

1 mod_perl for ISPs. mod_perl and Virtual Hosts

129 Jan 2004

1 mod_perl for ISPs. mod_perl and Virtual Hostsmod_perl for ISPs. mod_perl and Virtual Hosts

1.1 Description
mod_perl hosting by ISPs: fantasy or reality? This section covers some topics that might be of interest to
users looking for ISPs to host their mod_perl-based website, and ISPs looking for a way to provide such
services.

Today, it is a reality: there are a number of ISPs hosting mod_perl, although the number of these is not as
big as we would have liked it to be. To see a list of ISPs that can provide mod_perl hosting, see ISPs
supporting mod_perl.

Note: At this moment this document talks about mod_perl 1.0. mod_perl 2.0 coupled with the perchild
mpm (http://httpd.apache.org/docs-2.0/mod/perchild.html) will allow different users run mod_perl
handlers under different uid/gid. This solves the problem of secure co-existing of more than one mod_perl
user on the same httpd server.

1.2 ISPs providing mod_perl services - a fantasy or a reality
You installed mod_perl on your box at home, and you fell in love with it. So now you want to
convert your CGI scripts (which currently are running on your favorite ISPs machine) to run under
mod_perl. Then you discover that your ISP has never heard of mod_perl, or he refuses to install it for
you.

You are an old sailor in the ISP business, you have seen it all, you know how many ISPs are out there
and you know that the sales margins are too low to keep you happy. You are looking for some new
service almost no one else provides, to attract more clients to become your users and hopefully to
have a bigger slice of the action than your competitors.

If you are a user asking for a mod_perl service or an ISP considering to provide this service, this section
should make things clear for both of you.

An ISP has three choices:

1. ISPs probably cannot let users run scripts under mod_perl on the main server. There are many
reasons for this:

Scripts might leak memory, due to sloppy programming. There will not be enough memory to run as
many servers as required, and clients will be not satisfied with the service because it will be slower.

The question of file permissions is a very important issue: any user who is allowed to write and run a
CGI script can at least read (if not write) any other files that belong to the same user and/or group the
web server is running as. Note that it’s impossible to run suEXEC and cgiwrap extensions under
mod_perl 1.0.

Another issue is the security of the database connections. If you use Apache::DBI, by hacking the
Apache::DBI code you can pick a connection from the pool of cached connections even if it was
opened by someone else and your scripts are running on the same web server.

29 Jan 20042

1.1 Description

http://httpd.apache.org/docs-2.0/mod/perchild.html

Yet another security issue is a potential compromise of the systems via user’s code running on the
webservers. One of the possible solutions here is to use chroot(1) or jail(8) mechanisms which allow
to run subsystems isolated from the main system. So if a subsystem gets compromised the whole
system is still safe.

There are many more things to be aware of so at this time you have to say No.

Of course as an ISP you can run mod_perl internally, without allowing your users to map their scripts
so that they will run under mod_perl. If as a part of your service you provide scripts such as guest books,
counters etc. which are not available for user modification, you can still can have these scripts
running very fast.

2. But, hey why can’t I let my users run their own servers, so I can wash my hands of them and don’t
have to worry about how dirty and sloppy their code is (assuming that the users are running their
servers under their own usernames, to prevent them from stealing code and data from each other).

This option is fine as long as you are not concerned about your new systems resource requirements. If
you have even very limited experience with mod_perl, you know that mod_perl enabled Apache
servers while freeing up your CPU and allowing you to run scripts very much faster, have huge
memory demands (5-20 times that of plain Apache).

The size depends on the code length, the sloppiness of the programming, possible memory leaks the
code might have and all that multiplied by the number of children each server spawns. A very simple
example: a server, serving an average number of scripts, demanding 10Mb of memory which spawns
10 children, already raises your memory requirements by 100Mb (the real requirement is actually
much smaller if your OS allows code sharing between processes and programmers exploit these
features in their code). Now multiply the average required size by the number of server users you
intend to have and you will get the total memory requirement.

Since ISPs never say No, you’d better take the inverse approach - think of the largest memory size
you can afford then divide it by one user’s requirements as I have shown in this example, and you
will know how many mod_perl users you can afford :)

But you cannot tell how much memory your users may use? Their requirements from a single server
can be very modest, but do you know how many servers they will run? After all, they have full control of
httpd.conf - and it has to be this way, since this is essential for the user running mod_perl.

