Input and Output Filters 1 Input and Output Filters

1 Input and Output Filters

29 Jan 2004 1

1.1 Description

1.1 |Description|

This chapter discusses mod_perl’sinput and output filter handlers.

If al you need is to lookup the filtering APl proceed directly to the Apache::Filter and
Apache: : Fi | t er Rec manpages.

1.2 \Your First Filter

You certainly already know how filters work. That’s because you encounter filters so often in real life. If
you are unfortunate to live in smog-filled cities like Saigon or Bangkok you are probably used to wear a
dust filter mask:

If you are smoker, chances are that you smoke cigarettes with filters:

—)

If you are a coffee gourmand, you have certainly tried afilter coffee:

2 29 Jan 2004

Input and Output Filters 1.2 Your First Filter

The shower that you use, may have awater filter:

When the sun istoo bright, you protect your eyes by wearing sun goggles with UV filter:

If are a photographer you can’t go a step without using filter lenses:

29 Jan 2004 3

1.2 Your First Filter

If you love music, you might be unaware of it, but your super-modern audio syditmally loaded with
variouseledronicfilters:

There are many more places in our lives where filters are used. The purpose of all filters is to apply some
trangormation to what's coming into the filter, lettingomehing different out of the filter. Certainly in

some cases it'possble to modify the source itself, but that makes thingflexible, and but most of the

time we have no control over the source. @dgarageof using filters to modifysomehing is that they

can be replaced wheaquirenentschange Filters also can be stacked, which allows us to make each filter
do simpletrangormaions. For example bycombining severaldifferent filters, we can applynultiple
trangormations In certainsituations combiring several filters of the same kind let's us achieve a better
guality output.

The mod_perl filters are not anlfferent, they receive some data, modify it and send it out. In the case of
filtering the output of the response handler, we could certainly change the response handler’'s logic to do
somehing different since we control the response handler. But this may make theuooéessary
complex. If we can applrangormationsto the response handler’s output, it certainly gives us ftexie

bility andsimplifies things. For example if a response needs to be compressed before sent out, it'd be very
incorvenient and inefficient to code in the response handler itself. Using a filter for that purpose is a
perfectsoluion. Similarly, in certain cases, using an input filtettangorm the incoming request data is

the most wiseoluion. Think of the same example of having theomng data comingcompressed.

Just like with real life filters, you can pipe several filters to modify each other’s output. You can also
customize aeledion of differentfilters at runtime.

Without much further ado, let's write a simple but usehfusation filter for our HTML documents

We are going to use a very simmbfusaion -- turn an HTMLdocumentinto a one liner, which will
make it harder to read its source without a spgeiadessg. To acconplish that we are going to remove
chamders\012(\ n) and \0150\ r), whichdepenihg on theplatform alone or as aombnation represent
the end of line and a carriagsturn.

And here is the filter handleode:
#file: MyApache/ Fi | t er Cbf uscate. pm
package MyApache:: FilterObfuscate

use strict;
use war ni ngs;

4 29 Jan 2004

Input and Output Filters 1.2 Your First Filter

use Apache::Filter ();
use Apache:: Request Rec ();
use APR : Table ();

use Apache:: Const -conpile => gwm OK);
use constant BUFF_LEN => 1024;

sub handl er {
ny $f = shift;

unl ess ($f->ctx) {
$f - >r - >headers_out - >unset (* Content-Length’);
$f->ct x(1);

}

while ($f->read(nmy $buffer, BUFF_LEN)) {
$buffer =~ s/[\r\n]//g;
$f - >print ($buffer);

}

return Apache: : OK;
}
1;

Next we configure Apache to apply the MyApache: : Fi | t er Cbf uscat e filter to al requests that get
mapped to fileswith an ".html" extension:

<Files ~ "\.htnml">
Per| Qut put Fi | t er Handl er MyApache: : Fi |l t er Obf uscat e
</Files>

Filter handlers are similar to HTTP handlers, they are expected to return Apache:: OK or
Apache: : DECLI NED, but instead of receiving $r (the request object) as the first argument, they receive
$f (thefilter object).

The filter starts by unsetting of the Cont ent - Lengt h response header, because it modifies the length of
the response body (shrinks it). If the response handler had set the Cont ent - Lengt h header and the
filter hasn't unset it, the client may have problems receiving the response since it'd expect more data than
it was sent.

The core of this filter is a read-modify-print expression in a while loop. The logic is very simple: read at
most BUFF_LEN characters of data into $buf f er, apply the regex to remove any occurences of \ n and
\'r init, and print the resulting data out. The input data may come from a response handler, or from an
upstream filter. The output data goes to the next filter in the output chain. Even though in this example we
haven't configured any more filters, internally Apache by itself uses several core filters to manipulate the
data and send it out to the client.

As we are going to explain in great detail in the next sections, the same filter may be called many times
during a single request, every time receiving a chunk of data. For example if the POSTed request datais
64k long, an input filter could be invoked 8 times, each time receiving 8k of data. The same may happen
during response phase, where an upstream filter may split 64k output in 8 8k chunks. The while loop that

29 Jan 2004 5

1.3 /O Filtering Concepts

we just saw is going to read each of these 8k in 8 calls, since it requests 1k areadry call.

Since it's enough to unset tidNnt ent - Lengt h header when the filter is called the first time, we need
to have some flag telling us whether we have done the job. The n@&tldd provides thidunctional-

ity:

unl ess ($f->ctx) {
$f - >r - >header s_out - >unset (' Content-Length’);
$f->ct x(1);

}

theunset () call will be made only on the first filter call for each request. Of course you can store any
kind of a Perl datatrudurein $f - >ct x and retrieve it later isubsguentfilter invocations of the same
request. We will show plenty efxanplesusing this method in thellowing sections.

Of course thaw Apache: : Fi | t er Cbf uscat e filter logic should take into accousttuations where
removng new line chaladers will break the correctendemng, as is the case if there are multi-line
<pr e>..</ pr e> entries, but since éscdatesthecomplexty of the filter, we willdisregardthisrequire
mentfor now.

A postive side effect of thiobfuscaion algaithm is in shorening the amount of the data sent to the
client. If you want to look at thprodudion readyimplemertation, which takes into account the HTML
markup specifics, thApache: : Cl ean module,availablefrom CPAN, does jughat.

mod_perl I/Cfiltering follows the Perl'sprinciple of making simple things easy adifi cult thingsposst
ble. You have seen that it's trivial to write simple filters. As you read throughutioisal you will see that
much mordliffi cult things areossble, even though a mordaloratedcode will beneeded.

1.3 |I/O Filtering Conceptg

Beforeintrodudng the APIs, mod_perl provides for Apachitering, there are severahportantconcepts
to undestand

1.3.1 [Two Methods foiManipulating Datd

Apache 2.@¢onsicrsall incoming andoutgadng data as chunks d@fformation, disregardng their kind and
source or storage methods. These data chunks are stiweftats, which formbucketbrigades Input and
output filters massage the databimcket brigades. Response angrotacol handlers also receive and send
data using bucket brigades, though in most cases this is hidden behmedrs such ag ead() and

print().

mod_perl 2.0 filters can directiypanipulate the bucket brigades or use implified streaning interface
where the filter object acts similar tdike hardle, which can be read from and printed

Even though you don't use bucket brigades directly when you usatrteing filter interface (which

works on bucket brigades behind the scenes), it's igtjflottant to undestand bucket brigades. For
example you need to know that an output filter will be invoked as many times as the number of bucket
brigades sent from an upstream filter or a content handler. Or you need to know that the end of stream

6 29 Jan 2004

Input and Output Filters 1.3.2 HTTP Reguest Versus Connection Filters

indicator (EOS) is sometimes sent in a separate bucket brigade, so it shouldn’t be a surprise that the filter
was invoked even though no real data went through. As we delve into the filter details you will see that
understanding bucket brigades, will help to understand how filters work.

Moreover you will need to understand bucket brigades if you plan to implement protocol modules.

1.3.2 HTTP Request Versus Connection Filterg

HTTP request filters are applied when Apache serves an HTTP request.

HTTP request input filters get invoked on the body of the HTTP request only if the body is consumed by
the content handler. HTTP request headers are not passed through the HTTP request input filters.

HTTP response output filters get invoked on the body of the HTTP response if the content handler has
generated one. HTTP response headers are not passed through the HTTP response output filters.

Connection level filters are applied at the connection level.

A connection may be configured to serve one or more HTTP requests, or handle other protocols. Connec-
tion filters see all the incoming and outgoing data. If an HTTP request is served, connection filters can
modify the HTTP headers and the body of request and response. If a different protocol is served over
connection (e.g. IMAP), the data could have a completely different pattern, than the HTTP protocol
(headers + body).

Apache supports several other filter types, which mod_perl 2.0 may support in the future.

1.3.3 [Multiple I nvocations of Filter Handlerg

Unlike other Apache handlers, filter handlers may get invoked more than once during the same request.
Filters get invoked as many times as the number of bucket brigades sent from an upstream filter or a
content provider.

For example if a content generation handler sends a string, and then forces a flush, following by more
data:

assum ng buffered STDOUT ($|==0)
$r->print("foo");

$r->rflush;

$r->print("bar");

Apache will generate one bucket brigade with two buckets (there are severa types of buckets which
contain data, one of them istransient):

bucket type dat a
1st transi ent foo
2nd flush

29 Jan 2004 7

1.3.3 Multiple Invocations of Filter Handlers

and send it to the filter chain. Then assuming that no more data was sent after pri nt ("bar "), it will
create alast bucket brigade containing data:

bucket type dat a

and send it to the filter chain. Finaly it'll send yet another bucket brigade with the EOS bucket indicating
that there will be no more data sent:

bucket type dat a

Notice that the EOS bucket may come attached to the last bucket brigade with data, instead of coming in
its its own bucket brigade. Filters should never make an assumption that the EOS bucket is arriving alone
in a bucket brigade. Therefore the first output filter will be invoked two or three times (three times if EOS
iscoming in its own brigade), depending on the number of bucket brigades sent by the response handler.

