mod_perl and Relational Databases 1 mod_perl and Relational Databases

1 mod_perl andRelational Databases

29 Jan 2004 1

1.1 Description

1.1 Description|

Creating dynamic websites with mod_perl often involves using relational databases. Apache: : DBI ,
which provides a database connections persistence which boosts the mod_perl performance, is explained
in this chapter.

1.2 Why Relational (SQL) Databases

Nowadays millions of people surf the Internet. There are millions of Terabytes of data lying around. To
manipulate the data new smart techniques and technologies were invented. One of the major inventions
was the relational database, which alows us to search and modify huge stores of data very quickly. We
use SQL (Structured Query Language) to access and manipulate the contents of these databases.

1.3 |Apache::DBI - Initiate a persistent database connection

When people started to use the web, they found that they needed to write web interfaces to their databases.
CGl is the most widely used technology for building such interfaces. The main limitation of a CGI script
driving a database is that its database connection is not persistent - on every request the CGI script has to
re-connect to the database, and when the request is completed the connection is closed.

Apache: : DBl was written to remove this limitation. When you use it, you have a database connection
which persists for the process entire life. So when your mod_perl script needs to use a database,
Apache: : DBl provides a valid connection immediately and your script starts work right away without
having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It's amost as straightforward as is it sounds; there are just a few things to know about and we will cover
them in this section.

1.3.1|Introduction|

The DBI module can make use of the Apache: : DBl module. When it loads, the DBl module tests if the
environment variable $SENV{ MOD_PERL} is set, and if the Apache: : DBI module has already been
loaded. If so, the DBI module will forward every connect() request to the Apache: : DBI module.
Apache: : DBI uses the ping() method to look for a database handle from a previous connect() request,
and testsif this handle is till valid. If these two conditions are fulfilled it just returns the database handle.

If there is no appropriate database handle or if the ping() method fails, Apache: : DBl establishes a new
connection and stores the handle for later re-use. When the script is run again by a child that is still
connected, Apache: : DBl just checks the cache of open connections by matching the host, username and
password parameters against it. A matching connection is returned if available or a new one is initiated
and then returned.

2 29 Jan 2004

mod_perl and Relational Databases 1.3.2 When should this module be used and when shouldn't it be used?

There is no need to delete ttiscomec() statenentsfrom your code. They won't do anything because
theApache: : DBI moduleoveloadsthediscomec{) method with an emptgne.

1.3.2 When should this module be used and when shouldn’t it be|

You will want to use this module if you are opening several databaseetions to the server.
Apache: : DBl will make thempersigent per child, so if you have techildren and each opens two
differentconnetions (with differentconnect(argumentg you will have in total twenty opened apdrsis
tentconnetions. After the initial connect() you will save tle®nnetion time for every connect() request
from yourDBI module. This can be a huge benefit for a server with a high volume of datafifase

You mustnot use this module if you are opening a speaiginedion for each of your users (meaning that
the loginargumentsaredifferent for each user). Eactonnetion will stay persisent and after a certain
period the number of opetbnnetions will reach the allowed limi{configured by the database server)
and new databasmnnedtion opening requests will be refusedndeing your servicaunusable for some

of yourusers.

If you want to usédpache: : DBl but you have bothituationson one machine, at the time of writing the
only solution is to run two Apache/mod_perl servers, one which Apeshe: : DBl and one which does
not.

1.3.3 [Configuration|

After installing this module, theonfiguration is simple - add théollowing diredive toht t pd. conf

Per | Modul e Apache: : DBI

Note that it ismportantto load this module before any othAggache* DBI module and before theBl
moduleitself!

You can skippreloadng DBI , sinceApache: : DBl does that. But there is no harm in leaving it in, as
long as it is loaded aftéxpache: : DBI .

1.3.4 |Preopening DBI connectiong

If you want to make sure thatcannetion will already be opened when your script is first executed after a
server restart, then you should usedb@enect _on_i ni t () method in the startup file to preload every
connetion you are going to use. Fekample:

29 Jan 2004 3

1.3.5 Debugging Apache::DBI

Apache: : DBl - >connect _on_ini t
("DBI: nysql : nyDB: nyserver",
"user name",
"passwd”,

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don’t die on error
AutoCommit => 1, # commit executes immediately

}
)

As noted above, use this method only if you want all of apache to be able to connect to the database servelr
as one user (or as a very few users), i.e. if your user(®ftetively share the&onnetion. Do not use
this method if you want for example one unigqa@nedtion peruser.

Be warned though, that if you calbnnect _on_i ni t () and your database is down, Apachddren
will be delayed at server startup, trying to connect. They won't begin serving requests until either they are
connected, or theonnetion attempt failsDependhg on your DBD driver, this can take sevemdhutes!

1.3.5 [Debugging Apache::DBI|

If you are not sure if this module is working advetised you should enable Debug mode in the startup
scriptby:

$Apache: : DBI : : DEBUG = 1

Startng with ApacheDBI - 0. 84, setting$Apache: : DBl : : DEBUG = 1 will produce only minimal
output. For a full trace you should $#tpache: : DBl : : DEBUG = 2.

After setting the DEBUG level you will see entries in éte or _| og both whermApache: : DBI initial-
izesaconnet¢ion and when it returns one from its cache. Usefélewing command to view the log in
real time (yourerr or _| og might be located at different path, it is set in the Apachsnfiguration
files):

tail -f /usr/local/apache/logs/error_|og
| useal i as (int csh) so | do not have teemenberthepath:

alias err "tail -f /usr/local/apache/logs/error_I|og"

1.3.6 [Database L ocking Riskq

Be very careful when locking the databa@eOCK TABLE ...) or singdar rows if you use
Apache: : DBl or similarpersigentconnetions MySQL threads keep tables locked until the thread ends
(connetion is closed) or the tables are unlocked. If your session die()’s while tables are locked, they will
stay neatly locked as yoaonnetion won't be closeackither.

