

1 Apache::* modules

129 Jan 2004

1 Apache::* modulesApache::* modules

1.1 Description
Overview of some of the most popular modules for mod_perl, both to use directly from your code and as
mod_perl handlers.

Over the time, mod_perl has collected an impressive amount of modules which are distributed in the stan-
dard Perl way, over CPAN. Found in the Apache:: namespace, these implement various functionalities
you might need when creating a mod_perl-based website. For mod_perl, we can actually make a distinc-
tion between two types of modules:

Apache handlers, which handle request phases or whole requests and are standalone
(Apache::GTopLimit for example).

Convenience modules, which are like standard Perl modules, implementing some useful aspect of
web programming, usually using mod_perl API for a greater performance or functionality unavail-
able in plain Perl. (A good example of this is Apache::Session.) These modules exist under the
Apache:: namespace because they can only be used under mod_perl.

For a complete list of modules, see the Apache/Perl Modules .

1.2 Apache::Session - Maintain session state across HTTP
requests
This module provides the Apache/mod_perl user with a mechanism for storing persistent user data in a
global hash, which is independent of the underlying storage mechanism. Currently you can choose from
these storage mechanisms Apache::Session::DBI, Apache::Session::Win32,
Apache::Session::File, Apache::Session::IPC. Read the man page of the mechanism you
want to use for a complete reference.

Apache::Session provides persistence to a data structure. The data structure has an ID number, and
you can retrieve it by using the ID number. In the case of Apache, you would store the ID number in a
cookie or the URL to associate it with one browser, but the method of dealing with the ID is completely up
to you. The flow of things is generally:

 Tie a session to Apache::Session.
 Get the ID number.
 Store the ID number in a cookie.
 End of Request 1.

 (time passes)

 Get the cookie.
 Restore your hash using the ID number in the cookie.
 Use whatever data you put in the hash.
 End of Request 2.

29 Jan 20042

1.1 Description

Using Apache::Session is easy: simply tie a hash to the session object, stick any data structure into
the hash, and the data you put in automatically persists until the next invocation. Here is an example which
uses cookies to track the user’s session.

 # pull in the required packages
 use Apache::Session::DBI;
 use Apache;

 use strict;

 # read in the cookie if this is an old session
 my $r = Apache->request;
 my $cookie = $r->header_in(’Cookie’);
 $cookie =~ s/SESSION_ID=(\w*)/$1/;

 # create a session object based on the cookie we got from the
 # browser, or a new session if we got no cookie
 my %session;
 tie %session, ’Apache::Session::DBI’, $cookie,
 {DataSource => ’dbi:mysql:sessions’,
 UserName => $db_user,
 Password => $db_pass
 };

 # might be a new session, so lets give them their cookie back
 my $session_cookie = "SESSION_ID=$session{_session_id};";
 $r->header_out("Set-Cookie" => $session_cookie);

After setting this up, you can stick anything you want into %session (except file handles and code refer-
ences and using _session_id), and it will still be there when the user invokes the next page.

It is possible to write an Apache authentication handler using Apache::Session. You can put your
authentication token into the session. When a user invokes a page, you open their session, check to see if
they have a valid token, and authenticate or forbid based on that.

By way of comparison note that IIS’s sessions are only valid on the same web server as the one that issued
the session. Apache::Session’s session objects can be shared amongst a farm of many machines
running different operating systems, including even Win32. IIS stores session information in RAM.
Apache::Session stores sessions in databases, file systems, or RAM. IIS’s sessions are only good for
storing scalars or arrays. Apache::Session’s sessions allow you to store arbitrarily complex objects.
IIS sets up the session and automatically tracks it for you. With Apache::Session, you setup and
track the session yourself. IIS is proprietary. Apache::Session is open-source.
Apache::Session::DBI can issue 400+ session requests per second on light Celeron 300A running
Linux. IIS?

An alternative to Apache::Session is Apache::ASP, which has session tracking abilities.
HTML::Embperl hooks into Apache::Session for you.

