.

Now make sure that the script will have the current timestamp:

% t ouch /hore/ http/perl/chat.p
Apache will automatically detect the change and will use the moved script instead.

The second approach is to change the server configuration and configure a whole directory to be handled
by aMy: : Mai nt enance handler (which you must write). For example if you write something like this:

My/ Mai nt enance. pm

package My:: Mai ntenance;

use strict;

use Apache:: Constants gw : conmon);
sub handl er {

ny $r = shift;

print $r->send_http_header("text/plain");

print qaq{
We apol ogi ze, but this service is tenporarily stopped for
mai ntenance. It will be back inten to fifteen mnutes
Pl ease, bear with us. Thank you

3

return oK

}
1

and put it in a directory that is in the server’'s @ NC, to disable all the scripts in Location / per | you
would replace:

<Location /perl>
Set Handl er perl-script
Per| Handl er My:: Handl er
[sni p]

</ Locat i on>

with

<Location /perl>
Set Handl er perl -script
Per | Handl er My:: Mai nt enance
[sni p]

</ Locati on>

8 29 Jan 2004

Controlling and Monitoring the Server 1.8 SUID Start-up Scripts

Now restart the server. Your users will be happy to go and read |http://slashdot.orgl for ten minutes,
knowing that you are working on a much better version of the service.

If you need to disable alocation handled by some module, the second approach would work just as well.

1.8 |SUID Start-up Scripts

If you want to allow afew people in your team to start and stop the server you will have to give them the
root password, which is not a good thing to do. The less people know the password, the less problems are
likely to be encountered. But there is an easy solution for this problem available on UNIX platforms. It's
called a setuid executable.

1.8.1 [Introduction to SUID Executables

The setuid executable has a setuid permissions bit set. This sets the process's effective user 1D to that of
the file upon execution. Y ou perform this setting with the following command:

% chnod u+s fil enane

Y ou probably have used setuid executables before without even knowing about it. For example when you
change your password you execute the passwd utility, which among other things modifies the
letc/passwd file. In order to change this file you need root permissions, the passwd utility has the setuid
bit set, therefore when you execute this utility, its effective ID is the same of the root user ID.

Y ou should avoid using setuid executables as a general practice. The less setuid executables you have the
less likely that someone will find a way to break into your system, by exploiting some bug you didn’t
know about.

When the executable is setuid to root, you have to make sure that it doesn’t have the group and world read
and write permissions. If wetake alook at the passwd utility we will see:

%Ils -1 /usr/bin/passwd
-r-s--x--x 1 root root 12244 Feb 8 00: 20 /usr/bi n/ passwd

Y ou achieve this with the following command:

% chnod 4511 fil enane

The first digit (4) stands for setuid bit, the second digit (5) is a compound of read (4) and executable (1)
permissions for the user, and the third and the fourth digits are setting the executable permissions for the
group and the world.

1.8.2 |Apache Startup SUID Script’Secuity|

In our case, we want to allow setuid access only to a specific group of users, who all belong to the same
group. For the sake of our example we will use the group named apache. It's important that users who
aren't root or who don’t belong to the apache group will not be able to execute this script. Therefore we
perform the following commands:

29 Jan 2004 9

http://slashdot.org/

1.8.3 Sample Apache Startup SUID Script

% chgr p apache apachect|
% chnod 4510 apachectl

The execution order isimportant. If you swap the command execution order you will lose the setuid bit.

Now if welook at the file we see:

%Ils -1 apachectl
-r-s--x--- 1 root apache 32 May 13 21:52 apachect]|

Now we are all set... AImost...

When you start Apache, Apache and Perl modules are being loaded, code can be executed. Since al this
happens with root effective ID, any code executed as if the root user was doing that. Y ou should be very
careful because while you didn’t gave anyone the root password, all the users in the apache group have an
indirect root access. Which means that if Apache loads some module or executes some code that is
writable by some of these users, users can plant code that will allow them to gain a shell access to root
account and become areal root.

Of course if you don’t trust your team you shouldn’t use this solution in first place. You can try to check
that al the files Apache loads aren't writable by anyone but root, but there are too many of them, espe-
cialy inthe mod_perl case, where many Perl modules are loaded at the server startup.

By the way, don't let all this setuid stuff to confuse you -- when the parent process is loaded, the children
processes are spawned as non-root processes. This section has presented a way to alow non-root users to
start the server as root user, the rest is exactly the same as if you were executing the script as root in first
place.

1.8.3 [Sample Apache Startup SUID Script]

Now if you are still with us, here is an example of the setuid Apache startup script.

Note the line marked WORKAROUND, which fixes an obscure error when starting mod_perl enabled
Apache by setting the real UID to the effective UID. Without this workaround, a mismatch between the
real and the effective UID causes Perl to croak on the - e switch.

Note that you must be using a version of Perl that recognizes and emulates the suid bits in order for this to
work. This script will do different things depending on whether it is named start _httpd,
stop_httpdorrestart _htt pd. Youcanusesymbolic linksfor this purpose.

sui d_apache_ct|

#! /usr/bin/perl -T

These constants will need to be adjusted.
$PID FILE = '/ home/ ww/ | ogs/ httpd. pid’;
$HTTPD = '/ horme/ ww/ httpd -d /home/ www ;

These prevent taint warnings while running suid

$ENV{ PATH} =" / bi n: /usr/bin’;
$ENV{I FS} =" ;

10 29 Jan 2004

Controlling and Monitoring the Server 1.9 Preparing for Machine Reboot

This sets the real to the effective ID, and prevents
an obscure error when starting apache/ nod_per

$< = $>; # WORKAROUND

$(= $) =0; # set the group to root too

Do different things depending on our name
($name) = $0 =~ nf (["/]+)$];

if ($nane eq 'start_httpd) {
system $HTTPD and die "Unable to start HTTP"
print "HTTP started.\n";
exit O;

}

extract the process id and confirmthat it is numeric
$pid = ‘cat $PID_FILE;

$pid =~ /(\d+)/ or die "PID $pid not nuneric";

$pi d $1;

if ($nane eq 'stop_httpd) {
kill "TERM , $pid or die "Unable to signal HTTP";
print "HTTP stopped.\n";
exit O;

}

if ($name eq 'restart_httpd) {
kill "HUP ,$pid or die "Unable to signal HTTP"
print "HTTP restarted.\n";

exit O;

}

die "Script nust be naned start_httpd, stop_httpd, or restart_httpd.\n";

1.9 |Preparing for Machine Reboot

When you run your own development box, it's okay to start the webserver by hand when you need to. On
aproduction system it is possible that the machine the server is running on will have to be rebooted. When
the reboot is completed, who is going to remember to start the server? It's easy to forget this task, and
what happensif you aren’t around when the machine is rebooted?

