Tutorials

29 Jan 2004

Tutorials

mod_perl relatetutorials teaching you things not only
about mod_perl, but also about any related topics of great
interestto mod_ perprogrammers

Lastmodified Thu Jan 29 08:40:38 20@MT

Table of Contents:

Table of Contents:

Part I Application Design

k[1.Building a Large-Scale E-commerce site with Apacherand pelil
mod_perl's speed and Perlfiexibility make them venattradive for large-scale sites. Through
carefulplaming from the startpowefful applicaion servers can be created for siteguiing excet
lentresponse times for dynamic content, such as EToys, all by using mod_perl.

Part I1: Templating

k[2. Choosng a Templaing System

Everything you wanted to know abot¢mplaing systems and didn’t dare to ask. Well, voery
thing....

Part I11: Tipsand Tricks

k| 3. Cute Tricks With Perl anfipach¢
Perl and Apache play very well together, both &iminstration and coding. However, adding

mod_perl to the mix creates a heaven foadmiristrator/progranmer wanting to do cool things in
no time!

Part IV: Client side facts and bugs

k| 4. Workarounds for some known bughowsers.
Unfortunately for web progranmers browser bugs are neinconmon, andsomeimes we have to
deal with them; refer to this chapter for some known bugs and how you can work around them.

k[5. Web ContenEompresion FAQ|

2 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_per! 1 Building a Large-Scale E-commerce site with Apache and mod_per!

1 Building a Large-Scale E-commerce site with
Apache and mod_perl

29 Jan 2004 3

1.1 Description

1.1 Description|

mod_perl’s speed and Perl’s flexibility make them very attractive for large-scale sites. Through careful
planning from the start, powerful application servers can be created for sites requiring excellent response
times for dynamic content, such as EToys, al by using mod_perl.

This paper was first presented at ApacheCon 2001 in Santa Clara, California, and was later published by
O'Reilly & Associates' Perl.com site: |http://perl.com/pub/a’2001/10/17/etoys.html|

1.2 |[Common Myths

When it comes to building a large e-commerce web site, everyone is full of advice. Developers will tell
you that only a site built in C++ or Java (depending on which they prefer) can scale up to handle heavy
traffic. Application server vendors will insist that you need a packaged all-in-one solution for the software.
Hardware vendors will tell you that you need the top-of-the-line mega-machines to run alarge site. Thisis
a story about how we built a large e-commerce site using mainly open source software and commodity
hardware. We did it, and you can do it too.

1.3 [Perl| Saves

Perl has long been the preferred language for developing CGI scripts. It combines supreme flexibility with
rapid development. Programming Perl is still one of O’'Reilly’s top selling technical books, and commu-
nity support abounds. Lately though, Perl has come under attack from certain quarters. Detractors claim
that it’stoo slow for serious development work and that code written in Perl istoo hard to maintain.

The mod_perl Apache module changes the whole performance picture for Perl. Embedding a Perl inter-
preter inside of Apache provides performance equivalent to Java servlets, and makes it an excellent choice
for building large sites. Through the use of Perl’s object-oriented features and some basic coding rules,
you can build a set of code that is a pleasure to maintain, or at least no worse than other languages.

1.3.1 [Roll Your OwnApplication Server

When you combine Apache, mod_perl, and open source code available from CPAN (the Comprehensive
Perl Archive Network), you get a set of features equivalent to acommercial application server:

® Session handling

® | oad balancing

® Persistent database connections
® Advanced HTML templating

® Security

4 29 Jan 2004

http://perl.com/pub/a/2001/10/17/etoys.html

Building a Large-Scale E-commerce site with Apache and mod_perl 1.4 Case Study: eToys.com

Y ou also get some things you won't get from a commercial product, like a direct line to the core devel op-
ment team through the appropriate mailing list, and the ability to fix problems yourself instead of waiting
for a patch. Moreover, every part of the system is under your control, making you limited only by your
team’ s abilities.

1.4 |Case Study: €T oys.com|

When we first arrived at eToys in 1999, we found a situation that is probably familiar to many who have
joined a growing startup Internet company. The system was based on CGI scripts talking to a MySQL
database. Static file serving and dynamic content generation were sharing resources on the same machines.
The CGI code was largely written in a Perl4-ish style and not as modular as it could be, which was not
surprising since most of it was built as quickly as possible by avery small team.

Our mgjor task was to figure out how to get this system to scale large enough to handle the expected
Christmas traffic. The toy business is all about seasonality, and the difference between the peak selling
season and the rest of the year is enormous. The site had barely survived the previous Christmas, and the
MySQL database didn’t look like it could scale much further.

The call had already been made to switch to Oracle, and a DBA team was in place. We didn’t have enough
time to do a re-design of the software, so we had to scramble to put in place whatever performance
improvements we could finish by Christmas.

1.4.1 |Apache:: PerlRun to the Rescud

Apache: : Per | Run isamodule that exists to smooth the transition between basic CGI and mod_perl. It
emulates a CGI environment, and provides some (but not all) of the performance benefits associated with
code written for mod_perl. Using this module and the persistent database connections provided by
Apache: : DBl , we were able to do a basic port to mod_perl and Oracle in time for Christmas, and
combined with some new hardware we were ready to face the Christmas rush.

The peak traffic lasted for eight weeks, most of which were spent frantically fixing things or nervously
waiting for something else to break. Nevertheless, we made it through. During that time we collected the
following statistics:

® 60 - 70,000 sessions’hour
e 800,000 page views'hour
® 7,000 orders/hour

According to Media Metrix, we were the third most heavily trafficked e-commerce site, right behind eBay
and Amazon.

29 Jan 2004 5

1.5 Surviving Christmas 2000

1.4.2 [Planning the New Architecture

It was clear that we would need to do a re-design for 2000. We had reached the limits of the current
system and needed to tackle some of the harder problems that we had been holding off on.

Goadls for the new system included moving away from off-line page generation. The old system had been
building HTML pages for every product and product category on the site in a batch job and dumping them
out as static files. This was very effective when we had a small database of products since the static files
gave such good performance, but we had recently added a children’s bookstore to the site, which increased
the size of our product database by an order of magnitude and made the time required to generate every
page prohibitive. We needed a strategy that would only require us to build pages that customers were actu-
aly interested in and would still provide solid performance.

We aso wanted to re-do the database schema for more flexibility, and structure the code in a more
modular way that would make it easier for ateam to share the development work without stepping on each
other. We knew that the new codebase would have to be flexible enough to support a continuously evolv-
ing set of features.

Not all of the team had significant experience with object-oriented Perl, so we brought in Randal Schwartz
and Damian Conway to do training sessions with us. We created a set of coding standards, drafted a
design, and built our system.

1.5 |Surviving Christmas 2000

Our capacity planning was for three times the traffic of the previous peak. That's what we tested to, and
that’ s about what we got:

® 200,000+ sessions/hour
e 2.5 million+ page views/hour
e 20,000+ orders’hour

The software survived, although one of the routers went up in smoke. Once again, we were rated the third
most highly trafficked e-commerce site for the season.

1.5.1 [The Architectureg

The machine strategy for the system is a fairly common one: low-cost Intel-based servers with a
load-balancer in front of them, and big iron for the database.

Figure 1. Server layout

6 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.5.2 Proxy Servers

,—-——L____.

Imternet

load balancer

proxy server cluster

EEmn

load balancer

REQUEST

application server cluster

database cluster

Like many commercial packages, we have separate systems for the front-end web servers (which we call
proxy servers) and the application servers that generate the dynamic content. Both the proxy servers and
the application servers are load-balanced using dedicated hardware from f5 Networks.

We chose to run Linux on our proxy and application servers, a common platform for mod_perl sites. The
ease of remote administration under Linux made the clustered approach possible. Linux aso provided
solid security features and automated build capabilities to help with adding new servers.

The database servers were IBM NUMA-Q machines, which ran on the DY NIX/ptx operating system..

1.5.2 |Proxy Serverg

The proxy servers ran a dlim build of Apache, without mod_perl. They have several standard Apache
modules installed, in addition to our own customized version of mod_session, which assigned session
cookies. Because the processes were so small, we could run up to 400 Apache children per machine.
These servers handled al image requests themselves, and passed page requests on to the application
servers. They communicated with the app servers using standard HTTP requests, and cached the page

29 Jan 2004 7

1.5.3 Application Servers

results when appropriate headers are sent from the app servers. The cached pages were stored on a shared
NFS partition of a Network Appliance filer. Serving pages from the cache was nearly as fast as serving
static files.

This kind of reverse-proxy setup is a commonly recommended approach when working with mod_perl,
since it uses the lightweight proxy processes to send out the content to clients (who may be on dow
connections) and frees the resource-intensive mod_perl processes to move on to the next request. For more
information on why this configuration is helpful, see the strategy section in the users guide.

Figure 2. Proxy Server Setup

i
BiglP

proxy servers Apache

+ mod_proxy
+ mod_unique id
+ mod_ssl

| | | + mod_rewrite

+ custom modules
shared ProxyCache on NFS filer

1.5.3 |Application Serverg

The application servers ran mod_perl, and very little else. They had a local cache for Perl objects, using
Berkeley DB. The web applications ran there, and shared resources like HTML templates were mounted
over NFS from the NetApp filer. Because they did the heavy lifting in this setup, these machines were
somewhat beefy, with dual CPUs and 1GB of RAM each.

Figure 3. Application servers layout

8 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.5.4 Search servers
to proxy cluster

BiglP

o

application servers
Apache

+ mod_perl
+ Template Toolkit
+ Perl applications

| BerkeleyDB
local object caches

AppCache AnpCache AnpCache AnpCache

17
11T

shared htdocs on NF5 filer

1.5.4 |Search serverg

There was a third set of machines dedicated to handling searches. Since searching was such a large
percentage of overal traffic, it was worthwhile to dedicate resources to it and take the load off the applica-
tion servers and database.

The software on these boxes was a multi-threaded daemon which we developed in-house using C++. The
application servers talked to the search servers using a Perl module. The search daemon accepted a set of
search conditions and returned a sorted list of object IDs of the products whose data fits those conditions.
Then the application servers looked up the data to display these products from the database. The search
servers knew nothing about HTML or the web interface.

This approach of finding the IDs with the search server and then retrieving the object data may sound like
a performance hit, but in practice the object data usually came from the application server’s cache rather
than the database. This design alowed us to minimize the duplicated data between the database and the
search servers, making it easier and faster to refresh the index. It also let us reuse the same Perl code for
retrieving product objects from the database, regardless of how they were found.

The daemon used a standard inverted word list approach to searching. The index was periodically built
from the relevant data in Oracle. There are modules on CPAN which implement this approach, including
Search: : I nvertedl ndex and DBI x: : Ful | Text Sear ch. We chose to write our own because of
the very tight performance requirements on this part of the system, and because we had an unusually

29 Jan 2004 9

1.6 Load Balancing and Failover

complex set of sorting rules for the returned IDs.

Figure 4. Search server layout

app Server M— app server

65 A * database

App Server [+ app server

searc@luest N@ﬁedp uct IDs

search server search server

1.6 |L oad Balancing and Failover

We took pains to make sure that we would be able to provide load balancing among nodes of the cluster
and fault tolerance in case one or more nodes failed. The proxy servers were balanced using a random
selection algorithm. A user could end up on a different one on every request. These servers didn’'t hold any
state information, so the goal was just to distribute the load evenly.

The application servers used ‘‘sticky’’ load balancing. That means that once a user went to a particular
app server, al of her subsequent requests during that session were also passed to the same app server. The
f5 hardware accomplished this using browser cookies. Using sticky load balancing on the app servers
allowed us to do some local caching of user data.

The load balancers ran a periodic service check on every server and removed any servers that failed the
check from rotation. When a server failed, all users that were ‘‘stuck’’; to that machine were moved to
another one.

In order to ensure that no datawas lost if an app server died, all updates were written to the database. Asa
result, user data like the contents of a shopping cart was preserved even in cases of catastrophic hardware
failure on an app server. Thisis essential for alarge e-commerce site.

The database had a separate failover system, which we will not go into here. It followed standard practices
recommended by our vendors.

10 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.7 Code Structure

1.7 |Code Structure

The code was structured around the classic Model-View-Controller pattern, originally from SmallTalk and
now often applied to web applications. The MV C pattern is away of splitting an application’s responsibil-
itiesinto three distinct layers.

Classes in the Model layer represented business concepts and data, like products or users. These had an
API but no end-user interface. They knew nothing about HTTP or HTML and could be used in non-web
applications, like cron jobs. They talked to the database and other data sources, and managed their own
persistence.

The Controller layer trandated web requests into appropriate actions on the Model layer. It handled
parsing parameters, checking input, fetching the appropriate Model objects, and calling methods on them.
Then it determined the appropriate View to use and sendt the resulting HTML to the user.

View objects were really HTML templates. The Controller passed data from the Model objects to them
and they generated a web page. These were implemented with the Template Toolkit, a powerful templat-
ing system written in Perl. The templates had some basic conditional statements and looping in them, but
only enough to express the formatting logic. No application control flow was embedded in the templates.

Figure 5. Code structure and interaction between the layers

1.8 |Caching

The core of the performance strategy is a multi-tier caching system. On the application servers, data
objects are cached in shared memory with a backing store on local disk. Applications specify how long a
data object can be out of sync with the database, and all future accesses during that time are served from
the high-speed cache. This type of cache contral is known as "time-to-live." The local cache is imple-
mented using a Berkeley DB database. Objects are serialized with the standard St or abl e module from
CPAN.

Data objects are divided into pieces when necessary to provide finer granularity for expiration times. For
example, product inventory is updated more frequently than other product data. By splitting the product
data up, we can use a short expiration for inventory that keeps it in tighter sync with the database, while
till using alonger expiration for the less volatile parts of the product data.

The application servers object caches share product data between them using the IP Multicast protocol
and custom daemons written in C. When a product is placed in the cache on one server, the data is repli-
cated to the cache on all other servers. This technique is very successful because of the high locality of
access in product data. During the 2000 Christmas season this cache achieved a 99% hit ratio, thus taking
alarge amount of work off the database.

In addition to caching the data objects, entire pages that are not user-specific, like product detail pages,
can be cached. The application takes the shortest expiration time of the data objects used in the pages and
specifies that to the proxy servers as a page expiration time, using standard Expires headers. The proxy
servers cache the generated page on a shared NFS partition. Pages served from this cache have perfor-
mance close to that of static pages.

29 Jan 2004 11

1.9 Session Tracking

To alow for emergency fixes, we added a hook to nod_pr oxy that deletes the cached copy of a speci-
fied URL. Thiswas used when a page needed to be changed immediately to fix incorrect information.

An extra advantage of this nod_pr oxy cache is the automatic handling of I1f-Modified-Snce requests.
We did not need to implement this ourselves since nod_pr oxy aready providesit.

Figure 6. Proxy and Cache Interaction

1.9 |Session Tracking

Users are assigned session IDs using HTTP cookies. This is done at the proxy servers by our customized
version of nod_sessi on. Doing it at the proxy ensures that users accessing cached pages will still get a
session ID assigned. The session ID is simply a key into data stored on the server-side. User sessions are
assigned to an application server and continue to use that server unless it becomes unavailable. This is
called *‘sticky” load balancing. Session data and other data modified by the user -- such as shop-
ping cart contents -- is written to both the object cache and the database. The double write carries a slight
performance penalty, but it allows for fast read access on subsequent requests without going back to the
database. If a server failure causes a user to be moved to a different application server, the data is smply
fetched from the database again.

Figure 7. Session tracking and caches

app servet)
database
app server
S sl
1.10 |Security|

A large e-commerce site is a popular target for all types of attacks. When designing such a system, you
have to assume that you will be attacked and build with security in mind, at the application level aswell as
the machine level.

The main rule of thumb is ‘‘don’t trust the client!”’ User-specific data sent to the client is protected using
multiple levels of encryption. SSL keeps sensitive data exchanges private from anyone snooping on
network traffic. To prevent ‘‘session hijacking’’ (when someone tampers with their session ID in order to
gain access to another user’s session), we include a Message Authentication Code (MAC) as part of the
session cookie. This is generated using the standard Di gest : : SHA1 module from CPAN, with a seed
phrase known only to our servers. By running the ID from the session cookie through this MAC algorithm
we can verify that the data being presented was generated by us and not tampered with.

12 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.11 Exception Handling

In situations where we need to include some state information in an HTML form or URL and don’'t want it
to be obvious to the user, we use the CPAN Crypt: modules to encrypt and decrypt it. The
Crypt::CBC moduleisagood place to start.

To protect against simple overload attacks, when someone uses a program to send high volumes of
requests at our servers hoping to make them unavailable to customers, access to the application serversis
controlled by a throttling program. The code is based on some work by Randal Schwartz in his Stone -

henge ::Throt tle module. Accesses for each user are tracked in compact logs written to an NFS
partition. The program enforces limits on how many requests a user can make within a certain period of
time.

For more information on web security concerns including the use of MAC, encryption, and overload
prevention, we recommend looking at the books CGI Programming with Perl, 2nd Edition and Writing
Apache Modules with Perl and C, both from O’ Reilly.

1.11 [Exception Handling

When planning this system, we considered using Java as the implementation language. We decided to go
with Perl, but we really missed Java's nice exception handling features. Luckily, Graham Barr’s Error
module from CPAN supplies similar capabilitiesin Perl.

Perl already has support for trapping runtime errors and passing exception objects, but the Error module
adds some nice syntactic sugar. The following code sampleistypical of how we used the module:

try {
do_some_stuff();

} catch My::Exception with {
my $E = shift;
handle_exception($E);

h

The module allows you to create your own exception classes and trap for specific types of exceptions.

One nice benefit of this is the way it works with DBI. If you turn on DBI’s RaiseError flag and use try
blocks in places where you want to trap exceptions, the Error module can turn DBI errors into simple
Error objects.

try {
$sth->execute();
} catch Error with {
roll back and recover
$dbh->rollback();
etc.

k

This code shows a condition where an error would indicate that we should roll back a database transaction.
In practice, most DBI errors indicate something unexpected happened with the database and the current
action can’'t continue. Those exceptions are allowed to propagate up to a top-level try{} block that
encloses the whole request. When errors are caught there, we log a stacktrace and send a friendly error
page back to the user.

29 Jan 2004 13

1.12 Templates

1.12 [Templates

Both the HTML and the formatting logic for merging application data into it is stored in the templates.
They use a CPAN module called Template Toolkit, which provides a simple but powerful syntax for
accessing the Perl data structures passed to them by the application. In addition to basics like looping and
conditional statements, it provides extensive support for modularization, allowing the use of includes and
macros to simplify template maintenance and avoid redundancy.

We found Template Toolkit to be an invaluable tool on this project. Our HTML coders picked it up very
quickly and were able to do nearly al of the templating work without help from the Perl coders. We
supplied them with documentation of what data would be passed to each template and they did the rest. If
you have never experienced the joy of telling a project manager that the HTML team can handle his
requested changes without any help from you, you are seriously missing out!

Template Toolkit compiles templates into Perl bytecode and caches them in memory to improve effi-
ciency. When template files change on disk they are picked up and re-compiled. This is similar to how
other rod_per | systemslike Mason and Apache: : Regi st ry work.

By varying the template search path, we made it possible to assign templates to particular sections of the
site, allowing a customized look and feel for specific areas. For example, the page header template in the
bookstore section of the site can be different from the one in the video game store section. It is even possi-
ble to serve the same data with a different appearance in different parts of the site, allowing for co-brand-
ing of content.

Thisisasample of what abasic loop looks like when coded in Template Toolkit:

[% FOREACH item = cart.itens %
name: [%item name %

price: [%itemprice %

[% END %

1.13 |[Controller Example

Let's walk through a simple Hello World example that illustrates how the Model-View-Controller pattern
isused in our code. We'll start with the controller code.

package ESF:: Control:: Hello;
use strict;
use ESF:: Control;
@ESF: : Control ::Hello::1SA = gw ESF: : Control);
use ESF:: Uil ;
sub handl er {
do sonme setup work
ny $class = shift;
ny $apr = ESF:: Uil ->get_request();

instantiate the nodel
my $nane = S$apr->paran(’ nane’);

we create a new Mdel :: Hello object.

14 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.13 Controller Example

ny $hell o = ESF:: Model : : Hel | o- E<gt >new(NAME =E<gt > $nane)

send out the view
nmy $view data{’ hello’} = $hell o->view);

the process_tenplate() nethod is inherited
fromthe ESF::Control base class
$cl ass->process_t enpl at e(
TEMPLATE => "hello.htm’,
DATA => \ %vi ew data);
}

In addition to the things you see here, there are a few interesting details about the ESF: : Cont r ol base
class. All requests are dispatched to the ESF: : Cont r ol - >r un() method first, which wraps them in a
try{} block before caling the appropriate handl er() method. It also provides the
process_tenpl at e() method, which runs Tenpl at e Tool kit and then sends out the results
with appropriate HTTP headers. If the Controller specifies it, the headers can include Last - Modi fi ed
and Expi r es, for control of page caching by the proxy servers.

Now let’slook at the corresponding Model code.

package ESF:: Mbdel::Hello
use strict;
sub new {
ny $class = shift;
ny Y%args = @;
ny $self = bless {}, $class
$sel f{'name’'} = $args{'NAME'} || 'World’
return $sel f;

sub view {
the object itself will work for the view
return shift;

}

Thisisavery smple Model object. Most Model objects would have some database and cache interaction.
They would include al oad() method which accepts an ID and loads the appropriate object state from
the database. Model objects that can be modified by the application would also includeasave() method.

Note that because of Perl’s flexible OO style, it is not necessary to call new() when loading an object
from the database. Thel oad() and new() methods can both be constructors for use in different circum-
stances, both returning a blessed reference.

The | oad() method typically handles cache management as well as database access. Here's some
pseudo-code showing atypical | oad() method:

29 Jan 2004 15

1.14 Performance Tuning

sub | oad {

ny $class = shift;

ny %args = @;

ny $id = $args{’' 1D };

ny $sel f;

unl ess ($self = _fetch_fromcache($id)) {
$self = fetch_from database($id);
$sel f-> store_in_cache();

}

return $sel f;

}

The save method would use the same approach in reverse, saving first to the cache and then to the
database.

One final thing to notice about our Model class is\thew() method. This method exists to give the
object anoppotunity to shuffle it's data around or createsepaate datastrudure that is easier for use
with a template. This can be used to hide a compiglemertation from the template coders. For
example rementber the partitioning of the producinvertory data that we did to allow faepaate cache
expiration times? The product Model object is really a facade for sewe@diying implemenation
objects, but thei ew() method on that clag®nsoidatesthe data for use by tliemplates.

To finish off our Hello World example, we need a template to render the view. This one willjdb:the

<htnl >
<title>Hello, My Oyster</title>
<body>
[% PROCESS header. htm %
Hello [% hell 0. name %!
[% PROCESS footer.htm %
</ body>
</htm >

1.14 |Performance Tuning

Since Perl code executes so quickly unoed_per |, the perfomancebottleneck is usually at the
database. We applied all tii®cunentedtricks for improving DBD: : Or acl e performance We used
bindvariables pr epar e_cached() , Apache: : DBl , andadjustmentsto theRowCache buffersize.

The big win of course iavoidng going to the database in the first place. The caching work we did had a
huge impact orperfomance Fetching product data from th8erkeley DB cache was about ten times
faster tharfetching it from the database. Serving a product page from the proxy cache was about ten times
faster thangeneating it on theapplicaion server from cached data. Clearly the site would never have
survived under heavy load without tb&ching.

Parttioning the data objects was also a big win. Mtified severalifferentsubsets of product data that
could be loaded and cachewieperdently. When anapplicaion needed product data, it could specify
which subset was required and skip loadingutiee@ssarydata from thelatabase.

16 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.15 Trap: Nested Exceptions

Another standard performance technique we followed was avoiding unnecessary object creation. The
Tenpl at e object is created the first time it's used and then cached for the life of the Apache process.
Socket connections to search servers are cached in a way similar to what Apache: : DBl does for
database connections. Resources that are used frequently within the scope of a request, such as database
handles and session objects, were cached in nod_per | *s$r - >pnot es() until the end of the request.

1.15 {Trap: Nested Exceptiong

When trying out a new technology like the Er r or module, there are bound to be some things to watch out
for. We found a certain code structure that causes a memory leak every time it is executed. It involves
nestedt r y{} blocks, and lookslikethis:

nmy $foo;

try {
some stuff...
try {

$f oo++;

nore stuff...
} catch Error with {

handl e error

I

} catch Error with {
handl e ot her error

I

It's not Graham Barr’s fault that this leaks; it is simply a by-product of the fact that thet ry and cat ch
keywords are implemented using anonymous subroutines. This code is equivalent to the following:

my $f oo;
$subrefl = sub {
$subref2 = sub {
$f oo++;
b
b

This nested subroutine creates a closure for $f 0o and will make a new copy of the variable every time it
is executed. The situation is easy to avoid once you know to watch out for it.

