mod_perl Configuration 1 mod_perl Configuration

1 mod_perl Configuration

29 Jan 2004 1

1.1 Description

1.1 Description|

This sectiondocunentsthe variousconfiguration optionsavailable for Apache and mod_perl, as well as
the Perl startup files, and more esot@ssbilites such agonfiguring Apache withPerl.

1.2 |Server Configuration|

The next step aftdsuilding and installing your new mod_perl enabled Apache serverderifigure the
server. There are twsepaateparts toconfigure Apache and mod_perl. Each has its own selireftives

To configure your mod_perl enabled Apache server, the only file that you should need to edit is
httpd.conf. By default,httpd.conf is put into theconf diredory under the server roairedory. The default
server root idusr/local/apache/ on many UNIXplatforms, but within reason it can be adjredory you
choose. If you are new to Apache and mod_perl, youpnolbebly find it helpful to keep to thdiredory
layouts we use in this Guide if yaan.

Apache versions 1.3.4 and later are distributed with cibiefiguration diredives in a single file --
httpd.conf. This Guide uses the same approach iexenples Prior to version 1.3.4, the default Apache
instalation used threeonfiguration files -- httpd.conf, srm.conf, andaccess.conf. If you wish you can still
use all three files, by setting theces€orfig andResourc€orfig diredivesin httpd.conf. You will also
see later on that we use other files, for exarppteconf andstartup.pl. This is just for ouconvenience
you could still doeverything in httpd.conf if you wished.

1.3 |Apache Configur ation|

Apacheconfiguration can beconfusng. To minimize the number of things that can go wrong, it can be a
good idea first toconfigure Apache itself without mod_perl. This will give you thenfidencethat it
works and maybe that you have some idea havemdigureit.

There is a warning in thiettpd.conf distributed with Apache about simply editihtjpd.conf and running
the server, withoutindestandng all theimplicaions This is another warnindodifying the configura-
tion file and adding newliredives canintroducesecuity prodems and haveerfomancemplicaions

The Apachdlistribution comes with arextersive configuration manual, and iraddtion each section of
the distributedconfiguration file includes helpful commentsxplairing how everydiredive should be
configuredand what the defaults valuase.

If you haven't moved Apache'diredories around, thenstalation program will haveconfigured every
thing for you. You can just start the server and test it. To start the server uspatbbkect | utility
which comes bundled with the Apactiistribution. It resides in the santredory asht t pd, the Apache
server itselfExecute:

/usr/ | ocal / apache/ bi n/ apachect| start

2 29 Jan 2004

mod_perl Configuration 1.3.1 Configuration Directives

Now you can test the server, for example by accessing |http://localhost| from a browser running on the same
host.

1.3.1|Configuration Directives

For a basic setup there are just a few things to configure. If you have moved any directories you have to
update them in httpd.conf. There are many of them, here are just a couple of examples:

Ser ver Root "/usr/l ocal / apache"
Docunent Root "/ home/ htt pd/ docs"

If you want to run it on a port other than port 80 edit the Por t directive:

Port 8080

Y ou might want to change the user and group names the server will run under. Note that if started as the
root user (which is generally the case), the parent process will continue to run as root, but its children will
run as the user and group you have specified. For example:

User httpd
G oup httpd

There are many other directives that you might need to configure as well. In addition to directives which
take a single value there are whole sections of the configuration (such as the <Di rect ory> and
<Locat i on> sections) which apply only to certain areas of your Web space. As mentioned earlier you
will find them al in httpd.conf.

1.3.2 | htaccesdiles

If there is a file with the name .htaccess in any directory, Apache scans it for further configuration direc-
tives which it then applies only to that directory (and its subdirectories). The name .htaccess is confusing
because it can contain any configuration directives, not just those related to access to resources. Y ou will
not be surprised to find that a configuration directive can change the names of the files used in thisway.

Note that if thereisa
<Directory />

Al |l owOverri de None
</Directory>

directive in httpd.conf, Apache will not try to look for .htaccess at all.

1.3.3 <Directory>, <Location> and <Files>Sections

I'll explain just the basics of the <Di r ect or y>, <Locat i on> and <Fi | es> sections. Remember that
there is more to know and the rest of the information is available in the Apache documentation. The infor-
mation I'll present hereisjust what isimportant for understanding the mod_perl configuration sections.

29 Jan 2004 3

http://localhost/

1.3.3 <Directory>, <Location> and <Files> Sections

Apache considers directories and files on your machine all to be resources. For each resource you can
determine a particular behaviour which will apply to every request for information from that particular
resource.

Obvioudly the directives in <Direc tory > sections apply to specific directories on your host machine,
and those in <Files> sections apply only to specific files (actually groups of files with names which
have something in common). In addition to these sections, Apache has the concept of a <Location >,
which is also just a resource. <Loca tion > sections apply to specific URIs. Locations are based at the
document root, directories are based at the filesystem root. For example, if you have the default server
directory layout where the server root is /usr/local/lapache and the document root is
{usr/local/apache/htdocs then static files in the directory /usr/local/apache/htdocs/pub are in the location
/pub.

It is up to you to decide which directories on your host machine are mapped to which locations. You
should be careful how you do it, because the security of your server may be at stake.

Locations do not necessarily have to refer to existing physical directories, but may refer to virtual
resources which the server creates for the duration of a single browser request. As you will see, this is
often the case for amod_perl server.

When a browser asks for a resource from your server, Apache determines from its configuration whether
or not to serve the request, whether to pass the request to another server, what (if any) authorization is
required for access to the resource, and how to reply. For any given resource, the various sections in your
configuration may provide conflicting information. For example you may have a <Direc tory > section
which tells Apache that authorization is required for access to the resource but you may have a <Files>
section which says that it is not. It is not always obvious which directive takes precedence in these cases.
This can be atrap for the unwary.

® <Directory directoryPath> ... </Directory>
Can appear in server and virtual host configurations.

<Direc tory > and </Direc tory > are used to enclose a group of directives which will apply
only to the named directory and sub-directories of that directory. Any directive which is allowed in a
directory context (see the Apache documentation) may be used.

The path given in the <Direc tory > directive is either the full path to a directory, or a wild-card
string. In a wild-card string, ? matches any single character, * matches any sequence of characters,
and[] matches character ranges. (Thisis similar to the shell’sfile globs.) None of the wildcards will
match a/ character. For example:

<Directory /home/httpd/docs>

Options Indexes
</Directory>

If you want to use a regular expression to match then you should use the syntax <Direc to ry -
Match regex> ...</Direc to ry Match >.

4 29 Jan 2004

mod_perl Configuration 1.3.3 <Directory>, <L ocation> and <Files> Sections

If multiple (non-regular expression) directory sections match the directory (or its parents) containing
a document, then the directives are applied in the order of shortest match first, interspersed with the
directives from any .htaccess files. For example, with

<Directory />
AllowOverride None
</Directory>

<Directory /home/httpd/docs/*>
AllowOverride FileInfo
</Directory>

for access to the document /home/httpd/docs/index.html the steps are:

O Applydirective Al | onOverri de None (disabling .htaccessfiles).
O Apply directive Al | owOverri de Fil el nfo for directory /home/httpd/docs/ (which now
enables .htaccess in /home/httpd/docs and its sub-directories).
O Apply any Fi | el nf o directivesin /home/httpd/docs.htaccess.
® <Files filename>..</Files>

Can appear in server and virtua host configurations, and .htaccess files as well.

The <Files> directive provides for access control by filename. It is comparable to the <Direc -
tory > and <Loca tion > directives. It should be closed with the </Files> directive. The direc-
tives given within this section will be applied to any object with a basename (last component of file-
name) matching the specified filename.

<Files> sections are processed in the order they appear in the configuration file, after the
<Direc tory > sections and .htaccess files are read, but before <Loca tion > sections. Note that
<Files> can be nested inside <Direc tory > sectionsto restrict the portion of the filesystem they
apply to. <Files> cannot be nested inside <Loca tion > sections however.

The filename argument should include a filename, or a wild-card string, where ? matches any single
character, and * matches any sequence of characters. Extended regular expressions can also be used,
simply place atilde character ~ between the directive and the regular expression. The regular expres-
sion should be in quotes. The dollar symbol refers to the end of the string. The pipe character indi-
cates aternatives. Special characters in extended regular expressions must escaped with a backslash.
For example:

<Files ~ "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats. Alternatively you can use the <Files Match
regex> ... </Files Match > syntax.

® <L ocation URL> ... </L ocation>

Can appear in server and virtual host configurations.

29 Jan 2004 5

1.3.4 How Directory, Location and Files Sections are Merged

The <Location > directive provides for access control by URL. It is similar to the <Direc tory >
directive, and starts a section which is terminated with the </Loca tion > directive.

<Location > sections are processed in the order they appear in the configuration file, after the
<Direc tory > sections, .htaccessfilesand <Files> sections are read.

The<Location > sectionisthe directive that is used most often with mod_perl.

URLs do not have to refer to real directories or files within the filesystem at all, <Loca tion > oper-
ates completely outside the filesystem. Indeed it may sometimes be wise to ensure that <Loca -
tion >sdo not match real pathsto avoid confusion.

The URL may use wildcards. In a wild-card string, ? matches any single character, and * matches
any sequences of characters, [] groups characters to match. For regular expression matches use the
<Location Match regex> ...</Loca tion Match > syntax.

The <Location > functionality is especially useful when combined with the SetHandler direc-
tive. For example to enable status requests, but allow them only from browsers at example.com, you
might use:

<Location /status>
SetHandler server-status
order deny,allow
deny from all
allow from .example.com
</Location>

1.3.4 [How Directory, Location and Files Sections are Merged

When configuring the server, it's important to understand the order in which the rules of each section
apply to requests. The order of merging is.

1. <Di rectory> (except regular expressions) and .htaccess are processed simultaneously, with
.htaccessoverriding <Di r ect ory>

2. <Di rect oryMat ch>,and <Di r ect or y> with regular expressions

3. <Fi | es>and <Fi | esMhat ch> are processed simultaneously

4. <Locati on>and <Locat i onMat ch> are processed simultaneously

Apart from <Direc tory >, each group is processed in the order that it appears in the configuration files.
<Direc tory > (group 1 above) is processed in the order shortest directory component to longest. If
multiple <Direc tory > sections apply to the same directory then they are processed in the configuration
file order.