After the server installation is complete, it’s important not to forget that you need to put a script to perform
the server startup and shutdown into the standard system location, for example /etc/rc.d under RedHat
Linux, or /etc/init.d/apache under Debian Slink Linux.

This is the directory which contains scripts to start and stop all the other daemons. The directory and file

names vary from one Operating System (OS) to another, and even between different distributions of the
same OS.

29 Jan 2004 11

1.9 Preparing for Machine Reboot

Generally the simplest solution is to copy the apachect | script to your startup directory or create a
symbolic link from the startup directory to the apachect | script. You will find apachect!| in the
same directory as the httpd executable after Apache installation. If you have more than one Apache server
you will need a separate script for each one, and of course you will have to rename them so that they can
co-exist in the same directories.

For example on a RedHat Linux machine with two servers, | have the following setup:

/etc/rc.d/init.d/ httpd_docs
/etc/rc.d/linit.d/ httpd_perl
/etc/rc.d/rc3.d/ S91lhttpd_docs -> ../init.d/ httpd_docs
/etc/rc.d/rc3.d/ S91lhttpd_perl -> ../init.d/ httpd_perl
/etc/rc.d/rc6.d/ Kl6httpd_docs -> ../init.d/ httpd_docs
/etc/rc.d/rc6.d/ Kl6httpd_perl -> ../init.d/ httpd_perl

The scripts themselves reside in the /etc/rc.d/init.d directory. There are symbolic links to these scripts in
other directories. The names are the same as the script names but they have numerical prefixes, which are
used for executing the scriptsin a particular order: the lower numbers are executed earlier.

When the system starts (level 3) we want the Apache to be started when almost all of the services are
running aready, therefore I've used 1. For example if the mod perl enabled Apache issues a
connect _on_i ni t () the SQL server should be started before Apache.

When the system shuts down (level 6), Apache should be stopped as one of the first processes, therefore
I’ve used K16. Again if the server does some cleanup processing during the shutdown event and requires
third party servicesto be running (e.g. SQL server) it should be stopped before these services.

Notice that it's normal for more than one symbolic link to have the same sequence number.

Under RedHat Linux and similar systems, when a machine is booted and its runlevel set to 3 (multiuser +
network), Linux goes into /etc/rc.d/rc3.d/ and executes the scripts the symbolic links point to with the
st art argument. When it sees 1httpd perl, it executes:

/etc/rc.d/init.d/ httpd_perl start

When the machine is shut down, the scripts are executed through links from the /etc/rc.d/rc6.d/ directory.
This time the scripts are called with the st op argument, like this:

/etc/rc.d/init.d/ httpd_perl stop

Most systems have GUI utilities to automate the creation of symbolic links. For example RedHat Linux
includes the cont r ol - panel utility, which amongst other things includes the RunLevel Manager.
(which can be invoked directly as either ntsysv(8) or tksysv(8)). This will help you to create the proper
symbolic links. Of course before you use it, you should put apachect | or similar scripts into the init.d
or equivalent directory. Or you can have a symbolic link to some other location instead.

The simplest approach is to use the chkconfig(8) utility which adds and removes the services for you. The
following example shows how to add an httpd_per| startup script to the system.

12 29 Jan 2004

Controlling and Monitoring the Server 1.9 Preparing for Machine Reboot

First move or copy the file into the directory /etc/rc.d/init.d:

% nv httpd _perl /etc/rc.d/init.d

Now open the script in your favorite editor and add the following lines after the main header of the script:

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: nod_perl enabled Apache Server

So now the beginning of the script looks like:

#1/bin/sh

#

Apache control script designed to allow an easy comrand |ine
interface to controlling Apache. Witten by Marc Sl enko,

1997/ 08/ 23

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: nmod_perl enabl ed Apache Server

H* H R

#
The exit codes returned are:
#

Adjust theline:

chkconfig: 2345 91 16

to your needs. The above setting says to says that the script should be started in levels 2, 3, 4, and 5, that
its start priority should be 91, and that its stop priority should be 16.

Now all you have to do isto ask chkconf i g to configure the startup scripts. Before we do that let’ s look
at what we have:

% find /etc/rc.d | grep httpd_perl

/etc/rc.d/init.d/ httpd_perl

Which means that we only have the startup script itself. Now we execute:

% chkconfig --add httpd_perl

and see what has changed:

29 Jan 2004 13

1.10 Monitoring the Server. A watchdog.

%find /etc/rc.d | grep httpd_perl
/etc/rc.d/linit.d/ httpd_perl
/etc/rc.d/rc0.d/ Kl6httpd_perl
/etc/rc.d/rcl. d/ Kl6httpd_perl
/etc/rc.d/rc2.d/ S91htt pd_perl
/etc/rc.d/rc3.d/ S91htt pd_perl
/etc/rc.d/rc4.d/ S91htt pd_perl

/etc/rc.d/rch.d/ S91htt pd_perl
/etc/rc.d/rc6.d/ Kl6httpd_perl

Asyou can see chkconf i g created al the symbolic links for us, using the startup and shutdown priori-
ties as specified in the line:

chkconfig: 2345 91 16

If for some reason you want to remove the service from the startup scripts, al you have to do is to tell
chkconfi g to remove thelinks:

% chkconfig --del httpd_perl
Now if we look at the files under the directory /etc/rc.d/ we see again only the script itself.
%find /etc/rc.d | grep httpd_perl

/etc/rc.d/linit.d/ httpd_perl

Of course you may keep the startup script in any other directory as long as you can link to it. For example
if you want to keep this file with all the Apache binaries in /usr/local/apache/bin, all you have to do is to
provide a symbolic link to thisfile:

%I n -s /usr/local/apache/bin/apachectl /etc/rc.d/init.d/ httpd_perl
and then:

% chkconfig --add httpd_perl

Note that in case of using symlinks the link name in /etc/rc.d/init.d is what matters and not the name of the
script the link points to.