1.16 Berkeley DB

One of the big wins in our architecture was the use of Berkeley DB. Since most people are not familiar
with it's more advanced features, we'll give abrief overview here.

The DB_Fi | e module is part of the standard Perl distribution. However, it only supports the interface of
Berkeley DB version 1.85, and doesn’t include the interesting features of later releases. To get those,
you'll need the Ber kel eyDB. pmmodule, available from CPAN. This module can be tricky to build, but
comprehensive instructions are included.

29 Jan 2004 17

1.17 Vauable Tools

Newer versions of Berkeley DB offer many features that help performance in anod_per | environment.
To begin with, database files can be opened once at the start of the program and kept open, rather than
opened and closed on every request. Berkeley DB will use a shared memory buffer to improve data access
speed for all processes using the database. Concurrent access is directly supported with locking handled
for you by the database. Thisis a huge win over DB_Fi | e, which requires you to do your own locking.
Locks can be at a database level, or at a memory page level to allow multiple simultaneous writers. Trans-
actions with rollback capability are also supported.

This al sounds too good to be true, but there are some downsides. The documentation is somewhat sparse,
and you will probably need to refer to the C API if you need to understand how to do anything compli-
cated.

A more serious problem is database corruption. When an Apache process using Berkeley DB dies from a
hard kill or a segfault, it can corrupt the database. A corrupted database will sometimes cause subsequent
opening attempts to hang. According to the people we talked to at Sleepycat Software (which provides
commercia support for Berkeley DB), this can happen even with the transactional mode of operation.
They are working on away to fix the problem. In our case, none of the data stored in the cache was essen-
tial for operation so we were able to simply clear it out when restarting an application server.

Another thing to watch out for is deadlocks. If you use the page-level locking option, you have to handle
deadlocks. There is a daemon included in the distribution that will watch for deadlocks and fix them, or
you can handle them yourself using the C API.

After trying a few different things, we recommend that you use database-level locking. I1t's much simpler,
and cured our problems. We didn’'t see any significant performance hit from switching to this mode of
locking. The one thing you need to watch out for when using exclusive database level write locks are long
operations with cursors that tie up the database. We split up some of our operations into multiple writesin
order to avoid this problem.

If you have agood C coder on your team, you may want to try the alternate approach that we finally ended
up with. Y ou can write your own daemon around Berkeley DB and use it in a client/server style over Unix
sockets. This allows you to catch signals and ensure a safe shutdown. Y ou can aso write your own dead-
lock handling code this way.

1.17 [Valuable Tools

If you plan to do any serious Perl development, you should really take the time to become familiar with
some of the available development tools. The debugger in particular is a lifesaver, and it works with
nod_per | . There is a profiler called Devel : : DPr of , which also works with nod_per| . It's defi-
nitely the place to start when performance tuning your application.

We found the ability to run our complete system on individual’s workstations to be extremely useful.
Everyone could develop on his own machine, and coordinate changes using CVS source control.

For object modeling and design, we used the open source Di a program and Rational Rose. Both support
working with UML and are great for generating pretty class diagrams for your cubicle walls.

18 29 Jan 2004

Building a Large-Scale E-commerce site with Apache and mod_perl 1.18 Do Try Thisat Home

1.18 Do Try Thisat Home

Since we started this project, a number of development frameworks that offer support for this kind of
architecture have come out. We don't have direct experience using these, but they have a similar design
and may prove useful to you if you want to take an MV C approach with your system.

Apache: : PageKi t isanod_per| module available from CPAN which provides a basic MV C struc-
ture for web applications. It usesthe HTML: : Tenpl at e module for building views.

Openinteract is a recently released web application framework in Perl, which works together with the
persistence layer SPOPS. Both are available from CPAN.

The Application Toolkit from Extropiais a comprehensive set of Perl classes for building web apps. It has
excellent documentation and takes good advantage of existing CPAN modules. You can find it on
|http://www.extropia.com/]

If you want a ready-to-use cache module, take a look at the Perl-cache project on |http://sourceforge.net/}
Thisisthe next generation of the popular Fi | e: : Cache module.

The Java world has many options as well. The Sruts framework, part of the Jakarta project, is a good
open source choice. There are also commercial products from several vendors that follow this sort of
design. Top contenders include ATG Dynamo, BEA WebLogic, and IBM WebSphere.

1.19 |An Open Sour ce Success Story

By building on the open source software and community, we were able to create a top-tier web site with a
minimum of cost and effort. The system we ended up with is scalable to huge amounts of traffic. It runs on
mostly commodity hardware making it easy to grow when the need arises. Perhaps best of all, it provided
tremendous learning opportunities for our developers, and made us a part of the larger development
community.

We've contributed patches from our work back to various open source projects, and provided help on
mailing lists. We'd like to take this opportunity to officially thank the open source developers who
contributed to projects mentioned here. Without them, this would not have been possible. We aso have to
thank the hardworking web developers at eToys. The store may be closed, but the talent that built it lives
on.

1.20 M aintainer g

The maintainer is the person(s) you should contact with updates, corrections and patches.

Per Einar Ellefsen <per.einar (at) skynet.be>

29 Jan 2004 19

http://www.extropia.com/
http://sourceforge.net/

1.21 Authors

1.21

e Bill Hilf <bill (at) hilfworks.com>
® Perrin Harkins<perrin (at) eem.com>

Only the mgjor authors are listed above. For contributors see the Changesfile.

20

Authorg

29 Jan 2004

Choosing a Templating System 2 Choosing a Templating System

2 Choosing a Templating System

29 Jan 2004 21

2.1 Description

2.1 |Description|

Everything you wanted to know about templating systems and didn’t dare to ask. Well, not everything....

2.2 [Introduction|

Go on, admit it: you've written a templating system. It's okay, nearly everyone has at some point. Y ou
start out with something beautifully simple like $SHTML =~ s/\ $(\ w+) / ${ $1}/ g and end up adding
conditionals and loops and includes until you’ ve created your very own unmaintai nable monster.

Luckily for you, you are not the first to think it might be nice to get the HTML out of your code. Many
have come before, and more than afew have put their contributions up on CPAN. At thistime, there are so
many templating modules on CPAN that it's ailmost certain you can find one that meets your needs. This
document aims to be your guide to those modules, leading you down the path to the templating system of
your dreams.

And, if you just went straight to CPAN in the first place and never bothered to write your own, congratula-
tions: you're one step ahead of the rest of us.

2.2.1 [On A Personal Notg

Nothing can start an argument faster on the mod_perl mailing list than a claim that one approach to
templating is better than another. People get very attached to the tools they’ve chosen. Therefore, let me
say up front that | am biased. I’ ve been at this for awhile and | have opinions about what works best. I’ ve
tried to present a balanced appraisal of the features of various systems in this document, but it probably
won't take you long to figure out what | like. Besides, attempts to be completely unbiased lead to useless
documents that don’t contain any real information. So take it all with a pound of salt and if you think I’ve
been unfair to a particular tool through afactual error or omission, let me know.

2.3 Why Use Templates?

Why bother using templates at all? Print statements and CGI.pm were good enough for Grandpa, so why
should you bother learning a new way to do things?

2.3.1 [Consistency of Appearance

It doesn’t take a genius to see that making one navigation bar template and using it in al of your pagesis
easier to manage than hard-coding it every where. If you build your whole site like this, it's much easier to
make site-wide changesin the look and fedl.

22 29 Jan 2004

Choosing a Templating System 2.4 What Are the Differences?

2.3.2 [Reusability]

Along the same lines, building a set of commonly used components makes it easier to create new pages.

2.3.3 [Better | solation from Changeq

Which one changes more often, the logic of your application or the HTML used to display it? It actually
doesn’'t matter which you answered, aslong as it's one of them. Templates can be a great abstraction layer
between the application logic and the display logic, allowing one to be updated without touching the other.

2.3.4 Division of Labor]|

Separating your Perl code from your HTML means that when your marketing department decides every-
thing should be green instead of blue, you don’'t have to lift a finger. Just send them to the HTML coder
down the hall. It's a beautiful thing, getting out of the HTML business.

Even if the same people in your organization write the Perl code and the HTML, you at last have the
opportunity for more people to be working on the project in parallel.

2.4 What Arethe Differences?

Before we look at the available options, let’s go through an explanation of some of the things that make
them different.

2.4.1 [Execution Modelg

Although some try to be flexible about it, most templating systems expect you to use some variation of the
two basic execution models, which | will refer to as "pipeline” and "callback." In the callback style, you let
the template take over and it has the application’s control flow coded into it. It uses callbacks to modules
or snippets of in-line Perl code to retrieve data for display or perform actions like user authentication.
Some popular examples of systems using this model include Mason, Embperl, and Apache::ASP.

The pipeline style does al the work up front in a standard CGI or mod_perl handler, then decides which
template to run and passes some data to it. The template has no control flow logic in it, just presentation
logic, e.g. show this graphic if this item is on sale. Popular systems supporting this approach include
HTML:: Template and Template Toolkit.

The callback model works very well for publishing-oriented sites where the pages are essentially mix and
match sets of articles and lists. Ideally, a site can be broken down into visual "components' or pieces of
pages which are general enough for an HTML coder to re-combine them into entirely new kinds of pages
without any help from a programmer.

The callback model can get a bit hairy when you have to code logic that can result in totaly different
content being returned. For example, if you have a system that processes some form input and takes the
user to different pages depending on the data submitted. In these situations, it's easy to end up coding a
spaghetti of includes and redirects, or putting what are really multiple pages in the samefile.

29 Jan 2004 23

2.4.2 Languages

On the other hand, a callback approach can result in fewer files (if the Perl code isin the HTML file), and
feels easier and more intuitive to many developers. It's a simple step from static files to static files with a
few in-line snippets of code in them. Thisis part of why PHP is so popular with new developers.

The pipeline model is more like a traditional model-view-controller design. Working this way can provide
additiona performance tuning opportunities over an approach where you don’t know what data will be
needed at the beginning of the request. You can aggregate database queries, make smarter choices about
caching, etc. It can also promote a cleaner separation of application logic and presentation. However, this
approach takes longer to get started with since it’s a bigger conceptual hurdle and always involves at |east
two files: one for the Perl code and one for the template.

Keep in mind, many systems offer significant flexibility for customizing their execution models. For
example, Mason users could write separate components for application logic and display, letting the logic
components choose which display component to run after fetching their data. This allowsit to be used in a
pipeline style. A Template Toolkit application could be written to use a simple generic handler (like the
Apache:: Template module included in the distribution) with all the application logic placed in the template
using object calls or in-line Perl. Thiswould be using it in a callback style.

HTML:: Template and some of the AxKit XML processors are fairly rigid about insisting on a pipeline
approach. Neither provide methods for calling back into Perl code during the HTML formatting stage; you
have to do the work before running the template. The authors of these tools consider this a feature since it
prevents devel opers from cheating on the separation of application code and presentation.

2.4.2 [Languages

Here's the big issue with templating systems. This is the one that aways cranks up the flame on web
development mailing lists.

Some systems use in-line Perl statements. They may provide some extra semantics, like Embperl’s opera-
tors for specifying whether the code’ s output should be displayed or Mason's <% ni t > sections for spec-
ifying when the code gets run, but at the end of the day your templates are written in Perl.

Other systems provide a specialized mini-language instead of (or in addition to) in-line Perl. These will
typically have just enough syntax to handle variable substitution, conditionals, and looping.
HTML:: Template and Template Toolkit are popular systems using this approach. AxKit straddles the
fence, providing both a (not-so-) mini-language - XSLT - and an in-line Perl approach - XPathScript.

Here's how atypical discussion of the merits of these approaches might go:

IN-LINE: Mini-languages are stupid. | aready know Perl and it's easy enough. Why would you want to
use something different?

MINI-LANG: Because my HTML coder doesn’'t know Perl, and thisis easier for him.

IN-LINE: Maybe he should learn some Perl. He' d get paid more.

24 29 Jan 2004

Choosing a Templating System 2.4.2 Languages

MINI-LANG: Whatever. You just want to use in-line Perl so you can handle change requests by putting
little hacks in the template instead of changing your modules. That’ s sloppy coding.

IN-LINE: That's efficient coding. | can knock out data editing screens in half the time it takes you, and
then | can go back through, putting all the in-line code into modules and just have the templates call them.

MINI-LANG: You could, but you won't.
IN-LINE: Isit chilly up therein that ivory tower?
MINI-LANG: Go write some VB Script, weenie.
etc.

Most people pick aside in this war and stay there. If you are one of the few who hasn’t fully decided yet,
you should take a moment to think about who will be building and maintaining your templates, what skills
those people have, and what will allow them to work most efficiently.

Here's an example of a simple chunk of template using first an in-line style (Apache::ASP in this case)
and then a mini-language style (Template Toolkit). This code fetches an object and displays some proper-
ties of it. The data structures used are identical in both examples. First Apache::ASP:

<% my $product = Product->| oad(’sku’ => "bar1234’); %

<% if ($product->ishn) { %
It’s a book!

<%} else { %
It’s NOT a book!

<%} %

<% foreach ny $item (@ $product->related}) { %
You m ght al so enjoy <% $item >nane %.
<%} %

And now Template Toolkit:

[% USE product (sku=bar 1234) %

[% | F product.isbn %
It’s a book!

[% ELSE %
It’s NOT a book!

[% END %

[% FOREACH item = product.related %
You might also enjoy [%itemname %.
[% END %

There is a third approach, based on parsing an HTML document into a DOM tree and then manipulating
the contents of the nodes. The only module using this approach is HTML_Tree. The idea is similar to
using a mini-language, but it doesn’t require any non-standard HTML tags and it doesn't embed any logic
about loops or conditionals in the template itself. This is nice because it means your templates are valid

29 Jan 2004 25

2.4.3 Parsers and Caching

HTML documents that can be viewed in a browser and worked with in most standard HTML tools. It also
means people working with the templates can put placeholder datain them for testing and it will simply be
replaced when the template is used. This preview ability only breaks down when you need an if/else type
construct in the template. In that situation, both the "if" and "else" chunks of HTML would show up when
previewing.

2.4.3 |Parsers and Caching

The parsers for these templating systems are implemented in one of three ways. they parse the template
every time ("repeated parse”), they parse it and cache the resulting parse tree (" cached parse tree"), or they
parse it, convert it to Perl code, and compileit ("compiled").

Systems that compile templates to Perl take advantage of Perl’s powerful runtime code evaluation capabil-
ities. They examine the template, generate a chunk of Perl code from it, and eval the generated code.
After that, subsequent requests for the template can be handled by running the compiled bytecode in
memory. The complexity of the parsing and code generation steps varies based on the number of bells and
whistles the system provides beyond straight in-line Perl statements.

Compiling to Perl and then to Perl bytecode is slow on the first hit but provides excellent performance
once the template has been compiled, since the template becomes a Perl subroutine call. This is the same
approach used by systems like JSP (Java ServerPages). It is most effective in environments with a
long-running Perl interpreter, like mod_perl.

HTML:: Template, HTML_Tree, and the 2.0 beta release of Embperl all use a cached parse tree approach.
They parse templates into their respective internal data structures and then keep the parsed structure for
each processed template in memory. Thisis similar to the compiled Perl approach in terms of performance
and memory requirements, but does not actually involve Perl code generation and thus doesn’t require an
eval step. Which way is faster, caching the parse tree or compiling? It’s hard to objectively measure, but
anecdotal evidence seems to support compilation. Template Toolkit used a cached parse tree approach for
version 1, but switched to a compilation approach for version 2 after tests showed it to offer a significant
speed increase. However, as will be discussed later, either approach is more than fast enough.

In contrast to this, a repeated parse approach may sound very slow. However, it can be pretty fast if the
tokens being parsed for are simple enough. Systems using this approach generally use very simple tokens,
which allows them to use fast and simple parsers.

Why would you ever use a system with this approach if compilation has better performance? Well, in an
environment without a persistent Perl interpreter like vanilla CGI this can actually be faster than a
compiled approach since the startup cost is lower. The caching of Perl bytecode done by compilation
systems is useless when the Perl interpreter doesn’t stick around for more than one request.

There are other reasons too. Compiled Perl code takes up a lot of memory. If you have many unique
templates, they can add up fast. Imagine how much RAM it would take up if every page that used
server-side includes (SSI) had to stay in memory after it had been accessed. (Don’'t worry, the
Apache: : SSI module doesn’t use compilation so it doesn’t have this problem.)

26 29 Jan 2004

Choosing a Templating System 2.4.4 Application Frameworks vs. Just Templates

2.4.4 |Application Frameworks vs. Just Templateg

Some of the templating tools try to offer a comprehensive solution to the problems of web development.
Others offer just atemplating solution and assume you will fit this together with other modules to build a
complete system.

Some common features offered in the frameworks include;

2.4.4.1 [URL Mapping

All of the frameworks offer away to map a URL to atemplate file. In addition to simple mappings similar
to the handling of static documents, some offer ways to intercept all requests within a certain directory for
pre-processing, or create an object inheritance scheme out of the directory structure of a site.

2.4.4.2 (Session Tracking

Most interactive sites need to use some kind of session tracking to associate application state data with a
user. Some tools make this very easy by handling all the cookies or URL-munging for you and letting you
simply read and write from an object or hash that contains the current user's session data. A common
approach is to use the Apache::Session module for storage.

2.4.4.3 |Output Caching

Caching is the key to good performance in many web systems, and some of these tools provide
user-controlled caching of output. Thisis one of the major features of both Mason and AxKit. AxKit can
cache at the page level, while Mason also offers fine-grained caching of components within the page.

2.4.4.4 [Form Handling

How will you live without CGIl.pm to parse incoming form data? Many of these tools will do it for you,
making it available in a convenient data structure. Some also validate form input, and even provide
"sticky" form widgets that keep their selected values when re-displayed or set up default values based on
data you provide.

2445

Everyone knows how painful it can be to debug a CGlI script. Templating systems can make it worse, by
screwing up Perl’ s line numbers with generated code. To help fix the problem they’ ve created, some offer
built-in debugging support, including extralogging, or integration with the Perl debugger.

If you want to use a system that just does templates but you need some of these other features and don't
feel like implementing them yourself, there are some tools on CPAN which provide a framework you can
build on. The libservlet distribution, which provides an interface similar to the Java servlet API, is inde-
pendent of any particular templating system. Apache::PageKit and CGI::Application are other options in
this vein, but both of these are currently tied to HTML:: Template. Openlinteract is another framework, this
time tied to Template Toolkit. All of these could be adapted for the "just templates’ module of your choice
with fairly minimal effort.

29 Jan 2004 27

2.5 The Contenders

2.5 [The Contender 9

Okay, now that you know something about what separates these tools from each other, let’s take a look at
the top choices for Perl templating systems. Thisis not an exhaustive list: I’ve only included systems that
are currently maintained, well-documented, and have managed to build up a significant user community.
In short, I've left out a dozen or so less popular systems. At the end of this section, I'll mention a few
systems that aren’t as commonly used but may be worth alook.

251

SSl is the granddaddy of templating systems, and the first one that many people used since it comes as a
standard part of most web servers. With mod_perl installed, mod_include gains some additional power.
Specificaly, it is able to take a new #per | directive (though only if mod perl is statically built) which
allows for in-line subroutine calls. It can also efficiently include the output of Apache::Registry scripts by
using the Apache::Include module.

The Apache::SSI module implements the functionality of mod_include entirely in Perl, including the addi-
tional #per | directive. The main reasons to use it are to post-process the output of another handler (with
Apache::Filter) or to add your own directives. Adding directives is easy through subclassing. You might
be tempted to implement a complete template processor in this way, by adding loops and other constructs,
but it's probably not worth the trouble with so many other tools out there.

SSl follows the callback model and is mostly a mini-language, although you can sneak in bits of Perl code
as anonymous subs in #per | directives. Because SS| uses a repeated parse implementation, it is safe to
use it on large numbers of files without worrying about memory bloat.

SSl is agreat choice for sites with fairly simple templating needs, especially ones that just want to share
some standard headers and footers between pages. However, you should consider whether or not your site
will eventually need to grow into something with more flexibility and power before settling on this simple
approach.

2.5.2 HTML::Mason|

Mason has been around for a few years now, and has built up aloyal following. It was originaly created
as a Perl clone of some of the most interesting features from Vignette StoryServer, but has since become
it's own unique animal. It comes from a publishing background, and includes features oriented towards
splitting up pages into re-useable chunks, or "components.”

Mason uses in-line Perl with a compilation approach, but has a feature to help keep the perl code out of the
HTML coder’s way. Components (templates) can include a section of Perl at the end of the file which is
wrapped inside a specia tag indicating that it should be run first, before the rest of the template. This
allows programmers to put al the logic for a component down at the bottom away from the HTML, and
then use short in-line Perl snippetsin the HTML to insert values, loop through lists, etc.

28 29 Jan 2004

Choosing a Templating System 2.5.3 HTML::Embperl

Mason is a site development framework, not just a templating tool. It includes a very handy caching
feature that can be used for capturing the output of components or simply storing data that is expensive to
compute. It is currently the only tool that offers this sort of caching as a built-in. It also implements an
argument parsing scheme which allows a component to specify the names, types, and default values that it
expects to be passed, either from another component or from the values passed in the URI query string.

While the documentation mostly demonstrates a callback execution model, it is possible to use Mason in a
pipeline style. This can be accomplished in various ways, including designating components as "autohan-
diers' which run before anything else for requests within a certain directory structure. An autohandler
could do some processing and set up data for a display template which only includes minimal in-line Perl.
There is also support for an object-oriented site approach, applying concepts like inheritance to the site
directory structure. For example, the component at /store/book/ might inherit a standard layout from the
component at /store/, but override the background color and navigation bar. Then /store/music/ can do the
same, with adifferent color. This can be avery powerful paradigm for developing large sites.

Mason’s approach to debugging is to create "debug files" which run Mason outside of a web server envi-
ronment, providing a fake web request and activating the debugger. This can be helpful if you're having
trouble getting Apache::DB to behave under mod_perl, or using an execution environment that doesn’t
provide built-in debugger support.

Another unique feature is the ability to leave the static text parts of alarge template on disk, and pull them
in with a file seek when needed rather than keeping them in RAM. This exchanges some speed for a
significant savingsin memory when dealing with templates that are mostly static text.

There are many other features in this package, including filtering of HTML output and a page previewing
utility. Session support is not built-in, but a smple example showing how to integrate with
Apache::Session is included. Mason's feature set can be a bit overwhelming for newbies, but the
high-quality documentation and hel pful user community go along way.

2.5.3 [HTML:: Embper]]

Embperl makes its language choice known up front: embedded perl. It is one of the most popular in-line
Perl templating tools and has been around longer than most of the others. It has a solid reputation for
speed and ease of use.

It iscommonly used in a callback style, with Embperl intercepting URIs and processing the requested file.
However, it can optionally be invoked through a subroutine call from another program, allowing it to be
used in apipeline style. Templates are compiled to Perl bytecode and cached.

Embperl has been around long enough to build up an impressive list of features. It has the ability to run
code inside a Safe compartment, support for automatically cleaning up globals to make mod_perl coding
easier, and extensive debugging tools including the ability to e-mail errorsto an administrator.

The main thing that sets Embperl apart from other in-line Perl systemsisitstight HTML integration. It can
recognize TABLE tags and automatically iterate over them for the length of an array. It automatically
provides sticky form widgets. An array or hash reference placed at the end of a query string in an HREF or
SRC attribute will be automatically expanded into query string "name=value" format. META

29 Jan 2004 29

2.5.4 Apache::AxKit

HTTP- EQUI V tags are turned into true HTTP headers.

Another reason people like Embperl is that it makes some of the common tasks of web application coding
so simple. For example, al form data is always available just by reading the magic variable %fdat.
Sessions are supported just as easily, by reading and writing to the magic %udat hash. There is also a hash
for storing persistent application state. HTML-escaping is automatic (though it can be toggled on and off).

Embperl includes something called EmbperlObject, which allows you to apply OO concepts to your site
hierarchy in a similar way to the inheritance features mentioned for Mason, above. This is a very conve-
nient way to code sites with stylesthat vary by area, and isworth checking out.

One drawback of older versions of Embperl was the necessity to use built-in replacements for most of
Perl’s control structures like "if" and "foreach™ when they are being wrapped around non-Perl sections.
For example:

[$if ($foo) $]
Looks li ke a foo!
[$ else $]
Nope, it’s a bar.
[$ endif $]

These may seem out of place in a system based around in-line Perl. As of version 1.2b2, it is possible to
use Perl’ s standard syntax instead:

[$if ($foo) { $]
Looks li ke a foo!
[$ 1} else { 9]
Nope, it’'s a bar.
[$} 9]

At the time of this writing, a new 2.x branch of Embperl is in beta testing. This includes some interesting
features like a more flexible parsing scheme which can be modified to users’ tastes. it also supports direct
use of the Perl debugger on Embperl templates, and provides performance improvements.

2.5.4 |Apache:: AxKit]

AxKit is the first mod_perl page generation system to be built from the ground up around XML. Techni-
cally, AxKit itsdlf is not a templating tool but rather a framework for stringing together different modules
that generate and transform XML data. In fact, it can optionally use Template Toolkit as an XML transfor-
mation language. However, it deserves coverage here since it is also the home of some templating tools
that are not represented elsewhere.