Sections inside <Virtu al Host > sections are applied as if you were running severa independent
servers. The directives inside <Virtu al Host > sections do not interact with each other. They are
applied after first processing any sections outside the virtual host definition. This allows virtual host
configurations to override the main server configuration.

6 29 Jan 2004

mod_perl Configuration 1.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Later sections override earlier ones.

1.3.5 [Sub-Grouping of <Location>, <Directory> and <Files> Sectiong

Let's say that you want all files, except for a few of the files in a specific directory and below, to be
handled in the same way. For example if you want al the files in /home/http/docs to be served as plain
files, but any files with ending .html and .txt to be processed by the content handler of your
Apache: : MyFi | t er module.

<Directory /hone/ httpd/ docs>
<Fileswvatch "\.(htm|txt)$">
Set Handl er perl -script
Per | Handl er Apache:: MyFil ter
</ Fi | esMat ch>
</Directory>

Thus it is possible to embed sections inside sections to create subgroups which have their own distinct
behavior. Alternatively you could use a<Fi | es> section inside an .htaccessfile.

Note that you can’t put <Fi | es> or <Fi | esMat ch> sections inside a<Locat i on> section, but you
can put theminsidea<Di r ect or y> section.

1.3.6 [Options Directive

Normally, if multiple Opti ons directives apply to a directory, then the most specific one is taken
complete; the options are not merged.

However if all the options on the Opt i ons directive are preceded by a + or - symbol, the options are
merged. Any options preceded by + are added to the options currently in force, and any options preceded
by - are removed.

For example, without any + and - symbols:

<Directory /home/ httpd/ docs>
Opti ons | ndexes Fol | owSynii nks
</Directory>
<Directory /home/ httpd/ docs/shtm >
Options | ncludes
</Directory>

then only I ncl udes will be set for the /home/httpd/docs/shtml directory. However if the second
Opt i ons directive usesthe + and - symbols:

<Directory /hone/ httpd/ docs>
Options | ndexes Fol | owSynlLi nks

</Directory>

<Directory /hone/ httpd/docs/shtm >
Options +I ncl udes -1 ndexes

</Directory>

29 Jan 2004 7

1.4 mod_perl Configuration

then the options FollowSym Links and Includes are set for the /home/httpd/docs/shtml directory.

1.4 |/mod perl Configuration|

When you have tested that the Apache server works on your machine, it’s time to configure mod_perl.
Some of the configuration directives are already familiar to you, but mod_perl introduces a few new ones.

It can be a good idea to keep all the mod_perl related configuration at the end of the configuration file,
after the native Apache configuration directives.

To ease maintenance and to smplify multiple server installations, the Apache/mod_perl configuration
system allows you several aternative ways to keep your configuration directives in separate places. The
Include directive in httpd.conf allow you to include the contents of other files, just asif the information
were all contained in httpd.conf. This is a feature of Apache itself. For example if you want all your
mod_perl configuration to be placed in a separate file mod_perl.conf you can do that by adding to
httpd.conf this directive:

Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your apache has been
compiled with mod_perl, you can use the IfMod ule directive:

<IfModule mod_perl.c>
Include conf/mod_perl.conf
</IfModule>

mod_perl adds two further directives: <Perl> sections alow you to execute Perl code from within any
configuration file at server startup time, and as you will see later, afile containing any Perl program can be
executed (also at server startup time) simply by mentioning its name in a Perl Require or PerlMod -

ule directive.

1.4.1 |Alias Configurationg

The Scrip tAl ias and Alias directives provide a mapping of a URI to a file system directory. The
directive:

Alias /foo /home/httpd/foo

will map all requests starting with /foo onto the files starting with /home/httpd/foo/. So when Apache gets
a request [http://www.example.com/foo/test.pl| the server will map this into the file test.pl in the directory
/home/httpd/foo/.

In addition Scrip tAl ias assignsall the requests that match the URI (i.e. /cgi-bin) to be executed under
mod_cgi.

ScriptAlias /cgi-bin /home/httpd/cgi-bin

8 29 Jan 2004

http://www.example.com/foo/test.pl

mod_perl Configuration 1.4.1 Alias Configurations

is actualy the same as:

Alias /cgi-bin /hone/httpd/cgi-bin
<Location /cgi-bin>

Set Handl er cgi-script

Opti ons +ExecCd
</ Locati on>

where latter directive invokes mod_cgi. You shouldn’t use the Scri pt Al i as directive unless you want
the request to be processed under mod_cgi. Therefore when you configure mod_perl sections use Al i as
instead.

Under mod_perl the Al i as directive will be followed by two further directives. The first is the
SetHandler perl-script directive, which tells Apache to invoke mod_perl to run the script. The second
directive (for example Per | Handl er) tells mod_perl which handler (Perl module) the script should be
run under, and hence for which phase of the request. Refer to the section[PerT* Handlerd for more informa-
tion about handlers for the various request phases.

When you have decided which methods to use to run your scripts and where you will keep them, you can
add the configuration directive(s) to httpd.conf. They will look like those below, but they will of course
reflect the locations of your scriptsin your file-system and the decisions you have made about how to run
the scripts:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
Alias [perl/ / home/ htt pd/ per |/

In the examples above al the requests issued for URIs starting with /cgi-bin will be served from the direc-
tory /home/httpd/cgi-bin/, and starting with /perl from the directory /home/httpd/perl/.

1.4.1.1 |Running CGl, PerlRun, and Registry Scripts L ocated in the Same Dir ectory|

Typical for plain cgi scripts:
ScriptAlias /cgi-bin/ [home/httpd/ perl/

Typi cal for Apache::Registry scripts:
Alias / perl/ / hore/ ht t pd/ perl/

Typi cal for Apache::Perl Run scripts:
Alias /cgi-perl/ [honme/httpd/ perl/

In the examples above we have mapped the three different URIs (http://www.example.com/per|/test.pl|
|http: /v, exampl e.comvcgi-bin/test.pl| and |http: //www.example.comvcgi-perl/test.pl) all to the same file
/home/httpd/perl/test.pl. This means that we can have al our CGI scripts located at the same place in the
file-system, and call the script in any of three ways simply by changing one component of the URI
(cgi-bin|perl|cgi-perl).

This technique makes it easy to migrate your scripts to mod perl. If your script does not seem to be
working while running under mod_perl, then in most cases you can easily call the script in straight
mod_cgi mode or under Apache: : Per | Run without making any script changes. Simply change the
URL you useto invokeit.

29 Jan 2004 9

http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl
http://www.example.com/cgi-perl/test.pl

1.4.2 <Location> Configuration

Although in the configuration above we have configured all three Aliases to point to the same directory
within our file system, you can of course have them point to different directoriesif you prefer.

Y ou should remember that it is undesirable to run scriptsin plain mod_cgi mode from a mod_perl-enabled
server--the resource consumption is too high. It is better to run these on a plain Apache server. See Stan-
dalone mod_perl Enabled Apache Server.

1.4.2 [<Location> Configuration|

The <Locat i on> section assigns a number of rules which the server should follow when the request’s
URI matches the Location. Just as it is the widely accepted convention to use /cgi-bin for your mod_cgi
scripts, it is conventional to use /perl as the base URI of the perl scripts which you are running under
mod_perl. Let’sreview the following very widely used <Locat i on> section:

Alias /perl/ /home/httpd/ perl/
Per | Modul e Apache: : Regi stry
<Location /perl >
Set Handl er perl-script
Per| Handl er Apache:: Registry
Opti ons ExecCd
allow fromall
Per | SendHeader On
</ Locati on>

This configuration causes all requests for URIs starting with /perl to be handled by the mod_perl Apache
module with the handler from the Apache: : Regi st ry Perl module. Let’s review the directives inside
the<Locat i on> section in the example:

<Location /perl>

Remember the Al i as from the above section? We use the same Al i as here; if you were to use a
<Locat i on> that does not have the same Al i as, the server would fail to locate the script in the file
system. You need the Al i as setting only if the code that should be executed is located in the file. So
Al i as just provides the URI to filepath trandlation rule.

Sometimes there is no script to be executed. Instead there is some module whose method is being
executed, similar to /perl-status, where the code is stored in an Apache module. In such cases we don't
need Al i as settingsfor those <Locat i on>s.

Set Handl er perl -script

This assigns the mod_perl Apache module to handle the content generation phase.

Per| Handl er Apache:: Registry

Here wetell Apacheto usethe Apache: : Regi st ry Perl module for the actual content generation.

Opti ons ExecCAd

10 29 Jan 2004

mod_perl Configuration 1.4.2 <Location> Configuration

The Opt i ons directive accepts various parameters (options), one of which is ExecCd . This tells the
server that the file is a program and should be executed, instead of just being displayed like a static file
(like HTML file). If you omit this option then the script will either be rendered as plain text or else it will
trigger a Save-As dialog, depending on the client’s configuration.

allow fromall

This directive is used to set access control based on domain. The above settings allow clients from any
domain to run the script.

Per | SendHeader On

Per | SendHeader On tellsthe server to send an HTTP headers to the browser on every script invoca-
tion. Y ou will want to turn this off for nph (non-parsed-headers) scripts.

The Per | SendHeader On setting invokes the Apache's ap_send_htt p_header () method after
parsing the headers generated by the script. It is only meant for emulation of mod cgi behavior with
regard to headers.

To send the HTTP headers it’s always better either to use the $r - >send_ht t p_header method using
the Apache Perl API or to usethe $g- >header method from the CA . pmmodule.

</ Locati on>
Closesthe <Locat i on> section definition.

Note that sometimes you will have to preload the module before using it in the <Locat i on> section. In
the case of Apache: : Regi st ry the configuration will ook like this:

Per| Modul e Apache: : Regi stry
<Location /perl>
Set Handl er perl-script
Per | Handl er Apache:: Registry
Opti ons ExecCAd
all ow fromall
Per | SendHeader On
</ Locat i on>

Per | Modul e isequivalent to Perl’s native use() function call.
No changes are required to the /cgi-bin location (mod_cgi), since it has nothing to do with mod_perl.

