Debugging mod_perl C Internals 1 Debugging mod_perl C Internals

1 Debugging mod_perl CInter nals

29 Jan 2004 1

1.1 Description

1.1 Description|

This docunentexplains how to debug C code under mod_jreeluding mod_ perl cordtself.

For certaindebuging purposes you may find useful to read first tbibowing notes on mod_peihter-
nals Apache 2.antegration andmod_perl-specifiéunctionality flow.

1.2 |Debug noteg

META: needs morerganization

META: there is a newdiredive CordDumpDiredory in 2.0.45, need to check whether we should mention
it.

META: there is a new compile-time option in perl-5.9.0+: -DDEBUG_LEAKING_SCALARS, which
prints out the addresses of leaked SVs and new_SV() can be used to discover where those &lds were
cated (seeperhackpod for moranfo)

META: httpd has quite a lot of useful debug irffietp://httpd.apache.org/dev/delging.html (need to add
this link to mp1 docs asell)

META: profiling: need a new entry girofiling. + running mod_perl under gprddefining GPROF when
compiling uses thanoncorrol() funcion to disable gproprofiling in the parent, and enable it only for
requesprocesmg in children(or in one_procesmode).

META: Jeff Trawick wrote a few useful debug modules, for httpd-gvéd backrace (similar to bt in
gdb, but doesn't require the core file) andd_whatkillelus (gives the info about the request that caused
the segfault)http://httpd.apache.org/~trawick/exd¢em hook.htm|l

1.2.1 [Setting gdbbreakpointswith mod perl built adDSQ

If mod_perl is built as a DSO module, you cannot sebtbalpointin the mod_perl source files when the
httpd program gets loaded into tdebuger. The reason is simple: At this moméittipd has no idea about
mod_perl module yet. After theonfiguration file is processed and the mod_perl DSO module is loaded
then thebrealpointsin the source of mod_perl itself can 4.

The trick is to break apr_dso_load, let it loadlibmodperl.so, then you can sdtrealpointsanywhere in
the modpertode:

% gdb httpd

(gdb) b apr_dso_| oad

(gdb) run - DONE_PROCESS

[New Thread 1024 (LWP 1600)]
[Switching to Thread 1024 (LW, 1600)]

2 29 Jan 2004

http://httpd.apache.org/dev/debugging.html
http://httpd.apache.org/~trawick/exception_hook.html

Debugging mod_perl C Internals 1.2.2 Starting the Server Fast under gdb

Breakpoint 1, apr_dso_l oad (res_handl e=0xbf f f b48c, pat h=0x81lladcc
"/ hone/ st as/ apache. or g/ modper | - per | nodul e/ src/ nodul es/ perl/1i bnodperl . so"
pool =0x80ela3c) at dso.c: 138

141 void *os_handl e = dl open(path, RTLD NOW| RTLD GLOBAL);

(gdb) finish

Value returned is $1 = 0

(gdb) b nodperl _hook_init
(gdb) continue

This example shows how to set a breakpoint at modper|_hook init.

To automate things you can put those in the .gdb-jump-to-init file:

b apr_dso_I oad
run -DONE_PROCESS -d ‘pwd‘'/t -f ‘pwd'/t/conf/httpd. conf

finish
b rodper| _hook_init
continue

and then start the debugger with:

% gdb / hone/ stas/ httpd-2.0/bin/httpd -conmand \
“pwd' /t/.gdb-junmp-to-init

1.2.2 |Starting the Server Fast under gdhb|

When the server is started under gdb, it first loads the symbol tables of the dynamic libraries that it sees
going to be used. Some versions of gdb may take ages to complete this task, which makes the debugging
very irritating if you have to restart the server all the time and it doesn’t happen immediately.

Thetrick isto set theaut o- sol i b- add flagto O:

set auto-solib-add O
as early as possible in ~/.gdbinit file.

With this setting in effect, you can load only the needed dynamic libraries with sharedlibrary gdb
command. Remember that in order to set a breakpoint and step through the code inside a certain dynamic
library you haveto load it first. For example consider this gdb commandsfile:

. gdb- commands

file ~/httpd/ prefork/bin/httpd

handl e Sl GPI PE pass

handl e S| GPl PE nost op

set auto-solib-add O

b ap_run_pre_config

run -d ‘pwd‘'/t -f ‘pwd‘'/t/conf/httpd. conf \
- DONE_PROCESS - DAPACHE2 - DPERL_USEI THREADS
sharedl i brary nod_perl

b rodper| _hook_init

start: nodperl _hook_init

29 Jan 2004 3

1.2.2 Starting the Server Fast under gdb

continue
restart: ap_run_pre_config
continue
restart: nodperl _hook_init
continue
b apr_pol
continue

| oad APR/ Perl 1 O Perll QO so
sharedlibrary Perll O
b Perl| | GAPR_open

which can be used as:

% gdb - cormmand=. gdb- comrands

This script stops in modper!_hook _init(), so you can step through the mod_perl startup. We had to use the
ap_run_pre_config so we can load the libmodperl.so library as explained earlier. Since httpd restarts on
the start, we have to continue until we hit modperl_hook_init second time, where we can set the breakpoint
at apr_poll, the very point where httpd polls for new request and run again continue so it'll stop at
apr_poll. This particular script passes over modperl_hook_init(), since we run the cont i nue command a
few times to reach the apr_poll breakpoint. See the [Precooked gdb Startup Scriptg section for standalone
script examples.