329 Jan 2004

1.2 Apache::Session - Maintain session state across HTTP requestsApache::* modules

1.3 Apache::DBI - Initiate a persistent database connection
See mod_perl and relational Databases

1.4 Apache::Watchdog::RunAway - Hanging Processes
Monitor and Terminator
This module monitors hanging Apache/mod_perl processes. You define the time in seconds after which
the process is to be counted as hanging or run away.

When the process is considered to be hanging it will be killed and the event logged in a log file.

Generally you should use the amprapmon program that is bundled with this module’s distribution
package, but you can write your own code using the module as well. See the amprapmon manpage for
more information about it.

Note that it requires the Apache::Scoreboard module to work.

Refer to the Apache::Watchdog::RunAway manpage for the configuration details.

1.5 Apache::VMonitor -- Visual System and Apache Server
Monitor
Apache::VMonitor is the next generation of mod_status. It provides all the information mod_status
provides and much more.

This module emulates the reporting functions of the top(), mount(), df() and ifconfig() utilities. There is a
special mode for mod_perl processes. It has visual alert capabilities and a configurable automatic refresh
mode. It provides a Web interface, which can be used to show or hide all the sections dynamically.

The are two main modes:

Multi processes mode -- All system processes and information is shown.

Single process mode -- In-depth information about a single process is shown.

The main advantage of this module is that it reduces the need to telnet to the machine in order to monitor
it. Indeed it provides information about mod_perl processes that cannot be acquired from telneting to the
machine.

1.5.0.1 Configuration

 # Configuration in httpd.conf

29 Jan 20044

1.3 Apache::DBI - Initiate a persistent database connection

 <Location /sys-monitor>
 SetHandler perl-script
 PerlHandler Apache::VMonitor
 </Location>

 # startup file or <Perl> section:
 use Apache::VMonitor();
 $Apache::VMonitor::Config{BLINKING} = 0; # Blinking is evil
 $Apache::VMonitor::Config{REFRESH} = 0;
 $Apache::VMonitor::Config{VERBOSE} = 0;
 $Apache::VMonitor::Config{SYSTEM} = 1;
 $Apache::VMonitor::Config{APACHE} = 1;
 $Apache::VMonitor::Config{PROCS} = 1;
 $Apache::VMonitor::Config{MOUNT} = 1;
 $Apache::VMonitor::Config{FS_USAGE} = 1;
 $Apache::VMonitor::Config{NETLOAD} = 1;

 @Apache::VMonitor::NETDEVS = qw(lo eth0);
 $Apache::VMonitor::PROC_REGEX = join "\|", qw(httpd mysql squid);

More information is available in the module’s extensive manpage.

It requires Apache::Scoreboard and GTop to work. GTop in turn requires the libgtop library but
is not available for all platforms. See the docs in the source at
ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/ to check whether your platform/flavor is supported.

1.6 Apache::GTopLimit - Limit Apache httpd processes
This module allows you to kill off Apache processes if they grow too large or if they share too little of
their memory. You can choose to set up the process size limiter to check the process size on every request:

The module is thoroughly explained in the section: Preventing Your Processes from Growing

1.7 Apache::Request (libapreq) - Generic Apache Request
Library
This package contains modules for manipulating client request data via the Apache API with Perl and C.
Functionality includes:

parsing of application/x-www-form-urlencoded data
parsing of multipart/form-data
parsing of HTTP Cookies

The Perl modules are simply a thin xs layer on top of libapreq, making them a lighter and faster alternative
to CGI.pm and CGI::Cookie. See the Apache::Request and Apache::Cookie documentation for
more details and eg/perl/ for examples.

529 Jan 2004

1.6 Apache::GTopLimit - Limit Apache httpd processesApache::* modules

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/

Apache::Request and libapreq are tied tightly to the Apache API, to which there is no access in a
process running under mod_cgi.

