

1 Apache::Reload - Reload Perl Modules when
Changed on Disk

129 Jan 2004

1 Apache::Reload - Reload Perl Modules when Changed on DiskApache::Reload - Reload Perl Modules when Changed on Disk

1.1 Synopsis
 # Monitor and reload all modules in %INC:
 # httpd.conf:
 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload

 # when working with protocols and connection filters
 # PerlPreConnectionHandler Apache::Reload

 # Reload groups of modules:
 # httpd.conf:
 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "ModPerl::* Apache::*"
 #PerlSetVar ReloadDebug On
 #PerlSetVar ReloadConstantRedefineWarnings Off

 # Reload a single module from within itself:
 package My::Apache::Module;
 use Apache::Reload;
 sub handler { ... }
 1;

1.2 Description
Apache::Reload reloads modules that change on the disk.

When Perl pulls a file via require, it stores the filename in the global hash %INC. The next time Perl
tries to require the same file, it sees the file in %INC and does not reload from disk. This module’s
handler can be configured to iterate over the modules in %INC and reload those that have changed on disk
or only specific modules that have registered themselves with Apache::Reload. It can also do the
check for modified modules, when a special touch-file has been modified.

Note that Apache::Reload operates on the current context of @INC. Which means, when called as a
Perl*Handler it will not see @INC paths added or removed by Apache::Registry scripts, as the
value of @INC is saved on server startup and restored to that value after each request. In other words, if
you want Apache::Reload to work with modules that live in custom @INC paths, you should modify
@INC when the server is started. Besides, ’use lib’ in the startup script, you can also set the
PERL5LIB variable in the httpd’s environment to include any non-standard ’lib’ directories that you
choose. For example, to accomplish that you can include a line:

 PERL5LIB=/home/httpd/perl/extra; export PERL5LIB

in the script that starts Apache. Alternatively, you can set this environment variable in httpd.conf:

 PerlSetEnv PERL5LIB /home/httpd/perl/extra

29 Jan 20042

1.1 Synopsis

1.2.1 Monitor All Modules in %INC

To monitor and reload all modules in %INC at the beginning of request’s processing, simply add the
following configuration to your httpd.conf:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload

When working with connection filters and protocol modules Apache::Reload should be invoked in
the pre_connection stage:

 PerlPreConnectionHandler Apache::Reload

See also the discussion on PerlPreConnectionHandler.

1.2.2 Register Modules Implicitly

To only reload modules that have registered with Apache::Reload, add the following to the
httpd.conf:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 # ReloadAll defaults to On

Then any modules with the line:

 use Apache::Reload;

Will be reloaded when they change.

1.2.3 Register Modules Explicitly

You can also register modules explicitly in your httpd.conf file that you want to be reloaded on change:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the module list must be in quotes, otherwise Apache tries to
parse the parameter list.

The * wild character can be used to register groups of files under the same namespace. For example the
setting:

 PerlSetVar ReloadModules "ModPerl::* Apache::*"

329 Jan 2004

1.2.1 Monitor All Modules in %INCApache::Reload - Reload Perl Modules when Changed on Disk

will monitor all modules under the namespaces ModPerl:: and Apache:: .

1.2.4 Monitor Only Certain Sub Directories

To reload modules only in certain directories (and their subdirectories) add the following to the httpd.conf:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadDirectories "/tmp/project1 /tmp/project2"

You can further narrow the list of modules to be reloaded from the chosen directories with Reload Mod-
ules as in:

 PerlModule Apache::Reload
 PerlInitHandler Apache::Reload
 PerlSetVar ReloadDirectories "/tmp/project1 /tmp/project2"
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache::*"

In this configuration example only modules from the namespace MyApache:: found in the directories
/tmp/project1/ and /tmp/project2/ (and their subdirectories) will be reloaded.

1.2.5 Special "Touch" File

You can also declare a file, which when gets touch(1) ed, causes the reloads to be performed. For
example if you set:

 PerlSetVar ReloadTouchFile /tmp/reload_modules

and don’t touch(1) the file /tmp/reload_modules, the reloads won’t happen until you go to the
command line and type:

 % touch /tmp/reload_modules

When you do that, the modules that have been changed, will be magically reloaded on the next request.
This option works with any mode described before.

