Perl Reference 1 Perl Reference

1 Perl Reference

29 Jan 2004 1

1.1 Description

1.1 Description|

This documentwas born because some usersralgdantto learn Perl, prior to jumping into mod_perl. |
will try to cover some of the most frequent pure Bedsionsbeing asked at tHest.

Before you decide to skip this chapter make sure you know ahfibrenaion provided here. The rest of
the Guide assumes that you have read this chaptemaestoodit.

1.2 |perldoc’s Rarely Known But Very Useful Options

First of all, | want to stress that you cannot become a Perl hacker without knowing how to remduiPerl
mertation and search through it. Books are good, but an easidgsible andsearclable Perlreferenceat
your fingertips is a great time saver. It always has the up-to-dé&emation for the version of perl you're
using.

Of course you can use online Pedocumertation at the Web. The two major sites are
|http://www.perldoc.comandhttp://theoryx5.uwinipegca/CPAN/perl/

Theper | doc utility provides you with access to tdecunenation installed on your system. To find out
what Perl manpages aagailableexecute:

% per | doc perl

To find whatfunctions perl hasgxecute:
% per| doc perl func

To learn the syntax and to firckanplesof a specifidunction, you would execute (e.g. fopen()):
% per | doc -f open

Note: In perl5.005 03 and earlier, there is a bug in this and dheptions ofper | doc. It won't call
pod2nman, but will display the section in POD format instead. Despite this bug it'sesiithbleand very
useful.

The Perl FAQ(perlfag manpage) is in several sections. To search through the sectiomgefioryou
would execute:

% per | doc -q open
This will show you all thenatchng Quesion and Answer sections, still in PCiBrmat.

To read theerldoc manpage you woulexecute:

% per | doc perl doc

2 29 Jan 2004

http://www.perldoc.com/
http://theoryx5.uwinnipeg.ca/CPAN/perl/

Perl Reference 1.3 Tracing Warnings Reports

1.3 [Tracing Warnings Reportg

Sometimes it’s very hard to understand what a warning is complaining about. Y ou see the source code, but
you cannot understand why some specific snippet produces that warning. The mystery often results from
the fact that the code can be called from different placesif it’slocated inside a subroutine.

Hereisan example:

war ni ngs. pl

#! /usr/ bin/perl -w
use strict;

correct();
incorrect();

sub correct{
print_val ue("Perl");

}

sub incorrect {
print_val ue();

}

sub print_val ue{
ny $var = shift;
print "My value is $var\n";

}

In the code above, print_value() prints the passed value. Subroutine correct() passes the value to print, but
in subroutine incorrect() we forgot to passit. When we run the script:

% . / war ni ngs. pl

we get the warning:
Use of uninitialized value at ./warnings.pl |ine 16.

Perl complains about an undefined variable $var at the line that attempts to print its value:
print "My value is $var\n";

But how do we know why it is undefined? The reason here obvioudly is that the calling function didn’t
pass the argument. But how do we know who was the caller? In our example there are two possible
callers, in the general case there can be many of them, perhaps located in other files.

We can use the caller() function, which tells who has called us, but even that might not be enough: it's
possible to have a longer sequence of called subroutines, and not just two. For example, here it is sub
third() which is at fault, and putting sub caller() in sub second() would not help us very much:

29 Jan 2004 3

1.3 Tracing Warnings Reports

sub third{
second();

sub second{
ny $var = shift;
first($var)

sub first{
ny $var = shift;
print "Var = $var\n"

}

Thesoluion is quite simple. What we need is a full calls stack trace to the catlitfggredthewarning.

TheCar p module comes to our aid with its cluckgnction. Let's modify the script by adding a couple of
lines. The rest of the scriptimchanged.

war ni ngs2. pl

#! /usr/ bin/perl -w

use strict;
use Carp ();
local $SIG__WARN } = \&Carp::cluck

correct();
incorrect();

sub correct{
print_val ue("Perl");

}

sub incorrect{
print_val ue();

}

sub print_val ue{
ny $var = shift;
print "My value is $var\n";

}

Now when we execute it, weee:

Use of uninitialized value at ./warnings2.pl line 19
main::print_value() called at ./warnings2.pl line 14
main::incorrect() called at ./warnings2.pl line 7

Take a moment tandestandthe calls stack trace. The deepest calls are printed first. So the second line
tells us that the warning wasggeredin print_value(); the third, that print_value() was calledsbirou
ting, incorrecy).

script => incorrect() => print_val ue()

4 29 Jan 2004

Perl Reference 1.4 Variables Globally, Lexically Scoped And Fully Qualified

Wegointoi ncorrect () andindeed seethat we forgot to pass the variable. Of course when you write a
subroutine like pri nt _val ue it would be a good idea to check the passed arguments before starting
execution. We omitted that step to contrive an easily debugged example.

Sure, you say, | could find that problem by simple inspection of the code!

WEéll, you're right. But | promise you that your task would be quite complicated and time consuming if
your code has some thousands of lines. In addition, under mod_perl, certain uses of the eval operator and
"here documents’ are known to throw off Perl’s line numbering, so the messages reporting warnings and
errors can have incorrect line numbers. (See Finding the Line Which Triggered the Error or Warning for
more information).

Getting the trace helps alot.

1.4 Vari ablesGlobally, Lexically Scoped And FullyQuali-
fled

META: this material is new and requires polishing so read with care.

You will hear alot about namespaces, symbol tables and lexical scoping in Perl discussions, but little of it
will make any sense without afew key facts:

1.4.1|Symbols, Symbol Tables afhckages Typeglobs

There are two important types of symbol: package global and lexical. We will talk about lexical symbols
later, for now we will talk only about package global symbols, which we will refer to simply as global
symbols.

The names of pieces of your code (subroutine names) and the names of your global variables are symbols.
Global symbols reside in one symbol table or another. The code itself and the data do not; the symbols are
the names of pointers which point (indirectly) to the memory areas which contain the code and data. (Note
for C/C++ programmers. we use the term ‘pointer’ in a general sense of one piece of data referring to
another piece of data not in a specific sense asused in C or C++.)

There is one symbol table for each package, (which is why global symbols are really package global
symbaols).

Y ou are always working in one package or another.

Like in C, where the first function you write must be called main(), the first statement of your first Perl
script is in package mai n: : which is the default package. Unless you say otherwise by using the
package statement, your symbols are al in package nai n: : . You should be aware straight away that
files and packages are not related. You can have any number of packages in a single file; and a single
package can be in one file or spread over many files. However it is very common to have a single package
inasinglefile. To declare a package you write:

29 Jan 2004 5

1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

package nypackagenane;

From the following line you are in package mypackagenarmne and any symbols you declare reside in that
package. When you create a symbol (variable, subroutine etc.) Perl uses the name of the package in which
you are currently working as a prefix to create the fully qualified name of the symbol.

When you create a symbol, Perl creates a symbol table entry for that symbol in the current package's
symbol table (by default mai n: :). Each symbol table entry is called a typeglob. Each typeglob can hold
information on a scalar, an array, a hash, a subroutine (code), afilehandle, a directory handle and aformat,
each of which al have the same name. So you see now that there are two indirections for aglobal variable:
the symboal, (the thing’s name), points to its typeglob and the typeglob for the thing's type (scalar, array,
etc.) points to the data. If we had a scalar and an array with the same name their name would point to the
same typeglob, but for each type of data the typeglob points to somewhere different and so the scalar's
data and the array’s data are completely separate and independent, they just happen to have the same
name.

Most of the time, only one part of atypeglob is used (yes, it's a bit wasteful). Y ou will by now know that
you distinguish between them by using what the authors of the Camel book call a funny character. So if
we have ascalar called ‘| i ne’ wewould refer to it in code as $l i ne, and if we had an array of the same
name, that would be written, @ i ne. Both would point to the same typeglob (which would be called
*| i ne), but because of the funny character (also known as decoration) perl won't confuse the two. Of
course we might confuse ourselves, so some programmers don’t ever use the same name for more than
one type of variable.

Every global symbol is in some package's symbol table. To refer to a global symbol we could write the
fully qualified name, e.g. $rmai n: : | i ne. If we are in the same package as the symbol we can omit the
package name, e.g. $| i ne (unlessyou usethestri ct pragmaand then you will have to predeclare the
variable using the var s pragma). We can also omit the package name if we have imported the symbol
into our current package’'s namespace. If we want to refer to a symbol that is in another package and
which we haven't imported we must use the fully qualified name, e.g. $ot her pkg: : box.

Most of the time you do not need to use the fully qualified symbol name because most of the time you will
refer to package variables from within the package. This is very like C++ class variables. You can work
entirely within package mai n: : and never even know you are using a package, nor that the symbols have
package names. In a way, this is a pity because you may fail to learn about packages and they are
extremely useful.

The exception is when you import the variable from another package. This creates an alias for the variable
in the current package, so that you can access it without using the fully qualified name.

Whilst global variables are useful for sharing data and are necessary in some contexts it is usually wisest
to minimize their use and use lexical variables, discussed next, instead.

Note that when you create a variable, the low-level business of alocating memory to store the information
is handled automatically by Perl. The intepreter keeps track of the chunks of memory to which the pointers
are pointing and takes care of undefining variables. When all references to a variable have ceased to exist
then the perl garbage collector is free to take back the memory used ready for recycling. However perl
almost never returns back memory it has already used to the operating system during the lifetime of the

6 29 Jan 2004

Perl Reference 1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

process.

1.4.1.1 |Lexical Variables and Symbolg

The symbols for lexicabariables(i.e. those declared using the keywang) are the only symbols which
do not live in a symbol table. Because of this, they areanailable from outside the block in which they
are declared. There is typeglob assaiatedwith a lexicalvariableand a lexicalvariablecan refer only to
a scalar, an array, a hash or a caderence (Since perl-5.6 it can also refer to a fileb).

If you need access to the data from outside the package then you can return isfilomodane, or you

can create a globafriable (i.e. one which has a package prefix) which points or refers to it and return
that. The pointer oreferencemust be global so that you can refer to it by a fgliaified name. But just

like in C try to avoid having globafariables Using OO methodgeneally solves this problem, bgrovid

ing methods to get and set the desired value within the object that deridadly scoped inside the
package and passed teference

The phrase "lexicavariable' is a bit of a misnomer, we are really talking about "lexical symbols". The
data can beeferencedby a global symbol too, and in such cases when the lexical symbol goes out of
scope the data will still beccesible through the global symbol. This is perfedégitimateand cannot be
compared to théerrible mistake of taking a pointer to autanatic C variable andreturring it from a
function--when the pointer islereerencedthere will be asegmetsation fault. (Note for C/C++program

mers having afunction return a pointer to an aut@riableis adisaserin C or C++; the perkquivalent,
returring areferenceto a lexicalvariablecreated in dunction is normal andiseful.)

