Performance Considerations Under Different MPMs 1 Performance Considerations Under Different MPMs

1 PerformanceConsiderations Under Differ ent
MPMs

29 Jan 2004 1



1.1 Description

1.1 Description|

This chapter discusses how to choose the right MPM to uspldtiorms that have such a choice), and
how to get the begterfomanceout ofit.

Certain kind ofapplications may show a bettgperformancewhen running under one mpm, but not the
other. Results also may vary frgfatform to platform.

CPAN moduledevebpershave to strive making their moduliesction correctlyregardessthe mpm they

are being deployed under. However they may choosedtatify what MPM the code is running under
and do bettedeckionsbetter on thisnformaion, as long as it doesn’t break thenctionality for other
plaforms Forexanplesif a devebperprovides thread-unsafe code, the module will work correctly under
the prefork mpm, but mayalfundion under threadethpms.

1.2 Memory Requirements

Since the verypegiming mod_perl users have enjoyed thrememousspeed boost mod_perl wpsovid-
ing, but there is no free lunch -- mod_perl has quite big mememyiranents since it has to store the
compiled code in the memory to avoid the code loadingerwhpilation oveheadfor eachrequest.

1.2.1 MemoryRequiranentsin Prefork MPM|

For thosefamiliar with mod_perl 1.0, mod_perl 2.0 has not much new to offer. We still reghared
memory try to preload as many things a®ssble at the servestartupand limit the amount of used
memoryusing specially designed for that purptsels.

The new thing is that the core API has been spread atnalsiply modules, which can be loaded only
when needed (this of course works only when mod_perl is builts as DSO). This allows to save some
memory. However the savings are not big, since all these modules are writen in C, making them into the
text segments of the memory, which is perfectly shared. The savings arsigmifieantat the startup

speed, since the startup time, when DSO modules are loaded, is growing qlidsitcally as the
number of loaded DSO modules grows (because of syrelooktions).

1.2.2 MemoryRequiranentsin ThreadedVIiPM|

The threaded MPM is a totally new beast for mod_perl users. If you run several processes, the same
memory sharingechiquesapply, but usually you want to run as few processeg®ssble and to have as

many threads gsossble. Remenber that mod_perl 2.0 allows you to have just a few Feeipretersin

the process whichthewise runsmultiple threads. So using more threads doesn’t mean sgjndicantly

more memory, if the maximum numberaailable Perlinterpretersis limited.

Even though memory sharing is napplicable inside the same process, mod_perl getsgaificant

memory saving, because Parerpretershave a shared opcode tree. Similar to the preforked model, all

the code that was loaded at the server startup, beforntegotetersare cloned, will be shared. But there

is asignificantdifferencebetween the two. In the prefork case, the normal memory sharing applies: if a
single byte of the memory page gets unshared, the whole page is unshared, meaning that with time less

2 29 Jan 2004



Performance Considerations Under Different MPMs 1.3 Work with DataBases

and less memory is shared. In the threaded mpm case, the opcode tree is shared and this doesn’t change :
the codeuns.

Moreover, since Perintempreterpools are used, and the FIFO model is used, if the pool contains three Perl
interpreters but only one is used at any given time, only th&gmpreterwill be ever used, making the

other twointermpretersconsuning very little memory. So if with prefork MPM, you’d think twice before
loading mod_perl if all you need is trans handler, with threaded mpm you can do that without paying the
price of thesignificanlyincreased memory demands. You can have 256 light Apache threads serving static
requests, and let's say three Hatemretersrunning quick trans handlers, or even heavyibfiequest
dynamic requests, whemreeded.

It's not clear yet, how one will be able to control the amount of running Perl interepreters, based on the
memoryconsumgion, because it's nqtossble to get the memory usaggormation per thread. However

we arethinking about running a garbagelledion thread which will cleanup Peiriterpretersandocca

sioraly Kill off the unused ones to free up usedmory.

1.3 Work with DataBases

1.3.1 Work with DataBases under Prefork MPM|

Apache: : DBl works as with mod_perl 1.0, to share dataltasmetions

1.3.2 Work with DataBases under Threaded MPM|

The currentApache: : DBl should be usable under threaded mpm, though it doesn’t ahranetions
across threads. Each Piaterpreterhas its own cache, just like in the prefarpm.

DBI : : Pool is a work in progress, which should bring the sharing of datalmesetions across threads
of the same process. Watch the mod_perl and dbi-dev lists for updates on this wolRBOncBool is
completed it'll either replacApache: : DBl or will be used byt.

1.4 M aintainer s

Maintaineris the person(s) you should contact with updatesedions andpatches.

® Stas Bekman <stas (afason.org>

1.5 |[Authors

® Stas Bekman <stas (aason.org>

Only the major authors are listed above. Eamtributors see the Changdise.

29 Jan 2004 3






Performance Considerations Under Different MPMs Table of Contents:

Table of Contents:

1] Performance Considerations Under Different MPMs|
1.1 [Description
1.2 [M emory Requwementsl .
1.2.1 [Memory Requirementsin Prefork M PM| .
1.2.2 [Memory Requirementsin Threaded MPM| .
1.3 Work with DataBaseg .
1.3.1 Work with DataBases under Prefork M PM|
1.3.2 Work with DataBases under Threaded M PM|
1.4 [Maintainerd.
15

WWWWWNDNNDN B

29 Jan 2004 i



	1€€Performance Considerations Under Different MPMs
	1.1€€Description
	1.2€€Memory Requirements
	1.2.1€€Memory Requirements in Prefork MPM
	1.2.2€€Memory Requirements in Threaded MPM

	1.3€€Work with DataBases
	1.3.1€€Work with DataBases under Prefork MPM
	1.3.2€€Work with DataBases under Threaded MPM

	1.4€€Maintainers
	1.5€€Authors


