

1 Protocol Handlers

129 Jan 2004

1 Protocol HandlersProtocol Handlers

1.1 Description
This chapter explains how to implement Protocol (Connection) Handlers in mod_perl.

1.2 Connection Cycle Phases
As we saw earlier, each child server (be it a thread or a process) is engaged in processing connections.
Each connection may be served by different connection protocols, e.g., HTTP, POP3, SMTP, etc. Each
connection may include more than one request, e.g., several HTTP requests can be served over a single
connection, when several images are requested for the same webpage.

The following diagram depicts the connection life cycle and highlights which handlers are available to
mod_perl 2.0:

29 Jan 20042

1.1 Description

When a connection is issued by a client, it’s first run through Perl Pre Connec tion Handler and then
passed to the Perl Pro cess Connec tion Handler , which generates the response. When Perl Pro -
cess Connec tion Handler is reading data from the client, it can be filtered by connection input
filters. The generated response can be also filtered though connection output filters. Filters are usually
used for modifying the data flowing though them, but can be used for other purposes as well (e.g., logging
interesting information). For example the following diagram shows the connection cycle mapped to the
time scale:

The arrows show the program control. In addition, the black-headed arrows also show the data flow. This
diagram matches an interactive protocol, where a client send something to the server, the server filters the
input, processes it and send it out through output filters. This cycle is repeated till the client or the server
don’t tell each other to go away or abort the connection. Before the cycle starts any registered pre_connec-
tion handlers are run.

Now let’s discuss each of the Perl Pre Connec tion Handler and Perl Pro cess Connec tion -
Handler handlers in detail.

1.2.1 PerlPreConnectionHandler

The pre_connection phase happens just after the server accepts the connection, but before it is handed off
to a protocol module to be served. It gives modules an opportunity to modify the connection as soon as
possible and insert filters if needed. The core server uses this phase to setup the connection record based
on the type of connection that is being used. mod_perl itself uses this phase to register the connection
input and output filters.

In mod_perl 1.0 during code development Apache::Reload was used to automatically reload modified
since the last request Perl modules. It was invoked during post_read_request , the first HTTP
request’s phase. In mod_perl 2.0 pre_connection is the earliest phase, so if we want to make sure that all

329 Jan 2004

1.2.1 PerlPreConnectionHandlerProtocol Handlers

modified Perl modules are reloaded for any protocols and its phases, it’s the best to set the scope of the
Perl interpreter to the lifetime of the connection via:

 PerlInterpScope connection

and invoke the Apache::Reload handler during the pre_connection phase. However this develop-
ment-time advantage can become a disadvantage in production--for example if a connection, handled by
HTTP protocol, is configured as KeepAlive and there are several requests coming on the same connec-
tion and only one handled by mod_perl and the others by the default images handler, the Perl interpreter
won’t be available to other threads while the images are being served.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because it’s not known yet which resource the request will be
mapped to.

A pre_connection handler accepts a connection record at its argument:

 sub handler {
 my $c = shift;
 # ...
 return Apache::OK;
 }

[META: There is another argument passed (the actual client socket), but it currently an undef]

Here is a useful pre_connection phase example: provide a facility to block remote clients by their IP,
before too many resources were consumed. This is almost as good as a firewall blocking, as it’s executed
before Apache has started to do any work at all.

MyApache::BlockIP2 retrieves client’s remote IP and looks it up in the black list (which should
certainly live outside the code, e.g. dbm file, but a hardcoded list is good enough for our example).

 #file:MyApache/BlockIP2.pm
 #-------------------------
 package MyApache::BlockIP2;

 use strict;
 use warnings;

 use Apache::Connection ();

 use Apache::Const -compile => qw(FORBIDDEN OK);

 my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

 sub handler {
 my Apache::Connection $c = shift;

 my $ip = $c->remote_ip;
 if (exists $bad_ips{$ip}) {
 warn "IP $ip is blocked\n";
 return Apache::FORBIDDEN;

29 Jan 20044

1.2.1 PerlPreConnectionHandler

 }

 return Apache::OK;
 }

 1;

This all happens during the pre_connection phase:

 PerlPreConnectionHandler MyApache::BlockIP2

If a client connects from a blacklisted IP, Apache will simply abort the connection without sending any
reply to the client, and move on to serving the next request.

1.2.2 PerlProcessConnectionHandler

The process_connection phase is used to process incoming connections. Only protocol modules should
assign handlers for this phase, as it gives them an opportunity to replace the standard HTTP processing
with processing for some other protocols (e.g., POP3, FTP, etc.).