In its simplest form, AxKit maps XML files to XSL stylesheets which it can process using commonly
available XSLT modules like XML::XSLT or XML::Sablotron. The rules for mapping a stylesheet to a
request are very flexible, and they can incorporate query strings, cookies, and other attributes of the
request. The idea is that you can use this feature to handle a wide variety of clients with differing display
capabilities by choosing the right stylesheet.

30 29 Jan 2004

Choosing a Templating System 2.5.5 Apache::ASP

Recognizing that not everyone is a fan of XSL's somewhat obtuse syntax, Matt Sergeant has provided an
alternate stylesheet language called XPathScript. XPathScript allows you to write a stylesheet using text
with embedded Perl code. This is similar to the other embedded Perl templating tools, but the focus is on
using the built in XPath functions for querying an XML document and manipulating the retrieved data.
XPathScript can also be used in a declarative fashion, specifying the formatting of particular elements in
the XML input. For example this snippet will change all <f 00> tagsin an XML document to BAR in the
output::

<%
$t->{"foo }{pre} = ' BAR ;
$t->{"foo’ }{post} A
$t->{'foo’ }{show ag} 0;

%

<% apply_tenplates() %

By using XPathScript's include function (which looks just like SSI), you can build up libraries of useful
transformations that use this technique.

Thisis al well and good if you have a bunch of XML files sitting on a disk somewhere, but what about
dynamic content? AxKit handles this by allowing you to substitute a different data source for the default
file-based one. This can include running some dynamic code on each request to generate the XML data
that will be transformed. The distribution includes a module for doing this called XSP. XSP is a language
for building an XML DOM using in-line Perl and tag libraries. The tag libraries are specified as
stylesheets which can turn XML tags into Perl code. This is demonstrated through the included SQL tag
library, which allows you to write an X SP page using XML tags which will connect to a database, execute
gueries, and generate an XML document with the results.

AxKit has some nice performance boosts built into it. It can cache the full output of a page and serve it as
astatic file on future requests. It can also compress output to speed up downloads for browsers that under-
stand gzip encoding. These can be done with other systems, but they require you to setup additional soft-
ware . With AxKit, you just enable them in the configuration file.

If al of these languages, tag libraries, and stylesheets sound intimidating to you, AxKit may be overkill
for your project. However, AxKit has the advantage of being built on approved W3C standards, and many
of the skills used in developing for it carry over to other languages and tools.

2.5.5 |[Apache::ASP

Apache::ASP started out as a port of Microsoft’s Active Server Pages technology, and its basic design still
follows that model. It uses in-line Perl with a compilation approach, and provides a set of simple objects
for accessing the request information and formulating a response. Scripts written for Microsoft's ASP
using Perl (via ActiveState's PerlScript) can usually be run on this system without changes. (Pages written
in VBScript are not supported.)

Like the original ASP, it has hooks for calling specified code when certain events are triggered, such as
the start of a new user session. It also provides the same easy-to-use state and session management.
Storing and retrieving state data for a whole application or a specific user is as simple as a single method
call. It can even support user sessions without cookies by munging URLSs -- a unique feature among these

29 Jan 2004 31

25.6 Text:Template

systems.

A significant addition that did not come from Microsoft ASP is the XML and XSLT support. There are
two options provided: XML Subs and XSLT transforms. XML Subs is away of adding custom tags to your
pages. It maps XML tags to your subroutines, so that you can add something like <si t e: header
page="Page Title" /> to your pages and have it trandate into a subroutine call like
&site::header({title => "Page Title"}). It can handle processing XML tags with body
text aswell.

The XSLT support allows the output of ASP scripts to be filtered through XSLT for presentation. This
allows your ASP scripts to generate XML data and then format that data with a separate XSL stylesheet.
This support is provided through integration with the XML::XSLT module.

Apache::ASP provides sticky widgets for forms through the use of the HTML::FilllnForm module. It also
has built-in support for removing extra whitespace from generated output, gzip compressing output (for
browsers that support it), tracking performance using Time::HiRes, automatically mailing error messages
to an administrator, and many other conveniences and tuning options. This is a mature package which has
evolved to handle real-world problems.

One thing to note about the session and state management in this system is that it currently only supports
clusters through the use of network filesystems like NFS or SMB. (Joshua Chamas, the modul€'s author,
has reported much better results from Samba file-sharing than from NFS.) This may be an issue for
large-scale server clusters, which usualy rely on a relational database for network storage of sessions.
Support database storage of sessionsis planned for a future release.

2.5.6 [Text:: Templatg

This module has become the de facto standard general purpose templating module on CPAN. It has an
easy interface and thorough documentation. The examples in the docs show a pipeline execution style, but
it's easy to write a mod_perl handler that directly invokes templates, allowing a calback style. The
module uses in-line Perl. It has the ability to run the in-line code in a Safe compartment, in case you are
concerned about mistakes in the code crashing your server.

The module relies on creative uses of in-line code to provide things that people usually expect from
templating tools, like includes. This can be good or bad. For example, to include afile you could just call
Text::Template::fill_in_file(filename). However, you'll have to specify the complete file path and nothing
will stop you from using /etc/passwd as the file to be included. Most of the fancier templating tools have
concepts like include paths, which alow you to specify a list of directories to search for included files.
Y ou could write a subroutine that works this way, and make it available in your template’ s namespace, but
it’snot built in.

Each template is |loaded as a separate object. Templates are compiled to Perl and only parsed the first time
they are used. However, to take full advantage of this caching in a persistent environment like mod_perl,
your program will have to keep track of which templates have been used, since Text::Template does not
have away of globally tracking this and returning cached templates when possible.

32 29 Jan 2004

Choosing a Templating System 2.5.7 Template Toolkit

Text::Template is not tied to HTML, and is just a templating module, not a web application framework. It
is perfectly at home generating e-mails, PDFs, €etc.

2.5.7 [Template Toolkit]

One of the more recent additions to the templating scene, Template Toolkit is a very flexible
mini-language system. It has a complete set of directives for working with data, including loops and
conditionals, and it can be extended in a number of ways. In-line Perl code can be enabled with a configu-
ration option, but is generally discouraged. It uses compilation, caching the compiled bytecode in memory
and optionally caching the generated Perl code for templates on disk. Although it is commonly used in a
pipeline style, the included Apache:: Template module allows templates to be invoked directly from URLSs.

Template Toolkit has a large feature set, so we'll only be able cover some of the highlights here. The TT
distribution sets a gold standard for documentation thoroughness and quality, so it's easy to learn more if
you choose to.

One mgjor difference between TT and other systems is that it provides simple access to complex data
structures through the concept of a dot operator. This allows people who don’t know Perl to access nested
lists and hashes or call object methods. For example, we could pass in this Perl data structure:

$vars = {
custoner => {
nane => ' Bubbl es’,
address => {
city => 'Townsville’,

}
3
Then we can refer to the nested data in the template:

H there, [% custoner.nane %!
How are things in [% customner.address.city % ?

This is ssmpler and more uniform than the equivalent syntax in Perl. If we passin an object as part of the
data structure, we can use the same notation to call methods within that object. If you’ ve modeled your
system’s data as a set of objects, this can be very convenient.

Templates can define macros and include other templates, and parameters can be passed to either.
Included templates can optionally localize their variables so that changes made while the included
template is executing do not affect the values of variablesin the larger scope.

There is a filter directive, which can be used for post-processing output. Uses for this range from simple
HTML entity conversion to automatic truncation (useful for pulldown menus when you want to limit the
size of entries) and printing to STDERR.

TT supports a plugin API, which can be used to add extra capabilities to your templates. The provided
plugins can be broadly organized into data access and formatting. Standard data access plugins include
modules for accessing XML data or a DBI data source and using that data within your template. There'sa
plugin for accessto CGIl.pm as well.

29 Jan 2004 33

2.5.8 HTML::Template

Formatting plugins allow you to display things like dates and prices in a localized style. There's also a
table plugin for use in displaying lists in a multi-column format. These formatting plugins do a good job of
covering the final 5% of data display problems that often cause people who are using an in-house system
to embed alittle bit of HTML in their Perl modules.

Inasimilar vein, TT includes some nice convenience features for template writers like eliminating white
space around tags and the ability to change the tag delimiters -- things that may sound a little esoteric, but
can sometimes make templates significantly easier to work with.

The TT distribution also includes a script called ttree which allows for processing an entire directory tree
of templates. This is useful for sites that pre-publish their templated pages and serve them statically. The
script checks modification times and only updates pages that require it, providing a make-like functional-
ity. The distribution also includes a sample set of template-driven HTML widgets which can be used to
give aconsistent look and feel to a collection of documents.

2.5.8 HTML:: Templatg

HTML:: Template is a popular module among those looking to use a mini-language rather than in-line
Perl. It uses a simple set of tags which alow looping (even on nested data structures) and conditionals in
addition to basic value insertion. The tags are intentionally styled to look like HTML tags, which may be
useful for some situations.

As the documentation says, it "does just one thing and it does quickly and carefully" -- there is no attempt
to add application features like form-handling or session tracking. The module follows a pipeline execu-
tion style. Parsed templates are stored in a Perl data structure which can be cached in any combination of
memory, shared memory (using IPC::SharedCache), and disk. The documentation is complete and
well-written, with plenty of examples.

You may be wondering how this module is different from Template Toolkit, the other popular
mini-language system. Beyond the obvious differences in syntax, HTML:: Template is faster and simpler,
while Template Toolkit has more advanced features, like plugins and dot notation. Here's a simple
example comparing the syntax:

HTML:: Template:
<TMPL_LOCP I|ist>

<a href="<TMPL_VAR url >"><TMPL_VAR nane></ b></ A>
</ TMPL_LCOOP>

Template Toolkit:

[% FOREACH |i st %
[% nane % </ a>
[% END %4

And now, afew honorable mentions;

34 29 Jan 2004

Choosing a Templating System 2.6 Performance

259 HTML Tred

As mentioned earlier, HTML Tree uses a fairly unique method of templating: it loads in an HTML page,
parses it to a DOM, and then programmatically modifies the contents of nodes. This allows it to use
genuine valid HTML documents as templates, something which none of these other modules can do. The
learning curve is a little steeper than average, but this may be just the thing if you are concerned about
keeping things simple for your HTML coders. Note that the nameis"HTML_Tree", not "HTML:: Tree".

2.5.10 |Apache:: XPP

XPPisanin-line Perl system that compiles to bytecode. Although it is a perfectly good implementation, it
has little to differentiate it except for an easy mechanism to define new HTML-like tags which can be used
to replace in-line code in templates.

2511

Possibly the first module to embed Perl code in a text or HTML file, ePerl is still a viable option in the
form of Apache:.ePerl. It caches compiled bytecode in memory to achieve solid performance, and some
people find it refreshingly simple to use.

2.5.12 |CGI::FastTemplatg

This module takes a minimalistic approach to templating, which makes it unusually well suited to use in
CGlI programs. It parses templates with a single regular expression and does not support anything in
templates beyond simple variable interpolation. Loops are handled by including the output of other
templates. Unfortunately, this leads to a Perl coding style that is more confusing than most, and a prolifer-
ation of template files. However, some people swear by this dirt-simple approach.

2.6 |Performance

People aways seem to worry about the performance of templating systems. If you've ever built a
large-scale application, you should have enough perspective on the relative costs of different actions to
know that your templating system is not the first place to look for performance gains. All of the systems
mentioned here have excellent performance characteristics in persistent execution environments like
mod_perl. Compared to such glacialy slow operations as fetching data from a database or file, the time
added by the templating system is almost negligible.

If you think your templating system is slowing you down, get the facts: pull out Devel::DProf and see. If
one of the tools mentioned hereis at the top of the list for wall clock time used, you should pat yourself on
the back -- you've done a great job tuning your system and removing bottlenecks! Personaly, | have only
seen this happen when | had managed to successfully cache nearly every part of the work to handle a
request except running atemplate.

29 Jan 2004 35

2.7 Matrix

However, if you really are in a situation where you need to squeeze a few extra microseconds out of your
page generation time, there are performance differences between systems. They’re pretty much what you
would expect: systems that do the least run the fastest. Using in-line print() statements is faster than using
templates. Using simple substitution is faster than using in-line Perl code. Using in-line Perl code is faster
than using a mini-language.

The only templating benchmark available at this time is one developed by Joshua Chamas, author of
Apache::ASP. It includes a "hello world" test, which simply checks how fast each system can spit back
those famous words, and a "hello 2000" test, which exercises the basic functions used in most dynamic
pages. It is available from the following URL.:

|http://www.chamas.com/bench/hell o.tar.gz|

Results from this benchmark currently show SSI, Apache::ASP, and HTML::Embperl having the best
performance of the lot. Not al of the systems mentioned here are currently included in the test. If your
favorite was missed, you might want to download the benchmark code and add it. As you can well
imagine, benchmarking peopl€e's pet projectsis largely athankless task and Joshua deserves some recoghi-
tion and support for this contribution to the community.

2.6.1 [CGI Performance Concerng

If you're running under CGlI, you have bigger fish to fry than worrying about the performance of your
templating system. Nevertheless, some people are stuck with CGI but still want to use a templating system
with reasonable performance. CGI is a tricky situation, since you have to worry about how much time it
will take for Perl to compile the code for a large templating system on each request. CGI also breaks the
in-memory caching of templates used by most of these systems, although the slower disk-based caching
provided by Mason, HTML:: Template, and Template Toolkit will still work. (HTML:: Template does
provide a shared memory cache for templates, which may improve performance, although shared memory
on my Linux system is usually slower than using the filesystem. Benchmarks and additional information
are welcome.)

Your best performance bet with CGI is to use one of the simpler tools, like CGl::FastTemplate or
Text::Template. They are small and compile quickly, and CGI::FastTemplate gets an extra boost since it
relies on simple regex parsing and doesn’'t need to eval any in-line Perl code. Almost everything else
mentioned here will add tenths of seconds to each page in compilation time aone.

2.7 M atrix

To help you choose a system, I’ll summarize the basic characteristics of the major systems along the deci-
sion points I’ ve explained in the beginning of the article. Keep in mind that in many cases a system can be
used in more than one way, and I've simply shown the dominant method as seen in the documentation and
real world use. You should not eliminate options based on this chart without reading the more detailed
explanations above.

36 29 Jan 2004

http://www.chamas.com/bench/hello.tar.gz

Choosing a Templating System 2.8 Updates

Application Pipelineor

Framework Callback Parsing Method Language
HTML::Mason Framework Callback Compiled Perl
Template Toolkit Just Templates Pipeline Compiled Mini-Language
Apache::ASP Framework Callback Compiled Perl and XSL
HTML::Embperl Framework Callback Compiled Perl
SSl Just Templates Callback Repeated Parse Mini-Language
AxKit Framework Pipeline ggrrseplll_sseor Cached Eﬂﬁrr!|afgn);§;g2(ng
HTML:: Template Just Templates Pipeline Cached Parse Tree Mini-Language
Text::Template Just Templates Pipeline Compiled Perl

2.8 |Updateg

These modules are moving targets, and a document like this is bound to contain some mistakes. Send your
corrections to perrin@elem.com. Future versions of this document will be announced on the mod_perl
mailing list, and possibly other popular Perl locations as well.

by Perrin Harkins

2.9 Maintainer g

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Perrin Harkins <perrin (at) elem.com>.

2.10 |Authors

® Perrin Harkins <perrin (at) elem.com>.

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 37

3 Cute Tricks With Perl and Apache

3 CuteTricksWith Perl and Apache

38 29 Jan 2004

Cute Tricks With Perl and Apache 3.1 Description

3.1 |Description|

Perl and Apache play very well together, both for administration and coding. However, adding mod_perl
to the mix creates a heaven for an administrator/programmer wanting to do cool thingsin no time!

This tutorial begins a collection of CGI scripts that illustrate the three basic types of CGI scripting:
dynamic documents, document filtering, and URL redirection. It also shows a few tricks that you might
not have run into -- or even thought were possible with CGl.

Then, we move to look at different uses of Perl to handle typical administrative tasks. Finally, we continue
with the next step beyond CGI scripting: the creation of high performance Apache modules with the
mod_perl API.

3.2 |Part |: Trickswith CGl.pm|

CAd . pmis the long-favoured module for CGI scripting, and, as mod_perl can run CGI scripts (mostly)
unaltered, also provides significant advantages for mod_perl programmers. Let’s ook at some of the more
interesting uses of this module in web programming.

3.2.1 [Dynamic Documentg

The most familiar use of CGlI is to create documents on the fly. They can be simple documents, or get
incredibly baroque. We won’t venture much past the early baroque.

3.2.1.1 [MakingHTML look beautifull

<|> <hate> <HTML> <because> <it's> <ugly> <and> <has> <too> <many> <$#@* & > <angle> <brack-
ets>. With CGIl.pm it's amost good to look at. Script 1.1.1 shows what a nested list looks like with
CGl.pm.

Script 1.1.1: vegetabl esl. pl
#! [usr/ bi n/ perl
Script: vegetabl esl. pl
use CA::Pretty ':standard’;
print header,
start_htm (" Vegetabl es’),
h1l(’ Eat Your Vegetables'),
ol (
li(’ peas’),
li(’broccoli’),
l'i (' cabbage’),
l'i (' peppers’,
ul (
li('red),
li("yellow),
li('green’)

)

),
li (" kolrabi'),

29 Jan 2004 39

3.2.1 Dynamic Documents

3.2.1.2 [MakingHTML concisd

li(’radi shes’)
),

hr,

end_htn ;

But we can do even better than that because CGIl.pm lets you collapse repeating tags by passing array
references to its functions. Script 1.2 saves some typing, and in so doing, puts off the onset of RSl by
months or years!

Script 1.1.2: vegetabl es2. pl
#! [usr/ bi n/ perl
Script: vegetabl es2. pl
use Cd ':standard’;
print header,
start_htm (' Vegetables’),
h1l(’ Eat Your Vegetables’),
ol (
li([peas’,
"broccoli’,
' cabbage’ ,
' peppers’

ul(['red ,’yellow , ' green']),

"kolrabi’,
' radi shes’
),
hr,
end_htm ;

Or how about this one?

40

Script 1.1.3: vegetabl es3. pl

#1/ usr/ bi n/ perl

Script: vegetabl es3. pl

use CA::Pretty qw :standard :htm 3/;

print header,
start_htm (" Vegetabl es’),

h1l(’ Vegetabl es are for the Strong’'),

tabl e({- border=>undef},

caption(strong(’ Wien Shoul d You Eat Your Vegetables?)),
Tr({-al i gn=>CENTER - val i gn=>TOP},

[

th(['’, Breakfast’,’Lunch’,’Dinner’']),
th(’ Tomatoes’).td(['no’, yes' ,’yes’']),
th(’ Broccoli’).td(['no",’
th(’Onions’).td([yes',’yes’,’yes'])

|

)
)
end_htm ;

no’,’yes’']),

29 Jan 2004

Cute Tricks With Perl and Apache 3.2.2 Making Stateful Forms

3.2.1.3 [Making I nteractive For mg

Of course you mostly want to use CGI to create interactive forms. No problem! CGIl.pm has a full set of
functions for both generating the form and reading its contents once submitted. Script 1.1.4 creates a row
of radio buttons labeled with various colors. When the user selects a button and submits the form, the page
redraws itself with the selected background color. Psycheddlic!

#! [usr/ bi n/ perl
script: custonizable.pl

use Cd::Pretty qw :standard/;
ny $color = paran(’color’) || 'white’;

print header,
start_htm ({-bgcol or=>%col or},’ Custoni zabl e Page’),
h1(’ Customi zabl e Page’),
"Set this page’'s background color to:", br,
start_form
radi o_group(-nanme=>' col or’,
-value=>["white', ' red ,’green’,’black’,
"blue’,’silver’,’cyan'],

-col s=>2),
subni t (- name=>" Set Background’),
end_form
p,
hr,
end_htn ;

3.2.2 Making Stateful Formsg

Many real Web applications are more than a single page. Some may span multiple pages and fill-out
forms. When the user goes from one page to the next, you’'ve got to save the state of the previous page
somewhere. A convenient and cheap place to put state information is in hidden fields in the form itself.
Script 1.2.1 is an example of a loan application with a total of five separate pages. Forward and back
buttons allows the user to navigate between pages. The script remembers al the pages and summarizes
them up at the end.

Script 1.2.1: |oan.pl

#!/usr/ 1 ocal / bi n/ perl

script: |oan.pl
use C@ qgw :standard :htm 3/;

this defines the contents of the fill out forns
on each page.
ny @PACGES = (' Personal Information’,’ References’,’ Assets’,’ Review ,'Confirmation');
ny %1 ELDS = (' Personal Information’ => ['Nane',' Address’,’ Tel ephone’,’ Fax'],
" Ref er ences’ => [’ Personal Reference 1',’ Personal Reference 2'],
" Asset s’ => [’ Savi ngs Account’,’ Hone’',’' Car’]

)

29 Jan 2004 41

3.2.2 Making Stateful Forms

my %ALL_FIELDS = ();
accunul ate the field nanmes into %ALL_FI ELDS;
foreach (val ues %I ELDS) {
grep($ALL_FI ELDS{$_}++, @);
}

figure out what page we're on and where we're heading.
ny $current _page = cal cul at e_page(paran(’ page’'), paran(’'go’'));
ny $page_nanme = $PAGES[$current _page];

print_header ($page_nane);

print_forn($current_page) i f $FI ELDS{ $page_nane};
print_revi ew($current_page) i f $page_nanme eq ' Review ;
print_confirmation($current_page) if $page_nane eq ’'Confirmation’;
print end_htnm;

CALCULATE THE CURRENT PAGE

sub cal cul at e_page {
ny ($prev, $dir) = @;
return O if $prev eq '’; # start with first page
return $prev + 1 if $dir eq 'Subnmit Application’;
return $prev + 1 if $dir eq ' Next Page’;
return $prev - 1 if $dir eq ’'Previous Page’;

}

PRINT HTTP AND HTML HEADERS
sub print_header {
ny $page_nane = shift;
print header,
start_htm ("Your Friendly Fam |y Loan Center"),
h1("Your Friendly Family Loan Center"),
h2($page_nane) ;
}

PRI NT ONE OF THE QUESTI ONNAI RE PAGES
sub print_form{
ny S$current_page = shift;

print "Please fill out the formconpletely and accurately.",
start_form
hr;

draw_f or m(@ $FI ELDS{ $page_nane}});

print hr;

print submit(-nane=>'go’, -val ue=>' Previ ous Page’)
if $current_page > O;
print submt(-name=>"go’, -val ue=>" Next Page’),
hi dden(- name=>' page’, -val ue=>$current _page, -override=>1),
end_form
}

PRI NT THE REVI EW PACGE
sub print_review {
ny S$current_page = shift;
print "Please review this information carefully before submitting it. ",
start_form
ny (@ows);
foreach $page (' Personal Information’,’ References’,’ Assets’) {
push(@ ows, t h({-al i gn=>LEFT}, en{ $page)));

42 29 Jan 2004

Cute Tricks With Perl and Apache

}

foreach $field (@ $Fl ELDS{ $page}}) {
push(@ ows,
TR(th({-align=>LEFT}, $field),
td(param($field)))
)
print hidden(-name=>$field);

}

print table({-border=>1}, capti on($page), @ ows),
hi dden(- name=>' page’, -val ue=>$current _page, -override=>1),
subm t (- name=>' go’, - val ue=>’ Previ ous Page’),
subm t (- name=>' go’, -val ue=>' Subnit Application'),
end_form

PRI NT THE CONFI RVATI ON PAGE
sub print_confirmation {

print "Thank you. A loan officer will be contacting you shortly.

p,
a({-href=>"../source. htm '}, Code exanples’);

CREATE A GENERI C QUESTI ONNAI RE
sub draw form{

}

my (@ields) = @;
nmy (%ields);
grep ($fields{$_}++, @ields);
ny (@idden_fields) = grep(!$fields{$_}, keys %ALL_FI ELDS);
ny (@ows);
foreach (@ields) {
push(@ ows,
TR(th({-align=>LEFT},$),
td(textfield(-nane=>$_, -si ze=>50))
)

)
}
print table(@ows);

foreach (@i dden_fields) {
print hidden(-nane=>$_);

}

3.2.2.1 [Keeping State with Cookied

3.2.2 Making Stateful Forms

If you want to maintain state even if the user quits the browser and comes back again, you can use
cookies. Script 1.2.2 records the user’s name and color scheme preferences and recreates the page the way
the user likes up to 30 days from the time the user last used the script.