Here is another very similar example, this time using Apache: : Per | Run (For more information see
Apache::PerlRun):

<Location /cgi-perl>
Set Handl er perl-script
Per | Handl er Apache: : Perl| Run
Opti ons ExecCd
allow fromall
Per | SendHeader On
</ Locati on>

29 Jan 2004 11

1.4.3 Overriding <Location> Setting in " Sub-L ocation"

The only difference from the Apache::Registry configuration is the argument of the Perl Han-
dler directive, where Apache::Registry has been replaced with Apache::PerlRun

1.4.3 |Overriding <L ocation> Setting in " Sub-L ocation" |

Soif you have:

<Location /foo>
SetHandler perl-script
PerlHandler My::Module
</Location>

If you want to remove a mod_perl handler setting from a location beneath a location where the handler
was set (i.e. /foolbar), al you haveto doisto reset it, like this:

<Location /foo/bar>

SetHandler default-handler
</Location>

Now, all the requests starting with /foo/bar would be served by Apache’ s default handler.

1.4.4 |PerIModule and PerlRequire Directiveq

As we saw earlier, a module should be loaded before it is used. PerlIMod ule and Perl Require are
the two mod_perl directives which are used to load modules and code. They are almost equivalent to
Perl’suse() and require() functions respectively and called from the Apache configuration file. Y ou
can pass one or more module names as arguments to PerlMod ule :

PerIModule Apache::DBI CGI DBD::Mysq|

Generally the modules are preloaded from the startup script, which is usually called startup.pl. Thisis a
file containing plain Perl code which is executed through the Perl Require directive. For example:

PerlRequire /home/httpd/perl/lib/startup.pl
A Perl Require file name can be absolute or relative to Server Root or apathin @INC

As with any file with Perl code that gets use() 'd or require() 'd, it must return a true value. To
ensure that this happens don't forget to add 1; at the end of startup.pl.

1.4.5 Perl*Handlers

Asyou probably know Apache traverses aloop for each HTTP request it receives.

After you have compiled and installed mod_perl, your Apache mod_perl configuration directives tell
Apache to invoke the module mod_perl as the handler for some request which it receives. Although it
could in fact handle all the phases of the request loop, usualy it does not. Y ou tell mod_perl which phases
it is to handle (and so which to leave to other modules, or to the default Apache routines) by putting
Perl*Handler directivesin the configuration files.

12 29 Jan 2004

mod_perl Configuration 1.4.5 Perl*Handlers

Because you need the Perl interpreter to be present for your Perl script to do any processing at al, thereis
a dlight difference between the way that you configure Perl and C handlers to handle parts of the request
loop. Ordinarily a C module is written, compiled and configured to hook into a specific phase of the
request loop. For a Perl handler you compile mod_perl itself to hook into the appropriate phases, as if it
were to handle the phases itself. Then you put Perl*Handler directives in your configuration file to
tell mod_perl that it is to pass the responsibility for handling that part of the request phase to your Perl
module.

mod_perl is an Apache module written in C. As most programmers will only need to handle the response
phase, in the default compilation most of the Perl*Handler s are disabled. When you configure the
Makefile.PL file for its compilation, you must specify whether or not you will want to handle parts of the
request loop other than the usua content generation phase. If so you need to specify which parts. See the
"Callback Hooks" section for how to do this.

Apache specifies about eleven phases of the request loop, namely (and in order of processing):
Post-Read-Request, URI Trandlation, Header Parsing, Access Control, Authentication, Authorization,
MIME type checking, FixUp, Response (also known as the Content handling phase), Logging and finally
Cleanup. These are the stages of a request where the Apache APl alows a module to step in and do some-
thing. There is a dedicated Perl*Handler for each of these stages plus a couple of others which don’t
correspond to parts of the request loop.

We call them Perl*Handler directives because the names of the many mod_perl handler directives for
the various phases of the request loop al follow the same format. The * in Perl*Handler is aplace-
holder to be replaced by something which identifies the phase to be handled. For example Perl LogHan-
dler isaPerl Handler which (fairly obviously) handles the logging phase.

The dlight exception is Perl Handler , which you can think of as Perl Respon seHandler . It isthe
content generation handler and so it is probably the one that you will use most frequently.

Note that it is mod_perl which recognizes these directives, and not Apache. They are mod_perl directives,
and an ordinary Apache does not recognize them. If you get error messages about these directives being
"perhaps mis-spelled” it is a sure sign that the appropriate part of mod perl (or the entire mod_perl
module!) is not present in your copy of Apache executable.

The full list of Perl*Handler s follows. They are in the order that they are processed by Apache and
mod_perl:

PerlIChildInitHandler
PerlPostReadRequestHandler
PerlinitHandler
PerlTransHandler
PerlHeaderParserHandler
PerlAccessHandler
PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlHandler
PerlLogHandler

29 Jan 2004 13

1.4.6 The handler subroutine

PerlCleanupHandler
PerlChildExitHandler
PerlDispatchHandler
PerlRestartHandler

PerlChil dInitHandler and PerlChildEx itHandler do not refer to parts of the request loop,
they are to allow your modules to initialize data structures and to clean up at the child process start-up and
shutdown respectively, for example by allocating and deallocating memory.

All <Location >, <Direc tory > and <Files> sections contain a physical path specification. Like
PerIChil dInitHandler and PerlChildEx itHandler , the directives Perl PostRead -
RequestHandler and Perl Tran sHandler cannot be used in these sections, nor in .htaccess files,
because it is not until the end of the Trandlation Handler (Perl Tran sHandler) phase that the path
trandation is completed and a physical path is known.

PerlinitHandler changes its behaviour depending upon where it is used. In any case it is the first
handler to be invoked in serving a request. If found outside any <Location >, <Direc tory > or
<Files> section (at the top level), it is an dias for Perl PostRead RequestHandler . When inside
any such sectionitisan aliasfor Perl Header Parser Handler .

Starting from Perl Header Parser Handler the regquested URI has been mapped to a physical server
pathname, and thus it can be used to match a<Loca tion >, <Direc tory > or <Files> configuration
section, or to look in a.htaccessfileif such afile existsin the specified directory in the translated path.

PerlD is patch Handler and Perl RestartHandler do not correspond to parts of the Apache AP,
but alow you to fine-tune the mod_perl API.

The Apache documentation will tell you all about these stages and what your modules can do. By defaullt,
most of these hooks are disabled at compile time, see the"Callback Hooks' section for information on
enabling them.

1.4.6 [The handler subrouting

By default the mod_perl API expects a subroutine called handler() to handle the request in the regis-
tered Perl*Handler module. Thus if your module implements this subroutine, you can register the
handler with mod_perl like this:

Perl*Handler Apache::Foo

Replace Perl*Handler with the name of a specific handler from the list given above. mod_perl will
preload the specified module for you. Please note that this approach will not preload the module at startup.
To make sure it gets loaded you have three options: you can explicitly preload it with the PerIMod ule
directive:

PerlIModule Apache::Foo

Y ou can preload it at the startup file:

14 29 Jan 2004

mod_perl Configuration 1.4.7 Stacked Handlers

use Apache:: Foo ();

Or you can use a nice shortcut that the Per | * Handl er syntax provides:

Per | *Handl er +Apache: : Foo

Note the leading + character. Thisdirective is equivalent to:

Per | Modul e Apache: : Foo
Per | *Handl er Apache: : Foo

If you decide to give the handler routine a name other than handl er, for example nmy _handl er, you
must preload the module and explicitly give the name of the handler subroutine:

Per | Modul e Apache: : Foo
Per | *Handl er Apache: : Foo: : my_handl er

Asyou have seen, thiswill preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out with the current_callback
method. This method is most useful to PerlDispatchHandlers which wish to take action for certain phases
only.

if ($r->current_call back eq "Perl LogHandl er") {
$r->war n("Loggi ng request");
}

1.4.7 |Stacked Handlerg

With the mod_perl stacked handlers mechanism, during any stage of arequest it is possible for more than
one Per | *Handl er to be defined and run.

Per | *Handl er directives (in your configuration files) can define any number of subroutines. For
example:

Per| TransHandl er OneTrans TwoTrans RedTrans Bl ueTrans

With the method Apache- >push_handl er s(), calbacks (handlers) can be added to a stack at
runtime by mod_perl scripts.

Apache->push_handl er s() takes the callback hook name as its first argument and a subroutine
name or reference as its second.

Here' s an example:

use Apache:: Constants gw : conmon);
sub ny_l ogger {

#some code here

return &

}
Apache- >push_handl er s(" Per| LogHandl er", \ &my_| ogger);

29 Jan 2004 15

1.4.7 Stacked Handlers

Here' s another one;

use Apache::Constants gw(:common);

$r->push_handlers("PerlLogHandler", sub {
print STDERR "__ANON___ called\n";
return OK;

b
After each request, this stack is erased.
All handlers will be called unless a handler returns a status other than OKor DECLINED
Example uses:

CGl.pm maintains aglobal object for its plain function interface. Since the object is global, it does not go
out of scope, DESTROYs never caled. CGl->new can call:

Apache->push_handlers("PerlCleanupHandler", \& CGl::_reset_globals);

This function will be called during the final stage of a request, refreshing CGl.pm’s globals before the
next request comesin.

Apache::DCEL ogin establishes a DCE login context which must exist for the lifetime of a request, so
the DCE::Login object is stored in aglobal variable. Without stacked handlers, users must set

PerlCleanupHandler Apache::DCELogin::purge

in the configuration files to destroy the context. This is not "user-friendly". Now, Apache::DCEL o-
gin :handler cancall:

Apache->push_handlers("PerlCleanupHandler”, \&purge);

Persistent database connection modules such as Apache::DBI could push a Perl CleanupHan dler
handler that iterates over %Connected , refreshing connections or just checking that connections have
not gone stale. Remember, by the time we get to Perl CleanupHan dler , the client has what it wants
and has gone away, so we can spend as much time as we want here without slowing down response time
to the client (although the process itself is unavailable for serving new requests before the operation is
completed).