1.10 Monitoring the Server. A watchdog.

With mod_perl many things can happen to your server. It is possible that the server might die when you
are not around. As with any other critical service you need to run some kind of watchdog.

One simple solution isto use a dightly modified apachect | script, which I’ ve named apache.watchdog.
Cdl it from the crontab every 30 minutes -- or even every minute -- to make sure the server is up al the
time.

14 29 Jan 2004

Controlling and Monitoring the Server 1.10 Monitoring the Server. A watchdog.

The crontab entry for 30 minutes intervals:

0,30 * * * * [path/to/the/apache. wat chdog >/dev/null 2>&1

The script:
#!/ bi n/ sh

this script is a watchdog to see whether the server is online
1t tries to restart the server, and if it’'s
down it sends an enmil alert to admin

admn’s enail
EMAI L=webrast er @xanpl e. com

the path to your PID file
PI DFI LE=/ usr/ | ocal / var/ httpd_perl/run/httpd. pid

the path to your httpd binary, including options if necessary
HTTPD=/ usr/ 1 ocal / sbin/ httpd_perl/httpd_perl

check for pidfile
if [-f $PIDFILE] ; then
Pl D=' cat $PI DFI LE'

if kill -0 $PID;, then
STATUS="httpd (pid $PI D) running"
RUNNI NG=1
el se
STATUS="httpd (pid $PI D?) not running"
RUNNI NG=0
fi
el se
STATUS="httpd (no pid file) not running"
RUNNI NG=0
fi

if [SRUNNING -eq 0]; then
echo "$0 $ARG httpd not running, trying to start"
if SHTTPD ; then
echo "$0 $ARG httpd started"
mail $EMAIL -s "$0 $ARG httpd started" > /dev/null 2>&1
el se
echo "$0 $ARG httpd could not be started"
mail $EMAIL -s \
"$0 $ARG httpd could not be started" > /dev/null 2>&1

fi
fi

Another approach, probably even more practical, is to use the cool LWP Perl package to test the server by
trying to fetch some document (script) served by the server. Why is it more practical? Because while the
server can be up as a process, it can be stuck and not working. Failing to get the document will trigger
restart, and "probably"” the problem will go away.

29 Jan 2004 15

1.10 Monitoring the Server. A watchdog.

Like before we set a cronjob to call this script every few minutes to fetch some very light script. The best
thing of course isto call it every minute. Why so often? If your server starts to spin and trash your disk
space with multiple error messages filling the error_log, in five minutes you might run out of free disk
space which might bring your system to its knees. Chances are that no other child will be able to serve
reguests, since the system will be too busy writing to the error_log file. Think big--if you are running a
heavy service (which is very fast since you are running under mod_perl) adding one more request every
minute will not be felt by the server at all.

So we end up with a crontab entry like this:

* * * % * [path/to/the/watchdog. pl >/dev/null 2>&1

And the watchdog itself:
#!/usr/bin/perl -wrl

untai nt
SENV{’' PATH } = '/bin:/usr/bin;
delete @GNV{' I FS', 'CDPATH , 'ENV', 'BASH ENV };

use strict;

use di agnosti cs;

use URI:: URL;

use LWP:: Medi aTypes gw(nmedi a_suffi x);

nmy $VERSION = ' 0.01’;
use vars gw($ua $proxy);
$proxy = '";

requi re LWP:: User Agent ;
use HITP: : St at us;

#it#### Confi g ########H

ny $test_script_url = http://ww.exanpl e.com 81/perl/test.pl’;

ny $nonitor_enail "root @ocal host’ ;

ny $restart_command "lusr/local/sbin/httpd_perl/apachect|l restart’;
ny $mai |l _program "lusr/lib/sendmail -t -n’;

R e e e e d s

$ua = new LWP:: User Agent;

$ua- >agent (" $0/ wat chdog " . $ua- >agent);

Uncoment the proxy if you access a machine from behind a firewall
$proxy = "http://ww proxy. cont;

$ua- >proxy(' http', $proxy) if $proxy;

1f it returns "1 it nmeans we are alive
exit 1 if checkurl ($test_script_url);

Houston, we have a problem
The server seenms to be down, try to restart it.
ny $status = system $restart_conmmand;

ny $nessage = ($status == 0)
? "Server was down and successfully restarted!"

16 29 Jan 2004

Controlling and Monitoring the Server 1.11 Running a Server in Single Process Mode

"Server is dowmn. Can't restart."

ny $subject = ($status == 0)
? "Attention! Webserver restarted"
"Attention! Webserver is down. can’'t restart"

emai|l the nonitoring person

ny $to = $nonitor_emil;

ny $from = $nonitor_email

send_mai | ($from $t o, $subj ect, $nmessage) ;

input: URL to check

output: 1 for success, 0 for failure
HAHHHBRHHBRHH BB HHHRH R

sub checkurl {

ny ($url) = @;

Fetch docunent
ny $res = $ua->request (HTTP: : Request - >new(GET => $url))

Check the result status
return 1 if is_success($res->code);

failed
return O;
} # end of sub checkurl

send enmi |l about the problem
RHBHHHHBHBHHBHBHBHHBHBH
sub send_mmi | {

ny($from $t o, $subj ect, $nessagebody) = @;

open MAIL, "|$mail _progrant
or die "Can’'t open a pipe to a $mail_program:$!'\n";

print MAIL <<_ END OF_ MAIL__;
To: $to
From $from
Subj ect: $subj ect
$nmessagebody

__END OF MAIL__

cl ose MAIL;
}

1.11 |Running a Server in Single Process M ode

Often while developing new code, you will want to run the server in single process mode. See Sometimes
it works Sometimes it does Not and Names collisions with Modules and libs. Running in single process
mode inhibits the server from "daemonizing", and this allows you to run it under the control of a debugger
more easily.