When gdb stops at the function apr_poll it's a time to start the client, that will issue a request that will
exercise the server execution path we want to debug. For example to debug the implementation of
APR: : Pool we may run:

%t/ TEST -run apr/ poo

which will trigger the run of a handler in t/response/TestAPR/pool.pm which in turn tests the APR: : Pool
code.

But before that if we want to debug the server response we need to set breakpoints in the libraries we want
to debug. For example if we want to debug the function Per| | QAPR open which resides in
APR/Per|10/Perl10.s0 we first load it and then we can set a breakpoint in it. Notice that gdb may not be
ableto load alibrary if it wasn’t referenced by any of the code. In this case we have to load this library at
the server startup. In our example we load:

Per | Modul e APR: : Perl | O

in httpd.conf. To check which libraries’ symbol tables can be loaded in gdb, run (when the server has been
started):

gdb> info sharedlibrary
which also shows which libraries are |loaded already.

Also notice that you don’t have to type the full path of the library when trying to load them, even a partial
name will suffice. In our commands file example we have used shar edl i brary nod_per| instead
of sayingshar edl i brary nod_perl . so.

4 29 Jan 2004

Debugging mod_perl C Internals 1.2.2 Starting the Server Fast under gdb

If you want to set breakpoints and step through the code in the Perl and APR core libraries you should
load their appropriate libraries:

gdb> sharedlibrary |ibperl
gdb> sharedlibrary |ibapr
gdb> sharedlibrary l|ibaprutil

Setting auto-solib-add to 0 makes the debugging process unusual, since originally gdb was loading the
dynamic libraries automatically, whereas now it doesn’t. Thisis the price one has to pay to get the debug-
ger starting the program very fast. Hopefully the future versions of gdb will improve.

Just remember that if you try to step-in and debugger doesn’'t do anything, that means that the library the
function is located in wasn't loaded. The solution is to create a commands file as explained in the begin-
ning of this section and craft the startup script the way you need to avoid extra typing and mistakes when
repeating the same debugging process again and again.

Under threaded mpms (e.g. worker), it's possible that you won’'t be able to debug unless you tell gdb to
load the symbols from the threads library. So for example if on your OS that library is called libpthread.so
make sure to run:

sharedlibrary |ibpthread

somewhere after the program has started. See the|Precooked gdb Startup Scriptd section for examples.

Another important thing is that whenever you want to be able to see the source code for the code you are
stepping through, the library or the executable you are in must have the debug symbols present. That
means that the code has to be compiled with -g option for the gcc compiler. For example if | want to set a
breakpoint in /lib/libc.so, | can do that by loading:

gdb> sharedlibrary /1ib/libc.so

But most likely that this library has the debug symbols stripped off, so while gdb will be able to break at
the breakpoint set inside this library, you won't be able to step through the code. In order to do so, recom-
pile the library to add the debug symbols.

If debug code in response handler you usualy start the client after the server was started, when doing this
alot you may find it annoying to need to wait before the client can be started. Therefore you can use afew
tricks to do it in one command. If the server starts fast you can use sleep():

% ddd - conmand=. debug- modperl-init & ; \
sleep 2 ; t/TEST -verbose -run apr/ pool

or the Apache: : Test framework’s- pi ng=bl ock option:

% ddd - conmand=. debug- nmodperl-init & ; \
t/ TEST -verbose -run -ping=bl ock apr/pool

which will block till the server starts responding, and only then will try to run the test.

29 Jan 2004 5

1.2.3 Precooked gdb Startup Scripts

1.2.3 [Precooked gdb Startup Scriptg

Here are afew startup scripts you can use with gdb to accomplish one of the common debugging tasks. To
execute the startup script, simply run:

% gdb - command=. debug-script-fil ename

They can be run under gdb and any of the gdb front-ends. For example to run the scripts under ddd substi-
tute gdb with ddd:

% ddd - conmand=. debug-script-fil ename

® Debugging mod_perl Initialization

The code/.debug-modper|-init:

HoHHH R HH

This gdb startup script breaks at the nodperl _hook_init() function,
which is useful for debug things at the nodperl init phase

I nvoke as:
gdb - command=. debug- nodper| -init

see ADJUST notes for things that nmay need to be adjusted

ADJUST: the path to the httpd executable if needed
file ~/httpd/ worker/bin/httpd

handl e Sl GPI PE nost op

handl e S| GPI PE pass

set

defi

end

defi

end

defi

end

defi

auto-solib-add 0

ne nyrun
tbreak main

break ap_run_pre_config

ADIJUST: the httpd.conf file's path if needed

ADJUST: add - DPERL_USEI THREADS t o debug threaded npns

run -d ‘“pwd‘'/t -f ‘pwd'/t/conf/httpd. conf - DONE_PROCESS - DAPACHE2
continue

ne nodperl _init
sharedlibrary nod_perl
b nodperl _hook_init
continue

ne sharedap

ADJUST: uncoment next line to debug threaded npns
#sharedl i brary |ibpthread

sharedlibrary apr

sharedlibrary apruti

#sharedl i brary nod_ssl. so

continue

ne sharedperl

29 Jan 2004

Debugging mod_perl C Internals 1.2.3 Precooked gdb Startup Scripts

sharedlibrary |ibper
end

start the server and run till nodperl_hook_init on start

nmyrun
nodper| _init

ADJUST: uncomment to reach nodperl _hook_init on restart
#conti nue
#conti nue

ADJUST: unconmment if you need to step through the code in apr |ibs
#shar edap

ADJUST: uncomment if you need to step through the code in perlib
#shar edper |

startup script breaks at the modper | _hook _i ni t () function, which is useful for debugging code
at the modper!’ sinitialization phase.