1.3 Performance Issues
This modules is perfectly suited for a development environment. Though it’s possible that you would like
to use it in a production environment, since with Apache::Reload you don’t have to restart the server
in order to reload changed modules during software updates. Though this convenience comes at a price:

If the "touch" file feature is used, Apache::Reload has to stat(2) the touch file on each request,
which adds a slight but most likely insignificant overhead to response times. Otherwise
Apache::Reload will stat(2) each registered module or even worse--all modules in %INC, which
will significantly slow everything down.

29 Jan 20044

1.3 Performance Issues

Once the child process reloads the modules, the memory used by these modules is not shared with the
parent process anymore. Therefore the memory consumption may grow significantly.

Therefore doing a full server stop and restart is probably a better solution.

1.4 Debug
If you aren’t sure whether the modules that are supposed to be reloaded, are actually getting reloaded, turn
the debug mode on:

 PerlSetVar ReloadDebug On

1.5 Silencing ’Constant subroutine ... redefined at’ Warn-
ings
If a module defines constants, e.g.:

 use constant PI => 3.14;

and gets re-loaded, Perl issues a mandatory warnings which can’t be silenced by conventional means
(since Perl 5.8.0). This is because constants are inlined at compile time, so if there are other modules that
are using constants from this module, but weren’t reloaded they will see different values. Hence the
warning is mandatory. However chances are that most of the time you won’t modify the constant subrou-
tine and you don’t want error_log to be cluttered with (hopefully) irrelevant warnings. In such cases, if
you haven’t modified the constant subroutine, or you know what you are doing, you can tell
Apache::Reload to shut those for you (it overrides $SIG{__WARN__} to accomplish that):

 PerlSetVar ReloadConstantRedefineWarnings Off

For the reasons explained above this option is turned on by default.

since: mod_perl 1.99_10

1.6 Caveats

1.6.1 Problems With Reloading Modules Which Do Not Declare Their
Package Name

If you modify modules, which don’t declare their package, and rely on Apache::Reload to reload
them, you may encounter problems: i.e., it’ll appear as if the module wasn’t reloaded when in fact it was.
This happens because when Apache::Reload require()s such a module all the global symbols end
up in the Apache::Reload namespace! So the module does get reloaded and you see the compile time
errors if there are any, but the symbols don’t get imported to the right namespace. Therefore the old
version of the code is running.

529 Jan 2004

1.4 DebugApache::Reload - Reload Perl Modules when Changed on Disk

1.6.2 Problems with Scripts Running with Registry Handlers that
Cache the Code

The following problem is relevant only to registry handlers that cache the compiled script. For example it
concerns ModPerl::Registry but not ModPerl::PerlRun.

1.6.2.1 The Problem

Let’s say that there is a module My::Utils:

 #file:My/Utils.pm
 #----------------
 package My::Utils;
 BEGIN { warn __PACKAGE__ , " was reloaded\n" }
 use base qw(Exporter);
 @EXPORT = qw(colour);
 sub colour { "white" }
 1;

And a registry script test.pl:

 #file:test.pl
 #------------
 use My::Utils;
 print "Content-type: text/plain\n\n";
 print "the color is " . colour();

Assuming that the server is running in a single mode, we request the script for the first time and we get the
response:

 the color is white

Now we change My/Utils.pm:

 - sub colour { "white" }
 + sub colour { "red" }

And issue the request again. Apache::Reload does its job and we can see that My::Utils was
reloaded (look in the error_log file). However the script still returns:

 the color is white

1.6.2.2 The Explanation

Even though My/Utils.pm was reloaded, ModPerl::Registry’s cached code won’t run ’use
My::Utils;’ again (since it happens only once, i.e. during the compile time). Therefore the script
doesn’t know that the subroutine reference has been changed.

This is easy to verify. Let’s change the script to be:

29 Jan 20046

1.6.2 Problems with Scripts Running with Registry Handlers that Cache the Code

 #file:test.pl
 #------------
 use My::Utils;
 print "Content-type: text/plain\n\n";
 my $sub_int = \&colour;
 my $sub_ext = \&My::Utils::colour;
 print "int $sub_int\n";
 print "ext $sub_ext\n";

Issue a request, you will see something similar to:

 int CODE(0x8510af8)
 ext CODE(0x8510af8)

As you can see both point to the same CODE reference (meaning that it’s the same symbol). After modify-
ing My/Utils.pm again:

 - sub colour { "red" }
 + sub colour { "blue" }

and calling the script on the secondnd time, we get:

 int CODE(0x8510af8)
 ext CODE(0x851112c)

You can see that the internal CODE reference is not the same as the external one.