Perl Tran sHandlers (e.g. Apache::Msql Proxy) may decide, based on the URI or some arbitrary
condition, whether or not to handle a request. Without stacked handlers, users must configure it them-
selves:

PerlTransHandler Apache::MsqlProxy::translate
PerlHandler Apache::MsqlProxy

Perl Handler isnever actualy invoked unlesstrans late () seesthat the request isa proxy request
($r->prox yreq). If it is a proxy request, trans late () sets $r->handler("perl-script") ,
and only then will Perl Handler handle the request. Now users do not have to specify Perl Handler
Apache::Msqgl Proxy ,thetrans late () function can set it with push_handlers()

16 29 Jan 2004

mod_perl Configuration 1.4.7 Stacked Handlers

Imagine that you want to include footers, headers, etc., piecing together a document, without using SSI.
The following example shows how to implement it. First we prepare the code as follows:

Test/ Conpose. pm
package Test:: Conpose;
use Apache:: Constants gw: conmon);

sub header {
ny $r = shift;
$r->content _type(“"text/plain");
$r->send_ht t p_header;
$r->print("header text\n");

return OK;
}
sub body { shift->print("body text\n") ; return OK}
sub footer { shift->print("footer text\n") ; return O}
1;

END

in httpd.conf or perl.conf
Per| Modul e Test:: Conpose
<Location /foo>
Set Handl er "perl-script"
Per | Handl er Test:: Conpose:: header Test:: Conpose::body Test:: Conpose: : footer
</ Locati on>

Parsing the output of another PerlHandler? Thisis alittle more tricky, but consider:

<Location /foo>

Set Handl er "perl-script”

Per | Handl er Qut put Parser SomeApp
</ Locati on>

<Location /bar>

Set Handl er "perl-script”

Per | Handl er Qut put Par ser Anot her App
</ Locati on>

Now, Qut put Par ser goes first, but it unti e()’s*STDOUT and re-ti e() ’s it to its own package
like so:

package Qut put Parser;

sub handl er {

ny $r = shift;

unti e *STDOUT;

tie *STDOUT => ' QutputParser’, $r;
}
sub TI EHANDLE {

ny($cl ass, $r) = @;

bless { r => $r}, $class;

}

sub PRINT {

29 Jan 2004 17

1.4.8 Perl Method Handlers

ny $self = shift;

for (@) {
#do whatever you want to $_ for exanple:
$sel f->{r}->print($_ . "[insert stuff]");
}
}
1;
END

To build in this feature, configure with:

% per| Makefile.PL PERL_STACKED HANDLERS=1 [...]

If you want to test whether your running mod perl Apache can stack handlers, the method
Apache->can_stack_handl ers will retun TRUE if mod_perl was configured with
PERL STACKED HANDLERS=1, and FAL SE otherwise.

1.4.8 |Perl Method Handlerg

If aPer | *Handl er isprototyped with $$, this handler will be invoked as a method. For example:

package Myd ass;
@ SA = gw(Based ass);

sub handler ($%) {

ny($cl ass, $r) = @;
, ce
package Based ass;
sub nmethod ($%$) {

ny($cl ass, $r) = @;
, ce
1

Configuration:

Per| Handl er Myd ass

or

Per| Handl er Myd ass- >handl| er

Since the handler isinvoked as a method, it may inherit from other classes:

Per | Handl er MyCl ass- >met hod

18 29 Jan 2004

mod_perl Configuration

1.4.8 Perl Method Handlers

In this case, the Myd ass class inherits this method from BaseCl ass. This means that any method of
My ass or any of its parent classes can serve as amod_perl handler, and that you can apply good OO

methodol ogy within your mod_perl handlers.

For instance, you could have this base class:
package ServeContent;
use Apache:: Constants gw OK);

sub handl er (3) {
ny($class, $r) = @;

$r->send_http_header ('text/plain’);
$r->print($cl ass->get_content());

return OK;
}

sub get_content {
return 'Hello World’;

}

1

And then use the same base class for different contents:

package Hel | oWorl d;

use ServeContent;
@ SA = gw™ ServeContent);

sub get_content {
return 'Hello, happy world!’;

}

package GoodbyeWr| d;

use ServeContent;
@ SA = gw™ ServeContent);

sub get_content {
return ' Goodbye, cruel world!’;

}

1

Now you can keep the same handler subroutine for a group of modules which are similiar. The following

configuration will enable the handlers from the subclasses:

<Location /hell o>

Set Handl er perl -script

Per | Handl er Hel | oWor | d- >handl er
</ Locati on>

29 Jan 2004

19

1.4.9 PerlFreshRestart

<Location /bye>

Set Handl er perl -script

Per | Handl er GoodbyeWor | d- >handl er
</ Locati on>

To build in this feature, configure with:

% per| Makefile.PL PERL_METHOD HANDLERS=1 [...]

1.4.9 [PerlFreshRestart|

To reload Perl Require, Perl Mdule and other use()’'d modules, and to flush the
Apache: : Regi st ry cache on server restart, add to httpd.conf:

Per| FreshRestart O f
Make sure you read Evil things might happen when using PerlFreshRestart.

Starting from mod_perl version 1.22 Per | Fr eshRest art isignored when mod_perl is compiled as a
DSO. But it almost doesn’t matter, since mod_perl as a DSO will do afull tear-down (perl_destruct()). So
it's dtill a FreshRestart, just fresher than static (non-DSO) mod_perl :)

But note that even if you have

Per| FreshRestart No

and mod_perl asaDSO you will still get a FreshRestart.

1.4.10 [PerlSetEnv and PerlPassEny

Per| Set Env key val
Per | PassEnv key

Per | PassEnv passes, Per | Set Env sets and passes ENVironment variables to your scripts. You can
access them in your scripts through YENV (e.g. $ENV{ " key"}). These commands are useful to pass
information to your handlers or scripts, or to any modules you use that require some additional configura-
tion.

For example, the Oracle RDBMS requires a number of ORACLE_* environment variables to be set so that
you can connect to it through DBI . So you might want to put thisin your httpd.conf:

Per| Set Env ORACLE BASE /oracl e
Per| Set Env ORACLE HOME /oracl e

Y ou can then use DBl to access your oracle server without having to set the environment variables in your
handlers.

20 29 Jan 2004

mod_perl Configuration 1.4.11 PerlSetVar and PerlAddVar

Perl PassEnv proposes another approach: you might want to set the corresponding environment vari-
ablesin your shell, and not reproduce the information in your httpd.conf. For example, you might have this
in your .bash_profile:

ORACLE_BASE=/oracle
ORACLE_HOME-=/oracle
export ORACLE_BASE ORACLE_HOME

However, Apache (or mod_perl) don’t pass on environment variables from the shell by default; you'll
have to specify these using either the standard PassEnv or mod_perl’s Perl PassEnv directives.

PerlPassEnv ORACLE_BASE ORACLE_HOME

Regarding the setting of Perl PassEnv PERLS5LIB in httpd.conf: if you turn on taint checks (Perl -
TaintCheck On), $ENV{PERL5LIB} will beignored (unset). Seethe’ Switches -w, -T" section.

While the Apache's SetEnv /PassEnv and mod_perl’s PerlSetEnv /Perl PassEnv apparently do
the same thing, the former doesn’t happen until the fixup phase, the latter happens as soon as possible, so
those variables are available before then, e.g. in PerlAu then Handler for SENV{ORACLE_HOMHjor
another environment variable that you need in these early request processing stages).

1.4.11 [PerlSetVar and PerlAddVar|

PerlSet Var is very similar to PerlSetEnv ; however, variables set using PerlSet Var are only
available through the mod_perl API, and is thus more suitable for configuration. For example, environ-
ment variables are available to all, and might show up on casual "print environment" scripts, which you
might not like. PerlSet Var is well-suited for modules needing some configuration, but not wanting to
implement first-class configuration handlers just to get some information.

PerlSetVar foo bar

or
<Perl>
push @{ $Location{"/"}->{PerlSetVar} }, [foo => 'bar’ |;
</Perl>

and in the code you read it with:

my $r = Apache->request;
print $r->dir_config(*foo’);

The above prints:

bar

Note that you cannot do this;

29 Jan 2004 21

1.4.11 PerlSetVar and PerlAddVar

push @{ $Location{"/"}->{PerlSetVar} }, [foo => \%bar];

All values are treated as strings, so you will get a stringified reference to a hash as a value (something
which will look like "HASH(0x87a5108) "). This cannot be turned back into a reference and therefore
into the original hash upon retrieval.

However you can use the PerlAd dVar directive to push more values into the variable, emulating arrays.
For example:

PerlSetVar foo bar
PerlAddVar foo barl
PerlAddVar foo bar2

or the equivalent:

PerlAddVar foo bar
PerlAddVar foo barl
PerlAddVar foo bar2

To retrieve the values use the $r->dir_config->get() method:
my @foo = $r->dir_config->get('foo’);
or
my %foo = $r->dir_config->get('foo’);
Make sure that you use an even number of elementsif you store the retrieved valuesin a hash, like this:

PerlAddVar foo keyl
PerlAddVar foo valuel
PerlAddVar foo key2
PerlAddVar foo value2

Then %foo will have astructure like this;

%foo = (
keyl =>'valuel’,
key2 =>"value2’,

);

There are some things you should know about sub requests and $r->dir_config . For
$r->lookup_uri , everything works as expected, because al normal phases are run. You can then
retrieve variables set in the server scope of the configuration, in <Virtu al Host > sections, in <Loca -
tion > sections, etc.

However, when using the $r->lookup_file method, you are effectively skipping the URI trandation
phase. This means that the URI won't be known by Apache, only the file name to retrieve. As such,
<Loca tion > sectionswon'’t be applied. Thismeansthat if you were using:

22 29 Jan 2004

mod_perl Configuration 1.4.12 PerlSetupEnv

Alias /perl-subr/ /home/httpd/perl-subr/
<Location /perl-subr>

PerlSetVar foo bar

PerlSetVar foo2 bar2
</Location>

And issue a subrequest using $r->lookup_file and try to retrieve its directory configuration
(Apache::SubRe quest classisjust asubclassof Apache):

my $subr = $r->lookup_file(/home/httpd/perl-subr/script.pl’);
print $subr->dir_config('foo’);

Y ou won't get the results you wanted.

As a side note: the issue we discussed here means that /per|-subr/script.pl won't even run under mod_per|
if configured in the normal Apache::Registry way (using a <Loca tion > section), because the <Loca -
tion > blockswon’t be applied. You'd haveto use a<Direc tory > or <Files> section configuration
to achieve the desired effect. As to the PerlSet Var discussion, using <Direc tory > or <Files>
section would solve the problem.