All this rumbling about memory leads to a single question: is it possible to prevent users from using
more than X memory? Or another variation of the question: assuming you have as much memory as
you want, can you charge users for their average memory usage?

If the answer to either of the above questions is Yes, you are all set and your clients will prize your
name for letting them run mod_perl! There are tools to restrict resource usage (see for example the man
pages for ulimit(3), getrlimit(2), setrlimit(2) and sysconf(3), the last three have
the corresponding Perl modules: BSD::Resource and Apache::Resource).

329 Jan 2004

1.2 ISPs providing mod_perl services - a fantasy or a realitymod_perl for ISPs. mod_perl and Virtual Hosts

[ReaderMETA]: If you have experience with other resource limit ing techniques please share it with
us. Thank you!

If you have chosen this option, you have to provide your client with:

Shutdown and startup scripts installed together with the rest of your daemon startup scripts (e.g
/etc/rc.d directory), so that when you reboot your machine the user’s server will be correctly
shutdown and will be back online the moment your system starts up. Also make sure to start
each server under the username the server belongs to, or you are going to be in big trouble!

Proxy services (in forward or httpd accelerator mode) for the user’s virtual host. Since the user
will have to run their server on an unprivileged port (>1024), you will have to forward all
requests from user.given.virtual.hostname:80 (which is
user.given.virtual.hostname without the default port 80) to
your.machine.ip:port_assigned_to_user . You will also have to tell the users to
code their scripts so that any self referencing URLs are of the form
user.given.virtual.hostname.

Letting the user run a mod_perl server immediately adds a requirement for the user to be able to
restart and configure their own server. Only root can bind to port 80, this is why your users have
to use port numbers greater than 1024.

Another solution would be to use a setuid startup script, but think twice before you go with it,
since if users can modify the scripts they will get a root access. For more information refer to the
section "SUID Start-up Scripts".

Another problem you will have to solve is how to assign ports between users. Since users can
pick any port above 1024 to run their server, you will have to lay down some rules here so that
multiple servers do not conflict.

A simple example will demonstrate the importance of this problem: I am a malicious user or I
am just a rival of some fellow who runs his server on your ISP. All I need to do is to find out
what port my rival’s server is listening to (e.g. using netstat(8)) and configure my own
server to listen on the same port. Although I am unable to bind to this port, imagine what will
happen when you reboot your system and my startup script happens to be run before my rival’s
one! I get the port first, now all requests will be redirected to my server. I’ll leave to your imagi-
nation what nasty things might happen then.

Of course the ugly things will quickly be revealed, but not before the damage has been done.

Luckily there are special tools that can ensure that users that aren’t authorized to bind to certain
ports (above 1024) won’t be able to do so. One such a tool is called cbs and its documentation
can be found at http://www.epita.fr/~flav/cbs/doc/html.

Basically you can preassign each user a port, without them having to worry about finding a free one,
as well as enforce MaxClients and similar values by implementing the following scenario:

29 Jan 20044

1.2 ISPs providing mod_perl services - a fantasy or a reality

http://www.epita.fr/~flav/cbs/doc/html

For each user have two configuration files, the main file, httpd.conf (non-writable by user) and the
user’s file, username.httpd.conf where they can specify their own configuration parameters and over-
ride the ones defined in httpd.conf. Here is what the main configuration file looks like:

 httpd.conf

 # Global/default settings, the user may override some of these
 ...
 ...
 # Included so that user can set his own configuration
 Include username.httpd.conf

 # User-specific settings which will override any potentially
 # dangerous configuration directives in username.httpd.conf
 ...
 ...

 username.httpd.conf

 # Settings that your user would like to add/override,
 # like <Location> and PerlModule directives, etc.

Apache reads the global/default settings first. Then it reads the Include’d username.httpd.conf file
with whatever settings the user has chosen, and finally it reads the user-specific settings that we don’t
want the user to override, such as the port number. Even if the user changes the port number in his
username.httpd.conf file, Apache reads our settings last, so they take precedence. Note that you can
use Perl sections to make the configuration much easier.

3. A much better, but costly solution is co-location. Let the user hook his (or your) stand-alone machine
into your network, and forget about this user. Of course either the user or you will have to undertake
all the system administration chores and it will cost your client more money.