Script 1.2.2: preferences. pl

#!/usr/ | ocal / bi n/ perl

file: preferences. pl

29 Jan 2004

3.2.2 Making Stateful Forms

use CAd gw :standard :htm 3);

Some constants to use in our form

nmy @olors = qw aqua bl ack blue fuschia gray green |inme naroon navy olive
purple red silver teal white yellow;

ny @izes=("<default>",1..7);

recover the "preferences" cookie.
nmy %preferences = cookie(’ preferences’);

If the user wants to change the background col or or her

name, they will appear anong our CA paraneters.

foreach (’'text’,’background ,’ nane’,’size') {
$preferences{$_} = param($_) || $preferences{$_};

}

Set some defaults
$preferences{’ background’} |[|= "silver’;
$preferences{ text’} ||= "black’;

Refresh the cookie so that it doesn't expire.
nmy $t he_cooki e = cooki e(-nane=>" preferences’,
-val ue=>\ %pr ef er ences,
-path=>"/",
-expi res=>"+30d");
print header (-cooki e=>%$t he_cooki e);

Adjust the title to incorporate the user’s name, if provided.
$title = $preferences{’ nane’} ?
"Wel come back, $preferences{nanme}!" : "Custom zabl e Page";

Create the HTML page. W use several of the HTM. 3.2
extended tags to control the background col or and the
font size. |It’'s safe to use these features because

cookies don't work anywhere el se anyway.
print start_htm (-title=>%title,

- bgcol or =>$pr ef er ences{’ background’},
-text=>$preferences{ text’}

)
print basefont ({-size=>$preferences{size}}) if $preferences{’ size’'} > 0;
print h1($title);
Create the form
print hr,
start_form
"Your first name: ",
textfiel d(-nanme=>" nane’,
- def aul t =>$pr ef erences{’ nane’ },
-si ze=>30), br,

tabl e(
TR(

44 29 Jan 2004

Cute Tricks With Perl and Apache 3.2.3 Creating Non-HTML Types

td("Preferred"),
td("Page color:"),
t d(popup_nenu(- nane=>" background’ ,
-val ues=>\ @ol ors,
- def aul t =>$pr ef er ences{’ background’ })

),

td(’ "),

td("Text color:"),

t d(popup_nenu(- nane=>"t ext ',
-val ues=>\ @ol ors,
-def aul t =>$pref erences{’ text’})

)
)
TR(

td(’ "),

td("Font size:"),

t d(popup_nenu(- nane=>’ si ze’'

-val ues=>\ @i zes,
- def aul t =>$pr ef erences{’ si ze' })

)
).

subnit (-1 abel =>’ Set preferences’),
end_form

hr,

end_htn ;

3.2.3 [Creating Non-HTML Typeq

CGlI can do more than just produce HTML documents. It can produce any type of document that you can
output with Perl. Thisincludes GIFs, Postscript files, sounds or whatever.

Script 1.3.1 creates a clickable image map of acolored circle inside a square. The script is responsible both
for generating the map and making the image (using the GD.pm library). It also creates a fill-out form that
lets the user change the size and color of the image!

Script 1.3.1: circle.pl

#!/usr/ | ocal / bi n/ perl

script: circle.pl
use GD;
use CA qgw :standard :imagenap/;

use constant RECTSI ZE => 100;

use constant Cl RCLE_RADI US => 40;

my Y%COLORS = (
"white' => [255, 255, 255],
"red’ => [255,0,0],
"green’ => [0, 255,0],
"blue’ => 10,0, 255],

29 Jan 2004 45

3.2.3 Creating Non-HTML Types

"black’ =>[0,0,0],

" bi sque’ => [255, 228, 196],

' papaya whip’ => [255, 239, 213],
"sienna’ => [160, 82, 45]

)

ny $draw = paran(’draw);
ny $circle_color = paran(’color’) || ’bisque’;
ny $mag = paran(’ magnification) || 1;
if ($draw) {

draw_i mage();
} else {

make_page() ;
}

sub draw_i nage {
create a new i mage
ny $i m= new QD : | nage(RECTSI ZE* $nag, RECTSI ZE* $nag) ;

all ocate some colors

ny $white = $i m >col or Al l ocate(@ $COLORS{ white'}});

ny $bl ack = $i m >col or Al | ocat e(@ $COLORS{’ bl ack’ }});

ny $circlecolor = $i m>col or Al l ocate(@ $COLORS{$circle_color}});

make the background transparent and interlaced
$i m >t ransparent ($white);
$im>interlaced(’ true’);

Put a black frame around the picture
$i m >rect angl e(0, 0, RECTSI ZE* $mag- 1, RECTSI ZE* $mag- 1, $bl ack) ;

Draw the circle

$i m >ar c(RECTSI ZE* $nmg/ 2, RECTSI ZE* $nag/ 2,
Cl RCLE_RADI US* $rmag* 2,
Cl RCLE_RADI US* $rmag* 2,
0, 360, $bl ack) ;

And fill it with circlecolor
$im>fill (RECTSI ZE* $nmag/ 2, RECTSI ZE* $rmag/ 2, $ci rcl ecol or) ;

Convert the inage to G F and print it
print header(’'image/gif’),$im>gif;
}

sub nmake_page {
print header(),
start_htm (-title=>"Feeling Crcular’,-bgcolor=>white'),
hl1(’A Crcleis as a Circle Does’),
start_form

"Magni fication: ",radi o_group(-name=>' nagnification’,-values=>[1..4]), br,
"Col or: ", popup_nenu(-name=>'col or’, -val ues=>[sort keys %COLORS]),

subm t (- val ue=>" Change’),

end_form

print em(paran(’ message’) || 'click in the drawing’);

ny $url = url(-relative=>1,-query_string=>1);

46 29 Jan 2004

Cute Tricks With Perl and Apache 3.2.3 Creating Non-HTML Types

$url .="7?" unless param();
$url .=’ &draw=l’;
print p(

i mg({-src=>%$url,
-al i gn=>" LEFT",
- usemap=>' #map’ ,
-border=>0}));

print Map({-name=> map’},
Area({-shape=>' Cl RCLE',
- hr ef =>par an(- nane=>’ nessage’ , - val ue=>"You clicked in the circle")
&& url (-relative=>1, -query_string=>1),
-coords=>joi n(',’, RECTSI ZE* $nag/ 2, RECTSI ZE* $rag/ 2, Cl RCLE_RADI US* $nag) ,
-alt=>"Circle'}),
Area({-shape=>' RECT",
- hr ef =>par an(- nane=>’ nessage’ , - val ue=>"You clicked in the square")
&& url (-relative=>1, -query_string=>1),
-coords=>join(’,’, 0,0, RECTSI ZE* $nag, RECTSI ZE* $mag) ,
-alt=>"Square’}));
print end_htnm;
}

Script 1.3.2 creates a GIF89a animation. First it creates a set of simple GIFs, then uses the combine
program (part of the ImageMagick package) to combine them together into an animation.

I’m not a good animator, so | can't do anything fancy. But you can!

#1/usr/| ocal / bi n/ perl

script: ani mated. pl
use @&,
use File:: Path;

use constant START => 80;
use constant END => 200;
use constant STEP => 10;
use constant COVBI NE => '[usr/local/bin/convert’;

ny @OVBI NE_OPTIONS = (-delay => 5,
-loop => 10000);

ny @OLORS = ([240, 240, 240] ,
[220, 220, 220],
[200, 200, 200] ,
[180, 180, 180],
[160, 160, 160],
[140, 140, 140],
[150, 120, 120],
[160, 100, 100],
[170, 80, 80]

[180, 60, 60]
[190, 40, 40]
[200, 20, 20]
[210,0,0]);

29 Jan 2004 47

3.2.4 Document Translation

@OLORS = ((@OLCRS, rever se(@OLORS)) ;

ny @ILES = ();

nmy $dir = create_tenporary_directory();

ny $i ndex = 0;

for (nmy $r = START; $r <= END; $r+=STEP) {
dr aw $r, $i ndex, $dir);
$i ndex++;

}

for (my $r = END; $r > START; $r-=STEP) {
dr aw $r, $i ndex, $dir);

$i ndex++;
}
emt the G F89a
$ =1,

print "Content-type: inmage/gif\n\n";
syst em COVBI NE, @XOVBI NE_OPTI ONS, @I LES, "gi f:-";

rmree([$dir],0,1);
sub draw {

ny ($r, $color_index,$dir) = @;
ny $im= new GD:: | mage(END, END);

ny $white = $i m>col or Al | ocat e(255, 255, 255) ;
ny $bl ack = $i m >col or Al l ocate(0, 0, 0);
ny $col or = $i m>col or Al | ocat e(@ $COLORS[$col or _i ndex % @OLORS] });

$i m >rect angl e(0, 0, END, END, $whi t e) ;

$i m >ar c(ENDY 2, ENDY 2, $r, $r, 0, 360, $bl ack) ;

$im>fill (END/ 2, END/ 2, $col or);

ny $file = sprintf("%/ picture. ¥®2d.gif", $dir, $col or _i ndex);
open (QUT,">$file") || die "couldn't create $file: $!";
print OUT $im>gif;

cl ose QUT;

push(@l LES, $file);

sub create_tenporary_directory {

ny $basename = "/usr/tnp/ani mat e$$";

ny $count er =0;

whil e ($counter < 100) {
nmy $try = sprintf("$basenane. ¥94d", $counter);
next if -e $try;
return $try if nkdir $try, 0700;

} continue { $counter++; }

die "Couldn’t nmake a tenporary directory";

3.2.4 [Document Trandlation|

Did you know that you can use a CGlI script to trandate other documents on the fly? No s**t! Script 1.4.1
is a script that intercepts all four-letter words in text documents and stars out the naughty bits. The docu-
ment itself is specified using additional path information. We're a bit over-literal about what a four-letter
word is, but what' sthe fun if you can’t be extravagant?

48 29 Jan 2004

Cute Tricks With Perl and Apache 3.2.4 Document Tranglation

Script 1.4.1: naughty. pl

#! /usr/ | ocal / bi n/ perl
Script: naughty. pl

use CE ’':standard’;
ny $file = path_translated() ||
die "nust be called with additional path info";

open (FILE, $file) || die "Can’t open $file: $!'\n";
print header(’'text/plain’);
while (<FILE>) {

s/I\b(\wW)\wW{ 2} (\w) \ b/ $1**$2/ g;

print;
}
cl ose FILE;

4.1 won't work on HTML files because the HTML tags will get starred out too. If you find it alittle limit-
ing to work only on plain-text files, script 1.4.2 uses LWP's HTML parsing functions to modify just the
text part of an HTML document without touching the tags. The script’s a little awkward because we have
to guess the type of file from the extension, and redirect when we're dealing with a non-HTML file. We
can do better with mod_perl.

#!/usr/ | ocal / bi n/ perl

Script: naughty2. pl
package HTM.:: Parser: : Fi xNaughty;

requi re HTM.: : Parser;
@HTML: : Par ser:: Fi xNaughty:: I SA = ' HTM.: : Parser’ ;

sub start {
ny ($self,$tag, $attr, $attrseq, $origtext) = @;
print $origtext;

}
sub end {
ny ($self,$tag) = @;
print "</$tag>";
}
sub text {
ny ($self,$text) = @;
$text =~ s/\b(\w\wW{2}(\w)\b/$1**$2/g;
print $text;
}

package nmai n;
use CA qgw header path_info redirect path_translated/;

my $file = path_translated() ||
die "nmust be called with additional path info";
$file .= "index.htm" if $file =~ m/$!;

unless ($file =~ /\.htm ?2$/) {
print redirect(path_info());

29 Jan 2004 49

3.2.4 Document Translation

exit O;

}

nmy $parser = new HTM.:: Parser: : Fi xNaughty;
print header();
$parser->parse_file($file);

A cleaner way to do this is to make this into an Apache Handler running under mod_perl
Apache: : Fi xNaught y:

file: Apache/ Fi xNaughty. pm
prefefine the HTML parser that we use afterwards
package HTM.:: Parser: : Fi xNaughty;

requi re HTM.: : Parser;
@HTML: : Par ser:: Fi xNaughty:: I SA = ' HTM.: : Par ser’ ;

sub start {
ny ($self,$tag, $attr, $attrseq, $origtext) = @;
print $origtext;

}
sub end {
ny ($self,$tag) = @;
print "</$tag>";
}
sub text {
ny ($self,$text) = @;
$text =~ s/\b(\w\wW{2}(\w)\b/$1**$2/g;
print $text;
}

now for the nod_perl handl er
package Apache:: Fi xNaughty;

use Apache:: Constants gw : conmon/;

use strict;

use war ni ngs;

use CA qgw header path_info redirect path_translated/;

sub handl er {
ny $r = shift;

unl ess(-e $r->finfo) {

$r->l og_reason("Can’'t be found", $r->filenane);
return NOT_FOUND,

}

unl ess ($r->content_type eq "text/htm’) {
return DECLI NED;

}
ny $parser = new HTM.:: Parser:: Fi xNaughty;

$r->send_http_header (' text/htnl’);
$parser->parse_file($file);

50

. Let'slook at

29 Jan 2004

Cute Tricks With Perl and Apache 3.2.4 Document Tranglation

return OK;

}

1;
END__

You'll configure this like so:

Alias /naughty/ /path/to/doc/root/
<Location / naughty>

Set Handl er perl-script

Per | Handl er Apache: : Fi xNaughty
</ Locati on>

Now, al files being served below the /naughty URL will be the same as those served from your document
root, but will be processed and censured!

3.2.4.1 |[Smart Redirection|

There's no need even to create a document with CGI. You can simply redirect to the URL you want.
Script 1.4.3 chooses a random picture from a directory somewhere and displays it. The directory to pick
from is specified as additional path information, asin:

/ cgi - bi n/ random pi ct/ banner s/ egr egi ous_adverti si ng

Script 1.4.3 random pi ct. pl

#!/usr/ | ocal/bin/perl
script: random pict. pl

use CA qgw :standard/;
ny $PI CTURE_PATH = pat h_transl ated();
ny $PI CTURE_URL = path_info();
chdir $PI CTURE_PATH
or die "Couldn't chdir to pictures directory: $!";
my @ictures = <*.{jpg,gif}>
nmy $l ucky_one = $pictures[rand(@ictures)];
die "Failed to pick a picture" unless $lucky_one;

print redirect("$PI CTURE_URL/ $l ucky_one");

Under mod_perl, you would do this (the bigger size is because we're doing more checks here):

file: Apache/ RandPi cture. pm

package Apache:: RandPi cture;

use strict;
use Apache:: Constants gw : conmon REDI RECT);
use DirHandl e ();

sub handl er {

ny $r = shift;
ny $dir_uri = $r->dir_config(’ PictureDir’);

29 Jan 2004 51

3.2.5 File Uploads

unless ($dir_uri) {
$r->log_reason("No PictureDir configured");
return SERVER ERROR

}

$dir_uri .="/" unless $dir_uri =~ m/$:;

ny $subr = $r->| ookup_uri ($dir_uri);

ny $dir = $subr->fil enane;

Get list of inmages in the directory.

ny $dh = DirHandl e- >new($dir);

unl ess ($dh) {
$r->log_error("Can't read directory $dir: $!'");
return SERVER ERROR;

}

nmy @iles;

for my $entry ($dh->read) {
get the file’'s MM type
ny $rr = $subr->l ookup_uri ($entry);
ny $type = $rr->content_type;
next unl ess $type =~ m "image/:;
push @iles, $rr->uri;

}

$dh->cl ose;

unless (@iles) {
$r->log_error("No inmage files in directory");
return SERVER _ERROR;

}

ny $lucky_one = $files[rand @il es];
internal redirect, so we don't have to go back to the client
$r->i nternal _redirect($l ucky_one);
return REDI RECT;
}

1;
__END

3.2.5 [File Uploadd

Everyone wants to do it. | don't know why. Script 1.5.1 shows a basic script that accepts a file to upload,
reads it, and prints out its length and MIME type. Windows users should read about binmode() before they
try this at home!

Script 1.5.1 upload. pl

#!/usr/ 1 ocal/bin/perl
#script: upl oad. pl

use CA qgw :standard/;
print header,
start_html ("file upload),

hi(’ file upload);
print_form) unl ess param

52 29 Jan 2004

Cute Tricks With Perl and Apache 3.3 Part I1: Web Site Care and Feeding

print_results() if param
print end_htni;

sub print_form{
print start_nultipart_form),
filefield(-name=>"upl oad’, -si ze=>60), br,
submit (-1 abel =>" Upload File'),

end_form
}
sub print_results {
ny $l engt h;
ny $file = paran(’ upload);
if (!$file) {
print "No file uploaded.";
return;
}
print h2(' File nane’'), $file;
print h2("File MM type'),
upl oadl nfo($file)->{" Content-Type'};
while (<$file>) {
$length += length($);
}
print h2(" File length'), $l ength;
}

3.3 [Part |I1: Web Site Care and Feeding

These scripts are designed to make your life as a Webmaster easier, leaving you time for more exciting
things, like tango lessons.

3.3.1 [Logs! Logs! Logs!|

Left to their own devices, the log files will grow without limit, eventually filling up your server’s partition
and bringing things to a grinding halt. But wait! Don't turn off logging or throw them away. Log files are
your friends.

3311

Script 11.1.1 shows the basic script for rotating log files. It renames the current "access log" to
"access 10g.0", "access log.0" to "access log.1", and so on. The oldest log gets deleted. Run it from a
cron job to keep your log files from taking over. The faster your log files grow, the more frequently you
should run the script.

Script 11.1.1: Basic Log File Rotation

#!/usr/ | ocal / bi n/ perl

$LOGPATH="/ usr /| ocal / apache/ | ogs’ ;

@Q.OGNAMES=("' access_log’', error_log','referer_log' ,’agent_log');
$PI DFI LE = ' httpd. pid;

$MAXCYCLE = 4;

29 Jan 2004 53

3.3.1 Logs! Logs! Logs!

chdir $LOGPATH, # Change to the log directory
foreach $filenane (@OGNAMVES) ({
for (my $s=$MAXCYCLE, $s >= 0; $s--) {

$ol dnane = $s ? "$fil enane. $s" : $fil enane;
$newnane = join(".", $fil ename, $s+1) ;
renane $ol dnane, $newnane if -e $ol dnane;
}
}
kill "HUP ,*‘cat $PIDFILE ;

3.3.1.2 [Log rotation and archiving

But some people don’t want to delete the old logs. Wow, maybe some day you could sell them for alot of
money to a marketing and merchandising company! Script 11.1.2 appends the oldest to a gzip archive. Log
files compress extremely well and make great bedtime reading.

Script 11.1.2: Log File Rotation and Archiving

#!/usr/ | ocal / bi n/ perl

$LOGPATH = "Jusr/local /apache/l ogs’;
$PI DFI LE = "httpd. pid;

$MAXCYCLE = 4,

$&I P = '/bin/gzip;

@ OGNAMES=(" access_log’, error_log’, ' referer_log' ,’ agent_log’);
%ARCHI VE=(" access_l og’ =>1, " error_|l og’ =>1);

chdir $LOGPATH, # Change to the log directory
foreach $filename (@OGNAMES) {
system "$G&ZI P -c¢ $fil ename. $MAXCYCLE >> $fil enane. gz"
if -e "$filenane. $MAXCYCLE" and $ARCHI VE{ $fi | enane};
for (my $s=$MAXCYCLE;, $s >= 0; $s--) {

$ol dname = $s ? "$fil enane. $s" : $fil enane;
$newnane = join(".", $fil ename, $s+1);
renanme $ol dnane, $newnane if -e $ol dnane;
}
}
kill "HUP ,‘cat $PIDFILE;

3.3.1.3 |[Log rotation, compression and ar chiving

What's that? Someone broke into your computer, stole your log files and now he's selling it to a Web
marketing and merchandising company? Shame on them. And on you for letting it happen. Script 11.1.3
uses idea (part of the SSLEay package) to encrypt the log before compressing it. Y ou need GNU tar to run
thisone. Thelog files are individually compressed and encrypted, and stamped with the current date.

Script 11.1.3: Log File Rotation and Encryption

#! /usr /| ocal / bi n/ perl
use PCSI X "strftinme’;

$LOGPATH = '/ home/ ww/ | ogs’ ;
$PI DFI LE = httpd. pid ;
$MAXCYCLE = 4;

54 29 Jan 2004

Cute Tricks With Perl and Apache 3.3.1 Logs! Logs! Logs!

$1 DEA = "Jusr/local/ssl/bin/idea;

$G&ZI P = '/bin/gzip;

$TAR ='/bin/tar’;

$PASSWDFI LE = '/ home/ ww/ | ogs/ secr et . passwd’ ;

@Q.OGNAMES=(' access_log’,’error_log ,'referer_log ,’agent_log');
%ARCHI VE=(' access_l og’ =>1, ' error _|l og’ =>1);

chdir $LOGPATH, # Change to the log directory

foreach $filenane (@OGNAMVES) ({
ny $ol dest = "$fil ename. SMAXCYCLE";
archive($ol dest) if -e %ol dest and $ARCH VE{ $fi | enane};
for (nmy $s=$MAXCYCLE;, $s >= 0; $s--) {

$ol dname = $s ? "$filenane. $s" : $fil enane;
$newnane = join(".", $fil enane, $s+1);
renane $ol dnane, $newnane if -e $ol dnane;
}
}
kill "HUP ,*‘cat $PIDFILE ;
sub archive {
ny $f = shift;
ny $base = $f;

$base =~ s/\.\d+$//;

nmy $fn = strftime("$base. %r- ¥%m %_%1. ¥M gz. i dea", | ocal ti ne);
system "$GZIP -9 -c $f | $IDEA -kfile $PASSVWDFI LE > $fn";
system "$TAR rvf $base.tar --renove-files $fn";

)
3314

There's alot you can learn from log files. Script 11.1.4 does the basic access log regular expression match.
What you do with the split-out fields is limited by your imagination. Here's atypical log entry so that you
can follow along (wrapped for readability):

portio.cshl.org - - [03/Feb/1998:17:42:15 -0500]
"CGET /pictures/snmall _| ogo.gif HTTP/1.0" 200 2172

Script 11.1.4: Basic Log Parsing

#!/usr/ | ocal / bi n/ perl

SREGEX=/M(\S+) (\VS+) (VSH) V[([A11H)V] "(\ww) (\VSH) . *" (\d+) (\S+H)/;
while (<>) {
($host, $rfc931, $user, $dat e, $r equest , $URL, $st at us, $byt es) = m $REGEX o;
&col | ect _some_statistics;

}

&print_sone_statistics;

sub col |l ect_sonme_statistics {
for you to fill in

}

sub print_sone_statistics {
for you to fill in

}

29 Jan 2004 55

3.3.1 Logs! Logs! Logs!

Script 11.1.5 scans the log for certain status codes and prints out the top URLs or hosts that triggered them.
It can be used to get quick-and-dirty usage statistics, to find broken links, or to detect certain types of
breakin attempts. Use it like this:

% find_status.pl -t10 200 ~www | ogs/ access_| og

56

TOP 10 URLS/ HOSTS W TH STATUS CODE 200:

REQUESTS URL/ HOST

1845 /[www wi | ogo. gi f

1597 /cgi-bin/contig/sts_by nane?dat abase=r el ease
1582 / WAV f aqs/ ww securi ty-faq. ht m
1263 /i cons/ caution. xbm

930 /

886 / ftp/ publ/software/ WMV cgi _docs. ht m
773 / cgi - bin/contig/phys_map

713 /icons/dna.gif

686 / WA pi cs/ smal | _awl ogo. gi f

Script 11.1.5: Find frequent status codes
#!/usr/ | ocal / bi n/ perl
File: find_status.pl

require "getopts.pl";

&CGetopts(’'L:t:h’) || die <<USACE;

Usage: find_status.pl [-Lth] <codel> <code2> <code3> ...
Scan Wb server log files and list a sumary
of URLs whose requests had the one of the
i ndi cated status codes.

Opti ons:
-L <domai n> Ignore |ocal hosts matching this donain
-t <integer> Print top integer URLS/ HOSTS [10]
-h Sort by host rather than URL

USACE

if (éopt_L) {

$opt _L=~s/\./\\./g;

$I GNORE = "(~[~.]+ $opt _L)\$";
}
$TOP=$opt _t || 10;

while (@RGY) {
I ast unl ess $ARGV[0] =~/ "\ d+$/ ;

$CODES{shi ft @ARGV} ++;

}
while (<>) {
($host, $rfc931, $user, $dat e, $request, SURL, $st at us, $hytes) =
INVSH) (VSH) (VSH) V([T H)N] "(\w) (VSH).*" (\d+) (\SH)/;
next unl ess $CODES{ $st at us};
next if $I GNORE && $host =~/ $1 GNORE/ i 0;
$info = $opt_h ? $host : $URL;
$f ound{ $st at us} - >{ $i nf o} ++;
}

29 Jan 2004

Cute Tricks With Perl and Apache 3.3.1 Logs! Logs! Logs!

foreach $status (sort {$a<=>$b;} sort keys UCODES) {
$i nfo = $f ound{ $st at us};
$count = $TOP;

foreach $i (sort {$info->{$b} <=> $info->{%$a};} keys % $info}) {
wite;
| ast unl ess --$count;

}
$- = 0; # force a new top-of-report

}

format STDOUT_TOP=

TOP @t# URLS/ HOSTS W TH STATUS CODE @t#:
$TOP, $st at us

REQUESTS URL/ HOST

format STDOUT=
O B <<<LKLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKL

$info->{$i}, $i

3.3.1.5 |Offline Rever se DNS Resolution|

Many sites turn off reverse name look-ups in order to improve server performance. The log files will
contain the IP addresses of remote hosts, but not their DNS names. Script 11.1.6 will do the reverse name
resolution off-line. You can run it before the log rotation and archiving scripts, preferably on a machine
that isn't busy serving Web requests at the same time.