1.4.12 [PerlSetupEny

PerlSe tu pEnv Onwill allow you to access the environment variables like SENV{REQUEST_URI},
which are available under CGI. However, when programming handlers, there are always better ways to
access these variables through the Apache API. Therefore, it is recommended to turn it Off except for
scripts which absolutely require it. See Perl SetupEnv Off.

1.4.13 [PerlWarn and PerlTaintCheck|

For PerlWarn and PerITaintCheck directives see the’ Switches-w, -T' section.

1.4.14 MinSpareServers MaxSpareServers StartServers MaxClients|
IMaxRequestsPer Child

MinS pare Servers , MaxSpare Servers , Start Servers and MaxClients are standard Apache
configuration directives that control the number of servers that will be launched at server startup and kept
alive during the server’s operation.

MaxRequestsPer Child lets you specify the maximum number of requests which each child will be
allowed to serve. When a process has served MaxRequestsPer Child requests the parent kills it and
replaces it with a new one. There may also be other reasons why a child is killed, so it does not mean that
each child will in fact serve this many requests, only that it will not be alowed to serve more than that
number.

These five directives are very important for achieving the best performance from your server. The section
" Performance Tuning by Tweaking Apache Configuration’ provides all the details.

29 Jan 2004 23

1.5 The Startup File

1.5 [The Startup File

At server startup, before child processes are spawned to receive incoming requests, there is more that can
be done than just preloading files. Y ou might want to register code that will initialize a database connec-
tion for each child when it is forked, tie read-only dbm files, etc.

The startup.pl file is an ideal place to put the code that should be executed when the server starts. Once
you have prepared the code, load it in httpd.conf before the rest of the mod_perl configuration directives
like this:
Perl Require [hone/httpd/perl/Ilib/startup.pl

| must stress that al the code that is run at server initialization time is run with root privileges if you are
executing it as the root user (which you have to do unless you choose to run the server on an unprivileged
port, above 1024). This means that anyone who has write access to a script or module that is loaded by
Per | Modul e or Per| Requi r e effectively has root access to the system. You might want to take a

look at the new and experimental Per | Qpnask directive and PERL_OPMASK _DEFAULT compile time
option to try to disable some of the more dangerous operations.

Since the startup fileis afile written in plain Perl, one can validate its syntax with:

% perl -c /home/httpd/perl/lib/startup.pl

1.5.1 [The Sample Startup Filg

Let'slook at areal world startup file:

startup. pl

use strict;

Extend @NC if needed
use lib gmM/dir/foo /dir/bar);

Make sure we are in a sane environnent.
$ENV{ MOD_PERL} or die "not running under nod_perl!"”

For things in the "/perl" URL
use Apache: : Regi stry;

Load Perl nodul es of your choice here

This code is interpreted *once* when the server starts
use LWP:: User Agent ();

use Apache:: DBl ();

use DBI ();

Tell nme nore about warnings
use Carp ();
$SIG__ WARN__} = \&Carp::cluck;

Load CA.pmand call its conpile() nethod to preconpile
(but not to inport) its autol oaded nethods.

24 29 Jan 2004

mod_perl Configuration 1.5.1 The Sample Startup File

use CAd ();
CAE ->compile(’':all");

Initialize the database connections for each child
Apache: : DBl - >connect _on_ini t
(" DBI: nysql : dat abase=t est ; host =l ocal host",

"user", "password",

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don’t die on error
AutoCommit => 1, # commit executes immediately

}
)

1;
Now we'll review the code explaining why each lineis used.

use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save a lot of time and
debugging later on.

use lib gw(/dir/foo /dir/bar);

The only chance to permanently modify @ NC before the server is started is with this command. Later the
running code can modify @ NC just for the moment it r equi r e() 's some file, and then @ NC's value
getsreset to what it was originaly.

$ENV{ MOD_PERL} or die "not running under nod_perl!";

A sanity check, if Apache/mod_perl wasn't properly built, the above code will abort the server startup.

use Apache:: Regi stry;
use LWP:: User Agent ();
use Apache:: DBl ();
use DBl ();

Preload the modules that get used by our Perl code serving the requests. Unless you need the symbols
(variables and subroutines) exported by the modules you preload to accomplish something within the
startup file, don’t import them, since it’'s just a waste of startup time. Instead use the empty list () to tell
thei mport () function not to import anything.

use Carp ();
$SI G __WARN__} = \&Carp::cl uck;

Thisisauseful snippet to enable extended warnings logged in the error_log file. In addition to basic warn-
ings, atrace of callsis added. This makes the tracking of the potential problem a much easier task, since
you know who called whom. For example, with normal warnings you might see:

Use of uninitialized val ue at
lusr/lib/perl5/site_perl/5.005/ Apache/DBI.pm I|ine 110.

29 Jan 2004 25

1.5.1 The Sample Startup File

but you have no idea where it was called from. When we use Car p as shown above we might see:

Use of uninitialized value at
/usr/libl/perl5/site_perl/5.005/ Apache/DBI.pmline 110.
Apache: : DBI : : connect (undef, ’'nydb::local host’, 'user’,
"passwd’, ' HASH(0x87a5108)') called at
/usr/libl/perl5/site_perl/5.005/i386-1inux/DBI.pmline 382
DBI::connect (' DBlI', ’'DBI:nysql:nydb::local host’, 'user’,
" passwd’, ' HASH(0x8375e4c)’) called at
lusr/liblperl5/site_perl/5.005/ Apache/ DBl .pm |ine 36

Apache: : DBl :: __ANON__ (' Apache=SCALAR(0x87a50c0)’') called at
Per | Chi | dl ni t Handl er subrouti ne
‘Apache::DBl:: __ANON_' line O
eval {...} called at Perl ChildlnitHandl er subroutine
‘Apache::DBl:: __ANON_' line O
we clearly see that the warning was triggered by eval()’ uating the Apache: : DBl : : __ANON__ which

caled DBI::connect (with the arguments that we see as well), which in turn caled the
Apache: : DBI : : connect method. Now we know where to ook for our problem.

use CA ();
CA ->conpile(':all’);

Some modules create their subroutines at run time to improve their load time. This helps when the module
includes many subroutines, but only a few are actually used. CA . pmfallsinto this category. Since with
mod_perl the module is loaded only once, it might be a good idea to precompile al or a part of its
methods.

CA . pmis conpi | e() method performs this task. Notice that this is a proprietary function of this
module, other modules can implement this feature or not and use this or some other name for this func-
tionality. As with al modules we preload in the startup file, we don’t import symbols from them as they
will be lost when they go out of thefile's scope.

Note that starting with CA . pm version 2.46, the recommended method to precompile the code in
Cd . pmis.

use CAd gw(-conpile :all);
But the old method is still available for backward compatibility.
1;

As startup.pl is run through Perl’sr equi r e() , it hasto return a true value so that Perl can make sure it
has been successfully loaded. Don't forget this (it’s very easy to forget it).

See dso the’ Apache::Status -- Embedded interpreter status information’ section.

26 29 Jan 2004

mod_perl Configuration 1.5.2 What Modules Y ou Should Add to the Startup File and Why

1.5.2 What Modules You Should Add to the Startup File and Why/|

Every module loaded at server startup will be shared among the server children, saving alot of RAM on
your machine. Usually | put most of the code | develop into modules and preload them.

Y ou can even preload your CGI script with Apache: : Regi st ryLoader (See Preload Perl modules at
server startup) and you can get the children to preopen their database connections with Apache: : DBI .

1.5.3 [The Confusion with use() in the Server Startup Filg

Some people wonder why you need to duplicate the use() clause in the startup file and in the script
itself. The confusion arises due to misunderstanding the use() function. use() normally performs two
operations, namely requi re() andi nport (), caled within a BEG N block. See the section "use()"
for adetailed explanation of the use(), require() and import() functions.

In the startup file we don’t want to import any symbols since they will be lost when we leave the scope of
the startup file anyway, i.e. they won’'t be visible to any of the child processes which run our mod_perl
scripts. Instead we want to preload the module in the startup file and then import any symbols that we
actually need in each script individually.

Normally when we write use MyModul e; , use() will both load the module and import its symbols;
so for the startup file we write use MyModul e () ; and the empty parentheses will ensure that the
module is loaded but that no symbols are imported. Then in the actual mod_per| script we writeuse() in
the standard way, e.g. use MyModul e; . Since the module has already been preloaded, the only action
taken isto import the symbols. For example in the startup file you write:

use CAd ();

since you probably don’t need any symbols to be imported there. But in your code you would probably
write:

use CA gw:htm);

For example, if you have use() 'd Apache: : Const ant s in the startup file, it does not mean you can
have the following handler:

package MyModul e;

sub handl er {
ny $r = shift;
Cool stuff goes here
return O

}
1

Y ou would either need to add:

use Apache:: Constants gw K);

29 Jan 2004 27

1.6 Apache Configuration in Perl

Or use the fully qualified name:

return Apache:: Constants:: K

If you want to use the function interface without exporting the symbols, use fully qualified function
names, eg. Cd : : par am The same rule applies to variables, you can import variables and you can
access them by their full name. e g. $My: : Mbdul e: : bar . When you use the object oriented (method)
interface you don't need to export the method symbols.

Technically, you aren't required to supply the use() statement in your (handler?) code if it was already
loaded during server startup (i.e. by 'Per| Require startup.pl’). When writing your code,
however, you should not assume the module code has been preloaded. In the future, you or someone else
will revisit this code and will not understand how it is possible to use a module’ s methods without first
loading the modul e itself.

Read the Expor t er and per | nod manpages for more information about i nport () .

1.6 |Apache Configuration in Perl

With <Per | >...</ Per | > sections, it is possible to configure your server entirely in Perl.