29 Jan 2004 17

1.12 Starting a Personal Server for Each Developer

% /usr/ | ocal /sbin/httpd_perl/httpd_perl -X

When you use the - X switch the server will run in the foreground of the shell, so you can kill it with
Ctrl-C.

Note that in - X (single-process) mode the server will run very slowly when fetching images.
Note for Netscape users:

If you use Netscape while your server is running in single-process mode, HTTP's KeepAl i ve feature
gets in the way. Netscape tries to open multiple connections and keep them open. Because there is only
one server process listening, each connection has to time out before the next succeeds. Turn off
KeepAl i ve in httpd.conf to avoid this effect while developing. If you use the image size parameters,
Netscape will be able to render the page without the images so you can press the browser’s STOP button
after afew seconds.

In addition you should know that when running with - X you will not see the control messages that the
parent server normally writes to the error_log ("server started”, "server stopped” etc). Sincehtt pd - X
causes the server to handle all requests itself, without forking any children, there is no controlling parent to
write the status messages.

1.12 (Starting a Personal Server for Each Developer

If you are the only developer working on the specific server:port you have no problems, since you have
complete control over the server. However, often you will have a group of developers who need to
develop mod_perl scripts and modules concurrently. This means that each developer will want to have
control over the server - to kill it, to run it in single server mode, to restart it, etc., as well as having control
over the location of the log files, configuration settings like MaxCl i ent s, and so on.

Y ou can work around this problem by preparing afew httpd.conf files and forcing each devel oper to use

httpd_perl -f /path/to/httpd.conf

but | approach it in a different way. | use the - Dpar anet er startup option of the server. | cal my
version of the server

% http_perl -Dstas

In httpd.conf | write;

Personal devel opment Server for stas

stas uses the server running on port 8000

<|fDefine stas>

Port 8000

PidFile /usr/local/var/httpd_perl/run/httpd.pid.stas
ErrorLog /usr/local/var/httpd_perl/logs/error_|og.stas
Ti meout 300

KeepAlive On

M nSpar eServers 2

MaxSpar eServers 2

18 29 Jan 2004

Controlling and Monitoring the Server 1.12 Starting a Personal Server for Each Developer

StartServers 1
MaxClients 3
MaxRequest sPer Chi | d 15
</|fDefine>

Personal devel opnent Server for userfoo

userfoo uses the server running on port 8001

<| f Define userfoo>

Port 8001

PidFile /usr/local/var/httpd_perl/run/httpd. pid. userfoo
ErrorLog /usr/local/var/httpd_perl/|ogs/error_|og.userfoo
Ti meout 300

KeepAlive Of

M nSpareServers 1

MaxSpar eServers 2

StartServers 1

MaxClients 5

MaxRequest sPer Child 0

</| f Define>

With this technique we have achieved full control over start/stop, number of children, a separate error log
file, and port selection for each server. This saves Stas from getting called every few minutes by Eric:
"Stas, I'm going to restart the server".

In the above technique, you need to discover the PID of your parent htt pd_per| process, which is
written in /usr/ Il ocal /var/ httpd_perl/run/httpd. pi d. stas (and the same for the user
eric). To make things even easier we change the apachectl script to do the work for us. We make a copy
for each developer called apachectl.user name and we change two lines in each script:

Pl DFI LE=/ usr /| ocal / var/ httpd_per|/run/ httpd. pi d. user nanme
HTTPD="/usr/ | ocal / sbin/ httpd_perl/httpd_perl -Dusernange’

So for the user stas we prepare a startup script called apachectl.stas and we change these two lines in the
standard apachect! script as it comes unmodified from Apache distribution.

Pl DFI LE=/ usr /| ocal / var/ htt pd_perl|/run/httpd. pi d. stas
HTTPD="/usr/ 1 ocal / sbin/ httpd_perl/httpd_perl| -Dstas’

So now when user stas wants to stop the server he will execute:
apachect!| .stas stop

And to start:
apachect! .stas start

Certainly therest of theapachect | arguments apply as before.

Y ou might think about having only one apachect | and know who is calling by checking the UID, but
since you have to be root to start the server it is not possible, unless you make the setuid bit on this script,
as we've explained in the beginning of this chapter. If you do so, you can have a single apachect |
script for al developers, after you modify it to automatically find out the UID of the user, who executes
the script and set the right paths.

29 Jan 2004 19

1.13 Wrapper to Emulate the Server Perl Environment

The last thing is to provide developers with an option to run in single process mode by:

/usr/local/sbin/httpd_perl/httpd_perl -Dstas -X

In addition to making life easier, we decided to use relative links everywhere in the static documents,
including the callsto CGls. You may ask how using relative links will get to the right server port. It's very
simple, weusenod_rewite.