See the sectioHandling the 'User pressed Stop buttoasefor moreinformation on prevetiion.

4 29 Jan 2004

mod_perl and Relational Databases 1.3.7 Troubleshooting

1.3.7 [Troubleshooting
1.3.7.1 [The Morning Bug

The SQL server keepsannetion to the client open for a limited period of time. In the early days of
Apache: : DBl devebperswere bitten by so callelliorning bug, when every morning the first users to
use the site receivedNm Dat a Ret ur ned message, but after theterything workedfine.

The error was caused Bypache: : DBl returring a handle of the invalidonnetion (the server closed it
because of a timeout), and the script was dying on that errorpiTing() method wasntroducedto
solve this problem, but it didn't workeatoperly till Apache: : DBl version 0.82 was released. In that
version andaftewardsping() was called inside theval block, which resolved thgroblem.

It's possble that someDBD: : drivers don’t have the ping() methadplemented The Apache: : DBI
manpage explains how to wribee.

Another soluion was found - to increase the timequaraneter when staring the database server.
Currently we startupl SQL server with a scripgaf e_nmysql , so we havenodified it to use thisption:

nohup $I edir/nysqgld [sni pped other options] -O wait_tineout=172800

172800 seconds is equal to 48 hours. This change solves the problem, but the ping() methpprorks
erly in DBD: : mysql aswell.

1.3.7.2 [Opening Connections With Different Parameterg

WhenApache: : DBl receives a&onnetion request, before it decides to useeaising cachedconnee

tion it insists that the newonnetion be opened in exactly the same way as the caatrukdion. If you

have one script that sedsit oConmi t and one that does ndtpache: : DBl will make twodifferent
connetions So if for example you have limited Apache to 40 servers at most, instead of having a
maximum of 40 openonnetionsyou may end up witB0.

So these two connect() calls will create tfferentconnetions

ny $dbh = DBI - >connect
("DBI:nysql :test:local host",
{
PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commit executes imediately

}

) or die "Cannot connect to database: $DBl::errstr”;

ny $dbh = DBI - >connect
("DBI:nysql:test:|ocal host",
{
PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 0, # don’t conmit executes imediately

}

) or die "Cannot connect to database: $DBl::errstr”;

29 Jan 2004 5

1.3.7 Troubleshooting

Notice that the only differenceisin the value of Aut oComni t .

However, you are free to modify the handle immediately after you get it from the cache. So aways initiate
connections using the same parameters and set Aut oConti t (or whatever) afterwards. Let’s rewrite the
second connect call to do the right thing (not to create a new connection):

ny $dbh = DBI - >connect
("DBI:nysql:test:|ocal host",

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commit executes imediately

}

) or die "Cannot connect to database: $DBl::errstr"”;
$dbh->{ AutoConmit} = 0; # don't commit if not asked to

When you aren’t sure whether you' re doing the right thing, turn debug mode on.

However, when the $dbh attribute is altered after connect() it affects all other handlers retrieving this
database handle. Therefore it’s best to restore the modified attributes to their original value at the end of
database handle usage. As of Apache: : DBl version 0.88 the caller has to do it manually. The simplest
way to handle thisisto localize the attributes when modifying them:

ny $dbh = DBI->connect(...) ...

| ocal $dbh->{LongReadlLen} = 40;
}

Here the LongReadLen attribute overrides the value set in the connect() call or its default value only
within the enclosing block.

The problem with this approach is that prior to Perl version 5.8.0 this causes memory leaks. So the only
clean alternative for older Perl versionsisto manually restore the dbh’svalues:

nmy @ttrs = gw(LongReadLen PrintError);
ny %rig = ();

ny $dbh = DBI->connect(...) ...

store the val ues away

$orig{$_} = $dbh->{$_} for @ttrs;
do | ocal nodifications

$dbh- >{ LongReadLen} = 40;
$dbh->{PrintError} = 1;

do sonething with the fil ehandle
#o...

now restore the val ues
$dbh->{$_} = $orig{$_} for @ttrs;

Another thing to remember is that with some database servers it's possible to access more than one
database using the same database connection. MySQL is one of those servers. It alows you to use a fully
qualified table specification notation. So if there is a database foo with a table test and database bar with
its own table test, you can always use:

6 29 Jan 2004

mod_perl and Relational Databases 1.3.7 Troubleshooting

SELECT fromfoo.test ...

or:

SELECT from bar.test ...

So no matter what database you have used in the database name string in the connect() call (e.g.:
DBI : nysqgl : f oo: | ocal host) you can still access both tables by using afully qualified syntax.

Alternatively you can switch databases with USE f oo and USE bar, but this approach seems less
convenient, and therefore error-prone.

1.3.7.3 [Cannot find the DBI handler|

You must use DBI : : connect () asin norma DBI usage to get your $dbh database handler. Using the
Apache: : DBl does not eliminate the need to write proper DBI code. Asthe Apache: : DBl man page
states, you should program as if you are not using Apache: : DBl at al. Apache: : DBl will override
the DBI methods where necessary and return your cached connection. Any di sconnect () call will be
just ignored.

1.3.7.4 |Apache:DBI does not wor k|

Make sure you have it installed.

Make sure you configured mod_perl with either:

PERL_CHI LD_I NI T=1 PERL_STACKED_ HANDLERS=1

or

EVERYTHI NG=1

Use the example script eg/startup.pl (in the mod_perl distribution). Remove the comment from the line.

use Apache: : DebugDBI ;

and adapt the connect string. Do not change anything in your scripts for use with Apache: : DBI .