(Apache::Request)

1.8 Apache::RequestNotes - Allow Easy, Consistent Access
to Cookie and Form Data Across Each Request Phase
Apache::RequestNotes provides a simple interface allowing all phases of the request cycle access
to cookie or form input parameters in a consistent manner. Behind the scenes, it uses libapreq
Apache::Request) functions to parse request data and puts references to the data in pnotes().

Once the request is past the PerlInit phase, all other phases can have access to form input and cookie data
without parsing it themselves. This relieves some strain, especially when the GET or POST data is
required by numerous handlers along the way.

See the Apache::RequestNotes manpage for more information.

1.9 Apache::PerlRun - Run unaltered CGI scripts under
mod_perl
See Apache::PerlRun - a closer look.

1.10 Apache::RegistryNG -- Apache::Registry New Genera-
tion
Apache::RegistryNG is the same as Apache::Registry, aside from using filenames instead of
URIs for namespaces. This feature ensures that if the same CGI script is requested from different URIs
(e.g. different hostnames) it’ll be compiled and cached only once, thus saving memory.

Apache::RegistryNG uses an Object Oriented interface.

 PerlModule Apache::RegistryNG
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::RegistryNG->handler
 </Location>

Apache::RegistryNG inherits from Apache::PerlRun, but the handler() is overridden. Aside
from the handler(), the rest of Apache::PerlRun contains all the functionality of
Apache::Registry broken down into several subclass-able methods. These methods are used by
Apache::RegistryNG to implement the exact same functionality of Apache::Registry, using
the Apache::PerlRun methods.

29 Jan 20046

1.8 Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across Each Request Phase

There is no compelling reason to use Apache::RegistryNG over Apache::Registry, unless you
want to do add or change the functionality of the existing Registry.pm or if you want to use filenames
instead of URIs for namespaces. For example, Apache::RegistryBB (Bare-Bones) is another
subclass that skips the stat() call performed by Apache::Registry on each request.

1.11 Apache::RegistryBB -- Apache::Registry Bare Bones
It works just like Apache::Registry, but does not test the x bit (-x file test for executable mode), only
compiles the file once (no stat() call is made per request), skips the OPT_EXECCGI checks and does not
chdir() into the script parent directory. It uses the Object Oriented interface.

Configuration:

 PerlModule Apache::RegistryBB
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::RegistryBB->handler
 </Location>

1.12 Apache::OutputChain -- Chain Stacked Perl Handlers
Apache::OutputChain was written as a way of exploring the possibilities of stacked handlers in mod_perl.
It ties STDOUT to an object which catches the output and makes it easy to build a chain of modules that
work on output data stream.

Examples of modules that are build on this idea are Apache::SSIChain, Apache::GzipChain and
Apache::EmbperlChain -- the first processes the SSI’s in the stream, the second compresses the
output on the fly, the last adds Embperl processing.

The syntax goes like this:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::SSIChain Apache::PassHtml
 </Files>

The modules are listed in the reverse order of their execution -- here the Apache::PassHtml module
simply picks a file’s content and sends it to STDOUT, then it’s processed by Apache::SSIChain,
which sends its output to STDOUT again. Then it’s processed by Apache::OutputChain, which
finally sends the result to the browser.

An alternative to this approach is Apache::Filter, which has a more natural forward configuration
order and is easier to interface with other modules.

It works with Apache::Registry as well, for example:

729 Jan 2004

1.11 Apache::RegistryBB -- Apache::Registry Bare Bones Apache::* modules

 Alias /foo /home/httpd/perl/foo
 <Location /foo>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::Registry
 </Location>

It’s really a regular Apache::Registry setup, except for the added modules in the PerlHandler line.

(Apache::GzipChain allows to compress the output on the fly.)