® ny() vs.use vars:

With use vars(), you are making an entry in the symbol table, and you are telling the compiler that
you are going to beeferendng that entry without an explicit packagame.

With my(), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler figures oat
conpi | e tinme which my()variables(i.e. lexicalvariable3 are the same as each other, and once
you hit execute time you cannot go looking theadablesup in the symbadiable.

® ny() vs.local ():

local() creates @gempoal-limited package-based scalar, array, hash, or glob -- when the scope of
definition is exited at runtime, thpreviousvalue (if any) is restoredRefeencesto such avariable
are *also* global... only the value changes. (Aside: that is what ceadallesuicide.:)

my() creates gexically-limited non-package-based scalar, array, or hash -- when the sotginpf
tion is exited at compile-time, theriable ceases to baccesible. Any referencesto such avariable
at runtime turn into uniquanonymousvariableson each scopexit.

29 Jan 2004 7

1.5 my() Scoped Variable in Nested Subroutines

1.4.2 |Additional reading referenceq

For more information see: [Using global variables and sharing them between modules/packaged and an
article by Mark-Jason Dominus about how Perl handles variables and namespaces, and the difference
betweenuse vars() andny() -http://www.plover.com/~mjd/perl/FAQs/Namespaces.html|.

1.5 |my() Scoped Variablein Nested Subroutines

Before we proceed let's make the assumption that we want to develop the code under the stri ct
pragma. We will use lexically scoped variables (with help of the my() operator) whenever it’s possible.

1.5.1 [The Poison|

Let'slook at this code:

nest ed. pl

#! [usr/ bi n/ perl
use strict;

sub print_power_of _2 {
ny $x = shift;

sub power _of 2 {
return $x ** 2;

}

ny $result = power_of _2();
print "$x"2 = $result\n”;
}

print_power _of _2(5);
print_power _of _2(6);

Don't let the weird subroutine names fool you, the print_power_of 2() subroutine should print the square
of the number passed to it. Let’ s run the code and see whether it works:

% . / nest ed. pl

572
672

25
25

Ouch, something is wrong. May be thereisabug in Perl and it doesn’t work correctly with the number 67
Let'stry againusing 5and 7:

print_power _of _2(5);
print_power _of _2(7);

8 29 Jan 2004

http://www.plover.com/~mjd/perl/FAQs/Namespaces.html

Perl Reference 1.5.2 The Diagnosis

And runit;
% . / nest ed. pl

572
"2

25
25

Wow, does it works only for 5? How about using 3 and 5:

print_power _of 2(3);
print_power _of 2(5);

and theresult is;

% . / nest ed. pl

372
572

9
9

Now we start to understand--only the first call to the print_power_of 2() function works correctly. Which
makes us think that our code has some kind of memory for the results of the first execution, or it ignores
the arguments in subsegquent executions.

1.5.2 [The Diagnosig

Let’ sfollow the guidelines and use the - wflag. Now execute the code:

% . / nest ed. pl

Variable "$x" will not stay shared at ./nested.pl line 9.
572 = 25
672 = 25

We have never seen such a warning message before and we don’t quite understand what it means. The
di agnosti cs pragmawill certainly help us. Let’'s prepend this pragma before the st ri ct pragmain
our code:

#! /usr/ bin/perl -w

use di agnosti cs;
use strict;

And execute it:
% . / nest ed. pl
Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

(W An inner (nested) naned subroutine is referencing a |l exica
vari able defined in an outer subroutine.

When the inner subroutine is called, it will probably see the val ue of
the outer subroutine’s variable as it was before and during the

29 Jan 2004 9

1.5.3 The Remedy

first call to the outer subroutine; in this case, after the first
call to the outer subroutine is conplete, the inner and outer
subroutines will no |l onger share a common value for the variable. 1In
other words, the variable will no |onger be shared

Furthernore, if the outer subroutine is anonynous and references a
| exical variable outside itself, then the outer and inner subroutines
wi Il never share the given variable

Thi s probl em can usually be solved by meking the inner subroutine
anonynous, using the sub {} syntax. Wen inner anonynous subs that
reference variables in outer subroutines are called or referenced,
they are automatically rebound to the current val ues of such

vari abl es.
572 = 25
672 = 25

WEéll, now everything is clear. We have the inner subroutine power of 2() and the outer subroutine
print_power_of 2() in our code.

When the inner power_of 2() subroutine is called for the first time, it sees the value of the outer
print_power_of 2() subroutine's $x variable. On subsequent calls the inner subroutine's $x variable
won’'t be updated, no matter what new values are given to $x in the outer subroutine. There are two copies
of the $x variable, no longer a single one shared by the two routines.

1.5.3 [The Remedy|

The di agnost i cs pragma suggests that the problem can be solved by making the inner subroutine
anonymous.

An anonymous subroutine can act as a closure with respect to lexically scoped variables. Basicaly this
means that if you define a subroutine in a particular lexical context at a particular moment, then it will run
in that same context later, even if called from outside that context. The upshot of this is that when the
subroutine runs, you get the same copies of the lexically scoped variables which were visible when the
subroutine was defined. So you can pass arguments to a function when you define it, as well as when you
invokeit.

Let’srewrite the code to use this technique:
anonynous. p
#1/ usr/ bi n/ perl

use strict;

sub print_power_of_2 {
my $x = shift;

ny $func_ref = sub {

return $x ** 2;

h

10 29 Jan 2004

Perl Reference 1.6 Understanding Closures -- the Easy Way

ny $result = &func_ref();
print "$x"2 = $resul t\n";
}

print_power _of _2(5);
print_power _of _2(6);

Now $f unc_r ef contains areference to an anonymous subroutine, which we later use when we need to
get the power of two. Since it is anonymous, the subroutine will automatically be rebound to the new
value of the outer scoped variable $x, and the results will now be as expected.

Let’ s verify:
% . / anonynous. pl

572
672

25
36

So we can see that the problem is solved.

1.6 |Under standing Closur es -- the Easy Way

In Perl, a closure is just a subroutine that refers to one or more lexical variables declared outside the
subroutine itself and must therefore create a distinct clone of the environment on the way out.

And both named subroutines and anonymous subroutines can be closures.

Here' s how to tell if asubroutineis aclosure or not:

for (1..5) {
push @, sub { "hi there" };
}
for (1..5) {
{
ny $b;
push @, sub { $b."hi there" };
}
}

print "anon nornmal:\n", join "\t\n", @, "\n";
print "anon closure:\n",join "\t\n", @, "\n";

which generates:

anon nornal :

CODE(0x80568€e4)
CODE(0x80568€e4)
CODE(0x80568€e4)
CODE(0x80568€e4)
CODE(0x80568€e4)

anon cl osure:
CODE(0x804b4c0)

29 Jan 2004 11

1.6 Understanding Closures -- the Easy Way

CODE(0x8056b54)
CODE(0x8056bb4)
CODE(0x80594d8)
CODE(0x8059538)

Note how each code reference from the non-closure is identical, but the closure form must generate
distinct coderefsto point at the distinct instances of the closure.

And now the same with named subroutines;

for (1..5) {
sub a { "hi there" };
push @, \&a;

}

for (1..5) {

my $b;
sub b { $b."hi there" };
push @, \&b;
}
}

print "normal:\n", join "\t\n",@,"\n";
print "closure:\n",join "\t\n", @,"\n";

which generates:

anon nornal :

CODE(0x80568c0)
CODE(0x80568c0)
CODE(0x80568c0)
CODE(0x80568c0)
CODE(0x80568c0)

anon cl osure:

CODE(0x8056998)
CODE(0x8056998)
CODE(0x8056998)
CODE(0x8056998)
CODE(0x8056998)

We can see that both versions has generated the same code reference. For the subroutine a it's easy, since
it doesn’t include any lexical variables defined outside it in the same lexical scope.

Asfor the subroutine b, it’sindeed a closure, but Perl won’t recompileit since it's a named subroutine (see
the perlsub manpage). It's something that we don’'t want to happen in our code unless we want it for this
special effect, similar to static variablesin C.

This is the underpinnings of that famous "won't stay shared" message. A my variable in a named subrou-
tine context is generating identical code references and therefore it ignores any future changes to the
lexical variables outside of it.

12 29 Jan 2004

Perl Reference 1.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior

1.6.1 Mike Guy’' s Explanation of the Inner Subroutine Behavior|

From nmjtg@us.camac.uk (MJ.T. Quy)

Newsgr oups: conp. | ang. perl.m sc

Subj ect: Re: Lexical scope and enmbedded subroutines.
Date: 6 Jan 1998 18:22:39 GVI

Message- | D <68t spf $9f 0$1@ yr a. csx. cam ac. uk>

In article <68sc4k$3p2$1@r okaw. wa. con», Aaron Harsh <ajh@tk. conp
wr ot e:

Before | read this thread (and perlsub to get the details) | would
have assuned the original code was fine.

Thi s behavior brings up the followi ng questions:
o |I's Perl’s behavior sone sort of speed optinization?

V V.V VYV

No, but see bel ow.

> o Did the Perl gods just decide that scheme-like behavior was |ess
> inmportant than the pseduo-static variables described in perlsub?

Thi s subj ect has been kicked about at sone |length on perl5-porters.
The current behavi our was chosen as the best of a bad job. In the
context of Perl, it’s not obvious what "scheme-|ike behavior" neans.
So it isn't an option. See below for details.

> o Does anyone else find Perl’s behavior counter-intuitive?
Everyone finds it counterintuitive. The fact that it only generates
a warning rather than a hard error is part of the Perl Gods policy of
hurling thunderbolts at those so irreverent as not to use -w.

> o Did programming in schenme destroy my ability to judge a decent
> | anguage

> feature?

You're still interested in Perl, so it can't have rotted your brain
conpletely.

> o0 Have | m srenenbered how schene handl es these situations?
Probabl y not.

> o0 Do Perl programmers really care how much Perl acts |ike scheme?
Sorne do.

> o0 Should |I have stopped this message two or three questions ago?
Yes.

The problemto be solved can be stated as

"When a subroutine refers to a variable which is instantiated nore
than once (i.e. the variable is declared in a for loop, or in a

29 Jan 2004 13

1.7 When Y ou Cannot Get Rid of The Inner Subroutine

subroutine), which instance of that variable shoul d be used?"

The basic problemis that Perl isn't Schene (or Pascal or any of the
ot her conparators that have been used).

In alnmost all lexically scoped | anguages (i.e. those in the Al gol 60
tradition), named subroutines are also lexically scoped. So the scope
of the subroutine is necessarily contained in the scope of any
external variable referred to inside the subroutine. So there’'s an
obvi ous answer to the "which instance?" problem

But in Perl, naned subroutines are globally scoped. (But in sone
future Perl, you'll be able to wite

nmy sub lex { ... }

to get lexical scoping.) So the solution adopted by other |anguages
can't be used

The next suggestion nost people come up with is "Wiy not use the nost
recently instantiated variable?". This Does The Right Thing in many
cases, but fails when recursion or other conplications are invol ved.