1.6.2.3 The Solution

There are two solutions to this problem:

Solution 1: replace use() with an explicit require() + import().

 - use My::Utils;
 + require My::Utils; My::Utils->import();

now the changed functions will be reimported on every request.

Solution 2: remember to touch the script itself every time you change the module that it requires.

1.7 Threaded MPM and Multiple Perl Interpreters
If you use Apache::Reload with a threaded MPM and multiple Perl interpreters, the modules will be
reloaded by each interpreter as they are used, not every interpreters at once. Similar to mod_perl 1.0 where
each child has its own Perl interpreter, the modules are reloaded as each child is hit with a request.

If a module is loaded at startup, the syntax tree of each subroutine is shared between interpreters (big win),
but each subroutine has its own padlist (where lexical my variables are stored). Once Apache::Reload
reloads a module, this sharing goes away and each Perl interpreter will have its own copy of the syntax
tree for the reloaded subroutines.

729 Jan 2004

1.7 Threaded MPM and Multiple Perl InterpretersApache::Reload - Reload Perl Modules when Changed on Disk

1.8 Pseudo-hashes
The short summary of this is: Don’t use pseudo-hashes. They are deprecated since Perl 5.8 and are
removed in 5.9.

Use an array with constant indexes. Its faster in the general case, its more guaranteed, and generally, it
works.

The long summary is that some work has been done to get this module working with modules that use
pseudo-hashes, but it’s still broken in the case of a single module that contains multiple packages that all
use pseudo-hashes.

So don’t do that.

1.9 Copyright
mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 1.1.

1.10 Authors
Matt Sergeant, matt@sergeant.org

Stas Bekman (porting to mod_perl 2.0)

A few concepts borrowed from Stonehenge::Reload by Randal Schwartz and Apache::StatINC
(mod_perl 1.x) by Doug MacEachern and Ask Bjoern Hansen.

1.11 See Also
Stonehenge::Reload

29 Jan 20048

1.8 Pseudo-hashes

Table of Contents:
........ 11 Apache::Reload - Reload Perl Modules when Changed on Disk
................... 21.1 Synopsis
................... 21.2 Description
............. 31.2.1 Monitor All Modules in %INC
.............. 31.2.2 Register Modules Implicitly
.............. 31.2.3 Register Modules Explicitly
............ 41.2.4 Monitor Only Certain Sub Directories
................ 41.2.5 Special "Touch" File
................. 41.3 Performance Issues
.................... 51.4 Debug
........ 51.5 Silencing ’Constant subroutine ... redefined at’ Warnings
................... 51.6 Caveats
.. 51.6.1 Problems With Reloading Modules Which Do Not Declare Their Package Name
... 61.6.2 Problems with Scripts Running with Registry Handlers that Cache the Code
................ 61.6.2.1 The Problem
................ 61.6.2.2 The Explanation
................ 71.6.2.3 The Solution
........... 71.7 Threaded MPM and Multiple Perl Interpreters
.................. 81.8 Pseudo-hashes
................... 81.9 Copyright
................... 81.10 Authors
................... 81.11 See Also

i29 Jan 2004

Table of Contents:Apache::Reload - Reload Perl Modules when Changed on Disk

	1€€Apache::Reload - Reload Perl Modules when Changed on Disk
	1.1€€Synopsis
	1.2€€Description
	1.2.1€€Monitor All Modules in %INC
	1.2.2€€Register Modules Implicitly
	1.2.3€€Register Modules Explicitly
	1.2.4€€Monitor Only Certain Sub Directories
	1.2.5€€Special "Touch" File

	1.3€€Performance Issues
	1.4€€Debug
	1.5€€Silencing 'Constant subroutine ... redefined at' Warnings
	1.6€€Caveats
	1.6.1€€Problems With Reloading Modules Which Do Not Declare Their Package Name
	1.6.2€€Problems with Scripts Running with Registry Handlers that Cache the Code
	1.6.2.1€€The Problem
	1.6.2.2€€The Explanation
	1.6.2.3€€The Solution

	1.7€€Threaded MPM and Multiple Perl Interpreters
	1.8€€Pseudo-hashes
	1.9€€Copyright
	1.10€€Authors
	1.11€€See Also