1.13 Apache::Filter - Alter the output of previous handlers
Apache::Filter, like Apache::OutputChain, allows you to chain stacked handlers. It’s not very
different from Apache::OutputChain, except for the way you configure the filters. A normal config-
uration with Apache::Filter would be the following:

 PerlModule Apache::Filter Apache::RegistryFilter Apache::SSI Apache::Gzip
 Alias /perl /home/httpd/perl
 <Location /perl>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlSetVar Filter On
 PerlHandler Apache::RegistryFilter Apache::SSI Apache::Gzip
 </Location>

This accomplishes some things many CGI programmers want: you can output SSI code from your
Apache::Registry scripts, have it parsed by Apache::SSI, and then compressed with
Apache::Gzip (see Apache::Gzip below).

Thanks to Apache::Filter, you can also write your own filter modules, which allow you to read in
the output from the previous handler in the chain and modify it. You would do something like this in your
handler subroutine:

 $r = $r->filter_register(); # Required
 my $fh = $r->filter_input(); # Optional (you might not need the input FH)
 while (<$fh>) {
 s/ something / something else /;
 print;
 }

Another interesting thing to do with Apache::Filter would be to use it for XML output from your
scripts(these modules are hypothetical, this is handled much better by AxKit, Matt Seargeant’s XML
application server for mod_perl (see http://www.axkit.org/).

 <Location /perl/xml-output>
 SetHandler perl-script
 Options +ExecCGI
 PerlSetVar Filter On
 PerlHandler Apache::RegistryFilter Apache::XSLT
 </Location>

29 Jan 20048

1.13 Apache::Filter - Alter the output of previous handlers

http://www.axkit.org/

As you can see, you can get a lot of freedom by using stacked handlers, allowing you to separate various
parts of your programs and leave those tasks up to other modules, which may already be available from
CPAN (this is much better than the CGI time when your script would have to do everything itself, because
you couldn’t do much with its output).

1.14 Apache::GzipChain - compress HTML (or anything) in
the OutputChain
Have you ever served a huge HTML file (e.g. a file bloated with JavaScript code) and wondered how
could you send it compressed, thus dramatically cutting down the download times? After all Java applets
can be compressed into a jar and benefit from faster download times. Why can’t we do the same with plain
ASCII (HTML, JS etc.)? ASCII text can often be compressed by a factor of 10.

Apache::GzipChain comes to help you with this task. If a client (browser) understands gzip encod-
ing, this module compresses the output and sends it downstream. The client decompresses the data upon
receipt and renders the HTML as if it were fetching plain HTML.

For example to compress all html files on the fly, do this:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
 </Files>

Remember that it will work only if the browser claims to accept compressed input, by setting the
Accept-Encod ing header. Apache::GzipChain keeps a list of user-agents, thus it also looks at
the User-Agent header to check for browsers known to accept compressed output.

For example if you want to return compressed files which will in addition pass through the Embperl
module, you would write:

 <Location /test>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
 </Location>

Hint: Watch the access_log file to see how many bytes were actually sent, and compare that with the bytes
sent using a regular configuration.

(See also Apache::GzipChain).

Notice that the rightmost PerlHandler must be a content producer. Here we are using Apache::Pass -
File but you can use any module which creates output.

929 Jan 2004

1.14 Apache::GzipChain - compress HTML (or anything) in the OutputChainApache::* modules

1.15 Apache::Gzip - Auto-compress web files with Gzip
Similar to Apache::GzipChain but works with Apache::Filter.

This configuration:

 PerlModule Apache::Filter
 <Files ~ "*\.html">
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Apache::Gzip
 </Files>

will send all the *.html files compressed if the client accepts the compressed input.

And this one:

 PerlModule Apache::Filter
 Alias /home/http/perl /perl
 <Location /perl>
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Apache::RegistryFilter Apache::Gzip
 </Location>

will compress the output of the Apache::Registry scripts. Yes, you should use
Apache::RegistryFilter instead of Apache::Registry for it to work.

You can use as many filters as you want:

 PerlModule Apache::Filter
 <Files ~ "*\.blah">
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Filter1 Filter2 Apache::Gzip
 </Files>

You can test that it works by either looking at the size of the response in the access.log or by telnet:

 panic% telnet localhost 8000
 Trying 127.0.0.1
 Connected to 127.0.0.1
 Escape character is ’^]’.
 GET /perl/test.pl HTTP 1.1
 Accept-Encoding: gzip
 User-Agent: Mozilla

And you will get the data compressed if configured correctly.