Consi der:
sub outer {

i nner();

outer();

ny $trouble

i nner();

sub inner { $trouble };
outer();

i nner();

}

Whi ch instance of $trouble is to be used for each call of inner()?
And why?

The consensus was that an inconplete solution was unacceptable, so the
sinple rule "Use the first instance" was adopted instead

And it is nore efficient than possible alternative rules. But that’'s
not why it was done

M ke Quy

1.7 When You Cannot Get Rid of The Inner Subroutine

First you might wonder, why in the world will someone need to define an inner subroutine? Well, for
example to reduce some of Perl’s script startup overhead you might decide to write a daemon that will
compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest and do
it much faster since compilation has already taken place.

14 29 Jan 2004

Perl Reference 1.7 When Y ou Cannot Get Rid of The Inner Subroutine

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you execute it?
Or let’s put it the other way: after it was executed for the first time and it stays compiled in the daemon’s
memory, how do you call it again? If you could get all developers to code their scripts so each has a
subroutine called run() that will actually execute the code in the script then we' ve solved half the problem.

But how does the daemon know to refer to some specific script if they all runinthe mai n: : name space?
One solution might be to ask the developers to declare a package in each and every script, and for the
package name to be derived from the script name. However, since there is a chance that there will be more
than one script with the same name but residing in different directories, then in order to prevent names-
pace collisions the directory has to be a part of the package name too. And don't forget that the script may
be moved from one directory to ancther, so you will have to make sure that the package name is corrected
every time the script gets moved.

But why enforce these strange rules on developers, when we can arrange for our daemon to do this work?
For every script that the daemon is about to execute for the first time, the script should be wrapped inside
the package whose name is constructed from the mangled path to the script and a subroutine called run().
For example if the daemon is about to execute the script /tmp/hello.pl:

#! [usr/ bi n/ perl
print "Hello\n";

Prior to running it, the daemon will change the code to be:

wr apped_hel | 0. pl

package cache::tnp::hello_2epl;

sub run{
#1/ usr/ bi n/ perl
print "Hello\n";
}

The package name is constructed from the prefix cache: :, each directory separation slash is replaced
with : :, and non aphanumeric characters are encoded so that for example . (a dot) becomes 2e (an
underscore followed by the ASCII code for adot in hex representation).

% perl -e "printf "9%",ord(".")’

prints: 2e. The underscore is the same you see in URL encoding except the %character is used instead
(Y2E), but since %has a special meaning in Perl (prefix of hash variable) it couldn’t be used.

Now when the daemon is requested to execute the script /tmp/hello.pl, al it has to do is to build the
package name as before based on the location of the script and call its run() subroutine:

use cache::tnp::hello_2epl;
cache::tnp::hello_2epl::run();

29 Jan 2004 15

1.7.1 Remediesfor Inner Subroutines

We have just written a partial prototype of the daemon we wanted. The only outstanding problem is how
to pass the path to the script to the daemon. This detail isleft as an exercise for the reader.

If you are familiar with the Apache: : Regi st ry module, you know that it works in ailmost the same
way. It uses a different package prefix and the generic function is caled handler() and not run(). The
scripts to run are passed through the HT TP protocol’ s headers.

Now you understand that there are cases where your normal subroutines can become inner, since if your
script was asimple:

#1/ usr/ bi n/ perl
sub hello { print "Hello" }
hel l o();

Wrapped into arun() subroutine it becomes:

package cache: : sinpl e_2epl

sub run{
#1/ usr/ bi n/ perl
sub hello { print "Hello" }
hel l o();

}

Therefore, hello() is an inner subroutine and if you have used my() scoped variables defined and altered
outside and used inside hello(), it won't work as you expect starting from the second call, as was explained
in the previous section.

1.7.1 |Remedies for Inner Subroutines

First of al there is nothing to worry about, as long as you don’t forget to turn the warnings On. If you do
happen to have the "Imy() Scoped Variable in Nested Subroutineq' problem, Perl will always alert you.

Given that you have a script that has this problem, what are the ways to solve it? There have been many
suggested in the past, and we discuss some of them here.

We will use the following code to show the different solutions.

mul tirun. pl

#! / usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){
print "run: [time $_]\n";
run();

16 29 Jan 2004

Perl Reference

}

sub run{

ny $counter =

0,

i ncrement _counter();
i ncrement _counter();

sub increnent _counter{

$count er ++;

1.7.1 Remediesfor Inner Subroutines

print "Counter is equal to $counter !\n";

}

} # end of sub run

This code executes the run() subroutine three times, which in turn initializes the $count er variableto 0,
every time it is executed and then calls the inner subroutine increment_counter() twice. Sub incre-
ment_counter() prints $count er’s value after incrementing it. One might expect to see the following

output:

run: [time 1]
Counter is equal
Counter is equal
run: [time 2]
Counter is equal
Counter is equal
run: [time 3]
Counter is equal
Counter is equal

to
to

to
to

to
to

2

1
2

But as we have aready learned from the previous sections, this is not what we are going to see. Indeed,

when we run the script we see:

% ./ mul tirun. pl

Vari able "$counter"

run: [time 1]
Counter is equal
Counter is equal
run: [time 2]
Counter is equal
Counter is equal
run: [time 3]
Counter is equal
Counter is equal

to
to

to
to

to
to

wil |

[EnY

5
6

not stay shared at ./nested.pl line 18.

Apparently, the $count er variableisnot reinitialized on each execution of run(), it retainsits value from
the previous execution, and increment_counter() increments that. Actually that is not quite what happens.
On each execution of run() a new $count er variable is initialized to zero but increment_counter()
remains bound to the $count er variable from thefirst call to run().

29 Jan 2004

17

1.7.1 Remediesfor Inner Subroutines

The simplest of the work-rounds is to use package-scoped variables. These can be declared using our or,
on older versions of Perl, thevar s pragma. Note that whereas using ny declaration also implicitly initial-
izes variables to undefined the our declaration does not, and so you will probably need to add explicit
initialisation for variables that lacked it.

mul tirunl. pl

#!/ usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){
print "run: [time $_]\n";
run();

}
sub run {
our $counter = O;

i ncrenent _counter();
i ncrenent _counter();

sub increnment _counter{
$count er ++;
print "Counter is equal to $counter !'\n";

}

} # end of sub run

If you run this and the other solutions offered below, the expected output will be generated:
% ./ multirunl. pl

run: [time 1]
Counter is equal to 1!
Counter is equal to 2!
run: [time 2]
Counter is equal to 1!
Counter is equal to 2!
run: [time 3]
Counter is equal to 1!
Counter is equal to 2!

By the way, the warning we saw before has gone, and so has the problem, since there is no my () (lexi-
cally defined) variable used in the nested subroutine.

In the above example we know $count er isjust a simple small scalar. In the general case variables
could reference external resource handles or large data structures. In that situation the fact that the variable
would not be released immediately when run() completes could be a problem. To avoid this you can put
| ocal in front of the our declaration of all variables other than simple scalars. This has the effect of
restoring the variable to its previous value (usually undefined) upon exit from the current scope. As a
side-effect | ocal aso initializes the variables to undef . So, if you recall that thing | said about adding

18 29 Jan 2004

Perl Reference 1.7.1 Remediesfor Inner Subroutines

explicit initialization when you replace ny by our, well, you can forget it again if you replace my with
| ocal our.

Be warned that | ocal will not release circular data structures. If the original CGI script relied upon
process termination to clean up after it then it will leak memory as aregistry script.

A varient of the package variable approach is not to declare your variables, but instead to use explicit
package qualifiers. This has the advantage on old versions of Perl that there is no need to load the var s
module, but it adds a significant typing overhead. Another downside is that you become dependant on the
"used only once" warning to detect typos in variable names. The explicit package name approach is not
really suitable for registry scripts because it pollutes the mai n: : namespace rather than staying properly
within the namespace that has been allocated. Finally, note that the overhead of loading the var s module
only has to be paid once per Perl interpreter.

mul tirun2. pl

#! /usr/bin/perl -w
use strict;

for (1..3){
print "run: [time $_]\n";
run();

}

sub run {
$mai n: : counter = O;

i ncrenent _counter();
i ncrenent _counter();

sub increnment _counter{
$mai n: : count er ++
print "Counter is equal to $nmin::counter !\n";

}

} # end of sub run

You can also pass the variable to the subroutine by value and make the subroutine return it after it was
updated. This adds time and memory overheads, so it may not be good idea if the variable can be very
large, or if speed of execution isan issue.

Don’t rely on the fact that the variable is small during the development of the application, it can grow
quite big in situations you don’t expect. For example, avery smple HTML form text entry field can return
a few megabytes of data if one of your users is bored and wants to test how good your code is. It's not
uncommon to see users copy-and-paste 10Mb core dump files into a form'’s text fields and then submit it
for your script to process.

mul tirun3. pl

#! [usr/ bi n/ perl

29 Jan 2004 19

1.7.1 Remediesfor Inner Subroutines

use strict;
use war ni ngs;

for (1..3){
print “run: [tinme $_]\n"
run();

}

sub run {
ny $counter = 0

i ncrement _count er ($counter);
i ncrement _count er ($counter);

$count er
$count er

sub increnent_counter{
ny $counter = shift;

$count er ++;
print "Counter is equal to $counter !\n";

return $counter

}

} # end of sub run

Finally, you can use references to do the job. The version of increment_counter() below accepts a refer-
ence to the $count er variable and increments its value after first dereferencing it. When you use arefer-
ence, the variable you use inside the function is physically the same bit of memory as the one outside the
function. Thistechnigque is often used to enable a called function to modify variablesin a calling function.

mul tirund. pl

#! / usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){
print "run: [time $_]\n";
run();

}

sub run {
ny $counter =0

i ncrement _count er (\ $counter);
i ncrement _count er (\ $counter);

sub increnment _counter{
ny $r_counter = shift;

$$r _counter ++

20 29 Jan 2004

Perl Reference 1.7.1 Remediesfor Inner Subroutines

print "Counter is equal to $$r_counter !'\n";

}

} # end of sub run

Here is yet another and more obscure reference usage. We modify the value of $count er inside the
subroutine by using the fact that variables in @ are aliases for the actual scalar parameters. Thus if you
caled a function with two arguments, those would be stored in $ [0] and $ [1] . In particular, if an
element $_[0] isupdated, the corresponding argument is updated (or an error occursiif it is not updatable
as would be the case of calling the function with aliteral, e.g. increment_counter (5)).

mul tirun5. pl

#! / usr/ bi n/ perl

use strict;
use war ni ngs;

for (1..3){
print "run: [time $_]\n";
run();

}

sub run {
ny $counter =0

i ncrement _count er ($counter);
i ncrenment _count er ($counter);

sub increnment _counter{

$_[0] ++;

print "Counter is equal to $_[0] !\n";
}

} # end of sub run
The approach given above should be properly documented of course.