16.1

<Per | > sections can contain any and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears. Most of the configuration directives can be
represented as scalars ($scal ar) or lists (@i st). A @i st inside these sections is simply converted
into a space delimited string for you. Hereis an example:

ht t pd. conf

<Per| >
@er | Modul e = g Mai | : : Send Devel : : Peek);

#run the server as whoever starts it
$User = getpwuid($>) || $>;

$Goup = getgrgid($)) || $);

$Server Adni n = $User;

</ Perl >

Block sections such as<Locat i on>..</ Locat i on> arerepresented ina%.ocat i on hash, e.g.:
<Per| >

$Location{"/~dougm "} = {
Aut hUserFile => ' /tnp/ ht passwd’,
Aut hType => 'Basi ¢’ ,
Aut hNarme => ’"test’,
Directorylndex => [gwWindex. htm index.htm],

28 29 Jan 2004

mod_perl Configuration 1.6.1 Usage

Limt =>{
METHODS => ' GET POST',
require => 'user dougn,
},
}s

</ Perl| >

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off the @i st) or use an array reference to handle any number greater than the
minimum for that directive:

push @edirect, "/foo", "http://ww.foo.conm";
push @edirect, "/imdb", "http://www.imb.com";

push @Redirect, [gwmtenp "/here" "http://ww.there.conl)];
Other section counterparts include %/ r t ual Host , %Di rect ory and %F-i | es.

To pass al environment variables to the children with a single configuration directive, rather than listing
each oneviaPassEnv or Per | PassEnv, a<Per | > section could read in afile and:

push @erl| PassEnv, [$key => $val];

or

Apache->htt pd_conf (" Per| PassEnv $key $val ");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. See eg/httpd.conf.pl and eg/per|_sections.txt in the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’t exactly the same (e.g. the Ser ver Nane directive) it's hot quite that simple.

<Per | > sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem of the Ser ver Nane directive you might
have this <Per | > section:

<Per| >

$Server Nane = ‘ host nane’ ;
</ Perl >

For example if you want to alow personal directories on all machines except the ones whose names start
with secure:

29 Jan 2004 29

1.6.2 Enabling

<Per| >

$Server Nane = ‘ host nane’;

if ($ServerNane !~ /”"secure/) {
$UserDir = "public.htm™;

} else {
$UserDir = "Dl SABLED';

}

</ Perl| >

Behind the scenes, mod_perl defines a package called Apache: : ReadConfi g. Here it keeps al the
variables that you define inside the <Per | > sections. Therefore it’s not necessarily to configure the server
within the <Per | > sections. Actually what you can do isto write the Perl code to configure the server just
like you'd do in the <Per | > sections, but instead place it into a separate file that should be called during
the configuration parsing with either Per | Modul e or Per| Requi r e directives, or from within the
startup file. All you have to do is to declare the package Apache: : ReadConf i g within thisfile. Using
the last example:

apache_confi g. pl

package Apache:: ReadConfi g;

$Server Nane = ‘ host nane';

if ($ServerName !~ /~secure/) {
$UserDir = "public.htm";

} else {
$UserDir = "Dl SABLED';

}

1;

ht t pd. conf

Per| Requi re /hone/ httpd/ perl/Ilib/apache_config. pl

1.6.2 [Enabling

To enable <Per | > sections you should build mod_perl with perl Make-
filePL PERL_SECTIONS=1] ...].

1.6.3

Be careful when you declare package names inside <Per | > sections, for example this code has a
problem:

<Per| >
package My:: Trans;
use Apache:: Constants gw : conmon);
sub handler{ O}

$Per| TransHandl er = "My:: Trans";
</ Perl >

30 29 Jan 2004

mod_perl Configuration 1.6.4 Verifying

When you put code inside a<Perl> section, by default it actually goes into the Apache::Read Con-
fig package, which is aready declared for you. This means that the Perl Tran sHandler we have
tried to define above is actually undefined. If you define a different package name within a <Perl>
section you must make sure to close the scope of that package and return to the Apache::Read Config
package when you want to define the configuration directives, like this;

<Perl>
package My::Trans;
use Apache::Constants gw(:common);
sub handler{ OK }

package Apache::ReadConfig;

$PerlTransHandler = "My::Trans";
</Perl>

1.6.4

This section shows how to check and dump the configuration you have made with the help of <Perl>
sections in httpd.conf.

To check the <Perl> section syntax outside of httpd, we make it look like a Perl script:
<Perl>
Iperl
... code here ...

__END__
</Perl>

Now you may run:

perl -cx httpd.conf

In a running httpd you can see how you have configured the <Perl> sections through the URI
[perl-status, by choosing Perl Section Configuration from the menu. In order to make this item show up in
the menu you should set $Apache::Server::Save Config to a true value. When you do that the
Apache:: ReadConfig namespace (in which the configuration data is stored) will not be flushed, making
configuration data available to Perl modules at request time.

Example:

<Perl>
$Apache::Server::SaveConfig = 1;

$DocumentRoot = ...

</Perl>

At request time, the value of $DocumentRoot can be accessed with the fully qualified name
$Apache::ReadConfig::DocumentRoot.

29 Jan 2004 31

1.6.5 Strict <Perl> Sections

Y ou can dump the configuration of <Per | > sectionslikethis:

<Per| >
use Apache:: Perl Sections();

Configuration Perl code here

print STDERR Apache: : Perl Secti ons->dunp();
</ Perl >

Alternatively you can storeit in afile:
Apache: : Per| Sections->store("httpd_config.pl");

You canthenr equi r e() that filein some other <Per | > section.

1.6.5 [Strict <Per | > Sectiong

If the Perl code doesn’t compile, the server won't start. If the generated Apache config isinvalid, <Per | >
sections have always just logged an error and carried on, since there might be globals in the section that
are not intended for the config.

The variable $Apache: : Server:: StrictPerl Secti ons has been added in mod_perl version
1.22. If you set this variable to atrue value, for example

$Apache: : Server::StrictPerl Sections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax and will cr oak (die) if this is the
case. At the time of writing the default value is 0.

1.6.6 [Debugging

If you compile mod_perl with PERL_TRACE=1 and set the environment variable MOD_PERL TRACE
then you should see some useful diagnostics when mod_perl is processing <Per | > sections.

1.6.7 |Perl Section Tricks

® The Perl %ENV is cleared during startup, but the C environment is left intact and so you can use it to
set @PassEnv.

1.6.8 |Referenceq

For more info see Writing Apache Modules with Pel and C, Chapter 8:
[http://modperl.com:9000/book/chapters/ch8.html|

32 29 Jan 2004

http://modperl.com:9000/book/chapters/ch8.html

mod_perl Configuration 1.7 Vdlidating the Configuration Syntax

1.7 Validating the Configur ation Syntax

apachect!| confi gtest teststhe configuration file without starting the server. You can safely vali-
date the configuration file on your production server, if you run this test before you restart the server with
apachect!| restart. Of courseitisnot 100% perfect, but it will reveal any syntax errors you might
have made while editing the file.

'apachect| configtest’ is the same as 'httpd -t’ and it doesn’'t just parse the code in
startup.pl, it actually executes it. <Per | > configuration has always started Perl during the configuration
read, and Per | { Requi r e, Modul e} do so aswell.

Of course we assume that the code that gets called during this test cannot cause any harm to your running
production environment. The following hint shows how to prevent the code in the startup script and
<Per | > from being executed during the syntax check, if that’s what you want.

If you want your startup code to get control over the -t (confi gt est) server launch, start the server
configuration test with:

httpd -t -Dsyntax_check
and, if for example you want to prevent your startup code from being executed, at the top of the code add:

return i f Apache->define(’ syntax_check’);

1.8 |[Enabling Remote Server Configuration Reports

The nifty mod_info module displays the complete server configuration in your browser. In order to use it
you have compile it in or, if the server was compiled with DSO mode enabled, load it as an object. Then
just uncomment the ready-prepared section in the httpd.conf file:

<Location /server-info>
Set Handl er server-info
Order deny, al | ow
Deny from all
Al'l ow from www. exanpl e. com
</ Locati on>

Now restart the server and issue the request:

http://ww. exanpl e. conf server-info

1.9 |Publishing Port Numbersother than 80

If you are using a two-server setup, with a mod_perl server listening on a high port, it is advised that you
do not publish the number of the high port number in URLs. Rather use a proxying rewrite rule in the
non-mod_perl server:

29 Jan 2004 33

1.10 Configuring Apache + mod_perl with mod_macro

Rewr i t eEngi ne n

Rewr i t eLogLevel 0

RewriteRul e Aperl/(.*) http://1ocal host: 8080/ perl/$1 [P]
ProxyPassReverse [/ http://1ocal host/

| was told one problem with publishing high port numbersisthat |E 4.x has a bug when re-posting data to
anon-port-80 URL. It drops the port designator, and uses port 80 anyway.

Another reason is that firewalls probably will have the high port closed, therefore users behind the fire-
wallswill be unable to reach your service, running on the blocked port.

1.10 |[Configuring Apache + mod perl with mod macro

mod_macro is an Apache module written by Fabien Coelho that lets you define and use macros in the
Apache configuration file.

mod_macro can be really useful when you have many virtual hosts, and where each virtual host has a
number of scripts/modules, most of them with a moderately complex configuration setup.

First download the latest version of mod_macro from |http://www.cri.ensmp.fr/~coelho/mod macro/|, and
configure your Apache server to use this module.

Here are some useful macros for mod_perl users:

set up a registry script
<Macro registry>

Set Handl er "perl-script”

Per| Handl er Apache:: Regi stry
Opti ons +ExecCd

</ Macr 0>

exanpl e

Alias /stuff /usr/ww/ scripts/stuff
<Location /stuff>

Use registry

</ Locati on>

If your registry scripts are all located in the same directory, and your aliasing rules consistent, you can use
this macro:

set up a registry script for a specific |location
<Macro registry $location $script>

Alias /$location /honme/httpd/ perl/scripts/$script
<Location /$l ocati on>

Set Handl er "perl-script”

Per | Handl er Apache:: Registry

Opti ons +ExecCd

</ Locati on>

</ Macr 0>

34 29 Jan 2004

http://www.cri.ensmp.fr/~coelho/mod_macro/

mod_perl Configuration 1.10 Configuring Apache + mod_perl with mod_macro

exanpl e
Use registry stuff stuff.pl

If you' re using content handlers packaged as modules, you can use the following macro:

set up a nod_perl content handl er nodul e
<Macr o nodper!| $nodul e>

Set Handl er "perl-script"

Opti ons +ExecCd

Per | Handl er $nodul e

</ Macr 0>

#exanpl es

<Location /perl-status>
Per | Set Var St at usPeek On
Per| Set Var StatusG aph On
Per | Set Var St at usDunper On
Use nodper| Apache:: Status
</ Locati on>

The following macro sets up a Location for use with HTML: : Enbper | . Here we define al ".html" files
to be processed by Enbper| .