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV. Therefore the only way to run protocol servers different than
the core HTTP is inside dedicated virtual hosts.

A process_connection handler accepts a connection record object as its only argument, a socket object can
be retrieved from the connection record object.

 sub handler {
 my ($c) = @_;
 my $socket = $c->client_socket;
 # ...
 return Apache::OK;
 }

Now let’s look at the following two examples of connection handlers. The first using the connection
socket to read and write the data and the second using bucket brigades to accomplish the same and allow
for connection filters to do their work.

1.2.2.1 Socket-based Protocol Module

To demonstrate the workings of a protocol module, we’ll take a look at the MyApache::EchoSocket
module, which simply echoes the data read back to the client. In this module we will use the implementa-
tion that works directly with the connection socket and therefore bypasses connection filters if any.

A protocol handler is configured using the PerlProcessConnectionHandler directive and we will
use the Listen and <VirtualHost> directives to bind to the non-standard port 8010:

529 Jan 2004

1.2.2 PerlProcessConnectionHandlerProtocol Handlers

 Listen 8010
 <VirtualHost _default_:8010>
 PerlModule MyApache::EchoSocket
 PerlProcessConnectionHandler MyApache::EchoSocket
 </VirtualHost>

MyApache::EchoSocket is then enabled when starting Apache:

 panic% httpd

And we give it a whirl:

 panic% telnet localhost 8010
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello
 Hello

 fOo BaR
 fOo BaR

 Connection closed by foreign host.

Here is the code:

 file:MyApache/EchoSocket.pm

 package MyApache::EchoSocket;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Socket ();

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

 sub handler {
 my $c = shift;
 my $socket = $c->client_socket;

 my $buff;
 while (1) {
 my $rlen = BUFF_LEN;
 $socket->recv($buff, $rlen);

 last if $rlen <= 0 or $buff =~ /^[\r\n]+$/;

 my $wlen = $rlen;
 $socket->send($buff, $wlen);

 last if $wlen != $rlen;
 }

29 Jan 20046

1.2.2 PerlProcessConnectionHandler

 Apache::OK;
 }
 1;

The example handler starts with the standard package declaration and of course, use strict;. As with
all Perl*Handlers, the subroutine name defaults to handler. However, in the case of a protocol
handler, the first argument is not a request_rec, but a conn_rec blessed into the
Apache::Connection class. We have direct access to the client socket via Apache::Connec-
tion’s client_socket method. This returns an object blessed into the APR::Socket class.

Inside the read/send loop, the handler attempts to read BUFF_LEN bytes from the client socket into the
$buff buffer. The $rlen parameter will be set to the number of bytes actually read. The
APR::Socket::recv() method returns an APR status value, but we need only to check the read
length to break out of the loop if it is less than or equal to 0 bytes. The handler also breaks the loop after
processing an input including nothing but new lines characters, which is how we abort the connection in
the interactive mode.

If the handler receives some data, it sends it unmodified back to the client with the
APR::Socket::send() method. When the loop is finished the handler returns Apache::OK, telling
Apache to terminate the connection. As mentioned earlier since this handler is working directly with the
connection socket, no filters can be applied.

1.2.2.2 Bucket Brigades-based Protocol Module

Now let’s look at the same module, but this time implemented by manipulating bucket brigades, and
which runs its output through a connection output filter that turns all uppercase characters into their lower-
case equivalents.

The following configuration defines a virtual host listening on port 8011 and which enables the
MyApache::EchoBB connection handler, which will run its output through
MyApache::EchoBB::lowercase_filter filter:

 Listen 8011
 <VirtualHost _default_:8011>
 PerlModule MyApache::EchoBB
 PerlProcessConnectionHandler MyApache::EchoBB
 PerlOutputFilterHandler MyApache::EchoBB::lowercase_filter
 </VirtualHost>

As before we start the httpd server:

 panic% httpd

And try the new connection handler in action:

729 Jan 2004

1.2.2 PerlProcessConnectionHandlerProtocol Handlers

 panic% telnet localhost 8011
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Hello
 hello

 fOo BaR
 foo bar

 Connection closed by foreign host.

As you can see the response now was all in lower case, because of the output filter.