Here is a solution that avoids the problem entirely by splitting the code into two files; the first isreally just
awrapper and loader, the second file contains the heart of the code. This second file must go into a direc-
tory in your @ NC. Some people like to put the library in the same directory as the script but this assumes
that the current working directory will be equal to the directory where the script is located and also that
@ NCwill contain’ .’ , neither of which are assumptions you should expect to hold in all cases.

Note that the name chosen for the library must be unique throughout the entire server and indeed every
server on which you many ever install the script. This solution is probably more trouble than it isworth - it
isonly oncluded because it was mentioned in previous versions of this guide.

29 Jan 2004 21

1.7.1 Remediesfor Inner Subroutines

mul tiruné. pl

#! [usr/ bi n/ perl

use strict;
use war ni ngs;

require 'multirun6-lib.pl’

for (1..3){
print “run: [tine $_]\n"
run();

}
Separate file:

mul tirun6-1ib. pl

use strict;
use war ni ngs;

ny $counter;

sub run {
$counter = 0;

i ncrement _counter();
i ncrement _counter();

}

sub i ncrenment _counter{
$count er ++;
print "Counter is equal to $counter !\n";

}
1

An dternative verion of the above, that mitigates some of the disadvantages, is to use a Perl5-style
Exporter module rather than a Perl4-style library. The globa uniqueness requirement still applies to the
module name, but at least thisis a problem Perl programmers should aready be familiar with when creat-
ing modules.

mul tirun?. pl

#!/ usr/ bi n/ perl

use strict;
use war ni ngs;
use My::Miltirun?,

for (1..3){
print “run: [tine $_]\n"
run();

}

22 29 Jan 2004

Perl Reference 1.8 use(), require(), do(), %INC and @INC Explained

Separatefile:

My/ Mul tirun7. pm

package My:: Ml tirun7,
use strict;

use war ni ngs;

use base qw Exporter);
our @XPORT = gw(run);

ny $counter;

sub run {
$counter = O;

i ncrement _counter();
i ncrement _counter();

}

sub i ncrenent _counter{
$count er ++;
print "Counter is equal to $counter !\n";

}

1
Now you have at least five workarounds to choose from (not counting numbers 2 and 6).

For more information please refer to perlref and perlsub manpages.

1.8 juse(), require(), do(), % INC and @INC Explained
1.8.1 [The @ NC array

@ NC is a specia Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains alist of directories to search for executables, @ NC contains alist of directories from which Perl
modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from the @ NC
variable and searches them for the file it was requested to load. If the file that you want to load is not
located in one of the listed directories, you have to tell Perl where to find the file. Y ou can either provide a
path relative to one of the directoriesin @ NC, or you can provide the full path to thefile.

1.8.2 [The %I NC hash|

% NCisanother special Perl variable that is used to cache the names of the files and the modules that were
successfully loaded and compiled by use(), require() or do() statements. Before attempting to load afile or
a module with use() or require(), Perl checks whether it's already in the %84 NC hash. If it's there, the
loading and therefore the compilation are not performed at all. Otherwise the file is loaded into memory
and an attempt is made to compile it. do() does unconditional loading--no lookup in the %4 NC hash is

29 Jan 2004 23

1.8.2 The %INC hash

made.

If the file is successfully loaded and compiled, a new key-value pair is added to % NC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned, and if
it was found in any of the @ NC directories except " . " the valueisthe full path to it in the file system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @ NC on my system:
Y% perl -e 'print join "\n", @NC
/usr/1ib/perl5/5.00503/i386-1inux
/usr/l1ib/perl5/5.00503

/fusr/libl/perl5/site_perl/5.005/i386-1inux
/usr/libl/perl5/site_perl/5.005

Noticethe. (current directory) isthelast directory in thelist.

Now let’sload the module st ri ct . pmand see the contents of %4 NC:
% perl -e "use strict; print map {"$_ => $INC{$_}\n"} keys % NC
strict.pm=> /usr/lib/perl5/5. 00503/strict.pm

Sincestri ct. pmwas found in /usr/lib/per15/5.00503/ directory and /usr/lib/per15/5.00503/ is a part of
@ NC, % NCincludesthe full path asthe valuefor thekey stri ct. pm

Now let’s create the simplest modulein/ t np/ t est . pm

It does nothing, but returns atrue value when loaded. Now let’sload it in different ways.

%cd /tnp
% perl -e 'use test; print map {"$_ => SINC[$_}\n"} keys % NC

test.pm=> test.pm

Since the file was found relative to . (the current directory), the relative path isinserted as the value. If we
alter @ NC, by adding /tmp to the end:

%cd /tnp

% perl -e 'BEG N{push @NC, "/tnmp"} use test; \

print map {"$_ => $SINCS$_}\n"} keys % NC

test.pm=> test.pm

Here we still get the relative path, since the module was found first relative to " . " . The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the " . " directory
won't match,

24 29 Jan 2004

Perl Reference 1.8.2 The %INC hash

% cd /

% perl -e 'BEG N{push @NC, "/tnp"} use test; \
print map {"$_ => $INC{$_}\n"} keys % NC
test.pm=> /tnp/test. pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for matching before
". " and therefore we will get the full path aswell:

%cd /tnp
% perl -e 'BEG N{unshift @NC, "/tnp"} use test; \
print map {"$_ => $SINCS$_}\n"} keys % NC
test.pm=> /tnp/test. pm

The code:

BEA N{unshift @NC, "/tnmp"}
can be replaced with the more elegant:
use lib "/tm";
Which is amost equivaent to our BEG N block and is the recommended approach.

These approaches to modifying @ NC can be labor intensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts from development to a production server.

Thereisamodule called Fi ndBi n which solves this problem in the plain Perl world, but unfortunately it
won't work under mod_perl, since it's a module and as any module it's loaded only once. So the first
script using it will have all the settings correct, but the rest of the scripts will not if located in a different
directory from the first.

For the sake of completeness, 1’1l present this module anyway.

If you use this module, you don’'t need to write a hard coded path. The following snippet does all the work
for you (thefileis/tmp/load.pl):

#! [usr/ bi n/ perl

use FindBin ();

use lib "$FindBin::Bin";

use test;

print "test.pm=> $INC{’'test.pm}\n";

In the above example $Fi ndBi n: : Bi n is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/new_dir in the code above $Fi ndBi n: : Bi n equals/tmp/new_dir.

29 Jan 2004 25

1.8.3 Modules, Libraries and Program Files

% /t np/ | oad. pl

test.pm=> /tnp/test. pm
Thisisjust likeuse 1i b except that no hard coded path is required.

Y ou can use this workaround to make it work under mod_perl.

do ' FindBin. pm ;

unshift @NC, "$FindBin::Bin";

require test;

#maybe test::inport(...) here if need to inport stuff

This has a dlight overhead because it will load from disk and recompile the Fi ndBi n module on each
request. So it may not be worth it.

1.8.3 [Modules, Libraries and Program Filed

Before we proceed, let’ s define what we mean by module, library and programfile.

® Libraries
These are files which contain Perl subroutines and other code.

When these are used to break up a large program into manageable chunks they don't generaly
include a package declaration; when they are used as subroutine libraries they often do have a
package declaration.

Their last statement returnstrue, asimple 1; statement ensures that.
They can be named in any way desired, but generally their extensionis .pl.

Examples:

config. pl

No package so defaults to main::
$dir = "/home/ httpd/cgi-bin";

$cgi = "/cgi-bin";
1;

nmysubs. pl

No package so defaults to main::
sub print_header{
print "Content-type: text/plain\r\n\r\n";

}
1

26 29 Jan 2004

Perl Reference 1.8.3 Modules, Libraries and Program Files

package web ;
Call like this: web::print_with_class(’'loud ,"Don’t shout!");
sub print_with_cl ass{
ny($class, $text) = @ ;
print qgq{$t ext </ span>};
1;
® Modules
A file which contains perl subroutines and other code.
It generally declares a package name at the beginning of it.

Modules are generally used either as function libraries (which .pl files are still but less commonly
used for), or as object libraries where amodule is used to define a class and its methods.

Its last statement returns true.
The naming convention requires it to have a.pm extension.

Example:

MyModul e. pm

package My:: Modul e;
$My: : Modul e: : VERSION = 0. 01;

sub new{ return bless {}, shift;}
END { print "Quitting\n"}

1;
® Program Files

Many Perl programs exist as asingle file. Under Linux and other Unix-like operating systems the file
often has no suffix since the operating system can determine that it is a perl script from the first line
(shebang line) or if it's Apache that executes the code, there is a variety of ways to tell how and when
the file should be executed. Under Windows a suffix is normally used, for example. pl or. pl x.

The program file will normaly r equi re() any libraries and use() any modules it requires for
execution.

It will contain Perl code but won't usually have any package names.

Its last statement may return anything or nothing.

29 Jan 2004 27

1.8.4 require()

184

require() reads afile containing Perl code and compilesit. Before attempting to load the file it looks up the
argument in %4 NC to see whether it has already been loaded. If it has, require() just returns without doing
athing. Otherwise an attempt will be made to load and compile thefile.

require() hasto find thefileit has to load. If the argument isafull path to thefile, it just triesto read it. For
example:

require "/hone/ httpd/perl/nylibs.pl";

If the path is relative, require() will attempt to search for the file in al the directories listed in @ NC. For
example:

require "nylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @ NC the
first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statement will always return TRUE. That’s why the suggestionisto put "1; " at the end of file.

Although you should use the real filename for most files, if the file is ajmodulg, you may use the following
convention instead:

require My:: Mdul e;
Thisisequa to:
requi re "M/ Mdul e. pnt;

If require() fails to load the file, either because it couldn’t find the file in question or the code failed to
compile, or it didn’t return TRUE, then the program would die(). To prevent this the require() statement
can be enclosed into an eval() exception-handling block, asin this example:

require. pl

#!/usr/bin/perl -w

eval { require "/filel/that/does/not/exists"};

if (3@ {

print “Failed to | oad, because : $@

}
print "\ nHello\n";

When we execute the program:

28 29 Jan 2004

Perl Reference 1.8.5 use()

% ./require. pl

Failed to | oad, because : Can’'t locate /filel/that/does/not/exists in
@NC (@NC contains: /usr/lib/perl5/5.00503/i386-1inux
Jusr/1lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-Iinux
lusr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

Hell o

We see that the program didn’t dig(), because Hello was printed. This trick is useful when you want to
check whether a user has some module installed, but if she hasn't it’s not critical, perhaps the program can
run without this module with reduced functionality.

