Debugging mod_perl 1 Debugging mod_perl

1 Debugging mod_perl

29 Jan 2004 1

1.1 Description

1.1 Description|

Tired of Internal Server Errors? Find out how to debug your mod_perl applications, thanks to a number of
features of Perl and mod_perl.

1.2 Warning and Errors Explained|

Let's talk first about things that bother most web (and non-web) programmers. The bothering things are
warning and errors reported by Perl. We are going to learn how to take the best out of both, by turning this
obvious to the newbie programmer enemies into our best friends.

1.2.1|Curing The"Inter nal ServerError" |

You have just installed this new CGI script and when you try it out you see the grey screen of death saying
"Internal Server Error"... Or even worse you have a script running on a production server for along time
without problems, when the same grey screen starts to show up occasionally for no apparent reason.

How can we find out what the problemis?
First problem:

Y ou have been coding in Perl for years, and whenever an error occurred in the past it was displayed in the
same terminal window that you started the script from. But when you work with a webserver there is no
terminal to show you the errors, since the server in most cases has no terminal to send the error messages
to.

Actually, the error messages don't disappear, they end up inthe error_log file. It islocated in the directory
specified by the Er r or Log directive in httpd.conf. The default setting is generally:

ErrorLog /usr/local /apache/l ogs/error_| og
So whenever you see "Internal Server Error” it'stimeto look at thisfile.
First problem solved!

There are cases when errors don't go to the error_log file. For example, some errors go to the httpd
process STDERR. If you haven't redirected httpd’'s STDERR then the messages are printed to the console
(tty, termina) from which you executed the httpd. This happens when the server didn't get as far as
opening the error_log file for writing before it needed to write an error message.

For example, if you have entered a non-existent directory path in your Er r or Log directive, the error
message will be printed to STDERR. If the error happens when the server executes a Per | Requi r e or
Per | Modul e directive you might also see output sent to STDERR.

You are probably wondering where all the errors go when you are running the server in single process
mode (htt pd - X). They go to STDERR. This is because the error logging for al the httpd children is
normally done by the parent httpd. When httpd runs in single process mode, it has no parent httpd process

2 29 Jan 2004

Debugging mod_perl 1.2.1 Curing The "Internal Server Error"

to perform all the logging. The output to tteeminal includes all the status messages that normally go to
the error_lodile.

Finally with aPer| LogHandl er you can take away from Apache its control of the error logging
process for all HTTRransadions. If you do this, then you amespoible for geneating and storing the
error messages. You can ahateveryou like with theinformation, (including throwing it away -- don’t

do it!) and,depenéhg on how youmplementyou LogHandl er, theEr r or Log diredive may have no
effect. But you can also deomehing at this handler and then retubECLI NED status, so the default
ApacheLogHardler will do the work asisual.

Secondoroblem:

The usefuhessof the error message depends to some extent gordlgeanmers coding style. Arunin
formative message might not help you to spot and fixettier.

For example, let’s take fanction which opens a file passed to it apaaneter. It does nothing else with
the file. Here’s our first version of tluade:

ny $r = shift;
$r->send_http_header (' text/plain');

sub open_fil e{
ny $filename = shift |
die "No filenane passed!" unless $fil enane;

open FILE, $filenane or die

}

open_file("/tnp/test.txt");

Let's assume thatt np/ t est . t xt doesn't exist so the open() will fail to open the file. When we call
this script from our browser, the browser returns'iaternal error" message and we see flofowing
error appended terror_log:

Died at /hone/httpd/perl/test.pl line 9

We can use the hint Perl kindly gave to us to find where in the code the die() was called. However, we still
don’t know whaffilenamewas passed to th&ibrodine to cause the progratarmination.

If we have only ondunction call as in the example above, the task of findingpitedlematic filename
will be trivial. Now let's add two more open_filefj)nction calls and assume that among the three files
only /tmp/test2.txt exists:

open_file("/tnp/test.txt");

open_file("/tnmp/test2.txt");

open_file("/tnmp/test3.txt");

When you execute the above call, you will see the same error mésgage

29 Jan 2004 3

1.2.1 Curing The "Internal Server Error"

Died at /honme/httpd/perl/test.pl line 9
Died at /honme/httpd/perl/test.pl line 9

Based on this error message, can you tell what files your program failed toRop&sifty not. Let’s fix it
by passing the name of the filed®():
sub open_fil e{
ny $filenane = shift || '";
die "No filenane passed!" unless $fil enaneg;
open FILE, $filenane or die "failed to open $fil enanme";

}
open_file("/tnp/test.txt");
When we execute the above code,sse:

failed to open /tnp/test.txt at /honme/httpd/perl/test.pl line 9
which makes a bidifference

By the way, if you append a newline to the end of the message you pass to die(), Perl won’t report the line
number the error has happened at, so ifoame:

open FILE, $filenane or die "failed to open a file\n";

The error message witke:

failed to open a file
Which gives you very little to go on. It's very hard to debug with sughformdive errormessages.

The warn()function, a kinder sister of die(), which logs the message but doesn’t cause ptegrzna
tion, behaves in the same way. If you add a newline to the end of the message, the line number warn() was
called at won't be loggeathemiseit will.

You might want to use warn() instead of die() if the failure isritical. Consider thdéollowing code:

i f(open FILE, $filename){
do sonething with file
} else {
warn "failed to open $fil enane”;

}

nmore code here..
Now we’ve improved our code, bgporing the names of thprobdematic files, but we still don’t know

the reason for the failure. Let’s try to improve the warn() example- Thepewtor tests whether the file
is reachble

4 29 Jan 2004

Debugging mod_perl 1.2.1 Curing The"Interna Server Error"

if(-r $filenane){
open FILE, $filenane;
do sonething with file
} else {
warn "Coul dn’t open $filename - doesn’t exist or is not readable";

}
Now if we cannot read the file we do not even try to open it. But we still see awarning in error_log:

Couldn’t open /tnp/test.txt - doesn't exist or is not readable
at /home/ httpd/ perl/test.pl line 9.

The warning tells us the reason for the failure, so we don’t have to go to the code and check what it was
trying to do with thefile.

It could be quite a coding overhead to explain all the possible failure reasons that way, but why reinvent
the wheel? We aready have the reason for the failure stored in the $! variable. Let's go back to the
open_filg() function:
sub open_fil e{
ny $filename = shift || '';

die "No filenane passed!" unless $fil enane;
open FILE, $filenanme or die "failed to open $filename: $!";

}
open_file("/tnp/test.txt");
Thistime, if open() fails we see:

failed to open /tnp/test.txt: No such file or directory
at /home/ httpd/ perl/test.pl line 9.

Now we have al the information we need to debug these problems. we know what line of code triggered
dig(), we know what file we were trying to open, and last but not least we know the reason, given to us
through Perl’s $! variable.

Now let’s create the file /tmp/test.txt.
% touch /tnmp/test.txt

When we execute the latest version of the code, we see:

failed to open /tnp/test.txt: Perm ssion denied
at /home/ httpd/perl/test.pl line 9.

Here we see a different reason: we created a file that doesn’t belong to the user which the server runs as
(usually nobody). It does not have permission to read thefile.

Now you can see that it's much easier to debug your code if you validate the return values of the system
calls, and properly code arguments to die() and warn() calls. The open() function is just one of the many
system calls perl provides to your convenience.

29 Jan 2004 5

1.2.2 Helping error_log to Help Us

So now you can code and debug CGlI scripts and modules as easily as if they were plain Perl scripts that
you execute from a shell.

Second problem solved!

1.2.2 Helping error log to Help U9

It's a good idea to keep it open al the time in a dedicated terminal with the help of tail -f or less -S
whichever you prefer (the latter allows you to page around the file, search etc.)

%tail -f /usr/local/apache/logs/error_|og
or
% | ess -S /usr/local /apache/l ogs/error_|og
So you will see all the errors and warning as they happen.

Another tip isto create a shell alias, to make it easier to execute the above command. In tcsh you would
do something like this:

%alias err "tail -f /usr/local/apache/logs/error_|og"

For bash users the command is:

%alias err="tail -f /var/log/apache/error_|og

and from now on in the shell you set the aiasin, executing

% err

will call tail -f /usr/local/apache/logs/error_log. Since you want this aias to be available to you all the
time, you should put it into your .tcshrc file or its equivalent. For bash usersthisis .bashrc, or you can put
it in /etc/profile for use by al users.

If you cannot access your error_log file because you are unable to telnet to your machine (generaly the
case when an ISP provides user CGI support but no telnet access), you might want to use a CGI script |
wrote to fetch the latest lines from the file (with a bonus of colored output for easier reading). Y ou might
need to ask your ISP to install this script for general use. See Watching the error_log file without telneting
to the server .

1.2.3 [The I mportance of Warningg

Just like errors, Perl’s mandatory warnings go to the error_log file, if the they are enabled. Of course you
have enabled them in your development server, haven't you?

The code you write lives adual life. In the first life it's being written, tested, debugged, improved, tested,
debugged, rewritten, tested, debugged. In the second lifeit’s just used.

6 29 Jan 2004

Debugging mod_perl 1.2.3 The Importance of Warnings

A significantpart of the script's first life is spent on tdevebpefs machine. The other part is spent on
the produdion server where theredureis supposed to hgerfect.

So when you develop the code you want all the help in the world to help yoposgbte prodems and
that's where enablingvarnings is a mustWhereveryou see an error or warning in teeor_log, you
want to get rid of it. That's verynportant

Why?

e |f there arewarnings your code is not clean. If they are waved away, expect them to come back on
theprodudion server in the form of errors, when it's tiate.

e |f eachinvocaion of a scriptgeneatesmore than about five lines wfarnings, it will be very hard to
catch reaprodems You just can’t see them among all the otwarnngs which you used to think
wereunimportant

On the other hand, on grodudion server, you reallywant to turn warnngs off. And there are good
reasons fothat:

e There is no added value in having the same warning showing up, again andrigggiredby thou
sandsof scriptinvocations If your code isn't very clean armgeneateseven a single warning per
scriptinvocation, on the heavily loaded server you will end up with a herger_log file in a short
time.

The warningeliminaion phase is supposed to be a part ofdbeebpment process, and should be
done before the code gdes.

® |n any Perl script, not just under mod_perl, enabling runtiaeings has goerfomancempact.

mod_perl gives you a very simpssluion to thiswarnngs saga, don’t enablearnngs in the scripts
unless you really have to. Let mod_perl control this ngideally. All you need to do is put ttgiredive

Per| Varn On
in httpd.conf on yourdevebpmentmachine and thdiredive
Perl Warn O f
on the live box. Here ia completalescrigion on how tomanipulate warning modes undenod_perl.

If there is a piece of code thgéneateswarrings and you want to disable them only in this code, you can
do that too. The Perl speciariable $" Wallows youdynanically to turn on and offvarnngs mode. So
just put the code into a block, and disable waenings in the scope of this block. Thaiginal value of
$"Wwill be restored upon exit from thxock.

[ocal $"MWEO;
some code that generates innocuous warnings

}

29 Jan 2004 7

1.3 Handling the 'User pressed Stop button’ case

Unless you have a really good reason, for your own sake the adsicedshis technique.

Don't forget thel ocal () operand! If you do, setting”Wwill affect all the requests handled by the
Apache child that changed thiariable And forall the scripts it executes, not just the one which changed
$ W

Thedi agnosti cs pragma can shed more light on errors wadings as you will see in moment.

1.2.3.1 |[diagnostics pragmal

This module extends the terdmgnodics normally emitted by both the Perl compiler and the Péer-
preter augmenng them with the more verbose aetideaing descrigions found in theper| di ag
manpage. Like the oth@ragnata it affects thecompiation phase of your scripts as well as thecuion
phase.

To use in your program as a pragma, meiralpke
use di agnosti cs;
at or near the start of your program. This also turnsvomode.

This pragma igspeially useful when you are new to perl, and want a bettplanation of the errors and
warnngs It's also helpful when you encounter some warning you’ve never seen before, e.g. when a new
warning has beeimtroducedin an upgraded version Bfrl.

You may not want to leavdi agnosti cs mode On for youprodudion server. For each warning,
di agnost i cs modegeneatesten times more output thavarnings mode. If your codgeneateswarn
ings, with thedi agnost i cs pragma you will use disk space muabter.

di agnost i cs mode adds a largeerfomanceovetheadin comparsonwith just havingwarnngs mode
On. You can see tHeencmarkresults in the sectiorCodeProfiling Techiques.

1.3 |[Handling the’User pressed Stop button’ casg

When a user pressessaOP or REL OAD button, the current sockebnnetion goes broken (aborted). It
would be nice if Apache could alwayemediately detect this eventJnfortunatelythere is no way to tell
whether theconnetion is still valid unless an attempt to read from or writedanedtion is made.

Unfortunately the detetion tecmique we are going to present doesn't work if tbennetion to the
back-end mod_perl server is coming from the front-end mod_proxy, as the latter doesn’t bceak¢ee
tion to the back-end when user has abortedtmmetion.

If the reading of the request’'s data is completed and the codepomeseig without writing anything
back to the client the brokeronnetion won't be noticed. When an attempt is made to send at least one
chamder to the client, the brokeaonnetion would be noticed and th®l GPI PE signal (Broken pipe)
would be sent to the process. The program could then hakdtstion and perform all the cleanup stuff it
has todo.

8 29 Jan 2004

Debugging mod_perl 1.3.1 Detecting Aborted Connections

Prior to Apache version 1.3.6, SI GPl PE was handled by Apache. Currently Apache is not handling
SIGPIPE anymore and mod_perl takes care of it.

Under mod_perl, $r - >pri nt (or just print()) returns a true value on success, a false value on failure.
The latter usually happens when the connection is broken.

If you want a similar to the old SI GPI PE behaviour (as it was before Apache version 1.3.6), add the
following configuration directive:

Per | Fi xupHandl er Apache::SI G

When Apache’s SI GPI PE handler is used, Perl may be left in the middle of it's eval context, causing
bizarre errors during subsequent requests are handled by that child. When Apache: : SI Gis used, it
installs adifferent SI GPI PE handler which rewinds the context to make sure Perl is back to normal state,
preventing these bizarre errors.

But in general case, you don’t need to use the above setting.

If you use this setting and you would like to log when a request was canceled by a SIGPIPE in your
Apache access |og, you must define a custom LogFor mat in your httpd.conf, like so:

Per | Fi xupHandl er Apache:: SI G
LogFormat "% % % % \"%\" % % % S|l GPl PE}e"

If the server has noticed that the request was canceled via a SI GPI PE, then the log line will end with 1,
otherwiseit will just be adash. e.g.:

127.0.0.1 - - [09/Jan/2001: 10: 27: 15 +0100]
"CET /perl/stopping_detector.pl HTTP/1.0" 200 16 1
127.0.0.1 - - [09/Jan/2001: 10: 28: 18 +0100]
"CET /perl/test.pl HTTP/1.0" 200 10 -

1.3.1 |Detecting Aborted Connectiong

Let's use the knowledge we have acquired to trace the execution of the code and watch all the events as
they happen.

Let’ stake alittle script that obviously "hangs' the server process:

st oppi ng_det ect or . pl

my $r = shift;
$r->send_http_header (' text/plain');

print "PID = $$\n";
$r->rflush;

whi | e(1){
$i ++;
sl eep 1;

}

29 Jan 2004 9

1.3.1 Detecting Aborted Connections

The script gets a request object $r by shift()ing it from the @ argument list passed by the handler()
subroutine. (This magic is done by Apache: : Regi st ry). Then the script sends a Cont ent -t ype
header, telling the client that we are going to send a plain text as a response.

Next the script prints out a single line telling us the id of the process that handles this request, which we
need to know in order to run the tracing utility. Then we flush Apache’s buffer. (If we don't flush the
buffer we will never see this short information printed. That’s because our output is shorter than the buffer
size and the script intentionally hangs, so the buffer won't be auto-flushed as the script hangs at the end.)

Then we enter an infinite whi | e(1) loop, which just increments a dummy variable and sleeps for a
second.

Running strace -p PI D, where PID is the process ID as printed to the browser, we see the following
output printed every second:

SYS 175(0, Oxbffff4lc, Oxbffff39c, 0x8, 0) = 0
SYS 174(0x11, 0, Oxbffffla0, Ox8, O0x11) =0
SYS 175(0x2, Oxbffff39c, 0, Ox8, 0x2) =0

nanosl| eep(Oxbf f f f 308, Oxbffff 308,

0x401a61b4, Oxbffff308, Oxbffffd4lc) = 0
tinme([941281947]) 941281947
tinme([941281947]) 941281947

Let'sleave st r ace running and press the STOP button. Did anything change? No, the same system calls
traceis printed every second. Which means that Apache didn’t detect the broken connection.

