
 

 

 

 

 

How to Contribute to the Documentation
 

 

 

 

 

How to contribute to the mod_perl documentation: style,
tools, etc. 

 

 

 

 

Last modified Thu Jan 29 08:43:30 2004 GMT

129 Jan 2004

Table of  Contents:How to Contribute to the Documentation



 1. Documentation Style Guide 
This document defines the style the authors should follow when writing a documentation for the
mod_perl documentation project. 

 2. Changes File Specs 
This doc clears the confusion regarding the need and the maintenance guidelines of Changes.pod files
in the project. 

 3. Site Maintenance 
This document explains how to keep the site clean. 

 4. Document Template 
When creating new documents, use this template. 

 5. Changes Template 
Example document for the Changes file 

29 Jan 20042

Table of  Contents:



 

 

 

 

 

 

 

 

 

 

1   Documentation Style Guide 

329 Jan 2004

1  Documentation Style GuideDocumentation Style Guide



1.1  Description
This document defines the style the authors should follow when writing a documentation for the mod_perl 
documentation project.

1.2  Formatting
The documentation format is plain POD (Plain Old Documentation), which then will be converted into
HTML, PS, PDF and other formats. You can learn the syntax of this format from the perlpod manpage and
the new perlpodspec manpage from 5.8 versions of Perl.

1.3  Document structure
The document should be constructed from at least the following =head1 sections.

NAME 

The first section’s title must be NAME with a short title as a content. e.g.:

  =head1 NAME
  
  This is the title of the document

There should be no POD escape characters in this section, since it can be used in places where it’s not 
possible to render things like I<> or B<>.

This section won’t appear in the finally rendered document, except as the title of the document.

DESCRIPTION 

DESCRIPTION or Description, so it gets rendered like other =head sections in the document in
case you don’t use upper case for these.

The first paragraph of this section will be used on the index pages that link the documents together. 
e.g.:

  =head1 Description
  
  This document explains...

This section must appear in the first three sections of the document. It’s not required to be the one 
following the NAME section since in Perl modules pods it usually comes third after the SYNOPSIS 
section.

Author 

The author of the document with an optional email address or other means for reaching the author.

29 Jan 20044

1.1  Description



Usually comes as one of the last sections of the document.

1.4  Conventions
Please try to use the following conventions when writing the docs:

When using domain names in examples use only example.com and its derivatives (e.g. 
foo.example.com) or localhost (or localhost.localdomain). example.com is an official example 
domain.

Keep the text width <= 74 cols.

Please avoid leaving ^M (CR on the DOS platforms). Either use the editor to remove these new line
chars, or use Perl:

  % perl -pi -e ’s|\cM||’ filename.pod

If you want to iterate over all files in a directory:

  % find . -type f -exec perl -pi -e ’s|\cM||’ {} \;

though watch for binaries, like images or the cache.*.dat files left by DocSet, which may get
corrupted with the above command. So something like this more fine tuned command is safer:

  % find . -type f -name "*.pod" -exec perl -pi -e ’s|\cM||’ {} \;

Use C<Module> for module names, directives, function names, etc. If correcting older documenta-
tion, remember not to leave any quotes around the old names (for example, don’t do C<"GET">, but
just C<GET>).

Some older documentation uses B<> for module names. This was because pod2man didn’t make
C<> stand out enough. If you spot any of these, please replace them with C<>. Use B<> for stressing
very important things. Use them infrequently, since if there are many phrases in bold the original 
intention is getting lost.

Use I<filename> for filenames, URIs and things that are generally written in italics.

Use B<stress> for stressing things, but you should avoid using this tag unless you think things are
very important. Over-use of the bold text reduces it’s original intention -- make things stand out.

Use E<gt> for encoding $r->filename as in C<$r-E<gt>filename>. Note that with some Perl
versions pod2html(1) and some other pod2* are broken and don’t correctly interpret this tag.

URLs are left unmarked. Pod2Html automatically identifies and highlights them. If later we would
like to do that inline, we can have an easy s/// one liner.

Linking between items in the same doc and across documents: Currently use the technique explained
in perlpod man page. It’s not very sophisticated, but we will have to think about some better tech-
nique.

