Choosing the Right Strategy 1 Choosing the Right Strategy

1 Choosng the Right Strategy

29 Jan 2004 1

1.1 Description

1.1 Description|

This documentdiscusses various mod_perl settifatgiesused to get the beperfomanceandscabbil -
ity of theservices.

1.2 Doit likel doit!?

There is no such thing as thight strakgy in the web servebusiess although there are many wrong
ones. Never believe a person who sdix it this way, thisis the best!". As the old saying goesTrust
but verify". There are too mangecmologies out there to choose from, and it would takeeaomous
invesimentof time and money to try tealidateeach one beforéecidng which is the best choice for your
situation.

With this in mind, | will present some ways of usisgrdalonemod_perl, and someombnaions of
mod_perl and othetechologies I'll describe how these things work together, offer opynions on the
pros and cons of each, theldive degree ofliffi culty in installing andmairtaining them, and some hints
on approaches that should be used and thingediol.

To be clear, | will not address aficologiesand tools, but limit thisliscusionto thosecomplenening
mod_perl.

Please let me stress it agaio:not blindly copy someone’s setup and hope for a good result. Choose what
is best for yousituation -- it might takesome effort to find out what thas.

In this chapter we wiltliscuss

® Deployment of mod_perl in Overview, with the prosand cons.
® Alternative architecturesfor running one and two servers.
® Proxy servers(Squid, and Apache smod_proxy).

1.3 /mod per| Deployment Overview

There are severalifferent ways to build,configure and deploy your mod_perl enabled server. Some of
themare:

1. Having one binary and or@nfiguration file (one big binary fomod_perl).

2. Having twobinaries and twoconfiguration files (one big binary for mod_perl and one small binary
for static objects likémages.)

3. Having one DSO-style binary and tvomnfiguration files, with mod_perlavailable as aloadable
object.

4. Any of the above plus a reverse proxy server in dtgeerator mode.

2 29 Jan 2004

Choosing the Right Strategy 1.4 Alternative architectures for running one and two servers

If you are a newbie, | woultecommendthat you start with the first option and work on getting your feet

wet with Apache and mod_perl. Later, you can decide whether to move to the second one which allows
better tuning at the expense of maremplicated admiristration, or to the third option -- the more
state-of-the-art-yet-suspouslynew DSO system, or to the fourth option which gives you even more
power.

1. The first option will kill yourprodudion site if you serve a lot of static data from large (4 to 15MB)
webserver processes. On the other hand, while testing you will have no otherrgeragion to
mask or add to youerrors.

2. This option allows you to tune the two serviadividually, for maximumperformance

However, you need to choose between running the two servensiltiple ports,multiple IPs, etc.,
and you have the burden afimiristering more than one server. You have to deal \pitbixying or
fancy site design to keep the two serversyinchraization.

3. With DSO, modules can be added and removed withexdnpiling the server, and their code is
even shared amomgultiple servers.

You can compile just once and yet have more than one binary, bydifergnt configuration files
to loaddifferent sets of modules. Thdifferent Apache servers loaded in this way can simultane-
ouslyto give a setup such as described in the second Giimre.

On the down side, you are playing at bheedng edge.

You are dealing with a nesoluion that has weaklocumertation and is still subject to change. It is
still somavhatplatform specific. Your mileage mayary.

The DSO modulénod_so) adds size andomplety to yourbinaries
Refer to the sectiotPros and Cons duilding mod_perl a®SOfor moreinformation.
Build details:Build mod_perl as DSO inside Apache source treéAAACI

4. The fourth option (proxy in httpcceerator mode), once correctlgonfigured and tuned, improves
the perfomanceof any of the above three options by cachinglauftering pageresults.

1.4 |Alternative ar chitecturesfor running one and two
SErver g

The next part of this chapter discusses the pros and the cons of each of these mrestgiedions
Real WorldScenaios Implemertation describes thanplemertation tecmiquesof theseschemes.

We will look at thefollowing instalations

29 Jan 2004 3

1.4.1 Standalone mod_perl Enabled Apache Server

Standalone mod_per| Enabled Apache Server

One Plain Apache and One mod_perl-enabled Apache Servers
Onelight non-Apache and One mod_per| enabled Apache Servers
Adding a Proxy Server in http Accelerator Mode

1.4.1|Stardalonemod perl Enabled Apach8erver

The first approach is to implement a straightforward mod_perl server. Just take your plain Apache server
and add mod_perl, like you add any other Apache module. Y ou continue to run it at the port it was using
before. Y ou probably want to try this before you proceed to more sophisticated and complex techniques.