If we remove the eval() part and try again:
require. pl

#! /usr/bin/perl -w

require "/filel/that/does/not/exists";
print "\nHello\n";

% . /requirel. pl
Can't locate /file/that/does/not/exists in @NC (@ NC cont ai ns:
/fusr/1ib/perl5/5.00503/i386-1inux /usr/lib/perl5/5.00503

/usr/libl/perl5/site_perl/5.005/i386-1inux
/usr/libl/perl5/site_perl/5.005 .) at requirel.pl line 3.

The program just die()sin the last example, which iswhat you want in most cases.

For more information refer to the perlfunc manpage.

185

use(), just like require(), loads and compiles files containing Perl code, but it works with[moduled only and
is executed at compiletime.

The only way to pass a module to load is by its module name and not its filename. If the module is located
in MyCaode.pm, the correct way to use() it is:

use MyCode

and not:

use "MCode. pnt

use() trand ates the passed argument into afile name replacing : : with the operating system’s path separa-
tor (normally /) and appending .pm at the end. So My: : Modul e becomes My/Module.pm.

29 Jan 2004 29

1.86 do()

use() is exactly equivalent to:

BEA N { require Mdul e; Mdul e->i nport(LIST); }

Internally it calls require() to do the loading and compilation chores. When require() finishes its job,
import() is called unless () isthe second argument. The following pairs are equivalent:

use MyModul e;
BEGA N {requi re MyMddul e; MyMddul e->i nport; }

use MyModul e g foo bar);
BEGA N {requi re MyModul e; MyMdul e->i nport ("foo","bar"); }

use MyModule ();
BEG N {require MyMdul e; }

The first pair exports the default tags. This happens if the module sets @XPORT to a list of tags to be
exported by default. The module’ s manpage normally describes what tags are exported by default.

The second pair exports only the tags passed as arguments.
Thethird pair describes the case where the caller does not want any symbols to be imported.

i mport () isnotabuiltin function, it'sjust an ordinary static method cal into the "My Modul e" package
to tell the module to import the list of features back into the current package. See the Exporter manpage
for more information.

When you write your own modules, always remember that it's better to use @EXPORT_CK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the namespace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When functions and variables aren't exported you can ill access them using their full names, like
$My: : Modul e: : bar or $My: : Modul e: : foo() . By convention you can use a leading underscore
on namesto informally indicate that they are internal and not for public use.

There's a corresponding "no" command that un-imports symbols imported by use, i.e, it cals
Modul e- >uni nport (LI ST) instead of i mport ().

1.8.6

While do() behaves amost identically to require(), it reloads the file unconditionally. It doesn't check
2% NC to see whether the file was already |oaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the file but
cannot compile it, it returns undef and puts an error message in $@ If the file is successfully compiled,
do() returns the value of the last expression evaluated.

30 29 Jan 2004

Perl Reference 1.9 Using Globa Variables and Sharing Them Between Modules/Packages

1.9 |Using Global Variables and Sharing Them Between
M odules/Packages

It helps when you code your application in a structured way, using the perl packages, but as you probably
know once you start using packages it's much harder to share the variables between the various packag-
ings. A configuration package comes to mind as a good example of the package that will want its variables
to be accessible from the other modules.

Of course using the Object Oriented (OO) programming is the best way to provide an access to variables
through the access methods. But if you are not yet ready for OO techniques you can still benefit from
using the technigues we are going to talk about.

1.9.1 Making Variables Global|

When you first wrote $x in your code you created a (package) global variable. It is visible everywhere in
your program, although if used in a package other than the package in which it was declared (mai n: : by
default), it must be referred to with its fully qualified name, unless you have imported this variable with
import(). This will work only if you do not use st ri ct pragma; but you have to use this pragma if you
want to run your scripts under mod_perl. Read The strict pragmacto find out why.

1.9.2 [Making Variables Global With strict Pragma On|

First you use:

use strict;
Then you use:
use vars gw $scal ar %hash @rray);

This declares the named variables as package globals in the current package. They may be referred to
within the same file and package with their unqualified names; and in different files/packages with their
fully qualified names.

With perl5.6 you can use the our operator instead:

our ($scal ar, % ash, @rray);

If you want to share package global variables between packages, hereiswhat you can do.

1.9.3 [Using Exporter.pm to Share Global Variabled

Assume that you want to share the CE . pmobject (I will use $q) between your modules. For example,
you createitinscri pt. pl , but you want it to bevisiblein My: : HTM.. First, you make $q global.

29 Jan 2004 31

1.9.3 Using Exporter.pm to Share Global Variables

script.pl:

use vars qw($q);
use C4;

use lib quw(.):
use My::HTML gw($q); # MY/HTML.pmis in the same dir as script.pl
$q = Cd ->new,

My: : HTML: : pri nt nyheader () ;

Note that we have imported $g from My: : HTML. And My: : HTML does the export of $q:

package My:: HTM;
use strict;

BEG N {
use Exporter ();

@y HTM.: : | SA

@y : HTM.: : EXPORT
@y : HTM.: : EXPORT_OK

gw Exporter);
aw() ;
aw($q) ;

}
use vars gw($q);
sub print nyheader {
Whatever you want to do with $qg... e.g.

print $qg->header();
}
1;

So the $q is shared between the My: : HTM. package and scri pt . pl . It will work vice versaas well, if
you create the object in My: : HTML but useitinscri pt . pl . You have true sharing, since if you change
$qginscript. pl,itwill bechangedin My: : HTM. aswell.

What if you need to share $q between more than two packages? For example you want My::Doc to share
$q aswell.

You leave My: : HTML. untouched, and modify script.pl to include:
use My::Doc gw $q);

Then you add the same Export er code that we used in My: : HTM., into My: : Doc, so that it aso
exports $q.

One possible pitfall is when you want to use My: : Doc in both My: : HTML and script.pl. Only if you add

use My::Doc gw $q);

32 29 Jan 2004

Perl Reference 1.9.3 Using Exporter.pm to Share Global Variables

into My: : HTML will $q be shared. Otherwise My: : Doc will not share $q any more. To make things
clear here isthe code:

script.pl:

use vars qw $q);
use Cd;

use lib gw.);

use My:: HTML gw($q); # MY/ HTML.pmis in the sanme dir as script.pl
use My::Doc gqw($q); # Ditto

$q = new Cd ;

My:: HTM.: : pri nt myheader () ;

package My:: HTM;
use strict;

BEG N {
use Exporter ();

@y HTM.: : | SA gw Exporter);

@W: : HTML: : EXPORT = gw);
@4: : HTM.: : EXPORT_OK = gqw($q);
}
use vars aqw $q) ;

use My::Doc qgw($q);

sub print nyheader {
Whatever you want to do with $qg... e.g.
print $qg->header();

My::Doc::printtitle(’ Guide');

package My:: Doc;
use strict;

BEGA N {
use Exporter ();

@y::Doc::1SA gw Exporter);

@W: : Doc: : EXPORT = gw();
@W::Doc:: EXPORT_OK = gw $q);
}
use vars qw($q);
sub printtitle{
ny $title = shift || ' None’;

29 Jan 2004 33

1.9.4 Using the Perl Aliasing Feature to Share Global Variables

print $g->h1($title);
}
1;

1.9.4 |Using the Perl Aliasing Feature to Share Global Variables

As the title says you can import a variable into a script or module without using Export er. pm | have
found it useful to keep all the configuration variables in one module My: : Conf i g. But then | have to
export all the variablesin order to use them in other modules, which is bad for two reasons; polluting other
packages name spaces with extra tags which increases the memory requirements; and adding the over-
head of keeping track of what variables should be exported from the configuration module and what
imported, for some particular package. | solve this problem by keeping all the variables in one hash %
and exporting that. Here is an example of My: : Confi g:

package My:: Confi g;

use strict;

use vars gw %) ;

% = (
Al the configs go here
scal ar _var => 5,

array_var => [gw(foo bar)],

hash_var => {
foo => ' Foo’,
bar => ' BARRR ,
},
)
1;

Now in packages that want to use the configuration variables | have either to use the fully qualified names
like $My: : Confi g: : t est, which | dislike or import them as described in the previous section. But
hey, since we have only one variable to handle, we can make things even simpler and save the loading of
the Exporter. pm package. We will use the Perl aliasing feature for exporting and saving the

keystrokes:

package My:: HTM;
use strict;
use lib gw.);
G obal Configuration now aliased to global %
use My::Config (); # My/Config.pmin the sane dir as script.pl
use vars qw %) ;
*¢ = \%W:: Config::c;

Now you can access the variables fromthe My::Config
print $c{scal ar_var};
print $c{array_var}[0];
print $c{hash_var}{foo};

34 29 Jan 2004

Perl Reference 1.9.5 Using Non-Hardcoded Configuration Module Names

Of course $c is global everywhere you use it as described above, and if you change it somewhere it will
affect any other packages you have aliased $My: : Confi g: : ¢ to.

Note that aliases work either with global or | ocal () vars- you cannot write:
nmy *c = \%wW::Config::c; # ERROR!

Which isan error. But you can write:
local *c = \%W::Config::c

For more information about aliasing, refer to the Camel book, second edition, pages 51-52.

1.9.5 [Using Non-Hardcoded Configuration Module Nameg

Y ou have just seen how to use a configuration module for configuration centralization and an easy access
to the information stored in this module. However, there is somewhat of a chicken-and-egg problem--how
to let your other modules know the name of this file? Hardcoding the name is brittle--if you have only a
single project it should be fine, but if you have more projects which use different configurations and you
will want to reuse their code you will have to find all instances of the hardcoded name and replace it.

Another solution could be to have the same name for a configuration module, like My: : Confi g but
putting a different copy of it into different locations. But this won't work under mod_perl because of the
namespace collision. Y ou cannot load different modules which uses the same name, only the first one will
be loaded.

Luckily, there is another solution which alows us to stay flexible. Per | Set Var comes to rescue. Just
like with environment variables, you can set server’s global Perl variables which can be retrieved from any
modul e and script. Those statements are placed into the httpd.conf file. For example

Per | Set Var FooBaseDir / hone/ htt pd/ f oo
Per | Set Var FooConfi ghMbdul e Foo:: Config

Now we require() the file where the above configuration will be used.

