Discussion of multithreading on Win32 mod_perl 1.xx 1 Discussion of multithreading on Win32 mod_perl 1.xx

1 Discussion of multithreading on Win32 mod_perl
1.xx

29 Jan 2004 1

1.1 Description

1.1 Description|

This docunentdiscusses theultithreadng limitations of mod_perl-1.xx otwWin32.

1.2 [The problem|

On Win32, mod_perl igffedively single threaded. What this means is that a single instance ioteéhe

preteris created, and this is then protected by a server-wide lock that prevents more than one thread from
using theintempreterat any one time. The fact that this will prevpatalel procesg of requestsinclud

ing static requests, can have seriouplicdions for produdion servers that often must handiencurent

or long-runningequests.

This situation changes with Apache/mod_perl 2.0, which is based on a multi-process/multi-thread
approach using a native Win32 threaaiplemertation. See themod_perl 2overview for more details,
and thediscusion of modperl-2 inWin32 on getting modperl-2 for Win32 partialar.

1.3 |Does it really matter?

How serious is this? For some people apglication classes it may be a non-probleassunng the static
mateial issue is handledifferently.

Low traffic and single usedevebpment sites will likely beunafected (though the lattest are likely to
expaiencesome surprises when moving to emvironmentwhere requests are no longaralized and
concurencykicksin).

If your applicaion is CPU bound, and all requests take roughly the same time to complete, then having
more procesig threads thamrocesors(CPUs) will actually slow things down, because of the context
switching ovethead Note that, even in this case, the current state of mod_perl will bar ownmetstipio-
cessorWin32 machines from gaining any loadlaning advanagefrom theirsupeior hardvare

On the other handpplications dealing with a large service times spread - say ranging ffiamtions of a

second to a minute and above - stand to lose a great despafsivenessfrom being single threaded.

The reason is that short requests that happen to be queueued after long ones will be delayed for the entire
duraion of the "jobs" that precede them in the queue; withititaskng they would get a chance to
complete muclearlier.

1.4 Workarounds

If you needmultithreadng on Win32, either because yoapplicaion has long running requests, or
because you can affordultiprocesorhardvare andassunng you cannot switclopeatng systems, you
may want to consider a few workarounds andltematives - which do not require waiting f&.0.

You may be able to make Win3aultithreadng a non-issue by tuning oearangng your application and
your archiedure (useful tips on both counts can be fowiskevherein thisdocumen). You may be able
to significantly reduce your worst-case timipgodemsor you may find that you can move the webserver

2 29 Jan 2004

Discussion of multithreading on Win32 mod_perl 1.xx 1.5 SeeAlso

toamoremod_perl friendly operating system by using a multi-tier scheme.

If your application needs the full power of the Apache modules (often the case for people running outside
Apache::Registry) you may want to consider a multi-server load balancing setup which uses mod_rewrite
(or a similar URL partitioning scheme) to spread requests to several web servers, listening on different
ports.

The mod_proxy dual server setup, discussed in the " Strategy" section, is also a possibility, although people
who havetried it have reported problems with Win32 mod_proxy.

If you code to Apache::Registry (writing CGI compliant code) and can characterize the time demanded by
arequest from its URL, you can use a rewrite-based load balancing with a single server, by sending short
requests to mod_perl while routing longer ones to the pure CGI environment - on the basis that startup,
compilation and init times will matter lessin this case.

If none of the above works for you, then you will have to turn to some non mod_perl aternatives: this,
however, implies giving up on most of the flexibility of the Apache modules.

For CGI compliant scripts, two possible (portable) aternatives which are supported in an Apache/perl
environment are straight CGI and FastCGl. In theory a CGI application that runs under mod_perl should
have very few or no problems to run under straight CGI (though its performance may be unacceptable). A
FastCGlI port should also be relatively painless. However, as always, your mileage may vary.

If you do not mind replacing Apache with [1S/PWS, you may want to experiment with ActiveState's value
added Perl Ex extension, which speeds up CGI scripts much in away similar to what FastCGI does. Perl Ex
is transparently supported by CGIl.pm, so users of this package should be more or less covered. (A
I1S-FastCGlI accelerator is, regrettably, no longer available.)

1.5 |See Also

The mod_perl documentation and |http://httpd.apache.org/} especially the discussion of Apache-2 and
modperl-2. Help is also available through the archives of and subscribing to the mod_perl mailing list.

1.6 M aintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Randy Kobes <randy @theoryx5.uwinnipeg.ca>

1.7 |Authors

® Randy Kobes <randy@theoryx5.uwinnipeg.ca>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 3

http://httpd.apache.org/

Discussion of multithreading on Win32 mod_perl 1.xx Table of Contents:

Table of Contents:

1 | Discussion of multithreading on Win32 mod perl 1.xx| .
1.1 [Description] .
12
1.3 [Does it really mattery
14
15 :
1.6 [Maintainerd.
17

WWWNDNNDN P

29 Jan 2004 i

	1€€Discussion of multithreading on Win32 mod_perl 1.xx
	1.1€€Description
	1.2€€The problem
	1.3€€Does it really matter?
	1.4€€Workarounds
	1.5€€See Also
	1.6€€Maintainers
	1.7€€Authors