And here is the implementation of the connection and the filter handlers.

 file:MyApache/EchoBB.pm

 package MyApache::EchoBB;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Connection ();
 use APR::Bucket ();
 use APR::Brigade ();
 use APR::Util ();

 use APR::Const -compile => qw(SUCCESS EOF);
 use Apache::Const -compile => qw(OK MODE_GETLINE);

 sub handler {
 my $c = shift;

 my $bb_in = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $bb_out = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $last = 0;

 while (1) {
 my $rv = $c->input_filters->get_brigade($bb_in, Apache::MODE_GETLINE);
 if ($rv != APR::SUCCESS && $rv != APR::EOF) {
 my $error = APR::strerror($rv);
 warn __PACKAGE__ . ": get_brigade: $error\n";
 last;
 }

 last if $bb_in->empty;

 while (!$bb_in->empty) {
 my $bucket = $bb_in->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_out->insert_tail($bucket);
 last;

29 Jan 20048

1.2.2 PerlProcessConnectionHandler

 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status == APR::SUCCESS;

 if ($data) {
 $last++ if $data =~ /^[\r\n]+$/;
 # could do something with the data here
 $bucket = APR::Bucket->new($data);
 }

 $bb_out->insert_tail($bucket);
 }

 my $b = APR::Bucket::flush_create($c->bucket_alloc);
 $bb_out->insert_tail($b);
 $c->output_filters->pass_brigade($bb_out);
 last if $last;
 }

 $bb_in->destroy;

 Apache::OK;
 }

 use base qw(Apache::Filter);
 use constant BUFF_LEN => 1024;

 sub lowercase_filter : FilterConnectionHandler {
 my $filter = shift;

 while ($filter->read(my $buffer, BUFF_LEN)) {
 $filter->print(lc $buffer);
 }

 return Apache::OK;
 }

 1;

For the purpose of explaining how this connection handler works, we are going to simplify the handler.
The whole handler can be represented by the following pseudo-code:

 while ($bb_in = get_brigade()) {
 while ($bucket_in = $bb_in->get_bucket()) {
 my $data = $bucket_in->read();
 # do something with data
 $bucket_out = new_bucket($data);

 $bb_out->insert_tail($bucket_out);
 }
 $bb_out->insert_tail($flush_bucket);
 pass_brigade($bb_out);
 }

929 Jan 2004

1.2.2 PerlProcessConnectionHandlerProtocol Handlers

The handler receives the incoming data via bucket bridges, one at a time in a loop. It then process each
bridge, by retrieving the buckets contained in it, reading the data in, then creating new buckets using the
received data, and attaching them to the outgoing brigade. When all the buckets from the incoming bucket
brigade were transformed and attached to the outgoing bucket brigade, a flush bucket is created and added
as the last bucket, so when the outgoing bucket brigade is passed out to the outgoing connection filters, it
won’t be buffered but sent to the client right away.

If you look at the complete handler, the loop is terminated when one of the following conditions occurs: an
error happens, the end of stream bucket has been seen (no more input at the connection) or when the
received data contains nothing but new line characters which we used to to tell the server to terminate the
connection.

Notice that this handler could be much simpler, since we don’t modify the data. We could simply pass the
whole brigade unmodified without even looking at the buckets. But from this example you can see how to
write a connection handler where you actually want to read and/or modify the data. To accomplish that
modification simply add a code that transforms the data which has been read from the bucket before it’s
inserted to the outgoing brigade.

We will skip the filter discussion here, since we are going to talk in depth about filters in the dedicated to
filters sections. But all you need to know at this stage is that the data sent from the connection handler is
filtered by the outgoing filter and which transforms it to be all lowercase.

1.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200410

1.3 Maintainers

Table of Contents:
.................. 11 Protocol Handlers
................... 21.1 Description
............... 21.2 Connection Cycle Phases
.............. 31.2.1 PerlPreConnectionHandler
............. 51.2.2 PerlProcessConnectionHandler
............ 51.2.2.1 Socket-based Protocol Module
.......... 71.2.2.2 Bucket Brigades-based Protocol Module
.................. 101.3 Maintainers
................... 101.4 Authors

i29 Jan 2004

Table of Contents:Protocol Handlers

	1€€Protocol Handlers
	1.1€€Description
	1.2€€Connection Cycle Phases
	1.2.1€€PerlPreConnectionHandler
	1.2.2€€PerlProcessConnectionHandler
	1.2.2.1€€Socket-based Protocol Module
	1.2.2.2€€Bucket Brigades-based Protocol Module

	1.3€€Maintainers
	1.4€€Authors