Per | Requi re / hone/ httpd/ perl/startup.pl

In the startup.pl we might have the following code:

retrieve the configuration nodule path

use Apache;

ny $s Apache- >server;

ny $base_dir $s->dir_confi g(’ FooBaseDir') |]

ny $conf| g_nodul e = $s->dir_config(’ FooConflngduI e) ||

di e "FooBaseDi r and FooConfighbdul e aren’t set in httpd. conf
unl ess $base_dir and $confi g_nodul e;

build the real path to the config nodul e
ny $path = "$base_dir/$config_nodul e*;
$path =~ s|::|/]|;

$path .= ".pnt;

29 Jan 2004 35

1.10 The Scope of the Special Perl Variables

we have sonething |ike "/home/httpd/foo/ Foo/ Config. pnt

now we can pull in the configurati on nodul e
require $path;

Now we know the module name and it's loaded, so for example if we need to use some variables stored in
this modul e to open a database connection, we will do:

Apache: : DBl - >connect _on_ini t

("DBI: nysql : ${$config_nodul e.’:: DB_NAVE }:: ${$config_nodule.’:: SERVER }",
${$config_nodule.’::USER },
${$confi g_nodul e.’ :: USER_PASSWD },

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commit executes imediately

}
)
Where variable like:
${$confi g _nodul e.’ :: USER }
In our example are redlly:
$Foo: : Confi g:: USER

If you want to access these variable from within your code at the run time, instead accessing to the server
object $c, use the request object $r :

ny $r = shift;
ny $base_dir
ny $config_nodul e

$r->dir_config(’ FooBaseDir’) |
$r->dir_config(’ FooConfighbdule’') ||

1.10 [The Scope of the Special Per| Variables

Specia Perl variables like $| (buffering), $MT (script’s start time), $"W (warnings mode), $/ (input
record separator), $\ (output record separator) and many more are all true global variables; they do not
belong to any particular package (not even mai n: :) and are universally available. This means that if you
change them, you change them anywhere across the entire program; furthermore you cannot scope them
with my(). However you can local()ise them which means that any changes you apply will only last until
the end of the enclosing scope. In the mod_perl situation where the child server doesn’'t usualy exit, if in
one of your scripts you modify a global variable it will be changed for the rest of the process' life and will
affect all the scripts executed by the same process. Therefore localizing these variables is highly recom-
mended, I’ d say mandatory.

We will demonstrate the case on the input record separator variable. If you undefine this variable, the
diamond operator (readline) will suck in the whole file at once if you have enough memory. Remembering
this you should never write code like the example below.

36 29 Jan 2004

Perl Reference 1.11 Compiled Regular Expressions

$/ = undef; # BAD
open IN, "file"

slurp it all into a variable
$all _the_file = <IN>;

The proper way isto have alocal() keyword before the special variable is changed, like this:

local $/ = undef;
open IN, "file"

slurp it all inside a variable
$all _the_file = <I N>;

But there is a catch. local() will propagate the changed value to the code below it. The modified value will
be in effect until the script terminates, unlessit is changed again somewhere elsein the script.

A cleaner approach is to enclose the whole of the code that is affected by the modified variable in a block,
like this:

{

local $/ = undef;
open IN, "file"
slurp it all inside a variable
$all _the_file = <IN>;
}

That way when Perl leaves the block it restores the original value of the $/ variable, and you don’t need
to worry elsewhere in your program about its value being changed here.

Note that if you call a subroutine after you've set a global variable but within the enclosing block, the
global variable will be visible with its new value inside the subroutine.

1.11 |Compiled Regular Expressions

When using aregular expression that contains an interpolated Perl variable, if it is known that the variable
(or variables) will not change during the execution of the program, a standard optimization technique is to
add the / o modifier to the regex pattern. This directs the compiler to build the internal table once, for the
entire lifetime of the script, rather than every time the pattern is executed. Consider:

ny $pat = '~oo$; # likely to be input froman HTM. formfield
foreach(@ist) {

print if /$pat/o;
}

Thisisusually abig win in loops over lists, or when using the gr ep() or map() operators.

Inlong-lived mod_perl scripts, however, the variable may change with each invocation and this can pose a
problem. The first invocation of a fresh httpd child will compile the regex and perform the search
correctly. However, al subsequent uses by that child will continue to match the original pattern, regardless
of the current contents of the Perl variables the pattern is supposed to depend on. Y our script will appear
to be broken.

29 Jan 2004 37

1.11 Compiled Regular Expressions

There are two solutions to this problem:

The first isto use eval q//, to force the code to be evauated each time. Just make sure that the eval
block covers the entire loop of processing, and not just the pattern match itself.

The above code fragment would be rewritten as:

ny $pat = ' ~foo$’;
eval q{
foreach(@ist) {
print if /$pat/o;
}
}

Just saying:

foreach(@ist) {
eval g{ print if /$pat/o; };
}

means that we recompile the regex for every element in the list even though the regex doesn’t change.

Y ou can use this approach if you require more than one pattern match operator in a given section of code.
If the section contains only one operator (beitanni/ or s/ / /), you can rely on the property of the null
pattern, that reuses the last pattern seen. This leads to the second solution, which also eliminates the use of
eval.

The above code fragment becomes:
ny $pat = ' ~foo$’;
"sonet hing" =~ /$pat/; # dummy match (MJST NOT FAIL!)

foreach(@ist) {
print if //;
}

The only gotcha is that the dummy match that boots the regular expression engine must absolutely, posi-
tively succeed, otherwise the pattern will not be cached, and the / / will match everything. If you can’t
count on fixed text to ensure the match succeeds, you have two possibilities.

If you can guarantee that the pattern variable contains no meta-characters (things like *, +, ~, $...), you can
use the dummy match;

$pat =~ /\@pat\E/; # guaranteed if no neta-characters present

If there is a possibility that the pattern can contain meta-characters, you should search for the pattern or the
non-searchable \377 character asfollows:

"\ 377" =~ [$pat |\ 377%/; # guaranteed if neta-characters present

Another approach:

38 29 Jan 2004

Perl Reference 1.12 Exception Handling for mod_perl

It depends on the complexity of the regex to which you apply this technique. One common usage where a
compiled regex is usually more efficient isto "match any one of a group of patterns' over and over again.

Maybe with a helper routine, it's easier to remember. Here is one slightly modified from Jeffery Friedl’s
example in his book "Mastering Regular Expressions’.

HRHH R H
Bui | d_Mat chMany_Functi on
-- Ilnput: list of patterns

-- Qutput: A code ref which matches its $_[0]
agai nst ANY of the patterns given in the
"I nput", efficiently.
#
sub Bui |l d_Mat chMany_Function {
my @R=@;
ny $expr = join ||, map { "\$_[0] =~ m\$R[$_]/0" } (O0..%$#R);

ny $matchsub = eval "sub { $expr }";
die "Failed in building regex @R $@ if $@
$mat chsub;

}
Example usage:

@one_browsers = qw(Mdzilla Lynx MSIE Am gaVoyager |wp |ibww);
$Known_Br owser =Bui | d_Mat chMany_Functi on(@one_br owsers);

whi | e (<ACCESS LOG>) {
...
$browser = get browser field($);
if (! &Known_Browser ($browser)) {
print STDERR "Unknown Browser: $browser\n";

}
...
}

And of course you can use the gr() operator which makes the code even more efficient:

ny $pat = ’~foo$;
ny $re = qr($pat);
foreach(@ist) {
print if /$relo;
}

The gr() operator compiles the pattern for each request and then use the compiled version in the actual
match.

1.12 [Exception Handling for mod per|

Here are some guidelines for clean(er) exception handling in mod_perl, athough the technique presented
can be applied to all of your Perl programming.

29 Jan 2004 39

1.12.1 Trapping Exceptionsin Perl

The reasoning behind this document is the current broken status of $SI G DI E__} in the perl core -
see both the perl5-porters and the mod_perl mailing list archives for details on this discussion. (It's broken
in at least Perl v5.6.0 and probably in later versions as well). In short summary, $SIG{ _DIE_} isalittle
bit too global, and catches exceptions even when you want to catch them yourself, using an eval {}

block.

1.12.1 [Trapping Exceptionsin Perl|

To trap an exception in Perl we use the eval {} construct. Many people initially make the mistake that
this is the same as the eval EXPR construct, which compiles and executes code at run time, but that’s
not the case. eval {} compiles at compile time, just like the rest of your code, and has next to zero
run-time penalty. For the hardcore C programmers among you, it uses the set j mp/ | ongj np POSIX
routines internaly, just like C++ exceptions.

When in an eval block, if the code being executed dig()’'s for any reason, an exception is thrown. This
exception can be caught by examining the $@variable immediately after the eval block; if $@is true then
an exception occurred and $@contains the exception in the form of a string. The full construct looks like
this:

eval {
Some code here
}; # Note inportant sem -colon there
if ($@Q # $@contains the exception that was thrown

{
Do sonething with the exception
}
el se # optional
{
No exception was thrown
}

Most of the time when you see these exception handlers there is no else block, because it tends to be OK if
the code didn’t throw an exception.

Perl’ s exception handling is similar to that of other languages, though it may not seem so at first sight:

Per | O her | anguage
eval { try {
execute here /| execute here
raise our own exception: /'l raise our own exception:
die "OCops" if /error/; i f(error==1){throw Exception. Qops;}
execute nore /| execute nore
P }
if($@ { catch {
handl e exceptions switch(Exception.id) {
if($@=~ /Fail/l) { Fail : fprintf(stderr, "Failed\n") ;
print "Failed\n" ; break ;
}
elsif($@=~ /Oops/) { Qops : throw Exception ;

Pass it up the chain
dieif $@=~ /Qops/;

40 29 Jan 2004

Perl Reference 1.12.2 Alternative Exception Handling Techniques

}
el se { defaul t :
handl e all other }
exceptions here }
} /1 If we got here all is OK or handl ed
}
el se { # optional
all is well
}
all is well or has been handl ed

1.12.2 |Alternative Exception Handling Techniqueg

An often suggested method for handling global exceptions in mod_perl, and other perl programs in
general, isa __ DIE__ handler, which can be set up by either assigning a function name as a string to
$SI G __DI E__} (not particularly recommended, because of the possible namespace clashes) or assign-
ing acodereferenceto $SI G{ __DI E__} . The usual way of doing so isto use an anonymous subroutine:

$SIG__DIE__} =sub { print "Eek - we died with:\n", $_[0]; };

The current problem with thisisthat $SI G{ __DI E__} isaglobal setting in your script, so while you can
potentially hide away your exceptions in some external module, the execution of $SIG{ _ DIE_} is
fairly magical, and interferes not just with your code, but with all code in every module you import.
Beyond the magic involved, $SI G __ DI E__} actualy interferes with perl’s normal exception handling
mechanism, theeval {} construct. Witness:

$SIG__DIE_} = sub { print "handler\n"; };
eval {
print "In eval\n";
die "Failed for sone reason\n";
3
if (8@ {
print "Caught exception: $@;
}
The code unfortunately prints out:

In eval
handl er

Which isn't quite what you would expect, especidly if that $SI G{__DI E__} handler is hidden away
deep in some other module that you didn’t know about. There are work arounds however. One isto local-
ize$SI G __DI E__} inevery exception trap you write:

eval {
local $SIG__DIE_};

29 Jan 2004 41

1.12.3 Better Exception Handling

Obvioudly this just doesn't scale - you don’t want to be doing that for every exception trap in your code,
and it's a dow down. A second work around is to check in your handler if you are trying to catch this
exception:

$SIG__DE__} = sub {
die $_[0] if $S;
print "handl er\n";

3
However thiswon't work under Apache: : Regi stry - you'reawaysin an eva block there!

$7Sisn't totaly reliable in certain Perl versions. e.g. 5.005_03 and 5.6.1 both do the wrong thing with it
in certain situations. Instead, you use can use the caller() function to figure out if we are called in the
eval () context:

$SIG_DIE _} = sub {
ny $in_eval = 0;
for(my $stack = 1; nmy $sub = (CORE: :caller($stack))[3]; $stack++) {
$in_eval =1 if $sub =~ /M (eval\)/;
}

ny_di e_handler(@) unless $in_eval;
b

The other problem with $SI G{ __DI E__} alsorelatesto its global nature. Because you might have more
than one application running under mod_perl, you can't be sure which has set a $SIG __ D E_}
handler when and for what. This can become extremely confusing when you start scaling up from a set of
simple registry scripts that might rely on CGI::Carp for globa exception handling (which uses
$SI G __DI E__} to trap exceptions) to having many applications installed with a variety of exception
handling mechanismsin place.