® Debugging mod_perl’s Hooks Registeration With httpd

Similar to the previous startup script, the code/.debug-modper|-register:

This gdb startup script allows to break at the very first invocation
of nod_perl initialization, just after it was | oaded. Wen the

perl _nodule is | oaded, and its pointer struct is added via
ap_add_nodul e(), the first hook that will be called is

nodper | _regi ster_hooks().

I nvoke as:
gdb - command=. debug- nodper| -regi ster

HoH R H R HHHFHH

see ADJUST notes for things that may need to be adjusted

defi ne sharedap
sharedlibrary apr
sharedlibrary apruti
#sharedl i brary nod_ssl. so
end

defi ne sharedper
sharedlibrary |ibper
end
#H# Run ###
ADJUST: the path to the httpd executable if needed
file ~/httpd/ prefork/bin/httpd
handl e Sl GPlI PE nost op
handl e Sl GPl PE pass
set auto-solib-add O
tbreak main

assuming that nod_dso is conpiled in

29 Jan 2004 7

1.2.3 Precooked gdb Startup Scripts

b | oad_nodul e

ADJUST: the httpd.conf file's path if needed

ADJUST: add - DPERL_USEI THREADS to debug threaded npns
run -d ‘pwd‘/t -f ‘pwd'/t/conf/httpd.conf \

- DONE_PROCESS - DNO_DETACH - DAPACHE2

skip over 'threak main’

conti nue

In order to set the breakpoint in nod_perl.so, we need to get to
the point where it’s | oaded.

#

Wth static nod_perl, the bp can be set right away

#

Wth DSO nod_perl, nmbd_dso’s | oad_nodul e() | oads the nod_perl.so
object and it inmmediately calls ap_add_nodul e(), which calls
nodper| _regi ster_hooks(). So if we want to bp at the latter, we need
to stop at |oad_nodul e(), set the ’'bp nodperl _register_hooks’ and
then continue

HH R H R

Assumi ng that ' LoadModul e perl _nodule’ is the first LoadModul e
directive in httpd.conf, you need just one 'continue after
"ap_add_module’. If it’s not the first one, you need to add as nany
"continue’ conmmands as the nunber of 'LoadMbdul e foo' before

perl _nodul e, but before setting the 'ap_add_nodul e’ bp.

If mod_perl is conpiled statically, everything is already prel oaded
so you can set nodperl_* the breakpoints right away

HH R HHHFHH

b ap_add_nodul e
conti nue

sharedlibrary nod_perl
b nodper!| _regi ster_hooks
continue

#b nodper!| _hook_init

#b nodperl| _config_srv_create

#b nodperl| _startup

#b nodper! _i nit _vhost

#b nodper!| _dir_config

#b nodper!| _cnd_| oad_nodul e
#nodper| _confi g_appl y_Per | Modul e

ADJUST: uncomment next |ine to debug threaded npns
#sharedli brary |ibpthread

ADJUST: unconmment if you need to step through the code in apr |ibs
#shar edap

ADJUST: uncomment if you need to step through the code in perlib
#shar edper|

8 29 Jan 2004

Debugging mod_perl C Internals 1.2.3 Precooked gdb Startup Scripts

startup script breaks at the modper | _r egi st er _hooks(), which isthe very first hook called in
the mod_perl land. Therefore use this one if you need to start debugging at an even earlier entry point
into mod_perl.

Refer to the notes inside the script to adjust it for a specific httpd.conf file.
® Debugging mod_perl XS Extensions

The code/.debug-modper|-xs:

This gdb startup script breaks at the npxs_Apache__Filter_print()
function fromthe XS code, as an exanpl e how you can debug the code
in XS extensions.

I nvoke as:

gdb - command=. debug- nodper| - xs

and then run:

t/ TEST -v -run -ping=block filter/api

HoHHEH R HHFHFHH

see ADJUST notes for things that nmay need to be adjusted

ADJUST: the path to the httpd executable if needed
file /hone/stas/httpd/ worker/bin/httpd

handl e Sl GPI PE nost op

handl e S| GPI PE pass

set auto-solib-add O

define nmyrun
tbreak main
break ap_run_pre_config
ADJUST: the httpd.conf file's path if needed
ADJUST: add - DPERL_USEI THREADS to debug threaded npns
run -d ‘“pwd‘'/t -f ‘pwd'/t/conf/httpd. conf \
- DONE_PROCESS - DNO_DETACH - DAPACHE2
continue
end

defi ne sharedap
ADJUST: uncoment next line to debug threaded npns
#sharedl i brary |ibpthread
sharedlibrary apr
sharedlibrary apruti
#sharedl i brary nod_ssl. so
continue
end

defi ne sharedper
sharedlibrary Iibper
end

defi ne gopol

b apr_poll
conti nue

29 Jan 2004 9

1.2.3 Precooked gdb Startup Scripts

10

conti nue
end

define mybp
| oad Apache/Filter.so
sharedlibrary Filter
b npxs_Apache__Filter_print
no | onger needed and they just nake debuggi ng harder under threads
di sable 2
di sable 3
continue
end

nmyrun
gopol |
nybp

ADJUST: uncomment if you need to step through the code in apr |ibs
#shar edap

ADJUST: uncormment if you need to step through the code in perlib
#shar edper|

startup script breaks at the npxs_Apache__Filter_print() function implemented in
xs/Apache/Filter/Apache__Filter.h. Thisis an example of debugging code in XS Extensions. For this
particular example the complete test caseis:

% ddd - conmand=. debug- nodper| -xs & \
t/ TEST -v -run -ping=block filter/api

When filter/api test is running it calls mpxs Apache Filter_print() which is when the breakpoint is
reached.