To use mod_rewrite you have to configure your httpd_docs server with - - enabl e- nodul e=rewrite
and recompile, or use DSO and load the module in httpd.conf. In the httpd.conf of our htt pd_docs
server we have the following code:

Rewr i t eEngi ne on

stas’s server

port = 8000

RewiteCond % REQUEST _URI} ~/(perl|cgi-perl)

RewriteCond 9% REMOTE_ADDR} 123. 34.45.56

RewriteRule ~(.*) http://exanpl e. com 8000/ $1 [P, L]

eric’'s server

port = 8001

RewiteCond % REQUEST URI} ~/(perl|cgi-perl)

RewriteCond 9% REMOTE_ADDR} 123. 34.45.57

RewriteRul e "(.*) http://exanpl e.com 8001/ $1 [P, L]

all the rest
RewiteCond % REQUEST URI} ~/ (perl|cgi-perl)
RewiteRule ~(.*) http://exanpl e.com 81/ $1 [P]

The IP addresses are the addresses of the developer desktop machines (where they are running their web
browsers). So if an html file includes a relaive URI /perl/testpl or even
[http: //mww.example.comVperl/test.pl, clicking on the link will be internaly proxied to
[http://www.example.com:8000/perl/test.pl| if the click has been made at the user stas's desktop machine,
or to fhttp://www.example.com: 8001/per|/test.pl| for a request generated from the user eric’'s machine, per
our above URI rewrite example.

Another possibility isto use REMOTE USER variable if al the developers are forced to authenticate them-
selves before they can access the server. If you do, you will have to change the Rewr i t eRul esto match
REMOTE _USER in the above example.

We wish to stress again, that the above setup will work only with relative URIs in the HTML code. If you
choose to generate full URIs including non-80 port the requests originated from this HTML code will
bypass the light server listening to the default port 80, and go directly to the server:port of the full URI.

1.13 Wrapper to Emulatethe Server Perl Environment

Often you will start off debugging your script by running it from your favorite shell program. Sometimes
you encounter a very weird situation when the script runs from the shell but dies when processed as a CGI
script by a web-server. The real problem often lies in the difference between the environment variables

20 29 Jan 2004

http://www.example.com/perl/test.pl
http://www.example.com:8000/perl/test.pl
http://www.example.com:8001/perl/test.pl

Controlling and Monitoring the Server 1.13 Wrapper to Emulate the Server Perl Environment

that is used by your web-server and the ones used by your shell program.

For example you may have a set of non-standard Perl directories, used for local Perl modules. Y ou haveto
tell the Perl interpreter where these directories are. If you don’t want to modify @ NC in all scripts and
modules, you can use a PERL5LI B environment variable, to tell Perl where the directories are. But then
you might forget to alter the mod_perl startup script to correct @ NC there as well. And if you forget this,
you can be quite puzzled why the scripts are running from the shell program, but not from the web.

Of course the error_log will help as well to find out what the problem is, but there can be other obscure
cases, where you do something different at the shell program and your scripts refuse to run under the
web-server.

Another example is when you have more than one version of Perl installed. You might cal the first
version of the Perl executable in the first script’s line (the shebang line), but to have the web-server
compiled with another Perl version. Since mod_perl ignores the path to the Perl executable at the first line
of the script, you can get quite confused the code won't do the same when processed as request, compared
to be executed from the command line. it will take a while before you realize that you test the scripts from
the shell program using the wrong Perl version.

The best debugging approach is to write a wrapper that emulates the exact environment of the server, first
deleting environment variables like PERL5LI B and then calling the same perl binary that it is being used
by the server. Next, set the environment identical to the server’s by copying the Perl run directives from
the server startup and configuration files or even require()’ing the startup file, if it doesn’t include
Apache: : modules stuff, unavailable under shell. Thiswill also alow you to remove completely the first
line of the script, since mod_perl doesn’t need it anyway and the wrapper knows how to call the script.

Here is an example of such a script. Note that we force the use of - Twwhen we call the real script. Since
when debugging we want to make sure that the code is working when the taint mode is on, and we want to
see al the warnings, to help Perl help us have a better code.

We have aso added the ability to pass parameters, which will not happen when you will issue a request to
script, but it can be helpful at times.

#!/usr/bin/perl -w
This is a wapper exanple

It sinulates the web server environnent by setting @NC and ot her
stuff, so what will run under this wapper will run under Wb and
vice versa.

#
Usage: wrap.pl sone_cgi.p
#
B

EG N {
we want to nmake a conplete emulation, so we nust reset all the
paths and add the standard Perl |ibs
@NC =
gw(/ usr/lib/perl5/5.00503/i386-1inux
[usr/lib/perl5/5.00503
lusr/libl/lperl5/site_perl/5.005/i386-Iinux

29 Jan 2004 21

1.14 Server Maintenance Chores

/usr/libl/perl5/site_perl/5.005

);
}

use strict;
use Fil e:: Basenane;

process the passed parans
ny $cgi = shift || ;
ny $parans = (@GARGV) ? join(" ", @ARGY)

die "Usage:\n\t$0 sone_cgi.pl\n" unless $cgi;

Set the environnent
my $PERLSLIB = join ":", @NC

if the path includes the directory
we extract it and chdir there
if (index($cgi,’/’) >=0) {
ny $dirnane = dirnanme($cgi)
chdir $dirnane or die "Can’t chdir to $dirnanme: $!' \n";

$cg
$cg
}

~ m $dirnane/ (. *)|;
$1;

run the cgi fromthe script’s directory
Note that we set Warning and Taint nodes ON!'!
system qqg{/usr/bin/perl -1$PERL5LIB -Tw $cgi $parans};

1.14 (Server Maintenance Chor es

It's not enough to have your server and service up and running. You have to maintain the server even
when everything seems to be fine. This includes security auditing, keeping an eye on the size of remaining
unused disk space, available RAM, the load of the system, etc.

If you forget about these chores one day (sooner or later) your system will crash either because it has run
out of free disk space, all the available CPU has been used and system has started heavily to swap or
someone has broken in. Unfortunately the scope of this guide is not covering the latter, since it will take
more than one book to profoundly cover thisissue, but the rest of the thing are quite easy to prevent if you
follow our advices.

Certainly, your particular system might have maintenance chores that aren’t covered here, but at least you
will be alerted that these chores are real and should be taken care of .