<Macr o emnbperl| >

Set Handl er "perl-script”

Opti ons +ExecCd

Per | Handl er HTM.: : Enbper |

Per| Set Env EMBPERL_FI LESMATCH \. htnl $
</ Macr o>

exanpl es
<Location /nrtg>
Use enbperl

</ Locati on>

Macros are also very useful for things that tend to be verbose, such as setting up Basic Authentication:

Sets up Basic Authentication
<Macr o Basi cAut h $real m $group>
Order deny, al | ow

Sati sfy any

Aut hType Basic

Aut hNarme $real m

Aut hGr oupFi | e /usr/ww/ aut h/ gr oups
Aut hUser Fil e /usr/ww/ aut h/ users
Requi re group $group

Deny fromall

</ Macr o>

exanpl e of use

<Location /stats>

Use Basi cAuth WebStats Adm n
</ Locati on>

29 Jan 2004 35

1.11 General Pitfalls

Finally, here is a complete example that uses macros to set up simple virtual hosts. It uses the Basi -
cAuth macro defined previously (yes, macros can be nested!).

<Macro vhost $ip $domain $docroot $admingroup>
<VirtualHost $ip>

ServerAdmin webmaster@$domain
DocumentRoot /usr/www/htdocs/$docroot
ServerName www.$domain

<Location /stats>

Use BasicAuth Stats-$domain $admingroup
</Location>

</VirtualHost>

</Macro>

define some virtual hosts
Use vhost 10.1.1.1 example.com example example-admin
Use vhost 10.1.1.2 example.net examplenet examplenet-admin

mod_macro is also useful in anon vhost setting. Some sites for example have lots of scripts which people
use to view various statistics, email settings and etc. It is much easier to read things like:

use /forwards email/showforwards
use /webstats web/showstats

The actual macros for the last example are left as an exercise to reader. These can be easily constructed
based on the examples presented in this section.

1.11 |General Pitfalls

1.11.1 My CGl/Perl Code Gets Returned as Plain Text | nstead of|
IBeing Executed by the Webserver|

Check your configuration files and make sure that the ExecCGl isturned on in your configurations.

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

1.11.2 My Script Works under mod cqgi, but when Called via mod perl|
I Get a’ Save-AS Prompt]

Did you put PerlSendHeader On in the configuration part of the <Loca tion foo></Loca tion >.

36 29 Jan 2004

mod_perl Configuration 1.11.3 IsThere aWay to Provide a Different startup.pl File for Each Individual Virtual Host

1.11.3 |Is There a Way to Provide a Different startup.pl File for Each |
I ndividual Virtual Host]

No. Any virtual host will be able to see the routines from a startup.pl loaded for any other virtual host.

1.11.4 |IsThere a Way to Modify @I NC on a Per-Virtual-Host or |
IPer-L ocation Basis|

You can use Per | Set Env PERL5LIB ... oraPerl Fi xupHandl er withthel i b pragma (use
lib gw(...)).

A better way isto use Apache::PerlVINC

1.11.5 |A Script From One Virtual Host Calls a Script with the Same
[Path From the Other Virtual Host|

This has been a bug before, last fixed in 1.15 01, i.e. if you are running 1.15, that could be the problem.
Y ou should set this variable in a startup file (which you load with Per | Requi r e in httpd.conf):

$Apache: : Regi stry:: NameWt hVi rtual Host = 1;

But, as we know sometimes a bug turns out to be a feature. If the same script is running for more than one
Virtual host on the same machine, this can be a waste, right? Set it to 0 in a startup script if you want to
turn it off and have this bug as a feature. (Only makes sense if you are sure that there will be no other
scripts with the same path/name). It also saves you some memory as well.

$Apache: : Regi stry: : NameWt hVi rtual Host = 0;

1.11.6 [the Server no Longer Retrievesthe Directoryl ndex Filesfor a|

The problem was reported by users who declared mod_perl configuration insidea<Di r ect or y> section
for al files matching *.pl. The problem went away after placing the directivesin a<Fi | es> section.

The mod_alias and mod_rewrite are both Trans handlers in the normal case. So in the setup where both are
used, if mod_alias runsfirst and matches it will return OK and mod_rewrite won't see the request.

The opposite can happen as well, where mod_rewrite rules apply but the Al i as directives are completely
ignored.

The behavior is not random, but depends on the Apache modules loading order. Apache modules are being
executed in reverse order, i.e. module that was Added first will be executed |ast.

29 Jan 2004 37

1.11.6 the Server no Longer Retrieves the Directorylndex Files for a Directory

The solution is not to mix mod_rewrite and mod alias. mod_rewrite does everything mod alias
does-—-except for Scri pt Al i as which is not really relevant to mod_perl anyway. Don't rely on the
module ordering, but use explicitly digoint URL namespaces for Al i as and Rewr i t e. In other words
any URL regex that can potentially match a Rewr i t e rule should not be used in an Al i as, and vice
versa. Given that mod_rewrite can easily do what mod_alias does, it’s no problem.

Here is one of the examples where Al i as is replaced with Redi r ect Mat ch. This is a snippet of
configuration at the light non-mod_perl Apache server:

Rewri t eEngi ne on

Rewri t eLogLevel 0

RewriteRul e A(perl.*)$ http://127.0.0.1:8045/$1 [P, L]
RewriteRul e A(mail . *)$ http://127.0.0.1:8045/$1 [P, L]
NoCache *

ProxyPassReverse [/ http://ww. exanpl e. com

Redi rect Mat ch pernmanent /' $ / pages/ i ndex
Redi rect Mat ch permanent ~/foo$ [/ pages/bar

This configuration works fine because any URI that matches one of the redirects will never match one of
the rewrite rules.

In the above setup we proxy requests starting with /perl or /mail to the mod_perl server, forbid proxy
requests to the externa sites, and make sure that the proxied requests will use the
[http://mwmw.example.com/| as their URL on the way back to the client.

The Redi r ect Mat ch settings work exactly like if you' d write:

Alias / / pages/ i ndex
Alias /foo /pages/bar

But as we told before we don’t want to mix the two.

Here is another example where the redirect is done by arewrite rule:

Rewri t eEngi ne on

Rewri t eLogLevel 0

Rewri t eMap | ower case int:tol ower

RewriteRul e A (perl.*)$ http://127.0.0.1: 8042/ $1 [P, L]
Rewrit eRul e NS / pages/ wel cone. ht m [R=301, L]
RewriteRul e MRS ${I| ower case: $1}

NoCache *

ProxyPassReverse / http://ww. exanpl e.com

If we omit the rewrite rule that matches”/ $, and instead use a redirect, it will never be called, because the
URL is still matched by the last rule ~(. *) $. This is a somewhat contrived example because that last
regex could be rewritten as” (/. +) $ and all would be well.

38 29 Jan 2004

http://www.example.com/

mod_perl Configuration 1.12 Configuration Security Concerns

1.11.7 |Do Perl* Directives Affect Code Running under mod cgi?

No, they don’t.

So for example if you do:

Per | Set Env foo bar

It' [l be seen from mod_perl, but not mod_cgi or any other module.

1.12 |Configuration Security Concerns

The more modules you have in your web server, the more complex the code.
The more complex the code in your web server, the more chances for bugs.

The more chances for bugs, the more chance that some of those bugs may involve security breaches.

1.12.1 |Choosing User and Group

Because mod_perl runs within an httpd child process, it runswith the User 1D and Gr oup ID specified in
the httpd.conf file. This User /Gr oup should have the lowest possible privileges. It should only have
access to world readable files, even better only files that belongs to this user. Even so, careless scripts can
give away information. Y ou would not want your /etc/passwd file to be readable over the net, for instance,
even if you use shadow passwords.

When a handler needs write permissions, make sure that only the user, the server is running under, has
write permissions to the files. Sometimes you need group write permissions, but be very careful, because a
buggy or malicious code run in the server may destroy files writable by the server.

1.12.2 [Taint Checking

Make sure to run the server under:

Per | Tai nt Check On

setting in the httpd.conf file. doesn't ensure that your code is completely safe from external
hacks, but it does forces you to improve your code to prevent many potential security problems.

1.12.3 [Exposing I nformation About the Server’s Component]

It is better not to expose the mod_perl server to the outside world, for it creates a potential security risk by
revealing which Apache modules used by the server and the OS the server is running on.

29 Jan 2004 39

1.13 Apache Restarts Twice On Start

You can see what information is revealed by your server, by telneting to it and issuing some request. For
example:

% tel net |ocal host 8080
Trying 127.0.0.1
Connected to | ocal host
Escape character is ""]'.
HEAD / HTTP1.0

HTTP/ 1.1 200 K

Date: Sun, 16 Apr 2000 11:06:25 GMr

Server: Apache/1.3.12 (Unix) nod_perl/1.22 nod_ssl/2.6.2 OpenSSL/0.9.5
[rmore |ines snipped]

So asyou see that alot of informationisrevealed and aFul | Ser ver Tokens has been used.

We never were completely sure why the default of the Ser ver Tokens directive in Apache is Ful |
rather than M ni mal . Seems like you would only make it Ful | if you are debugging. Probably the
reason for using the Ser ver Tokens Ful | isfor a show-off, so Netcraft (http://netcraft.com) and other
similar survey services will count more Apache servers, which is good for al of us, but you really want to
reveal aslittle information as possible to the potential crackers.

Another approach is to modify httpd sources to reveal no unwanted information, so all responses will
return an empty or phony Ser ver : field.

From the other point of view, security by obscurity is a lack of security. Any determined cracker will
eventually figure out what version of Apache run and what third party modules you have built in.

An even better approach is to completely hide the mod_perl server behind a front-end or a proxy server, so
the server cannot be accessed directly.

1.13 |Apache Restarts Twice On Start

When the server is restarted, the configuration and module initialization phases are called twice in total
before the children are forked. The second restart is done in order to ensure that future restarts will work
correctly, by making sure that all modules can survive a restart (SI GHUP). This is very important if you
restart a production server.

You can control what code will be executed on the start or restat by checking the value of
$Apache: : Server:: Starting and $Apache:: Server::ReStarting respectively. The
former variableis true when the server is starting and the latter is true when it’ s restarting.