Debugging codein shared objectscreated by | nl i ne. pm

Thisis not strictly related to mod_perl, but sometimes when trying to reproduce a problem (e.g. for a
p5p bug-report) outside mod_perl, the code has to be written in C. And in certain cases, Inline can be
just the right tool to do it quickly. However if you want to interactively debug the library that it
creates, it might get tricky. So similar to the previous sections, hereis a gdb code/.debug-inline:

save this file as .debug and execute this as:

gdb - conmand=. debug

or if you prefer gui

ddd - command=. debug

#

NOTE: Adjust the path to the perl executable

also this perl should be built with debug enabl ed

file [usr/bin/perl

If you need to debug with gdb a live script and not a library, you
are going to have a hard time to set any breakpoint in the C code
the workaround is force Inline to conpile and load .so, by putting
all the code in the BEA N {} block and call Inline->init fromthere
#

you al so need to prevent fromlInline deleting autogenerated .xs so

29 Jan 2004

Debugging mod_perl C Internals 1.3 Analyzing Dumped Core Files

you can step through the C source code, and of course you need to
add '-g’ so .so won't be stripped of debug info

here is a sanple perl script that can be used with this gdb script

use strict;
use war ni ngs;

BEG N {
use Inline Config =>
#FORCE_BUI LD => 1,
CLEAN_AFTER BUI LD => 0;

use Inline C => Config =>
OPTIM ZE => ' -¢g';

use Inline C => <init;

ny_bp();

HFHFHFIFHFIFHFEHFFHFHEHFEHFHFEHFHHFHHHTRHR

tb main
NOTE: adjust the name of the script that you run
run test.p

when Perl _runops_debug breakpoint is hit Inline will already |oad
the autogenerated .so, so we can set the bpin it (that’s only if
you have run 'Inline->init’ inside the BEG N {} block

b S run_body

conti nue

b Perl| _runops_debug
conti nue

here you set your breakpoints

b ny_bp
conti nue

startup script that will save you alot of time. All the details and a sample perl script are inside the
gdb script.

1.3 |Analyzing Dumped Core Fileg

META: need to review (unfinished)

When your application dies with the Segmentation fault error (which generates a SI GSEGV signal) and
optionally generates a core file you can use gdb or a similar debugger to find out what caused the
Segmentation fault (or segfault as we often call it).

29 Jan 2004 11

1.3.1 Getting Ready to Debug

1.3.1 |Getting Ready to Debug

In order to debug the core file we may need to recompile Perl and mod_perl with debugging symbols
inside. Usually you have to recompile only mod_perl, but if the core dump happens in the libmodperl.so
library and you want to see the whole backtrace, you probably want to recompile Perl aswell.

Recompile Perl with -DDEBUGGING during the ./Configure stage (or even better with -Doptimize="-g"
which in addition to adding the - DDEBUGA NG option, adds the -g options which allows you to debug the
Perl interpreter itself).

After recompiling Perl, recompile mod_perl with MP_DEBUG=1 during the Makefile.PL stage.
Building mod_perl with PERL_ DEBUG=1 will:

1. add‘-g to EXTRA_CFLAGS

2. turn on MP_TRACE (tracing)

3. Set PERL_DESTRUCT_LEVEL=2

4. Link against | i bper | d if -e $Config{ archlibexp}/CORE/libperld$Config{lib_ext}

If you build a static mod_perl, remember that during make install Apache strips all the debugging
symbols. To prevent this you should use the Apache --without-execstrip . / conf i gur e option. Soif you
configure Apache viamod_perl, you should do:

pani c% per|l Makefile.PL USE_APACI =1 \
APACI _ARGS=' - -wi t hout -execstrip’ [other options]

Alternatively you can copy the unstripped binary manually. For example we did this to give us an Apache
binary caled ht t pd_per | which contains debugging symbols:

pani c# cp httpd-2.x/httpd /hone/ httpd/ httpd_perl/bin/httpd_perl

Now the software is ready for a proper debug.

1.3.2 [Creating a Faulty Packageg

META: no longer need to create the package, use Debug: : DunpCor e from CPAN. Need to adjust the
rest of the document to useit.

Next stage is to create a package that aborts abnormally with the Segmentation fault error. We will write
faulty code on purpose, so you will be able to reproduce the problem and exercise the debugging tech-
nique explained here. Of course in areal case you will have some real bug to debug, so in that case you
may want to skip this stage of writing a program with a deliberate bug.

We will use the | nl i ne. pmmodule to embed some code written in C into our Perl script. The faulty
function that we will add isthis:

12 29 Jan 2004

Debugging mod_perl C Internals 1.3.2 Cresating a Faulty Package

void segv() {
int *p;
p = NULL;
printf("od", *p); /* cause a segfault */

}

For those of you not familiar with C programming, p is a pointer to a segment of memory. Setting it to
NULL ensures that we try to read from a segment of memory to which the operating system does not allow
us access, so of course dereferencing NULL pointer causes a segmentation fault. And that’s what we want.