1.3.7.5 [Skipping connection cache during server startup)

Doesyour error_log look like this?

10169 Apache: : DBl Perl Chil dl nitHandl er

10169 Apache: : DBl ski ppi ng connecti on cache during server startup
Dat abase handl e destroyed w t hout explicit disconnect at
/usr/lib/perl5/site_perl/5.005/ Apache/ DBl .pmline 29.

If so you are trying to open a database connection in the parent httpd process. If you do, children will each
get a copy of this handle, causing clashes when the handle is used by two processes at the same time. Each
child must have its own, unique, connection handle.

29 Jan 2004 7

1.4 mysgl_use result vs. mysql_store result.

To avoid this problem, Apache: : DBl checks whether it is called during server startup. If so the module
skips the connection cache and returns immediately without a database handle.

You must usethe Apache: : DBI - >connect _on_i ni t () method in the startup file.

1.3.7.6 |Debugging code which deploys DBI|

To log a trace of DBl statement execution, you must set the DBl _TRACE environment variable. The
Per | Set Env DBI _TRACE directive must appear before you load Apache: : DBl and DBI .

For exampleif you use Apache: : DBI , modify your ht t pd. conf with:

Per | Set Env DBl _TRACE "3=/tnp/dbitrace.| 0g"
Per | Modul e Apache: : DBI

Replace 3 with the TRACE level you want. The traces from each request will be appended to
[t np/ dbi trace. | og. Note that the logs might interleave if requests are processed concurrently.

Within your code you can control trace generation with the trace() method:

DBl - >trace($trace_l evel)
DBl ->trace($trace_l evel, $trace_fil enane)

DBI trace information can be enabled for all handles using this DBI class method. To enable trace infor-
mation for a specific handle use the similar $h- >t r ace method.

Using the handle trace option with a $dbh or $st h is handy for limiting the trace info to the specific bit
of code that you are interested in.

Trace Levels:

0 - trace disabled.

1- trace DBI method callsreturning with results.

2 - trace method entry with parametersand exit with results.

3 - as above, adding some high-level information from the driver and also adding some internal
information from the DBI.

4 - as above, adding more detailed information from the driver and also including DBI mutex
information when using thr eaded perl.

e 5 and above - as above but with more and mor e obscur e infor mation.

1.4 iImysgl use result vs. mysgl store result.

Since many mod_perl developers use mysql as their preferred SQL engine, these notes explain the differ-
ence between nysgl _use_result () andnysqgl _store_result (). Thetwo influence the speed
and size of the processes.

8 29 Jan 2004

mod_perl and Relational Databases 1.5 Optimize: Run Two SQL Engine Servers

TheDBD: : mysql (version 2.0217) documentation includes the following snippet:

nmysql _use_result attribute: This forces the driver to use
nmysql _use_result rather than nysql _store_result. The forner is
faster and | ess nmenory consuming, but tends to bl ock other
processes. (That’'s why nysql _store_result is the default.)

Think about it in client/server terms. When you ask the server to spoon-feed you the data as you use it, the
server process must buffer the data, tie up that thread, and possibly keep any database locks open for a
long time. So if you read a row of data and ponder it for a while, the tables you have locked are till
locked, and the server isbusy talking to you every so often. Thatisnysqgl _use_resul t ().

If you just suck down the whole dataset to the client, then the server is free to go about its business serving
other requests. This results in parallelism since the server and client are doing work at the same time,
rather than blocking on each other doing frequent 1/O. That isnmysql _store_resul t ().

As the mysgl manual suggests: you should not use nysql _use_resul t () if you are doing a lot of
processing for each row on the client side. This can tie up the server and prevent other threads from updat-
ing the tables.

1.5 Optimize: Run Two SQL Engine Servers

Sometimes you end up running many databases on the same machine. These might have very varying
database needs (such as one db with sessions, very frequently updated but tiny amounts of data, and
another with large sets of data that’s hardly ever updated) you might be able to gain alot by running two
differently configured databases on one server. One would benefit from lots of caching, the other would
probably reduce the efficiency of the cache but would gain from fast disk access. Different usage profiles
require vastly different performance needs.

Thisisbasically asimilar ideato having two Apache servers, each optimized for its specific requirements.

1.6 |[Some useful code snippetsto be used with relational
Databases

In this section you will find scripts, modules and code snippets to help you get started using relational
Databases with mod_perl scripts. Note that | work with mysql (|http://www.mysqgl.com|), so the code you
find here will work out of box with mysgl. If you use some other SQL engine, it might work for you or it
might need some changes. YMMV.

1.6.1 [Turning SQL query writing into a short and simple task|

Having to write many queries in my CGI scripts, persuaded me to write a stand alone module that saves
me a lot of time in coding and debugging my code. It also makes my scripts much smaller and easier to
read. | will present the module here, with examples following:

29 Jan 2004 9

http://www.mysql.com/

1.6.2 The My::DB module

Notice the DESTROY block at the end of the module, which makes various cleanups and allows this
modul e to be used under mod_perl and nod_cgi aswell. Note that you will not get the benefit of persis-
tent database handles with mod_cgi.