A user may install an upstream filter, and that filter may decide to insert extra bucket brigades or collect
al the datain all bucket brigades passing through it and send it all down in one brigade. What’ s important
to remember is when coding afilter, one should never assume that the filter is always going to be invoked
once, or afixed number of times. Neither one can make assumptions on the way the data is going to come
in. Therefore atypical filter handler may need to split its logic in three parts.

Jumping ahead we will show some pseudo-code that represents all three parts. This is how a typical
stream-oriented filter handler looks like:

sub handl er {
nmy $f = shift;

runs on first invocation
unl ess ($f->ctx) {
init($f);
$f->ct x(1);
}

runs on all invocations
process($f);

runs on the last invocation
if ($f->seen_eos) {

finalize($f);
}
return Apache:: K
}
sub init { ...}
sub process { ... }
sub finalize { }

8 29 Jan 2004

Input and Output Filters 1.3.3 Multiple Invocations of Filter Handlers

The following diagram depicts al three parts:

Eead ; Read Read é Fead
Modify | Modify Modify || Modify
Print ‘| Print Print || Print
; E | Cleanup
lst 2nd -1 Last Time

Multiple Filter Invocations

Let’s explain each part using this pseudo-filter.
1. Initialization

During the initialization, the filter runs all the code that should be performed only once across multi-
ple invocations of the filter (thisis during a single request). The filter context is used to accomplish
that task. For each new request the filter context is created before the filter is called for the first time
and its destroyed at the end of the request.

unl ess ($f->ctx) {
init($f);
$f - >ct x(1);

}

When the filter is invoked for the first time $f - >ct x returns undef and the custom function init()
is caled. This function could, for example, retrieve some configuration data, set in httpd.conf or
initialize some datastructure to its default value.

To make sure that init() won't be called on the following invocations, we must set the filter context
before the first invocation is completed:

$f->ctx(1);

29 Jan 2004 9

1.3.3 Multiple Invocations of Filter Handlers

10

In practice, the context is not just served as aflag, but used to store real data. For example the follow-
ing filter handler counts the number of timesit was invoked during a single request:

sub handl er {
ny $f = shift;

ny $ctx = $f->ctx;

$ct x- >{i nvoked} ++;

$f - >ct x($ct x) ;

warn "filter was invoked $ctx->{invoked} tinmes\n";

return Apache: : DECLI NED;
}

Since this filter handler doesn’t consume the data from the upstream filter, it's important that this
handler returns Apache: : DECLI NED, in which case mod_perl passes the current bucket brigade to
the next filter. If this handler returns Apache: : OK, the data will be simply lost. And if that data
included a specia EOS token, this may wreck havoc.

Unsetting the Cont ent - Lengt h header for filters that modify the response body length is a good
example of the code to be used in the initialization phase:

unl ess ($f->ctx) {
$f - >r - >header s_out - >unset ('’ Content - Length’) ;
$f->ctx(1);

}

We will see more of initialization examples later in this chapter.

. Processing

The next part:

process($f);

is unconditionally invoked on every filter invocation. That’s where the incoming data is read, modi-
fied and sent out to the next filter in the filter chain. Here is an example that lowers the case of the
characters passing through:

use constant READ S| ZE => 1024;
sub process {
ny $f = shift;
while ($f->read(ny $data, READ_SIZE)) {
$f->print(lc $data);
}

}

Here the filter operates only on a single bucket brigade. Since it manipulates every character sepa-
rately the logic isreally simple.

29 Jan 2004

Input and Output Filters 1.3.4 Blocking Calls

In more complicated filters the filters may need to buffer data first before the transformation can be
applied. For example if the filter operates on html tokens (e.g., '"), it's possible
that one brigade will include the beginning of the token ('<img ') and the remainder of the token
('src="me.jpg">") will come in the next bucket brigade (on the next filter invocation). In certain cases
it may involve more than two bucket brigades to get the whole token. In such a case the filter will haveto
store the remainder of unprocessed data in the filter context and then reuse it on the next invocation.
Another good example is a filter that performs data compression (compression is usualy effective
only when applied to relatively big chunks of data), so if a single bucket brigade doesn’'t contain
enough data, the filter may need to buffer the datain the filter context till it collects enough of it.

We will see the implementation examplesin this chapter.
3. Finalization

Finally, some filters need to know when they are invoked for the last time, in order to perform
various cleanups and/or flush any remaining data. As mentioned earlier, Apache indicates this event
by a special end of stream "token", represented by a bucket of type ECS. If the filter is using the
streaming interface, rather than manipulating the bucket brigades directly, and it was calling read() in
a while loop, it can check whether this is the last time it's invoked, using the $f - >seen_eos
method:

if ($f->seen_eos) {
finalize($f);
}

This check should be done at the end of the filter handler, because sometimes the EOS "token™" comes
attached to thetail of data (the last invocation gets both the data and EOS) and sometimesit comes all
aone (the last invocation gets only EOS). So if this test is performed at the beginning of the handler
and the EOS bucket was sent in together with the data, the EOS event may be missed and filter won't
function properly.

Jumping ahead, filters, directly manipulating bucket brigades, have to look for a bucket whose typeis
ECS to accomplish this. We will see examples later in the chapter.

Some filters may need to deploy al three parts of the described logic, others will need to do only initial-
ization and processing, or processing and finalization, while the simplest filters might perform only the
normal processing (as we saw in the example of the filter handler that lowers the case of the characters
going through it).

1.3.4 Blocking Callg

All filters (excluding the core filter that reads from the network and the core filter that writesto it) block at
least once when invoked. Depending on whether thisis an input or an output filter, the blocking happens
when the bucket brigade is requested from the upstream filter or when the bucket brigade is passed to the
downstream filter.

29 Jan 2004 11

1.3.4 Blocking Calls

First of all, the input and output filters differ in the ways they acquire the bucket brigades (which includes
the data that they filter). Even though when a streaming API is used the difference can’'t be seen, it's
important to understand how things work underneath. Therefore we are going to show examples of trans-
parent filters, which pass data through them unmodified. Instead of reading the datain and printing it out
the bucket brigades are now passed asis.

Here is a code for atransparent input filter:
#file: MyApache/ Fil terTransparent.pm (first part)
package MyApache:: FilterTransparent;

use Apache:: Const -conpile => qw(XK);
use APR : Const -conpile => ':common’;

sub in {
ny ($f, $bb, $node, $block, $readbytes) = @;

nmy $rv = $f->next->get _bri gade($bb, $node, $bl ock, $readbytes);
return $rv unless $rv == APR: : SUCCESS;

return Apache:: OK;
}

When the input filter in() isinvoked, it first asks the upstream filter for the next bucket brigade (using the
get _bri gade() cdl). That upstream filter isin turn going to ask for the bucket brigade from the next
upstream filter in chain, etc,, till the last filter (called cor e_i n), that reads from the network is reached.
The cor e_i n filter reads, using a socket, a portion of the incoming data from the network, processes it
and sends it to its downstream filter, which will process the data and send it to its downstream filter, etc.,
till it reaches the very first filter who has asked for the data. (In reality some other handler triggers the
request for the bucket brigade, e.g., an HTTP response handler, or a protocol module, but for our discus-
sion it'sgood enough to assume that it’ sthe first filter that issuestheget _bri gade() call.)

The following diagram depicts a typical input filters chain data flow in addition to the program control
flow.

12 29 Jan 2004

Input and Output Filters 1.3.4 Blocking Calls

._E..sub handler §

mpesE, Sbb outs = @
get. brigads(shb_in); —E?’-'r hittp_input £ilter{*bb_ wt}ﬂ

%—'F—'F—'F—'-"—' E get_brigade{bb_in}; -——EE" cu:urs _input_filter{*bb_out}
g e e e N 2
— EE%%EE%]:-]:-_u:-ut = apr_hrig‘ads_crsats;i
shios oo shons E read{zocket, bb_out, szize);
%l---.ﬁ I I e DK-: E
R g waps i *bb_out = modify{bb_ m} b ;

‘ : return OF; [:
$]:|]:| onk= m_.:..j'lfy{shh .'L'l.'l.:l E o Memsessssssssssssssssssssssssssssss s s s

return Apache! | OK;

...

Input Filter Chain Data Flow

The black- and white-headed arrows show when the control is switched from one filter to another. In addi-
tion the black-headed arrows show the actual data flow. The diagram includes some pseudo-code, both for
in Perl for the mod_perl filtersand in C for the internal Apache filters. Y ou don't have to understand C to
understand this diagram. What's important to understand is that when input filters are invoked they first
call each other via the get _bri gade() cal and then block (notice the brick wall on the diagram),
waiting for the call to return. When this call returns all upstream filters have aready completed finishing
their filtering task.

As mentioned earlier, the streaming interface hides these details, however the first $f - >r ead() call will
block, as underneath it performsthe get _br i gade() call.

The diagram shows a part of the actual input filter chain for an HTTP request, the . . . shows that there
are more filters in between the mod_per! filter and ht t p_i n.

Now let’slook at what happens in the output filters chain. Here the first filter acquires the bucket brigades
containing the response data, from the content handler (or another protocol handler if we aren't talking
HTTP), it then may apply some modification and pass the data to the next filter (using the
pass_bri gade() call), which in turn appliesits modifications and sends the bucket brigade to the next
filter, etc., all the way down to the last filter (called cor e) which writes the data to the network, via the
socket the client is listening to. Even though the output filters don't have to wait to acquire the bucket
brigade (since the upstream filter passes it to them as an argument), they still block in a similar fashion to
input filters, since they have to wait for thepass_br i gade() call to return.

Hereis an example of atransparent output filter:

29 Jan 2004 13

1.4 mod_perl Filters Declaration and Configuration

#file: MyApache/ Fil ter Transparent. pm (conti nued)

sub out {
ny ($f, $bb) = @;

ny $rv = $f->next->pass_bri gade($bb);
return $rv unless $rv == APR: : SUCCESS;

return Apache: : OK;
}
1;

The out() filter passes $bb to the downstream filter unmodified and if you add debug prints before and
after thepass_bri gade() cal and configure the same filter twice, the debug print will show the block-
ing call.