The advantages:

Simplicity. You just follow the installation instructions, configure it, restart the server and you are
done.

No network changes. Y ou do not have to worry about using additional ports as we will see later.

Speed. You get avery fast server and you see an enormous speedup from the first moment you start
to useit.

The disadvantages:

The process size of a mod_perl-enabled Apache server is huge (maybe 4MB at startup and growing
to 10MB and more, depending on how you use it) compared to typical plain Apache. Of course if
memory sharing isin place, RAM requirements will be smaller.

You probably have a few tens of child processes. The additional memory requirements add up in
direct relation to the number of child processes. Y our memory demands are growing by an order of
magnitude, but this is the price you pay for the additional performance boost of mod_perl. With
memory prices so cheap nowadays, the additional cost is low -- especially when you consider the
dramatic performance boost mod_perl givesto your services with every 100MB of RAM you add.

While you will be happy to have these monster processes serving your scripts with monster speed,
you should be very worried about having them serve static objects such as images and html files.
Each static request served by a mod_perl-enabled server means another large process running,
competing for system resources such as memory and CPU cycles. The real overhead depends on the
static object request rate. Remember that if your mod_perl code produces HTML code which
includes images, each one will turn into another static object request. Having another plain webserver
to serve the static objects solves this unpleasant obstacle. Having a proxy server as a front end,
caching the static objects and freeing the mod_perl processes from this burden is another solution.
We will discuss both below.

Another drawback of this approach is that when serving output to a client with a slow connection, the
huge mod_perl-enabled server process (with all of its system resources) will be tied up until the
response is completely written to the client. While it might take a few milliseconds for your script to
complete the request, there is a chance it will be still busy for some number of seconds or even
minutes if the request is from a slow connection client. Asin the previous drawback, a proxy solution

29 Jan 2004

Choosing the Right Strategy 1.4.2 One Plain Apache and One mod_perl-enabled Apache Servers

can solve this problem. More on proxlater.

Proxying dynamic content is not going to help much if all the clients are on a fast local net (for
example, if you ar@dmiristefing an Intranet.) On the contrary, it can decreaasdomance Still,
remenberthat some of your Intranet users might work from home through slow miatdesn

If you are new to mod_perl, thisgsobebly the best way to ggburself started.

And of course, if your site is serving only mod_perl scripts (close to zero static objects, like images), this
might be the perfect choice fgou!

For implemertation notes, see th&ne Plain and One mod_perl enabled Apashaerers section in the
implemertationschapter.

1.4.2 [One Plain Apache and One mod perl-enabled Apache Serverq

As | have mentioned before, when running scripts under mod_perl you will notice that the httpd processes
consume a huge amount of virtual memory -- from 5MB to 15MB and even more. That is the price you
pay for theenomous speedimprovements under mod_perl. (Again -- shared memory keeps the real
memory that is being used much smaljer

Using these large processes to serve static objects like images ardbbiméntsis overkill. A better
approach is to run two servers: a very light, plain Apache server to serve static objects and a heavier
mod_perl-enabled Apache server to serve requests for dy(genieated objects (ak& Gl).

From here on, | will refer to these two serversitipd _docs (vanilla Apache) antittpd_per| (mod_perl
enabledApache).

Theadvarages

e The heavy mod_perl processes serve only dynamic requests, which allateplityenent of fewer
of these largservers.

e MaxC i ents, MaxRequest sPer Chi | d and relategaraneters can now beoptimally tuned for
bothht t pd_docs andht t pd_per| serverssomehing we could not do before. This allows us to
fine tune the memory usage and get better spedomance

Now we can run many lightweightt t pd_docs servers and just a few heaw t pd_per|
servers.

An important note: When a user browses static pages and the base URLLiactteon window points

to the static server, for examyilet p: / / www. exanpl e. cont i ndex. ht i |-- all relative URLs (e.g.