1.6.2 [The My::DB modul€g

The code/My-DB.pm:

package My:: DB;

use strict;
use 5. 004;

use DBl ;

use vars gwm %) ;
use constant DEBUG => O0;

% =
(
db => {
DB_NAVE => 'foo’,
SERVER => '] ocal host ',
USER => ' put _usernane_here’,
USER_PASSWD => ' put_passwd_here’,

},
)

use Carp gw croak verbose);
#l ocal $SI G__WARN__} = \&Carp:: cl uck;

untaint the path by explicit setting
| ocal $ENV{PATH = '/bin:/usr/bin";

HHHHIEHY

sub new {
ny $proto = shift;
ny $class = ref($proto) || $proto;
nmy $self = {};

connect to the DB, Apache::DBI takes care of caching the connections
save into a dbh - Database handl e obj ect
$sel f->{dbh} = DBI->connect ("DBl: nmysql : $c{db}{DB_NANE}: : $c{db} { SERVER} ",
$c{db}{ USER},
$c{db} { USER_PASSVD} ,
{
PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoConmmit => 1, # commit executes imediately
}
)

or die "Cannot connect to database: $DBl::errstr";

we want to die on errors if in debug node
$sel f - >{dbh}->{Rai seError} = 1 if DEBUG

10 29 Jan 2004

mod_perl and Relational Databases

init the sth - Statenent handl e object
$sel f->{sth} ="";

bl ess ($sel f, $class);
$sel f;

} # end of sub new

REHHBHHHABHHHBAHH AR HARHH AR EH ARG A AR HHBAHH AR SRR HH AR EHHBBHH AR HHBRHHA

HHHHBHHHHRHHH R H AR

Hit# Hit
H#iH SQL Functions #tH
HHH Hit#

RHHHBHHHABHHHBHHHBRBHHBBHH AR HHABHHHA

BHHH AR HH AR R R

print debug nessages

sub d{
we want to print the trace in debug node
print "".join("", @)."\n" if DEBUG

} # end of sub d

RHEHHABHAABHHHBHFHARBHHBBHHH R H AR HAA B HH R HHARHH BB HH R HHA AR HHRRHHH

)

HUHHHHHHHH R
sub sqgl _count _nat ched{

ny $self = shift;

ny $table = shift || '’;

ny $r_conds = shift || [];

my $r_restr = shift || [];
we want to print the trace in debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ".
build the query

ny $do_sqgl = "SELECT COUNT(*) FROM $table ";

my @here = ();

for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",

29 Jan 2004

The sub knows automatically to detect and quote strings

Restrictions are the list of restrictions like (’order by email’)

return a count of matched rows, by conditions

#

$count = sql _count_mat ched($tabl e_nane,\ @onditions,\@estrictions);
#

conditions nust be an array so we can pass nore than one colum with
the same nane.

#

@onditions = (colum => ['conp_sign',’'value'],

foo = ['>",15],

foo = ['<,30],

.

#

#

#

#

#

(caller(0))[3]."1")

1.6.2 The My::DB module

i f DEBUG

11

1.6.2 The My::DB module

$$r_conds[$i],

$$r_conds[$i +1][0],

sqgl _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one
$do_sql .= "WHERE ". join " AND ", @here if @here

restrictions (DONT put conmmas!)
$do_sql .=" ". join" ", @%$r_restr} if @S$r_restr};

d("SQ.: $do_sql") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();
nmy ($count) = $sel f->{sth}->fetchrow array;
d("Result: $count") if DEBUG
$sel f->{sth}->finish

return $count;

} # end of sub sqgl _count_natched

HHAHBHHH R HH B R R R R R R R H R R R R R R

return a count of matched distinct rows, by conditions

#

$count = sql _count_matched_di stinct ($tabl e_nane,\ @ondi tions,\ @estrictions)
#

conditions nust be an array so we can path nore than one colum with
the same nane.

#

@onditions = (colum => ['conp_sign',’value'],

foo = ['>",15],

foo = ['<,30],

)

#

The sub knows automatically to detect and quote strings

#

Restrictions are the list of restrictions like ('order by email’)
#

This a slow inplenmentation - because it cannot use select(*), but
brings all the records in first and then counts them In the next
version of nysqgl there will be an operator 'select (distinct *)

which will nake things rmuch faster, so we will just change the

internals of this sub, without changing the code itself.

#
HHHHHHHBH B H RS R R BT R H R
sub sql _count_nmat ched_di stinct{

ny $self = shift;

ny $table = shift || '’;
ny $r_conds = shift || [];
ny $r_restr = shift || [];

we want to print the trace in debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

12 29 Jan 2004

mod_perl and Relational Databases 1.6.2 The My::DB module

build the query
ny $do_sqgl = "SELECT DI STINCT * FROM $table ";

my @here = ();
for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sql _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one
$do_sql .= "WHERE ". join " AND ", @here if @here

restrictions (DONT put conmas!)
$do_sql .=" ". join " ", @%r_restr} if @$r_restr};

d("SQL: $do_sqgl") if DEBUG
do query

$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();

ny $count = @ 3Psel f->{dbh}->sel ectall _arrayref($do_sql)};
ny (Scount) = $self->{sth}->fetchrow array

d("Result: $count") if DEBUG
S$sel f->{sth}->finish;

return $count;

} # end of sub sqgl _count_mat ched_di stinct

HHHHHHHAHBH AR R AR A A AR R AR A R AR A R R A AR
return a single (first) matched val ue or undef, by conditions and
restrictions
sqgl _get _mat ched_val ue($t abl e_nane, $col um, \ @ondi ti ons,\ @estrictions);

columm is a nane of the colum

#

#

#

#

#

#

#

conditions nust be an array so we can path nore than one colum with
the same nane.
#
#
#
#
#
#
#
#

@onditions = (colum => ['conp_sign', value'],
f oo = ['>",15],
f oo = ['<,30],

)

The sub knows automatically to detect and quote strings
restrictions is a list of restrictions like ('order by email’)

HHHHHBHAHBH AR BH AR B
sub sql _get _mat ched_val ue{

ny $self = shift;

ny $table = shift || '";
ny $colum = shift || '’;
ny $r_conds = shift || [];

29 Jan 2004 13

1.6.2 The My::DB module

}

ny $r_restr = shift || [];

we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ".
build the query

nmy $do_sqgl = "SELECT $col utmm FROM $table *;

ny @here = ();

for(my $i=0;%i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sql _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one

(caller(0))[3].-"1")

$do_sql .= " WHERE ". join " AND ", @here if @bhere;

restrictions (DONT put conmmas!)