The following diagram depicts a typical output filters chain data flow in addition to the program control
flow:

modperl fllter hittp . header

su.b handler {
mp{FE, $bby = @_;
modify (sbh

pass hrlg'a_dg{$hh} +http header fllter{*hh} CoTre
o thre 4~ modify {bb); ; [rimmm——————
pass_brigade({bb}; + core_ontput_filter{*hh}

i

I ! write(zocket, bhb, 5_1'.33},-;—-
! return (1) 4 ‘Q_.}
i return Apache::dk; Q—} :

Dutput Filter Chain Data Flow

Similar to the input filters chain diagram, the arrows show the program control flow and in addition the
black-headed arrows show the data flow. Again, it uses a Perl pseudo-code for the mod_perl filter and C
pseudo-code for the Apache filters, similarly the brick walls represent the waiting. And again, the diagram
shows a part of the real HTTP response filters chain, where . . . stands for the omitted filters.

1.4 /mod per| Filters Declaration and Configur ation|

Now let’s see how mod_per! filters are declared and configured.

14 29 Jan 2004

Input and Output Filters 1.4.1 Filter Priority Types

1.4.1 [Filter Priority Typeq

When Apache filters are configured they are inserted into the filters chain according to their priority/type.
In most cases when using one or two filters things will just work, however if you find that the order of
filter invocation is wrong, the filter priority type should be consulted. Unfortunately this information is
available only by consulting the source code, unless it’'s documented in the module man pages. Numerical
definitions of priority types, such as AP_FTYPE CONTENT_SET, AP_FTYPE_RESOURCE, can be
found in include/util_filter.h.

As of this writing Apache comes with two core filters: DEFLATE and | NCLUDES. For example in the
following configuration:

Set Qut put Fi | t er DEFLATE
Set Qut put Fi | ter | NCLUDES

the DEFLATE filter will be inserted in the filters chain after the | NCLUDES filter, even though it was
configured before it. This is because the DEFLATE filter is of type AP_FTYPE_CONTENT_SET (20),
whereas the | NCLUDES filter is of type AP_FTYPE_RESOURCE (10).

As of thiswriting mod_perl provides two kind of filters with fixed priority type:

Handl er Priority Val ue

Fi | t er Request Handl er AP_FTYPE_RESOURCE 10
Fi | ter Connecti onHandl er AP_FTYPE_PROTOCOL 30

Therefore Fi | t er Request Handl er filters (10) will be aways invoked before the DEFLATE filter
(20), whereas Fi | t er Connect i onHandl er filters (30) after it. The | NCLUDES filter (10) has the
same priority as Fi | t er Request Handl er filters (10), and therefore it’'ll be inserted according to the
configuration order, when|Per | Set Qut put Fi | t er|or[Per | Set | nput Fi | t er|isused.

1.4.2 Per | | nput Fi | t er Handl er|

ThePer | | nput Fi | t er Handl er directive registers afilter, and insertsit into the[relevant] input filters
chain.

This handler is of type VO D.
The handler’s configuration scopeis DI R

The following sections include several examplesthat usethe Per | | nput Fi | t er Handl er handler.

1.4.3 |Per | Qut put Fi | t er Handl er|

The Per | Qut put Fi | t er Handl er directive registers a filter, and inserts it into the [relevant] output
filters chain.

29 Jan 2004 15

1.4.4 PerlSetlnputFilter

This handler is of type VOID.
The handler’ s configuration scopeis DIR.

The following sections include several examplesthat use the PerlOut put Fil ter Handler handler.

1.4.4 Perl Set I nput Fi |l t er]

The Setinput Fil ter directive, documented at

[http://httpd.apache.or g/docs-2.0/mod/cor e.htmi#setinputfilter| sets the filter or filters which will process
client requests and POST input when they are received by the server (in addition to any filters configured
earlier).

To mix mod_perl and non-mod_perl input filters of the[same priority] nothing special should be done. For
example if we have an imaginary Apache filter FILTER_FOO and mod perl filter
MyApache::Filter In put Foo, this configuration:

SetlnputFilter FILTER_FOO
PerlinputFilterHandler MyApache::FilterinputFoo

will add both filters, however the order of their invocation might be not the one that you’ ve expected. To
make the invocation order the same as the insertion order replace Setlnput Fil ter with PerlSet -
Input Fil ter ,likeso:

PerlSetinputFilter FILTER_FOO
PerlinputFilterHandler MyApache::FilterinputFoo

now FILTER_FOO filter will be aways executed before the MyApache::Filter In put Foo filter,
since it was configured before MyApache::Filter In put Foo (i.e, it'll apply its transformations on
the incoming data last). Here is a diagram input filters chain and the data flow from the network to the
response handler for the presented configuration:

response handler

A
Il

FILTER_FOO
N
Il

MyApache::FilterinputFoo

A
I

core input filters
A
Il

network

As explained in the section [Filter Priority Typedthis directive won't affect filters of different priority. For
example assuming that MyApache::Filter In put Foo is a Filter RequestHandler filter, the
configurations:

16 29 Jan 2004

http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter

Input and Output Filters 1.4.5 PerlSetOutputFilter

PerlinputFilterHandler MyApache::FilterinputFoo
PerlSetinputFilter DEFLATE

and

PerlSetinputFilter DEFLATE
PerlinputFilterHandler MyApache::FilterinputFoo

are equivalent, because mod_deflate’ s DEFLATEfilter has a higher priority than MyApache::Filter -

In put Foo, thefore it’'ll dways be inserted into the filter chain after MyApache::Filter In put Foo,
(i.e. the DEFLATEfilter will apply its transformations on the incoming data first). Here is a diagram input
filters chain and the data flow from the network to the response handler for the presented configuration:

response handler
N

I
MyApache::FilterinputFoo
N

I
DEFLATE

A
I

core input filters
N

network

Setlnput Fil ter ’s; semantics are supported as well. For example, in the following configuration:

PerlinputFilterHandler MyApache::FilterinputFoo
PerlSetinputFilter FILTER_FOO;FILTER_BAR

MyApache::Filter Out put Foo will be executed first, followed by FILTER_FOO and finaly by
FILTER_BAR (again, assuming that al three filters have the same priority).

The PerlSet Input Fil ter directivessconfiguration scopeisDIR.

1.45 [Perl Set Qut put Fi | t er|

The SetOut put Fil ter directive, documented at
[http://httpd.apache.or g/docs-2.0/mod/cor e.ntmi#setoutputfilter] sets the filters which will process
responses from the server before they are sent to the client (in addition to any filters configured earlier).

To mix mod_perl and non-mod_perl output filters of the [same priority] nothing special should be done.
This configuration:

SetOutputFilter INCLUDES
PerlOutputFilterHandler MyApache::FilterOutputFoo

will add al two filters to the filter chain, however the order of their invocation might be not the one that
you' ve expected. To preserve the insertion order replace SetOut put Fil ter with PerlSetOut put -
Fil ter ,likeso:

29 Jan 2004 17

http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter

1.4.5 PerlSetOutputFilter

Per| Set Qut put Fi | ter | NCLUDES
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo

now mod_include's | NCLUDES filter will be always executed before the MyApache: : Fi |l t er Qut -
put Foo filter. Here is a diagram input filters chain and the data flow from the response handler to the
network for the presented configuration:

response handl er

N
\/

I NCLUDES
|
\/

MyApache: : Fi | t er Qut put Foo
|
\/
core output filters

|
\/

net wor k

Set Qut put Fi | t er’s; semantics are supported as well. For example, in the following configuration:

Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo
Per| Set Qut put Fi | ter | NCLUDES; FI LTER_FQO

MyApache: : Fi | t er Qut put Foo will be executed first, followed by | NCLUDES and finally by
FI LTER _FQOO(again, assuming that all three filters have the same priority).

Just as explained in the[Per | Set | nput Fi | t er|section, if filters have different priorities, the insertion
order might be different. For example in the following configuration:

Per| Set Qut put Fi | ter DEFLATE
Per| Set Qut put Fi | ter | NCLUDES
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Qut put Foo

mod_include's | NCLUDES filter will be always executed before the MyApache: : Fi | t er Qut put Foo
filter. The latter will be followed by mod_deflate’s DEFLATE filter, even though it was configured before
the other two filters. Thisis because it has afhigher priority] And the corresponding diagram looks like so:

response handl er

| |
\/

I NCLUDES
| |
\/

MyApache: : Fi | t er Qut put Foo

| |
\/

DEFLATE

I
\/

18 29 Jan 2004

Input and Output Filters 1.4.6 HTTP Request vs. Connection Filters

core output filters
|
\/
net wor k

ThePer | Set Qut put Fi | t er directives' s configuration scopeisDl R

1.4.6 HTTP Request vs. Connection Filterg

mod_perl 2.0 supports connection and HTTP request filtering. mod_perl filter handlers specify the type of
the filter using the method attributes.

HTTP request filter handlers are declared using the Fi | t er Request Handl er attribute. Consider the
following request input and output filters skeleton:

package MyApache: : Filter Request Foo
use base qw(Apache:: Filter);

sub input : FilterRequestHandl er {
ny($f, $bb, $node, $block, $readbytes) = @;
#...

}

sub output : FilterRequestHandl er {

ny($f, $bb) = @;
#...

}

1

If the attribute is not specified, the default Fi | t er Request Handl er attribute is assumed. Filters spec-
ifying subroutine attributes must subclass Apache: : Fi | t er, othersonly need to:

use Apache::Filter ();

The request filters are usually configured in the <Locat i on> or equivalent sections:

Per | Modul e MyApache: : Fi |l t er Request Foo
Per | Modul e MyApache: : Ni ceResponse
<Location /filter_foo>
Set Handl er nodper
Per | ResponseHandl er MyApache: : Nl ceResponse
Perl I nput FilterHandl er MApache:: FilterRequestFoo: :input
Per| Qut put Fi | ter Handl er MyApache: : Fi | t er Request Foo: : out put
</ Locat i on>

Now we have the request input and output filters configured.

The connection filter handler uses the Fi | t er Connecti onHandl er attribute. Here is a similar
example for the connection input and output filters.

29 Jan 2004 19

1.4.7 Filter Initialization Phase

package MyApache: : Filter Connecti onBar
use base gw Apache::Filter)

sub input : FilterConnectionHandl er {
ny($f, $bb, $node, $bl ock, $readbytes) = @;
#...

}

sub output : FilterConnectionHandl er {

ny($f, $bb) = @;
#...