1.14.1 Handling Log Fileg

There are two issues to solve with log files. First they should be rotated and compressed on the constant
basis, since they tend to use big parts of the disk space over time. Second these should be monitored for
possible sudden explosive growth rates, when something goes astray in your code running at the mod_perl
server and the process starts to log thousands of error messages in second without stopping, until all the

22 29 Jan 2004

Controlling and Monitoring the Server 1.14.1 Handling Log Files

disk space is used, and the server cannot work anymore.

1.14.1.1 |Log Rotation|

Thefirst issue is solved by having a process run by crontab at certain times (usually off hours, if this term
is still valid in the Internet era) and rotate the logs. The log rotation includes the current log file renaming,
server restart (which creates a fresh new log file), and renamed file compression and/or moving it on a
different disk.

For example if we want to rotate the access |og file we could do:

% mv access_| og access_| og. r enaned

% apachect| restart

% sleep 5; # allow all children to conplete requests and | oggi ng
nowit’'s safe to use access_| og. renaned

% nmv access_| og. renanmed /sone/ di rect ory/ on/ anot her/ di sk

Thisisthe script that we run from the crontab to rotate the log files:
#!/usr/ | ocal / bin/perl -Tw
This script does log rotation. Called fromcrontab.

use strict;
$ENV{ PATH} = / bi n: /usr/bin’;

configuration

nmy @ogfiles = gm access_l og error_| og);

umask O;

ny $server = "httpd_perl";

ny $logs dir = "/usr/local/var/$server/| ogs";

nmy $restart_conmmand = "/usr/local /sbin/ $server/apachect| restart";
ny $gzi p_exec = "/usr/bin/gzip";

ny

ny

($sec, $m n, $hour, $nday, $non, $year) = local tine(tinme);
$time = sprintf "9%0.4d. 90. 2d. 90. 2d- 90. 2d. 0. 2d. 0. 2d"
$year +1900, ++$non, $nday, $hour, $m n, $sec;
$M o= " oStime”;

renanme log files
chdir $logs_dir;
@\RGV = @ogfiles;
while (<>) {

cl ose ARGV;
}

now restart the server so the logs will be restarted
system $restart_conmand;

allow all children to conplete requests and | oggi ng
sl eep 5;

29 Jan 2004 23

1.14.1 Handling Log Files

conpress log files
foreach (@ogfiles) {

system "$gzi p_exec $_. $tine";
}

Note: Setting $"1 sets the in-place edit flag to a dot followed by the time. We copy the names of the
logfiles into @GARGV, and open each in turn and immediately close them without doing any changes; but
because the in-place edit flag is set they are effectively renamed.

Asyou see the rotated files will include the date and the time in their filenames.

Here is a more generic set of scripts for log rotation. Cron job fires off setuid script called log-roller that
lookslikethis:

#!/usr/bin/perl -Tw
use strict;
use Fil e:: Basenane;

$ENV{ PATH} = "/usr/uchb:/bin:/usr/bin";
ny $ROOT = "/ WAV apache"; # nanes are relative to this

ny $CONF = "$ROOT/ conf/httpd.conf"; # master conf
ny SMDNIGHT = "M DNI GHT"; # nane of programin each |ogdir

ny ($user_id, $group_id, $pidfile); # will be set during parse of conf
die "not running as root" if $>

chdir $ROOT or die "Cannot chdir $ROOT: $!";

my % dni ght's
open CONF, "<$CONF" or die "Cannot open $CONF: $!"
whil e (<CONF>) {
if (/rUser (\w¥)/i) {
$user _id = get pwnan($1)
next ;
}
if (/AGoup (\w+)/i) {
$group_id = getgrnam $1);
next ;
}
if (/"PidFile (.*)/i) {
$pidfile = $1
next ;
}
next unless /"ErrorLog (.*)/i;
ny $midnight = (dirname $1)."/$M DNl GHT";
next unl ess -x $m dni ght;
$mi dni ght s{ $ni dni ght } ++
}
cl ose CONF

die "mssing User definition" unless defined $user_id;

die "missing Goup definition" unless defined $group_id;
die "mssing PidFile definition" unless defined $pidfile;

24 29 Jan 2004

Controlling and Monitoring the Server 1.14.1 Handling Log Files

open PID, $pidfile or die "Cannot open $pidfile: $!"

<PID> =~ /(\d+)/;

ny $httpd pid = $1;

cl ose PI D

die "mssing pid definition" unless defined $httpd_pid and $httpd_pid;
kill 0, $httpd_pid or die "cannot find pid $httpd_pid: $'";

for (sort keys % dni ghts) {
defined(nmy $pid = fork) or die "cannot fork: $!"
if ($pid) {
parent:
waitpid $pid, O;
} else {
ny $dir dirname $_;
($(,9)) ($group_id, $group_i d)
(%<, $>) (Suser _i d, $Suser _i d)
chdir $dir or die "cannot chdir $dir: $!'";
exec "./$M DNl GHT";
di e "cannot exec $M DNI GHT: $!'";
}
}

kill 1, $httpd_pid or die "Cannot SIGHUP $httpd_pid: $'*";

And then individual M DNI GHT scripts can look like this:

#! /usr/bin/perl -Tw
use strict;

die "bad guy" unl ess getpwii d($<) =~ /~(root| nobody) $/;
my @QOGFI LES = gw(access_|l og error_Ilog);
umask O;
$AM =" tie;
OARGV = @Q.OGFI LES
while (<>) {
cl ose ARGV,
}

Can you spot the security holes? Take your time... This code shouldn’t be used in hostile situations.

1.14.1.2 [Non-Scheduled Emer gency L og Rotation|

As we have mentioned before, there are times when the web server goes wild and starts to log lots of
messages to the error_log file non-stop. If no one monitors this, it possible that in a few minutes all the
free disk spaces will be filled and no process will be able to work normally. When this happens, the 1/0
the faulty server causesis so heavy that its sibling processes cannot serve requests.