So let’s create the Bad: : Segv package. The name Segv comes from the SI GSEGV (segmentation viola-
tion signal) that is generated when the Segmentation fault occurs.

First we create the installation sources:

pani c% h2xs -n Bad::Segv -A -0 -X
Witing Bad/ Segv/ Segv. pm

Witing Bad/ Segv/ Makefile. PL
Witing Bad/ Segv/test.p

Witing Bad/ Segv/ Changes

Witing Bad/ Segv/ MANI FEST

Now we modify the Segv.pm file to include the C code. Afterwards it looks like this:
package Bad: : Segv;
use strict;

BEG N {
$Bad: : Segv: : VERSION = ' 0. 01’
}

use Inline C => <<’ END_OF _C CODE'
void segv() {
int *p;
p = NULL;
printf("od", *p); /* cause a segfault */

}
END_OF C_CODE
1
Finally we modify test.pl:
use Inline SITE I NSTALL;
BEGN{ $ =1; print "1..1\n"; }
END {print "not ok 1\n" unless $l oaded;}

use Bad:: Segv;

$l oaded = 1;
print "ok 1\n";

29 Jan 2004 13

1.3.3 Getting the core File Dumped

Note that we don't test Bad::Segv::segv() in test.pl, since this will abort the make test stage abnormally,
and we don’t want this.

Now we build and install the package:

pani c% per| Makefile.PL
pani c% make && make test
pani c% su

pani c# make install

Running make test is essential for | nl i ne. pmto prepare the binary object for the installation during
make install.

META: stopped here!

Now we can test the package:

panic%ulimt -c unlimted

pani c% per| -MBad:: Segv -e 'Bad:: Segv::segv()’
Segrment ation fault (core dunped)

panic%ls -1 core

STW---- - 1 stas stas 1359872 Feb 6 14:08 core

Indeed, we can see that the core file was dumped, which will be used to present the debug techniques.

1.3.3 |Getting the core File Dumped

Now let’s get the core file dumped from within the mod_perl server. Sometimes the program aborts abnor-
mally viathe SIGSEGV signal (Segmentation Fault), but no core file is dumped. And without the corefile
it's hard to find the cause of the problem, unless you run the program inside gdb or another debugger in
first place. In order to get the corefile, the application hasto:

® have the effective UID the same as real UID (the same goes for GID). Which is the case of mod_perl

14

unless you modify these settings in the program.

be running from a directory which at the moment of the Segmentation fault is writable by the process.
Notice that the program might change its current directory during its run, so it’s possible that the core
file will need to be dumped in a different directory from the one the program was started from. For
example when mod_perl runs an Apache: : Regi st ry script it changes its directory to the one in
which the script source is located.

be started from a shell process with sufficient resource allocations for the core file to be dumped.
You can override the default setting from within a shell script if the process is not started manually.
In addition you can use BSD: : Resour ce to manipulate the setting from within the code as well.

Youcanuseul i mt forbashand!limt for csh to check and adjust the resource alocation. For
exampleinside bash, you may set the core file size to unlimited:

29 Jan 2004

Debugging mod_perl C Internals 1.3.3 Getting the core File Dumped

panic%ulimt -c unlinmted
or for csh:

pani c% |l imt coredunpsize unlimted

For example you can set an upper limit on the corefile size to 8MB with:

panic%ulinmt -c 8388608
So if the corefile is bigger than 8MB it will be not created.

e Of course you have to make sure that you have enough disk space to create a big core file (mod_perl
corefilestend to be of afew MB in size).

Note that when you are running the program under a debugger like gdb, which traps the SI GSEGV signal,
the core file will not be dumped. Instead it allows you to examine the program stack and other things
without having the corefile.

So let’ swrite asimple script that uses Bad: : Segv:

core_dunp. p

use strict;
use Bad:: Segv ();
use Owd()

ny $r = shift;
$r->content _type('text/plain');

ny $dir = getcwd,
$r->print("The core should be found at $dir/core\n");
Bad: : Segv: : segv();

In this script we load the Bad: : Segv and Cwd modules. After that we acquire the request object and
send the HTTP header. Now we come to the real part--we get the current working directory, print out the
location of the core file that we are about to dump and finally we call Bad::Segv::segv() which dumps the
corefile.

Before we run the script we make sure that the shell sets the core file size to be unlimited, start the server
in single server mode as a hon-root user and generate a request to the script:

pani c% cd /hone/ httpd/ httpd_perl/bin
panic% | imt coredunpsize unlimted
pani c% ./ httpd_perl -X

issue a request here
Segrment ation fault (core dunped)

Our browser prints out:

29 Jan 2004 15

1.3.4 Analyzing the core File

The core should be found at /hone/httpd/perl/core

And indeed the core file appears where we were told it will (remember that Apache: : Regi st ry scripts
change their directory to the location of the script source):

panic%ls -1 /hone/httpd/perl/core
SPW--- - - - 1 stas httpd 3227648 Feb 7 18:53 /home/ httpd/ perl/core

As you can see it's a 3MB core file. Notice that mod_perl was started as user stas, which had write
permission for directory /home/httpd/perl.

1.3.4 |Analyzing the core Filg

First we start gdb:

pani c% gdb / hone/ httpd/ httpd_perl/bin/httpd_perl /home/httpd/perl/core
with the location of the mod_perl executable and the core file as the arguments.