Now we are going to write the\ 0 (NULL) character to the client in attempt to detect the broken connec-
tion as close as possible to the time the Stop button is pressed at. Therefore we modify the loop code in
the following way:

whi | e(1){
$r->print("\0");
last if $r->connection->aborted;
$i ++;
sl eep 1;

}

We add a print() statement to print a NULL character and then we check whether the connection was
aborted with help of the $r - >connect i on- >abort ed method. If the connection is broken, we break
out of the loop.

We run this script and strace on it as before, but we see that it still doesn’t work. The trouble is we aren’t
flushing the buffer, which leaves the characters in the buffer and they won't be printed before the buffer
will get full and will be autoflushed. Since we want to attempt to write to the connection pipe all the time,
after printing the NULL, we add $r->rflush(). Hereis anew version of the code:

st oppi ng_det ect or 2. pl

my $r = shift;
$r->send_http_header (' text/plain');

print "PID = $$\n";

10 29 Jan 2004

Debugging mod_perl 1.3.2 The Importance of Cleanup Code

$r->rflush;

whi | e(1){
$r->print("\0");
$r->rflush;

last if $r->connection->aborted;

$i ++;
sl eep 1;

}

After starting the st r ace utility on the running process as we did before and pressing the Stop button,
we have seen the following output.

SYS_175(0, Oxbffff4lc, Oxbffff39c, 0x8, 0) =0

SYS_174(0x11, 0, Oxbffffla0, 0x8, 0x1l) =0

SYS_175(0x2, Oxbffff39c, 0, 0x8, 0x2) =0

nanosl eep(Oxbf fff 308, Oxbffff308, 0x401a6lb4, Oxbffff308, Oxbffff4lc) =0
time([941284358]) 941284358

wite(4, "\0", 1) -1 EPI PE (Broken pipe)

--- SIGPl PE (Broken pipe) ---

select (5, [4], NULL, NuULL, {0, 0}) 1 (in[4], left {0, 0})

ti me(NULL) 941284358

wite(17, "127.0.0.1 - - [30/Cct/1999:13:52"..., 81) = 81

getti neof day({941284359, 39113}, NULL) =10

times({tns_utinme=9, tnms_stinme=8, tns_cutinme=0, tns_cstine=0}) = 41551400
cl ose(4) =0
SYS_174(0xa, Oxbffff4e0, Oxbffff454, 0x8, Oxa) 0

SYS_174(0xe, Oxbffff46c, Oxbffff3e0, 0x8, Oxe) 0

fentl (18, F_SETLKW {type=F WRLCK, whence=SEEK SET, start=0, |en=0}

Apache detects the broken pipe as you see from this snippet:

wite(4, "\0", 1) = -1 EPI PE (Broken pipe)
--- SIGPIPE (Broken pipe) ---

Then it stops the script and does all the cleanup work, like access logging:

wite(1l7, "127.0.0.1 - - [30/Cct/1999:13:52"..., 81) = 81

where 17 is afile descriptor of the opened access log file

1.3.2 [The Importance of Cleanup Codg

Cleanup codeis acritical issue with aborted scripts.

What happens to locked resources if there are any? Will they be freed or not? If not, scripts using these
resources and the same locking scheme will hang, waiting for them to be freed.

First let’s go one step back and recall what are the problems and solutions for this issue under mod_cgi.

29 Jan 2004 11

1.3.2 The Importance of Cleanup Code

Under mod_cgi the resource locking issue is a problem only if you happened to create external lock files
and use them for lock indication, instead of using flock(). If the script running under mod_cgi is aborted
between the lock and the unlock code, and you didn’t bother to write cleanup code to remove old dead
locks then you are in big trouble.

The solution is to use an END block to place the cleanup codein:

END {
some code that ensures that |ocks are renoved

}

When the script is aborted, Apache will run the END blocks.

If youusef!l ock() things are much simpler, since all opened files will be closed when the script exits.
When the file is closed, the lock is removed as well--all the locked resources get freed. There are systems
where flock(2) is unavailable, and for those you can use Perl’ s emulation of this function.

With mod_perl things can be more complex when you use global variables as a filehandlers. Because the
processes don't exit after processing a request, files won’t be closed unless you explicitly close() them or
reopen with the open() call, which first closes a file. Let’s see what problems we might encounter, and
possible solutions for them.

1.3.2.1 (Critical Section|

First we want to make a little detour to discuss the “critical section" issue.

Let’'s start with aresource locking scheme. A schematic representation of a proper locking technique is as
follows:

1. lock a resource
<critical section starts>

2. do sonmething with the resource
<critical section ends>

3. unlock the resource

If the locking is exclusive, only one process can hold the resource at any given time, which means that all
the other processes will have to wait, therefore the code between the locking and unlocking functions can
become a service bottleneck. That’s why this code section is called critical and once started it should be
finished as soon as possible.

Even if you use a shared locking scheme, where many processes are allowed to concurrently access the
resource, if there are processes that sometimes want to get an exclusive lock it’s also important to keep the
critical section as short as possible.

The next example uses a shared lock, but has a poorly-designed critical section:

critical _section_sh.pl

use Fcntl gw(:flock);
use Synbol ;
ny $fh = gensym

12 29 Jan 2004

Debugging mod_perl 1.3.2 The Importance of Cleanup Code

open $fh, "/tnp/foo" or die $!;
flock $fh, LOCK SH;
start critical section

seek $fh, 0, O;

nmy @ines = <$f h>;

for(@ines)({
print if /fool;

}

end critical section
close $fh; # close unlocks the file

The code opens the file for reading, locks and rewinds it to the beginning, reads al the lines from the file
and prints out the lines that contain the string 'foo'.

The gensyn{() function imported by the Synbol module creates an anonymous glob and returns a
reference to it. Such a glob reference can be used as afile or directory handle. and therefore alows using
lexically scoped variables as filehandlers. Fcnt | imports into the script’ s namespace file locking symbols
like: LOCK_SH, LOCK_EX and more. Refer to the Fcnt | manpage for more information.

If the file the script reads is big, it’' d take arelatively long time for this code to complete. All this time the
file remains open and locked. While it's other processes may access thisfile for reading (shared lock), the
process that wants to modify the file (which requires an acquisition of the exclusive lock), will be blocked
waiting for this section to complete.

We can optimize the critical section thisway:

Once the file has been read, we have all the information we need from it. In order to make the example
simpler we' ve chosen to just print out the matching lines. In reality the code might be much longer.

We don't need the file to be open while the loop executes, because we don’t access it inside the loop. If we
close the file before we start the loop, we will allow other processes to have an exclusive access to the file
if they need it, instead of blocking them for no reason.

In the following corrected version of the previous example, we only read the content of the file during the
critical section and process it afterwards, without creating a possible bottleneck.

critical _section_sh2.pl

use Fcntl gw:flock);
use Synbol ;
ny $fh = gensym

open $fh, "/tnmp/foo" or die $!;
flock $fh, LOCK_SH;
start critical section

seek $fh, 0, O;
my @ines = <$f h>;

end critical section

29 Jan 2004 13

1.3.2 The Importance of Cleanup Code

close $fh; # close unlocks the file

for(@ines)({
print if /fool;

}

Here is another similar example, but now it uses an exclusive lock. The script reads in a file and writes it
back, adding a number of new text lines to the head of thefile.

critical _section_ex.pl

use Fcentl gw(: flock);
use Synbol ;
ny $fh = gensym

open $fh, "+>>/tnp/foo" or die $!;
flock $fh, LOCK EX;

start critical section
seek $fh, 0, O;
nmy @dd_lines =
(
gq{ Conpl et e docunentation for Perl, including FAQ lists,\n},

gq{shoul d be found on this systemusing ‘nman perl’ or\n},
qq{‘ perldoc perl’. If you have access to the Internet, point\n},
gq{your browser at http://ww.perl.com, the Perl Hone Page.\n},

)i

ny @ines = (@dd_|ines, <$fh>);
seek $fh, 0, O;
truncate $fh, O;
print $fh @i nes;
end critical section

close $fh; # close unlocks the file

Since we want to read the file, modify and write it back, without anyone else changing it on the way, we
open it for read and write with the help of +>> and lock it with an exclusive lock. You cannot safely
accomplish this task by opening the file first for read and then reopening for write, since another process
might change the file between the two events. (You could get away with +< as well, please refer to the
perIfunc manpage for more information about the open() function.)

Next, the code prepares the lines of text it wants to add to the head of the file, and assigns them and the
content of the file to the @ i nes array. Now we have our data ready to be written back to the file, so we
seek() to the start of the file and truncate() it to zero size. In our example the file always grows, so in this
case there is no need to truncate it, but if there was a chance that the file might shrink then truncating
would be necessary. However it’s good practice to always use truncate(), as you never know what changes
your code might undergo in the future. The truncate() operation does not carry any significant perfor-
mance penalty. Finally we write the data back to the file and close it, which unlocks it as well.

Did you notice that we created the text lines to be added as close to the place of usage as possible? This
complies with good "locality of code" style, but it makes the critical section longer. In such cases you
should sacrifice style, in order to make the critical section as short as possible. An improved version of

14 29 Jan 2004

Debugging mod_perl 1.3.2 The Importance of Cleanup Code

this script with a shorter critical section looks like this:

critical _section_ex2.pl

use Fcntl gw:flock);
use Synbol ;

my @ines =
(
gq{ Conpl et e docunentation for Perl, including FAQ lists,\n},
gq{shoul d be found on this systemusing ‘man perl’ or\n},
gq{‘ perldoc perl’. If you have access to the Internet, point\n},
gq{your browser at http://ww.perl.com, the Perl Hone Page.\n},

);

ny $fh = gensym
open $fh, "+>>/tnp/foo" or die $!;
flock $fh, LOCK_EX;

start critical section

seek $fh, 0, 0O;
push @i nes, <$fh>;

seek $fh, 0, O;
truncate $fh, O;
print $fh @i nes;

end critical section
close $fh; # close unlocks the file

There are two important differences. First, we prepare the text lines to be added before the file is locked.
Second, instead of creating a new array and copying lines from one array to another, we append the file
directly tothe @ i nes array.

1.3.2.2 |Safe Resour ce L ocking and Cleanup Codd

Let’s get back to the main issue of this section, which is safe resource locking.

Unless you use the Apache: : Per | Run handler that does the cleanup for you, if you don’t make a habit
of closing all the files that you open--in some cases you will encounter |ots of problems. If you open afile
but don’t close it, you may have file descriptor leakage. Since the number of file descriptors available to
you is finite, at some point you may run out of them and your service will fail. This is bad, but you can
live with it until you run out of file descriptors (which will happen much faster on a heavily used server).

You can use system utilities to observe the opened and locked files, as well as the processes that has
opened (and locked) the files. On FreeBSD you would use the fstat(1) utility. On many other UN*X
flavorsthe Isof (1) utility is available.

But this is nothing compared to the trouble you will give yourself if the code terminates and the file stays
locked. Any other process requesting a lock on the same file (or resource) will wait indefinitely for it to
become unlocked. Since this will not happen until the server reboots, all these processes trying to use this
resource will hang.

29 Jan 2004 15

1.3.2 The Importance of Cleanup Code

Here is an example of such aterrible mistake:

fl ock. pl

use Fcntl gw:flock);
open IN, "+>>filenane" or die "$!";
flock I'N, LOCK EX;
do sonething
quit without closing and unlocking the file

Isthis safe code? No - we forgot to close the file. So let’ s add the close():

flock2. pl

use Fcentl gw(: flock);
open IN, "+>>filenane" or die "$!";
flock I'N, LOCK EX;
do sonet hi ng
close IN,

Is it safe code now? Unfortunately it is not. There is a chance that the user may abort the request (for
example by pressing his browser's St op or Rel oad buttons) during the critical section. The script will
be aborted before it has had a chance to close() thefile, which isjust as bad asif we forgot to closeit.

In fact if the same process will run the same code again, an open() call will close the file first, which will
unlock the resource. This is because | N is a global variable. But it’s quite possible that the process that
created the lock, will not serve the same request for awhile, since it would be busy serving other requests.
So relying on it to reopen the fileis abad idea.

This problem happens only if you use global variables as file handles. The following example has the
same problem.

flock3. pl

use Fcntl gw:flock);
use Synbol ();
use vars gw $f h);
$fh = Synbol : : gensym();
open $fh, "+>>filename" or die "$!'";
flock $fh, LOCK_EX;
do sonething
cl ose $fh;

$f h istill aglobal variable and therefore the code using it suffers from the same problem.

The simplest solution to this problem is to always use lexically scoped variables (created with my()).
Whether script gets aborted before close() is called or you forgot the use close() the lexically scoped vari-
able will always go out of scope and therefore if the file was locked it will be unlocked. Here is a good
version of the code:

16 29 Jan 2004

Debugging mod_perl 1.3.2 The Importance of Cleanup Code

fl ock4. pl

use Fcntl gw(:flock);
use Symbol ();

ny $fh = Synbol ::gensyn();
open $fh, "+>>filenanme" or die "$!";
flock $fh, LOCK EX;
do sonet hing
cl ose $fh;

Please don't conclude from this example that you don’'t have to close files anymore, since they will be
automatically closed for you. It's abad style and should be avoided.

mod_perl comes with its own implementation of gensym(), so you don’t even need to load the Symbol
module in order to use this function. In mod_perl this function resides in the Apache package. For
example:

use Apache;

ny $fh = Apache::gensym();
open $fh, "+>>filenane" or die "$!'";

If you insist on using the file globs, at least make sure that you local ()’ ize these, and then if the flow of the
code is interrupted before close() was caled the filehandle will be automatically closed, since the
local()'ized variable will go out of the scope. The following example shows that the file is indeed closed
even when thereis no close():

/trpl/io.pl

#1/ usr/ bi n/ perl
/dev/null so strace output is nore readable
open ny $fh, ">/dev/null";
sel ect $fh;
$| = 1;
{ .
print "enter";
| ocal *FH;
open FH, $0;
print "l eave"

}

print "done";

This simple script opens the /dev/null and tells Perl to send all the STDOUT there, which is also made
unbuffered. Then the block is created in which the FH file glob is localized. Then it's used to open the
source code of the script (which resides in $0). In order to separate event of entering the block scope and
leaving it, the debug print statements are used. Now let’s run the script under strace(1), which proves once
again to be very useful in the tool bag of the mod_perl programmer:

29 Jan 2004 17

1.3.2 The Importance of Cleanup Code

% strace /tnp/io.pl

wite(3, "enter", 5) =5

-> open("/tnp/io.pl", O RDONLY) = 4

fstat(4, {st_node=S |SA D| S | SVTX| 0401, st_size=0, ...}) =0
fentl (4, F_SETFD, FD_CLOEXEC) =0

wite(3, "leave", b) =5

-> cl ose(4) =0

wite(3, "done", 4) =4

So you can see that /tmp/io.pl is actually close()’ d.

Under Perl version 5.6 Synbol . pmlike functionality is a built-in feature, so you can do:
open ny $fh, ">/tnp/foo" or die $!;

and $f h will be automatically vivified asavalid filehandle, so you don’t need to use the Synbol module
anymore, if backward compatibility is not a requirement.

Youcanasousethel O : * modules, suchasl G : Fil eorl QO : Di r. These are much bigger than the
Synbol module, and worth using for files or directories only if you are already using them for the other
features which they provide. As a matter of fact, these modules use the Synmbol module themselves. Here
isan example of their usage:

use O :File;

use 1O :Dir;

ny $fh |G :File->new">fil enane");
ny $dh |G :Dir->new"dirnane");

If you still have to use global filehandles, there are a few approaches we can take to solving the locking
problem.

If you are running under Apache: : Regi stry and friends, the END block will perform the cleanup
work for you. You might use END in the same way for scripts running under mod_cgi, or in plain Perl
scripts. Just add the cleanup code to this block and you are safe.

For example if you work with dbm files just like with locking it’'s important to flush the dom buffers, by
calling async() method:

END{
make sure that the DB is flushed

$dbh- >sync();
}

Normally the END blocks will not be executed after the completion of a request, but only when an Apache
child process exits, then if you are writing your own handlers you will need to use the register_cleanup()
function to supply cleanup code similar to that used in END blocks instead of using END blocks.

Under mod_perl, the above will work only for Apache: : Regi st ry scripts. Otherwise execution of the
END block will be postponed until the process terminates. If you write a handler in the Perl APl use the
regi ster_cl eanup() method instead. It accepts a reference to a subroutine as an argument:

18 29 Jan 2004

Debugging mod_perl 1.4 Handling Server Timeout Cases and Working with $SIG{ ALRM}

$r->register_cleanup(sub { $dbh->sync() });

Even better would be to check whether the client connection has been aborted. If you don’t check, the
cleanup code will always be executed and for normally terminated scripts this may not be what you want:

$r->register_cleanup(
make sure that the DB is flushed
sub{
$dbh->sync() if Apache->request->connection->aborted();
}
);

So in the case of ENDblock usage you would use:

END{
make sure that the DB is flushed
$dbh->sync() if Apache->request->connection->aborted();

}

Notethat if you useregis ter _cleanup() it should be called at the beginning of the script, or as soon
as the variables you want to use in this code become available. If you use it at the end of the script, and the
script happens to be aborted before this code is reached, there will be no cleanup performed.