}

1

This time the configuration must be done outside the <Locat i on> or equivalent sections, usually within
the <Vi r t ual Host > or the global server configuration:

Li sten 8005

<Virtual Host _default_: 8005>
Per| Modul e MyApache: : Fil t er Connecti onBar
Per | Modul e MyApache: : Ni ceResponse

Perl I nput FilterHandl er MApache:: FilterConnectionBar::input
Per| Qut put Fi | ter Handl er MyApache: : Fi |l t er Connecti onBar: : out put
<Location />

Set Handl er nodper |

Per | ResponseHandl er MyApache: : N ceResponse
</ Locati on>

</ Vi rt ual Host >
This accomplishes the configuration of the connection input and output filters.

Notice that for HTTP requests the only difference between connection filters and request filters is that the
former see everything: the headers and the body, whereas the latter see only the body.

mod_perl provides two interfaces to filtering: a direct bucket brigades manipulation interface and a
simpler, stream-oriented interface. The examples in the following sections will help you to understand the
difference between the two interfaces.

1.4.7 [Filter Initialization Phasq

Like in any cool application, there is a hidden door, that let’'s you do cool things. mod_perl is not an
exception.

where you can plug yet another callback. This init callback runs immediately after the filter handler is
inserted into the filter chain, before it was invoked for the first time. Here is a skeleton of an init handler:

20 29 Jan 2004

Input and Output Filters 1.4.7 Filter Initialization Phase

sub init : FilterlnitHandler {
ny $f = shift;
#...
return Apache: : OK;

}

The attribute Fi | t er | ni t Handl er marks the Perl function suitable to be used as a filter initialization
callback, which is called immediately after a filter is inserted to the filter chain and before it's actualy
called.

For example you may decide to dynamically remove a filter before it had a chance to run, if some condi-
tionistrue:

sub init : FilterlnitHandler {
ny $f = shift;
$f->remove() if should_remove_filter();
return Apache:: OK;

}

Not all Apache: : Fi | t er methods can be used in the init handler, because it's not a filter. Hence you
can use methods that operate on the filter itself, such asr enove() and ct x() or retrieve request infor-
mation, suchasr () and c() . But not methods that operate on data, such asr ead() andpri nt ().

In order to hook an init filter handler, the rea filter has to assign this calback using the Fi |l t er -
Hasl ni t Handl er which accepts a reference to the callback function, ssimilar to push_handl er s() .
The used callback function hasto havetheFi | t er | ni t Handl er attribute. For example;

package MyApache:: FilterBar;

use base gw Apache::Filter);

sub init : FilterlnitHandler { ... }

sub filter : FilterRequestHandl er FilterHaslnitHandl er(\& nit) {
ny ($f, $bb) = @;
...
return Apache: : OK;

}

While attributes are parsed during the code compilation (it's really a sort of source filter), the argument to
theFi | t er Hasl ni t Handl er () attribute is compiled at alater stage once the module is compiled.

Theargument to Fi | t er Hasl ni t Handl er () can be any Perl code which when eval () 'ed returns a
code reference. For example:

package MyApache:: Ot herFilter;
use base qw(Apache::Filter);
sub init : FilterlnitHandler { ... }

package MyApache:: FilterBar;

use MyApache:: QtherFilter;

use base qw(Apache::Filter);

sub get_pre_handler { \&WApache:: GtherFilter::init }

sub filter : FilterHaslnitHandl er(get_pre_handler()) { ... }

29 Jan 2004 21

1.5 All-in-One Filter

Herethe MyApache: : FilterBar:: filter handlerisconfigured to runthe M/Apache: : & her -
Filter::init inithandler.

Notice that the argument to Fi | t er Hasl ni t Handl er () isawayseval () 'ed in the package of the
rea filter handler (not the init handler). So the above code leads to the following evaluation:

$init_sub = eval "package MyApache::FilterBar; get_pre_handler()"
though, thisisdonein C, using theeval _pv() Ccall.

META: currently only one initialization callback can be registered per filter handler. If the need to register
more than one arises it should be very easy to extend the functionality.

1.5 [All-in-OneFilter

Before we delve into the details of how to write filters that do something with the data, lets first write a
simple filter that does nothing but snooping on the data that goes through it. We are going to develop the
MyApache: : Fi | t er Snoop handler which can snoop on request and connection filters, in input and
output modes.

But first let's develop a simple response handler that simply dumps the request’s args and content as
strings:

file: MApache/ Dunp. pm

package MyApache: : Dunp;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();
use APR : Table ()
use Apache:: Const -conpile => qw(K M _PQGST)
sub handl er {
ny $r = shift;
$r->content _type('text/plain’);
$r->print("args:\n", $r->args, "\n");
if ($r->method_nunber == Apache:: M PCST) {
ny $data = content ($r);
$r->print("content:\n$data\n");

}
return Apache:: K
sub content {

ny $r = shift;

22 29 Jan 2004

Input and Output Filters

1

$r->set up_cl i ent _bl ock;

return '’ unless $r->shoul d_client_ bl ock;

my $len = $r->headers_in->get (' content-length’);
nmy $buf;

$r->get _client_bl ock($buf, $len);

return $buf;

which is configured as:

Per| Modul e MyApache: : Dunp
<Location /dunp>

Set Handl er nodper |
Per | ResponseHandl er MyApache: : Dunp

</ Locati on>

If we issue the following request:

% echo "nod_perl| rules" | POST 'http://1ocal host: 8002/ dunp?f oo=1&bar =2’

the response will be:

args:

f oo=

1&bar =2

content:
nmod_perl rules

Asyou can see it simply dumped the query string and the posted data.

Now let’s write the snooping filter:

file:M/Apache/ Filter Snoop. pm

package MyApache: : Filter Snoop;

use
use

use
use
use
use

strict;
war ni ngs;

base gqw(Apache::Filter);
Apache: :FilterRec ();
APR: : Bri gade ();

APR: : Bucket ();

use Apache:: Const -conpile => qw(OK DECLI NED) ;
use APR : Const -conpile => ':conmon’;
sub connection : FilterConnectionHandl er { snoop("connection",
sub request : FilterRequest Handl er { snoop("request",
sub snoop {

29 Jan 2004

@) }
@) }

1.5 All-in-One Filter

23

1.5 All-in-One Filter

ny $type = shift;
ny($f, $bb, $node, $block, $readbytes) = @; # filter args

$node, $bl ock, $readbytes are passed only for input filters
ny $stream = defined $node ? "input" : "output”;

read the data and pass-through the bucket brigades unchanged
if (defined $node) {
input filter
ny $rv = $f->next->get _brigade($bb, $node, $bl ock, $readbytes);
return $rv unless $rv == APR : SUCCESS;
bb_dunp($type, $stream $bb);

}
el se {
output filter
bb_dunp($type, $stream $bb);
ny $rv = $f->next->pass_bri gade($bb);
return $rv unless $rv == APR: : SUCCESS;
}

return Apache: : OK;

sub bb_dunp {
ny($type, $stream $bb) = @;

ny @lat a;

for (my $b = $bb->first; $b; $b = $bb->next ($b)) {
$b->read(ny $bdata);
$bdata = '’ unl ess defined $bdat a;
push @lata, $b->type->nanme, $bdata;

}

send the sniffed info to STDERR so not to interfere with nornal
out put

ny $direction = $streameq ’'output’ ? ">>>" : "<<<";

print STDERR "\n$direction $type $streamfilter\n";

ny $c = 1;

while (ny($btype, $data) = splice @ata, 0, 2) {
print STDERR " o0 bucket $c: $btype\n";
print STDERR "[$data]\n";
$c++;

}
1

This package provides two filter handlers, one for connection and another for request filtering:

sub connection : FilterConnectionHandl er { snoop("connection", @) }
sub request : FilterRequest Handl er { snoop("request", @) }

Both handlers forward their arguments to the snoop() function that does the real job. We needed to add
these two subroutines in order to assign the two different attributes. Plus the functions pass the filter type
tosnoop() asthefirst argument, which gets shifted off @ and the rest of the @_are the arguments that

24 29 Jan 2004

Input and Output Filters 1.5 All-in-OneFilter

were originally passed to the filter handler.

It's easy to know whether a filter handler is running in the input or the output mode. The arguments $f
and $bb are always passed, whereas the arguments $node, $bl ock, and $r eadbyt es are passed only
toinput filter handlers.

If we are in the input mode, in the same call we retrieve the bucket brigade from the previous filter on the
input filters stack and immediately link it to the $bb variable which makes the bucket brigade available to
the next input filter when the filter handler returns. If we forget to perform this linking our filter will
become a black hole in which data simply disappears. Next we call bb_dunp() which dumps the type of
the filter and the contents of the bucket brigade to STDERR, without influencing the normal data flow.

If we are in the output mode, the $bb variable already points to the current bucket brigade. Therefore we
can read the contents of the brigade right away. After that we pass the brigade to the next filter.

Let’s snoop on connection and request filter levels in both directions by applying the following configura-
tion:

Li sten 8008

<Virtual Host _default :8008>
Per | Modul e MyApache: : Fi |l t er Snoop
Per | Modul e MyApache: : Dunp

Connection filters
Perl| I nputFilterHandl er MApache:: FilterSnoop::connection
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Snoop: : connecti on

<Location /dunp>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Dunp
Request filters
Per| I nput Fil ter Handl er MyApache: : Filter Snoop: : request
Per | Qut put Fi | t er Handl er MyApache: : Fi | t er Snoop: : r equest
</ Locat i on>

</ Vi r tual Host >
Notice that we use avirtual host because we want to install connection filters.

If we issue the following request:

% echo "nod_perl rules" | POST 'http://1ocal host: 8008/ dunp?f oo=1&bar =2’

We get the same response, when using MyApache: : Fi | t er Snoop, because our snooping filter didn’t
change anything. Though there was a lot of output printed to error_log. We present it all here, since it
helps alot to understand how filters work.

First we can see the connection input filter at work, as it processes the HTTP headers. We can see that for
this request each header is put into a separate brigade with a single bucket. The data is conveniently
enclosed by [] so you can seethe new line characters as well.