$do_sql .=" ". join " ", @%$r_restr} if @$r_restr};

d("SQ.: $do_sqgl ") if DEBUG

do query
return $sel f->{dbh}->sel ectrow array($do_sql);

end of sub sql _get _rmatched_val ue

HHHHHHHBH B H R R AR BT H R R RH RHHH HH RH RH RHH H HRH RHH H H R R R
return a single row of first matched rows, by conditions and
restrictions. The rowis being inserted into @esults_row array

HH B HIFHFFHFRFHFHFEHFRHFEHHHHHR

(val uel,value2,...) or enpty () if none natched

i f DEBUG

sqgl _get _mat ched_row(\ @esul t s_row, $t abl e_nane, \ @ol uims, \ @ondi tions,\ @estrictions);

colums is a list of colums to be returned (usernane, fnane,...)

conditions nust be an array so we can path nore than one colum wth

the sanme nane.

@onditions = (colum => ['conp_sign’,’ value'],
foo = ['>",15],
f oo = ['<",30],
)

The sub knows automatically to detect and quote strings

restrictions is a list of restrictions like ('order by email’)

HHHHHHHAH B H BRI AR 7
sub sql _get _matched_row

14

ny $sel f = shift;

ny $r_row = shift || {};
ny $table = shift || '";
ny $r_cols = shift || [];
ny $r_conds = shift || [];
ny $r_restr = shift || [];

29 Jan 2004

mod_perl and Relational Databases

}

we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ".
build the query

ny $do_sql = "SELECT ";

$do_sql .= join ",", @$r_cols} if @%r_col s};

$do_sgl .= " FROM $table ";

ny @here = ();

for(my $i=0;%i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sql _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one

(caller(0))[3]."1")

$do_sql .= " WHERE ". join " AND ", @here if @bhere;

restrictions (DONT put conmmas!)

$do_sql .=" ". join " ", @%$r_restr} if @$r_restr};

d("SQ.: $do_sqgl ") if DEBUG

do query

@ $r_row} = $sel f->{dbh}->sel ectrow array($do_sql);

end of sub sql _get_mat ched_row

HHHHHHHHH
return a ref to hash of single matched row, by conditions

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

and restrictions. return undef if nothing matched.
(columl => valuel, colum2 => value2) or enpty ()

if non matched

sgl _get _hash_ref ($t abl e_nane, \ @ol ums, \ @ondi ti ons,\ @estrictions);

colums is a list of colums to be returned (usernane, fnane,...)

condi tions nust be an array so we can path nore than one colum wth

the sane nane.

@onditions = (colum => ['conp_sign’,’ value'],
f 0o => [’>",15],
foo = ['<,30],
)

The sub knows automatically to detect and quote strings

restrictions is a list of restrictions like (' order by email’)

HHHHHBHBH B Y B R R RH R 7
sub sql _get _hash_ref{

ny $self = shift;

ny $table = shift || '’;
ny $r_cols = shift || [];
ny $r_conds = shift || [];
ny $r_restr = shift || [];

we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ".

29 Jan 2004

(caller(0))[3]."1")

1.6.2 The My::DB module

i f DEBUG

i f DEBUG

15

1.6.2 The My::DB module

build the query

ny $do_sql = "SELECT ";

$do_sql .= join ",", @%r_cols} if @$r_cols};
$do_sql .= " FROM $table ";

ny @here = ();

for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r _conds[$i +1] [O] ,
sql _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one
$do sql .= " WHERE ". join " AND ", @where if @here;

restrictions (DONT put commas!)
$do_sql .= " ". join " ", @%$r_restr} if @$r_restr};

d("SQL: $do_sql") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();

return $sel f->{sth}->fetchrow _hashref;

} # end of sub sqgl _get_hash_ref

HUHHH BT H R H R TR R R R R R R R R R H
returns a reference to an array, matched by conditions and
restrictions, which contains one reference to array per row. |f
there are no rows to return, returns a reference to an enpty array:

[

[arrayl],

[arrayN],

I

$ref = sql _get_matched_rows_ary_ref ($tabl e_nanme,\ @ol ums, \ @ondi tions,\@estrictions);
colums is a list of colums to be returned (usernane, fnane,...)

condi tions nust be an array so we can path nore than one colum wth
the sane name. @onditions are being cancatenated with AND

@onditions = (colum => ['conp_sign’',’ value'],
f oo = ['>,18],
foo = ['<,30],
)i

results in
WHERE foo > 15 AND foo < 30

to make an OR | ogi c use (then ANDed)
@onditions = (colum => [’ conp_sign’,[valuel ,’value2']],

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
foo = ["=",[15,24]],

16 29 Jan 2004

mod_perl and Relational Databases 1.6.2 The My::DB module

bar = ['=",[16,21]],

)
results in
WHERE (foo = 15 OR foo = 24) AND (bar = 16 OR bar = 21)

The sub knows automatically to detect and quote strings

restrictions is a list of restrictions like ('order by enail’)