This script maintains a cache of resolved names. Because performance is more important than complete-
ness, if an address doesn't resolve after two seconds, it moves on to the next one and never tries that name

again.

Script 11.1.6: Reverse DNS Resol ution

#1/usr/| ocal / bi n/ perl

use constant TI MEOUT => 2;
$SI GCALRM = sub {die "tinmeout"};

while (<>) {

s/ N(\S+) /| ookup($1)/ e;
} continue {

print;
}

sub | ookup {
ny $ip = shift;
return $ip unless $i p=~/\d+\.\d+\ . \d+\ .\d+/;
return $CACHE{$i p} if exists $CACHE{$i p};
ny @ = eval << END;
al ar m(TI MEQUT) ;

29 Jan 2004 57

3.3.1 Logs! Logs! Logs!

ny @ = gethostbyaddr(pack('C4 ,split(’\.",$ip)),2);
al arm(0);
@;
END
$CACHE{ $i p} = $h[0];
return $CACHE{$i p} || $ip;
}

3.3.1.6 [Detecting Robotg

| was very upset a few months ago when | did some log analysis and discovered that 90% of my hits were
coming from 10% of users, and that those 10% were all robots! Script 11.1.7 is the script | used to crunch
the log and perform the analysis. The script workslike this:

1. we assume that anyone coming from the same I P address with the same user agent within 30 minutes
is the same person/robot (not quite right, but close enough).

2. anything that fetches /robots.txt is probably arobot, and a"polite” one, to boot.
3. we count the total number of accesses a user agent makes.
4. we average the interval between successive fetches.

5. we calculate an "index" which is the number of hits over the interval. Robots have higher indexes
than people.

6. we print everything out in a big tab-delimited table for graphing.

By comparing the distribution of "polite” robots to the total distribution, we can make a good guess as to
who the impolite robots are.

Script 11.1.7: Robo-Cop

#!/usr/ | ocal / bi n/ perl

use Ti nme: : ParseDat e;
use strict ’vars’;

after 30 minutes, we consider this a new session
use constant MAX_| NTERVAL => 60*30;
ny (% TS, % NT_NUMERATOR, % NT_DENOM NATOR, %POLI TE, %.AST, $HI TS) ;

This uses a non-standard agent log with lines fornatted like this:
[08/ Feb/ 1998: 12: 28: 35 -0500] phil a249-pri.voicenet.com"Mzilla/3.01 (Wn95; U" /cgi-bin/fortune

ny $file = shift;
open (IN, $file=~/\.gz$/ ? "zcat $file |" : $file) || die "Can't open file/pipe: $!";

while (<IN>) {
ny($dat e, $host, $agent, SURL) = /N[(. +)\] (\SH) "(.*)" (\SH)$/;
next unless $URL=~/\. (htnl|htnftxt)$/;

$HI TS++;

$host = "$host: $agent"; # concatenate host and agent
$HI TS{ $host } ++;

ny $seconds = parsedat e($date);

if (SLAST{S$host}) {

58 29 Jan 2004

Cute Tricks With Perl and Apache 3.3.1 Logs! Logs! Logs!

ny $interval = $seconds - $LAST{S$host};
if ($interval < MAX_I NTERVAL) {
$I NT_NUMERATOR{ $host} += $interval;
$1 NT_DENOM NATOR{ $host } ++;
}

}

$LAST{ $host} = $seconds;

$POLI TE{ $host} ++ if $URL eq '/robots.txt’;

print STDERR $HI TS, "\n" if ($H TS % 1000) == O;
}

print out, sorted by hits
print join("\t",gw dient Robot Hits Interval Ht_Percent Index/),"\n";
foreach (sort {$H TS{$b}<=>$H TS{$a}} keys % TS) {

next unless $H TS{$_} >= 5; # not enough total hits to nean nuch
next unl ess $I NT_DENOM NATOR{$ } >= 5; # not enough consecutive hits to nean much

ny $mean_interval = $I NT_NUVERATOR{$ }/$I NT_DENOM NATOR{$ }:;
ny $percent_hits = 100*($H TS{$_}/$H TS);
ny $index = $percent _hits/ $nmean_interval;

print join("\t",

$_,
$POLI TE{$_} ? 'yes' : 'no',
$H TS{$ 3,
$nmean_i nterval ,
$percent _hits,
$i ndex

), "\n";

}

3.3.1.7 [Logging to syslog|

If you run a large site with many independent servers, you might be annoyed that they al log into their
own file systems rather than into a central location. Apache offers a little-known feature that allows it to
send its log entries to a process rather than afile. The process (a Perl script, natch) can do whatever it likes
with the logs. For instance, using Tom Christiansen’s Sy sl og module to send the info to a remote syslog
daemon.

Here' swhat you add to the Apache httpd.conf file:

<Vi rt ual Host www. conpanyl. conp

Custoniog "| /usr/local/apache/bin/logger conpanyl" conmon
bl ah bl ah
</ Vi rt ual Host >

<Vi rt ual Host www. conpany2. con®
Custoniog "| /usr/local/apache/bin/logger conpany2" conmon

bl ah bl ah
</ Vi rt ual Host >

Do the same for each server on the local network.

29 Jan 2004 59

3.3.1 Logs! Logs! Logs!

Here's what you add to each Web server’'s syslog.conf (this assumes that the central logging host has the

alias hostname "loghost":

local 0.info

@ oghost

Here' s what you add to the central log host’ s syslog.conf:

local 0.info

/var /| og/ web/ access_| og

Script 11.1.8 shows the code for the "logger” program:

Script 11.1.8 "l ogger"

#1/usr/| ocal / bi n/ perl
script: |ogger

use Sys:: Sysl og;

$SERVER NAME = shift || ' www ;
$FACILITY = 'local 0';
$PRICRITY = "info’;

Sys:: Sysl og: : setl ogsock(’ uni x’);

openl og ($SERVER _NAME, ' ndel ay’ , $FACI LI TY) ;

while (<>) {
chonp;
sysl og($PRICRITY, $_);

cl osel og;

3.3.1.8 |[Logging to a relational databasg

One of the selling points of the big commercial Web serversisthat they can log to relational databases via
ODBC. Big whoop. With alittle help from Perl, Apache can do that too. Once you've got thelog in arela-
tional database, you can data mine to your heart’s content.

This example uses the freeware mySQL DBMS. To prepare, create an appropriate database containing a
table named "access _log". It should have a structure like this one. Add whatever indexes you think you
need. Also notice that we truncate URL s at 255 characters. Y ou might want to use TEXT columns instead.

CREATE TABLE access_l og (

when datetine not null,
host var char (255) not nul I,
met hod char (4) not null,

url var char (255) not nul I,
aut h var char (50),

browser varchar (50),
ref erer varchar(255),

status smallint(3) not null,

byt es i nt(8)

60

default O

29 Jan 2004

Cute Tricks With Perl and Apache 3.3.2 My server fell down and it can’t get up!

Now create the following entriesin httpd.conf:

LogFormat "\ " o4 %- %m % % 9t ¥BHt\" 9 \"%\" % \"% User-agent}i\" % Referer}i % %" nysql
CustonmLog "| /usr/local/apache/bin/ mysqllog" nysql

Script 11.1.9 is the source code for mysgllog.

#! /usr/1 ocal / bi n/ perl

script: nysqgllog
use DBl ;

use constant DSN => ' dbi: nysql : www/ ;
use constant DB _TABLE => 'access_|log’;
use constant DB _USER => 'nobody’;

use constant DB PASSW => '’ ;

SPATTERN = **([*"]4)" (\S#) "(\S9) (\SH) [M]+ (As4) “([*]4)" (\SH) (\d¥) (1S4’
$db = DBI - >connect (DSN, DB_USER, DB_PASSWD) || die DBI->errstr;

$sth = $db->prepare("| NSERT | NTO ${\ DB_TABLE} VALUES(?,?,?,?2,2,2,2,2,?2)")
|| die $db->errstr;

while (<>) {
chonp;
ny($dat e, $host, $net hod, $url, Suser, $browser, $ref erer, $st at us, $bytes) = / $PATTERN o;
$user = undef if S$user eq '-’;
$referer = undef if $referer eq '-';
$browser = undef if $browser eq '-’;
$bytes = undef if $bytes eq '-’;
$st h- >execut e($dat e, $host, $net hod, $url , $user, $br owser, $ref erer, $st at us, $byt es) ;
}
$st h->fi ni sh;

$db- >di sconnect ;

NOTE: Your database will grow very quickly. Make sure that you have a plan for truncating or archiving
the oldest entries. Or have a lot of storage space handy! Also be aware that this will cause alot of traffic
on your LAN. Better start shopping around for 100BT hubs.

3.3.2 My server fell down and it can’t get up!|

Web servers are very stable and will stay up for long periods of time if you don't mess with them.
However, human error can bring them down, particularly if you have a lot of developers and authors
involved in running the site. The scripts in this section watch the server and send you an email message
when there's a problem.

3.3.2.1 [Monitoring alocal server|

The simplest script just tries to signal the Web server process. If the process has gone away, it sends out an
S.0.S. See script 11.2.1 shows the technique. Notice that the script has to run as root in order to success-
fully signal the server.

29 Jan 2004 61

3.3.2 My server fell down and it can’t get up!

#! /usr/ | ocal / bi n/ perl
script: |local SCS

use constant PIDFILE => '/usr/local/apache/var/run/httpd.pid ;

$MAI L = '/Jusr/sbin/sendmil’;
$MAI L_FLAGS = '-t -0i’';
$VEBVASTER = ’'webmaster’;

open (PID PIDFILE) || die PIDFILE ": $!'\n";
$pid = <PID>; close PID
kill 0,%$pid || sos();

sub sos {
open (MAIL,"| $MAIL $MAIL_FLAGS') || die "mail: $!"
ny $date = localtine();
print MAIL <<END

To: $WEBMASTER

From The Watchful Web Server Monitor <nobody>

Subj ect: Web server is down

| tried to call the Wb server at $date but there was
no answer.

Respectful ly yours,
The Watchful Web Server Mnitor

END
cl ose MAIL;
}

3.3.2.2 [Monitoring a remote ser ver]

Local monitoring won’t catch problems with remote machines, and they’ll miss subtle problems that can
happen when the Web server hangs but doesn’'t actually crash. A functional test is better. Script 11.2.2 uses
the LWP library to send aHEAD request to a bunch of servers. If any of them fails to respond, it sends out
an SOS. This script does not have to run as a privileged user.

Script 11.2.2 "renot eSCS"

#!/usr/ | ocal / bi n/ perl
script: renoteSCS

use LWP:: Sinpl e;

YSERVERS = (
"Fred's server" => "http://ww. fred. com,
"Martha's server" => "http://ww.stewart-Iliving.con,
"Bill's server" => ' http://ww. whitehouse. gov’
)

$MAI L = ' /usr/sbin/sendnail’;

$MAI L_FLAGS = -t -0i;

$WEBMASTER = ’'webnmaster’;

foreach (sort keys %SERVERS) ({
sos($_) unl ess head($SERVERS{$ });

62 29 Jan 2004

Cute Tricks With Perl and Apache

}

sub sos {
ny $server = shift;
open (MAIL,"| $MAIL $MAIL_FLAGS') || die "mail: $!'";
ny $date = localtine();

print MAIL <<END,
To: $WVEBMASTER
From The Wat chful
Subj ect: $server

Web Server Monitor <nobody>
is down

| tried to call
no one at hone.

$server at $date but there was

Respectful ly yours,

The Wat chf ul
END

cl ose MAIL;
}

Web Server Mbnitor

3.3.2.3 [Resurrecting Dead Serverg

3.3.2 My server fell down and it can’t get up!

So it’s not enough to get e-mail that the server’s down, you want to relaunch it as well? Script 11.2.3 isa
hybrid of local SOS and remoteSOS that tries to relaunch the local server after sending out the SOS. It has

to berun asroot, unless you' ve made apachectl suid to root.

Script 11.2.2 "weblLazarus"
#!/usr/ | ocal / bi n/ perl
script: weblLazarus

use LWP:: Sinple;
use constant URL
use constant APACHECTL

=> '"http://presto.capricorn.com’;

$MAI L = ' /usr/sbin/sendmail’;

$MAI L_FLAGS = -t -0i’;

$WEBMASTER = 'lstein@rego.capricorn.com;
head(URL) || resurrect();

sub resurrect {
open (STDOUT,"| $MAIL $MAIL_FLAGS"') ||
sel ect STDOUT; $| = 1;
open (STDERR, ">&STDOUT");

die "mail: $!'";

ny $date = localtime();

print <<END;
To: $VEBMASTER
From The Wat chful
Subj ect: Web server

Web Server
is down

Moni t or <nobody>

| tried to call the Wb server at $date but there was

no answer. | amgoing to try to resurrect it now
Munbl e, nmunbl e, munbl e, shazzzzammm
29 Jan 2004

=> '[usr/| ocal / apache/ bi n/ apachect!|’;

63

3.3.3 Site Replication and Mirroring

END

syst em APACHECTL, 'restart’;
print <<END,
That’'s the best | could do. Hope it hel ped.

Wor shi pfully yours,

The Web Monitor
END
cl ose STDERR;
cl ose STDQOUT;

}
Here' s the message you get when the script is successful:
Date: Sat, 4 Jul 1998 14:55:38 - 0400

To: | stein@rego. capricorn.com
Subj ect: Web server is down

| tried to call the Wb server at Sat Jul 4 14:55:37 1998 but there was
no answer. | amgoing to try to resurrect it now

Munbl e, nmunbl e, munble, shazzzzanmm

/usr/1 ocal / apache/ bi n/ apachect| restart: httpd not
[Sat Jul 4 14:55:38 1998] [debug] npd_so.c(258):
[Sat Jul 4 14:55:38 1998] [debug] npd_so.c(258):
/usr/1 ocal / apache/ bi n/ apachect| restart: httpd started

That’s the best | could do. Hope it hel ped.
Wor shipfully yours,

The Web Moni tor

3.3.3 [Site Replication and Mirroring

trying to start
| oaded nodul e setenvif_nodul e
| oaded nodul e uni que_i d_nodul e

Often you will want to mirror a page or set of pages from another server, for example, to distribute the
load amongst several replicate servers, or to keep a set of reference pages handy. The LWP library makes

this easy.
3.3.3.1 Mirroring Single Paged

% ./MrrorQOne. pl

cats.htm: Not Modified

dogs. htm: K

gillie fish.htrm: Not Mdified

29 Jan 2004

Cute Tricks With Perl and Apache

#! /usr/ | ocal / bi n/ perl
mrrorQOne. pl

use LWP:: Sinpl e;
use HITP: : St at us;

use constant DI RECTORY => '/l ocal /web/price_lists’;
9YOOCUMENTS = (

3.3.3 Site Replication and Mirroring

"dogs. htm’ => "http://ww. pets.com dogs/price_list.htm"’,
"cats.htm’ => 'http://ww.pets.comcats/price_list.htm"’,

)
chdi r DI RECTORY;

foreach (sort keys %OOCUMENTS) {
ny $status = mrror($DOCUMENTS{S$ },$);
warn "$. ", status_nessage($status),"\n";

}

3.3.3.2 [Mirroring a Document Tred

"gillie_fish.htm’ => "http://aquaria.conf prices.htm’

With alittle more work, you can recursively mirror an entire set of linked pages. Script 11.3.2 mirrors the
requested document and all subdocuments, using the LWP HTML: : Li nkExt or module to extract al the

HTML links.

#!/usr/ | ocal / bi n/ perl
File: mirrorTree.pl

use LWP:: User Agent;
use HTM.:: Li nkExt or;
use URI:: URL;

use File:: Path;

use Fil e:: Basenane;

YOONE =();

ny $URL = shift;

$UA = new LWP: : User Agent ;

$PARSER = HTM.:: Li nkExt or - >new() ;

$TOP = $UA- >request (HTTP: : Request - >new(HEAD => $URL)) ;
$BASE = $TOP- >base;

m rror (URI:: URL- >new($TOP- >r equest - >url));

sub mirror {
ny $url = shift;

get rid of query string "?" and fragnents "#"
ny $path = $url ->pat h;
ny $fixed_url = URl::URL->new ($url->scheme . "://’

make the URL rel ative

29 Jan 2004

$url ->netl oc .

$pat h) ;

65

3.3.3 Site Replication and Mirroring

ny $rel = $fixed_url->rel ($BASE);
$rel .="'index.htm’ if $rel=-m/$! || length($rel) == 0;

skipit if we've already done it
return i f $DONE{$rel}++;

create the directory if it doesn't exist already
ny $dir = dirnane($rel);
nkpath([$dir]) unless -d $dir;

mrror the docunent

ny $doc = $UA->mirror($fixed url, $rel);
print STDERR "$rel: ", $doc->nessage,"\n";
return if $doc->is_error;

Fol | ow HTM. docunents
return unless $rel=~/\.htm ?2%/i;
nmy $base = $doc- >base;

pull out the links and call us recursively
ny @inks = $PARSER->parse file("$rel")->links;
ny @refs = map { url ($_->[2], $base)->abs } @i nks;
foreach (@refs) {
next unless is_child($BASE $);
mrror($));

sub is_child {

ny ($base, $url) = @;

ny $rel = $url->rel ($base);

return ($rel ne $url) && ($rel '~ m~[/.]!);
}

3.3.3.3 [Checking for Bad Link¢g

A dlight modification of this last script alows you to check an entire document hierarchy (your own or
someone else’s) for bad links. The script shown in 11.3.3 traverses a document, and checks each of the
http:, ftp: and gopher: links to see if there's aresponse at the other end. Links that point to sub-documents
are fetched and traversed as before, so you can check your whole site in thisway.

% find_bad_links http://prego/apache-1. 2/

checking http://prego/ apache-1.2/...

checking http://prego/ apache-1.2/ manual /...

checking http://prego/apache-1. 2/ manual / m sc/footer. htnl ...
checking http://prego/ apache-1. 2/ manual / m sc/ header. htn ...
checking http://prego/apache-1. 2/ manual / m sc/ nopgp. htnl . ..
checki ng http://ww.yahoo. conf Sci ence/ Mat hemati cs/ Security_and_Encryption/...
checking http://ww. ef f.org/pub/ EFF/ Policy/ Cryptol...
checki ng http://ww. quadral ay. coni ww/ Crypt/Crypt.htm ...
checking http://ww.law. indiana.edu/lawiclu.htm...
checking http://bong. com ~brian. ..

checking http://prego/ apache-1. 2/ manual / cgi _path.htm ...
checking http://ww.ics.uci.edu/ pub/ietf/http/...

66 29 Jan 2004

Cute Tricks With Perl and Apache

BAD LI NKS:

manual / m sc/ known_bugs. ht i : http://ww. apache. or g/ di st/ patches/apply_to_1.2b6/

manual /msc/fin_wait_2.htm : http://ww.freebsd. org/

manual /mi sc/fin_wait_2. htm : http://ww.ncr.com

manual / m sc/ conpat _notes. html : http://ww.eit.conl

manual / m sc/ howt o. html : http://ww. zyzzyva. confrobots/al ert/
manual / mi sc/perf.html : http://ww. sof tware. hp. comi nternet/perf/tuning. htm
manual / m sc/perf.html : http://ww. qosi na. conl ~awni apache/ | i nux-tcp. ht m

manual / m sc/perf.html : http://ww. sun. conl sun-on-net/ Sun. | nternet. Sol uti ons/ perfornmance/

manual / m sc/perf.htm : http://ww. sun. conl sol ari s/ products/siss/

3.3.3 Site Replication and Mirroring

manual / m sc/ nopgp. html : http://ww. yahoo. conl Sci ence/ Mat hemati cs/ Security_and_Encryption/

152 docunents checked
11 bad |inks

Script 11.3.2 find_bad_links. pl

#!/usr/ | ocal / bi n/ perl

File: find_bad_links.pl
use LWP:: User Agent;

use HTM.:: Li nkExtor;

use URI:: URL;

use WWN : Robot Rul es;

Y%CAN HANDLE = (’ http’ =>1,

' gopher’ =>1,
' ftp =>1, # timeout problens?
)
YOUTCOMVE = ();
$CHECKED = $BAD = O0;
@AD = ();
nmy $URL = shift;
$UA = new LWP: : User Agent ;
$PARSER = HTM.: : Li nkExt or - >new() ;
$TOP = $UA- >r equest (HTTP: : Request - >new(HEAD => $URL));
$BASE = $TOP- >base;

handl e robot rules

ny $robots = URI::URL->new(’ robots.txt’, $BASE->schene.’://’ .$BASE->netl oc);
ny $robots_text = $UA->request (HTTP: : Request - >new(GET=>%$r obot s)) - >cont ent ;
$ROBOTRULES = WA : Robot Rul es- >new;

$ROBOTRULES- >par se($r obot s- >abs, $robot s_t ext);

check_links(URl:: URL->new($TOP- >r equest->url));
if (@GBAD) {
print "\ nBAD LI NKS:\n";
print join("\n", @AD),"\n\n";
}
print "$CHECKED docunents checked\n", scal ar (@AD)," bad |inks\n";

sub check_links {

29 Jan 2004

67

3.3.4 Load balancing

nmy $url = shift;
ny $fixed_url = $url;
$fixed_url =~ s/\#. +$//;

return 1 unl ess $CAN_HANDLE{ $url - >schene};

check cached outcones
return $OUTCOVE{ $fi xed_url} if exists $OUTCOVE{ $fi xed_url};

print STDERR "checking $fixed_url...\n";
$CHECKED++;

ny $rel = $url->rel ($BASE) || 'index.htm’;

ny $child = is_chil d($BASE, $url);

$UA- >t i neout (5) ;

ny $doc = $d = $UA->request (HTTP: : Request - >new(($child ? 'GET" : 'HEAD)=>3$url));
$OUTCOVE{ $fi xed_url} = $doc->i s_success;

return $OUTCOVE{ $f i xed_url}
unl ess $ROBOTRULES- >al | owed($f i xed_url)
&& $child && $doc->header (' Content-type’) eq 'text/htm’;

Fol | ow HTM. docunents
nmy $base = $doc- >base;

pull out the links and call us recursively
ny @inks = $PARSER- >par se($doc- >cont ent) - >l i nks;
ny @refs = map { url ($_->[2], $base)->abs } @i nks;

foreach (@refs) {
next if check_links($);
push (@BAD, "$rel : $_");

= =

sub is_child {
ny ($base, $url) = @;
ny $rel = $url ->rel ($bhase);
return ($rel ne $url) && ($rel '~ m~[/.]!);

}

3.3.4 |Load balancing

You've hit the big time, and your site is getting more hits than you ever dreamed of. Millions, zillions of
hits. What' s that? System load just passed 50 and response time is getting kinda s-1-o-w-w-w?

Perl to the rescue. Set up severa replica Web servers with different hostnames and |P addresses. Run this
script on the "main” site and watch it round-robin the requests to the replica servers. It uses | O : Socket

to listen for incoming requests on port 80. It then changes its privileges to run as nobody.nogroup, just like
area Web server. Next it preforks itself a few times (and you always thought preforking was something
fancy, didn’t you?), and goes into an accept () loop. Each time an incoming session comes in, it forks
off another child to handle the request. The child reads the HTTP request and issues the an HTTP redirec-

68 29 Jan 2004

Cute Tricks With Perl and Apache 3.3.4 Load balancing

tion to send the browser to arandomly selected server.

NOTE: Another way to do thisis to have multiple "A" records defined for your server’s hosthame and et
DNS caching distribute the load.

Script 11.4.1: A Load Bal ancing "Wb Server"

#!/usr/ | ocal / bi n/ perl

list of hosts to bal ance between
@HOSTS = gw wwil. web. org ww»2. web. org ww3. web. org ww4. web. or g/ ;

use | O : Socket ;

$SIG CHLD} = sub { wait() };

$ENV{’ PATH }="/bin:/usr/bin";
chonp($host name = ‘/bin/host nane');

Listen on port 80
$sock = 1O : Socket:: | NET->new Li sten => 5,
Local Port => 80,
Local Addr => $host nane,

Reuse = 1,

Proto => 'tcp');
becone "nobody"
$nobody = (getpwnan(’ nobody’))[2] || die "nobody is nobody";
$nogroup = (getgrnan(’ nogroup’))[2] || die "can't grok nogroup";
($<,%() = (%>, %)) = ($nobody, $nogroup); # get rid of root privileges!
($\,$/) = ("\r\n","\r\n\r\n"); # CR/LF on output/input

Go into server nbpde
cl ose STDIN;, close STDOUT; cl ose STDERR

prefork -- gee is that all there is to it?
fork() && fork() && fork() && fork() && exit O;

start accepting connections
while (nmy $s = $sock->accept()) {
do { $s->close; next; } if fork();
nmy $request = <$s>;
redirect ($1,$s) if $request=~/(?: GET| POST| HEAD| PUT) \ s+(\ S+)/;
$s->f | ush;
undef $s;
exit O;

sub redirect {
ny ($url,$s) = @;
ny $host = $HOSTS[r and(@GHOSTS) | ;
print $s "HTTP/ 1.0 301 Moved Tenporarily";
print $s "Server: Lincoln's Redirector/1.0";
print $s "Location: http://${host}${url}";

print $s :

29 Jan 2004 69

3.3.5 Torture Testing a Server

3.3.5 [Torture Testing a Server|

Any server written in C suffers the risk of static buffer overflow bugs. In the past, these bugs have led to
security compromises and Web server breakins. Script 11.2.3 torture tests servers and CGI scripts by
sending large amounts of random date to them. If the server crashes, it probably contains a buffer overflow
bug.