Generally this not the case, but a few people have reported to encounter this problem. If you are one of
these people, you should run the monitoring program that checks the log file size and if it notices that the
file has grown too large, it should attempt to restart the server and probably trim the log file.

29 Jan 2004 25

1.15 Swapping Prevention

When we have used a quite old mod_perl version, sometimes we have had bursts of an error Callback
called exit showing up in our error_log. Thefile could grow to 300 Mbytesin afew minutes.

We will show you is an example of the script that should be executed from the crontab, to handle the situa-
tions like this. The cron job should run every few minutes or even every minute, since if you experience
this problem you know that log files fills up very fast. The example script will rotate when the error_log
will grow over 100K. Note that this script is useful when you have the normal scheduled log rotation facil-
ity working, remember that this one is an emergency solver and not to be used for routine log rotation.

emer gency_rotate. sh

#!/ bi n/ sh
S='Is -s /usr/local/apache/logs/error_log | awk '{print $1}'°
if ["$S" -gt 100000] ; then

mv /usr/local /apache/l ogs/error_log /usr/local /apache/l ogs/error_log.old
/etc/rc.d/init.d/ httpd restart
date | /bin/mail -s "error_log $S kB on inx" adm n@xanpl e. com

f

Of course you could write a more advanced script, using the timestamps and other whistles. This example
comes to illustrate how to solve the problem in question.

Another solution is to use an out of box tools that are written for this purpose. The daenont ool s
package (ftp://koobera.math.uic.edu/www/daemontools.ntml) includes a utility called mul ti | og. This
utility saves stdin stream to one or more log files. It optionally timestamps each line and, for each log,
includes or excludes lines matching specified patterns. It automatically rotates logs to limit the amount of
disk space used. If the disk fills up, it pauses and tries again, without losing any data.

The obvious caveat is that it doesn't restart the server, so while it tries to solve the log file handling
problem it doesn’t handle the originator of the problem. But since the I/O of the log writing process
Apache process will be quite heavy, the rest of the servers will work very slowly if at all, and a normal
watchdog should detect this abnormal situation and restart the Apache server.

1.15 |Swapping Prevention

Before | delve into swapping process details, let's refresh our knowledge of memory components and
memory management

The computer memory is called RAM, which stands for Random Access Memory. Reading and writing to
RAM is, by a few orders, faster than doing the same operations on a hard disk, the former uses
non-movable memory cells, while the latter uses rotating magnetic media.

On most operating systems swap memory is used as an extension for RAM and not as a duplication of it.
So if your OSis one of those, if you have 128MB of RAM and 256MB swap partition, you have atotal of
384MB of memory available. You should never count the extra memory when you decide on the
maximum number of processesto be run, and I will show why in the moment.

26 29 Jan 2004

ftp://koobera.math.uic.edu/www/daemontools.html

Controlling and Monitoring the Server 1.15 Swapping Prevention

The swapping memory can be built of a number of hard disk partitions and swap files formatted to be used
as swap memory. When you need more swap memory you can always extend it on demand as long as you
have some free disk space (for more information see the mkswapand swaponmanpages).

System memory is quantified in units called memory pages. Usually the size of a memory page is between
1KB and 8KB. So if you have 256MB of RAM installed on your machine and the page size is 4KB your
system has 64,000 main memory pages to work with and these pages are fast. If you have 256MB swap
partition the system can use yet another 64,000 memory pages, but they are much slower.

When the system is started all memory pages are available for use by the programs (processes).

Unless the program is realy small, the process running this program uses only a few segments of the
program, each segment mapped onto its own memory page. Therefore only a few memory pages are
required to be loaded into the memory.

When the process needs an additional program’s segment to be loaded into the memory, it asks the system
whether the page containing this segment is already loaded in the memory. If the page is not found--an
event know as a pagefault occurs, which requires the system to allocate a free memory page, go to the
disk, read and load the requested program’ s segment into the allocated memory page.

If a process needs to bring a new page into physical memory and there are no free physical pages avail-
able, the operating system must make room for this page by discarding another page from physical
memory.

If the page to be discarded from physical memory came from an image or data file and has not been
written to then the page does not need to be saved. Instead it can be discarded and if the process needs that
page again it can be brought back into memory from the image or datafile.

However, if the page has been modified, the operating system must preserve the contents of that page so
that it can be accessed at a later time. This type of page is known as a dirty pageand when it is removed
from memory it is saved in a specia sort of file called the swap file. This processis referred to as a swap
ping out

Accesses to the swap file are very long relative to the speed of the processor and physical memory and the
operating system must juggle the need to write pages to disk with the need to retain them in memory to be
used again.

In order to improve the swapping out process, to decrease the possibility that the page that has just been
swapped out, will be needed at the next moment, the LRU (least recently used) or a similar algorithm is
used.

To summarize the two swapping scenarios, read-only pages discarding incurs no overhead in contrast with
the discarding scenario of the data pages that have been written to, since in the latter case the pages have
to be written to a swap partition located on the slow disk. Therefore your machine's overall performance
will be much better if there will be less memory pages that can become dirty.

29 Jan 2004 27

1.15 Swapping Prevention

But the problem is, Perl is alanguage with no strong data types, which means that both the program code
and the program data are seen as a data pages by OS since both mapped to the same memory pages. There-
fore abig chunk of your Perl code becomes dirty when its variables are modified and when the pages need
to be discarded they have to be written to the swap partition.

This leads us to two important conclusions about swapping and Perl.

® Running your system when there is no free main memory available hinders performance, because
processes memory pages should be discarded and then reread from disk again and again.

® Since a mgority of the running code is a Perl code, in addition to the overhead of reading the previ-
ously discarded pagesin, the overhead of saving the dirty pages to the swap partition is occurring.