Y ou should warn people about this danger of $SI { __ DI E__} and inform them of better ways to code.
The following material is an attempt to do just that.

1.12.3 [Better Exception Handling|

The eval {} construct in itself is a fairly weak way to handle exceptions as strings. There's no way to
pass more information in your exception, so you have to handle your exception in more than one place - a
the location the error occurred, in order to construct a sensible error message, and again in your exception
handler to de-construct that string into something meaningful (unless of course all you want your excep-
tion handler to do is dump the error to the browser). The other problem is that you have no way of auto-
matically detecting where the exception occurred using eval {} construct. Ina$SI G __ DI E__} block
you always have the use of the caller() function to detect where the error occurred. But we can fix that...

A little known fact about exceptions in perl 5.005 is that you can call die with an object. The exception
handler receives that object in $@ Thisis how you are advised to handle exceptions now, asit provides an
extremely flexible and scalable exceptions solution, potentialy providing almost all of the power Java
exceptions.

42 29 Jan 2004

Perl Reference 1.12.3 Better Exception Handling

[As afootnote here, the only thing that is really missing here from Java exceptions is a guaranteed Finally
clause, although its possible to get about 98.62% of the way towards providing that using eval {} .]

1.12.3.1 |A Little Housekeeping

First though, before we delve into the details, a little housekeeping is in order. Most, if not all, mod_perl
programs consist of a main routine that is entered, and then dispatches itself to a routine depending on the
parameters passed and/or the form values. In a normal C program this is your main() function, in a
mod_perl handler this is your handler() function/method. The exception to this rule seems to be
Apache::Registry scripts, although the techniques described here can be easily adapted.

In order for you to be able to use exception handling to its best advantage you need to change your script
to have some sort of global exception handling. This is much more trivia than it sounds. If you're using
Apache: : Regi st ry to emulate CGI you might consider wrapping your entire script in one big eval
block, but | would discourage that. A better method would be to modularize your script into discrete func-
tion calls, one of which should be a dispatch routine:

#!/usr/ bin/perl -w
Apache:: Registry script

eval {
di spatch();

H
if ($@ {

handl e exception
}

sub dispatch {

}

This is easier with an ordinary nod_perl handler as it is natural to
have separate functions, rather than a | ong run-on script:

MyHandl er. pm

sub handl er {
ny $r = shift;

eval ({
di spatch($r);
b
it (3@ {
handl e exception
}
}

sub dispatch {
ny $r = shift;

}

Now t hat the skeleton code is setup, let’s create an exception cl ass,
maki ng use of Perl 5.005's ability to throw exception objects.

29 Jan 2004 43

1.12.4 Catching Uncaught Exceptions

1.12.3.2 |An Exception Clasg

Thisisarealy simple exception class, that does nothing but contain information. A better implementation
would probably also handle its own exception conditions, but that would be more complex, requiring sepa-
rate packages for each exception type.

My/ Excepti on. pm

package My:: Excepti on;

sub AUTOLQAD ({
no strict 'refs’, 'subs’;
if (SAUTOLOAD =~ /.*:: ([A-Z]\w)$/) {
ny $exception = $1;
*{$AUTOLOAD} =
sub {
shift;
ny ($package, $filenane, $line) = caller;
push @, caller => {
package => $package,
filename => $fil enane,
line => $line,
3
bless { @ }, "My::Exception:: $exception";

got o} &{ SAUTOLQAD} ;
}
el se {
die "No such exception class: $AUTOLQAD\ n";
}
}
1;

OK, so thisis al highly magical, but what does it do? It creates a simple package that we can import and
use asfollows:

use My:: Excepti on;
die My:: Exception->SonmeException(foo => "bar");

The exception class tracks exactly where we died from using the caller() mechanism, it also caches excep-
tion classes so that AUTOLOAD is only called the first time (in a given process) an exception of a particular
type isthrown (particularly relevant under mod_perl).

1.12.4 |Catching Uncaught Exceptiong

What about exceptions that are thrown outside of your control? We can fix this using one of two possible
methods. The first is to override die globally using the old magical $SI G{ __DI E__}, and the second, is
the cleaner non-magical method of overriding the global die() method to your own die() method that
throws an exception that makes sense to your application.

44 29 Jan 2004

Perl Reference 1.12.4 Catching Uncaught Exceptions

1.12.4.1 Using $SIG{_ DIE_ }|

Overloadingusing $SI { __DI E__} inthiscaseisrather smple, here’s some code:

$SIG __DIE__} = sub {

if(lref($_[0])) {
$err = My::Exception->UnCaught (text => join(’’', @));
}

die $err;

I

All this does is catch your exception and re-throw it. It's not as dangerous as we stated earlier that
$SI G __ DI E__} can be, because we're actualy re-throwing the exception, rather than catching it and
stopping there. Even though $SIG{__DIE__} is a global handler, because we are simply re-throwing the
exception we can let other applications outside of our control simply catch the exception and not worry
about it.

There's only one dight buggette left, and that’s if some external code die()’ing catches the exception and
triesto do string comparisons on the exception, asin:

eval {
. # sone code
di e "FATAL ERROR!'\ n";

}
if (3@ {
if ($@=~ /"FATAL ERROR/) {
die $@
}
}

In order to deal with this, we can overload stringification for our My: : Except i on: : UnCaught class:

{
package My:: Exception:: UnCaught;
use overload """’ => \&str;
sub str {
shift->{text};
}
}

We can now let other code happily continue. Note that there is a bug in Perl 5.6 which may affect people
here: Stringification does not occur when an object is operated on by aregular expression (viathe =~ oper-
ator). A work around is to explicitly stringify using qq double quotes, however that doesn’t help the poor
soul who is using other applications. This bug has been fixed in later versions of Perl.

1.12.4.2 [Overriding the Cor e dig() Function|

So what if we don’t want to touch $SI G{ __DI E__} at all? We can overcome this by overriding the core
die function. This is dlightly more complex than implementing a $SI G{ __DI E__} handler, but is far
less magical, and is the right thing to do, according to the perl5-porters mailing list.

29 Jan 2004 45

1.12.5 A Single UnCaught Exception Class

Overriding core functions has to be done from an external package/module. So we're going to add that to
our My: : Except i on module. Here' sthe relevant parts:

use vars qw @ SA @EXPORT/ ;
use Exporter;

@EXPORT = qw/ di e/ ;
@ SA = ' Exporter’;

sub die (@; # prototype to match CORE: :die

sub inport {
ny $pkg = shift;
$pkg- >export (' CORE: : GLOBAL', 'die’);
Exporter: :inport ($pkg, @);

}
sub die (@ {
if ('ref($_[0])) {
CORE: : di e My:: Exception->UnCaught (text => join("’, @));
}
CORE::die $ [0]; # only use first elenent because its an object
}

That wasn't so bad, was it? We're relying on Exporter’s export() function to do the hard work for us,
exporting the die() function into the CORE: : GLOBAL namespace. If we don’'t want to overload dig()
everywhere this can ill be an extremely useful technique. By just using Exporter’'s default import()
method we can export our new die() method into any package of our choosing. This allows us to short-cut
the long calling convention and simply dig() with a string, and let the system handle the actual construc-
tion into an object for us.

Along with the above overloaded stringification, we now have a complete exception system (well, mostly
complete. Exception die-hards would argue that there’'s no "finally" clause, and no exception stack, but
that’ s another topic for another time).

1.12.5 |A Single UnCaught Exception Clasg

Until the Perl core gets its own base exception class (which will likely happen for Perl 6, but not sooner),
it isvitally important that you decide upon a single base exception class for al of the applications that you
install on your server, and a single exception handling technique. The problem comes when you have
multiple applications all doing exception handling and all expecting a certain type of "UnCaught" excep-
tion class. Witness the following application:

package Foo;

eval {
do sonet hi ng
}
it (3@ {
if ($@>isa(’ Foo::Exception::Bar’)) {
handl e "Bar" exception

}

46 29 Jan 2004

Perl Reference 1.12.6 Some Uses

elsif ($@>i sa(’ Foo:: Exception:: UnCaught')) {
handl e uncaught exceptions

}
}

All will work well until someone installs application "TrapMe" on the same machine, which installs its
own UnCaught exception handler, overloading CORE::GLOBAL ::die or installing a $SIG{ _DIE_ }
handler. This is actually a case where using $SIG{__ DIE__} might actualy be preferable, because you
can change your handler() routine to look like this:

sub handl er {
ny $r = shift;

local $SIG__D E_};
Foo:: Exception->Init(); # sets $SIG__D E_}

eval {

di spatch($r);
3
if ($@ {

handl e exception
}

sub dispatch {
ny $r = shift;

}

In this case the very nature of $SIG{__DIE_} being a lexical variable has helped us, something we
couldn’t fix with overloading CORE::GLOBAL ::die. However there is still a gotcha. If someone has over-
loaded die() in one of the applications installed on your mod_perl machine, you get the same problems
till. So in short: Watch out, and check the source code of anything you install to make sure it follows your
exception handling technique, or just uses dig() with strings.