To see the backtrace you run the where or the bt command:

(gdb) where
#0 0x4025ea08 in XS_Apache__Segv_segv ()

from/usr/lib/perl5/site_perl/5.6.0/i386-1inux/auto/Bad/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. so
#1 0x40136528 in PL_curcopdb ()

from/usr/lib/perl5/5.6.0/i386-1inux/CORE/ Ilibperl.so

WEell, you can see the last commands, but our perl and mod_perl are probably without the debug symbols.
So we recompile Perl and mod_perl with debug symbols as explained earlier in this chapter.

Now when we repeat the process of starting the server, issuing a request and getting the core file, after
which we run gdb again against the executable and the dumped corefile.

pani c% gdb /home/ httpd/ httpd_perl/bin/httpd_perl /hone/httpd/perl/core

Now we can see the whole backtrace:

(gdb) bt
#0 0x40323a30 in segv () at Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. xs: 9
#1 0x40323af8 in XS _Apache__Segv_segv (cv=0x85f2b28)
at Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. xs: 24
#2 0x400fcbda in Perl _pp_entersub () at pp_hot.c: 2615
#3 0x400f2c56 in Perl _runops_debug () at run.c:53
#4 0x4008b088 in S call_body (myop=0xbffff788, is_eval=0) at perl.c:1796
#5 0x4008ac4f in perl_call_sv (sv=0x82fc2e4, flags=4) at perl.c:1714
#6 0x807350e in perl_call_handler ()
#7 0x80729cd in perl_run_stacked_handl ers ()
#8 0x80701b4 in perl_handler ()
#9 0x809f409 in ap_i nvoke_handl er ()
#10 0x80b3e8f in ap_sone_auth_required ()
#11 0x80b3efa in ap_process_request ()
#12 0x80aae60 in ap_child_termnate ()
#13 0x80ab021 in ap_child_termnate ()

5D 53 53 53 3 5 S

16 29 Jan 2004

Debugging mod_perl C Internals 1.3.4 Analyzing the core File

#14 0x80abl1l9c in ap_child_term nate ()

#15 0x80ab80c in ap_child_term nate ()

#16 0x80ac03c in main ()

#17 0x401b8chbe in __libc_start_main () from/lib/libc.so.6

Reading the trace from bottom to top, we can see that it starts with Apache calls, followed by Perl syscalls.
At the top we can see the segv() call which was the one that caused the Segmentation fault, we can also
see that the faulty code was at line 9 of Segv.xs file (with MD5 signature of the code in the name of the
file, because of theway | nl i ne. pmworks). It's alittle bit tricky with | nl i ne. pmsince we have never
created any .xs files ourselves, (I nl i ne. pmdoes it behind the scenes). The solution in this caseisto tell
I nl i ne. pmnot to cleanup the build directory, so we can see the created .xsfile.

We go back to the directory with the source of Bad: : Segv and force the recompilation, while telling
I nl i ne. pmnot to cleanup after the build and to print alot of other useful info:

pani c# cd Bad/ Segv
pani c# perl -M nline=FORCE, NOCLEAN, | NFO Segv. pm
I nformation about the processing of your Inline C code:

Your nodule is already conpiled. It is |ocated at:
/' home/ ht t pd/ per | / Bad/ Segv/ _I nli ne/|i b/ aut o/ Bad/ Segv_C_0_01_e6b5959d800f 515de36a7e7eeab28hb39/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. so

But the FORCE_BUILD option is set, so your code will be reconpiled.
1"l use this build directory:
/ hone/ ht t pd/ per | / Bad/ Segv/ _I nl i ne/ bui | d/ Bad/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28h39/

and I'll install the executable as:
/' hone/ ht t pd/ per| / Bad/ Segv/ _I nli ne/li b/ aut o/ Bad/ Segv_C_0_01_e6b5959d800f 515de36a7e7eeab28b39/ Segv_C_0_01_e6b5959d800f 515de36a7e7eeab28b39. so

The following Inline C function(s) have been successfully bound to Perl:
voi d segv()

It tells us that the code was already compiled, but since we have forced it to recompile we can look at the
files after the build. So we go into the build directory reported by | nl i ne. pmand find the .xs file there,
where on line 9 we indeed find the faulty code:

9: printf("%l",*p); // cause a segfault

Notice that in our example we knew what script has caused the Segmentation fault. In a real world the
chances are that you will find the core file without any clue to which of handler or script has triggered it.
The special curinfo gdb macro comes to help:

pani c% gdb / home/ httpd/ httpd_perl/bin/httpd_perl /hone/httpd/perl/core
(gdb) source nod_perl -x.xx/.gdbinit

(gdb) curinfo

9: / hone/ htt pd/ perl/ core_dunp. pl

We start the gdb debugger as before. .gdbinit, the file with various useful gdb macros is located in the
source tree of mod_perl. We use the gdb source() function to load these macros, and when we run the
curinfo macro we learn that the core was dumped when /home/httpd/perl/core_dump.pl was executing the
code at line 9.

These are the hits of information that are important in order to reproduce and resolve a problem: the file-
name and line where the faulty function was called (the faulty function is Bad::Segv::segv() in our case)
and the actual line where the Segementation fault occured (the printf("%d",*p) cal in XS code). The
former is important for problem reproducing, it's possible that if the same function was called from a
different script the problem won’t show up (not the case in our example, where the using of a value deref-
erenced from the NULL pointer will always cause the Segmentation fault).