29 Jan 2004 25

1.5 All-in-One Filter

<<< connection input filter
o bucket 1: HEAP
[POST / dunp?foo=1&bar=2 HTTP/ 1.1

]

<<< connection input filter
o bucket 1: HEAP

[TE: deflate, gzip; g=0.3

]

<<< connection input filter
o bucket 1: HEAP
[Connection: TE, close

]

<<< connection input filter
o bucket 1: HEAP
[Host: | ocal host: 8008

]

<<< connection input filter
o bucket 1: HEAP
[User-Agent: |wp-request/2.01

]

<<< connection input filter
o bucket 1: HEAP
[Content-Length: 14

]

<<< connection input filter
o bucket 1: HEAP
[Content - Type: application/x-ww«formurl encoded

]

<<< connection input filter
o bucket 1: HEAP
[

]

Here the HTTP header has been terminated by a double new line. So far all the buckets were of the HEAP
type, meaning that they were allocated from the heap memory. Notice that the HTTP request input filters
will never see the bucket brigades with HTTP headers, as it has been consumed by the last core connection
filter.

The following two entries are generated when MyApache: : Dunp: : handl er reads the POSTed
content:

26 29 Jan 2004

Input and Output Filters 1.5 All-in-OneFilter

<<< connection input filter
o bucket 1: HEAP
[mod_per!| rul es]

<<< request input filter
o bucket 1: HEAP

[mod_perl rul es]
o bucket 2: ECS

[l

as we saw earlier on the diagram, the connection input filter is run before the request input filter. Since our
connection input filter was passing the data through unmodified and no other custom connection input
filter was configured, the request input filter sees the same data. The last bucket in the brigade received by
the request input filter is of type EOS, meaning that all the input data from the current request has been
received.

Next we can see that MyApache: : Dunp: : handl er has generated its response. However we can see
that only the request output filter gets run at this point:

>>> request output filter
0 bucket 1: TRANSI ENT

[args:

f oo=1&bar =2

content:

mod_per!l rules

]

This happens because Apache hasn’t sent yet the response HTTP headers to the client. The request filter
sees a bucket brigade with a single bucket of type TRANS ENT which is allocated from the stack memory.

The moment the first bucket brigade of the response body has entered the connection output filters,
Apache injects a bucket brigade with the HTTP headers. Therefore we can see that the connection output
filter isfiltering the brigade with HT TP headers (notice that the request output filters don’t seeit):

>>> connection output filter
o bucket 1: HEAP
[HTTP/ 1.1 200 K
Date: Tue, 19 Nov 2002 15:59:32 GMVI
Server: Apache/ 2.0.44-dev (Unix) nod_perl/1.99 08-dev
Perl/v5.8.0 nod_ssl/2.0.44-dev OpenSSL/0. 9. 6d DAV/ 2
Connection: close
Transfer-Encodi ng: chunked
Cont ent - Type: text/plain; charset=lSO 8859-1

]
and followed by the first response body’ s brigade:

>>> connection output filter
0 bucket 1: TRANSI ENT
[2b
]
0 bucket 2: TRANSI ENT
[args:

29 Jan 2004 27

1.6 Input Filters

f oo=1&bar =2
content:
nmod_per!| rules

]

[
]

o bucket 3: | MMORTAL

If the response is large, the request and connection filters will filter chunks of the response one by one.
META: what's the size of the chunks? 8k?

Finally, Apache sends a series of the bucket brigades to finish off the response, including the end of
stream meta-bucket to tell filters that they shouldn’t expect any more data, and flush buckets to flush the
data, to make sure that any buffered output is sent to the client:

>>> connection output filter
o bucket 1: | MMORTAL

[0

]

[l

o bucket 2: ECS

>>> connection output filter
o0 bucket 1: FLUSH

[l

>>> connection output filter
o0 bucket 1: FLUSH

[l

This module helps to understand that each filter handler can be called many time during each request and
connection. It’s called for each bucket brigade.

Also it's important to mention that HTTP request input filters are invoked only if there is some POSTed
datato read and it's consumed by a content handler.

1.6 |Input Filterg

mod_perl supports[Connection and[HT TP Requesiinpui filters:

1.6.1 [Connection I nput Filterg

Let’'s say that we want to test how our handlers behave when they are requested as HEAD requests, rather
than GET. We can alter the request headers at the incoming connection level transparently to al handlers.

This example' sfilter handler looks for datalike:

28 29 Jan 2004

Input and Output Filters 1.6.1 Connection Input Filters

GET /perl/test.pl HITP/ 1.1

and turns it into:

HEAD /perl/test.pl HTTP/ 1.1

The following input filter handler does that by directly manipulating the bucket brigades:

file:M/Apache/ | nput Fi |l t er GET2HEAD. pm

package MyApache: : | nput Filter GET2HEAD,

use strict;
use war ni ngs;

use base qw(Apache::Filter);

use APR :Brigade ();
use APR : Bucket ();

use Apache:: Const -conpile => " OK ;
use APR: : Const -conpile =>"':conmon’;

sub handl er : FilterConnectionHandl er {
ny($f, $bb, $node, $bl ock, $readbytes) = @;

return Apache:: DECLINED if $f->ctx;

ny $rv = $f->next->get_brigade($bb, $npde, $bl ock, $readbytes);
return $rv unless $rv == APR: : SUCCESS;

for (ny $b = $bb->first; $b; $b = $bb->next ($b)) {
ny $dat a;
ny $status = $b->read($dat a);
return $status unl ess $status == APR : SUCCESS;
war n("data: $data\n");

if ($data and $data =~ s|GET| HEAD|) {
ny $bn = APR: : Bucket - >new($dat a) ;
$b->i nsert _after($bn);
$b- >renmove; # no | onger needed
$f->ctx(1); # flag that that we have done the job
| ast;

Apache: : OK;
}

1

The filter handler is called for each bucket brigade, which in turn includes buckets with data. The gist of
any input filter handler is to request the bucket brigade from the upstream filter, and return it downstream
filter using the second argument $bb. It's important to remember that you can call methods on this argu-
ment, but you shouldn’t assign to this argument, or the chain will be broken. Y ou have two techniques to

29 Jan 2004 29

1.6.1 Connection Input Filters

choose from to retrieve-modify-return bucket brigades:

1. Create a new empty bucket brigade $ct x_bb, pass it to the upstream filter viaget _bri gade()
and wait for this call to return. When it returns, $ct x_bb is populated with buckets. Now the filter
should move the bucket from $ct x_bb to $bb, on the way modifying the buckets if needed. Once
the buckets are moved, and the filter returns, the downstream filter will receive the populated bucket
brigade.

2. Pass $bb to get _bri gade() to the upstream filter, so it will be populated with buckets. Once
get _bri gade() returns, the filter can go through the buckets and modify them in place, or it can
do nothing and just return (in which case, the downstream filter will receive the bucket brigade
unmodified).

Both techniques alow addition and removal of buckets. Though the second technique is more efficient
since it doesn’t have the overhead of create the new brigade and moving the bucket from one brigade to
another. In this example we have chosen to use the second technique, in the next example we will see the
first technique.

Our filter has to perform the substitution of only one HTTP header (which normally resides in one
bucket), so we have to make sure that no other data gets mangled (e.g. there could be POSTED data and it
may match / *GET/ in one of the buckets). We use $f - >ct x as a flag here. When it's undefined the
filter knows that it hasn't done the required substitution, though once it completes the job it sets the
context to 1.

To optimize the speed, the filter immediately returns Apache: : DECLI NED when it's invoked after the
substitution job has been done:

return Apache:: DECLINED i f $f->ctx;

In that case mod_perl will cal get bri gade() internally which will pass the bucket brigade to the
downstream filter. Alternatively the filter could do:

my $rv = $f->next->get _bri gade($bb, $node, $bl ock, $readbytes);
return $rv unless $rv == APR: : SUCCESS;
return Apache:: K if $f->ctx;

but thisis abit less efficient.

[META: the most efficient thing to do is to remove the filter itself once the job isdone, so it won't be even
invoked after the job has been done.

if ($f->ctx) {

$f - >renove;

return Apache: : DECLI NED;
}

However, this can't be used with Apache 2.0.46 and lower, since it has a bug when trying to remove the
edge connection filter (it doesn't removeit). Don't know if it's going to be fixed in 2.0.47]

30 29 Jan 2004

Input and Output Filters 1.6.1 Connection Input Filters

If the job wasn’t done yet, the filter callsget _br i gade, which populates the $bb bucket brigade. Next,
the filter steps through the buckets looking for the bucket that matches the regex: / "GET/ . If that
happens, a new bucket is created with the modified data (s/ * GET/ HEAD/ . Now it has to be inserted in
place of the old bucket. In our example we insert the new bucket after the bucket that we have just modi-
fied and immediately remove that bucket that we don’t need anymore:

$b- >i nsert _after($bn);
$b- >renove; # no | onger needed

Finally we set the context to 1, so we know not to apply the substitution on the following data and break
from the for loop.

The handler returns Apache: : OK indicating that everything was fine. The downstream filter will receive
the bucket brigade with one bucket modified.

Now let’s check that the handler works properly. For example, consider the following response handler:

file: MApache/ Request Type. pm

package MyApache: : Request Type;

use strict;
use war ni ngs;

use Apache:: Request! O ();
use Apache:: RequestRec ();
use Apache:: Response ();

use Apache:: Const -conpile => " K ;

sub handl er {
ny $r = shift;

$r->content _type('text/plain’);

nmy $response = "the request type was " . $r->nethod,;
$r->set _content _l ength(l ength $response);

$r->print ($response);

Apache: : OK;
}

1

which returns to the client the request type it has issued. In the case of the HEAD request Apache will
discard the response body, but it’ll will still set the correct Cont ent - Lengt h header, which will be 24
in case of the GET request and 25 for HEAD. Therefore if this response handler is configured as:

Li sten 8005
<Virtual Host _default_:8005>
<Location />
Set Handl er nodper|
Per | ResponseHandl er +MyApache: : Request Type
</ Locati on>
</ Vi rt ual Host >

29 Jan 2004 31

1.6.2 HTTP Reguest Input Filters

and a GET request isissued to /:
pani c% perl -MWP: : User Agent -le \
"$r = LWP: : User Agent->new()->get ("http://Ilocal host:8005/"); \

print $r->headers->content_length . ": ". $r->content
24: the request type was CGET

where the response’ s body is:

the request type was GET
And the Cont ent - Lengt h header is set to 24.

