Introduction and Incentives 1 Introduction and Incentives

1 Intro duction and Incentives

29 Jan 2004 1

1.1 Description

1.1 Description|

An introdudion to what mod_perl is all about, ithfferent features, and sonexplanations of the C API,
Apache: : Regi st ry, Apache: : Per| Run and the Apache/PefPI.

1.2 What ismod per|?

The Apache/Peiihtegraion project brings together the full power of the Redgranming language and

the Apache HTTP server. With mod_perl itpigssble to write Apache modules entirely in Perl, letting

you easily do things that are mat#fi cult or impossible in regular CGI programs, such as running sub
requests. Iraddtion, the persisent Perlinterpreterembededin the server saves tloweheadof staring

an extenal interpreter i.e. the penalty of Perl start-up time. And not the lgagbrtant feature is code
caching, where modules and scripts are loaded and compiled only once, and for the rest of the server’s life
they are served from the cache. Thus the server spends its time only running already loaded and compiled
code, which is veryast.

The primaryadvartagesof mod_perl are power and speed. You have full access to theworiéngs of

the web server and camterveneat any stage afequest-procegsy. This allows for customizegrocess

ing of (to name just a few of the phasés}I->filenametrandation, authetication, responseenestion,

and logging. There is very little run-tirevemhead In partiaular, it is notnecesary to start asepaate
process, as is often done with web-semsdersions The most wide-spread suektersion, the Common
Gatewaylnterface (CGl), can be replaced entirely with Perl code that handles the respemsation
phase of requesproceslg. mod_perl includes two general purpose modules for this purpose:
Apache: : Regi st ry, which cantrangarently run exising perl CGI scripts andpache: : Per | Run,
which does a similar job but allows you to run "dirtier" (to some exsenipts.

You canconfigureyour httpd server and handlers in Perl (usteg| Set Var , and <Perl> sections). You
can even define your owgonfiguration diredives

Forexanpleson how you use mod_perl, see &vinat ismod_perlsection.

Many people ask "How much ofgerformanceimprovanentdoes mod_perl give?" Well, it all depends
on what you are doing with mod_perl apdssbly who you askDevebpers report speed boosts from
200% to 2000%. The best way to measure is to try it and sgedmelfl (SeeTecmologie Extraodinaire
for thefacts.)

1.2.1[mod cgi

When you run your CGI scripts by using@nfiguration like this:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

you run it under a mod_cgi handler, you never defiegplicitly. Apache does all theonfiguration work
behind the scenes, when you usgcapAlias

2 29 Jan 2004

Introduction and Incentives 1.2.2 CAPI

By the way, don’t confus8cri pt Al i as with theExecCAE configuration option, which we enable so
that the script will be executed rather than returned as a plain text file. For example for mod_perl and
Apache: : Regi st ry you would use aonfiguration like:

<Location /perl >
Set Handl er perl-script
Per| Handl er Apache:: Regi stry
Opti ons +ExecCd
Per | SendHeader On
</ Locati on>

1.2.2 |CAPI

The Apache C API has been present for a long time, and has been the usual way togxiegsamsto
Apache, such as mod_perl. When you writextersion modules, you write C code that is riotepen

dent but will be linked into the Apachiattpd executable either at build time (if the modulestaically
linked), or at runtime (if it is compiled as a Dynamic Shared Obiject, or DSO). Either way, you do as with
any C library: you writéfunctions that receive a certain number afgunentsand make use axtenal

API functions, provided by Apache or by othisraries.

The differenceis that with Apacheextersion modules, theséunctions are registered inside a module
record: you tell Apache already at compile-time for which phases you wish to rufuratipns Of
course, yowrobably won’t be handling all the phases. Here is an example of a module handling only the
contentgenestion phase:

/* Dispatch |list of content handlers */
static const handler_rec hello_handlers[] = {
{ "hello", hello_handler },
{ NULL, NULL }

I

/* Dispatch list for APl hooks */
nmodul e MODULE_VAR_EXPORT hel | o_nodul e = {
STANDARD _MODULE_STUFF,

NULL, /* module initializer */
NULL, [* create per-dir config structures */
NULL, [* merge per-dir config structures */
NULL, /* create per-server config structures */
NULL, /* merge per-server config structures */
NULL, /* table of config file comuands */
hel | o_handl ers, [* [#8] M ME-typed-di spatched handl ers */
NULL, /* [#1] UR to filenanme translation */
NULL, [* [#4] validate user id fromrequest */
NULL, /* [#5] check if the user is ok _here_ */
NULL, [* [#3] check access by host address */
NULL, [* [#6] determ ne M ME type */
NULL, I* [#7] pre-run fixups */
NULL, /[* [#9] log a transaction */
NULL, /* [#2] header parser */
NULL, /[* child_init */
NULL, /* child_exit */
NULL [* [#0] post read-request */

29 Jan 2004 3

1.2.3 Perl API

Using thisconfiguration (and a correctly builbel | o_handl er () function), you'd then be able to use
thefollowing configuration to allow your module to handle the requests foriekdo URI.