29 Jan 200410

1.15 Apache::Gzip - Auto-compress web files with Gzip

1.16 Apache::PerlVINC - Allows Module Versioning in
Location blocks and Virtual Hosts
With this module you can have different @INC for different virtual hosts, locations and equivalent config-
uration blocks.

Suppose two versions of Apache::Status are being hacked on the same server. In this configuration:

 PerlModule Apache::PerlVINC

 <Location /status-dev/perl>
 SetHandler perl-script
 PerlHandler Apache::Status

 PerlINC /home/httpd/dev/lib
 PerlFixupHandler Apache::PerlVINC
 PerlVersion Apache/Status.pm
 </Location>

 <Location /status/perl>
 SetHandler perl-script
 PerlHandler Apache::Status

 PerlINC /home/httpd/prod/lib
 PerlFixupHandler Apache::PerlVINC
 PerlVersion Apache/Status.pm
 </Location>

The Apache::PerlVINC is loaded and then two different locations are specified for the same handler
Apache::Status, whose development version resides in /home/httpd/dev/lib and production version in
/home/httpd/prod/lib.

In case the /status/perl request is issued (the latter configuration section), the fixup handler will internally
do:

 delete $INC{Apache/Status.pm};
 unshift @INC, /home/httpd/prod/lib;
 require "Apache/Status.pm";

which will load the production version of the module and it’ll be used to process the request. If on the
other hand if the request to the /status-dev/perl location will be issued, as configured in the former config-
uration section, a similar thing will happen, but a different path (/home/httpd/dev/lib) will be prepended to
@INC:

 delete $INC{Apache/Status.pm};
 unshift @INC, /home/httpd/dev/lib;
 require "Apache/Status.pm";

It’s important to be aware that a changed @INC is effective only inside the <Location> or a similar
configuration directive. Apache::PerlVINC subclasses the PerlRequire directive, marking the file
to be reloaded by the fixup handler, using the value of PerlINC for @INC. That’s local to the fixup

1129 Jan 2004

1.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual HostsApache::* modules

handler, so you won’t actually see @INC changed in your script.

In addition the modules with different versions can be unloaded at the end of request, using the Perl -
CleanupHan dler handler:

 <Location /status/perl>
 SetHandler perl-script
 PerlHandler Apache::Status

 PerlINC /home/httpd/prod/lib
 PerlFixupHandler Apache::PerlVINC
 PerlCleanupHandler Apache::PerlVINC
 PerlVersion Apache/Status.pm
 </Location>

Also notice that PerlVer sion effect things differently depending on where it was placed. If it was
placed inside a <Loca tion > or a similar block section, the files will only be reloaded on requests to that
location. If it was placed in a server section, all requests to the server or virtual hosts will have these files
reloaded.

As you can guess, this module slows the response time down because it reloads some modules on a
per-request basis. Hence, this module should only be used in a development environment, not a production
one.

1.17 Apache::LogSTDERR
When Apache’s builtin syslog support is used, the stderr stream is redirected to /dev/null . This means
that Perl warnings, any messages from die() , croak() , etc., will also end up in the black hole. The
HookStderr directive will hook the stderr stream to a file of your choice, the default is shown in this
example:

 PerlModule Apache::LogSTDERR
 HookStderr logs/stderr_log

[META: see http://mathforum.org/epigone/modperl/vixquimwhen]

1.18 Apache::RedirectLogFix
Because of the way mod_perl handles redirects, the status code is not properly logged. The
Apache::Redi rect LogFix module works around that bug until mod_perl can deal with this. All you
have to do is to enable it in the httpd.conf file.

 PerlLogHandler Apache::RedirectLogFix

For example, you will have to use it when doing:

 $r->status(304);

29 Jan 200412

1.17 Apache::LogSTDERR

http://mathforum.org/epigone/modperl/vixquimwhen

and do some manual header sending, like this:

 $r->status(304);
 $r->send_http_header();

1.19 Apache::SubProcess
The output of system(), exec(), and open(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured with sfio.