However if we enablethe MyApache: : | nput Fi | t er GET2HEAD input connection filter:

Li sten 8005
<Virtual Host _default_:8005>
Per | I nput Fi | t erHandl er +MyApache: : | nput Fi | t er GET2HEAD

<Location />
Set Handl er nodper

Per | ResponseHandl er +MyApache: : Request Type
</ Locat i on>
</ Vi r t ual Host >

And issue the same GET request, we get only:

25:

which means that the body was discarded by Apache, because our filter turned the GET request into a
HEAD request and if Apache wasn't discarding the body on HEAD, the response would be:

the request type was HEAD

that’s why the content length is reported as 25 and not 24 asin thereal GET request.

1.6.2 HTTP Request Input Filterg

Request filters are really non-different from connection filters, other than that they are working on request
and response bodies and have an access to a request object.

1.6.3 [Bucket Brigade-based I nput Filterg

Let’slook at the request input filter that lowers the case of the request’s body: MyApache: : | nput Re-
questFilterlLC

file:M/Apache/ | nput Request FilterLC pm

package MyApache: : | nput RequestFilterLC

use strict;
use war ni ngs;

32 29 Jan 2004

Input and Output Filters 1.6.3 Bucket Brigade-based Input Filters

use base gw Apache::Filter);

use Apache: : Connection ();
use APR : Brigade ();
use APR : Bucket ();

use Apache::Const -conpile => 'K ;
use APR: : Const -conpile =>":common’;

sub handl er : FilterRequestHandl er {
ny($f, $bb, $node, $bl ock, $readbytes) = @;

ny $c = $f->c;

nmy $bb_ctx = APR : Bri gade- >new($c- >pool , $c->bucket _all oc);

nmy $rv = $f->next->get _bri gade($bb_ctx, $node, $bl ock, $readbytes);
return $rv unless $rv == APR : SUCCESS;

while (!$bb_ctx->enpty) {
ny $b = $bb_ct x->first;

$b- >r enove;

if ($b->is_eos) {
$bb->i nsert _tail ($b);
| ast ;

}

ny $dat a;
ny $status = $b->read($dat a);
return $status unless $status == APR : SUCCESS;

$b = APR : Bucket->new(l c $data) if $data;

$bb->i nsert _tail ($b);
}

Apache: : OK;
}

1;

As promised, in this filter handler we have used the first technique of bucket brigade modification. The
handler creates a temporary bucket brigade (ct x__bb), populates it with data using get _bri gade(),
and then moves buckets from it to the bucket brigade $bb, which is then retrieved by the downstream
filter when our handler returns.

This filter doesn’'t need to know whether it was invoked for the first time or whether it has already done
something. It’'s state-less handler, since it has to lower case everything that passes through it. Notice that
this filter can’t be used as the connection filter for HTTP requests, since it will invalidate the incoming
regquest headers; for example the first header line:

29 Jan 2004 33

1.6.4 Stream-oriented Input Filters

GET /perl/TEST.pl HITP/ 1.1

will become:

get /perl/test.pl http/1l.1
which messes up the request method, the URL and the protocol.

Now if we use the MyApache: : Dunp response handler, we have devel oped before in this chapter, which
dumps the query string and the content body as a response, and configure the server as follows:

<Location /| c_input>

Set Handl er nodper |

Per | ResponseHandl er +MyApache: : Dunp

Per| I nput Fi | t er Handl er +MyApache: : | nput RequestFilterLC
</ Locat i on>

When issuing a POST request:

% echo "mOd_pErl RuLeS" | POST 'http://1ocal host:8002/1 c_i nput ?FoO=1&BAR=2’

we get aresponse

ar gs:
FoO=1&BAR=2
content:
nmod_per!l rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
Y ou can see that the query string wasn't changed.

1.6.4 [Stream-oriented | nput Filterg

Let’snow look at the same filter implemented using the stream-oriented API.

file:M/Apache/ | nput Request FilterLC2. pm

package MyApache: : | nput RequestFilterLC2;

use strict;
use war ni ngs;

use base qw(Apache::Filter);
use Apache:: Const -conpile => "' OK ;
use constant BUFF_LEN => 1024;

sub handl er : FilterRequestHandl er {
my $f = shift;

whil e ($f->read(mnmy $buffer, BUFF_LEN)) {
$f->print(lc $buffer);
}

34 29 Jan 2004

Input and Output Filters 1.6.4 Stream-oriented Input Filters

Apache: : CK;
}
1;

Now you probably ask yourself why did we have to go through the bucket brigades filters when this all
can be done so much simpler. The reason is that we wanted you to understand how the filters work under-
neath, which will assist alot when you will need to debug filters or optimize their speed. In certain cases a
bucket brigade filter may be more efficient than the stream-oriented. For example if the filter applies trans-
formation to selected buckets, certain buckets may contain open filehandles or pipes, rather than real data.
And when you call read() the buckets will be forced to read that data in. But if you didn’'t want to modify
these buckets you could pass them as they are and let Apache do faster techniques for sending data from
the file handles or pipes.

The logic is very simple here, the filter reads in loop, and prints the modified data, which at some point
will be sent to the next filter. This point happens every time the internal mod_perl buffer is full or when
thefilter returns.

read() populates $buf f er to a maximum of BUFF_LEN characters (1024 in our example). Assuming
that the current bucket brigade contains 2050 chars, r ead() will get the first 1024 characters, then 1024
characters more and finally the remaining 2 characters. Notice that even though the response handler may
have sent more than 2050 characters, every filter invocation operates on a single bucket brigade so you
have to wait for the next invocation to get more input. In one of the earlier examples we have shown that
you can force the generation of several bucket brigades in the content handler by using r f | ush() . For
example:

$r->print("string");

$r->rflush();
$r->print("another string");

It's only possible to get more than one bucket brigade from the same filter handler invocation if the filter
is not using the streaming interface and by simply calling get _bri gade() as many times as needed or
till EOSis received.

The configuration section is pretty much identical:
<Location /Il c_input2>
Set Handl er nodper|
Per | ResponseHandl er +MyApache: : Dunp

Per| I nput Fi | t er Handl er +MyApache: : | nput Request Fil ter LC2
</ Locati on>

When issuing a POST request:

% echo "nmOd_pErl RuLeS" | POST 'http://1ocal host:8002/1 c_i nput 2?FoO=1&BAR=2’

we get a response:

29 Jan 2004 35

1.7 Output Filters

args:
FoO=1&BAR=2
content:
nmod_per!| rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
Y ou can see that the query string wasn't changed.

1.7 |Output Filters

mod_perl supports[Connection and[HT TP Request output filters:

1.7.1 [Connection Output Filterg

Connection filters filter all the data that is going through the server. Therefore if the connection is of
HTTP request type, connection output filters see the headers and the body of the response, whereas
regquest output filters see only the response body.

META: for now see the request output filter explanations and examples, connection output filter examples
will be added soon. Interesting ideas for such filters are welcome (possible ideas: mangling output headers
for HTTP requests, pretty much anything for protocol modules).

1.7.2 HTTP Request Output Filterg

As mentioned earlier output filters can be written using the bucket brigades manipulation or the ssimplified
stream-oriented interface.

First let's develop a response handler that sends two lines of output: numerals 1234567890 and the
English alphabet in a single string:
file: MyApache/ SendAl phaNum pm

package MyApache: : SendAl phaNum

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();

use Apache:: Const -conpile => qw(OK)

sub handl er {
ny $r = shift;

$r->content _type('text/plain');

$r->print(1..9, "0\n");
$r->print(’a..’z’, "\n");

36 29 Jan 2004

Input and Output Filters 1.7.2 HTTP Request Output Filters

Apache: : CK;
}
1;
The purpose of our filter handler is to reverse every line of the response body, preserving the new line
charactersin their places. Since we want to reverse characters only in the response body, without breaking
the HTTP headers, we will use the HTTP request output filter.

1.7.2.1 |Stream-oriented Output Filterg

Thefirst filter implementation is using the stream-oriented filtering API:

file:M/Apache/ FilterReversel. pm

package MyApache:: FilterReversel;

use strict;
use war ni ngs;

use base qw(Apache::Filter);
use Apache:: Const -conpile => gw K);
use constant BUFF_LEN => 1024;

sub handl er : FilterRequestHandl er {
my $f = shift;

whil e ($f->read(mnmy $buffer, BUFF_LEN)) {
for (split "\n", S$buffer) {
$f->print(scalar reverse $);
$f->print("\n");

Apache: : OK;
}
1;

Next, we add the following configuration to httpd.conf:

Per | Modul e MyApache: : FilterReversel
Per | Modul e MyApache: : SendAl phaNum
<Location /reversel>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : SendAl phaNum
Per | Qut put Fi | t er Handl er MyApache: : Fi |l t er Reversel
</ Locat i on>

Now when a request to /reversel is made, the response handler MyApache: : SendAl -
phaNum : handl er () sends:

29 Jan 2004 37

1.7.2 HTTP Request Output Filters

1234567890
abcdef ghi j kIl mopgr st uvwxyz

as a response and the output filter handler MyApache: : Fi | t er Rever sel: : handl er reverses the
lines, so the client gets:

0987654321
zyxwvut srgponm kj i hgf edcba

The Apache: : Filter module loads the read() and print() methods which encapsulate the
stream-oriented filtering interface.

The reversing filter is quite smple: in the loop it reads the data in the readling() mode in chunks up to the
buffer length (1024 in our example), and then prints each line reversed while preserving the new line
control characters at the end of each line. Behind the scenes $f - >r ead() retrieves the incoming brigade
and gets the data from it, and $f - >pri nt () appends to the new brigade which is then sent to the next
filter in the stack. r ead() breaks the while loop, when the brigade is emptied or the end of stream is
received.