529 Jan 2004

1.4  ConventionsDocumentation Style Guide



Currently, you can do this: for example, if editing the document guide/performance.pod, you can link
to the install.pod one by using

  L<installation instructions|guide::install>

or

  L<installation instructions|docs::1.0::guide::install>

You may also link to the index of a section by using

  L<The Guide|guide::index>

As you can see in the base config.cfg file, there are some search paths used to make linking more 
comfortable. That is why you can, for some documents, use absolute links (à la 
docs::1.0::guide::install) and relative links (guide::install).

Command line examples. Please use the following prompts to be consistent.

user mode prompt:

  % ls -l

root mode prompt:

  # ls -l

This is also documented in the Conventions document. If there is possible confusion about whether
the second one is a root prompt or a comment, it might be a good idea to indicate it.

For Operating System-specific information, use an adapted prompt: for example for Win32:

  C:\> bin\build

Titles and subtitles:

Use the head tags:

  =head(1,2,3...)

Please try to avoid titles in ALLCAPS. Use caps like This, which are a little more normal. If porting
old documents, correct this.

Code examples:

META: not implemented yet! Currently use F<>

A new pod tag:

29 Jan 20046

1.4  Conventions



  =example 1.1 This is a title

becomes:

 <p><i>Example 1.1: This is a title</i></p>

Figures (images):

META: not implemented yet! Currently use =for html

A new pod tag:

  =figure figure1.1.png This is a title

becomes:

 <p><center><img src="figure1.1.png"></center></p>
 <p><center><b>Figure 1.1: This is a title</b></center></p>

The index is extracted automatically from the file name.

META: not implemented yet!

Footnotes. These aren’t defined in the current perlpod yet. So please use [F] footnote [/F] semantics
and later we will come up with some way to make it a correct footnote.

META: not implemented yet!

Sidebars. Just like footnotes - it’s not defined yet. Use [S] sidebar [/S] for now.

Paragraphs.

Try to keep the paragraphs not too long as it is hard to read them if they are too long. Follow
common sense for that.

Paragraphs are separated by an empty new line. Please make sure that you don’t leave any spaces on
this line. Otherwise the two paragraphs will be rendered as one. Especially remember to put a new
empty line between text and code snippets.

Code snippets 

As you know in POD if you want something to be left untouched by the translator, you have to insert
at least one space before each line. Please use the 2 space indent to specify the text snippet and for the
code examples please use the 4 spaces indentation. No tabs please.

Also remember that if the code snippet includes empty lines, you should prefix these with 2 spaces as
well, so the examples will be continuous after they get converted into other formats.

729 Jan 2004

1.4  ConventionsDocumentation Style Guide



Here is an example:

  my $foo;
  for (1..10) {
       $foo += $_;
  
       if ($foo > 6) {
           print "foo\n";
       }
       else {
           print "bar\n";
       }
  }

From this example you can learn other style details that you should follow when writing docs. In any
case, follow the mod_perl coding guidelines for code.

Automatic code extraction 

The documentation includes numerous code snippets and complete scripts, you don’t want the reader
to type them in, so we want to make all the code available to the reader in a separated files, located in
each chapter’s parent’s directory (e.g. ch2/ex2.pl)

Well at the beginning you might think that it might be a good idea to keep all the code in sync with
the doc, but very soon you will find out that you change the code in the text and move the chapters
and sections around, which makes it impossible to maintain the external source code.

So what we have to do (and I haven’t made it yet) is to use a convention for the code to be automati-
cally extracted, e.g.:

  file:example.pl
  ----------------
  #!/usr/bin/perl -w
  
  use CGI;
  my $q = new CGI;
  
  print "Hi";

So as I’ve said before we must not forget to add 2 space characters indentation to empty lines with no
code in them, so that the parser picks up the whole code, removes the header with the filename and 
separator, puts back the code itself, saves it to the filename written at the top, and places it into the
same directory name the text is located in. (Well it can be a separate tree for the code). If there are
real empty lines, only part of the script will be saved, which will make the release broken. Another
approach is to add some tail (ending token), but it’s a mess I think. I develop the text using 
cperl-mode.el in xemacs which shows all space characters not followed by any text - this helps a lot!

Documenting Important Changes 

If you are posting a patch or a committing a patch, please document the important changes that would
be of interest to the end user. For more info please read the Changes file doc.