H oH oH H H H HH R

HHHHHHHAH B H SRR AR H S
sub sql _get _matched_rows_ary_ref{

ny $sel f = shift;
ny $table = shift ||
ny $r_cols = shift || [];
ny $r_conds = shift || [];
ny $r_restr = shift || [];
we want to print in the trace debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG
build the query
my $do_sql = "SELECT ";
$do_sql .= join ",", @%$r_cols} if @%r_cols};
$do_sqgl .= " FROM $table "
my @here = ();

for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {

if (ref $$r_conds[$i+1][1] eq ' ARRAY') {
multi condition for the same field/ conparator to be ORed
push @here, map {"($_)"} join " OR "
map { join " ",
$r _conds->[$i],
$r_conds->[$i +1][0],
sqgl _quot e(sql _escape($.));
} @$%$r_conds->[$i+1][1]};
} else {
single condition for the sane field/ conparator
push @here, join "
$r_conds->[$i],
$r_conds->[$i +1][0],
sql _quot e(sql _escape($r_conds->[$i +1][1]));

}
} # end of for(ny $i=0;$i <@ $r_conds}; $i =$i +2

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @bhere if @here

restrictions (DONT put conmmas!)
$do_sql .=" ". join " ", @%r_restr} if @$r_restr};

d("SQL: $do_sqgl") if DEBUG

do query
return $sel f->{dbh}->sel ectal |l _arrayref($do_sql);

} # end of sub sql _get_matched_rows_ary_ref

29 Jan 2004 17

1.6.2 The My::DB module

HHEHHHHAHBH BB A A R A R R A R R A AR
insert a single rowinto a DB

sql _i nsert_row $t abl e_nane, \ %dat a, $del ayed) ;

data is hash of type (columl => valuel ,colum2 => value2 ,)

* The sub knows automatically to detect and quote strings

#

#

#

#

#

#

$del ayed: 1 => do del ayed insert, O or none passed => i nmedi ate
#

#

#

* The insert id delayed, so the user will not wait untill the insert
will be conpleted, if many select queries are running

#

BERHHRH AR R R

sub sql _insert_row

ny $self = shift;

ny $table = shift || '";

ny $r_data = shift || {};

ny $del ayed = (shift) ? 'DELAYED : '’;

we want to print in the trace debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

build the query

ny $do_sqgl = "I NSERT $del ayed | NTO $table ";

$do_sql ="(".join(",", keys % $r_data}).")";

$do_sql =" VALUES (";

$do_sql =join ",", sqgl_quote(sql_escape(values % $r_data}));
$do_sql =")";

d("SQL: $do_sql") if DEBUG
do query

$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);

$sel f->{sth}->execute();
} # end of sub sql _insert_row
HHHHHBHBH B YRR B HBH B YRR BB R R R B R R R R R R R R R
update rows in a DB by condition
#
sql _update_rows($tabl e_nane, \ %lat a,\ @ondi ti ons, $del ayed) ;
#
data is hash of type (columl => valuel ,colum2 => value2 ,)
#
conditions nust be an array so we can path nore than one colum with
the same nane.
@onditions = (colum => ['conp_sign', ' value'],
foo = ['>",15],
f oo = ['<,30],
)
#
#
#
#
#

$del ayed: 1 => do del ayed insert, 0 or none passed => i nmedi ate

* The sub knows automatically to detect and quote strings

18 29 Jan 2004

mod_perl and Relational Databases 1.6.2 The My::DB module

#
HHHHAEHHAH B H R AR
sub sql _updat e_rows{
ny $self = shift;
ny $table = shift || '";
ny $r_data = shift || {};
nmy $r_conds = shift || [];

my $del ayed = (shift) ? 'LONPRIORITY : '';
we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG
build the query

nmy $do_sql = "UPDATE $del ayed $table SET “;

$do_sql =join","
mp { "$ =".join "",sqgl_quote(sql _escape($$r_data{$_})) } keys % $r_data};

my @here = ();
for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r _conds[$i +1] [O] ,
sqgl _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @bhere if @here
d("SQ.: $do_sql") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);

$sel f->{sth}->execute();
nmy ($Scount) = $self->{sth}->fetchrow array;
#
d("Result: $count") if DEBUG

} # end of sub sqgl _update_rows

HHHHBHHH R HH B R R R R R R R R R

)i

* The sub knows automatically to detect and quote strings

delete rows from DB by condition

#

sql _del et e_rows($t abl e_nane, \ @ondi tions);

#

conditions nust be an array so we can path nore than one colum with
the same nane.

@onditions = (colum => [’ conp_sign', value'],
f oo => ['>', 15],

foo = ['<,30],

.

#

#

#

#

HUHHHBHBH B YR BB B HBH B3
sub sql _del ete_rows{

29 Jan 2004 19

1.6.2 The My::DB module

ny $self = shift;

ny $table = shift || '’;

ny $r_conds = shift || [];
we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG
build the query

ny $do_sqgl = "DELETE FROM $table ";

my @here = ();

for(ny $i=0; $i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sqgl _quot e(sql _escape($$r_conds[$i +1][1]));

Must be very careful with deletes, inagine somehow @where is
not getting set, "DELETE FROM NAME" del etes the contents of the table
warn("Attenpt to delete a whole table $table fromDB\n!!!"), return unl ess @here

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @here

d("SQ.: $do_sqgl") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f - >{ st h}->execute();

} # end of sub sqgl _delete_rows

HHEHHHHAH B H R AR A R A R R A R R AR
executes the passed query and returns a reference to an array which
contains one reference per row If there are no rows to return

returns a reference to an enpty array.