For example CGl.pm registers the cleanup subroutine in its new() method:

sub new {
code snipped
if (SMOD_PERL) {
Apache->request->register_cleanup(\&CGl::_reset_globals);
undef $NPH;
}

more code snipped

}

There is another way to register a section of cleanup code for Perl APl handlers. You may use Perl -
CleanupHan dler inthe configuration file, like this:

<Location /foo>
SetHandler perl-script
PerlHandler Apache::MyModule
PerlCleanupHandler Apache::MyModule::cleanup()
Options ExecCGl

</Location>

Apache::MyMod ule ::cleanup() performs the cleanup, obvioudly.

1.4 Handling Server Timeout Cases and Working with
$SIG{ALRM}

29 Jan 2004 19

1.5 Looking inside the server

A similar situation to|Pressed Stop button diseasq happens when the browser times out the connection (is it
about 2 minutes?). There are cases when your script is about to perform avery long operation and there is
a chance that its duration will be longer than the client’s timeout. One example is database interaction,
where the DB engine hangs or needs along time to return the results. If thisisthe case, use $SI G{ ALRM

to prevent the timeouts:

$timeout = 10; # seconds
eval {
| ocal $SI JALRM =
sub { die "Sorry tined out. Please try again\n" };
al arm $ti meout ;
. db stuff ...
al arm 0;

I
die $@if $@

It was recently discovered that | ocal $SI G’ ALRM } does not restore the origina underlying C
handler. This was fixed in mod_perl 1.19 01. As a matter of fact none of the | ocal $SI G FOO}
signals restores the original C handler - read|Debugging Signal Handlers ($SIG{ FOO})| for a debug tech-
nique and a possible workaround.

1.5 |Looking inside the server

Your server is up and running, but something appears to be wrong. Y ou want to see the numbers to tune
your code or server configuration. Y ou just want to know what’s really going on inside the server.

How do you do it?

There are afew tools that allow you to look inside the server.

1.5.1 |Apache:: Status -- Embedded | nterpreter Status | nformation|

Thisis a very useful module. It lets you watch what happens to the Perl parts of the server. You can see
the size of all subroutines and variables, variable dumps, lexical information, OPcode trees, and more.

Y ou shouldn’t use it on production server as it adds quite a bit of overhead for each request.

1.5.1.1 (Minimal Configur ation|

This configuration enables the Apache: : St at us module with its minimum feature set. Add this to
httpd.conf:

<Location /perl-status>
Set Handl er perl-script
Per| Handl er Apache:: Status
order deny, al | ow
#deny from al
#al | ow from
</ Locati on>

20 29 Jan 2004

Debugging mod_perl 1.5.1 Apache::Status -- Embedded Interpreter Status Information

If you are going to use Apache: : St at us it'simportant to put it as the first module in the start-up file,
or in httpd.conf:

startup. pl

use Apache:: Status ();
use Apache::Registry ();
use Apache:: DBl ();

If you don't put Apache: : St at us before Apache: : DBl , you won't get the Apache: : DBl menu
entry in the status. For more about Apache: : DBl see Persistent DB Connections.

1.5.1.2 [Extended Configur ation|

There are several variables which you can use to modify the behaviour of Apache: : St at us.

PerlSetVar StatusOptionsAll On
This single directive will enable all of the options described below.
PerlSetVar StatusDumper On

When you are browsing symbol tables, you can view the values of your arrays, hashes and scalars
with Dat a: : Dunper .

PerlSetVar StatusPeek On

With this option On and the Apache: : Peek module installed, functions and variables can be
viewed in Devel : : Peek style.

Per|SetVar StatusL exlnfo On

With this option On and the B: : Lex| nf o module installed, subroutine lexical variable information
can be viewed.

PerlSetVar StatusDeparse On

With this option On and B: : Depar se version 0.59 or higher (included in Perl 5.005_59+), subrou-
tines can be "deparsed”.

Options can be passed to B: : Depar se: : newlike so:

Per| Set Var St at usDeparseQptions "-p -sC'
Seethe B: : Depar se manpage for details.
Per|SetVar StatusTerse On

With this option On, text-based op tree graphs of subroutines can be displayed, thanksto B: : Ter se.

29 Jan 2004 21

1.5.1 Apache::Status -- Embedded Interpreter Status Information

® PerlSetVar StatusTerseSize On

With this option On and the B: : Ter seSi ze module installed, text-based op tree graphs of subrou-
tines and their size can be displayed. Seethe B: : Ter seSi ze docs for more info.

PerlSetVar StatusTerseSizeMainSummary On

With this option On and the B: : Ter seSi ze module installed, "Memory Usage" will be added to
the Apache: : St at us main menu. This option is disabled by default, as it can be rather cpu inten-
sive to summarize memory usage for the entire server. It is strongly suggested that this option only be
used with a development server running in -X mode, as the results will be cached.

Remember to preload B: : Ter seSi ze with:
Per| Modul e B:: Terse

Per|SetVar StatusGraph

When St at usDunper (see above) is enabled, another link "OP Tree Graph" will be present with
the dump if this configuration variableis set to On.

This requires the B module (part of the Perl compiler kit) and the B: : Gr aph module version 0.03 or
higher to be installed along with the *dot’ program. Dot is part of the graph visualization toolkit from
AT&T: |nttp://www.research.att.com/sw/tool S'graphviz/l

WARNING: Some graphs may produce very large images, and some graphs may produce no image

if B: : & aph’soutput isincorrect.

There ismore information about Apache: : St at us inits manpage.

1513

Assuming that your mod_per| server listens on port 81, fetch [http://www.myserver.com:81/perl-statug

Enbedded Perl version 5.00502 for Apache/1.3.2 (Unix) nod_perl/1.16
process 187138, running since Thu Nov 19 09:50: 33 1998

Below al the sections are links when you view them through /per|-status

Si gnal Handl ers

Enabl ed nod_per| Hooks
Per|l Require’'d Files

Envi r onnent

Per| Section Configuration
Loaded Mbddul es

Per| Configuration

I SA Tree

I nheritance Tree

Conpi |l ed Registry Scripts
Synbol Tabl e Dunp

22 29 Jan 2004

http://www.research.att.com/sw/tools/graphviz/
http://www.myserver.com:81/perl-status

Debugging mod_perl 1.5.2 mod_status

Let'sfollow, for example, Per | Requi r e’d Files. We see:

Per| Requi re Location
/ hone/ perl /apache-startup. pl /hone/perl/apache-startup. pl

From some menus you can move deeper to peek into the internals of the server, to see the values of the
globa variables in the packages, to see the cached scripts and modules, and much more. Just click
around...

1.5.1.4 |Compiled Reqgistry Scripts section seemsto be empty |

Sometimes when you fetch /perl-status and look at the Compiled Registry Scripts you see no listing of
scripts at al. This is correct: Apache: : St at us shows the registry scripts compiled in the httpd child
which is serving your request for /perl-status. If the child has not yet compiled the script you are asking
for, /perl-status will just show you the main menu.

1.5.2 |Imod statug

The Status module allows a server administrator to find out how well the server is performing. An HTML
page is presented that gives the current server statistics in an easily readable form. If required, given a
compatible browser this page can be automatically refreshed. Another page gives a simple machine-read-
able list of the current server state.

This Apache module iswritten in C. It is compiled by default, so all you have to do to useit isenableit in
your configuration file:

<Location /status>
Set Handl er server-status
</ Locati on>

For security reasons you will probably want to limit accessto it. If you have installed Apache according to
the instructions you will find a prepared configuration section in httpd.conf: to enable use of the
mod_status module, just uncomment it.

Ext endedSt at us On
<Location /status>
Set Handl er server-status
order deny, al | ow
deny fromall
allow from | ocal host
</ Locati on>

Y ou can now access server statistics by using a Web browser to access the page|http://loca host/statug (as
long as your server recognizes localhost:).

The details given by mod_status are:

e Thenumber of children serving requests
® Thenumber of idle children
® Thestatus of each child, the number of requeststhat child has performed and thetotal number

29 Jan 2004 23

http://localhost/status

1.6 Sometimes My Script Works, Sometimes It Does Not

of bytes served by the child

e A total number of accesses and thetotal bytes served

® Thetimethe server waslast started/restarted and how long it has been running for

® Averages giving the number of requests per second, the number of bytes served per second and
the average number of bytes per request

® Thecurrent percentage CPU used by each child and in total by Apache

® Thecurrent hosts and requests being processed

1.5.3 |[Apache::VMonitor -- Visual System and Apache Server Monitor|

This module is covered in the section "Apache::* Modules'

1.6 [Sometimes My Script Works, Sometimes It Does Not

See Sometimes it Works Sometimes it does Not

1.7 |Code Debug

When the code doesn’'t perform as expected, either never or just sometimes, we say that the code needs
debugging. There are several levels of debugging complexity.

The basic level iswhen Perl terminates the program during the compilation phase, before it tries to run the
resulting byte-code. This usually happens because there are syntax errors in the code, or perhaps a module
ismissing. Sometimes it takes quite an effort to solve these problems, since code that uses Apache CORE
modules generally won’t compile when executed from the shell. We will learn how to solve syntax prob-
lemsin mod_perl code quite easily.

Once the program compiles and begins to run, there might be logical problems, when the program doesn’t
do what you thought you had programmed it to do. These are somewhat harder to solve, especially when
there is alot of code to be inspected and reviewed, but it's just a matter of time. Perl can help a lot, for
example to locate typos, when we enable warnings. For example, if you wanted to compare two numbers,
but you omitted the second '=’ character so that you had something likei f $yes = 1 instead of i f
$yes == 1, it warnsusabout the missing’'=".

The next level is when the program does what it's expected to do most of the time, but occasionally
misbehaves. Often you find that print() statements or the Perl debugger can help, but inspection of the
code generaly doesn’'t. Often it's quite easy to debug with print(), but sometimes typing the debug
messages can become very tedious. That’s where the Perl debugger comes into its own.

While print() statements always work, running the perl debugger for CGI scripts might be quite a chal-
lenge. But with the right knowledge and tools handy the debug process becomes much easier. Unfortu-
nately there is no one easy way to debug your programs, as the debugging depends entirely on your code.
It can be a nightmare to debug really complex code, but as your style matures you can learn ways to write
simpler code that is easier to debug. You will probably find that when you write simpler clearer code it
does not need so much debugging in the first place.

24 29 Jan 2004

Debugging mod_perl 1.7.1 Locating and correcting Syntax Errors

One of the most difficult cases to debug, is when the process just terminates in the middle of processing a
request and dumps core. Often when there is a bug the program tries to access a memory area that doesn’t
belong to it. The operating system halts the process, tidies up and dumps core (it creates afile called core
in the current directory of the process that was running). This is something that you rarely see with plain
perl scripts, but it can easily happen if you use modules written in C or C++ and something goes wrong
with them. Occasionally you will come across abug in mod_perl itself (mod_perl iswritten in C), that was
in a deep slumber before your code awakened it.

In the following sections we will go through in detail each of the problems presented, thoroughly discuss
them and present a few techniques to solve them.

1.7.1 [Locating and correcting Syntax Errorg

While developing code we often make syntax mistakes, like forgetting to put acommain alist, or a semi-
colon at the end of a statement.

Even at the end of a{} block, where a semicolon is not required at the end of the last statement, it may be
better to put one in: there is a chance that you will add more code later, and when you do you might forget
to add the now required semicolon. Similarly, more items might be added later to alist; unlike many other
languages, Perl has no problem when you end alist with a redundant comma.

One approach to locating syntactically incorrect code is to execute the script from the shell with the -c
flag. This tells Perl to check the syntax but not to run the code (actually, it will execute BEA N, END
blocks, and use() calls, because these are considered as occurring outside the execution of your program).
(Note aso that Perl 5.6.0 has introduced a new specia variable, $” C, which is set to true when perl isrun
with the -c flag; this provides an opportunity to have some further control over BEG N and END blocks
during syntax checking.) Also it's agood ideato add the - w switch to enable warnings:

perl -cw test.pl

If there are errors in the code, Perl will report the errors, and tell you at which line numbers in your script
the errors were found.

The next step isto execute the script, since in addition to syntax errors there may be run time errors. These
are the errors that cause the "Internal Server Error” page when executed from a browser. With plain CGI
scriptsit’s the same as running plain Perl scripts -- just execute them and see that they work.

The whole thing is quite different with scripts that use Apache: : * modules which can be used only from
within the mod_perl server environment. These scripts rely on other code, and an environment which isn't
available when you attempt to execute the script from the shell. There is no Apache request object avail-
able to the code when it is executed from the shell.

If you have a problem when using Apache: : * modules, you can make a request to the script from a
browser and watch the errors and warnings as they are logged to the error_log file. Alternatively you can
usethe Apache: : FakeRequest module.

29 Jan 2004 25

1.7.2 Using Apache::FakeReguest to Debug Apache Perl Modules

1.7.2 [Using Apache:: FakeRequest to Debug Apache Perl Moduleg

Apache: : FakeRequest isused to set up an empty Apache request object that can be used for debug-
ging. The Apache: : FakeRequest methods just set interna variables with the same names as the
methods and return the value of the internal variables. Initial values for methods can be specified when the
object is created. The print method printsto STDOUT.

Subroutines for Apache constants are also defined so that you can use Apache: : Const ant s while
debugging, athough the values of the constants are hard-coded rather than extracted from the Apache
source code.

Let’swrite avery simple module, which prints "OK" to the client’ s browser:

package Apache:: Exanpl e
use Apache:: Constants;

sub handl er{

ny $r = shift;
$r->send_http_header (' text/plain');
print "You are OK ", $r->get_renmpte_host, "\n";
return

}

1

Y ou cannot debug this module unless you configure the server to run it, by calling its handler from some-
where. So for example you could put in httpd.conf:

<Location /ex>

Set Handl er perl -script

Per | Handl er Apache: : Exanpl e
</ Locat i on>

Then after restarting the server you could start a browser, request the location |http://localhost/ex| and
examine the output. Tedious, no?

But with the help of Apache: : FakeRequest you can write a little script that will emulate a request
and return the output.

#! [usr/ bi n/ perl

use Apache:: FakeRequest ();
use Apache:: Exanple ();

nmy $r = Apache: : FakeRequest - >new(’ get _renot e_host’ =>" www. f 00. comi) ;
Apache: : Exanpl e: : handl er ($r);

when you execute the script from the command line, you will see the following output:

You are OK ww. f 00. com

26 29 Jan 2004

http://localhost/ex

Debugging mod_perl 1.7.3 Finding the Line Which Triggered the Error or Warning

1.7.3 [Finding the Line Which Triggered the Error or Warning

Perl has no problem with the line numbers and file names for modules that are read from disk in the
normal way, but modules that are compiled via eval() such as Apache:: Registry and
Apache: : Per | Run sometimes with some versions of Perl get confused.

There is the Perl <<HEREDOC inside eval "" problem that confuses the Perl current linenumber counter,
newer Perls fix this. For older Perls compiling with the experimental PERL_MARK_WHERE=1 should
solvethis.

There are compiler directives to reset its counter to some value that you decide. Y ou can always pepper
your code with these to help you locate the problem. At the beginning of the line you could write some-
thing of the form:

#li ne nnn | abel

For example:

#line 298 nyscript. pl
or
#l ine 890 sonme_| abel _to _be used_in_the_error_nessage

The'# must be in the first column, so if you cut and paste from this text you must remember to remove
any leading white space.

The label is optional - the filename of the script will be used by default. This directive sets the line number
of the following line, not the line the directive is on. You can use a little script to stuff every N lines of
your code with these directives, but then you will have to remember to rerun this script every time you add
or remove code lines. The script:

#! [usr/ bi n/ perl
Puts Perl line markers in a Perl program for debuggi ng purposes.
Al so takes out old line markers.
die "No filename to process.\n" unless @\RGY,
ny $filename = shift;
ny $lines = 100;
open IN, $filename or die "Cannot open file: $filenanme: $!'\n";
open QUT, ">$fil enane. mar ked"
or die "Cannot open file: $filenane. marked: $!'\n";
ny $counter = 1;
while (<IN>) {
print OUT "#line $counter\n" unless $counter++ % $| i nes;
next if /~#line /;
print OUT $_;
}
cl ose QUT,;
close IN,
chmod 0755, "$fil ename. marked";

29 Jan 2004 27

1.7.4 Using print() for Debugging

Another way of narrowing down the area to be searched is to move most of the code into a separate
modules. This ensures that the line number will be reported correctly.