29 Jan 20048

1.4  Conventions



Naming mod_perl major versions 

We have adopted the convention that mod_perl major versions should be named as 1.0 and 2.0, and
not 1.x and 2.x.

1.5  Review process
If you want to send a review of a document to the document maintainer, please follow the following 
guidelines:

1.5.1  Diff or not Diff?

Since the text is changing a lot it’s much harder to apply patches, especially if you happen to make a patch
against an older version.

Therefore we have found that it’s much better for the docs maintainers to receive the whole document
which is already corrected the way you think it should be and possible extra comments, as explained in the
next section.

Once we receive such a document we can use visual diff programs to make an easy merge, even if the 
document that you have modified has been changed since then. I suggest to use emacs’s Ediff module
for visual merges. I’m sure other editors provide similar functionality.

[Stas: if you know about these functionalities, please let me know so we can share the knowledge with
others who don’t use emacs.]

To submit normal patches (when they are minor changes, and you’re sure the document hasn’t changed),
use the cvs diff method:

  % cvs diff -u src/docs/1.0/...pod

If you’re adding a file, especially if it needs a new directory, it might be a good idea to submit a patch
against /dev/null, which will automatically create the new directory, like this.

  % diff -u /dev/null newdir/newfilename.pod

Or on Windows:

  % diff -u NUL newdir/newfilename.pod

1.5.2  Adding Inline Remarks

TODO semantics:

I’ve gotten used to (META: do something) approach since the old days when I read the linux docu-
mentations. So you will see lots of META tags scattered around the sources. It makes it easy to see
what things aren’t yet complete and mark things that we want to work on later. So please use some-
thing like:

929 Jan 2004

1.5  Review processDocumentation Style Guide



  [META: this should be completed]

Review Comments:

If you review some document and you want to comment on something, just embed a paragraph with
your comments enclosed in [] and with your name prepended. E.g:

  [Stas: This document needs a review.
  But it looks OK after all.]

if your first name is a common one, please use the last name as well, or some other way to easily 
identify you so the maintainer of the document can contact you for an additional questions.

1.6  Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.7  Authors
Stas Bekman <stas (at) stason.org>

29 Jan 200410

1.6  Maintainers



 

 

 

 

 

 

 

 

 

 

2   Changes File Specs 

1129 Jan 2004

2  Changes File SpecsChanges File Specs



2.1  Description
This doc clears the confusion regarding the need and the maintenance guidelines of Changes.pod files in
the project.

2.2  Who Has Contributed What And When
All the modifications of every single file can be viewed via cvs log command. e.g., to check the history
of this very file, one would run:

  % cvs log src/contribute/docs/changes_file.pod

Which will display all the commit logs, who has committed the change, who has submitted the changes, 
etc.

2.3  The Art of Changes File
The Changes.pod document is not the same as the history of all changes. This document is for end user 
consumption, who is interested to know what are the major changes since the last time she read the docu-
ments. Or minor but important changes, like bug fixes.

Therefore the Changes.pod document is only needed when some sub-project goes through changes which
will be of interest to the reader. Don’t just add Changes.pod everywhere, until you really think it’s needed.

The format of this document should be as dense as possible, so the reader can read through it fast and
pin-point if there is something interesting to it.

There is no need to log the date every time the change is done (’cvs log’ has all the info). Though it’s nice
to group the changes by certain milestones, so let’s say every few month a time stamp is added in front of
the group of the changes since the last timestamp and new changes will go to the new group. The change
entries in the docs/1.0/guide/Changes.pod is a good example of that. In addition it used to add a version
number for each milestone, which is very optional now.

This file should have the latest changes on the top.

2.4  The Scope of Changes.pod
Usually we have a separate Changes.pod file for each sub-set of the documents. If you feel that the
changes for a few sub-sets nested in the same super-set of docs can be maintained in one file, have only
one Changes.pod. Later if this file becomes too overloaded and its added value is getting diminished, split
it into a few Changes.pod files placed in each sub-set. Or if you think that this will happen in the near
future do this from the beginning to avoid the slicing work later.

29 Jan 200412

2.1  Description



2.5  Adding Credits
If you are the maintainer of the document, you don’t have to credit each change done by you, with your
name, simply leave the change entry un-credited, which automatically implies that you did that.