29 Jan 2004 17

1.3.5 Obtaining core Files under Solaris

1.3.5 [Obtaining core Files under Solarig

There are two ways to get core files under Solaris. The first is by configuring the system to alow core
dumps, the second is by stopping the process when it receives the SIGSEGV signal and "manually"
obtaining the corefile.

1.3.5.1 |Configuring Solaristo Allow core Dumpg

By default, Solaris 8 won't allow a setuid process to write a core file to the file system. Since apache starts
as root and spawns children as "nobody’, core dumps won't produce core files unless you modify the
system settings.

To see the current settings, run the coreadm command with no parameters and you'll see:

% cor eadm
gl obal core file pattern:
init core file pattern: core

gl obal core dunps: disabl ed
per-process core dunps: enabl ed
gl obal setid core dunps: disabled
per-process setid core dunps: disabled
gl obal core dunp | oggi ng: disabled

These settings are stored in the /etc/coreadm.conf file, but you should set them with the coreadm utility.
As super-user, you can run coreadm with -g to set the pattern and path for core files (you can use a few
variables here) and -e to enable some of the disabled items. After setting a new pattern, enabling global,
global-setid, and log, and rebooting the system (reboot is required), the new settings look like:

% cor eadm
gl obal core file pattern: /usr/local/apache/cores/core. % .%
init core file pattern: core
gl obal core dunps: enabl ed
per-process core dunps: enabl ed
gl obal setid core dunps: enabled
per-process setid core dunps: disabled
gl obal core dunp | oggi ng: enabl ed

Now you'll start to see core files in the designated cores directory and they will look like core.httpd.2222
where httpd is the name of the executable and the 2222 is the process id. The new core files will be
read/write for root only to maintain some security, and you should probably do this on development
systems only.

1.3.5.2 [Manually Obtaining core Dumpg

On Solaris the following method can be used to generate a core file.

1. Usetruss(1) asroot to stop a process on a segfault:

18 29 Jan 2004

Debugging mod_perl C Internals 1.3.5 Obtaining core Files under Solaris

panic%truss -f -1 -t \lall -s \!SIGALRM -S S| GSEGV -p <pi d>
or, to monitor all httpd processes (from bash):
panic% for pidin ‘ps -eaf -o pid,comm| fgrep httpd | cut -d' /' -f1°;
do truss -f -1 -t \lall -s \!SIGALRM -S SIGSEGV -p $pid 2>&1 &
done
The used truss(1) options are:
e -f -follow forks.
® -| - (that’san€) includesthe thread-id and the pid (the pid is what we want).

® -t - gpecifiesthe syscallsto trace,

lal - turns off the tracing of syscalls specified by - t

- s - gpecifies signals to trace and the ! SI GALRM turns off the numerous alarms Apache
creates.

® - S- gpecifies signals that stop the process.
® - -isused to specify the pid.
Instead of attaching to the process, you can start it under truss(1):

panic%truss -f -1 -t \lall -s \!SIGALRM -S S| GSEGV \
/usr/local/bin/httpd -f httpd.conf 2>&1 &

2. Watch the error_log file for reaped processes, as when they get SISSEGV signals. When the process
isreaped it's stopped but not killed.

3. Use gcore(l) to get acore of stopped process or attach to it with gdb(1). For example if the processid
is 662

%pani c gcore 662
gcore: core. 662 dunped

Now you can load this corefile in gdb(1).

4, ki ll -9 the stopped process. Kill the truss(1) processes as well, if you don’'t need to trap other
segfaults.

Obvioudly, this isn't great to be doing on a production system since truss(1) stops the process after it
dumps core and prevents Apache from reaping it. So, you could hit the clients/threads limit if you segfault
alot.

29 Jan 2004 19

1.4 Debugging Threaded MPMs

1.4 |Debugging Threaded MPM g

1.4.1 [Useful Information from gdb Manual|

Debugging programs with multiple threads: |http://sources.redhat.com/gdb/current/online|
[docg/gdb 5.ntmlI#SEC25

Stopping and starting multi-thread programs: |http://sources.redhat.com/gdb/current/online|
[docg/gdb 6.htmlI#SEC4Q

1.4.2 (libpthread

when using:

set auto-solib-add 0
make sure to:
sharedlibrary |ibpthread

(or whatever the shared library is used on your OS) without which you may have problems to debug the
threaded mpm mod_perl.

1.5 |Defining and Using Custom gdb M acr o9

GDB provides two ways to store sequences of commands for execution as a unit: user-defined commands
and command files. See: |http://sources.redhat.com/gdb/current/onlinedocs/gdb 21.html|

Apache 2.0 source comes with a nice pack of macros and can be found in httpd-2.0/.gdbinit. To use it
issue:

gdb> source /wherever/httpd-2.0/.gdbinit

Now if for example you want to dump the contents of the bucket brigade, you can do:
gdb> dunp_bri gade my_bri gade

whereny_br i gade isthe pointer to the bucket brigade that you want to debug.

mod_perl 1.0 has a similar file (modperl/.gdbinit) mainly including handy macros for dumping Perl datas-
tructures, however it works only with non-threaded Perls. But otherwise it’s useful in debugging mod_perl
2.0 aswell.