To have a complete trace of calls add:

use Carp ();
local $SIG __WARN _} = \&Carp::cluck;

1.7.4 [Using print() for Debugging

The universal debugging tool across nearly al platforms and programming languages is printf() or the
equivalent output function. This can send data to the console, a file, an application window and so on. In
perl we generally use the print() function. With an idea of where and when the bug is triggered, a devel-
oper can insert print() statements in the source code to examine the value of data at certain stages of
execution.

However, it is rather difficult to anticipate all possible directions a program might take and what data to
suspect of causing trouble. In addition, inline debugging code tends to add bloat and degrade the perfor-
mance of an application and can aso make the code harder to read and maintain. And you have to
comment out or remove the debugging print() calls when you think that you have solved the problem. But
if later you discover that you need to debug the same code again, you need at best to uncomment the
debugging code lines or, at worst, to write them again from scratch.

Let’s see afew examples where we use print() to debug some problem. In one of my applications | wrote a
function that returns the date that was one week ago. Hereit is:

print "Content-type: text/plain\r\n\r\n";

print "A week ago the date was ", date_a_week_ago(),"\n";

return a date one week ago as a string in format: MV DD/ YYYY
R

sub date_a_week_ago{

ny @onth_len = (31,28, 31,30, 31, 30, 31, 31, 30, 31, 30, 31) ;

ny ($day, $nonth, $year) = (localtime)[3..5];
for (ny $j = 0; $ < 7; $j++) {

$day- - ;
if ($day == 0) {
$nmont h- - ;
if ($nonth == 0) {
$year - -;
$nmonth = 12;
}

there are 29 days in February in a | eap year
$nmonth_len[1] =
(($year % 4 or $year % 100 == 0) and $year % 400)
? 28 @ 29;

28 29 Jan 2004

Debugging mod_perl 1.7.4 Using print() for Debugging

set $day to be the last day of the previous nonth
$day = $nonth_len[$nonth - 1];

} # end of if ($day == 0)
} # end of for ($i = 0;%i < 7;$i++)

return sprintf "9®2d/ %92d/ %9©4d", $nont h, $day, $year +1900
}

This code is pretty straightforward. We get today’ s date and subtract one from the value of the day we get,
updating the month and the year on the way if boundaries are being crossed (end of month, end of year). If
we do it seven times in loop then at the end we should get a date that was a week ago.

Note that since locatime() returns the year as a value of

current _four_digits_format_year-1900 (which means that we don’'t have a century bound-
ary to worry about) then if we are in the middle of the first week of the year 2000, the value of year
returned by localtime() will be 100 and not O as you might mistakenly assume. So when the code does
$year - - it becomes 99 and not - 1. At the end we add 1900 to get back the correct four-digit year
format. (Thisisall correct aslong as you don’t go to the years prior to 1900)

Also note that we have to account for leap years where there are 29 days in February. For the other months
we have prepared an array containing the month lengths.

Now when we run this code and check the result, we see that something iswrong. For example, if today is
10/ 23/ 1999 we expect the above code to print 10/ 16/ 1999. In fact it prints 09/ 16/ 1999, which
means that we have lost a month. The above code is buggy!

Let’s put afew debug print() statements in the code, near the $nont h variable:
sub date_a_week_agof
ny @onth_len = (31,28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
ny ($day, $nont h, $year) = (localtine)[3..5];

print "[set] nonth : $nmonth\n"; # DEBUG
for (ny $j =0; $f <7; $j++) {

$day- - ;
if ($day == 0) {
$nont h- -;
if ($nonth == 0) {
$year - -
$nonth = 12;
}

print “[loop $i] nonth : $nmonth\n"; # DEBUG
there are 29 days in February in a | eap year
$nmonth_len[1] =
(($year % 4 or $year % 100 == 0) and $year % 400)
? 28 : 29

set $day to be the |last day of the previous nonth

29 Jan 2004 29

1.7.5 Using print() and Data::Dumper for Debugging

$day = $nonth_len[$nonth - 1];

} # end of if ($day == 0)
} # end of for ($i = 0;%i < 7;$i++)

return sprintf "9®2d/ %92d/ %94d", $nont h, $day, $year +1900
}

When we run it we see;

[set] nonth : 9

It is supposed to be the number of the current month (10), but actualy it is not. We have spotted a bug,
since the only code that sets the $nont h variable consists of a call to localtime(). So did we find abug in
Perl?let’slook at the manpage of the localtime() function:

% perl doc -f localtime

Converts a tine as returned by the time function to a 9-el ement
array with the time analyzed for the local tinme zone. Typically
used as foll ows:

0 1 2 3 4 5 6 7 8
($sec, $m n, $hour, $nday, $non, $year, $wday, $yday, $i sdst) =
| ocal time(tine);

Al array elenents are nuneric, and cone straight out of a struct
tm In particular this neans that C<$non> has the range C<0..11>
and C<$wday> has the range C<0..6> with Sunday as day C<0>. Also
C<$year> is the nunber of years since 1900, that is, C<$year> is
C<123> in year 2023, and I<not> sinply the last two digits of the
year. If you assume it is, then you create non-Y2K-conpliant
prograns--and you wouldn’t want to do that, would you?

[more info snipped]

Which revealsto usthat if we want to count months from 1 to 12 and not 0 to 11 we are supposed to incre-
ment the value of $mont h. Among other interesting facts about locatime() we also see an explanation of
$year , which as I’ ve mentioned before is set to the number of years since 1900.

We have found the bug in our code and learned new things about localtime(). To correct the above code
we just increment the month after we call localtime():

ny ($day, $nont h, $year) = (localtinme)[3..5];
$nont h++

1.7.5 |Using print() and Data::Dumper for Debugging|

Sometimes you need to peek into complex data structures, and trying to print them out can be tricky.
That’'swhere Dat a: : Dunper comesto our rescue. For example if we create this complex data structure:

30 29 Jan 2004

Debugging mod_perl

$data =
array => [gma b c d)],
hash => {
foo => "oof",
bar => "rab",
b
How do we print it out? Very easily:

use Dat a: : Dunper;
print Dunper \$data;

What we get is a pretty-printed $dat a:

$VARL = \{
"hash’ => {
"foo =>
“bar’ =>
},
“array’ =>
ra
b
e
e
]
b

"oof ',
"rab’

1.7.5 Using print() and Data::Dumper for Debugging

While writing this example | made a mistake and wrotegw(a b ¢ d) insteadof [gm{a b c d)].
When | pretty-printed the contents of $dat a | immediately saw my mistake:

$VARL = \{
b=,

'd” => ' hash’,

' HASH(0x80cd79¢c)’ =>

Tarray’ =>a’

I

undef ,

That's not what | wanted of course, but | spotted the bug and corrected it, as you saw in the original

example from above.

Of course you can use

print STDERR $vari abl e;

or:

warn $vari abl e;

instead of print to have al the debug messages in the error_log, which makes it even easier to debug your

code.

29 Jan 2004

31

1.7.6 The Importance of a Good Concise Coding Style

1.7.6 [The Importance of a Good Concise Coding Stylg

Don't strive for elegant, clever code. Try to develop a good coding style by writing code which is concise
yet easy to understand. It's much easier to find bugs in concise, simple code. And such code tends to have
less bugs.

The ’one week ago’ example from the previous section is not concise. Thereis alot of redundancy in it,
and as a result it is harder to debug than it needs to be. Here is a condensed version of the main loop. As
you can see, thisversion won't make it easier to understand the code:
for (0..6) {
next if --$day;
$year - -, $nont h=12 unl ess --$nont h;
$day = $nmonth =1
? $nont h_I en[$nont h- 1]
: (($year % 4 or $year % 100 == 0) and $year % 400)
? 28
. 29;
}

Don't do that at home:)

Why did | present this version? Because it is too obscure, which makes it difficult to understand and main-
tain. On the other hand a part of this code is easier to understand.

Larry Wall, the author of Perl, is a linguist. He tried to define the syntax of Perl in a way that makes
working in Perl much like working in English. So it can be a good idea to learn Perl coding idioms, some
of which might seem odd at first but once you get used to them, you will find it difficult to understand
how you could have lived without them before. I’ll show just a few of the most common Perl coding
idioms.

It's agood idea to write code which is more readable but which avoids redundancy, so it’s better to write:
unless ($i) {...}

rather than:
if ($i ==0) {...}

if you want to test for trueness only.

Use amuch more concise, Perlish style:
for my $j (0..6) {...}

instead of the syntax used in some other languages:

for (ny $j=0; $j<=6; $j++) {...}

32 29 Jan 2004

Debugging mod_perl 1.7.6 The Importance of a Good Concise Coding Style

It's much simpler to write and comprehend code like this:

print "sonething" if $debug;

than this:
i f($debug){
print "something";
}

A good style that improves understanding, readability and reduces the chances of having a bug is shown
below in the form of yet another rewrite of our ‘one week ago’ code:

for (0..6) {

$day- - ;

next if $day;

$nont h- -;

unl ess ($nont h) {
$year--;
$nont h=12

}

if($nmonth == 1){
$day = (($year % 4 or $year % 100 == 0) and $year % 400)
? 28 . 29;
} else {
$day = $nonth_I| en[$nont h-1];

}
}

which is a happy medium between the excessively verbose style of the first version and very obscure
second version.

And of course atwo liner, which is much faster and easier to understand is;

sub date_a_week_ago{
nmy ($day, $nont h, $year) = (localtime(ti ne-604800))[3..5];
return sprintf "9®92d/9%92d/ %94d", $nont h+1, $day, $year +1900;

}

Just take the current date in seconds since epoch as time() returns, subtract a week in seconds
(7* 24* 60* 60 = 604800) and feed the result to localtime() - voilawe' ve got the date of one week ago!

Why is the last version important, when the first one works just fine? Not because of performance issues
(although this last one istwice as fast as the first), but because there are more ways to put abug in the first
version than there arein the last one.

29 Jan 2004 33

1.7.7 Introduction to the Perl Debugger

1.7.7 [Introduction to the Perl Debugger|

Aswe saw earlier, it's almost always possible to debug code with the help of print(). However, it isimpos-
sible to anticipate all the possible directions which a program might take, and difficult to know what code
to suspect when trouble occurs. In addition, inline debugging code tends to add bloat and degrade the
performance of an application, although most applications offer inline debugging as a compile time option
to avoid these hits. In any case, this information tends to only be useful to the programmer who added the
print statements in the first place.

Sometimes you have to debug tens of thousands lines of Perl in an application, and while you may be a
very experienced Perl programmer who can understand Perl code quite well by just looking at it, no mere
mortal can even begin to understand what will actually happen in such alarge application, until the code is
running. So you just don’t know where to start adding your trusty print() statements to see what is happen-
ing inside.

The most effective way to track down a bug is to run the program inside an interactive debugger. The
majority of programming languages have such a tool available, allowing one to see what is happening
inside an application whileit is running. The basic features of an interactive debugger allow you to:

® Stop at acertain point in the code, based on aroutine name or source file and line number

® Stop at acertain point in the code, based on conditions such as the value of agiven variable
e Perform an action without stopping, based on the criteria above

e View and modify the value of variables at any given point

® Provide context information such as stack traces and source windows

It does take practice to learn the most effective ways of using an interactive debugger, but the time and
effort will be paid back many-fold in the long run.

Most C and C++ programmers are familiar with the interactive GNU debugger (gdb). gdb is a
stand-alone program that requires your code to be compiled with debugging symbols to be useful. While
gdb can be used to debug the Perl interpreter itself, it cannot be used to debug your Perl scripts.

Not to worry, Perl provides its own interactive debugger, called per | db. Giving control of your Perl
program to the interactive debugger is simply a matter of specifying the - d command line switch. When
this switch is used, Perl inserts debugging hooks into the program syntax tree, but it leaves the job of
debugging to a Perl module separate from the perl binary itself.

| will start by introducing a few of the basic concepts and commands of the Perl interactive debugger.
These warm-up examples al run from the command line, independent of mod_perl, but are all till rele-
vant when we do finally go inside Apache.

It might be useful to keep the perldebug manpage handy for reference while reading this section, and for
future debugging sessions on your own.

34 29 Jan 2004

Debugging mod_perl 1.7.7 Introduction to the Perl Debugger

The interactive debugger will attach to the current terminal and present you with a prompt just before the
first program statement is executed. For example:

% perl -d -le "print "nod_perl rules the world"’
Loadi ng DB routines from perl 5db. pl version 1.0402
Emacs support avail abl e.

Enter h or “h h' for help.

main::(-e:1): print "nmod_perl rules the world"
DB<1>

The source line shown is the line which Perl is about to execute, the next command (or just n) will cause
thisline to be executed after which execution will stop again just before the next line:

main::(-e:1): print "nmod_perl rules the world"

DB<1> n
mod_perl rules the world
Debugged programtermnated. Use g to quit or Rto restart,
use Oinhibit_exit to avoid stopping after programterm nation,
h g h Ror h Oto get additional info.
DB<1>

In this case, our example code is only one line long, so we have finished interacting after the first line of
code is executed. Let’stry again with slightly longer example which is the following script:

ny $word = 'nod_perl’;
my @rray = gw(rules the world);

print "$word @rray\n";
Save the script in afile caled domination.pl and run with the - d switch:

% perl -d dom nation. pl

mai n: : (dom nation.pl:1): nmy $word = 'nod_perl’;
DB<1> n

mai n: : (dom nation.pl:2): my @rray = gw(rules the world);
DB<1>

At this point, the first line of code has been executed and the variable $wor d has been assigned the value
mod_perl. We can check this by using the p command (an abbreviation for the pri nt command, the two
areinterchangeable):

mai n: : (domni nation. pl:2): nmy @rray = gw(rules the world);
DB<1> p $word
nmod_per |

The pri nt command works just like the Perl’s built-in print() function, but adds a trailing newline and
outputs to the $DB: : OUT file handle, which is normally opened on the terminal where Perl was launched
from. Let’s carry on:

29 Jan 2004 35

1.7.7 Introduction to the Perl Debugger

DB<2> n
mai n: : (domi nation. pl:4): print "$word @rray\n";

DB<2> p @rray
rul est heworl d

DB<3> n
nmod_per| rules the world
Debugged programtermnated. Use q to quit or Rto restart,
use Oinhibit_exit to avoid stopping after programterm nation,
h g h Ror h Oto get additional info.

Ouch, p @rray printed rul estheworl d and not rul es the worl d, as you might expect it to,
but that’s absolutely correct. If you print an array without expanding it first into a string it will be printed
without adding the content of the $" variable (otherwise known as $LI ST_SEPARATORif the Engl i sh
pragmais being used) between the elements of the array.

If you type:
print "@rray";
the output will ber ul es t he wor | d since the default value of the $" variable is a single space.

Y ou should have noticed by now that there is some valuable information to the left of each executable
Statement:

mai n: : (domi nation. pl:4): print "$word @rray\n";
DB<2>

First is the current package name, in this case mai n: : . Next is the current filename and statement line
number, domination.pl and 4 in the example above. The number presented at the prompt is the command
number which can be used to recall commands from the session history, using the! command followed by
this number. For example, ! 1 would repeat the first command:

% perl -d -e0
main::(-e:1): 0
DB<1> p 9]
5. 00503
DB<2> 11

p $]5.00503
DB<3>

Where $] is the perl’s version number. As you see ! 1 prints the value of $] , preceded by the command
that was executed.