If someone commits something to the document maintained by someone else simply mark it with your
name e.g. [Thomas Klausner]. Those who commit all the time, should pick some short (nick?)name that
will distinguish them from others and make their changes with it. e.g [thomas]. The idea is to have the
changes file with as little noise as possible.

There is a special case where we want to credit people who contributed very minor fixes, which don’t
deserve a separate changes entry. In this case just have a special entry like Minor fixes, where you
simply list the names of those who contributed because we want to give credits to everybody. Again the 
docs/1.0/guide/Changes.pod file perfectly demonstrates that.

2.6  Sample Changes.pod
See docs/1.0/guide/Changes.pod as a good example.

A typical entry looks like this:

  =head1 ???
  
  * books: Fixed some things and then other things, and then some other
    things bla bla bla. [John Doe E<lt>john.doe (at) aol.comE<gt>]
  
  * file: Added some content. [stas]
  
  * otherfile: updated the "Maintenance" section, adding references to
    bla bla bla [other person]
  
  =head1 Sat Nov 12 22:05:23 CET 2002
  
  * docs::index : moved tutorials to "Other documentation" [stas]
  
  * performance: minor corrections [thomas]

Please try to keep things correctly aligned here (ie. the first characters on each line should be vertically
aligned with eachother), as this file will most often be viewed as text.

As you can see, we try to collect a number of changes, then timestamp the document like a "version".

You can use the Changes_template.pod as a starting point.

1329 Jan 2004

2.5  Adding CreditsChanges File Specs



 

 

 

 

 

 

 

 

 

 

3   Site Maintenance 

29 Jan 200414

3  Site Maintenance



3.1  Description
This document explains how to keep the site clean. 

3.2  Validation Tasks
We start from a site which is absolutely clean. Please keep it that way.

Validate internal and external links. For example use: the checklink.pl from ( http://valida-
tor.w3.org/checklink ) I usually run the check as:

  % checklink.pl --summary --recursive --broken --quiet \
    --html -D 10 http://localhost/modperl-site > report.html

Internal links validation also applies to POD documents. It’s easy to do this, just rebuild the site with
the -l argument to bin/build:

  % bin/build -lf

Validate the correctness of the documents. The broken HTML can come from the broken source
HTML document or bad templates. One of the tools that can be used is sgmlcheck. e.g.:

  % sgmlcheck dst_html/index.html

META: anyone knows a better tool that can recursively check the whole site (ala checklink.pl) and 
generate an nice report?

1529 Jan 2004

3.1  DescriptionSite Maintenance

http://validator.w3.org/checklink
http://validator.w3.org/checklink




Table of Contents:
............. 1How to Contribute to the Documentation
................ 3Documentation Style Guide
............... 31   Documentation Style Guide 
.................. 41.1  Description
.................. 41.2  Formatting
................ 41.3  Document structure
.................. 51.4  Conventions
................. 91.5  Review process
................ 91.5.1  Diff or not Diff?
.............. 91.5.2  Adding Inline Remarks
.................. 101.6  Maintainers
................... 101.7  Authors
.................. 11Changes File Specs
................. 112   Changes File Specs 
.................. 122.1  Description
............ 122.2  Who Has Contributed What And When
............... 122.3  The Art of Changes File
............... 122.4  The Scope of Changes.pod
................. 132.5  Adding Credits
................ 132.6  Sample Changes.pod
................... 14Site Maintenance
................. 143   Site Maintenance 
.................. 153.1  Description
................. 153.2  Validation Tasks

i29 Jan 2004

Table of  Contents:Site Maintenance


	1€€Documentation Style Guide
	1.1€€Description
	1.2€€Formatting
	1.3€€Document structure
	1.4€€Conventions
	1.5€€Review process
	1.5.1€€Diff or not Diff?
	1.5.2€€Adding Inline Remarks

	1.6€€Maintainers
	1.7€€Authors

	2€€Changes File Specs
	2.1€€Description
	2.2€€Who Has Contributed What And When
	2.3€€The Art of Changes File
	2.4€€The Scope of Changes.pod
	2.5€€Adding Credits
	2.6€€Sample Changes.pod

	3€€Site Maintenance
	3.1€€Description
	3.2€€Validation Tasks