Here’' swhat you see when a server crashes:

%torture.pl -t 1000 -1 5000 http://ww. capricorn.com
torture.pl version 1.0 starting

Base URL: http://ww. capricorn.coni cgi-bin/search
Max random data | ength: 5000
Repeti tions: 1000
Post : 0
Append to path: 0
Escape URLs: 0
200 &K

200 &K

200 &K

200 &K

200 &K

500 Internal Server Error

500 Coul d not connect to www. capricorn.com 80
500 Coul d not connect to www. capricorn.com 80
500 Coul d not connect to www. capricorn.com 80

Script 11.5.1: torture tester

#!/usr/ | ocal / bi n/ perl

file: torture. pl
Torture test Web servers and scripts by sending themlarge arbitrary URLs
and record the outcone.

use LWP:: User Agent;
use URI:: Escape ’'uri_escape’;
require "getopts.pl"”;

$USAGE = <<USAGE;
Usage: $0 -[options] URL
Torture-test Web servers and CA scripts

Opti ons:
-l <integer> Max length of random URL to send [1024 byt es]
-t <integer> Nunber of times to run the test [1]

-P Use POST met hod rather than GET mnet hod

-p Attach random data to path rather than query string
-e Escape the query string before sending it

USACE

$VERSION = "1.0;

process comrand |ine

70 29 Jan 2004

Cute Tricks With Perl and Apache 3.3.5 Torture Testing a Server

&Getopts('|:t:Ppe’) || die $USAGE

get parameters

$URL = shift || die $USAGCE;

SMAXLEN = $opt | ne '’ ? $opt | : 1024;
$TIMES = $opt_t || 1;

$PCST = $opt _P || O;

$PATH = $opt_p || O;

$ESCAPE = $opt_e || O;

cannot do both a post and a path at the sane tine

$POST

=0 if $PATH

create an LWP agent
nmy $agent = new LWP: : User Agent ;

print <<EOF;
torture.pl version $VERSION starting
Base URL: $URL
Max random data | ength: $MAXLEN
Repeti tions: $TI MES
Post : $PCST
Append to path: $PATH
Escape URLs: $ESCAPE
ECF
Do the test $TIMES tines
while ($TIMES) {
create a string of random stuff

ny $garbage = random string(rand($SMAXLEN));
$garbage = uri_escape($garbage) if $ESCAPE;
ny $url = $URL;

ny $request;

if
}

el

}

29 Jan 2004

(length($garbage) == 0) { # if no garbage to add, just fetch URL
$request = new HITP: : Request (' GET', $url);

sif ($PCST) { # handl e POST request
ny $header = new HTTP:: Headers (
Cont ent _Type => 'application/x-ww«+ formurl encoded’,
Cont ent _Length => | engt h($gar bage)
)
gar bage becones the POST content
$request = new HTTP:: Request (' POST', $url, $header, $gar bage) ;

el se { # handl e GET request
if ($PATH { # append garbage to the base URL
chop($url) if substr($url,-1,1) eq '/’;
$url .= "/$garbage";
} else { # append garbage to the query string
$url .= "?$garbage";
}

$request = new HTTP:: Request (' GET', $url);

71

3.4 Part I11: mod_perl -- Faster Than a Speeding Bullet

}

do the request and fetch the response
ny $response = $agent - >r equest ($r equest);

print the numeric response code and the nessage
print $response->code,’ ', $response->nessage,"\n";

} continue { $TIMES-- }

return some random data of the requested | ength
sub random string {

ny $length = shift;

return undef unless $length >= 1;

return join('’,map chr(rand(255)),0..$length-1);

}

For other load testing tools, have alook at our Benchmarking section.

3.4 Part I1l: mod perl -- Faster Than a Speeding Bullet

mod_perl is Doug MacEachern’s embedded Perl for Apache. With a mod_perl-enabled server, there’'s no
tedious waiting around while the Perl interpreter fires up, reads and compiles your script. It's right there,
ready and waiting. What's more, once compiled your script remains in memory, all charged and raring to
go. Suddenly those sluggish Perl CGlI scripts race along at compiled C speeds...or so it seems.

Most CGI scripts will run unmodified under mod_perl using the Apache: : Regi st r yx CGIl compata-
bility layer. But that’s not the whole story. The exciting part is that mod_perl gives you access to the
Apache API, letting you get at the innards of the Apache server and change its behavior in powerful and
interesting ways. This section will give you afeel for the many things that you can do with mod_perl.

3.4.1 Creating Dynamic Pages

Thisis a ho-hum because you can do it with CGI and with Apache: : Regi st ry. Still, it’sworth seeing
a simple script written using the strict mod_perl APl so you see what it looks like. Script 111.1.1 prints out
alittle hello world message.

Install it by adding a section like this one to one of the configuration files:

<Location /hell o/ worl d>
Set Handl er perl -script
Per | Handl er Apache:: Hello
</ Locati on>

Script 111.1.1 Apache::Hello

package Apache:: Hel |l o;
file: Apache/Hello.pm

use strict vars;
use Apache:: Constants ':common’ ;

72 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.2 FileFilters

sub handl er {
ny $r = shift;
$r->content _type('text/htm’);
$r->send_http_header;
ny $host = $r->get renote_host;
$r->print (<<END);
<htm >
<head>
<title>Hell o There</title>
</ head>
<body>
<h1l>Hel | o $host </ h1>
Hello to all the nice people at the Perl conference. Lincolnis
trying really hard. Be kind
</ body>
</htm >
END
return K

}
1

You can do all the standard CGI stuff, such as reading the query string, creating fill-out forms, and so on.
In fact, CA . pmworks with mod_perl, giving you the benefit of sticky forms, cookie handling, and
elegant HTML generation.

3.4.2 [FileFilterg

This is where the going gets fun. With mod_perl, you can install a content handler that works alot like a
four-letter word starrer-outer, but a lot faster.

3.4.2.1 [Adding a Canned Footer to Every Pagd

Script 111.2.1 adds a canned footer to every HTML file. The footer contains a copyright statement, plus the
modification date of the file. You could easily extend this to add other information, such as a page hit
counter, or the username of the page's owner.

This can beinstalled as the default handler for al filesin a particular subdirectory like this:

<Location /footer>

Set Handl er perl-script

Per | Handl er Apache: : Foot er
</ Locati on>

Or you can declare a new ".footer" extension and arrange for al files with this extension to be passed
through the footer module:

AddType text/html .footer
<Files ~ "\.footer$">
Set Handl er perl -scri pt
Per | Handl er Apache: : Foot er
</ Fil es>

29 Jan 2004 73

3.4.2 FileFilters

Script 111.2.1 Apache:: Footer

package Apache: : Footer;
file Apache:: Footer.pm

use strict vars;
use Apache:: Constants ':comon’;
use O :File;

sub handl er {

<hr >

ny $r = shift;

return DECLI NED unl ess $r->content _type() eq "text/htm’;
ny $file = $r->fil enane;

return DECLI NED unl ess $fh=I1G :File->nem $file);

ny $nodtine = localtine((stat($file))[9]);

nmy $f oot er =<<END;

© 1998 0 "' Reilly &anp; Associ at es</ a>

<enplLast Mbdified: $nodtine</enr

END

}

1

$r->send_http_header;

while (<$fh>) {
s! (</ BODY>)! $f oot er $1! oi ;
} continue {
$r->print($);
}

return OK;

For more customized footer/header handling, you might want to look at the Apache: : Sandwi ch
module on CPAN.

3.4.2.2 Dynamic Navigation Bar|

Sick of hand-coding navigation bars in every HTML page? Less than enthused by the Java & JavaScript
hacks? Here' s a dynamic navigation bar implemented as a server side include.

First create a global configuration file for your site. The first column is the top of each major section. The
second column isthe label to print in the navigation bar

Configuration file for the navigation bar

/i ndex. ht m Home
/ new What' s New
/tech/ Tech Support
/ downl oad/ Downl oad
/ dev/ zero Cust omer support
/ dev/ nul | Conpl ai nts
74 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.2 FileFilters

Then, at the top (or bottom) of each HTML page that you want the navigation bar to appear on, add this
comment:

<! --#NAVBAR- - >

Now add Apache: : NavBar to your system (Script I11.2.2). This module parses the configuration file to
create a "navigation bar object”. We then call the navigation bar object’'st o_ht ml () method in order to
generate the HTML for the navigation bar to display on the current page (it will be different for each page,
depending on what major section the pageisin).

The next section does some checking to avoid transmitting the page again if it is already cached on the
browser. The effective last modified time for the page is either the modification time of its HTML source
code, or the navbar’ s configuration file modification date, whichever is more recent.

The remainder is just looping through the file a section at a time, searching for the <! - - NAVBAR- - >
comment, and substituting the navigation bar HTML.

Script 111.2.2 Apache:: NavBar

package Apache: : NavBar;
file Apache/ NavBar. pm

use strict;
use Apache:: Constants gw : conmon);
use Apache::File ();

my YBARS = ();
ny $TABLEATTS
ny $TABLECOLOR
ny $ACTI VECOLOR

"W DTH="100% BORDER=1'
' #CBFFFF' ;
' #FF0000’ ;

sub handl er {
ny $r = shift;

ny $bar = read_configuration($r) || return DECLI NED,
$r->content _type eq 'text/htm’ || return DECLI NED,
ny $fh = Apache:: File->new($r->filenane) || return DECLI NED,
ny $navbar = $bar->to_htnml ($r->uri);

$r - >updat e_nt i me($bar - >nodi fi ed);
$r->set | ast_nodified;

nmy $rc = $r->neets_conditions;
return $rc unless $rc == K

$r->send_http_header;
return K i f $r->header_only;

local &/ =""
while (<$fh>) {

s: <! - - NAVBAR- - >: $navbar: oi ;
} continue {

$r->print($);

29 Jan 2004 75

3.4.2 FileFilters

76

return K

read the navigation bar configuration file and return it as a
hash.
sub read_configuration {

ny $r = shift;

ny $conf _file;

return unl ess $conf_file = $r->dir_config(’ NavConf’);

return unless -e ($conf_file = $r->server_root_relative($conf_file));

ny $nod_tine = (stat _)[9];
return $BARS{$conf file} if $BARS{$conf file}
&& $BARS{ $conf file}->nodified >= $nod_ti nme;
return $BARS{$conf_file} = NavBar->new $conf_file);
}

package NavBar;

create a new NavBar object
sub new {
ny ($cl ass, $conf_file) = @
ny (@, %);
nmy $fh = Apache:: File->new $conf_file) || return
while (<$fh>) {

chonp;

s/™s+l[; s/\s+$//; #fold |l eading and trailing whitespace
next if /~#/ || /~$/; # skip comments and enpty |ines

next unless ny($url, $label) = /A(\SH)\s+(.+)/;

push @, $url; # keep the url in an ordered array

$c{$url} = $label; # keep its label in a hash
}
return bless {"urls’ =>\@,
"label s’ =>\9%,
"modi fied” => (stat S$conf_file)[9]}, $class
}

return ordered list of all the URIs in the navigation bar
sub urls { return @shift->{"urls'}}; }

return the label for a particular URI in the navigation bar
sub label { return $_[0]->{"labels’}->{$_[1]} || $_[1]; }

return the nodification date of the configuration file
sub nodified { return $_[0]->{"nodified}; }

sub to_htm {
ny $self = shift;
nmy $current _url = shift;
nmy @ells;
for my $url ($self->urls) {
ny $l abel = $sel f->l abel ($url);
ny $is_current = $current _url =~ /" $url/;
ny $cell = $is_current ?
qq($| abel </ FONT>)

29 Jan 2004

Cute Tricks With Perl and Apache

1

gq($| abel </ A>);

push @ells,

3.4.2 FileFilters

gq(<TD CLASS="navbar" ALI GN=CENTER BGCOLOR="$TABLECOLOR' >$cel | </ TD>\n);

return qq(<TABLE $TABLEATTS><TR>@el | s</ TR></ TABLE>\ n) ;

END__

<Location />
Set Handl er perl -scri pt
Per | Handl er Apache: : NavBar

Per | Set Var

</ Locati on>

Apache: : NavBar isavailable on the CPAN, with further improvements.

3.4.2.3 |On-the-Fly Compression|

NavConf etc/navi gati on. conf

WU-FTP has a great feature that automatically gzips a file if you fetch it by name with a .gz extension

added. Why can’'t Web servers do that trick? With Apache and mod_perl, you can.

Script 111.2.4 is acontent filter that automatically gzips everything retrieved from a particular directory and
adds the "gzip" Cont ent - Encodi ng header to it. Unix versions of Netscape Navigator will automati-
cally recognize this encoding type and decompress the file on the fly. Windows and Mac versions don't.

You'll have to save to disk and decompress, or install the WinZip plug-in. Bummer.

The code uses the Conpr ess: : ZI i b module, and hasto do alittle fancy footwork (but not too much) to
create the correct gzip header. Y ou can extend thisideato do on-the-fly encryption, or whatever you like.

Here's the configuration entry you'll need. Everything in the /compressed directory will be compressed
automagically.

<Location /conpressed>

Set Handl er perl -scri pt
Per | Handl er Apache:: GZi p

</ Locati on>

Script 111.2.3: Apache:: XZp

package Apache:: GZi p;
#Fil e: Apache:: GZi p. pm

use
use
use
use
use
use

sub

strict vars;

Apache: : Constants ':conmon’;
Conpress:: Zlib;

1O :File;

constant &I P_MAG C => 0x1f 8b;

constant OS_MAGQ C => 0x03;

handl er {
ny $r = shift;

29 Jan 2004

7

3.4.2 FileFilters

my ($fh, $9z);

ny $file = $r->fil enane;

return DECLI NED unl ess $fh=I1G :File->nem $file);
$r - >header _out (' Cont ent - Encodi ng’ =>" gzip’);
$r->send_http_header;

return K if $r->header_only;

tie *STDOUT, ' Apache:: &Zip', $r;
print($_) while <$fh>;

unti e *STDOUT;

return OK;

sub TI EHANDLE {
ny($cl ass, $r) = @;
initialize a deflation stream
ny $d = deflatelnit(-WndowBits=>-MAX WBITS()) || return undef;

gzi p header -- don’t ask how | found out
$r->print(pack("nccVee", &ZI P_MAGQ C, Z DEFLATED, 0,tinme(), 0, CS_MAG Q));

return bless { r = $r,
crc => crc32(undef),
d => $d,
I = 0
}, $cl ass;

sub PRI NT {

ny $self = shift;

foreach (@) {
deflate the data
ny $data = $sel f->{d}->deflate($_);
$sel f->{r}->print($data);
keep track of its length and crc
$sel f->{I} += length($);
$sel f->{crc} = crc32($_, $sel f->{crc});

}

sub DESTROY {
ny $self = shift;

flush the output buffers
ny $data = $sel f->{d}->flush;
$sel f->{r}->print($data);

print the CRC and the total |ength (unconpressed)
$sel f->{r}->print(pack("LL", @$self}{gw crc 1/}));

78 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.2 FileFilters

For some alternatives that are being maintained, you might want to look at the Apache: : Conpr ess and
Apache: : Gzi pChai n modules on CPAN, which can handle the output of any handler in achain.

By adding a URI trandation handler, you can set things up so that a remote user can append a .gz to the
end of any URL and the file we be delivered in compressed form. Script 111.2.4 shows the translation
handler you need. It is called during the initial phases of the request to make any modifications to the URL
that it wishes. In this case, it removes the .gz ending from the filename and arranges for Apache: GZi p
to be called as the content handler. The | ookup_uri () cal is used to exclude anything that has a
specia handler already defined (such as CGI scripts), and actual gzip files. The module replaces the infor-
mation in the request object with information about the real file (without the . gz), and arranges for
Apache: : GZi p to bethe content handler for thisfile.

Y ou just need this one directive to activate handling for all URLs at your site:
Per | TransHandl er Apache: : Aut o&Zi p

Script 111.2.4: Apache:: Aut o&Zip

package Apache: : Aut o&Zi p;

use strict 'vars’;
use Apache:: Constants gw : conmon/;

sub handl er {
my $r = shift;

don't allow ourselves to be called recursively
return DECLI NED unless $r->is_initial_req;

don't do anything for files not ending with .gz
nmy $uri = $r->uri;

return DECLI NED unl ess $uri=~/\.gz$/;

ny $hasename = $';

don't do anything special if the file actually exists
return DECLINED if -e $r->l ookup_uri ($uri)->fil enane;

|l ook up information about the file
ny $subr = $r->l ookup_uri ($basenane);
$r->uri ($basenane);

$r->pat h_i nf o($subr - >pat h_i nf 0) ;
$r->fil ename($subr->fil enane);

fix the handler to point to Apache:: &Zip;
ny $handl er = $subr->handl er;
unl ess ($handler) {
$r->handl er (" perl-script’);
$r - >push_handl ers(’ Perl Handl er’ ,’ Apache: : &Zip');
} else {
$r->handl er ($handl er);

}

29 Jan 2004 79

3.4.3 Access Control

return K

}

1

3.4.3 |Access Control|

Access control, as opposed to authentication and authorization, is based on something the user "is" rather
than something he "knows". The "is" is usualy something about his browser, such as its IP address, host-
name, or user agent. Script 111.3.1 blocks access to the Web server for certain User Agents (you might use
this to block impolite robots).

Apache: : Bl ockAgent readsits blocking information from a"bad agents" file, which contains a series
of pattern matches. Most of the complexity of the code comes from watching this file and recompiling it
when it changes. If the file doesn't change, it's is only read once and its patterns compiled in memory,
making this module fast.

Here' s an example bad agentsfile:

“teleport pro\/1\.28

Ani cerspro

Amozilla\/3\.0 \(http engine\)

Anetattache

Acrescent internet tool pak http ole control v\.1\.0
Ago- ahead-got-it

‘wget

Adevsoft’'s http conponent v1\.0

A . pl

Adi gout 4uagent

A configuration entry to activate this blocker looks like this. In this case we're blocking access to the
entire site. Y ou could aso block access to a portion of the site, or have different bad agents files associated
with different portions of the document tree.

<Location />

Per| AccessHandl er Apache: : Bl ockAgent

Per | Set Var Bl ockAgent Fi | e / home/ ww/ conf/bad_agent s. t xt
</ Locati on>

Script 111.3.1: Apache:: Bl ockAgent
package Apache: : Bl ockAgent;
bl ock browsers that we don’t I|ike

use strict 'vars’

use Apache:: Constants ’':comon’
use O :File;

my 9%VATCH_CACHE

nmy $DEBUG = 0

sub handl er {
ny $r = shift;

80 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.4 Authentication and Authorization

}

return DECLI NED unless ny $patfile = $r->dir_config(’ Bl ockAgentFile');
return FORBI DDEN unl ess ny $agent = $r->header _in(’ User-Agent’);
return SERVER ERROR unl ess ny $sub = get_nat ch_sub($r, $patfile);
return K i f $sub->($agent);

$r->l og_reason("Access forbidden to agent $agent”, $r->fil enane);
return FORBI DDEN;

This routine creates a pattern matching subroutine froma
list of pattern matches stored in a file.
sub get_match_sub {

ny ($r,$filename) = @;
ny $mime = -M $fil enane;

try to return the sub fromcache
return $MATCH CACHE{ $fil enane}->{"sub’} if
$MATCH _CACHE{ $f i | enane} &&
$SMATCH _CACHE{ $fi | enane}->{ ' nod’} <= $nti ne;

if we get here, then we need to create the sub

return undef unless ny $fh = new IO : File($fil enane);
chonp(ny @ats = <$fh>); # get the patterns into an array
ny $code = "sub { \$_ = shift;\n";

foreach (@ats) {

next if ["~#/

$code .= "return undef if /$_ /i;\n";
}
$code .= "1; }\n";

warn $code i f $DEBUG

create the sub, cache and return it
ny $sub = eval $code;
unl ess ($sub) {
$r->log_error($r->uri,": ",$@;
return undef;
}
@ $SMATCH_CACHE{ $f i | enane}}{’ sub’,’ nod’ }=($sub, $nodti ne);
return $MATCH CACHE{ $fi | enane}->{" sub’};

3.4.4 |Authentication and Authorization|

Thought you were stuck with authentication using text, DBI and DBM files? mod_perl opens the authenti-
cation/authorization APl wide. The two phases are authentication, in which the user has to prove who he
or sheis (usualy by providing a username and password), and authorization, in which the system decides
whether this user has sufficient privileges to view the requested URL. A scheme can incorporate authenti-
cation and authorization either together or singly.

29 Jan 2004 81

3.4.4 Authentication and Authorization

3.4.4.1 |Authentication with NI'§

If you keep Unix system passwords in /etc/passwd or distribute them by NIS (not NIS+) you can authenti-
cate Web users against the system password database. (It's not a good idea to do this if the system is
connected to the Internet because passwords travel in the clear, but it's OK for trusted intranets.)

Script 111.4.1 shows how the Apache: : Aut hSyst em module fetches the user’s name and password,
compares it to the system password, and takes appropriate action. The get pwnan{) function operates
either on local files or on the NIS database, depending on how the server host is configured. WARNING:
the module will fail if you use a shadow password system, since the Web server doesn’t have root privi-

leges.
In order to activate this system, put a configuration directive like this one in access.conf:

<Location /protected>
Aut hNarme Test
Aut hType Basi c
Per | Aut henHandl er Apache: : Aut hSyst em
require valid-user
</ Locat i on>

Script 111.4.1: Apache:: Aut hSystem

package Apache: : Aut hSystem
authenticate users on system password dat abase

use strict;
use Apache:: Constants ’':comon’

sub handl er {
ny $r = shift;

ny($res, $sent_pwd) = $r->get_basi c_aut h_pw
return $res if $res = K

my $user = $r->connection->user;
my $reason = "";

ny($nane, $passwd) = get pwnan($user);

if (!$nane) {

$reason = "user does not have an account on this systenf;
} else {

$reason = "user did not provide correct password”

unl ess $passwd eq crypt ($sent _pwd, $passwd) ;
}

i f($reason) {
$r->note_basic_auth failure
$r- >l og_reason($reason, $r->fil enane);
return AUTH REQUI RED,

82 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.4 Authentication and Authorization

return OK;

}

1

There are modules doing equivaent things on CPAN: Apache:: Aut henPasswd and
Apache: : Aut hxPasswd.

3.4.4.2 [Anonymous Authentication|

Here's a system that authenticates users the way anonymous FTP does. They have to enter a name like
"Anonymous" (configurable) and a password that 10oks like avalid e-mail address. The system rejects the
username and password unless they are formatted correctly.

In a real application, you'd probably want to log the password somewhere for posterity. Script 111.4.2
shows the code for Apache: : Aut hAnon. To activate it, create a httpd.conf section like this one:

<Location /protected>
Aut hName Anonynous
Aut hType Basi c
Per | Aut henHandl er Apache: : Aut hAnon
require valid-user

Per | Set Var Anonynous anonymnous| anybody
</ Locati on>

Script 111.4.2: Anonynous Authentication

package Apache: : Aut hAnon;

use strict;
use Apache:: Constants ' :comon’

ny $email _pat = "\w\ @w .\ v
ny $anon_id = "anonynous";

sub handl er {

ny $r = shift;

ny($res, $sent_pwd) = $r->get_basi c_aut h_pw,
return $res if $res !'= K

ny $user = |lc $r->connection->user;

ny $reason = "";

ny $check_id = $r->dir_config("Anonynous") || $anon_id;

unl ess($user =~ /"$check_id$/i) {

$reason = "user did not enter a valid anonynobus usernane"
}
unl ess($sent _pwd =~ /$email _pat/o) {

$reason = "user did not enter an email address password"
}

29 Jan 2004 83

3.4.4 Authentication and Authorization

i f($reason) {
$r->note_basic_auth_failure;
$r- >l og_reason($reason, $r->fil enane);
return AUTH REQUI RED;

}

$r - >not es(Aut hAnonPassword => $sent _pwd) ;

return OK;

}

1;

3.4.4.3 |Gender-Based Authorization|

After authenticating, you can authorize. The most familiar type of authorization checks a group database
to see if the user belongs to one or more privileged groups. But authorization can be anything you dream

up.