Things start to get more interesting as the code does. In the example script below (save it to afile called
test.pl) we've increased the number of source files and packages by including the standard Synbol
module, along with an invocation of its gensym() function:

use Synbol ();
ny $sym = Synbol :: gensyn();

print "$symn";

36 29 Jan 2004

Debugging mod_perl 1.7.7 Introduction to the Perl Debugger

% perl -d test.pl

main:: (test.pl:3): nmy $sym = Synbol :: gensyn();
DB<1> n
mai n:: (test.pl:5): print "$symn";
DB<1> n
GLOB(0x80c7a44)
First, notice the debugger did not stop at the first line of the file. This is because use ... isa

compile-time statement, not a run-time statement. Also notice there was more work going on than the
debugger revealed. That's because the next command does not enter subroutine calls. To step into a
subroutine code use the st ep command (or its abbreviated form s):

% perl -d test.pl

main::(test.pl:3): my $sym = Synbol :: gensyn();
DB<1> s
Synbol : : gensyn(/usr/ i b/ perl5/5. 00503/ Synbol . pm 86):
86: nmy $nane = "CGEN' . $genseq++;
DB<1>

Notice the source line information has changed to the Synbol : : gensympackage and the Synbol . pm
file. We can carry on by hitting the return key at each prompt, which causes the debugger to repeat the last
st ep or next command. It won't repeat apr i nt command though. The debugger will eventually return
from the subroutine back to our main program:

DB<1>
Synbol : : gensyn(/usr/li b/ perl5/5.00503/ Synbol . pm 87):
87: ny $ref = *{$genpkg . $nane};

DB<1>
Synbol : : gensyn{(/usr/li b/ perl5/5.00503/ Synbol . pm 88):
88: del et e $$genpkg{$nane};

DB<1>
Synbol : : gensyn{(/usr/li b/ perl5/5.00503/ Synbol . pm 89):
89: $ref;

DB<1>
main::(test.pl:5): print "$symn";

DB<1>
GLOB(0x80c7a44)

Our line-by-line debugging approach has served us well for this small program, but imagine the time it
would take to step through a large application at the same pace. There are several ways to speed up a
debugging session, one of which is known as setting a breakpoint. The br eakpoi nt command (b) can
be used for instructing the debugger to stop at a named subroutine or at any line of any file. In this
example session, at the first debugger prompt we will set a breakpoint at the Synbol : : gensymsubrou-
tine, telling the debugger to stop at the first line of this routine when it is called. Rather than move along
with next or st ep we give the cont i nue command (c) which tells the debugger to execute the script
without stopping until it reaches a breakpoint:

29 Jan 2004 37

1.7.7 Introduction to the Perl Debugger

% perl -d test.pl

main:: (test.pl:3): nmy $sym = Synbol :: gensyn();
DB<1> b Synbol : : gensym
DB<2> ¢
Synbol : : gensyn{(/usr/ i b/ perl5/5. 00503/ Synbol . pm 86) :
86: ny $nane = "GEN' . $genseq++;

Now let's pretend we are debugging a large application where Synbol : : gensymmight be called in
various places. When the subroutine breakpoint is reached, by default the debugger does not reveal where
it was called from. One way to find out thisinformation is with the Tr ace command (T):

DB<2> T
$ = Synbol::gensym() called fromfile ‘test.pl’ line 3

In this example, the call stack isonly one level deep, so only that line is printed. We'll look at an example
with a deeper stack later. The left-most character reveal s the context in which the subroutine was called. $
represents scalar context, in other examples you may see @which represents list context or . which repre-
sents void context. In our case we have called:

ny $sym = Synbol :: gensyn();
which callsthe Synbol : : gensyn() inscalar context.

Below we' ve made our test.pl example a little more complex. First, we've added a My: : Wor | d package
declaration at the top of the script, so we are no longer working in the mai n: : package. Next, we've
added a subroutine named do_work() which invokes the familiar Synbol : : gensym along with another
function called Synbol : : qual i fy and then returns a hash reference of the results. The do_work()
routine isinvoked inside afor loop which will be run twice:

package My:: World;
use Synbol ();
for (1,2) {
do_wor k(" now');
}
sub do_work {
nmy($var) = @;
return undef unless $var;

Synbol : : gensym() ;
Synbol : : qual i fy($var);

nmy $sym
ny $qvar

ny $retval = {
"sym => $sym
"var’ => $qvar,

b

return $retval;

38 29 Jan 2004

Debugging mod_perl 1.7.7 Introduction to the Perl Debugger

WEe'll start by setting afew breakpoints and then we use the Li st command (L) to display them:
% perl -d test.pl
My::World::(test.pl:5): for (1,2) {

DB<1> b Synbol ::qualify
DB<2> b Synbol : : gensym

DB<3> L

/usr/lib/perl5/5. 00503/ Synbol . pm

86: nmy $nane = "CGEN' . $genseq++;
break if (1)

95: ny ($nanme) = @;
break if (1)

The filename and line number of the breakpoint are displayed just before the source line itself. Because
both breakpoints are located in the same file, the filename is displayed only once. After the source line we
see the condition on which to stop. In this case, as the constant value 1 indicates, we will always stop at
these breakpoints. Later on you' [l see how to specify a condition.

Aswe will see, when the cont i nue command is executed, the execution of the program stops at one of
these breakpoints, either on line 86 or 95 of the /usr/Ii b/ perl5/5. 00503/ Synbol . pm file,
whichever is reached first. The displayed code lines are the first rows of the two subroutines from
Synbol . pm Breakpoints may only be applied to lines of run-time executable code, you cannot put
breakpoints on empty lines or comments for example.

In our example the Li st command shows which lines the breakpoints were set on, but we cannot tell
which breakpoint belongs to which subroutine. There are two ways to find this out. One is to run the
cont i nue command and when it stops, execute the Tr ace command we saw before:

DB<3> ¢
Synbol : : gensyn{(/usr/li b/ perl5/5. 00503/ Synbol . pm 86):
86: ny $nane = "GEN' . $genseq++;
DB<3> T
$ = Synbol ::gensym() called fromfile “test.pl’ line 14
= My::World::do_work(’'now) called fromfile ‘test.pl’ line 6

So we seethat it was Synbol : : gensym The other way isto ask for alisting of arange of lines from the
code. For example, let's check which subroutine line 86 is a part of. We use the | i st (lowercase!)
command (I), which displays parts of the code. The | i st command accepts various arguments, the one
that we want to use here is arange of lines. Since the breakpoint is at line 86, let’s print a few lines above
and below that line:

DB<3> | 85-87

85 sub gensym () {
86==>b ny $nane = "GEN' . $genseq++;
87: nmy $ref = *{$genpkg . $nane};

Now we know it's the gensymsub and we aso see the breakpoint displayed with the help of the ==>b
markup. We could also use the name of the sub to display its code:

29 Jan 2004 39

1.7.7 Introduction to the Perl Debugger

DB<4> | Synbol :: gensym

85 sub gensym () {

86==>b nmy $nane = "GEN' . $genseq++
87: ny $ref = *{$genpkg . $nane};
88: del et e $$genpkg{$nane};

89: $ref;

90 }

The del et e command (d) is used to remove a breakpoint by specifying the line number of the break-
point. Let’s remove the first one:

DB<5> d 95
The Del et e command (with a capital ‘D’) or D removes al currently installed breakpoints.

Now let’slook again at the trace produced at the breakpoint:

DB<3> ¢
Synbol : : gensyn(/usr/li b/ perl5/5.00503/ Synbol . pm 86):
86: ny $nane = "GEN' . $genseq++;
DB<3> T
$ = Synbol ::gensym() called fromfile “test.pl’” line 14
= My::World::do_work(’'now) called fromfile ‘test.pl’ line 6

As you can see, the stack trace prints the values which are passed into the subroutine. Ah, and perhaps
we've found our first bug, as we can see do_work() was called in void context, so the return value was lost
into thin air. Let’s change the 'for’ loop to check the return value of do_work():

for (1,2) {
ny $stuff = do_work("now');
if ($stuff) {
print "work is done\n";
}

}

In this session we will set a breskpoint at line 7 of t est. pl where we check the return value of
do_work():

% perl -d test.pl

My::World::(test.pl:5): for (1,2) {
DB<1> b 7
DB<2> c

My::World::(test.pl:7): if ($stuff) {
DB<2>

Our program is still small, but already it is getting more difficult to understand the context of just one line
of code. Thewi ndow command (w) will list afew lines of code that surround the current line:

40 29 Jan 2004

Debugging mod_perl 1.7.7 Introduction to the Perl Debugger

DB<2> w
4
5: for (1,2) {
6: nmy $stuff = do_work("now");
7==>b if ($stuff) {
8: print "work is done\n";
9 }
10 }
11
12 sub do_work {
13: ny($var) = @;

The arrow points to the line which is about to be executed and also containsa’ b’ indicating that we have
set a breakpoint at thisline. The breakable lines of codeincludea‘ : ' immediately after the line number.

Please natice that this demonstration was done before perl 5.8 was released, which redefined some of the
letters to have a different meaning. For example w was replaced with v. Please see the per| debug
manpage.

Now, let’stake alook at the value of the $st uf f variable with the trusty old pr i nt command:

DB<2> p $stuff
HASH(0x82b89b4)

That’s not very useful information. Remember, the pri nt command works just like the built-in print()
function does. The debugger’s x command eval uates a given expression and prints the results in a "pretty"
fashion:

DB<3> x $stuff
0 HASH(0x82b89b4)
"sym => GLOB(0x826a944)
-> *Synbol : : GENO
"var’ =>'M::Wrld:: now

There, things seem to be okay, let’s double check by calling do_work() with a different value and print the
results;
DB<4> x do_work(’'later’)
0 HASH(0x82bacc8)
"sym => GLOB(0x818f 16¢)
-> *Synbol : : GEN1
"var’ =>'MW::Wirld::later’

We can see the symbol was incremented from GENO to GEN1 and the variable later was qualified, as
expected.

Now let’s change the test program a little to iterate over a list of arguments held in @r gs and print a
dlightly different message:

package My:: Wrld;

use Synbol ();

29 Jan 2004 41

1.7.7 Introduction to the Perl Debugger

nmy @rgs = gw(now | ater);
for my $arg (@rgs) {
ny $stuff = do_work($arg);
if ($stuff) {

print "do your work $arg\n";

}
}

sub do_work {
ny($var) = @;

return undef unl ess $var;

ny $sym = Synbol :: gensym();
ny $qvar = Synbol ::qualify($var);

ny $retval = {
sym => $sym
‘var' => $qvar,

I

return $retval;

}

There are only two arguments in the list, so stopping to look at each one isn’t too time consuming, but
consider the debugging pace if we had alarge list of 100 or so entries. It is possible to customize break-
points by specifying a condition. Each time a breakpoint is reached, the condition is evaluated, stopping
only if the condition is true. In the session below, the wi ndow command shows breakable lines and we set
abreakpoint at line 7 with the condition $ar g eq ' | at er’ . Aswe continue, the breakpoint is skipped

when $ar g has the value of now but not when it has the value of later:

% perl -d test.pl

My::World::(test.pl:5): ny @rgs = gw(now | ater);

DB<1> w

use Synbol ();

1l
1
\

if ($stuff) {

}

]

}

The ==> symbol shows us the line of code that’s about to be executed.

DB<1> b 7 $arg eq ’'later’
DB<2> ¢
do your work now
My::World::(test.pl:7):
DB<2> n
My::World::(test.pl:8):
DB<2> x $stuff

42

my @rgs = gwnow |l ater);
for my $arg (@rgs) {
ny $stuff = do_work($arg);

print "do your work $arg\n";

ny $stuff = do_work($arg);

if ($stuff) {

29 Jan 2004

Debugging mod_perl 1.7.8 Interactive Perl Debugging under mod_cgi

0 HASH(0x82b90e4)
"sym => GLOB(0x82b9138)
-> *Synbol : : GENL
"var’ => 'My::World::later’
DB<5> ¢
do your work |ater
Debugged programtermnated. Use q to quit or Rto restart,

There are plenty more tricks left to pull from the perldb bag, but you should now understand enough about
the debugger to try them on your own with the perldebug manpage by your side. Quick online help from
inside the debugger can be reached by typing the h command. It will display a list of the most useful
commands and a short explanation of what they do.

1.7.8 |[Interactive Perl Debugging under mod cqgjij

Devel : : pt kdb isavisua Perl debugger that uses perl Tk for the user interface and requires a windows
system like X-Windows or Windows to run.

To debug aplain perl script with ptkdb, invokeit as:
% perl -d:ptkdb nyscript.pl

The Tk application will be loaded. Now you can do most of the debugging you did with the command line
Perl debugger, but using a simple GUI to set/remove breakpoints, browse the code, step through it and
more.

With the help of ptkdb you can debug your CGI scripts running under mod_cgi. Be sure that the web
server's Perl installation includes the Tk package. In order to enable the debugger you should change your
"shebang" line from

#! [usr/local / bin/perl -Tw

to

#! [usr/local/bin/perl -Twd: ptkdb

You can debug scripts remotely if you're using a Unix based server and if the machine where you are
writing the script has an X-server. The X-server can be another Unix workstation, or a Macintosh or
Win32 platform with an appropriate X-Windows package. Y ou must insert the following BEG N subrou-
tine into your script:

BEG N {
$ENV{’ DI SPLAY’ } = "nyHost nane: 0. 0" ;
}

You can use either the IP (123.123.123.123:0.0) or the DNS convention (myhost.com:0.0). Y ou must be
sure that your web server has permission to open windows on your X-server (see the xhost manpage for
more info).

29 Jan 2004 43

1.7.9 Non-Interactive Perl Debugging under mod_perl

Access the web page with the browser and Submit the script as normal. The ptkdb window should appear
on the monitor if you have correctly set the $SENV{'DISPLAY’} variable. At this point you can start
debugging your script. Be aware that the browser may timeout waiting for the script to run.

To expedite debugging you may want to set your breakpoints in advance with a .ptkdbrc file and use the
$DB::no_stop_at_start variable. NOTE: for debugging web scripts you may have to have the
.ptkdbrc file installed in the server account’s home directory (~www) or whatever username the webserver
isrunning under. Also try installing a .ptkdbrc file in the same directory as the target script.

META: insert snapshots of ptkdb screen

ptkdbo is not pat of the standard perl distribution; it is available from CPAN:
|http://www.perl.com/CPAN/authors/id/A/AE/AEPA GE/|

1.7.9 [Non-I nteractive Perl Debugging under mod per||

To debug scripts running under mod_perl either use|Apache::DB (interactive Perl debugging)| or an older
non-interactive method as described below.

The NonStop debugger option enables you to get some decent debugging information when running
under mod_perl. For example, before starting the server:

% setenv PERL50PT -d
% setenv PERLDB_OPTS "NonStop=1 Linelnfo=db.out AutoTrace=1 frame=2"

Now watch db.out for line:filename info. This is most useful for tracking those core dumps that normally
leave us guessing, even with a stack trace from gdb. db.out will show you what Perl code triggered the
core dump. 'man perldebug’ for more PERLDB_OPTSNote that Perl will ignore PERL5OPTIf Perl -
TaintCheck isOn.

1.7.10 |Interactive mod perl Debugging

Now we'll turn to looking at how the interactive debugger is used in a mod_perl environment. The
Apache::DB module available from CPAN provides a wrapper around perldb for debugging Perl
code running under mod_perl.

The server must be run in non-forking mode to use the interactive debugger, this mode is turned on by
passing the -X flag to the httpd executable. It is convenient to use an IfDe fine section around the
Apache::DB configuration, the example below does this using the name PERLDB. With this setup,
debugging is only turned on when starting the server with the httpd -D PERLDBcommand.

This section should be at the top of the Perl configuration section of the configuration file, before any
other Perl code is pulled in, so that debugging symbols will be inserted into the syntax tree, triggered by
the call to Apache::DB->init . The Apache::DB::handler can be configured using any of the
Perl*Handler directives, in this case you use a Perl Fix upHandler so handlers in the response
phase will bring up the debugger prompt:

44 29 Jan 2004

http://www.perl.com/CPAN/authors/id/A/AE/AEPAGE/

Debugging mod_perl 1.7.10 Interactive mod_perl Debugging

<| f Defi ne PERLDB>

<Per| >
use Apache:: DB ();
Apache: : DB->ini t;
</ Perl| >

<Location />
Per | Fi xupHandl er Apache:: DB
</ Locati on>

</|fDefine>

Since we have used / as the argument to the Locat i on directive, the debugger will be invoked for any
kind of request (even for static documents and images) but of course it will immediately quit unless there
is some Perl module registered to handle these requests.

In our first example, we will debug the standard Apache: : St at us module, which is configured like
this:

Per | Modul e Apache: : Status
<Location /perl-status>
Per | Handl er Apache: : St at us
Set Handl er perl -script
</ Locat i on>

When the server is started with the debugging flag, a notice will be printed to the console:

% httpd -X -D PERLDB
[notice] Apache::DB initialized in child 950

The debugger prompt will not be available until the first request is made, in our case to
Once we are at the prompt, all the standard debugging commands are available. First we
run window to get some of the context for the code being debugged, then we move to the next statement
after a value has been assigned to $r, and finally we print the request URI. If no breakpoints are set, the
conti nue command will give control back to Apache and the request will finish with the
Apache: : St at us main menu showing in the browser window:

Loadi ng DB routines from perl5db. pl version 1.0402
Emacs support avail abl e.

Enter h or ‘h h’ for help.

Apache: : Status: : handl er(/usr/lib/perl5/site_perl/5.005/i386-1inux/Apache/ Status. pm 55):

55! ny(s$r) = @;
DB<1> w
52 }
53
54 sub handl er {
55==> n(sr) = @;
56: Apache->request ($r); #for Apache::Cd
57: ny $qs = $r->args || "";
58: ny $sub = "status_$qgs";
59: no strict 'refs’;
60

29 Jan 2004 45

http://localhost/perl-status
http://localhost/perl-status

1.7.10 Interactive mod_perl Debugging

61: i f($gs =~ s/~(noh_\w+).*/$1/) {
DB<1> n
Apache: : Status::handler(/usr/lib/perl5/site_perl/5.005/i386-Iinux/Apache/ Status. pm 56):
56: Apache->request ($r); # for Apache::Cd

DB<1> p $r->uri
/ perl -status
DB<2> ¢

All the techniques we saw while debugging plain perl scripts can be applied to this debugging session.