In order not to distract the reader from the purpose of the example the used code is oversimplified and
won’t handle correctly input lines which are longer than 1024 characters and possibly using a different
line termination token (could be "\n", "\r" or "\r\n" depending on a platform). Moreover a single line may
be split between across two or even more bucket brigades, so we have to store the unprocessed string in
the filter context, so it can be used on the following invocations. So here is an example of a more complete
handler, which does takes care of these issues:

sub handl er {
ny $f = shift;

ny $leftover = $f ->ctx;
while ($f->read(ny $buffer, BUFF_LEN)) {
$buffer = $leftover . $buffer if defined $l eftover;
$l ef t over = undef;
while (Sbuffer =~ /([M\r\n]*)([\r\n]*)/g) {
$l eftover = $1, |ast unless $2;
$f->print(scal ar(reverse $1), $2)

}

if ($f->seen_eos) {
$f->print(scalar reverse $leftover) if defined $leftover;

}
el se {

$f->ct x($l eftover) if defined $l eftover
}

return Apache: : K
}

The handler uses the $Il ef t over variable to store unprocessed data as long as it fails to assemble a
complete line or there is an incomplete line following the new line token. On the next handler invocation
this data is then prepended to the next chunk that is read. When the filter is invoked on the last time, it

38 29 Jan 2004

Input and Output Filters 1.7.2 HTTP Request Output Filters

unconditionally reverses and flushes any remaining data.

1.7.2.2 Bucket Brigade-based Output Filterg

The following filter implementation is using the bucket brigades API to accomplish exactly the same task
asthefirst filter.

file:MyApache/ FilterReverse2. pm

package MyApache:: FilterReverse2

use strict;
use war ni ngs;

use base qw(Apache::Filter);

use APR :Brigade ();
use APR : Bucket ();

use Apache:: Const -conpile => 'K
use APR : Const -conpile => ':conmmon’;

sub handl er : FilterRequestHandl er {
ny($f, $bb) = @;

ny $c = $f->c
ny $bb_ctx = APR : Bri gade- >new($c- >pool , $c->bucket _al | oc);

whil e (!$bb->empty) {
ny $bucket = $bb->first;

$bucket - >r enove

if ($bucket->is_eos) {
$bb_ct x->i nsert _tail ($bucket);
| ast;

}

ny $dat a;
ny $status = $bucket - >read($data);
return $status unless $status == APR: : SUCCESS

if ($data) {
$data = join "",
map {scal ar(reverse $_), "\n"} split "\n", $data
$bucket = APR : Bucket - >new($dat a) ;

29 Jan 2004 39

1.8 Filter Applications

$bb_ctx->insert _tail ($bucket);
}

ny $rv = $f->next->pass_brigade($bb_ctx);
return $rv unless $rv == APR : SUCCESS;

Apache: : CK;
}
1;

and the corresponding configuration:

Per| Modul e MyApache: : Fil ter Reverse2
Per | Modul e MyApache: : SendAl phaNum
<Location /reverse2>
Set Handl er nodper |
Per | ResponseHandl er MyApache: : SendAl phaNum
Per| Qut put Fi | t er Handl er MyApache: : Fi |l t er Reverse2
</ Locati on>

Now when arequest to /reverse2 is made, the client gets:

0987654321
zyxwvut srgponm kj i hgf edcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the stream-oriented one. The
handler receives the incoming bucket brigade $bb as its second argument. Since when the handler is
completed it must pass a brigade to the next filter in the stack, we create a new bucket brigade into which
we are going to put the modified buckets and which eventually we pass to the next filter.

The core of the handler is in removing buckets from the head of the bucket brigade $bb while there are
some, reading the data from the buckets, reversing and putting it into a newly created bucket which is
inserted to the end of the new bucket brigade. If we see a bucket which designates the end of stream, we
insert that bucket to the tail of the new bucket brigade and break the loop. Finally we pass the created
brigade with modified data to the next filter and return.

Similarly to the original version of MyApache: : Fi |l t er Rever sel: : handl er, this filter is not
smart enough to handle incomplete lines. However the exercise of making the filter foolproof should be
trivial by porting a better matching rule and using the $I ef t over buffer from the previous section is
trivial and left as an exercise to the reader.

1.8 |[Filter Applicationg

The following sections provide various filter applications and their implementation.

40 29 Jan 2004

Input and Output Filters 1.8.1 Handling Data Underruns

1.8.1 [Handling Data Underrung

Sometimes filters need to read at least N bytes before they can apply their transformation. It’s quite possi-
ble that reading one bucket brigade is not enough. But two or more are needed. This situation is sometimes
referred to as an underrun.

Let's take an input filter as an example. When the filter realizes that it doesn’t have enough data in the
current bucket brigade, it can store the read data in the filter context, and wait for the next invocation of
itself, which may or may not satisfy its needs. Meanwhile it must return an empty bb to the upstream input
filter. Thisis not the most efficient technique to resolve underruns.

Instead of returning an empty bb, the input filter can initiate the retrieval of extra bucket brigades, until the
underrun condition gets resolved. Notice that this solution is absolutely transparent to any filters before or
after the current filter.

Consider thisHTTP request:

% perl -MWP:: User Agent -le ' \
$r = LWP: : User Agent - >new() - >post ("http://1 ocal host: 8011/", \
[content => "x" x (40 * 1024 + 7)]); \
print $r->is_success ? $r->content : "failed: " . $r->code’
read 40975 chars

This client POSTSs just alittle bit more than 40kb of data to the server. Normally Apache splits incoming
POSTed data into 8kb chunks, putting each chunk into a separate bucket brigade. Therefore we expect to
get 5 brigades of 8kb, and one brigade with just a few bytes (atotal of 6 bucket brigades).

Now let’s say that the filter needs to have 1024* 16 + 5 bytes to have a compl ete token and then it can start
its processing. The extra 5 bytes are just so we don't perfectly fit into 8bk bucket brigades, making the
example closer to real situations. Having 40975 bytes of input and a token size of 16389 bytes, we will
have 2 full tokens and 8197 remainder.

Jumping ahead let’slook at the filter debug output:

filter called

asking for a bb

asking for a bb

asking for a bb

storing the remainder: 7611 bytes

filter called

asking for a bb

asking for a bb

storing the remainder: 7222 bytes

filter called

asking for a bb
seen eos, flushing the remaining: 8197 bytes

29 Jan 2004 41

1.8.1 Handling Data Underruns

So we can see that the filter was invoked three times. The first time it has consumed three bucket brigades,
collecting one full token of 16389 bytes and has a remainder of 7611 bytes to be processed on the next
invocation. The second time it needed only two more bucket brigades and this time after completing the
second token, 7222 bytes have remained. Finally on the third invocation it has consumed the last bucket
brigade (total of six, just as we have expected), however it didn’t have enough for the third token and since
EOS has been seen (no more data expected), it has flushed the remaining 8197 bytes as we have calculated
earlier.

It is clear from the debugging output that the filter was invoked only three times, instead of six times
(there were six bucket brigades). Notice that the upstread input filter (if any) wasn’t aware that there were
six bucket brigades, since it saw only three. Our example filter didn’t do much with those tokens, so it has
only repackaged data from 8kb per bucket brigade, to 16389 bytes per bucket brigade. But of course in
real world some transformation is applied on these tokens.

Now you understand what did we want from the filter, it's time for the implementation details. First let's
look at ther esponse() handler (thefirst part of the module):

#fil e: My/Apache/ Under run. pm
package MyApache: : Underrun;

use strict;
use war ni ngs;

use constant | OBUFSI ZE => 8192;

use Apache:: Const -conpile => gqw(MODE_READBYTES CK M PQCST);
use APR : Const -conpi l e => gw SUCCESS BLOCK_READ) ;

sub response {
ny $r = shift;

$r->content _type('text/plain');

if ($r->method_nunber == Apache:: M PCST) {
ny $data = read_post ($r);
#warn "HANDLER READ: $data\n";
ny $length = |l ength $dat a;
$r->print("read $length chars");

}

return Apache:: OK;

sub read_post {

ny $r = shift;

ny $debug = shift || O;

nmy @ata = ();

ny $seen_eos = O;

ny $filters = $r->input_filters();

nmy $ba = $r->connection->bucket _all oc;

ny $bb = APR : Bri gade- >new($r - >pool , $ba);

42 29 Jan 2004

Input and Output Filters

do {
ny $rv = $filters->get_brigade($bb,

Apache: : MODE_READBYTES, APR: : BLOCK_READ,

if ($rv !'= APR : SUCCESS) {
return $rv;
}

while (!$bb->enmpty) {
ny $buf;
ny $b = $bb->first;

$b- >r enove;

if ($b->is_eos) {
warn "ECS bucket:\n" if $debug;
$seen_eos++;
| ast;

}

ny $status = $b->read($buf);

warn "DATA bucket: [$buf]\n" if $debug;

if ($status != APR : SUCCESS) ({
return $status;
}

push @lata, $buf;
}

$bb- >dest r oy;
} while (!$seen_eos);

return join '’, @lata;

}

| OBUFSI ZE) ;

1.8.1 Handling Data Underruns

Theresponse() handler istrivia -- it reads the POSTed data and prints how many bytes it has read.

read_post () sucksall POSTed datawithout parsing it.