For example:

<Per| >

print STDERR "Server is Starting\n" i f $Apache:: Server::Starting;
print STDERR "Server is ReStarting\n" if $Apache:: Server::ReStarting;
</ Perl >

40 29 Jan 2004

http://netcraft.com/

mod_perl Configuration 1.14 Knowing the proxy_pass ed Connection Type

The startup.pl file and similar loaded via Per | Modul e or Per| Requi r e are compiled only once.
Because once the module is compiled it enters the special %4 NC hash. When Apache restarts--Perl checks
whether the module or script in question is already registered in %4 NC and won't try to compile it again.

So the only code that you might need to protect from running on restart is the onein the <Per | > sections.
But since one usually uses the <Per | > sections mainly for on the fly configuration creation, there
shouldn’t be areason why it’d be undesirable to run the code more than once.

1.14 Knowing the proxy pass ed Connection Type

Let's say that you have a frontend server running mod_ssl, mod_rewrite and mod_proxy. You want to
make sure that your user is using a secure connection for some specific actions like login information
submission. You don’t want to let the user login unless the request was submitted through a secure port.

Since you have to proxy_pass the request between front and backend servers, you cannot know where the
connection has come from. Neither is using the HTTP headers reliable.

A possible solution for this problem is to have the mod_perl server listen on two different ports (e.g. 8000
and 8001) and have the mod_rewrite proxy rule in the regular server redirect to port 8000 and the
mod_rewrite proxy rule in the SSL virtual host redirect to port 8001. In the mod_perl server just check the
PORT variable to tell if the connection is secure.

1.15 |JAdding Custom Configuration Directives

Thisis covered in the Eagle Book in agreat detail. Thisisjust asimple example, showing how to add your
own Configuration directives.

Makefile. PL
package Apache:: TestDirective;

use ExtUtils:: MakeMaker;

use Apache::ExtUils gwcomand_t abl e);
use Apache::src ();

nmy @lirectives = ({

nanme => ’'Directived,
errnsg => ' Anything’,
ar gs_how => ' RAWARGS',

reg_override=> 'ORALL",
1)

command_t abl e(\ @li recti ves);

WiteMakefil e(

NAME => ' Apache:: TestDirective’,
VERSI ON_FROM => ' TestDirective. pni,
I NC => Apache: : src->new >i nc,

29 Jan 2004 41

1.15 Adding Custom Configuration Directives

TestDirective. pm
package Apache:: TestDirective;
use strict;
use Apache: : Modul eConfig ();
use DynalLoader ();
if ($ENV{MOD_PERL}) ({

no strict;

$VERSION = ' 0.01";

@ SA = g DynalLoader);
__ PACKAGE__ - >boot strap($VERSI ON); #command table, etc.

sub Directived {
warn "Directive4 @\n";
}

1;
__END

In the mod_per| source tree, add this to t/docs/startup.pl:
use blib qw(/ hore/ dougnit est/ Apache/ TestDirective);

and at the bottom of t/conf/httpd.contf:

Per| Mbdul e Apache:: TestDirective
Directive4 hi

Test it:

% make start_httpd
% nmake kill _httpd

Y ou should see;

Directived4 Apache:: Test D rective=HASH(0x83379d0)
Apache: : CndPar ms=SCALAR(0x862b80c) hi

Andintheerror log file:

% grep Directive4 t/logs/error_|og
Directived4 Apache::TestDirective=HASH(0x83119dc)
Apache: : CmdPar ne=SCALAR(0x8326878) hi

If it didn't work as expected try building mod_perl with PERL_TRACE=1, then do:

setenv MOD_PERL_TRACE al |

before starting the server. Now you should get some useful diagnostics.

42 29 Jan 2004

mod_perl Configuration 1.16 Maintainers

1.16 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.17 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 43

mod_perl Configuration Tableof Contents:

Table of Contents:

1 [mod perl Configuration|
1.1 [Description.
1.2 |Server Configuration|
1.3 |Apache Configuration| .
1.3.1 |Configuration Directivey .
1.3.2 |.htaccess fileg
1.3.3 |<Directory>, <L ocation> and <F|Ie£> Sectl onsl
1.3.4 |How Directory, Location and Files Sections are Merqed ..
1.3.5 |Sub-Grouping of <L ocation>, <Directory> and <Files> Sectionq .
1.3.6 |Options Directiveg
1.4 Imod perl Configuration| .
1.4.1 |Alias Configurationg
1.4.1.1 [Running CGl, PerlRun, and ReQ|stry Scnpts Located in the Same Dlrectoryl
1.4.2 |<Location> Configuration|
1.4.3 |Overriding <L ocation> Setting in "Sub-Locatl on"I
1.4.4 |PerIModule and PerlRequire Directivey
145
1.4.6 |The handler subrouting
1.4.7 |Stacked Handlerg
1.4.8 |Perl Method Handlerg
1.4.9 |PerlFreshRestart]
1.4.10 [PerlSetEnv and Perl PassEnvI
14.11 IPerISetVar and PerlAddVar .
1.4.12 [PerTSetupEnv :
1.4.13 |PerIWarn and PerITa| ntCheckI
1.4.14 MinSpareServers MaxSpareServers StartServers M axCI |ents M axRequestsPerChl Id
1.5 [The Startup Filg .
1.5.1 [The Sample Startup F|Ie| .
1.5.2 |What Modules Y ou Should Add to the Startup Fl le and Whyl
1.5.3 |[The Confusion with use() in the Server Startup Filq .
1.6 [Apache Configuration in Perl|.

1.6.1 :

16.2

1.6.3

16.4 L

1.6.5 |Strict <Per | > Sectiond .

1.6.6 [Debugging . .

1.6.7 |Per| Sectl on Tncksl

1.6.8 |References
17 I\/alldatl ng the Conflquratl on syntaxl
1.8 |Enabling Remote Server Configuration Reportd
1.9 |Publishing Port Numbers other than 80y .
1.10 [Configuring Apache + mod perl with mod macrol

1.11 |Genera Pitfalg

29 Jan 2004

QWO N~NOOWWWNDNDN P

[O8] WWWWWWWWWWNDNNNNNNNNNNMNMNNYRPRREPRRERERE
mgwwwNNNNHOOOOOO\I\I-b-bOOOOOOHOOOOU'I-bI\)I\)I\)

Table of Contents:

1.11.1 My CGlI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the |
ebserver] . 36

1.11.2 My Script Works under mod cgl but When Called V|amod Qerl I Get a SaveAs Promgtj 36
1.11.3 |Is There aWay to Provide a Different startup.pl File for Each Individua Virtual Host Provrdealeferent startu pl File for Each Ind|V|duaI V|rtuaI Host 37

1.11.4 [Is There aWay to Modify @INC on aPer-Virtual-Hos{ or Per-Location Basis] . 37
1115 IK Script From One Virtual Host Calls aScrlpt Wlth the Same Path From the Other V|rtuaI |
. 37
1. 11 6 [t he Server no Longer Retnev& the D|rectoryl ndex Fllecfor a D|rectory| < T4
1.11.7 [Do Per* Directives Affect Code Running under mod_cgi3 T
1.12 [Configuration Security Concernd . . . T
1, 12 1[ChoosngUserandGroud 3
1.12.2 [Tant Checking. . -
1. 12 3 IExposr ng Informatl on About the Server S Componentl - ¢
1.13 [Apache Restarts Twice On Starf] . . e (0]
114 ‘Knowm the proxy pass ed Connection T e Y
1.15 [Adding Custom Configuration Directives]. 41
1.16 Mantanerd 43
1.17 [Authorg O |

29 Jan 2004

	1€€mod_perl Configuration
	1.1€€Description
	1.2€€Server Configuration
	1.3€€Apache Configuration
	1.3.1€€Configuration Directives
	1.3.2€€.htaccess files
	1.3.3€€<Directory>, <Location> and <Files> Sections
	1.3.4€€How Directory, Location and Files Sections are Merged
	1.3.5€€Sub-Grouping of <Location>, <Directory> and <Files> Sections
	1.3.6€€Options Directive

	1.4€€mod_perl Configuration
	1.4.1€€Alias Configurations
	1.4.1.1€€Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

	1.4.2€€<Location> Configuration
	1.4.3€€Overriding <Location> Setting in "Sub-Location"
	1.4.4€€PerlModule and PerlRequire Directives
	1.4.5€€Perl*Handlers
	1.4.6€€The handler subroutine
	1.4.7€€Stacked Handlers
	1.4.8€€Perl Method Handlers
	1.4.9€€PerlFreshRestart
	1.4.10€€PerlSetEnv and PerlPassEnv
	1.4.11€€PerlSetVar and PerlAddVar
	1.4.12€€PerlSetupEnv
	1.4.13€€PerlWarn and PerlTaintCheck
	1.4.14€€MinSpareServers MaxSpareServers StartServers MaxClients MaxRequestsPerChild

	1.5€€The Startup File
	1.5.1€€The Sample Startup File
	1.5.2€€What Modules You Should Add to the Startup File and Why
	1.5.3€€The Confusion with use†‡ in the Server Startup File

	1.6€€Apache Configuration in Perl
	1.6.1€€Usage
	1.6.2€€Enabling
	1.6.3€€Caveats
	1.6.4€€Verifying
	1.6.5€€Strict <Perl> Sections
	1.6.6€€Debugging
	1.6.7€€Perl Section Tricks
	1.6.8€€References

	1.7€€Validating the Configuration Syntax
	1.8€€Enabling Remote Server Configuration Reports
	1.9€€Publishing Port Numbers other than 80
	1.10€€Configuring Apache + mod_perl with mod_macro
	1.11€€General Pitfalls
	1.11.1€€My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver
	1.11.2€€My Script Works under mod_cgi, but when Called via mod_perl I Get a 'Save-As' Prompt
	1.11.3€€Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host
	1.11.4€€Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.
	1.11.5€€A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host
	1.11.6€€the Server no Longer Retrieves the DirectoryIndex Files for a Directory
	1.11.7€€Do Perl* Directives Affect Code Running under mod_cgi?

	1.12€€Configuration Security Concerns
	1.12.1€€Choosing User and Group
	1.12.2€€Taint Checking
	1.12.3€€Exposing Information About the Server's Component

	1.13€€Apache Restarts Twice On Start
	1.14€€Knowing the proxy_pass'ed Connection Type
	1.15€€Adding Custom Configuration Directives
	1.16€€Maintainers
	1.17€€Authors