Debugging Apache: : Regi st ry scripts is somewhat different, because the handler routine does quite a
bit of work before it reaches your script. In this example, we make a request for / perl/test. pl,
which consists of this code:

use strict;

my $r = shift;
$r->send_http_header (' text/plain');

print "mod_perl rules";

When arequest is issued, the debugger stops at line 28 of Apache/Registry.pm. We set a breakpoint at line
140, which is the line that actually calls the script wrapper subroutine. The cont i nue command will
bring us to that line, where we can step into the script handler:

Apache: : Regi stry: :handl er(/usr/lib/perl5/site_perl/5.005/i386-1inux/Apache/ Registry. pm 28):

28: ny $r = shift;
DB<1> b 140
DB<2> ¢
Apache: : Regi stry: : handl er(/usr/lib/perl5/site_perl/5.005/i386-1inux/Apache/ Regi stry. pm 140):
140: eval { & $cv}($r, @) } if $r->seqno;
DB<2> s
Apache: : ROOT: : perl ::test_2epl::handl er((eval 87):3):
3: ny $r = shift;

Notice the funny package name, that’s generated from the URI of the request for namespace protection.
The filename is not displayed, since the code was compiled via eval(), but the pri nt command can be
used to show you $r - >f i | enane:

DB<2> n
Apache: : ROOT: : perl::test_2epl::handler((eval 87):4):
4: $r->send_http_header(’text/plain’);

DB<2> p $r->fil ename
/ home/ htt pd/ perl/test. pl

The line number might seem off too, but the window command will give you a better ideawhere you are:

46 29 Jan 2004

Debugging mod_perl 1.7.11 ptkdb and Interactive mod_perl Debugging

DB<4> w
1: package Apache:: ROOT: : perl::test_2epl; use Apache gw(exit);
sub handler { wuse strict;
2
3: my $r = shift;
4==> $r->send_http_header (' text/plain');
5
6: print "nmod_perl rul es";
7
8 }
9 ;

The code from the test.pl file is between lines 2 and 7, the rest is the Apache: : Regi stry magic to
cache your code inside a handler subroutine.

It will always take some practice and patience when putting together debugging strategies that make effec-
tive use of the interactive debugger for various situations. Once you have a good strategy, bug sguashing
can actually be quite abit of fun!

1.7.11 |ptkdb and I nteractive mod_per| Debugging

Asyou saw earlier you can use the pt kdb visual debugger to debug CGI scripts running under mod_cgi.
But it won't work for mod_perl using the same configuration as used in mod_cgi. We have to tweak the
Apache/DB.pm module to use Devel/ptkdb.pm instead of Apache/per15db.pl.

Open the filein your favorite editor and replace:
requi re ' Apache/ perl 5db. pl’;

with:
require ' Devel / pt kdb. pmi ;

Now when you use the interactive mod_perl debugger configuration from the previous section and issue a
request, the ptkdb visual debugger will be loaded.

If you are debugging Apache: : Regi st ry scripts, as in the terminal debugging mode example, go to
line 140 (or to whatever line the eval { &{$cv}($r, @) } if $r->seqno; statement is
located) and press the step in button to start the debug of the script itself.

Note that you can use Apache with pt kdb in plain multi-server mode, you don't have to start ht t pd
with the - X option.

META: One caveat:

When the request is completed, pt kdb hangs. Does anyone know what code should be registered for it to
exit on completion? To replace the original Apache: : DB cleanup code, as:

29 Jan 2004 47

1.7.12 Debugging when Server Crashes on Startup before Writing to Log File.

if (ref $r) {
$SI (I NT} = \ &DB: : cat ch;
$r->regi ster_cl eanup(sub {
$SI G{INT} = \ &DB: : ApacheSI G NT();
1)
}

Any Perl/Tk guru to assist???

1.7.12 [Debugging when Server Crashes on Startup before Writing tg

If your server crashes on startup, you need to start it under gdb and ask it to generate a stack trace.

I'll emulate a faulty server by starting a startup file with the dump() command:

startup. pl

and then requiring this file from the httpd.conf:

Per| Requi re /path/to/startup.pl

Make sure no server is running on port 80 or use an aternate config with an alternate port if using a
production server.

% gdb /path/to/ httpd
(gdb) set args -X

Use:

set args -X -f /path/to/alternate/serverconfig_ifneeded. conf
if the server must be started from an alternative configuration file.
Now run the program:

(gdb) run

Starting program /usr/|ocal/apache/bin/httpd -X

Program recei ved signal SIGABRT, Aborted.
0x400dadel in __kill () from/lib/libc.so.6

At this point the server should die because of the call to dunp() . When that happens we use bt or
wher e to ask for a stack back trace.

48 29 Jan 2004

Debugging mod_perl

(gdb) where

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15

0x400dadel in

0x80d43bc
0x8119544
0x8118990
0x812b2ad
0x80d3a9c
0x807ef 1c
0x807ef 4f
0x807b7ec
0x8092af 7
0x8092f 43
0x8092f d7
0x80933e0
0x8093ca2
0x809db63

0x400d41eb in

n

5D 3 3 03 035 353 53 3 5 05 5

n

1.7.12 Debugging when Server Crashes on Startup before Writing to Log File.

_kill () from/lib/libc.so.6
Perl _my_unexec ()
Per| _pp_goto ()

Per| _pp_dunp ()
Per| _runops_standard ()

perl _eval _sv ()

perl _do_file ()

perl _l| oad_startup_script ()
perl_cnd_require ()

ap_cl ear_nodul e_list ()
ap_handl e_conmand ()

ap_srm comrand_| oop ()
ap_process_resource_config ()
ap_read_config ()

main ()

__libc_start_main (nmai n=0x809d8dc <mai n>, argc=2,

ar gv=0xbf f f f ab4, init=0x80606f8 <_init>, fini=0x812b38c < fini>
rt1d_fini =0x4000a610 <_dl _fini >, stack_end=0xbffffaac)
at ../sysdeps/generic/libc-start.c:90

If you do not know what this trace means, you could send it to the mod_perl mailing list to ask for help.
Make sure to include the version numbers of Apache, mod_perl and Perl, and use a subject line that says
something about the problem rather than "help’.

In our case we already know that the server is supposed to die when compiling the startup file and we can
clearly see that from the trace. We always read it from the bottom upward:

Wearein config file:

#13 0x8093ca2 in ap_read_config ()

We do require:

#8 0x807b7ec in perl_cnd_require ()

We load the file and compileit:

#6 0x807eflc in perl_do_file ()
#5 0x80d3a9c in perl_eval _sv ()

dump() gets executed:

#3 0x8118990 in Perl _pp_dunmp ()

dump() cals__kill():

#0 0x400dadel in

29 Jan 2004

_kill () from/lib/libc.so.6

49

1.8 Hanging Processes. Detection and Diagnostics

1.8 [Hanging Processes. Detection and Diagnostics

Sometimes a httpd process might hang in the middle of processing a request, either because there is a bug
in your code (e.g. the code is stuck in a while loop), it gets blocked by some system call or because of a
resource deadlock) or for some other reason. In order to fix the problem we need to learn what circum-
stances the process hangs in (detection), so we can reproduce the problem and after that to discover why
there is problem (diagnostics).

1.8.1 [Hanging because of the OS Problem|

Sometimes you can find a process hanging because of some kind of the system problem. For example if
the processes was doing some disk 10 operation it might get stuck in uninterruptable sleep (' D' disk wait
inps(1) report,” U intop(1)) which indicates that either something is broken in your kernel or that you' re
using NFS. Or and you cannot kill -9 this process.

Another process that cannot be killed with Kkill -9 is a zombie process (' Z' disk wait in ps(1) report,
<def unc>intop(1)), in which case the processis already dead and Apache didn’t wait on it properly.

In the case of disk wait you can actually get the wait channel from ps(1) and look it up in your kernel
symbol table to find out what resource it was waiting on. It might point the way to what component of the
system was misbehaving if the problem occurred frequently.

1.8.2 |An Example of Code that Might Hang a Procesg

Deadlock is the situation where, for example, two processes, say X and Y, need two resources, A and B to
continue. X holds onto A and Y holds onto B. There is no possibility for Y to continue before X releases
A. But X cannot release A beforeit gets'Y.

Look at the following example. Your process has to gain a lock on some resource (e.g. a file) before it
continues. So it makes an attempt, and if that fails it sleep()s for a second and increments a counter:

until (gain_l ock()){
$tries++;
sl eep 1;

}

Because there are many processes competing for this resource, or perhaps because there is a deadlock,
gain_lock() alwaysfails. The processis hung.

Another situation that you may very often encounter is exclusive lock starvation. Generally there are two
lock types in use: SHARED locks, which allow many processes to perform READ operations simultane-
ously, and EXCLUSIVE locks. The latter permits access only by a single process and so makes a safe
WRITE operation possible.

Y ou can lock any kind of resource, although in our examples we will talk about files.

50 29 Jan 2004

Debugging mod_perl 1.8.2 An Example of Code that Might Hang a Process

If there is a READ lock request, it is granted as soon as the file becomes unlocked or immediately if it is
already READ locked. The lock status becomes READ on success.

If there is a WRITE lock reguest, it is granted as soon as the file becomes unlocked. Lock status becomes
WRITE on success.

Normally it is the WRITE lock request which is the most important. If the file is being READ locked, a
process that requests to write will poll until there are no reading or writing process left. However, lots of
processes can successfully read the file, since they do not block each other from doing so. This means that
a process that wants to write to the file (first obtaining an exclusive lock) never gets a chance to squeeze
in. The following diagram represents a possible scenario where everybody can read but no one can write:

[-pl-] [--p1--]

[--p5--] [----p5----]

Let’s look at some real code and see it in action. The following script imports flock() related parameters
from the Fcnt | module, and opens a file that will be locked. It then defines and sets two variables:
$l ock_t ype and $l ock_t ype_ver bose. These are set to LOCK_EX and EX respectively if the first
command line argument (JARGV[0]) is defined and equal to w This indicates
that this process will try to gain a WRITE (exclusive) |ock. Oherw se
the two are set to LOCK_SH and <SHfor aSHARED (read) lock.

Once the variables are set, we enter the infinitewhi | e(1) loop that attempts to lock the file by the mode
set in $l ock_t ype. It report success and the type of lock that was gained, then it sleeps for a random
period between 0 and 9 seconds and unlocks the file. The loop then starts from the beginning.

#! /usr/bin/perl -w
use Fcntl gw(:flock);

$l ock = "/tnp/lock";

open LOCK, ">$lock" or die "Cannot open $lock for witing: $!";
ny $l ock_type = LOCK_SH,

ny $l ock_type_verbose = 'SH ;

if (defined $ARGV[0] and $ARGV[0] eq 'w){

$l ock_type = LOCK_EX;
$l ock_type_verbose = 'EX ;

}

whi | e(1){

flock LOCK, $l ock_type;

start of critical section
print “$$: $l ock_type_verbose\n";
sl eep int(rand(10));

end of critical section
flock LOCK, LOCK_UN,

}
cl ose LOCK;

29 Jan 2004 51

1.8.3 Detecting hanging processes

It's very easy to see WRITE process starvation if you spawn a few of the above scripts simultaneously.
Start the first few as READ processes and then start one WRITE process like this:

% ./lock.pl r &; ./lock.pl r &; ./lock.pl r &; ./lock.pl w&

Y ou see something like:

24233: SH
24232: SH
24232: SH
24233: SH
24232: SH
24233: SH
24231: SH
24231: SH
24231: SH

and not a single EX line... When you kill off the reading processes, then the write process will gain its
lock. Note that as thisis arough example, | used the sleep() function. To simulate areal situation you need
tousetheTi ne: : Hi Res module, which allows you to choose more precise intervalsto sleep.

The interval between lock and unlock is called a Critical Section, which should be kept as short as possi-
ble (in terms of the time taken to execute the code, and not in terms of the number of lines of code). As
you just saw, a single sleep statement can make the critical section long.

To summarize, if you have a script that uses both READ and WRITE locks and the critical section isn't
very short, the writing process might be starved. After a while a browser that initiated this request will
timeout the connection and abort the request, but it's much more likely that user will press the Sop or
Reload button before that happens. Since the process in question is just waiting, there is no way for
Apache to know that the request was aborted. It will hang until the lock is gained. Only when a write to a
client’s broken connection is attempted will Apache terminate the script.

1.8.3 [Detecting hanging processes

It's not so easy to detect hanging processes. There is no way you can tell how long the request is taking to
process by using plain system utilities like ps() and top(). The reason is that each Apache process serves
many requests without quitting. System utilities can tell how long the process has been running since its
creation, but this information is useless in our case, since Apache processes normally run for extended
periods.

However there are afew approaches that can help to detect a hanging process.

If the process hangs and demands lots of resources it’s quite easy to spot it by using the top() utility. You
will see the same process show up in the first few lines of the automatically refreshed report. But often the
hanging process uses few resources, e.g. when waiting for some event to happen.

Another easy case is when some process thrashes the error_log, writing millions of error messages there.
Generally this process uses lots of resources and is also easily spotted by using top().

52 29 Jan 2004

Debugging mod_perl 1.8.4 Determination of the reason

There are other tools that report the status of Apache processes.

e Themod_status module, which isusually accessed from the /server_status location.
e TheApache: : VMoni t or module.

Both tools provide counters of processed requests per Apache process.

You can watch the report for a few minutes, and try to spot any process which has the same number of
processed requests whileits statusis’W’ (waiting). This means that it has hung.

But if you have fifty processes, it can be quite hard to spot such a process. Apache::Watchdog::RunAway
is a hanging processes monitor and terminator that implements this feature and should be used to solve this
kind of problem.

If you've got a real problem, and the processes hang one after the other, the time will come when the
number of hanging processes is equa to the value of MaxCl i ent s. This means that no more processes
will be spawned. As far as the users are concerned your server is down. It is easy to detect this situation,
attempt to resolve it and notify the administrator using a simple crontab watchdog that requests some very
light script periodically. (See Monitoring the Server. A watchdog.)

In the watchdog you set a timeout appropriate for your service, which may be anything from a few
seconds to a few minutes. If the server fails to respond before the timeout expires, the watchdog has
spotted trouble and attempts to restart the server. After arestart an email report is sent to the administrator
saying that there was a problem and whether or not the restart was successful.

If you get such reports constantly something is wrong with your web service and you should revise your
code. Note that it's possible that your server is being overloaded by more requests than it can handle, so
the requests are being queued and not processed for a while, which triggers the watchdog's dlarm. If thisis
a case you may need to add more servers or more memory, or perhaps split your single machine across a
cluster of machines.

1.8.4 |Determination of the reason|

Given the processid (PID), there are three ways to find out where the server is hanging.

1. Deploying the Perl calls tracing mechanism. This will allow to spot the location of the Perl code that
has triggered the problem.

2. Using the system calls tracing utilities, like strace(1) or truss(l1). This approach reveals low level
details about a potential misbehavior of some part of the system.

3. Using an interactive debugger, like gdb(1). When the process is stuck, and you don’t know what it
was doing just before it has got stuck, with gdb you can attach to this process and print its calls stack,
to reveal where the last call was made from. Just like with strace or truss you see the system call trace
and not the Perl calls.

29 Jan 2004 53

1.8.4 Determination of the reason

1.8.4.1 (Using the Perl Tracdg

To see where an httpd is "spinning", try adding this to your script or a startup file:

use Carp ();
$SIG" USR2'} = sub {

Car p: : confess("caught SI GUSR2!");
3

The above code assigns a signal handler for the USR2 signal. This signal has been chosen because it's
least likely to be used by the other parts of the server.

We check the registered signa handlers with help of [Apache:Statud What we see at [http://Tocal-
|host/perl-status?sigis :

USR2 = \&WStart Up::__ANON

My St ar t Up isthe name of the package I’ ve used in mine startup.pl.

After applying this server configuration, let's use this simple code example, where sleep(10000) will
emulate a hanging process:

debug/ per| _trace. pl

$| =1,

print "Content-type:text/plain\r\n\r\n";
print "[$$] Going to sleep\n";

hangi ng_sub();

sub hangi ng_sub {sl eep 10000;}

We execute the above script as|http://localhost/perl/debug/per| trace.pl} we have used $| =1; and printed
the PID with $$ to learn what process ID we want to work with.