When the system has to swap memory pages in and out, the system slows down, not serving the processes
as fast as before. This leads to an accumulation of processes waiting for their turn to run, which further
causes processing demands to go up, which in turn slows down the system even more as more memory is
required. This ever worsening spiral will lead the machine to halt, unless the resource demand suddenly
drops down and allows the processes to catch up with their tasks and go back to norma memory usage.

In addition it's important to know that for a better performance, most programs, particularly programs
written in Perl, on most modern OSs don’'t return memory pages while they are running. If some of the
memory gets freed it’s reused when needed by the process, without creating the additional overhead of
asking the system to allocate new memory pages. That’s why you will observe that Perl programs grow in
size as they run and almost never shrink.

When the process quits it returns its memory pages to the pool of freely available pages for other
processes to use.

This scenario is certainly educating, and it should be now obvious that your system that runs the web
server should never swap. It's absolutely normal for your desktop to start swapping. You will seeit imme-
diately since things will slow down and sometimes the system will freeze for a short periods. But as I've
just mentioned, you can stop starting new programs and can quit some, thus allowing the system to catch
up with the load and come back to use the RAM.

In the case of the web server you have much less control since it’s users who load your machine by issuing
reguests to your server. Therefore you should configure the server, so that the maximum number of possi-
ble processes will be small enough using the MaxC i ent s directive (For the technique for choosing the
right Maxd i ent s refer to the section ' Choosing MaxClients'). This will ensure that at peak hours the
system won't swap. Remember that swap space is an emergency pool, not a resource to be used routinely.
If you are low on memory and you badly need it, buy it or reduce the number of processes to prevent

swapping.

However sometimes, due to the faulty code, some process might start spinning in an unconstrained loop,
consuming all the available RAM and starting to heavily use swap memory. In such a situation it helps
when you have a big emergency pool (i.e. lots of swap memory). But you have to resolve this problem as
soon as possible since this pool won't last for along time. In the meanwhile the Apache: : Resour ce
module can be handy.

28 29 Jan 2004

Controlling and Monitoring the Server 1.16 Preventing mod_perl Processes From Going Wild

For swapping monitoring techniques see the section 'Apache::VMonitor -- Visua System and Apache
Server Monitor’.

1.16 |Preventing mod perl Processes From Going Wild

Sometimes people report that they had a problem with their code running under mod_perl that has caused
al the RAM or all the disk to be used. The following tips should help you prevent these problems, before
if at al they hit you.

1.16.1 |All RAM Consumed

Sometimes calling an undefined subroutine in a module can cause atight loop that consumes all the avail-
able memory. Here is a way to catch such errors. Define an UNI VERSAL : : AUTOLQAD subroutine in
your startup.pl, or in a <Perl></Perl> section in your httpd.conf file:

sub UNI VERSAL: : AUTCLOAD {

ny $class = shift;

warn "$class can’t \ $UNI VERSAL: : AUTOLOAD=$UNI VERSAL: : AUTOLOAD! \ n";
}

You can either put it in your startup.pl, or in a<Per | ></ Per | > section in your httpd.conf file. | do the
latter. Putting it in all your mod_perl modules would be redundant (and might give you compile-time
errors).

This will produce a nice error in error_log, giving the line number of the call and the name of the unde-
fined subroutine.

1.17 Maintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.18 [Authorg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 29

Controlling and Monitoring the Server Table of Contents:

Table of Contents:

1 | Controlling and Monitoring the Server | 1
1.1 [Description. 2
1.2 |Restarting Techniqueg . 2
1.3 [Server Stopping and Restarting . 3
1.4 |Speeding up the Apache Termination and Rectarlj 4
1.5 |Using apachectl to Control the Server| . 4
1.6 |Safe Code Updates on a Live Production Server| 5
1.7 |An Intentiona Disabling of Live Scriptq 7
1.8 |SUID Start-up Scriptq . 9

1.8.1 |Introduction to SUID Executabl%i 9
1.8.2 |Apache Startup SUID Script’s Security| 9
1.8.3 |Sample Apache Startup SUID Script] 10
1.9 |Preparing for Machine Reboot| 11
1.10 [Monitoring the Server. A watchdog! . 14
1.11 [Running a Server in Single Process Modd . 17
1.12 [Starting a Personal Server for Each Developer|. . 18
1.13 |Wrapper to Emulate the Server Perl Environment| . 20
1.14 [Server Maintenance Choreq . 22
1.14.1 Handling Log Filed 22
1.14.1.1 [Log Rotation 23
1.14.1.2 |Non Scheduled Emerqency Loq Rotatlori 25
1.15 [Swapping Prevention| 26
1.16 [Preventing mod perl Processes From GOI nq W| Iol 29
1.16.1 |All RAM Consumed| 29
1.17 29
1.18 29

29 Jan 2004 i

	1€€Controlling and Monitoring the Server
	1.1€€Description
	1.2€€Restarting Techniques
	1.3€€Server Stopping and Restarting
	1.4€€Speeding up the Apache Termination and Restart
	1.5€€Using apachectl to Control the Server
	1.6€€Safe Code Updates on a Live Production Server
	1.7€€An Intentional Disabling of Live Scripts
	1.8€€SUID Start-up Scripts
	1.8.1€€Introduction to SUID Executables
	1.8.2€€Apache Startup SUID Script's Security
	1.8.3€€Sample Apache Startup SUID Script

	1.9€€Preparing for Machine Reboot
	1.10€€Monitoring the Server. A watchdog.
	1.11€€Running a Server in Single Process Mode
	1.12€€Starting a Personal Server for Each Developer
	1.13€€Wrapper to Emulate the Server Perl Environment
	1.14€€Server Maintenance Chores
	1.14.1€€Handling Log Files
	1.14.1.1€€Log Rotation
	1.14.1.2€€Non-Scheduled Emergency Log Rotation

	1.15€€Swapping Prevention
	1.16€€Preventing mod_perl Processes From Going Wild
	1.16.1€€All RAM Consumed

	1.17€€Maintainers
	1.18€€Authors