<Location /hell o>
Set Handl er hello
</ Locati on>

When Apache sees a request for Mrtlo URI, it will then figure out what the "hello" handleorre
spondsto by looking it up in the handler record, and match that toh#le o_handl er function
pointer, which will execute theel | o_handl er function of your module with a equest _rec *r
as anargument From that point, your handler is free towbatverit wants,returring content,declinng
the request, or doing other bizarre things based orinagr

It is not the object of this guide to explain how to program C handlers. However, this example lets you in
on some of the secrets of the Apache core, which you prilbably undestand anyway by using
mod_perl. If you want moraformation on writing C modules, you should read the Apache ddtu
mertation atfhttp://httpd.apache.org/docs/misc/API.Htarid moreimportantly Writing Apache Modules

with Perl and C, which will teach you abouddoth mod_perl and @nodules!

1.2.3 |Perl API

After a while, C modules were found hard to write difél cult to maintain, mostly because code had to
bereconpiled or just because of the low-level nature of the C language, and because these modules were
so intricately linked with Apache that a small bug could put at risk your whole semwdronment In

comes mod_perl. Programmed in C and using altdblmiquesdescribed above and more, it allows Perl
modules, written in good Perl style, to access the (almost) complete API providedctmvtiegional C
extersions

However, thestrudure used for Perl Apache modules is a litiéferent If you've programmed normal
Perl modules (like those found on CPAN) before, you'll be happy to knovpiibgtanming for mod_perl
using the Apache API doesn'’t involve anything else than writing a Perl module that defiardlaer
subrodine (that is theconverion--we’ll see that that doesnitecesaily have to be the name). This
subrouine accepts aargument $r , which is the Perl APéquivalent of the C APIr equest _rec *r.

$r is your entry point to the whole Perl Apache APIl. Through it you access methods in good
object-oriented fashion, which makes it slightly easier than with C, and looks a lotanuliar to Perl
progranmers

Furthemore Perl Apache modules do not define handler records like C modules. You only need to create
your handlersubrouine(s), and then control which requests they should handle solely with mod_perl
configuration diredivesinside your Apacheonfiguration.

Let's look at a sample handler that returniggeetng and the current locéime.

file: M/ Geeting. pm

package My:: Greeting;
use strict;

4 29 Jan 2004

http://httpd.apache.org/docs/misc/API.html

Introduction and Incentives 1.2.4 Apache::Registry

use Apache:: Constants gw OK);

sub handl er {
ny $r = shift;
ny $now = scal ar |ocaltineg;
ny $server _name = $r->server->server_host nane;

$r->send_http_header (' text/plain');

print <<ECT;
Thanks for visiting $server_nane.
The local tine is $now.
EOT

return OK;

}

1; # nodul es nust return true

As you can see, we're mixing Perl standard functions (like | ocal ti me()) with Apache functions
($r->send_htt p_header ()). To return the above greeting when accessing the /hello URI, you
would configure Apache like this:

<Location /hell o>
Set Handl er perl-script
Per | Handl er My:: Greeting
</ Locati on>

When it sees this configuration, mod_perl loads the My: : G eet i ng module, finds the handl er ()
subroutine, and callsit to alow it to return the appropriate content. There are equivalent Per | * Handl er
directives for the different phases we saw were available to C handlers.

The Perl API gives you an incredible number of possibilities, which you can then use to be more produc-
tive or creative. mod_perl is an enabling technology; it won’t make you smarter or more creative, but it
will do its best to make you lose less time because of "accidental difficulties" of programming, and let you
concentrate more on the important parts.

1.2.4 |Apache:: Registry|

From the viewpoint of the Perl API, Apache::Registry is simply another handler that’s not conceptually
different from any other handler. Apache: : Regi st ry readsin the script file, compiles, executes it and
stores into the cache. Since the perl interpreter keeps running from child process' creation to its death, any
code compiled by the interpreter is kept in memory until the child dies.

To prevent script name collisions, Apache: : Regi stry creates a unique key for each cached script by
prepending Apache: : ROOT: : to the mangled path of the script’s URI. This key is actually the package
name that the script resides in. So if you have requested a script / per |/ proj ect/test. pl, the
scripts would be wrapped in code which starts with a package declaration of:

package Apache:: ROOT: :perl::project::test_e2pl;

29 Jan 2004 5

1.2.4 Apache::Registry

Apache: : Regi st ry also stores the script’'s last modification time. Everytime the script changes, the
cached code is discarded and recompiled using the modified source. However, it doesn’'t check the modifi-
cation times of any of the perl libraries the script might use.

Apache: : Regi st ry overrides CORE: : exi t () with Apache: : exit(), so CGI scripts that use
exi t () will run correctly. We will talk about all these details in depth later.