No we issue the command line, using the PID we have just saw being printed to the browser’ s window:

%kill -USR2 PID

And watch this showing up at the error_log file:

caught SI GUSR2!
at /home/ httpd/ perl/startup/startup.pl line 32
MyStartUp:: __ANON__("USR2’) called
at /home/ httpd/ perl/debug/perl _trace.pl line 5
Apache: : ROOT: : perl : : debug: : perl _trace_2epl:: hangi ng_sub() called
at /home/ httpd/ perl/debug/perl _trace.pl line 4
Apache: : ROOT: : perl : : debug: : perl _trace_2epl :: handl er (" Apache=SCALAR(0x8309d08) ")
cal l ed
at /usr/lib/perl5/site_perl/5.005/i386-1inux/Apache/ Registry. pm
line 140
eval {...} called
at /usr/lib/perl5/site_perl/5.005/i386-1inux/Apache/ Registry. pm
line 140

54 29 Jan 2004

http://localhost/perl-status?sig
http://localhost/perl-status?sig
http://localhost/perl/debug/perl_trace.pl

Debugging mod_perl 1.8.4 Determination of the reason

Apache: : Regi stry: : handl er (" Apache=SCALAR(0x8309d08)’') call ed

at Perl Handl er subroutine ‘Apache:: Registry::handler’ line 0
eval {...} called
at Perl Handl er subroutine ‘Apache:: Registry::handler’ line 0

We can clearly see that the process "hangs' in the code executed a line 5 of the
/home/httpd/perl/debug/per!_trace.pl script, and it was called by the hanging_sub() routine defined at line
4.

1.8.4.2 [Using the System Calls Tracqg

Depending on the operating system you should have one of thet r uss(1) orstrace(1) utilitiesavail-
able. In the following exampleswe will usestrace(1) .

There are two ways to get the trace of the process with strace(1) (similar to gdb(1)). The first oneisto tell
strace(1) to start the process and do the tracing on it:

% strace perl -le 'print "nod_perl rules"’

The second is tell strace(1) to attach to the process that’s aready running. Y ou need to know the PID of
the process.

% strace -p PID
Replace PID with the process number you want to check on.

There are many more useful arguments accepted by strace(1) that you might find useful. For example you
can tell it to trace only specific system calls:

% strace -e trace=open,wite, close, nanosl eep \
perl -le ’"print "nod_perl rules"™’

In this example we have asked strace(1) to show us only the open, write, close, nanosleep which simplifies
the observing of the output generated by strace(1) if you know what you are looking for.

Let’swrite amod_perl script that hangs, and deploy st r ace(1) to find the point it hangs at:

hangne. pl

$| =1;
ny $r = shift;
$r->send_http_header (' text/plain');

print "PID = $$\n";
whi | e(1){
$i ++;

sl eep 1;

}

29 Jan 2004 55

1.8.4 Determination of the reason

The reason this simple code hangs is obvious. It never breaks from the while loop. As you have noticed, it
prints the PID of the current process to the browser. Of course in areal situation you cannot use the same
trick. In the previous section | have presented afew ways to detect the runaway processes and their PIDs.

| save the above code in afile and execute it from the browser. Note that I've made STDOUT unbuffered
with $| =1; so | will immediately see the process ID. Once the script is requested, the script prints the
process PID and obviously hangs. So we pressthe ' St op’ button, but the process continues to hang in
this code. Isn't apache supposed to detect the broken connection and abort the request? Yes and No, you
will understand soon what'’ s really happening.

First let's attach to the process and see what it's doing. | use the PID the script printed to the browser,
which is 10045 in this case:

% strace -p 10045
[...truncated identical output...]

SYS 175(0, Oxbffff4lc, Oxbffff39c, 0x8, 0) = 0
SYS_174(0x11, 0, Oxbffffla0, 0x8, Ox1l) = O

SYS_175(0x2, Oxbffff39c, 0, 0x8, 0x2) =0

nanosl eep(Oxbf fff 308, Oxbffff308, 0x401a6lb4, Oxbffff308, Oxbffff4lc) =0
time([940973834]) = 940973834

time([940973834]) = 940973834

[...truncated the identical output...]

It isn't what we expected to see, is it? These are some system calls we don't see in our little example.
What we actually seeis how Perl trandates our code into system calls. Since we know that our code hangs
in this snippet:

whil e(1){
$i ++;
sl eep 1;

}

We "easily" figure out that the first three system calls implement the $i ++, while the other three are
responsible for thesl eep 1 cal.

Generaly the situation is the reverse of our example. Y ou detect the hanging process, you attach to it and
watch the trace of callsit does (or the last few commands if the process is hanging waiting for something,
e.g. when blocking on afile lock request). From watching the trace you figure out what it's actually doing,
and probably find the corresponding lines in your Perl code. For example let's see how one process
"hangs" while requesting an exclusive lock on afile exclusively locked by another process:

excl _| ock. pl
use Fcntl gw(: flock);
use Synbol ;

if (fork()) {
ny $fh = gensym
open $fh, ">/tnp/lock" or die "cannot open /tnp/lock $!"
print "$%: |I'’mgoing to obtain the I ock\n"
flock $fh, LOCK EX;

56 29 Jan 2004

Debugging mod_perl 1.8.4 Determination of the reason

print “$$: 1’'ve got the |ock\n";
sl eep 20;
cl ose $fh;

} else {
ny $fh = gensym
open $fh, ">/tnp/lock" or die “"cannot open /tnp/lock $!";
print "$$: I'’mgoing to obtain the Iock\n";
flock $fh, LOCK EX;
print “$$: 1’'ve got the |ock\n";
sl eep 20;
cl ose $fh;

}

The code is simple. The process executing the code forks a second process, and both do the same thing:
generate a unique symbol to be used as a file handler, open the lock file for writing using the generated
symbol, lock the file in exclusive mode, sleep for 20 seconds (pretending to do some lengthy operation)
and close the lock file, which aso unlocks thefile.

The gensym function is imported from the Synbol module. The Fcnt | module provides us with a
symbolic constant LOCK_EX. This isimported viathe: f | ock tag, which imports this and other flock()
constants.

The code used by both processes is identical, therefore we cannot predict which one will get its hands on
the lock file and succeed in locking it first, so we add print() statements to find the PID of the process
blocking (waiting to get the lock) on alock request.

When the above code executed from the command line, we see that one of the processes gets the lock:
% . / excl _I ock. pl
3038: I'"mgoing to obtain the |ock

3038: 1’ve got the |ock
3037: I'’mgoing to obtain the | ock

Here we see that process 3037 is blocking, so we attach to it:
% strace -p 3037

about to attach c10
flock(3, LOCK EX

It's clear from the above trace, that the process waits for an exclusive lock. (Note, that the missing closing
parenthesesis not atypol!)

As you become familiar with watching the traces of different processes, you will understand what is
happening more easily.

29 Jan 2004 57

1.8.4 Determination of the reason

1.8.4.3 [Using the I nter active Debugger|

Another approach to see a trace of the running code is to use a debugger such as gdb (the GNU debug-
ger). It's supposed to work on any platform which supports the GNU development tools. Its purpose is to
allow you to see what is going on inside a program while it executes, or what it was doing at the moment it
crashed.

To trace the execution of a process, gdb needsto know the processid (PID) and the path to the binary that
the process is executing. For Perl code it’s /usr/bin/perl (or whatever is the path to your Perl), for httpd
processes it will be the path to your httpd executable.

Here are afew examples using gdb.

Let’s go back to our last locking example, execute it as before and attach to the process that didn’t get the
lock:

% gdb /usr/bin/perl 3037

After starting the debugger we execute the wher e command to see the trace:

(gdb) where

#0 0x40131781 in __flock ()

#1 0x80a5421 in Perl _pp_flock ()

#2 0x80b148d in Perl _runops_standard ()

#3 0x80592b8 in perl _run ()

#4 0x805782f in main ()

#5 0x400a6c¢ch3 in __libc_start_main (mai n=0x80577c0 <nmi n>, argc=2
argv=0xbf fff7f 4, init=0x8056af4 <_init> fini=0x80bl4fc < fini>
rtld_fini =0x4000a350 < _dl _fini> stack_end=0xbffff7ec)
at ../sysdeps/generic/libc-start.c:78

That’s not what we expected to see and now it's a different trace. #0 tells us the most recent call that was
executed, which is a C language flock() implementation. But the previous call (#1) isn't print(), as we
would expect, but a higher level of Perl’sinternal flock(). If we follow the trace of calls what we actually
seeis an Opcodes tree, which can be better presented as:

__libc_start_nmain
main ()
perl _run ()
Per| _runops_standard ()
Perl _pp_flock ()
__flock ()

So | would say that it's less useful than st r ace, since if there are several flock()s it's almost impossible
to know which of them was called. This problem is solved by st r ace, which shows the sequence of the
system calls executed. Using this sequence we can locate the corresponding lines in the code.

(META: the above is wrong - you can ask to display the previous command executed by the program (not
gdb)! What isit?)

58 29 Jan 2004

Debugging mod_perl 1.8.4 Determination of the reason

When you attach to a running process with debugger, the program stops executing and control of the
program is passed to the debugger. You can continue the normal program run with the conti nue
command or execute it step by step with the next and st ep commands which you type at the gdb
prompt. (next stepsover any function callsin theline, while st ep steps into them).

C/C++ debuggers are a very large topic and beyond the scope of this document, but the gdb man page is
quite good and you can try i nf o gdb as well. You might also want to check the ddd (Data Display
Debugger) which provides a visual interface to gdb and other debuggers. It even knows how to debug
Perl programs!

For completeness, let’ s see the gdb trace of the httpd process that’s still hanging in thewhi | e('1) loop of
the first examplein this section:

% gdb /usr/ | ocal / apache/ bi n/ httpd 1005

(gdb) where

#0 0x4014a861 in __libc_nanosleep ()

#1 0x4014a7ed in __sleep (seconds=1) at ../sysdeps/unix/sysv/linux/sleep.c:78

#2 0x8122c01 in Perl _pp_sleep ()

#3 0x812b25d Per| _runops_standard ()

#4 0x80d3721 perl _call_sv ()

#5 0x807a46b perl _call _handler ()

#6 0x8079e35 perl _run_stacked_handlers ()

#7 0x8078d6d perl _handl er ()

#8 0x8091e43 ap_i nvoke_handl er ()

#9 0x80a5109 ap_sone_aut h_required ()

#10 0x80a516¢c ap_process_request ()

#11 0x809cb2e ap_child_termnate ()

#12 0x809cd6¢c ap_child_ternmnate ()

#13 0x809cel9 ap_child_ternmnate ()

#14 0x809d446 ap_child_ternminate ()

#15 0x809dbc3 in main ()

#16 0x400d3chb3 in __libc_start_main (mai n=0x809d88c <nmi n>, argc=1
ar gv=0xbf fff7e4, init=0x80606f8 <_init>, fini=0x812b33c <_fini>
rtld_fini =0x4000a350 <_dl _fini >, stack_end=0xbffff7dc)
at ../sysdeps/generic/libc-start.c:78

0 O3 O3 03053 3 3 3 53 355

As before we can see a complete trace of the last executed call.

As you have noticed, | still haven't explained why the process hanging in the whi | e(1) loop isn't
aborted by Apache. The next section coversthis.

To easily detect the hanging location, you can go through these steps while running gdb:
(gdb) where

(gdb) source ~/.gdbinit
(gdb) curinfo

(adjust the path to .gdbinit if needed.)

29 Jan 2004 59

1.9 Debugging Hanging processes (continued)

After loading the special macros file (.gdbinit) you can use the curinfo gdb macro to figure out the file and
line number the code stuck in.

1.9 |Debugging Hanging pr ocesses (continued)

META: incomplete

mod_perl comes with a number of useful of gdb macros to ease the debug process. You will find the file
with macros in the mod_perl source distribution in the .gdbinit file (mod_perl-x.xx/.gdbinit). Y ou might
want to modify the macro definitions.

In order to use this you need to compile mod_perl with PERL_ DEBUG=1.
To debug the server, start it:
% httpd -X
Issue areguest to the offending script that hangs. Find the PID number of the process that hangs.
Go to the server root:
% cd /usr/local /apache

Now attach to it with gdb (replace the PI D with the actual processid) and load the macros from .gdbinit:

% gdb /path/to/httpd PID
% source /usr/src/mod_perl -x. xx/.gdbinit

Now you can start the server (httpd below is a gdb macro):
(gdb) httpd
Now runthecur i nf o macro:
(gdb) curinfo
It should tell you the line/filename of the offending Perl code.
Add thisto .gdbinit:
define | ongness
set $sv = perl_eval _pv("Carp::longmess()", 1)

printf "9s\n", ((XPV*) ($sv)->sv_any)->Xpv_pv
end

and when you rel oad the macros, run:

(gdb) I ongness

60 29 Jan 2004

Debugging mod_perl 1.10 PERL_DEBUG=1 Build Option

to produce a Perl stacktrace.

1.9.1 [Debugging core Dumping Codg

$ perl -e dunp
Abort (cor edunp)

META: should | move the Apache: : St at | NC here? (I think not, since it relates to other topics like
reloading config files, but you should mention it here with a pointer to it)

1.10 [PERL DEBUG=1 Build Option

Building mod_perl with PERL_ DEBUG=1:

perl Makefile.PL PERL_DEBUG=1
will:

1. Add‘-g’ to EXTRA_CFLAGS

2. Turnon PERL_TRACE

3. Set PERL_DESTRUCT_LEVEL=2

4. Link against | i bper | d if -e $Config{ archlibexp}/CORE/libperld$Config{lib_ext}

1.11 |Apache::Debug

(META: to be written)

use Apache: : Debug ();
Apache: : Debug: : dunp($r, SERVER ERROR, "Uh Ch!");

This module sends what may be helpful debugging information to the client rather than to error_log.

Also, you could try using alarger emergency pool, try thisinstead of Apache::Debug:

$"M="a x (1<<18); #256k buffer
use Carp ();

$SIG _D E_} = \&Carp::confess;
eval { Carp::confess("init") };

1.12 |Debug Tracing

To enable mod_perl debug tracing, configure mod_perl with the PERL_TRACE option:

29 Jan 2004 61

1.13 gdb says there are no debugging symbols

perl Makefile.PL PERL_TRACE=1

The trace levels can then be enabled viathe MOD_PERL _TRACE environment variable which can contain
any combination of:

e C

Trace directive handling during Apache (non-mod_perl) configuration directive handling. (Startup.)
e d

Trace directive handling during mod_per!| directive processing during configuration read. (Startup.)
® s

Trace processing of <Perl> sections. (Startup.)
® h

Trace Perl handler callbacks. (RunTime.)
® g

Trace global variable handling, interpreter construction, END blocks, etc. (RunTime.)
e all

all of the options listed above. (Startup + RunTime.)

One way of setting this variable is by adding this directive to httpd.conf:

Per | Set Env. MOD_PERL_TRACE al |

For example if you want to see a trace of the Per | Requi r e and Per | Modul e directives as they are
executed, use:

Per| Set Env MOD_PERL_TRACE d

Of course you can use the command line environment setting:

% set env MOD_PERL_TRACE al |
% httpd -X

1.13 |gdb saysthere are no debugging symbols

During make install Apache strips al the debugging symbols. To prevent this you should use
--without-execstrip . / conf i gur e option. So if you configure Apache viamod_perl, you should do:

62 29 Jan 2004

Debugging mod_perl 1.14 Debugging Signal Handlers ($SIG{ FOO})

pani c% per| Makefile.PL USE_APACI =1 \
APACI _ARGS=' - -wi t hout - execstrip’ [other options]

Alternatively you can copy the unstripped binary manually. For example we did:
pani c# cp apache_1.3.17/src/httpd /hone/ httpd/ httpd_perl/bin/httpd_perl

As you know you need an unstripped executable to be able to debug it. While you can compile mod_perl
with - g (or PERL_DEBUG=1), the Apachei nst al | stripsthe symbols.

Makefile.tmpl containsaline:

| FLAGS_ PROGRAM = -m 755 -s

Removing the -s does the trick (If you cannot find it in Makefiletmpl do it directly in Makefile). Alterna-
tively you rerun mak e and copy the unstripped httpd binary away.

1.14 Debugging Signal Handler s ($SI G{FOO})

The current Perl implementation does not restore the original Apache C handler when you use the | ocall
$SI G FOO clause. While the save/restore of $SI G{ ALRMy was fixed in mod_perl 1.19 01 (CVS
version), other signals are not yet fixed. The real fix should probably be in Perl itself.

Until recently | ocal $SI G{ ALRM restored the SI GALRMhandler to Perl’s handler, not the handler it
was in the first place (Apache’'sal r m_handl er ()). If you build mod_perl with PERL_TRACE=1 and
set the MOD_PERL_ TRACE environment variable to g, you will seethisinthe error_log file:

nmod_perl: saving S| GALRM (14) handl er 0x80b1ffO0
nmod_perl: restoring SIGALRM (14) handler from Ox0 to: 0x80blffO

If nobody has touched $SI G{ ALRM} , 0x0 will be the same address as the others.