One workaround is to use backticks:

 print ‘command here‘;

But a cleaner solution is provided by the Apache::SubProcess module. It overrides the exec() and
system() calls with calls that work correctly under mod_perl.

Let’s see a few examples:

 use Apache::SubProcess qw(system);
 my $r = shift;
 $r->send_http_header(’text/plain’);

 system "/bin/echo hi there";

overrides built-in system() function and sends the output to the browser.

 use Apache::SubProcess qw(exec);
 my $r = shift;
 $r->send_http_header(’text/plain’);

 exec "/usr/bin/cal";

 print "NOT REACHED\n";

overrides built-in exec() function and sends the output to the browser. As you can see the print statement
after the exec() call will be never executed.

 use Apache::SubProcess ();
 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $efh = $r->spawn_child(\&env);
 $r->send_fd($efh);

 sub env {
 my $r = shift;
 $r->subprocess_env(HELLO => ’world’);
 $r->filename("/bin/env");
 $r->call_exec;
 }

1329 Jan 2004

1.19 Apache::SubProcessApache::* modules

env() is a function that sets an environment variable that can be seen by the main and sub-processes, then
it executes /bin/env program via call_exec(). The main code spawn a process, and tells it to execute the
env() function. This call returns an output filehandler from the spawned child process. Finally it takes the
output generated by the child process and sends it to the browser via send_fd(), that expects the filehandler
as an argument.

 use Apache::SubProcess ();
 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $fh = $r->spawn_child(\&banner);
 $r->send_fd($fh);

 sub banner {
 my $r = shift;
 # /usr/games/banner on many Unices
 $r->filename("/usr/bin/banner");
 $r->args("-w40+Hello%20World");
 $r->call_exec;
 }

This example is very similar to the previous, but shows how can you pass arguments to the external
process. It passes the string to print as a banner to via a subprocess.

 use Apache::SubProcess ();
 my $r = shift;
 $r->send_http_header(’text/plain’);

 use vars qw($String);
 $String = "hello world";
 my($out, $in, $err) = $r->spawn_child(\&echo);
 print $out $String;
 $r->send_fd($in);

 sub echo {
 my $r = shift;
 $r->subprocess_env(CONTENT_LENGTH => length $String);
 $r->filename("/tmp/pecho");
 $r->call_exec;
 }

The last example shows how you can have a full access to STDIN, STDOUT and STDERR streams of the
spawned sub process, so you can pipe data to a program and send its output to the browser. The echo()
function is similar to the earlier example’s env() function. The /tmp/pecho is as follows:

 !/usr/bin/perl
 read STDIN, $buf, $ENV{CONTENT_LENGTH};
 print "STDIN: ‘$buf’ ($ENV{CONTENT_LENGTH})\n";

So in the last example a string is defined as a global variable, so it’s length could be calculated in the
echo() function. The subprocess reads from STDIN, to which the main process writes the string (hello
world). It reads only a number of bytes specified by CONTENT_LENGTH passed to the external program
via environment variable. Finally the external program prints the data that it read to STDOUT, the main
program intercepts it and sends to the client’s socket (browser in most cases).

29 Jan 200414

1.19 Apache::SubProcess

1.20 Module::Use - Log and Load used Perl modules
Module::Use records the modules used over the course of the Perl interpreter’s lifetime. If the logging
module is able, the old logs are read and frequently used modules are automatically loaded.

For example if configured as:

 <Perl>
 use Module::Use (Counting, Logger => "Debug");
 </Perl>

 PerlChildExitHandler Module::Use

it will only record the used modules when the child exists, logging everything (debug level).

1.21 Apache::ConfigFile - Parse an Apache style httpd.conf
config file
This module parses httpd.conf, or any compatible config file, and provides methods for accessing the
values from the parsed file.