#

$r_array = sql _execute_and_get_r_array($query);

#

#

HHHHHBHBH B HHHHRH R AR H 77

sub sql _execute_and_get _r_array{

ny $sel f shift;
ny $do_sql shift || ';

we want to print in the trace debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

d("SQL: $do_sql") if DEBUG
$sel f->{dbh}->sel ectal | _arrayref($do_sql);

} # end of sub sqgl _execute_and_get_r_array

HUHHHHBHBH B U U ARG R BH B YRR R B R R R B R R R R R R R R
lock the passed tables in the requested node (READ| WRI TE) and set

20 29 Jan 2004

mod_perl and Relational Databases 1.6.2 The My::DB module

internal flag to handl e possible user abortions, so the tables wll
be unl ocked thru the END{} bl ock

sgl _l ock_tables(’tabl el ,’ | ocknode’',..,’ tableN ,’|ocknode

#
#
#
#
|l ocknode = (READ | WRI TE)

#

_side_effect_ $self->{lock} ='On’
#

HUHHHBHH BB
sub sql _| ock_t abl es{

ny $self = shift;

ny %modes = @;

return unl ess %odes

ny $do_sqgl = 'LOCK TABLES ’;
$do_sql .= join ",", map {"$_ $nodes{$_}"} keys %pndes;

we want to print the trace in debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

d("SQ.: $do_sql") if DEBUG

$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();

Enough to set only one lock, unlock will renove them all
$sel f->{lock} ='On";

} # end of sub sqgl _| ock_tables

BHHHBRHHH R R R

unlock all tables, unset internal flag to handl e possible user
abortions, so the tables will be unlocked thru the END{} bl ock
#

sql _unl ock_t abl es()

#

_side_effect_: delete $sel f->{lock}

#

HUHHHHHHH R
sub sql _unl ock_t abl es{
ny $self = shift;

we want to print the trace in debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

$sel f - >{ dbh} - >do(" UNLOCK TABLES");

Enough to set only one lock, unlock will renpve them al
del ete $sel f->{l ock};

} # end of sub sqgl _unl ock_tables

#

#

return current date formatted for a DATE field type
YYYYMVDD

29 Jan 2004 21

1.6.2 The My::DB module

#
Note: since this function actually doesn’t need an object it’'s being
call ed without paranmeter as well as procedural cal
HHHHH R BB
sub sql _dat e{
ny $self = shift;

ny ($nday, $non, $year) = (localtine)[3..5];
return sprintf "9%9.4d%. 2d%®. 2d", 1900+$year, ++$non, $nday;

} # end of sub sqgl _date

#

#

return current date formatted for a DATE field type

YYYYMVDDHHMVES

#

Note: since this function actually doesn’t need an object it’'s being
called without paranmeter as well as procedural cal

HHHHIEHH AR

sub sql _datetine{
ny $self = shift;

ny ($sec, $mi n, $hour, $nday, $non, $year) = local tine();
return sprintf "9%0.4d%0. 2d%0. 2d%0. 2d%®. 2d%®. 2d", 1900+$year , ++$non, $nday, $hour, $ni n, $sec

} # end of sub sql _datetine
Quote the list of parameters. Paranmeters consisting entirely of

digits (i.e. integers) are unquoted
print sql _quote("one",2,"three"); => 'one’', 2, 'three’

HHHHAHHRHRHRH
sub sql _quote{ map{ /~(\d+ NULL)$/ ? &_: "\'$ \"" } @ }
Escape the list of parameters (all unsafe chars like ", are escaped)

We nake a copy of @ since we mght try to change the passed val ues
producing an error when nodification of a read-only value is attenpted
HHHHHBHBHBHIH

sub sql _escape{ my @ = @; map { s/ ([\'\\])/\\$1/g;$_} @ }

DESTROY makes all kinds of cleanups if the fuctions were interuppted
before their conpletion and haven’t had a chance to make a clean up
it
sub DESTROY{

ny $self = shift;

$sel f->sqgl _unl ock_tables() if $self->{lock};

$sel f->{sth}->finish if $sel f->{sth};

$sel f->{dbh}->di sconnect if $sel f->{dbh};
} # end of sub DESTROY

Don’t renove
1

module

22 29 Jan 2004

mod_perl and Relational Databases 1.6.3 My::DB Module's Usage Examples

(Note that you will not find this on CPAN. at least not yet :)

1.6.3 My::DB Modul€ s Usage Examples

Touse My: : DB inyour script, you first have to create aMy: : DB object:

use vars gw $db_obj);
nmy $db_obj = new My::DB or croak "Can't initialize My::DB object: $!'\n";

Now you can use any of My: : DB’'s methods. Assume that we have a table called tracker where we store
the names of the users and what they are doing at each and every moment (think about an online commu-
nity program).

| will start with avery simple query--1 want to know where the users are and produce statistics. t r acker
is the name of the table.

fetch the statistics of where users are

ny $r_ary = $db_obj->sql _get _matched_rows_ary_ref
("tracker",

[gW(wher e_user _are)],

)

nmy %tats O;

ny $total 0;

foreach my $r_row (@r_ary){
$stat s{$r_row >[0] } ++;
$t ot al ++;

}
Now let’s count how many users we have (intableuser s):

nmy $count = $db_obj - >sqgl _count _mat ched("users");

Check whether a user exists:

ny $usernane = 'stas’;

ny $exists = $db_obj - >sqgl _count _nat ched
("users",

[usernane => ["=", $usernane]]

);

Check whether a user is online, and get the time since she went online (si nce is a column in the
tracker table, it tells us when a user went online):

ny @ow = ();
$db_obj - >sql _get _mat ched_r ow
(\ @ ow,
"tracker",
[* UNI X_TI MESTAMP(si nce) '],
[usernane => ["=", $user nane]]

)i

29 Jan 2004 23

1.6.3 My::DB Modul€e's Usage Examples

if (@ow {
ny $idle = int((tine() - $rowf0]) / 60);
return "Current status: Is Online and idle for $idle mnutes.";

}

A complex query. | join two tables, and | want a reference to an array which will store a dice of the
matched query (LI M T $of f set, $hi t s) sorted by user nane. Each row in the array is to include
thefields from the user s table, but only thoselisted in @ er bose_col s. Then we print it out.