From the viewpoint of the programmer, there is almost no difference between running a script as a plain
CGlI script under mod_cgi and running it under mod_perl. There is however a great speed improvement,
but at the expense of much heavier memory usage (there is no free lunch).

When they run under mod_cgi, your CGI scripts are loaded each time they are called and then they exit.
Under mod_perl they are loaded once and cached. This gives a big performance boost. But because the
code is cached and doesn't exit, it won't cleanup memory as it would under mod_cgi. This can have unex-
pected effects.

Y our scripts will be recompiled and reloaded by mod_perl when it detects that you have changed them,
but remember that any libraries that your scripts might require() or use() will not be recompiled when they
are changed. Y ou will have to take action yourself to ensure that they are recompiled.

Of course the guide will answer all these issues in depth.

Let’s see what happens to your script when it’'s being executed under Apache: : Regi st ry. If we take
the simplest code of (URI / per | / proj ect/test. pl)

print "Content-type: text/htm\n\n";
print "It works\n";

Apache: : Regi st ry will convert it into the following:

package Apache:: ROOT: : perl::project::test_e2pl;
use Apache gw(exit);
sub handl er {

print "Content-type: text/htm\n\n";

print "It works\n";

}

The first line provides a unique namespace for the code to use, and a unique key by which the code can be
referenced from the cache.

The second line imports Apache: : exi t which over-rides perl’s built-inexi t .

The sub handl er subroutine is wrapped around your code. By default (i.e. if you do not specify an
alternative), when you use mod_perl and your code's URI is called, mod_perl will seek to execute the
URI’s associated handl er subroutine.

Apache: : Regi st ry isusualy configured in this way:

6 29 Jan 2004

Introduction and Incentives 1.3 What you will learn

Alias /perl/ [usr/local/apache/bin/
<Location /perl>

Set Handl er perl -script

Per | Handl er Apache: : Regi stry
</ Locat i on>

In short, we see that Apache: : Regi stry isjust another mod perl handler, which is executed when
requests are made for the /perl directory, and then does some special handling of the Perl scripts in that
directory to turn theminto Apache handlers.

1.2.5 |Apache:: PerlRun|

Apache::PerlRun is very similar to Apache: : Regi stry. It uses the same basic concepts, i.e. it runs
CGl scripts under mod_perl for additional speed. However, unlike Apache:: Registry,
Apache: : Per | Run will not cache scripts. The reason for this is that it's designed for use with CGI
scripts that may have been "dirty", which might cause problems when run persistently under mod_perl.
Apart from that, the configuration is the same. We discuss Apache: : Per | Run in Apache::PerlRun, a
closer look.

1.3 What you will learn|

This document was written in an effort to help you start using Apache’'s mod_perl extension as quickly
and easily as possible. It includes information about the installation and configuration of both Perl and the
Apache web server and delves deeply into the issues of writing and porting existing Perl scripts to run
under mod_perl. Note that it does not attempt to enter the big world of using the Perl APl or C API. You
will find pointersto coverage of these topics in the Offsite resources section of this site. This guide triesto
cover the most of the Apache: : Regi stry and Apache: : Per | Run modules. Along with mod_perl
related topics, there are many more issues related to administering Apache servers, debugging scripts,
using databases, mod_perl related Perl, code snippets and more.

It is assumed that you know at least the basics of building and installing Perl and Apache. (If you do not,
just read the INSTALL documents which are part of the distribution of each package.) However, in this
guide you will find specific Perl and Apache installation and configuration notes, which will help you
successfully complete the mod_perl installation and get the server running in a short time.

If after reading this guide and the other documentation you feel that your questions remain unanswered,
you could try asking the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Often you will find the answer to your question by searching the mailing list archive, since most
guestions have been asked and answered aready! If you ignore this advice, do not be surprised if your
guestion goes unanswered - it bores people when they’re asked to answer the same question repeatedly -
especialy if the answer can be found in the archive or in the documentation. This does not mean that you
should avoid asking questions, just do not abuse the available help and RTFM before you call for HEL P.
When asking your question, be sure to have read the email-etiquette and How to report problems

If you find errors in these documents, please contact the maintainer, after having read about how to submit
documentation patches.

29 Jan 2004 7

1.4 Maintainers

1.4 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.5 |[Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

8 29 Jan 2004

Introduction and Incentives Table of Contents:

Table of Contents:

1 [Introduction and Incentives| .
1.1 [Description .
1.2 What ismod perl?
121
122)
123
1.2.4 |Apache;:Registry]|
1.2.5 |Apache::PerlRun|
1.3 What you will learn| .
1.4 [Maintainerd.
15

OO N~NOTRARWNNDNE

29 Jan 2004 i

	1€€Introduction and Incentives
	1.1€€Description
	1.2€€What is mod_perl?
	1.2.1€€mod_cgi
	1.2.2€€C API
	1.2.3€€Perl API
	1.2.4€€Apache::Registry
	1.2.5€€Apache::PerlRun

	1.3€€What you will learn
	1.4€€Maintainers
	1.5€€Authors