Script 111.4.3 shows how you can authorize users by their gender (or at least their apparent gender, by
checking their names with Jon Orwant’s Text : : Gender Fr omNanme module. This must be used in
conjunction with an authentication module, such as one of the standard Apache modules or a custom one.

This configuration restricts access to users with feminine names, except for the users "Webmaster" and
"Jeff", who are allowed access.

<Location /| adi es_only>

Aut hNane "Ladies Only"

Aut hType Basi c

Aut hUser Fi | e / hone/ ww/ conf/ users. passwd

Per | Aut hzHandl er Apache: : Aut hzGender

require gender F # allow fenal es

require user Webmaster Jeff # allow Webmaster or Jeff
</ Locat i on>

The script uses a custom error response to explain why the user was denied admittance. This is better than
the standard "Authorization Failed" message.

Script 111.4.3: Apache:: Aut hzGender

package Apache:: Aut hzGender;

use strict;

use Text:: Gender Fr omNane;

use Apache:: Constants ":common";

ny %' M=>"male",'F =>"fenal "),

sub handl er {
ny $r = shift;

return DECLI NED unl ess ny $requires = $r->requires;

my $user = | c($r->connection->user);
substr ($user,0,1)=~tr/a-z/ A- Z/;

84 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.5 Proxy Services

ny $guessed_gender = uc(gender($user)) || 'M;

ny $expl anati on = <<END,
<ht M ><head><tit| e>Unaut hori zed</tit| e></ head><body>
<hl>You Are Not Authorized to Access This Page</hl>
Access to this page is limted to:

END

foreach (@requires) {
ny ($requirenment, @est) = split(/\s+/,$_->{requirenent});
if (Ic $requirenent eq 'user’) {
foreach (@est) { return OKif $user eq $_; }
$expl anation .= "Users @est.\n";
} elsif (lc $requirement eq ’gender’) {
foreach (@est) { return OK if $guessed_gender eq uc $_; }

$expl anation .= "People of the @{@est} persuasion.\n";
} elsif (lc $requirement eq ’valid-user’) {
return OK;
}
}
$expl anation .= "</ OL></ BODY></ HTML>";

$r - >cust om r esponse(AUTH_REQUI RED, $expl anati on);
$r->note_basic_auth_failure;

$r->l og_reason("user $user: not authorized", $r->fil enane);
return AUTH_REQUI RED;

}

1

Apache: : Aut hzGender isavailable from the CPAN.

3.4.5 [Proxy Services

mod_per| gives you access to Apache’s ability to act as a Web proxy. You can intervene at any step in the
proxy transaction to maodify the outgoing request (for example, stripping off headers in order to create an
anonymizing proxy) or to modify the returned page.

3.4.5.1 |A Banner Ad Blocker|

Script 111.5.1 shows the code for a banner-ad blocker written by Doug MacEachern. It intercepts al proxy
requests, substituting its own content handler for the default. The content handler uses the LWP library to
fetch the requested document. If the retrieved document is an image, and its URL matches the pattern
(ads?|advertisement|banner), then the content of the image is replaced with a dynamically-generated GIF
that reads "Blocked Ad". The generated image is exactly the same size as the original, preserving the page
layout. Notice how the outgoing headers from the Apache request object are copied to the LWP request,
and how the incoming LWP response headers are copied back to Apache. This makes the transaction
nearly transparent to Apache and to the remote server.

29 Jan 2004 85

3.4.5 Proxy Services

In addition to LWP you'll need GD. pmand | mage: : Si ze to run this module. To activate it, add the
following line to the configuration file:

Per | TransHandl er Apache: : AdBl ocker

Then configure your browser to use the server to proxy al its HTTP requests. Works like a charm! With a
little more work, and some help from the | nageMagi ck module, you could adapt this module to

quiet-down animated GIFs by stripping them of all but the very first frame.

86

Script 111.5.1: Apache:: AdBI ocker

package Apache:: AdBl ocker;

use
use
use
use
use
use

strict;

vars gqw @ SA $VERSI ON);
Apache: : Const ants gw : conmmon) ;
& ();

I mage: : Si ze gw(i ngsi ze);

LWP: : User Agent ();

@ SA = qw(LWP: : User Agent) ;
$VERSION = ' 1. 00’ ;

ny $UA = _ PACKAGE__- >new,
$UA->agent (join "/", __ PACKAGE__, $VERSI ON);
ny $Ad = join "|", gwads? adverti senent banner};
sub handl er {
ny(sr) = @;

sub

return DECLI NED unl ess $r->proxyr eq;

$r->handl er("perl-script"); #ok, let’'s do it
$r->push_handl er s(Per| Handl er => \ &roxy_handl er);
return OK

proxy_handl er {
ny(s$r) = @;

ny $request = HITP:: Request - >new $r->nmet hod, $r->uri);

$r- >headers_i n->do(sub {
$request - >header (@) ;
1)

copy POST data, if any
i f($r->method eq ' POST') {
nmy $l en = $r->header _in(’ Content-length');

ny $buf;

$r - >read($buf, $len);

$request - >cont ent ($buf) ;

$request - >cont ent _t ype($r->content_type);

29 Jan 2004

Cute Tricks With Perl and Apache

sub

}

1

ny $response = $UA- >request ($request);
$r->content _type($response- >header (' Content-type’'))

#f eed response back into our request_rec*
$r - >st at us($r esponse- >code) ;
$r->status_line(join " ", $response->code, $response->nmessage);
$response- >scan(sub {
$r - >header _out (@) ;

IO

if ($r->header_only) {
$r->send_htt p_header();

return OK;
}
nmy $content = \ $response->content;
if($r->content _type =~ /~image/ and $r->uri =~ /\b($Ad)\b/i) {

bl ock_ad($content);
$r->content _type("inmage/gif");
}
$r->content _type(’'text/htm’) unless $$content;
$r->send_http_header;
$r->print($$content || $response->error_as_HTM);

return K

bl ock_ad {

ny $data = shift;

ny($x, $y) = ingsize($data);

ny $im= GD:Inmage->new $x, $y);

ny $white = $i m >col or Al | ocat e(255, 255, 255)
ny $bl ack = $i m >col or Al l ocat e(0, 0, 0)
ny $red = $i m>col or Al | ocat e(255, 0, 0)

$i m >t ransparent ($white);
$i m>string(CD: : gdLargeFont (), 5,5, "Bl ocked Ad", $red);
$i m >rectangl e(0, 0, $x- 1, $y- 1, $bl ack) ;

$$data = $im>gif;

3.4.5 Proxy Services

Another way of doing this module would be to scan al proxied HTML files for <i ng> tags containing
one of the verboten URLSs, then replacing the sr ¢ attribute with a transparent GIF of our own. However,
unless the <i ng> tag contained wi dt h and hei ght attributes, we wouldn’t be able to return a GIF of
the correct size -- unless we were to go hunting for the GIF with LWP, in which case we might as well do
it thisway.

29 Jan 2004

87

3.4.6 Customized Logging

3.4.6 |Customized Logging

After Apache handles a transaction, it passes al the information about the transaction to the log handler.
The default log handler writes out lines to the log file. With mod_perl, you can install your own log
handler to do customized logging.

3.4.6.1 [Send E-Mail When a Particular Page Gets Hit|

Script 111.6.1 installs a log handler which watches over a page or set of pages. When someone fetches a
watched page, the log handler sends off an e-mail to notify someone (probably the owner of the page) that
the page has been read.

To activate the module, just attach aPer | LogHandl er tothe<Locat i on> or <Fi | es> you wish to
watch. For example:

<Location /~| stein>
Per | LogHandl er Apache: : LogMai |
Per| Set Var mailto | stein@shl.org
</ Locati on>

The "mailto" directive specifies the name of the recipient(s) to notify.

Script I11.6.1: Apache:: LogMail
package Apache:: LogMil;
use Apache:: Constants ' :comon’;

sub handl er {
ny $r = shift;
ny $mailto = $r->dir_config('mailto');
return DECLI NED unl ess $nmilto
$request = $r->the_request;
ny $uri = $r->uri;
ny $agent $r->header _i n(" User-agent");
ny $bytes = $r->bytes_sent;
ny $renote = $r->get_renote_host;
my _
ny
un

3

$status = $r->status_line;

$date = | ocal ti me;

I ess (open (MAIL,"|/usr/lib/sendmail -oi -t")) {
$r->log_error("Couldn’t open mail: $!'");

return DECLI NED,

—

print MAIL <<END;
To: $mailto
From WMd Perl <webnaster>
Subj ect: Sonebody | ooked at $uri

At $date, a user at $renmpte | ooked at
$uri using the $agent browser.

The request was $request,
which resulted returned a code of $status.

$bytes bytes were transferred.

88 29 Jan 2004

Cute Tricks With Perl and Apache 3.4.6 Customized Logging

END
cl ose MAIL;
return OK;
}
1

3.4.6.2 Writing L og I nformation Into a Relational Databasd

Coming full circle, Script 111.6.2 shows a module that writes log information into a DBI database. The idea
is similar to Script 1.1.9, but there's now no need to open a pipe to an external process. It's also a little
more efficient, because the log data fields can be recovered directly from the Apache request object, rather
than parsed out of aline of text. Another improvement is that we can set up the Apache configuration files
so that only accesses to certain directories are logged in this way.

To activate, add something like thisto your configuration file: PerlLogHandler Apache::LogDBI

Or, to restrict special logging to accesses of filesin below the URL "/lincoln_logs' add this:

<Location /lincol n_| ogs>
Per | LogHandl er Apache: : LogDBI
</ Locati on>

Script 111.6.2: Apache:: LogDBI
package Apache: : LogDBI ;
use Apache:: Constants ':common’;

use strict 'vars’;
use vars gw $DB $STH);
use DBI ;

use PCSI X "strftinme’;

use constant DSN => " dbi: nysql : ww ;
use constant DB TABLE => 'access_log’;
use constant DB _USER => ’nobody’;

use constant DB _PASSWD => '’ ;

$DB = DBI - >connect (DSN, DB_USER, DB_PASSWD) || die DBI->errstr;
$STH = $DB- >prepare(" | NSERT | NTO ${\ DB_TABLE} VALUES(?,?,?,2,?2,2,2,2,2)")
|| die $DB->errstr;

sub handl er {

ny $r = shift;

ny $date = stritime(’ %-%n% %1 9% %6 , | ocaltine);
ny $host = $r->get _renote_host;

ny $met hod = $r->net hod;

ny $url = $r->uri;

my 3$user = $r->connecti on->user;

nmy $referer = $r->header _in(’ Referer’);

nmy $browser = $r->header i n("User-agent");

ny $status = $r->status;

ny $bytes = $r->bytes_sent;

$STH- >execut e($dat e, $host, $net hod, $url, Suser,

$browser, $referer, $st at us, $hytes);

29 Jan 2004 89

3.5 Conclusion

return OK;

There are other aternatives which are more actively maintained available from the CPAN:
Apache: : DBl Logger and Apache: : DBl LogConfi g.

3.5 |Conclusion|

These tricks illustrate the true power of mod_perl; not only were Perl and Apache good friends from the
start, thanks to Perl’s excellent text-handling capacity, but when mod_perl is used, your complete access
to the Apache API gives you unprecendented power in dynamic web serving.

To find more tips and tricks, look for modules on the CPAN, look through the mod_perl documentation,
and also in the following books by Lincoln Stein:

® "How to Set Up and Maintain a Web Site"

90

General introduction to Web site care and feeding, with an emphasis on Apache. Addison-Wesley
1997.

Companion Web site at |http://www.genome.wi.mit.edu/WWW||

"Web Security, a Step-by-Step Reference Guide"

How to keep your Web site free from thieves, vandals, hooligans and other yahoos. Addison-Wesley
1998.

Companion Web site at |http://www.w3.org/Security/Fag/|

" The Official Guideto Programming with CGIl.pm"

Everything | know about CGIl.pm (and some things | don’t!). John Wiley & Sons, 1998.

Companion Web site at |http://www.wiley.com/legacy/compbooks/stein/]

"Writing Apache Modulesin Perl and C"

Co-authored with Doug MacEachern. O’ Reilly & Associates.

Companion Web site at |http://www.modperl.com/|

WebTechniques Columns

| write a monthly column for WebTechniques magazine (now New Architect). You can find
back-issues and reprints at [http://www.webtechniques.com/|

29 Jan 2004

http://www.genome.wi.mit.edu/WWW/
http://www.w3.org/Security/Faq/
http://www.wiley.com/legacy/compbooks/stein/
http://www.modperl.com/
http://www.webtechniques.com/

Cute Tricks With Perl and Apache 3.6 Maintainers

® ThePerl Journal Columns

| write a quarterly column for TPJ. Source code listings are available at |http://www.tpj.com/|

3.6 Maintainers

The maintainer is the person(s) you should contact with updates, corrections and patches.

® Per Einar Ellefsen <per.einar (at) skynet.be>

3.7 |JAuthors

® Lincoln Stein <lIstein (at) cshl.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 91

http://www.tpj.com/

4 Workarounds for some known bugs in browsers.

4 Workaroundsfor someknown bugsin browsers.

92 29 Jan 2004

Workarounds for some known bugs in browsers. 4.1 Description

4.1 Description|

Unfortunately for web programmers, browser bugs are not uncommon, and sometimes we have to deal
with them; refer to this chapter for some known bugs and how you can work around them.

4.2 |Same Browser Requests Serialization|

The following feature/bug mostly affects devel opers.

Certain browsers will serialize reguests to the same URL if accessed from different windows. For example
if you have a CGlI script that does:

for (1..100) {
print "$$: $_\n";
warn "$$: $_\n";
sl eep 1;

}

And two concurrent requests are issued from different windows of the same browser (for those browsers
that have this bug/feature), the browser will actualy issue only one request and won't run the second
request till the first one is finished. The debug printing to the error_log file helps to understand the serial-
ization issue.

Solution? Find a UA that doesn’t have this feature, especialy if a command line UA will do (LWP comes
to mind). As of this writing, opera 6, mozilla 1.0 on linux have this problem, whereas konqueror 3 and
lynx don't.

4.3 [Preventing QUERY STRING from getting corrupted|
because of & entity key names

In a URL which contains a query string, if the string has multiple parts separated by ampersands and it
contains akey named "reg", for example

[htt p: // exanpl e. conm f 0o. pl ?f oo=bar & eg=f oobar| then some browsers will interpret
&r eg as an SGML entity and encode it as & eg; . This will result in a corrupted QUERY_STRI NG. If
you encounter this problem, then either you should avoid using such keys or you should separate parame-
ter pairs with ; instead of & CA . pm Apache: : Request and $r - >ar gs() support a semicolon
instead of an ampersand as a separator. So your URI should look like this:
lhttp:// exanpl e. com f 0o. pl ?f oo=bar ; r eg=f oobar]|

Note that this is only an issue when you are building your own URLS with query strings. It is not a
problem when the URL isthe result of submitting aform because the browsers have to get that right.

29 Jan 2004 93

http://example.com/foo.pl?foo=bar&reg=foobar
http://example.com/foo.pl?foo=bar;reg=foobar

4.4 |E 4.x does not re-post data to a non-port-80 URL

4.4 |E 4.x does not re-post data to a non-port-80 URL

One problem with publishing 8080 port numbers (or so | have been told) is that IE 4.x has a bug when
re-posting datato a non-port-80 URL. It drops the port designator and uses port 80 anyway.

See Publishing Port Numbers other than 80.

4.5 |Internet Explorer disregardsyour Error Documents

Many users stumble upon a common problem related to MS Internet Explorer: if your error response, such
as when using Er r or Docunent 500 or $r - >cust om r esponse, is too short (which might often
be the case because you aren’t very inspired when writing error messages), Internet Explorer completely
disregards it and replaces it with its own standard error page, even though everything has been sent
correctly by the server and received by the browser.

The solution to this is quite simple: your content needs to be at least 512 bytes. Microsoft describes some
solutions to this problem here: |http://support.microsoft.com/support/kb/articles/Q294/8/07.ASH . The
easiest solution under Perl isto do something like this:

wite your HTML headers
print "</-- " " " x 513, " -->";
wite out the rest of your HTM.

Effectively, your content will be long enough, but the user won't notice any additional content. If you're
doing this with static pages, just insert a long enough comment inside your file to make it large enough,
which will have the same effect.

4.6 M aintainer g

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

4.7 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

94 29 Jan 2004

http://support.microsoft.com/support/kb/articles/Q294/8/07.ASP

Web Content Compression FAQ 5 Web Content Compression FAQ

5 Web Content Compression FAQ

29 Jan 2004 95

5.1 Basics of Content Compression

5.1 Basics of Content Compression

Compression of outgoing traffic from web servers is beneficia for clients who get quicker responses, as
well asfor providers who experience less consumption of bandwidth.

Recently content compression for web servers has been provided mainly through use of the gzip format.
Other (non perl) modules are available that provide so-called def | at e compression. Both approaches are
currently very similar and use the LZ77 algorithm combined with Huffman coding. Luckily for us, thereis
no real need to understand all the details of the obscure underlying mathematics in order to compress
outbound content. Apache handlers available from CPAN can usualy do the dirty work for us. Content
compression is addressed through the proper configuration of appropriate handlers in the httpd.conf file.

Compression by its nature is a content filter: It dways takesitsinput as plain ASCII data that it convertsto
another bi nary form and outputs the result to some destination. That’s why every content compression
handler usually belongs to a particular chain of handlers within the content generation phase of the
request-processing flow.

A chain of handlers is one more common term that is good to know about when you plan to compress
data. There are two of them recently developed for Apache 1.3.X: Apache: : Cut put Chai n and
Apache: : Fil t er. We have to keep in mind that the compression handler developed for one chain
usually failsinside another.

Another important point deals with the order of execution of handlers in a particular chain. It's pretty
straightforward in Apache: : Fi | t er . For example, when you configure

Per | Modul e Apache:: Filter
<Files ~ "*\.blah">

Set Handl er perl -script

Perl SetVar Filter On

Perl Handler Filterl Filter2 Filter3
</Files>

the content will go through Fi | t er 1 first, then the result will be filtered by Fi | t er 2, and finaly
Fi | t er 3 will be invoked to make the final changes in outgoing data.

However, when you configure

Per | Modul e Apache: : Qut put Chai n
Per | Modul e Apache: : Gzi pChai n
Per | Modul e Apache: : SSI Chai n
Per| Mbdul e Apache: : PassH m
<Files *.htm >
Set Handl er perl -script
Per | Handl er Apache: : Qut put Chai n Apache: : Gzi pChai n Apache: : SSI Chai n Apache: : PassHt m
</Files>

execution begins with Apache: : PassHm . Then the content will be processed with
Apache: : SSI Chai n and finally with Apache: : Gzi pChai n. Apache: : Qut put Chai n will not
be involved in content processing at al. It is there only for the purpose of joining other handlers within the
chain.

96 29 Jan 2004

Web Content Compression FAQ 5.2 Q: Why it isimportant to compress web content?

It is important to remember that the content compression handler should always be the last executable
handler in any chain.

Another important problem of practical implementation of web content compression deals with the fact
that some buggy web clients declare the ability to receive and decompress gzipped data in their HTTP
requests, but fail to keep their promises when an actual compressed response arrives. This problem is
addressed through the implementation of the Apache: : Conpressd i ent Fi xup handler. This
handler servesthe f i xup phase of the request-processing flow. It is compatible with al known compres-
sion handlers and is available from CPAN.

5.2 |Q: Why it isimportant to compr ess web content?

5.2.1 |A: Reduced equipment costs and the competitive advantage of |
ldramatically faster page loads)

Web content compression noticeably increases delivery speed to clients and may allow providers to serve
higher content volumes without increasing hardware expenditures. It visibly reduces actual content down-
load time, a benefit most apparent to users of dialup and high-traffic connections.

5.3 |Q: How much improvement can | expect?

5.3.1 |A: Effective compression can achieve increasesin transmission |
lefficiency from 3 to 20 times|

The compression ratio is highly content-dependent. For example, if the compression algorithm is able to
detect repeated patterns of characters, compression will be greater than if no such patterns exist. You can
usually expect to realize an improvement between of 3 to 20 times on regular HTML, JavaScript, and
other ASCII content. | have seen peak HTML file compression improvements in excess of more than 200
times, but such occurrences are infrequent. On the other hand | have never seen ratios of less than 2.5
times on text/HTML files. Image files normally employ their own compression techniques that reduce the
advantage of further compression.

On May 21, 2002 Peter J. Cranstone wrote to the mod_gzip@lists.over.net mailing list:

"...With 98% of the world on a dial up modem, all they care about is how long it takes to download a
page. It doesn’t matter if it consumes a few more CPU cycles if the customer is happy. It's cheaper to
buy a newer faster box, than it isto acquire new customers."

5.4 |Q: How hard isit to implement content compression on
an existing site?

29 Jan 2004 97

5.5 Q: Does compression work with standard web browsers?

5.4.1|A: Implemening contentcompresion on anexising sitetypi|
lcally involves no more than installing andonfiguring an appragpriate
IApache handler on the wekerver.

This approach works in most of the cases | have seen. In some special cases you will need to take extra
care with respect to the global architecture of your web application, but such cases may generally be
readily addressed through various techniques. To date | have found no fundamental barriers to practical
implementation of web content compression.

5.5 |Q: Does compression work with standard web browser s?

5.5.1/A: Yes. No client side changes or settings agquired|

All modern browser makers claim to be able to handle compressed content and are able to decompress it
on the fly, transparent to the user. There are some known bugs in some old browsers, but these can be
taken into account through appropriate configuration of the web server.

| strongly recommend use of the Apache: : Conpr essC i ent Fi xup handler in your server configu-
ration in order to prevent compression for known buggy clients.

5.6 |Q: What softwareisrequired on the server side?

5.6.1|A: There are four known mod perhodules/packgesfor the
web contentompresion availableto date for Apache 1.3.X (inlpha|
beical order)]

® Apache::Compress

a mod_perl handler developed by Ken Williams (U.S)). Apache: : Conpr ess is capable to gzip
output through Apache:: Filter. This module accumulates all incoming data and then
compresses the whole content body at once.

® Apache::Dynagzip

a mod_perl handler, developed by Slava Bizyayev -- a Russian programmer residing in the U.S.
Apache: : Dynagzi p uses the gzip format to compress output through the Apache: : Fil ter or
through the internal Unix pipe.

Apache: : Dynagzi p is most useful when one needs to compress dynamic outbound web content

(generated on the fly from databases, XML, etc.) when content length is not known at the time of the
request.

98 29 Jan 2004

Web Content Compression FAQ 5.7 Q: Isit possible to compress the output from Apache::Registry with Apache::Dynagzip?

Apache: : Dynagzi p’sfeaturesinclude:

Support for both HTTP/1.0and HTTP/1.1.

Control over thechunk sizeon HTTP/1.1 for on-the-fly content compression.

Support for Perl, Java, or C/C++ CGI applications.

Advanced control over the proxy cache with the configurable Vary HTTP header.
Optional control over content lifetime in the client’s local cache with the configurable
Expi res HTTP header.

Optional support for server-side caching of the dynamically generated (and compressed)
content.

O Optional extra-light compression

O O O O O

o

removal of leading blank spaces and/or blank lines, which works for all browsers, including
older ones that cannot uncompress gzip format.

® Apache:Gzip

an example of mod_perl filter developed by Lincoln Stein and Doug MacEachern for their book
Writing Apache Modules with Perl and C (U.S.), which like Apache: : Conpr ess works through
Apache: : Fil ter. Apache: : Gzi p isnot available from CPAN. The source code may be found
on the book’ s companion web site at [http://www.modperl.com/|

® Apache::GzipChain

a mod_perl handler developed by Andreas Koenig (Germany), which compresses output through
Apache: : Qut put Chai n using the gzip format.

Apache: : &zi pChai n currently provides in-memory compression only. Using this module under
perl-5.8 or higher is appropriate for Unicode data UTF-8 data passed to
Conpress:: Zlib:: memzi p() are converted to raw UTF-8 before compression takes place.
Other data are simply passed through.

5.7 |Q: Isit possible to compr ess the output from
Apache: : Reqgi st ry with Apache: : Dynagzi p?

5.7.1 |A: Yes, it is supposed to be pretty easy:|

If your page/application isinitially configured like

<Directory /path/to/subdirectory>
Set Handl er perl-script
Per| Handl er Apache:: Regi stry
Per | SendHeader On
Opti ons +ExecCd

</Directory>

29 Jan 2004 99

http://www.modperl.com/

5.8 Q: Isit possible to compress the output from Mason-driven application with Apache::Dynagzip?

you might want just to replace it with the following:

Per| Modul e Apache::Filter
Per | Modul e Apache: : Dynagzi p
Per | Modul e Apache: : Conpressd i ent Fi xup
<Directory /path/to/subdirectory>
Set Handl er perl-script
Per| Handl er Apache:: Regi stryFilter Apache::Dynagzip
Per | SendHeader On
Opti ons +ExecCd
Perl Setvar Filter On
Per | Fi xupHandl er Apache: : ConpressC i ent Fi xup
Per | Set Var Li ght Conpressi on On
</Directory>

Y ou should be all set usually after that.