my $r_ary = $db_obj->sql _get _matched_rows_ary_ref
(
"tracker STRAIGHT_JO N users",
[map {"users.$_"} @erbose_col s],

[1,

["WHERE tracker. user nane=users. user nane",
"ORDER BY users. user nanme",
"LIMT %$of fset, $hits"],
)

foreach nmy $r_row (@r _ary){
print
}

Another complex query. The user checks checkboxes to be queried by, selects from lists and types in
match strings, we process input and build the @vher e array. Then we want to get the number of matches
and the matched rows as well.

my @earch_keys = gw choi cel choice2);
my @here = ();
Process the checkboxes - we turn theminto a regul ar expression
foreach (@earch_keys) {
next unl ess defined $g->paranm($_) and $g->param($_);
ny $regexp = "[".join("", $g->param($_))."]";
push @where, ($_ => [' REGEXP , $regexp]);
}

Add the itens selected by the user fromour lists
sel ected => exact match
push @where, (country => [’ =", $qg->paran(’ country’)]) if $qg->paran(’country’);

Add the paraneters typed by the user
foreach (gw(city state)) {
push @were, ($_ => [’ LIKE , $g->param($_)]) if $g->paran($);

}
Count all that matched the query

ny $total _matched_users = $db_obj - >sql _count _nat ched
(
"users",

\ @where,
E

Now process the orderby
ny $orderby = $qg->paran(’ orderby’) || ’usernane’;

Do the query and fetch the data

24 29 Jan 2004

mod_perl and Relational Databases 1.7 Maintainers

ny $r_ary = $db_obj->sql _get _matched_rows_ary_ref
(

"users",

\ @i spl ay_col ums,

\ @where,

[" ORDER BY $orderby",
"LIMT $of fset, $hits"],

);

sql _get _matched rows_ary_ref knows to handle both ORed and ANDed params. This example
shows how to use OR on parameters:

This snippet is an implementation of awatchdog. Our users want to know when their colleagues go online.
They register the usernames of the people they want to know about. We have to make two queries: one to
get alist of usernames, the second to find out whether any of these usersis online. In the second query we
use the OR keyword.

check who we are | ooking for
$r_ary = $db_obj->sqgl _get _matched_rows_ary_ref

("wat chdog",
[aw(wat ched)],
[usernane => [’ =", $usernane)],

1,
E

put theminto an array
ny @watched = map {$_->[0]} @ $r_ary};

my %ratched = ();
Does the user have some registered usernanes?
if (@atched) {

Try to fetch all the users who match the usernanes exactly.
Put it into an array and conpare it with a hash
$r_ary = $db_obj->sqgl _get _matched_rows_ary_ref

("tracker",
[gw(user nane)],
[usernane => ['=",\ @at ched],

]
E

map {$matched{$_->[0]} = 1} @ $r_ary};
}

Now %rat ched i ncludes the usernames of the users who are being
wat ched by $username and currently are online.

1.7 Maintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

29 Jan 2004 25

1.8 Authors

® Stas Bekman <stas (at) stason.org>

1.8

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

26

Authors

29 Jan 2004

mod_perl and Relational Databases Table of Contents:

Table of Contents:

1 | mod jﬂl and Relational Databases)|
11 Descriptiod. . .
12 IVVhy Relanonal (SOL) Databasesi .
1.3 |[Apache::DBI - Initiate a persistent database connectlod

1.3.1 [Introduction]

132 I\Nhen should this module be used and when shouldn tit be used’/] .
1.3.3 [Configuration :
134 |Preopen| ng DBI connectl onsi
1.3.5 |Debugging Apache::DBI|.
1.3.6 |Database Locking Risky .
1.3.7 |Troubleshooting
1.3.7.1 [The Morning Bug .
1.3.7.2 [Opening Connections With leferent Parameters!
1.3.7.3 |Cannot find the DBI handler .
1.3.7.4 [Apache:DBI does not work|
1.3.7.5 [Skipping connection cache during server aartupl
1.3.7.6 [Debugging code which deploys DBI|
1.4 Imysgl use result vs. mysgl store result.|
1.5 |Optimize: Run Two SOL Engine Servery . .
1.6 |Some useful code snippets to be used with rel ational Databased
1.6.1 |Turning SQL gquery writing into a short and simpletask| .
1.6.2 [The My::DB modulg

=
WO OWWOWOWOMONNNOUURBRAWWWNNDNDDNPE

1.6.3 IMy DB Module s Usage Exampled 2
1.7 Maintainerg 25
18 26

29 Jan 2004 i

	1€€mod_perl and Relational Databases
	1.1€€Description
	1.2€€Why Relational †SQL‡ Databases
	1.3€€Apache::DBI - Initiate a persistent database connection
	1.3.1€€Introduction
	1.3.2€€When should this module be used and when shouldn't it be used?
	1.3.3€€Configuration
	1.3.4€€Preopening DBI connections
	1.3.5€€Debugging Apache::DBI
	1.3.6€€Database Locking Risks
	1.3.7€€Troubleshooting
	1.3.7.1€€The Morning Bug
	1.3.7.2€€Opening Connections With Different Parameters
	1.3.7.3€€Cannot find the DBI handler
	1.3.7.4€€Apache:DBI does not work
	1.3.7.5€€Skipping connection cache during server startup
	1.3.7.6€€Debugging code which deploys DBI

	1.4€€mysql_use_result vs. mysql_store_result.
	1.5€€Optimize: Run Two SQL Engine Servers
	1.6€€Some useful code snippets to be used with relational Databases
	1.6.1€€Turning SQL query writing into a short and simple task
	1.6.2€€The My::DB module
	1.6.3€€My::DB Module's Usage Examples

	1.7€€Maintainers
	1.8€€Authors