See the module manpage for more information.

1.22 Apache::Admin::Config - Object oriented access to
Apache style config files
Apache::Admin::Config provides an object oriented interface for reading and writing Apache-like
configuration files without affecting comments, indentation, or truncated lines. You can easily extract
informations from the apache configuration, or manage htaccess files.

See http://rs.rhapsodyk.net/devel/apache-admin-config/ for more information.

1.23 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.24 Authors
Stas Bekman <stas (at) stason.org>

1529 Jan 2004

1.20 Module::Use - Log and Load used Perl modulesApache::* modules

http://rs.rhapsodyk.net/devel/apache-admin-config/

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200416

1.24 Authors

Table of Contents:
................. 11 Apache::* modules
................... 21.1 Description
....... 21.2 Apache::Session - Maintain session state across HTTP requests
......... 41.3 Apache::DBI - Initiate a persistent database connection
.... 41.4 Apache::Watchdog::RunAway - Hanging Processes Monitor and Terminator
....... 41.5 Apache::VMonitor -- Visual System and Apache Server Monitor
................ 41.5.0.1 Configuration
......... 51.6 Apache::GTopLimit - Limit Apache httpd processes
....... 51.7 Apache::Request (libapreq) - Generic Apache Request Library

1.8 Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across
.................. 6Each Request Phase
....... 61.9 Apache::PerlRun - Run unaltered CGI scripts under mod_perl
........ 61.10 Apache::RegistryNG -- Apache::Registry New Generation
......... 71.11 Apache::RegistryBB -- Apache::Registry Bare Bones
......... 71.12 Apache::OutputChain -- Chain Stacked Perl Handlers
......... 81.13 Apache::Filter - Alter the output of previous handlers
..... 91.14 Apache::GzipChain - compress HTML (or anything) in the OutputChain
......... 101.15 Apache::Gzip - Auto-compress web files with Gzip
.. 111.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts
................ 121.17 Apache::LogSTDERR
............... 121.18 Apache::RedirectLogFix
................ 131.19 Apache::SubProcess
.......... 151.20 Module::Use - Log and Load used Perl modules
...... 151.21 Apache::ConfigFile - Parse an Apache style httpd.conf config file
.... 151.22 Apache::Admin::Config - Object oriented access to Apache style config files
.................. 151.23 Maintainers
................... 151.24 Authors

i29 Jan 2004

Table of Contents:Apache::* modules

	1€€Apache::* modules
	1.1€€Description
	1.2€€Apache::Session - Maintain session state across HTTP requests
	1.3€€Apache::DBI - Initiate a persistent database connection
	1.4€€Apache::Watchdog::RunAway - Hanging Processes Monitor and Terminator
	1.5€€Apache::VMonitor -- Visual System and Apache Server Monitor
	
	1.5.0.1€€Configuration

	1.6€€Apache::GTopLimit - Limit Apache httpd processes
	1.7€€Apache::Request †libapreq‡ - Generic Apache Request Library
	1.8€€Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across Each Request Phase
	1.9€€Apache::PerlRun - Run unaltered CGI scripts under mod_perl
	1.10€€Apache::RegistryNG -- Apache::Registry New Generation
	1.11€€Apache::RegistryBB -- Apache::Registry Bare Bones
	1.12€€Apache::OutputChain -- Chain Stacked Perl Handlers
	1.13€€Apache::Filter - Alter the output of previous handlers
	1.14€€Apache::GzipChain - compress HTML †or anything‡ in the OutputChain
	1.15€€Apache::Gzip - Auto-compress web files with Gzip
	1.16€€Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts
	1.17€€Apache::LogSTDERR
	1.18€€Apache::RedirectLogFix
	1.19€€Apache::SubProcess
	1.20€€Module::Use - Log and Load used Perl modules
	1.21€€Apache::ConfigFile - Parse an Apache style httpd.conf config file
	1.22€€Apache::Admin::Config - Object oriented access to Apache style config files
	1.23€€Maintainers
	1.24€€Authors