20 29 Jan 2004

http://sources.redhat.com/gdb/current/onlinedocs/gdb_5.html#SEC25
http://sources.redhat.com/gdb/current/onlinedocs/gdb_5.html#SEC25
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html#SEC40
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html#SEC40
http://sources.redhat.com/gdb/current/onlinedocs/gdb_21.html

Debugging mod_perl C Internals 1.6 Expanding C Macros

1.6 |[Expanding C Macr oS

Perl, mod_perl and httpd C code makes an extensive use of C macros, which sometimes use many other
macros in their definitions, so it becomes quite a task to figure out how to figure out what a certain macro
expands to, especialy when the macro expands to different values in differnt environments. Luckily there
are ways to automate the expansion process.

1.6.1 [Expanding C Macros with nake|

The mod_perl Makefile' s include arule for macro expansions which you can find by looking for the c.i.
rule. To expand all macros in a certain C file, you should run make file name.i , which will create
filename.i with al macros expanded in it. For example to create apr_perlio.i with all macros used in
apr_perlio.c:

% cd modperl-2.0/xs/APR/PerllO
% make apr_perlio.i

the apr_perlio.i file now lists all the macros:

% less apr_perlio.i

1 "apr_perlio.c"

1 "<built-in>"

#define __ VERSION__ "3.1.1 (Mandrake Linux 8.3 3.1.1-0.4mdk)"

1.6.2 [Expanding C Macros with gdb)|

With gcc-3.1 or higher and gdb-5.2-dev or higher you can expand macros in gdb, when you step through
the code. e.g.:

(gdb) macro expand pTHX_

expands to: Perlinterpreter *my_perl __attribute__ ((unused)),
(gdb) macro expand PL_dirty

expands to: (*Perl_Tdirty_ptr(my_perl))

For each library that you want to use this feature with you have to compile it with:
CFLAGS="-gdwarf-2 -g3"
or whatever is appropriate for your system, refer to the gcc manpage for more info.

To compile perl with this debug feature, pass -Dopti mize ='-gdwarf-2 -g3' to./Config wure.
For Apache run:

CFLAGS="-gdwarf-2 -g3" ./configure [...]
for mod_perl you don’t have to do anything, asit’ll pick the $Config{opti mize } Perl flags automati-

caly, if Perl is compiled with -DDEBUGSING (which isimplied on most systems, if you use -Dopti -
mize =’-g' or sSimilar.)

29 Jan 2004 21

1.7 Maintainers

Notice that this will make your libraries huge! e.g. on Linux 2.4 Perl 5.8.0's normal libperl.so is about
0.8MB on linux, compiled with -Dopti mize ='-g’ about 2.7MB and with -Dopti -

mize ='-gdwarf-2 -g3' 12.5MB. httpd is aso becomes about 10 times bigger with this feature
enabled. mod_perl.so instead of 0.2k becomes 11MB. Y ou get the idea. Of course since you may want this
only during the development/debugging, that shouldn’t be a problem.

The complete details are at: |http://sources.redhat.com/gdb/current/onlinedocs/gdb _10.htmI#SECE9

1.7 IMaintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.8 [Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

22 29 Jan 2004

http://sources.redhat.com/gdb/current/onlinedocs/gdb_10.html#SEC69

Debugging mod_perl C Internals Table of Contents:

Table of Contents:

1] Debuqqi ng mod perl C Internals| 1
1-1 2
ebu notes . . 2

1 2.1 |Setting gdb breakpoi nts W|th mod jﬂl bunt as DSOl 2
1.2.2 |Starting the Server Fast under gdby. 3
1.2.3 |Precooked gdb Startup Scriptg e 6
1.3 JAnayzing Dumped CoreFile 1
1.3.1 |GettingReady toDeboug 12
1.3.2 |CreatingaFaulty Packagg 12
1.3.3 |Getting the core File Dumped 1
1.3.4 |Andyzing thecoreFlg 16
1.3.5 [Obtaining core Files under Solarig e |
1.3.5.1 [Configuring Solaristo Allow coreDumpd 18
1.3.5.2 [Manudly ObtainingcoreDumpd 18

1.4 Debugging Threaded MPMY20
14.1 |Usefu| Informatl on from gdb Manuall20
1.4.2 [libpthread :)
15 |Def|n| nq and USI ng Custom qdb Macrosl 0
1.6 |Expanding C Macrod . e
1.6.1 |[Expanding C Macros W|th makel -
1.6.2 [Expanding C Macroswithgdb| 21
1.7 .
18 L 2

29 Jan 2004 i

	1€€Debugging mod_perl C Internals
	1.1€€Description
	1.2€€Debug notes
	1.2.1€€Setting gdb breakpoints with mod_perl built as DSO
	1.2.2€€Starting the Server Fast under gdb
	1.2.3€€Precooked gdb Startup Scripts

	1.3€€Analyzing Dumped Core Files
	1.3.1€€Getting Ready to Debug
	1.3.2€€Creating a Faulty Package
	1.3.3€€Getting the core File Dumped
	1.3.4€€Analyzing the core File
	1.3.5€€Obtaining core Files under Solaris
	1.3.5.1€€Configuring Solaris to Allow core Dumps
	1.3.5.2€€Manually Obtaining core Dumps

	1.4€€Debugging Threaded MPMs
	1.4.1€€Useful Information from gdb Manual
	1.4.2€€libpthread

	1.5€€Defining and Using Custom gdb Macros
	1.6€€Expanding C Macros
	1.6.1€€Expanding C Macros with make
	1.6.2€€Expanding C Macros with gdb

	1.7€€Maintainers
	1.8€€Authors