1.12.6 [Some Useq

I’m going to come right out and say now: | abuse this system horribly! | throw exceptions all over my
code, not because I've hit an "exceptional" bit of code, but because | want to get straight back out of the
current call stack, without having to have every single level of function call check error codes. One way |
use thisisto return Apache return codes:

paranoid security check
die My:: Exception->Ret Code(code => 204);

Returns a 204 error code (HTTP_NO_CONTENT), which is caught at my top level exception handler:
if ($@>isa(’ My:: Exception::RetCode’)) {

return $@ >{code};
}

29 Jan 2004 47

1.12.7 Conclusions

That last return statement isin my handler() method, so that’s the return code that Apache actually sends. |
have other exception handlersin place for sending Basic Authentication headers and Redirect headers out.
| also have a generic My: : Excepti on: : K class, which gives me a way to back out completely from
where | am, but register that as an OK thing to do.

Why do | go to these extents? After all, code like slashcode (the code behind |http://slashdot.org) doesn’t
need this sort of thing, so why should my web site? Well it's just a matter of scalability and programmer
style really. There's a lot of literature out there about exception handling, so | suggest doing some
research.

1.12.7 [Conclusiong

Here I've demonstrated a simple and scalable (and useful) exception handling mechanism, that fits
perfectly with your current code, and provides the programmer with an excellent means to determine what
has happened in his code. Some users might be worried about the overhead of such code. However in use
I’ve found accessing the database to be a much more significant overhead, and thisis used in some code
delivering to thousands of users.

For similar exception handling techniques, see the section '|Other Implementationg'.

1.12.8 [The My::Exception classin its entirety|

package My:: Excepti on;

use vars gw @ SA @XPORT $AUTOLQAD ;
use Exporter;

@ SA = ' Exporter’;

@EXPORT = qw/ di e/ ;

sub die (@;
sub inmport {
nmy $pkg = shift;
allow "use My:: Exception '"die’ ;" to nean inport locally only

$pkg- >export (' CORE: : GLOBAL’, 'die’) unless @;
Exporter::inport($pkg, @);

}
sub die (@ {
if ('ref($_[0])) {
CORE: : di e My:: Exception->UnCaught (text => join("’', @));
}
CORE: :die $_[0];
}
{
package My:: Exception:: UnCaught;
use overload '""' => sub { shift->{text} } ;
}
sub AUTOLQAD ({
no strict 'refs’, 'subs’;

48 29 Jan 2004

http://slashdot.org/

Perl Reference 1.12.9 Other Implementations

}

1;

if (SAUTOLOAD =~ /.*:: ([A-Z]\w)$/) {
ny $exception = $1;
*{ $AUTOLOAD} =
sub {
shift;
ny ($package, $filenanme, $line) = caller;
push @, caller => {
package => $package,
filename => $fil enane,
line => $line,

}
bless { @ }, "My::Exception:: $exception";
3

goto & $AUTOLOAD};
}
el se {

CORE: : di e "No such exception class: $AUTOLOAD\ n";
}

1.12.9 |Other I mplementationg

Some users might find it very useful to have the more C++/Javalike interface of try/catch functions. These
are available in several forms that all work in dlightly different ways. See the documentation for each
module for details:

Error.pm

Graham Barr’s excellent OO styled "try, throw, catch™ module (from CPAN). This should be consid-
ered your best option for structured exception handling because it is well known and well supported
and used by alot of other applications.

Exception::Class and Devel::StackTrace
by Dave Rolsky both available from CPAN of course.

Exception: : d ass isabit cleaner than the AUTOLQOAD method from above as it can catch typos
in exception class names, whereas the method above will automatically create a new class for you. In
addition, it lets you create actual class hierarchies for your exceptions, which can be useful if you
want to create exception classes that provide extra methods or data. For example, an exception class
for database errors could provide a method for returning the SQL and bound parametersin use at the
time of the error.

Try.pm

Tony Olekshy’s. Adds an unwind stack and some other interesting features. Not on the CPAN. Avail-
able at [http://www .avrasoft.com/perl/rfc/try-1136.zip

29 Jan 2004 49

http://www.avrasoft.com/perl/rfc/try-1136.zip

1.13 Customized _ DIE__ hanlder

1.13 |Customized DIE hanlder

Aswe saw in the previous sections it's a bad idea to do:

require Carp;
$SIG_D E__} = \&Carp::confess;

since it breaks the error propogations within eval {} blocks,. But starting from perl 5.6.x you can use
another solution to trace errors. For example you get an error:

"exit" is not exported by the GLOB(0x88414cc) nodule at (eval 397) line 1

and you have no clue where it comes from, you can override the exit() function and plug the tracer inside:

require Carp;
use subs gw CORE: : GLOBAL: : di e);
*CORE: : GLOBAL: : die = sub {
if ($_[0] =~ /"exit" is not exported/){
local *CORE:: GLOBAL::die = sub { CORE::die(@) };
Carp::confess(@); # Carp uses die() internally!
} else {
CORE: :die(@); # could wite &ORE.:die to forward @
}

b
Now we can test that it works properly without breaking the eval {} blocks error propogation:
eval { foo(); }; warn $@if $@
print "\n";
eval { poo(); }; warn $@if $@

sub foo{ bar(); }
sub bar{ die gg{"exit" is not exported}}

sub poo{ tar(); }
sub tar{ die "normal exit"}

prints:

$ perl -w test
Subroutine die redefined at test |ine 5.
"exit" is not exported at test line 6
main::_ ANON__('"exit" is not exported') called at test line 17
main::bar() called at test line 16
main::foo() called at test line 12
eval {...} called at test line 12

normal exit at test line 5.

the’local’ in:

50 29 Jan 2004

Perl Reference 1.14 Maintainers

local *CORE:: GLOBAL::die = sub { CORE::die(@) };

isimportant, so you won't lose the overloaded CORE: : GLOBAL: : di e.

1.14 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.15 |Authors

® Stas Bekman <stas (at) stason.org>

® Matt Sergeant <matt (at) sergeant.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 51

Perl Reference

Table of Contents:

1 | Perl Referencel

1.1 [Description

1.2 Iperldoc S Rarely Known But Very Useful Optl onsl

1.3 [Tracing Warnings Reportg .

1.4 Variables Globally, Lexically Scoped And FuIIy Quallfled
1.4.1 [Symbols, Symbol Tables and Packages; Typegloby .

1.4.1.1 |Lexical Variables and Symbolg

1.4.2 |Additional reading referenceq.

1.5 Imy() Scoped Variable in Nested Subrouiti nes|

15.1 [The Poisonl . .
1.5.2 [The Diagnosiy -
153@

1.6 |Understanding Closures -- the Easy Wayl .

1.6.1 |[Mike Guy’s Explanation of the Inner Subroutine Behawori
1.7 When Y ou Cannot Get Rid of The Inner Subrouting .

1.7.1 |Remedies for Inner Subroutineq .
1.8 [use(), require(), do(), %INC and @INC Explalneol

1.8.1 [The @INC array|

1.8.2 [The %INC hash|.

18.3 IModuIes Libraries and Proqram Flleﬂ

1.84 [require()
185- .
1.8.6 [do()]

1.9 [Using Globa Vanables and Shannq Them Between Modules/PackaqesI

1.9.1 Making Variables Global| .
1.9.2 [Making Variables Global With strict Praqma Ori
1.9.3 |Using Exporter.pm to Share Global Variableq
1.9.4 |Using the Perl Aliasing Feature to Share Global Variableg
1.9.5 |Using Non-Hardcoded Configuration Module Nameq
1.10 [The Scope of the Specia Perl Variableg
1.11 [Compiled Regular Expressions| .
1.12 [Exception Handling for mod perl|
1.12.1 [Trapping Exceptions in Perl| .
1.12.2 |Alternative Exception Handling Technlqueﬂ
1.12.3 |Better Exception Handling .
1.12.3.1 |A Little Housekeeping .
1.12.3.2 |An Exception Clasq .
1.12.4 |Catching Uncaught Exceptiong
1.12.4.1 Using $SIG{ DIE 1.
1.12.4.2 |Overriding the Core dig() Functi or1
1.12.5 |A Single UnCauqht Exception Clasy .

1.12.6 [Some Useq
1.12.7 [Condlusiong

1.12.8 |The My::Exception cla$ in |ts entlretyl

29 Jan 2004

Table of Contents:

QOWOoWWOWNUITOTWNN B

WWWWWWWRNNNNNNER P PR
RRRRRREBBIEIBIBIBEREE

EENEEHRRE0EEE8YE

Table of Contents:

1.12.9 |Other Implementation

1.13 |Custom|zed DIE hanld |
1.14 fMalntal ner§
1.15 [Authorg

49
50
51
51

29 Jan 2004

	1€€Perl Reference
	1.1€€Description
	1.2€€perldoc's Rarely Known But Very Useful Options
	1.3€€Tracing Warnings Reports
	1.4€€Variables Globally, Lexically Scoped And Fully Qualified
	1.4.1€€Symbols, Symbol Tables and Packages; Typeglobs
	1.4.1.1€€Lexical Variables and Symbols

	1.4.2€€Additional reading references

	1.5€€my†‡ Scoped Variable in Nested Subroutines
	1.5.1€€The Poison
	1.5.2€€The Diagnosis
	1.5.3€€The Remedy

	1.6€€Understanding Closures -- the Easy Way
	1.6.1€€Mike Guy's Explanation of the Inner Subroutine Behavior

	1.7€€When You Cannot Get Rid of The Inner Subroutine
	1.7.1€€Remedies for Inner Subroutines

	1.8€€use†‡, require†‡, do†‡, %INC and @INC Explained
	1.8.1€€The @INC array
	1.8.2€€The %INC hash
	1.8.3€€Modules, Libraries and Program Files
	1.8.4€€require†‡
	1.8.5€€use†‡
	1.8.6€€do†‡

	1.9€€Using Global Variables and Sharing Them Between Modules/Packages
	1.9.1€€Making Variables Global
	1.9.2€€Making Variables Global With strict Pragma On
	1.9.3€€Using Exporter.pm to Share Global Variables
	1.9.4€€Using the Perl Aliasing Feature to Share Global Variables
	1.9.5€€Using Non-Hardcoded Configuration Module Names

	1.10€€The Scope of the Special Perl Variables
	1.11€€Compiled Regular Expressions
	1.12€€Exception Handling for mod_perl
	1.12.1€€Trapping Exceptions in Perl
	1.12.2€€Alternative Exception Handling Techniques
	1.12.3€€Better Exception Handling
	1.12.3.1€€A Little Housekeeping
	1.12.3.2€€An Exception Class

	1.12.4€€Catching Uncaught Exceptions
	1.12.4.1€€Using $SIG{__DIE__}
	1.12.4.2€€Overriding the Core die†‡ Function

	1.12.5€€A Single UnCaught Exception Class
	1.12.6€€Some Uses
	1.12.7€€Conclusions
	1.12.8€€The My::Exception class in its entirety
	1.12.9€€Other Implementations

	1.13€€Customized __DIE__ hanlder
	1.14€€Maintainers
	1.15€€Authors