In more common cases you need to replace the line

Per| Handl er Apache:: Registry

in your initial configuration file with the set of the following lines:
Per | Handl er Apache: : Regi stryFilter Apache:: Dynagzip

Perl SetVar Filter On
Per | Fi xupHandl er Apache: : Conpressd i ent Fi xup

Y ou might want to add optionally

Per | Set Var Li ght Conpressi on On

to reduce the size of the stream even for clients incapable to speak gzip (like Microsoft Internet Explorer
over HTTP/1.0).

Finally, make sure you have somewhere declared

Per| Modul e Apache::Filter
Per | Modul e Apache: : Dynagzi p
Per | Modul e Apache: : Conpressd i ent Fi xup

This basic configuration uses many defaults. See Apache: : Dynagzi p POD for further thin tuning if
required.

5.8 |Q: Isit possible to compress the output from
M ason-driven application with Apache: : Dynagzi p?

100 29 Jan 2004

Web Content Compression FAQ 5.8.1 A: Yes. HTML::Mason::ApacheHandler is compatible with Apache::Filter chain.

5.8.1 |A: Yes. HTML: : Mason: : ApacheHandl er iscompatible with |
lApache: : Fi | t er chain|

If your application isinitially configured like

Per | Modul e HTM.: : Mason: : ApacheHandl er
<Directory /path/to/subdirectory>
<FilesMatch "\.htnl $">
Set Handl er perl-script
Per | Handl er HTM.: : Mason: : ApacheHandl| er
</ Fi | esMVat ch>
</Directory>

you might want just to replace it with the following:

Per| Modul e HTM.: : Mason: : ApacheHandl er
Per | Modul e Apache: : Dynagzi p
Per | Modul e Apache: : Conpressd i ent Fi xup
<Directory /path/to/subdirectory>
<FilesMatch "\.htnl $">
Set Handl er perl-script
Per| Handl er HTM.: : Mason: : ApacheHandl er Apache: : Dynagzi p
Perl SetVvar Filter On
Per | Fi xupHandl er Apache: : ConpressC i ent Fi xup
Per | Set Var Li ght Conpressi on On
</ Fi | esvat ch>
</ Directory>

Y ou should be all set safely after that.

In more common cases you need to replace the line

Per | Handl er HTM.: : Mason: : ApacheHandl| er
inyour initial configuration file with the set of the following lines:
Per | Handl er HTM.:: Mason: : ApacheHandl er Apache: : Dynagzi p

Perl SetVar Filter On
Per | Fi xupHandl er Apache: : Conpressd i ent Fi xup

Y ou might want to add optionally
Per | Set Var Li ght Conpressi on On

to reduce the size of the stream even for clients incapable to speak gzip (like Microsoft Internet Explorer
over HTTP/1.0).

Finally, make sure you have somewhere declared

Per | Modul e Apache: : Dynagzi p
Per | Modul e Apache: : Conpressd i ent Fi xup

29 Jan 2004 101

5.9 Q: Why isit important to keep control over chunk size?

This basic configuration uses many defaults. See Apache: : Dynagzi p POD for further thin tuning.

A4

5.9 |Q: Why is it important to keep control over chunksize’

5.9.1 |A: It helps to reduce the latency of the response|

Apache: : Dynagzi p isthe only handler to date that begins transmission of compressed data as soon as
the initial uncompressed pieces of data arrive from their source, at a time when the source process may not
even have completed generating the full document it is sending. Transmission can therefore be taking
place concurrent with creation of |ater document content.

Thisfeature is mainly beneficial for HTTP/1.1 requests, because HTTP/1.0 does not support chunks.

| would also mention that the internal buffer in Apache: : Dynagzi p aways prevents Apache from the
creating too short chunks over HTTP/1.1, or from transmitting too short pieces of data over HTTP/1.0.

5.10 |Q: Are there any contentcompression solutions for
vanilla Apache1.3.X7%

5.10.1 |A: Yes, There are two compression modules written in C that
lare available for vanilla Apache 1.3.X]

e mod_deflate
an Apache handler written in C by Igor Sysoev (Russia).
® mod_gzip
an Apache handler written in C. Original author: Kevin Kiley, Remote Communications, Inc. (U.S.)

Both of these modules support HTTP/1.0 only.

5.11|Q: Can | compress the output of my site at thapplica-
tion level?

5.11.1 |A: Yes, if your web server is CGl/1.1 compatible and allows you|
lto create specific HTTP headers from your application, or when you|
luse an application framework that carriesits own handler capable of |
lcompressing outbound data.

102 29 Jan 2004

Web Content Compression FAQ 5.12 Q: Are there any content compression solutions for Apache-2?

For example, vanilla Apache 1.3.X is CGI/1.1 compatible. It allows development of CGI scripts/programs
that might be generating compressed outgoing streams accomplished with specific HTTP headers.

Alternatively, on mod_perl enabled Apache some application environments carry their own compression
code that could be activated through the appropriate configurations:

Apache: : ASP does thiswith the Conpr essGzi p setting;
Apache: : AxKi t usesthe AxGzi pQut put setting to do this.

See particular package documentation for details.

5.12 |Q: Arethereany content compression solutions for
Apache-27?

5.12.1 |A: Yes, a core compression module written in C, |
Inod def | at e, has recently become available for Apache-2.|

nod_def | at e for Apache-2 iswritten by lan Holsman (USA).
This module supports HTTP/1.1 and is filters compatible.

Despite its name nod_def | at e for Apache-2 provides gzi p-encoded content. It contains a set of
configuration options sufficient to keep control over al recently known buggy web clients.

5.13 |Q: When Apache: : Dynagzi p issupposed to be
ported to Apache-27

5.13.1 |A: There no recent plansto port Apache: : Dynagzi p to|

nod_def | at e for Apache-2 seems to be capable to provide all basic functionality required for dynamic
content compression:

® Thismodule supportsflushingover HTTP/1.1
® |tisfilterscompatible.
® |t hasaset of configuration optionsto keep control over the buggy clients.

The rest of the main Apache: : Dynagzi p options could be easily addressed through the implementa-
tion of pretty tiny and specific accomplishing filters.

29 Jan 2004 103

5.14 Q: Where can | read the original descriptions of gzip and deflate formats?

5.14 |[Q: Wherecan | read the original descriptionsof gzi p
and def | at e formats?

5.14.1 |A: gzi p format is published asrfc1952, and def | at e format]
lis published as rfc1951)|

You can find many mirrors of RFC archives on the Internet. Try, for instance, my favorite at
|http:/www.ietf.org/rfc.html]|

5.15 |Q: Arethereany known compression problemswith|
specific browser s?

5.15.1 |A: Yes, Netscape 4 has problems with compressed cascading
Istyle sheets and JavaScript files)

You can use Apache: : ConpressC i ent Fi xup to disable compression for these files dynamically.
Apache: : Dynagzi p iscapable of providing so-called | i ght conpr essi on for thesefiles.

5.16 |[Q: Wherecan | find mor e information about the
lcompr ession featur es of moder n browser s?

5.16.1 |A: Michadl Schroepl maintains a highly valuable sitd

Try it at |http://www.schroepl.net/projekte/mod_gzip/browser.htm

5.17 [Acknowledgmentg

I highly appreciate efforts of Dan Hansen done in order to make thistext better English...

5.18 M aintainers

The maintainer is the person you should contact with updates, corrections and patches.

e SlavaBizyayev <dava (at) cpan.org>

104 29 Jan 2004

http://www.ietf.org/rfc.html
http://www.schroepl.net/projekte/mod_gzip/browser.htm

Web Content Compression FAQ

5.19

e SlavaBizyayev <dava (at) cpan.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004

Authorg

5.19 Authors

105

Web Content Compression FAQ Table of Contents:

Table of Contents:

L 1
IBqulnq alarge-Scale E -commer ce stewnh Apache and modJJerII 3
1 |Building a Large-Scale E-commerce site with Apache and mod perl | . 3
1.1 o 4
1.2 ICommon Mythq . 4

1.3 [Perl Saved : 4
131 |Ro|| Your Own Appllcatlon Serverl 4

1.4 |Case Study: €T oys.com| . 5
1.4.1 |Apache::PerlRun to the R&ecuel 5
1.4.2 |Planning the New Architecturg 6

1.5 |Surviving Christmas 2000 6
1.5.1 [The Architecturd. 6
152 7
1.5.3 |Application Servery . 8

1.5.4 [Search servers : 9

16 |Load Balanci nq and Falloverl 10
1.7 [Code Structure 11
1.8 11
1.9 |Session Tracking 12
1.10 : 12
111 |Excepti on Handling . 13

1.12 [Templates . 14
1.13 IControIIer Examplel 14
1.14 [Performance Tuning 16
1.15 [Trap: Nested Exceptiond 17
1.16 : 17
1.17 [Valuable Todld . 18
1.18 [Do Try Thisat Homg . 19
1.19 [An Open Source Success Story| 19

1.20 [Maintainers 19

1.21 [Authors 20
[Choosing aTempIatlnq &/steml 21
2 | Choosing a Templating System | 21
2.1 . 22
2.2 [Introduction. . 22
2.2.1 |[On A Personal Notq . 22

2.3 [Why Use Templates? . 22
2.3.1 [Consistency of Appearance 22

2.3.2 [Reusahility] . . 23
2.3.3 [Better Isolation from Chanqesl . 23
2.3.4 [Division of Labor| 23

2.4 \What Arethe Differences? 23
2.4.1 [Execution Modelq 23
2.4.2 . 24

29 Jan 2004 i

Table of Contents:

2.4.3 |Parsers and Cachin 26
244 Eﬁhcatlon Frameworks vs. Just Tem@lat@ e 2T
2441 URCLMappind
2442 Y
2443 Y
2444 Y
2445 Debugging 27

2.5 [The Contender§ s o]
25.1[SS 22
25.2 HT\/IL M aon 28
253 HTML::Embpertf 29
254 AEache::AxKif] 0
255 AEache::ASE < 1
25.6 . 4
2.5.7 TemﬁlateTooIkiﬂ N ¢
258 [HTML:Templatd 34
259HIML Tred 3
25.10 Agache::XPE 1S
2511 Perly 3
25.12 ICGl::FastTemplat 35
2.6 [Pperfformancq 3
2.6.1 [CGI PerformanceConcernd. 36
27Matriy 36
28[Updated3
2.9 |Maintainer§ - 1 4
2.10 uthor§ . - 1 4
|CuteTr|c|<sW|th PerI and Aﬁachﬁ . <
3[CuteTricksWithPelandApache] 38
3 1 Descripiod . . L 3
3.2 |Part I: Trlckswrth CGl. pﬂ - ¢ |
3.2.1 [Dynamic Documents . S
3.2, 1 1 MakingHTML lookbeastifdl] 39
3.21.2 Makrn Making HTML concise [
3213 Making InteractiveFormg 4l
3.2.2 [Making Stateful Formg. . S,
3.2, 2 1 Keping St@ewithCookied 43
3.23 reatrn Non (Creating Non-HTML Types 1)
3.2.4 L s
3241 GmartRedrectod 5l

325 [FileUploadd . . -
3.3 Part l: Web Site Care and Feedr ng b3
3.3.1 [Cogs! Logs! Logsl]. B53
3.3.1.1 |Log rotation . 53
3.3.1.2 |Log rotation and archlvmg .. . 54
3.3.1.3 Lo§ rotation, comﬁron and arch|vr ng 54
3314 Lo§ Parsrng 55
3.3.1.5 [Offline Reverse DNS Resol utr or1 S - Y £

ii 29 Jan 2004

Web Content Compression FAQ Table of Contents:

3.3.1.6 Detecting Robotq .
3.3.1.7 [Logging to syslo
3318 L Qﬁlnﬁ to arelatlonal datab@ .
3.3.2 |M§ server fell down and it can’t Qet u§!| .
3321 Co
3322 :
3323 :
333 |Site R@Iication and Mirroring .
3.3.3.1 Mirroring Single Pages .
3.33.2 |M|rror| nﬁ a Document @
3.3.3.3 [Checking for Bad Links
334 [Loadbdancind . . .
3.35 [Torture TestingaServe] . .
3.4 [Part I11: mod Qerl -- Faster Than a§geed|ng BuIIe_t|
34.1 reatm (Creating Dynamic Pageq . .
342 [FleFilted . .
3421 IEddl ng aCanned Footer to Every Paga
3.4.2.2 [Dynamic Navigation Bal] Lo

3.4.2.3 |On- theFI Compressio
3.4.3 |Access Control| . .
3.4.4 |Authentication and Authori zatloﬂ
3.4.4.1 [Authentication withNI§ .
3.4.4.2 [Anonymous Authentication] .
3.4.4.3 |Gender-Based Authorizatioﬂ
345 |Prox§ V|c§ . .
34,51 |A Banner AJBlockal -
3.4.6 [Customized Logging . .
346.1 SendEMaHWhenaPartlcuIar P@eGetsHlﬂ .
3.4.6.2 [Writing Log Information Into a Relational Databasd
3.5 [Conclusion
3.6 fMai ntainerg
37[Authorg . . .
[Workaroundsfor some known bugsm browsers| .
4 [Workarounds for some known bugs in browsers]
41 | r|§t| on . . .
4.2 [Same Browser R@u&ts Serlal |zat|ori
4.3 [Preventing QUERY_STRING from getting corrupted because of &entlty key named
4.4 |E 4.x does not re-post data to a non-port-80 URL] . e
4.5 Internet Explorer disregards your ErrorDocumentg
46fMaintainer§ e
4.7 [Authord . .
Web Content Comgron FAQ] .
5

Basics of Content Compression| of Content Compressio

5 2 |§§ Whi itis |m§ortant to com@reﬁs web contentfj

5.2.1 |A: Reduced equipment costs and the competitive advantage of dramatlcal ly faster page

|I oads)| .

29 Jan 2004

58
59
60
61
61
62

GRRE

66
68
70
2
2
73
73
4
4
80
81
82
83

85
85
88
88
89
90
91
91
92
92
93
93
93

GRRRR

95
96
97

97

Table of Contents:

5.3 |Q: How much improvement can | expectd . . 97
5.3.1 |A: Effective compression can achieve increases in transm|ssron eff|C| ency from 3 to 20|
imes| LYy
: How hard is it to implement content compression on an existingsited. 97
5.4.1 |A: Implementing content compression on an existing S i involves no more tha
[installing and configuring an appropriate Apache handler onthewebserver] 98
5.5 [Q: Does compression work with standardwebbrowsers 08
5.5.1 |A: Yes. No client side changes or settings are required. 98
5.6 [O: What softwareisrequired on theserver sdeq . . 08
5.6.1 |A: There are four known mod perl modules/packacesfor the Web content compr on|
[avallable to date for Apache 1.3.X (in aphabetical order)| 98
5 7Q Is |t possi bIeto compress the output from Apache: : Regl st ry W|th|
: ... 99
571 A Yes |t|ssuosedtobe : 99
5.8 [Q: Isit possible to compress the output from Mason drlven appllcatl on Wlth |
[Apache: : Dynagzi p3 . .. 100
5.8.1|A: Yes. HTM.: I\/ason ApacheHandI er is compatlbIeW|th Apache Fi I ter|
|chain.....................101
5.9 [Q: Why isit important to keep control over chunk size” 04
5.9. 1 A: It helps to reduce the latency of the response] Iatenc of ther A: It helps to reduce the latency of the response] 102
5.10 [Q: Are there any content compression solutions for vanilla Apache 1.3.X7 : 102
5.10. 1 IK Y es, There are two compression modules written in C that are avallablefor vanllla
[Apache 1.3.X:| . . . 102
5.11 [Q: Can | compress the outgut of my S|te at the apgllcatlon Ievel 1 . . 102
5111 |E Yes, if Qour web server isCGI/1.1 comﬁatl ble and allows iou to create @ecmc HTTE
[headers from your application, or when you use an application framework that carriesits ow
[handler capable of compressing outbound data].102
5.12 [Q: Are there any content compression solutions for Apachez’q 103
5.12.1 [A: Yes, acore compression module writtenin C, nod_def | at e, has recentl become
|avai|ab eforApache:2]103
5.13 [Q: When Apache: : Dynagzi p issupposed to beportedto Apache2qd 103
5.13.1 |A: There no recent plansto port Apache: : Dynagzi ptoApache-2] 103
5.14 [O: Where can | read the original descriptions of gzi p and def | at e formaisy . 104
5.14.1 [A: gzi p format is published as rfc1952, and def I at e format is published as rfc1951 |104
5.15 |Q: Are there any known compression problems with specific browsers? . 104
5.15.1 [A: Yes, Netscape 4 has problems with compressed cascading style sheets and JavaScnp t]
104
5.16 [Q: Where can I f|nd more |nformat| on about the comgr ion features of modern browsersj] 104
5.16.1 |A: Michagl Schroepl maintains ahighly valuable sitd. . 104
517 Acknowledgmend 104
5.18 fMaintainerQ e [0
519 [Authord.15

iv 29 Jan 2004

	1€€Building a Large-Scale E-commerce site with Apache and mod_perl
	1.1€€Description
	1.2€€Common Myths
	1.3€€Perl Saves
	1.3.1€€Roll Your Own Application Server

	1.4€€Case Study: eToys.com
	1.4.1€€Apache::PerlRun to the Rescue
	1.4.2€€Planning the New Architecture

	1.5€€Surviving Christmas 2000
	1.5.1€€The Architecture
	1.5.2€€Proxy Servers
	1.5.3€€Application Servers
	1.5.4€€Search servers

	1.6€€Load Balancing and Failover
	1.7€€Code Structure
	1.8€€Caching
	1.9€€Session Tracking
	1.10€€Security
	1.11€€Exception Handling
	1.12€€Templates
	1.13€€Controller Example
	1.14€€Performance Tuning
	1.15€€Trap: Nested Exceptions
	1.16€€Berkeley DB
	1.17€€Valuable Tools
	1.18€€Do Try This at Home
	1.19€€An Open Source Success Story
	1.20€€Maintainers
	1.21€€Authors

	2€€Choosing a Templating System
	2.1€€Description
	2.2€€Introduction
	2.2.1€€On A Personal Note

	2.3€€Why Use Templates?
	2.3.1€€Consistency of Appearance
	2.3.2€€Reusability
	2.3.3€€Better Isolation from Changes
	2.3.4€€Division of Labor

	2.4€€What Are the Differences?
	2.4.1€€Execution Models
	2.4.2€€Languages
	2.4.3€€Parsers and Caching
	2.4.4€€Application Frameworks vs. Just Templates
	2.4.4.1€€URL Mapping
	2.4.4.2€€Session Tracking
	2.4.4.3€€Output Caching
	2.4.4.4€€Form Handling
	2.4.4.5€€Debugging

	2.5€€The Contenders
	2.5.1€€SSI
	2.5.2€€HTML::Mason
	2.5.3€€HTML::Embperl
	2.5.4€€Apache::AxKit
	2.5.5€€Apache::ASP
	2.5.6€€Text::Template
	2.5.7€€Template Toolkit
	2.5.8€€HTML::Template
	2.5.9€€HTML_Tree
	2.5.10€€Apache::XPP
	2.5.11€€ePerl
	2.5.12€€CGI::FastTemplate

	2.6€€Performance
	2.6.1€€CGI Performance Concerns

	2.7€€Matrix
	2.8€€Updates
	2.9€€Maintainers
	2.10€€Authors

	3€€Cute Tricks With Perl and Apache
	3.1€€Description
	3.2€€Part I: Tricks with CGI.pm
	3.2.1€€Dynamic Documents
	3.2.1.1€€Making HTML look beautiful
	3.2.1.2€€Making HTML concise
	3.2.1.3€€Making Interactive Forms

	3.2.2€€Making Stateful Forms
	3.2.2.1€€Keeping State with Cookies

	3.2.3€€Creating Non-HTML Types
	3.2.4€€Document Translation
	3.2.4.1€€Smart Redirection

	3.2.5€€File Uploads

	3.3€€Part II: Web Site Care and Feeding
	3.3.1€€Logs! Logs! Logs!
	3.3.1.1€€Log rotation
	3.3.1.2€€Log rotation and archiving
	3.3.1.3€€Log rotation, compression and archiving
	3.3.1.4€€Log Parsing
	3.3.1.5€€Offline Reverse DNS Resolution
	3.3.1.6€€Detecting Robots
	3.3.1.7€€Logging to syslog
	3.3.1.8€€Logging to a relational database

	3.3.2€€My server fell down and it can't get up!
	3.3.2.1€€Monitoring a local server
	3.3.2.2€€Monitoring a remote server
	3.3.2.3€€Resurrecting Dead Servers

	3.3.3€€Site Replication and Mirroring
	3.3.3.1€€Mirroring Single Pages
	3.3.3.2€€Mirroring a Document Tree
	3.3.3.3€€Checking for Bad Links

	3.3.4€€Load balancing
	3.3.5€€Torture Testing a Server

	3.4€€Part III: mod_perl -- Faster Than a Speeding Bullet
	3.4.1€€Creating Dynamic Pages
	3.4.2€€File Filters
	3.4.2.1€€Adding a Canned Footer to Every Page
	3.4.2.2€€Dynamic Navigation Bar
	3.4.2.3€€On-the-Fly Compression

	3.4.3€€Access Control
	3.4.4€€Authentication and Authorization
	3.4.4.1€€Authentication with NIS
	3.4.4.2€€Anonymous Authentication
	3.4.4.3€€Gender-Based Authorization

	3.4.5€€Proxy Services
	3.4.5.1€€A Banner Ad Blocker

	3.4.6€€Customized Logging
	3.4.6.1€€Send E-Mail When a Particular Page Gets Hit
	3.4.6.2€€Writing Log Information Into a Relational Database

	3.5€€Conclusion
	3.6€€Maintainers
	3.7€€Authors

	4€€Workarounds for some known bugs in browsers.
	4.1€€Description
	4.2€€Same Browser Requests Serialization
	4.3€€Preventing QUERY_STRING from getting corrupted because of &entity key names
	4.4€€IE 4.x does not re-post data to a non-port-80 URL
	4.5€€Internet Explorer disregards your ErrorDocuments
	4.6€€Maintainers
	4.7€€Authors

	5€€Web Content Compression FAQ
	5.1€€Basics of Content Compression
	5.2€€Q: Why it is important to compress web content?
	5.2.1€€A: Reduced equipment costs and the competitive advantage of dramatically faster page loads.

	5.3€€Q: How much improvement can I expect?
	5.3.1€€A: Effective compression can achieve increases in transmission efficiency from 3 to 20 times.

	5.4€€Q: How hard is it to implement content compression on an existing site?
	5.4.1€€A: Implementing content compression on an existing site typically involves no more than installing and configuring an appropriate Apache handler on the web server.

	5.5€€Q: Does compression work with standard web browsers?
	5.5.1€€A: Yes. No client side changes or settings are required.

	5.6€€Q: What software is required on the server side?
	5.6.1€€A: There are four known mod_perl modules/packages for the web content compression available to date for Apache 1.3.X †in alphabetical order‡:

	5.7€€Q: Is it possible to compress the output from Apache::Registry with Apache::Dynagzip?
	5.7.1€€A: Yes, it is supposed to be pretty easy:

	5.8€€Q: Is it possible to compress the output from Mason-driven application with Apache::Dynagzip?
	5.8.1€€A: Yes. HTML::Mason::ApacheHandler is compatible with Apache::Filter chain.

	5.9€€Q: Why is it important to keep control over chunk size?
	5.9.1€€A: It helps to reduce the latency of the response.

	5.10€€Q: Are there any content compression solutions for vanilla Apache 1.3.X?
	5.10.1€€A: Yes, There are two compression modules written in C that are available for vanilla Apache 1.3.X:

	5.11€€Q: Can I compress the output of my site at the application level?
	5.11.1€€A: Yes, if your web server is CGI/1.1 compatible and allows you to create specific HTTP headers from your application, or when you use an application framework that carries its own handler cap...

	5.12€€Q: Are there any content compression solutions for Apache-2?
	5.12.1€€A: Yes, a core compression module written in C, mod_deflate, has recently become available for Apache-2.

	5.13€€Q: When Apache::Dynagzip is supposed to be ported to Apache-2?
	5.13.1€€A: There no recent plans to port Apache::Dynagzip to Apache-2:

	5.14€€Q: Where can I read the original descriptions of gzip and deflate formats?
	5.14.1€€A: gzip format is published as rfc1952, and deflate format is published as rfc1951.

	5.15€€Q: Are there any known compression problems with specific browsers?
	5.15.1€€A: Yes, Netscape 4 has problems with compressed cascading style sheets and JavaScript files.

	5.16€€Q: Where can I find more information about the compression features of modern browsers?
	5.16.1€€A: Michael Schroepl maintains a highly valuable site

	5.17€€Acknowledgments
	5.18€€Maintainers
	5.19€€Authors