Now comes the filter (which livesin the same package):
#fil e: MyApache/ Underrun. pm (conti nued)
use Apache::Filter ();
use Apache:: Const -conpile => gw(OK M _PGCST);
use constant TOKEN_SI ZE => 1024*16 + 5; # ~16k
sub filter {
ny($f, $bb, $node, $bl ock, $readbytes) = @;
nmy $ba = $f->r->connecti on->bucket _al | oc;
nmy $ctx = $f->ctx;
ny $buffer = defined $ctx ? $ctx : ' ;

$ctx = '’; # reset
nmy $seen_eos = 0;

29 Jan 2004

1.8.1 Handling Data Underruns

}

ny $dat a;
warn "\'nfilter called\n";

fetch and consune bucket brigades untill we have at |east TOKEN S| ZE
bytes to work with
do {
ny $tbb = APR : Bri gade- >new($f - >r - >pool , $ba);
ny $rv = $f->next->get_brigade($tbb, $node, $bl ock, $readbytes);
warn "asking for a bb\n";
($data, $seen_eos) = flatten_bb($tbb);
$t bb- >dest r oy;
$buffer .= $dat a;
} while (!$seen_eos && length($buffer) < TOKEN_SI ZE);

now create a bucket per chunk of TOKEN S| ZE size and put the remainder
#in ctx
for (split_buffer($buffer)) {
if (length($_) == TOKEN_SI ZE) {
$bb->i nsert _tail (APR : Bucket->new($_));

}
el se {

$ctx .= $_;
}

}

ny $len = | ength($ctx);
if ($seen_eos) {
flush the renuinder
$bb->i nsert _tail (APR: : Bucket - >new($ct x)) ;
$bb->insert _tail (APR : Bucket::eos_create($ha));
warn "seen eos, flushing the remaining: $len bytes\n";

}

el se {
wll re-use the renmminder on the next invocation
$f - >ct x($ctx) ;
warn "storing the renminder: $len bytes\n";

}

return Apache:: CK;

split a string into tokens of TOKEN SIZE bytes and a renmi nder
sub split_buffer {

}

ny $buffer = shift;

if ($] < 5.007) {
ny @okens = $buffer =~ /(. {@[TOKEN_SI ZE] }}|.+)/g;
return @ okens;

}
el se {

available only since 5.7.x+

return unpack "(A" . TOKEN SIZE . ")*", S$buffer;
}

sub flatten_bb {

my ($bb) = shift;

29 Jan 2004

Input and Output Filters 1.9 Filter Tipsand Tricks

ny $seen_eos = O;

ny @lata,;
for (my $b = $bb->first; $b; $b = $bb->next ($b)) {
$seen_eos++, last if $b->is_eos;
$b->read(ny $bdata);
$bdata = '’ unl ess defined $bdat a;
push @lata, $bdat a;

}

return (join('', @ata), $seen_eos);

}

1;

The filter callsget _bri gade() inado-while loop till it reads enough data or sees EOS. Notice that it
may get underruns for several times, and then suddenly receive alot of data at once, which will be enough
for more than one minimal size token, so we have to take care this into an account. Once the underrun
condition is satisfied (we have at least one complete token) the tokens are put into a bucket brigade and
returned to the upstream filter for processing, keeping any remainders in the filter context, for the next
invocations or flushing all the remaining data if EOS has been seen.

Notice that this won't be possible with streaming filters where every invocation gives the filter exactly one
bucket brigade to work with and provides not facilities to fetch extra brigades. (META: however this can
be fixed, by providing a method which will fetch the next bucket brigade, so the read in a while loop can
be repeated)

And here is the configuration for this setup:

Per | Modul e MyApache: : Under run
<Location />
Per| I nput Fi | t er Handl er MyApache: : Underrun::filter
Set Handl er nodper |
Per | ResponseHandl er MyApache: : Underrun: : response
</ Locat i on>

1.9 [Filter Tipsand Tricks

Varioustipsto usein filters.

1.9.1 |Altering the Content-Type Response Header|

Let’ s say that you want to modify the Cont ent - Type header in the request output filter:

sub handl er : FilterRequestHandl er {
ny $f = shift;

$f->r->content _type("text/htm ; charset=%charset");

29 Jan 2004 45

1.10 Writing Well-Behaving Filters

Request filters have an access to the request object, so we simply modify it.

1.10 Writing Well-Behaving Filters

Filter writers must follow the following rules:

1.10.1 |Adjusting HTTP Headerg

The following information isrelevant for HTTP filters

e Unsetting the Content-L ength header

HTTP response filters modifying the length of the body they process must unset the
Cont ent - Lengt h header. For example, a compression filter modifies the body length, whereas a
lowercasing filter doesn't; therefore the former has to unset the header, and the latter doesn’t have to.

The header must be unset before any output is sent from the filter. If this rule is not followed, an
HTTP response header with incorrect Cont ent - Lengt h value might be sent.

Since you want to run this code once during the multiple filter invocations, use the ct x() method to
set the flag:

unl ess ($f->ctx) {
$f - >r - >header s_out - >unset ('’ Content -Length’);
$f ->ct x(1);

}

e META: Same goes for last-modified/etags, which may need to be unset, "vary" might need to be
added if you want caching to work properly (depending on what your filter does.

1.10.2 [Other issueg

META: to be written. Meanwhile collecting important inputs from various sources.

[

This one will be expanded by Geoff at some point:

HTTP output filter developers are ought to handle conditional GETSs properly... (mostly for the reason of
efficiency?)

]
[

talk about issues like not losing meta-buckets. e.g. if the filter runs a switch statement and propagates
buckets types that were known at the time of writing, it may drop buckets of new types which may be
added later, so it’simportant to ensure that there is a default cause where the bucket is passed asiis.

46 29 Jan 2004

Input and Output Filters 1.11 Writing Efficient Filters

of course mention the fact where things like EOS buckets must be passed, or the whole chain will be
broken. Or if some filter decides to inject an EOS bucket by itsdlf, it should probably consume and destroy
the rest of the incoming bb. need to check on thisissue.

]
[

Need to document somewhere (concepts?) that the buckets should never be modified directly, because the
filter can’t know ho else could be referencing it at the same time. (shared mem/cache/memory mapped
files are examples on where you don’t want to modify the data). Instead the data should be moved into a
new bucket.

Also it looks like we need to $b->destroy (need to add the API) in addition to $b->remove. Which can be
done in one stroke using $b->delete (need to add the API).

]
[

Mention mod_bucketeer as filter debugging tool (in addition to FilterSnoop)

]

1.11 Writing Efficient Filters
META: to be written

[

As of this writing the network input filter reads in 8000B chunks (not 8192B!), and making each bucket
8000B in size, so it seems that the most efficient reading techniqueis:

use constant BUFF_LEN => 8000;

while ($f->read(nmy $buffer, BUFF_LEN)) {
mani p $buffer
$f ->print ($buffer);

}

however if there is some filter in between, it may change the size of the buckets. Also this number may
change in the future.

Hmm, I've also seen it read in 7819 chunks. | suppose this is not very reliable. But it’s probably a good
ideato ask at least 8k, so if a bucket brigade has < 8k, nothing will need to be stored in the internal buffer.
i.e. read() will return less than asked for.

]

29 Jan 2004 47

1.12 Maintainers

[

Bucket Brigades are used to make the data flow between filters and handlers more efficient. e.g. a file
handle can be put in a bucket and the read from the file can be postponed to the very moment when the
data is sent to the client, thus saving a lot of memory and CPU cycles. though filters writers should be
aware that if they call $bucket->read(), or any other operation that internally forces the bucket to read the
information into the memory (like the length() op) and thus making the data handling inefficient. therefore
a care should be taken so not to read the datain, unlessit’s really necessary.

]

1.12 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.13 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

48 29 Jan 2004

Input and Output Filters

Table of Contents:

1 [Input and Output Filters|
1.1 [Description.
1.2 [Your First Filter|
1.3 |I/O Filtering Concepty .
1.3.1 [Two Methods for Mani pulatlnq Datai .
1.3.2 |[HTTP Request Versus Connection Filtery .
1.3.3 |Multiple Invocations of Filter Handlerg
1.3.4 |Blocking Callg . .
1.4 Imod perl Filters Declaratlon and Conflquratl on|
1.4.1 |Filter Priority Typey.
1.4.2 |Perl | nput Fi |l t er Handl erI
1.4.3 |Per | Qut put Fi | t er Handl er|
1.4.4 |Perl Set |l nputFilter]
145 |Perl Set Qut put Fi lter] .
1.4.6 [HT TP Request vs. Connection Fi Iters|
1.4.7 |Filter Initialization Phasq.
1.5 |All-in- One Filter]
1.6 [Input Filters
16.1 |Connect|on I nput Flltersi
1.6.2 [HTTP Request Input Filterd
1.6.3 |Bucket Brigade-based Input Filterg
164 IStream oriented Input Filtery .
1.7 [Output Filterd
171 |Connect|on Output Flltersl
1.7.2 [HTTP Request Output Filterd .
1.7.2.1 [Stream-oriented Output Filterg
1.7.2.2 [Bucket Brigade-based Output Filterg
1.8 |Filter Applicationg
1.8.1 |Handling Data Underrunsl
1.9 |[Filter Tips and Trickg
1.9.1 |Altering the Content-Type Response Headeﬂ
1.10 |Writing Well-Behaving Filterg
1.10.1 [Adjusting HTTP Headerg
1.10.2 :
1.11 |Writing Efficient Filtery
112
1.13

29 Jan 2004

Table of Contents:

N~NOOODNDNBRE

11
14
15
15
15
16
17
19
20
22
28
28
32
32

36
36
36
37
39
40

SH&iE

46
46

RN

	1€€Input and Output Filters
	1.1€€Description
	1.2€€Your First Filter
	1.3€€I/O Filtering Concepts
	1.3.1€€Two Methods for Manipulating Data
	1.3.2€€HTTP Request Versus Connection Filters
	1.3.3€€Multiple Invocations of Filter Handlers
	1.3.4€€Blocking Calls

	1.4€€mod_perl Filters Declaration and Configuration
	1.4.1€€Filter Priority Types
	1.4.2€€PerlInputFilterHandler
	1.4.3€€PerlOutputFilterHandler
	1.4.4€€PerlSetInputFilter
	1.4.5€€PerlSetOutputFilter
	1.4.6€€HTTP Request vs. Connection Filters
	1.4.7€€Filter Initialization Phase

	1.5€€All-in-One Filter
	1.6€€Input Filters
	1.6.1€€Connection Input Filters
	1.6.2€€HTTP Request Input Filters
	1.6.3€€Bucket Brigade-based Input Filters
	1.6.4€€Stream-oriented Input Filters

	1.7€€Output Filters
	1.7.1€€Connection Output Filters
	1.7.2€€HTTP Request Output Filters
	1.7.2.1€€Stream-oriented Output Filters
	1.7.2.2€€Bucket Brigade-based Output Filters

	1.8€€Filter Applications
	1.8.1€€Handling Data Underruns

	1.9€€Filter Tips and Tricks
	1.9.1€€Altering the Content-Type Response Header

	1.10€€Writing Well-Behaving Filters
	1.10.1€€Adjusting HTTP Headers
	1.10.2€€Other issues

	1.11€€Writing Efficient Filters
	1.12€€Maintainers
	1.13€€Authors