Who are the people who seek mod_perl support? They are people who run serious projects/busi-
nesses. Money is not usually an obstacle. They can afford a stand alone box, thus achieving their goal
of autonomy whilst keeping their ISP happy.

1.2.1 Virtual Servers Technologies

As we have just seen one of the obstacles of using mod_perl in ISP environments, is the problem of isolat-
ing customers using the same machine from each other. A number of virtual servers (don’t confuse with
virtual hosts) technologies (both commercial and Open Source) exist today. Here are some of them:

The User-mode Linux Kernel

http://user-mode-linux.sourceforge.net/

User-Mode Linux is a safe, secure way of running Linux versions and Linux processes. Run buggy
software, experiment with new Linux kernels or distributions, and poke around in the internals of
Linux, all without risking your main Linux setup.

529 Jan 2004

1.2.1 Virtual Servers Technologiesmod_perl for ISPs. mod_perl and Virtual Hosts

http://user-mode-linux.sourceforge.net/

User-Mode Linux gives you a virtual machine that may have more hardware and software virtual
resources than your actual, physical computer. Disk storage for the virtual machine is entirely
contained inside a single file on your physical machine. You can assign your virtual machine only the
hardware access you want it to have. With properly limited access, nothing you do on the virtual
machine can change or damage your real computer, or its software.

So if you want to completely protect one user from another and yourself from your users this might
be yet another alternative to the solutions suggested at the beginning of this chapter.

VMWare Technology

Allows running a few instances of the same or different OSs on the same machine. This technology
comes in two flavors:

Open source: http://savannah.nongnu.org/projects/plex86/

Commercial: http://www.vmware.com/

So you may want to run a separate OS for each of your clients

freeVSD Technology

freeVSD (http://www.freevsd.org), an open source project sponsored by Idaya Ltd. The software
enables ISPs to securely partition their physical servers into many virtual servers, each capable of
running popular hosting applications such as Apache, Sendmail and MySQL.

S/390 IBM server

Quoting from: http://www.s390.ibm.com/linux/vif/

"The S/390 Virtual Image Facility enables you to run tens to hundreds of Linux server images on a
single S/390 server. It is ideally suited for those who want to move Linux and/or UNIX workloads
deployed on multiple servers onto a single S/390 server, while maintaining the same number of
distinct server images. This provides centralized management and operation of the multiple image
environment, reducing complexity, easing administration and lowering costs."

In two words, this a great solution to huge ISPs, as it allows you to run hundreds of mod_perl servers
while having only one box to maintain. The drawback is the price :)

Check out this scalable mailing list thread for more details from those who know:
http://archive.develooper.com/scalable@arctic.org/msg00235.html

1.3 Virtual Hosts in the guide
If you are about to use Virtual Hosts you might want to read these sections:

29 Jan 20046

1.3 Virtual Hosts in the guide

http://savannah.nongnu.org/projects/plex86/
http://www.vmware.com/
http://www.freevsd.org/
http://www.s390.ibm.com/linux/vif/
http://archive.develooper.com/scalable@arctic.org/msg00235.html

Apache Configuration in Perl

Easing the Chores of Configuring Virtual Hosts with mod_macro

Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host

Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.

A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host

1.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.5 Authors
Stas Bekman <stas (at) stason.org>

Only the major authors are listed above. For contributors see the Changes file.

729 Jan 2004

1.4 Maintainersmod_perl for ISPs. mod_perl and Virtual Hosts

Table of Contents:
........... 11 mod_perl for ISPs. mod_perl and Virtual Hosts
................... 21.1 Description
......... 21.2 ISPs providing mod_perl services - a fantasy or a reality
.............. 51.2.1 Virtual Servers Technologies
............... 61.3 Virtual Hosts in the guide
................... 71.4 Maintainers
................... 71.5 Authors

i29 Jan 2004

Table of Contents:mod_perl for ISPs. mod_perl and Virtual Hosts

	1€€mod_perl for ISPs. mod_perl and Virtual Hosts
	1.1€€Description
	1.2€€ISPs providing mod_perl services - a fantasy or a reality
	1.2.1€€Virtual Servers Technologies

	1.3€€Virtual Hosts in the guide
	1.4€€Maintainers
	1.5€€Authors