If you work with signal handlers you should take alook at the Sys: : Si gnal module, which solves the
problem:

Sys: : Si gnal - Setsigna handlers with restoration of the existing C sighandler. Get it from CPAN.

The usage is simple. If the original code was:

If a tineout happens and C<SIGALRM> is thrown, the alarm() will be
reset, otherwise C<alarm 0> is reached and tinmer is reset as well.
eval {
|l ocal $SIGALRM = sub { die "timeout\n" };
al arm $ti nmeout ;
. db stuff ...
al arm O;

I
die $@if $@

29 Jan 2004 63

1.15 Code Profiling

Now you would write:

use Sys::Signal ();
eval {
ny $h = Sys:: Signal ->set (ALRM => sub { die "tineout\n" });
al arm $ti meout ;
. do sonething that may tinmeout ...
al arm 0;

I
die $@if $@

This should be fixed in Perl 5.6.1, so if you use this version of Perl, chances are that you don’t need to use
Sys:: Signal .

mod_perl tries to dea only with those signals that cause conflict with Apache’s. Currently this is only
SI GALRM |If there is another one that gives you trouble, you can add it to the list in perl_config.c after
"ALRM", before NULL.

static char *sigsave[] = { "ALRM', NULL };

1.15 |Code Profiling

(META: duplication??? |’ ve started to write about profiling somewhere in thisfile)

It is possible to profile code run under mod_perl with the Devel : : DPr of module available on CPAN.
However, you must have apache version 1.3b3 or higher and the Per | Chi | dExi t Handl er enabled.
When the server is started, Devel : : DPr of installs an END block (to write the t non. out file) which
will be run when the server is shutdown. Here's how to start and stop a server with the profiler enabled:

% set env PERL5OPT -d: DPr of
% httpd -X -d ‘pwd" &
make sone requests to the server here ...
%kill ‘cat |ogs/httpd.pid
% unset env PERL5OPT
% dpr of pp

See also: Apache: : DPr of

1.16 Devd:: Peek

Devel::Peek - A data debugging tool for the XS programmer

Let's see an example of Perl alocating a buffer only once, regardiess of my() scoping, although it will
realloc() if the sizeis bigger than SvLEN:

use Devel :: Peek;
for (1..3) {

foo();
}

64 29 Jan 2004

Debugging mod_perl 1.17 How can || find out if amod_perl code has a memory leak

sub foo {
nmy $sv;
Dunp $sv;
$sv = 'x’ x 100_000;
$sv = "";
}
The output:

SV = NULL(0x0) at 0x8138008
REFCNT = 1
FLAGS = (PADBUSY, PADMY)
SV = PV(0x80e5794) at 0x8138008
REFCNT = 1
FLAGS = (PADBUSY, PADMY)
PV = 0x815f808 ""\0
CUR=0
LEN = 100001
SV = PV(0x80e5794) at 0x8138008
REFCNT = 1
FLAGS = (PADBUSY, PADMY)
PV = 0x815f808 ""\0
CUR=0

We can see that on the second and subsequent calls $sv aready has previously allocated memory.

So, if you can afford the memory, alarger buffer means fewer br k() syscalls. If you watch that example
with st race you will only see cals to br k() the first time through the loop. So this is a case where
your module might want to pre-allocate the buffer like this:

package Your:: Proxy;

ny $buffer =’ ' x 100_000;
$buffer = "

Now only the parent has to brk() at server startup, each child already will already have an allocated buffer.
Just reset to """ when you are done.

Note: Previoudy alocating a scalar in this way saves reallocation in v5.005 but may not do so in other
versions.

1.17 How can | find out if amod perl code hasa memory
leak

The Apache: : Leak module (derived from Devel : : Leak) should help you detecting the leakages in
your code. For example:

29 Jan 2004 65

1.17 How can | find out if amod_perl code has a memory leak

| eakt est. pl

use Apache: : Leak;
ny $gl obal = "FooAAA";

| eak_test {
$$gl obal = 1;
++$gl obal ;

b

The argument to | eak _t est () is an anonymous sub, so you can just throw it any code you suspect
might be leaking. Beware, it will run the code twice! The first time in, new SVs are created, but does not
mean you are leaking. The second pass will give better evidence. Y ou do not need to be inside mod_perl
to useit. From the command line, the above script outputs:

ENTER: 1482 SVs

new c28b8 : new c2918 :
LEAVE: 1484 SVs

ENTER: 1484 SVs

new db690 : new db6a8 :
LEAVE: 1486 SVs

111 2 Svs | eaked !'!'!

Build a debuggable Perl to see dumps of the SVs. The simple way to have both a normal Perl and debug-
gable Perl isto follow hintsin the SUPPORT doc for building | i bper | d. a. When that is built, copy the
per | from that directory to your Perl bin directory, but nameit dper| .

Our example's leak explanation: $$gl obal = 1; : new global variable FOOAAA created with value of
1, this will not be destroyed until this module is destroyed. Under mod_perl the module doesn’'t get
destroyed until the process quits.

Apache: : Leak is not very user-friendly, have alook at B: : LexI nf o. It is possible to see something
that might appear to be aleak, but is actually just a Perl optimization. e.g. consider this code:

sub foo {
ny $string = shift;
}

foo("a string");

B: : LexI nf o will show you that Perl does not release the value from $string, unless you undef() it. This
is because Perl anticipates the memory will be needed for another string, the next time the subroutine is
entered. You'll see similar behaviour for @r r ay length, %hash keys, and scratch areas of the pad-list
for OPssuchasj oi n(),".’, ec.

Apache: : St at us includesa St at usLex| nf o option which can show you the internals of your code.

66 29 Jan 2004

Debugging mod_perl 1.18 Debugging your code in Single Server Mode

1.18 |Debugging your codein Single Server M ode

Running in httpd -X mode is good only for testing during the development phase.

You want to test that your application correctly handles global variables (if you have any - the less you
have of them the better of course - but sometimes you just can’t do without them). It's hard to test with
multiple servers serving your cgi since each child has a different value for its global variables. Imagine
that you have ar andom() sub that returns arandom number and you have the following script.

use vars gw($nun;
$num | | = random() ;
print ++$num

This script initializes the variable $numwith arandom value, then increments it on each request and prints
it out. Running this script in a multiple server environments will result in something like 1, 9, 4, 19 (a
different number each time you hit the browser’s reload button) since each time your script will be served
by a different child. (On some operating systems, e.g. AlX, the parent httpd process will assign al of the
regquests to the same child process if al of the children are idle). But if you run in htt pd - X single
server mode you will get 2, 3, 4, 5... (assuming that r andonq() returned 1 at thefirst call)

But do not get too obsessive with this mode, since working in single server mode sometimes hides prob-
lems that show up when you switch to normal (multi-server) mode.

Consider an application that allows you to change the configuration at run time. Let's say the script
produces a form to change the background color of the page. It's not good design, but for the sake of
demonstrating the potential problem we will assume that our script doesn’t write the changed background
color to the disk, but ssimply changes it in memory, like this:

use vars gw $bgcol or);

assign default value at first invocation
$bgcolor ||= "white"

nodify the color if requested to
$bgcol or = $g->paran(’ bgcolor’) || $bgcol or

So you have typed in anew color, and in response, your script prints back the html with a new color - you
think that's it! It was so simple. If you keep running in single server mode you will never notice that you
have a problem...

If you run the same code in normal server mode, after you submit the color change you will get the result
as expected, but when you call the same URL again (not reload!) the chances are that you will get back the
original default color (white in our case), since only the child which processed the color change request
knows about the global variable change. Just remember that children can’'t share information, other than
that which they inherited from their parent on their birth. Of course you could use a hidden variable for the
color to be remembered, or storeit on the server side (database, shared memory, etc).

If you use the Netscape client while your server is running in single-process mode, if the output returns
HTML with <I M>> tags, then the loading of the images will take a long time, since Netscape's
KeepAl i ve feature gets in the way. Netscape tries to open multiple connections and keep them open.
Because there is only one server process listening, each connection has to time-out before the next

29 Jan 2004 67

1.19 Apache::DumpHeaders - Watch HTTP Transaction Via Headers

succeeds. Turn off KeepAl i ve in httpd.conf to avoid this effect. Alternatively (assuming you use the
image size parameters, so that Netscape will be able to render the rest of the page) you can press STOP
after afew seconds.

In addition you should be aware that when running with - X you will not see the status messages that the
parent server normally writes to the error_log. ("server started”, "server stopped”, etc.). Sincehtt pd - X
causes the server to handle all requests itself, without forking any children, there is no controlling parent to
write the status messages.

1.19 |Apache::DumpHeaders- Watch HTTP Transaction Via

Header S

This module is used to watch an HTTP transaction, looking at client and servers headers.

With Apache: : ProxyPassThr u configured, you are able to watch your browser talk to any server
besides the one with this module living inside.

Apache: : DunpHeader s has the ability to filter on IP addresses, has an interface for other modules to
decideif the headers should be dumped or not and a function to only dump n% of the transactions.

For more information read the modul€’ s manpage.

Download the module from CPAN.

1.20 |Apache::Debuglnfo - Log Various Bits Of Per-Request
Data

Apache: : Debugl nf o offers the ability to monitor various bits of per-request data. Its functionality is
similar to]Apache::DumpHeaderg while offering several additional features, including the ability to:

- segparate inbound from outbound HTTP headers

- view the contents of $r->notes and $r->pnotes

- view any of these at the various pointsin therequest cycle
- add output for any request phase from a single entry point
- useasa PerllnitHandler or with direct method calls

- usepartial I P addressesfor filtering by IP

- offer a subclassable interface

See the modul€’ s manpage for more details.

68 29 Jan 2004

Debugging mod_perl 1.21 Maintainers

1.21 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.22 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 69

Debugging mod_perl Table of Contents:

Table of Contents:

1] Debuqqi ng mod | perl | 1
1.1 [Description 2
1.2 IVVarnrnq and Errors Explarneol 2

1.2.1 |Curing The "Internal Server Error"l 2
1.2.2 |Helping error log to Help UY . 6
1.2.3 |[The Importance of Warningq . 6
1.2.3.1 [diagnosticspragmdg . . 8

1.3 |Handling the "User pressed Stop button casel 8
1.3.1 |Detecting Aborted Connectiong 9
1.3.2 [The Importance of Cleanup Codd . 11
1.3.2.1 [Critical Section . 12
1.3.2.2 [Safe Resource Locking and Cleanup Codel 15

1.4 |Handling Server Timeout Cases and Working with $SIG{ ALRM}l 19
1.5 |Looking inside the server| 20
1.5.1 |Apache:: Status -- Embedded Interpreter Status I nformatl or1 20
1.5.1.1 [Minimal Configuration| 20
15.1.2 IExtended Configuration| . 21
1.5.1.3 [Usagé 22
15.1.4 |Compr|ed Reqrary Scn pts sectron seemsto be emptyl 23

1.5.2 [mod_status : : 23
153 IApache VM onitor -- Vrsual System and Apar:he Server Monrtoﬂ . 24
1.6 [Sometimes My Script Works, Sometimes It Does Nof| 24
1.7 [Code Debug 24
1.7.1 |Locat| nq and correcti nq S/ntax Errorsi 25
1.7.2 |Using Apache::FakeRequest to Debug Apache PerI Modulesl 26
1.7.3 |Finding the Line Which Triggered the Error or Warning . 27
1.7.4 [Using print() for Debugging . 28
1.7.5 |Using print() and Data::Dumper for Debuqqr nd 30
1.7.6 |The Importance of a Good Concise Coding Styld 32
1.7.7 |Introduction to the Perl Debugger] . . 34
1.7.8 |Interactive Perl Debugging under mod cgif . 43
1.7.9 [Non-Interactive Perl Debugging under mod perl| 44
1.7.10 |Interactive mod perl Debugging| . 44
1.7.11 [ptkdb and Interactive mod perl Debuggi nq a7
1.7.12 |Debugging when Server Crashes on Startup before Wr|t| ng to Loq F|Ie| . 48
1.8 |[Hanging Processes: Detection and Diagnostic B0
1.8.1 |Hanging because of the OS Problem| . . - 0
1.8.2 |An Example of Code that Might Hang a Proce&i h
1.8.3 |Detecting hangingprocesse B2
1.8.4 |Determination of thereasonf 53
18.4.1 UsngthePerl Tracg. 554
1.8.4.2 Usngthe System CdllsTraecd. 55
1.8.4.3 [Usng the InteractiveDebuggeyy 58

1.9 |Debugging Hanging processes (continued). 60

29 Jan 2004 i

Table of Contents:

1.9.1 |Debuggi ng core Dqui ng Codg 1
110 PERL DEBUG=1Buldoptiod el
111 [Apache.Debug . . e
112 Debug Tracing . . Y 1
113 [gdb saystherearenodebuggingsymbol 62
1.14 |Debu§§| n§ Signal Handlers §$SI G] FOOE)] e -
1.15 |Code Profilinﬁ .. 64
1.16 [Devel::Peck] . 64
1.17 [How can | find out |f a mod |c_)erl code has amemory |@|§| 65
1.18 Debu§§ § Qour codein Smﬁle Server Mod§ .. - Y4
1.19 |Apache::DumpHeaders - Watch HTTP Transaction V|aHeaderg o8
1.20 [Apache::Debuginfo - Log Various Bits Of Per-RequestDatd 68
1.21 [Maintai ner§ e & ¢ |
122 [Authord e

ii 29 Jan 2004

	1€€Debugging mod_perl
	1.1€€Description
	1.2€€Warning and Errors Explained
	1.2.1€€Curing The "Internal Server Error"
	1.2.2€€Helping error_log to Help Us
	1.2.3€€The Importance of Warnings
	1.2.3.1€€diagnostics pragma

	1.3€€Handling the 'User pressed Stop button' case
	1.3.1€€Detecting Aborted Connections
	1.3.2€€The Importance of Cleanup Code
	1.3.2.1€€Critical Section
	1.3.2.2€€Safe Resource Locking and Cleanup Code

	1.4€€Handling Server Timeout Cases and Working with $SIG{ALRM}
	1.5€€Looking inside the server
	1.5.1€€Apache::Status -- Embedded Interpreter Status Information
	1.5.1.1€€Minimal Configuration
	1.5.1.2€€Extended Configuration
	1.5.1.3€€Usage
	1.5.1.4€€Compiled Registry Scripts section seems to be empty.

	1.5.2€€mod_status
	1.5.3€€Apache::VMonitor -- Visual System and Apache Server Monitor

	1.6€€Sometimes My Script Works, Sometimes It Does Not
	1.7€€Code Debug
	1.7.1€€Locating and correcting Syntax Errors
	1.7.2€€Using Apache::FakeRequest to Debug Apache Perl Modules
	1.7.3€€Finding the Line Which Triggered the Error or Warning
	1.7.4€€Using print†‡ for Debugging
	1.7.5€€Using print†‡ and Data::Dumper for Debugging
	1.7.6€€The Importance of a Good Concise Coding Style
	1.7.7€€Introduction to the Perl Debugger
	1.7.8€€Interactive Perl Debugging under mod_cgi
	1.7.9€€Non-Interactive Perl Debugging under mod_perl
	1.7.10€€Interactive mod_perl Debugging
	1.7.11€€ptkdb and Interactive mod_perl Debugging
	1.7.12€€Debugging when Server Crashes on Startup before Writing to Log File.

	1.8€€Hanging Processes: Detection and Diagnostics
	1.8.1€€Hanging because of the OS Problem
	1.8.2€€An Example of Code that Might Hang a Process
	1.8.3€€Detecting hanging processes
	1.8.4€€Determination of the reason
	1.8.4.1€€Using the Perl Trace
	1.8.4.2€€Using the System Calls Trace
	1.8.4.3€€Using the Interactive Debugger

	1.9€€Debugging Hanging processes †continued‡
	1.9.1€€Debugging core Dumping Code

	1.10€€PERL_DEBUG=1 Build Option
	1.11€€Apache::Debug
	1.12€€Debug Tracing
	1.13€€gdb says there are no debugging symbols
	1.14€€Debugging Signal Handlers †$SIG{FOO}‡
	1.15€€Code Profiling
	1.16€€Devel::Peek
	1.17€€How can I find out if a mod_perl code has a memory leak
	1.18€€Debugging your code in Single Server Mode
	1.19€€Apache::DumpHeaders - Watch HTTP Transaction Via Headers
	1.20€€Apache::DebugInfo - Log Various Bits Of Per-Request Data
	1.21€€Maintainers
	1.22€€Authors