) are being served by the light plain Apache server. But this is
not the case witldynamcally geneatedpages. For example when the base URL ir_theation window
points to the dynamic server -- (g¢td.t p: / / wwv. exanpl e. com 8080/ perl /i ndex. pl) all rela

tive URLs in thedynamcally geneated HTML will be served by the heavy mod_perl processes. You
must use fullyquaified URLs and notelative ones!

[http:// ww. exanpl e. conifi cons/arrow. gi f]is a full URL, while/ i cons/arrow. gi f is a

29 Jan 2004 5

http://www.example.com/index.html
http://www.example.com:8080/perl/index.pl
http://www.example.com/icons/arrow.gif

1.4.3 One light non-Apache and One mod_perl enabled Apache Servers

relaive one. Using<BASE HREF="|htt p://ww. exanpl e. conf['> in the geneated HTML is
another way to handle this problem. Also, titet pd_per | server could rewrite the requests back to
htt pd_docs (much slower) and you still need thttertion of the heavy servers. This is not an issue if
you hide theintemal port implemertations so the client sees only one server running on §ort(See
Publishing Port Numbers other tha0)

Thedisad/artages
® An admiristration overhead
O The need for twaonfiguration files.
O The need for two sets obntroling scripts(startup/shutown) andwatchdogs

O If you areprocessg log files, now youprohbably will have to merge the twesepaate log files
into one beforgrocessg them.

e® Just as in the one server approach, we still have the problem of a mod_perl ppecdbg its
precious time serving slow clients, when pirecesig portion of the request was completed a long
time agoDeploying a proxy solves this, and will be covered in the mextion.

As with the single server approach, this is not a ndigad/artageif you are on a fast network (i.e.
Intranet). It is likely that you do not wanbaffering server in thisase.

Before you go on with thisoluion you really want to look at tdding a Proxy Server in htificcelera|

ftor Modd section.

For implemertation notes see th&One Plain and One mod_perl enabled ApaSkeevers section in
implemertationschapter.

1.4.3 |One light non-Apache and One mod per| enabled Apache|
Servers

If the only requirenentfrom the light server is for it to serve static objects, then you can get away with
non-Apache servers having an even smaller merfomtprint. t ht t pd has been reported to be about 5
times faster then Apach@speially under a heavy load), since it is very simple and uses almost no
memory (260K) and does not spawn clgfdcesses.

The Advartages
e All the advarniagesof the 2 serverscenario.

e More memory saving. Apache is about 4 times bigger thtipd, if you spawn 3@hildrenyou use
about 30M of memory, whilenttpd uses only 260K - 100 times less! You could use the 30M you've
saved to run a few more mod_psefrvers.

6 29 Jan 2004

http://www.example.com/

Choosing the Right Strategy 1.5 Adding a Proxy Server in http Accelerator Mode

The memory savings asggnificantly smaller if your OS supports memory sharing vidlnarmically

Shared Objects (DSO) and you haemfiguredApache to use it. If you do allow memory sharing, 30

light Apache servers ought to use only about 3 to 4MB, because most of it will be shared. There is no
memory sharing if Apache modules ataically compiled into the httpdxecutable.

® Reported to be about 5 times faster then plain Apache servingodtjtits.
TheDisadrartages

® Lacks some of Apache’s features, like access control, i@edion, customiablelog file formats,
and soon.

Anotherinteresing choice is a kHTTPd webserver for Linux. KHTTPdlierent from other webservers

in that it runs from within the Linux-kernel as a module (device-driver). KHTTPd handles only static (file
based) web-pages, and passes all requests for nonirdtaticetion to a regular userspace-webserver such
as Apache. For moiaformation seghttp://www.fenrus.demon.ml/

Also check out the Boa websenvgttp://www.boa.ord/

1.5 |Adding a Proxy Server in http Accelerator Mode

At the begiming there were two servers: one plain Apache server, whiclvexgadight, andconfiguredto
serve static objects, the other mod_perl enapleny heavy) andconfiguredto serve mod_perl scripts and
handlers. As yovemenberwe named therht t pd_docs andht t pd_per | respetvely.

In the dual-server setup presented earlier the two servers coexist at the same IP adidtessidpyo
different ports: htt pd_docs listens to port 80 (e.ghttp://www.example.com/images/test)giénd
htt pd_per| listens to port 8080 (e.hitp://www.example.com:8080/perlftes).pNote that we did not
write [http://www.example.com:8@or the first example, since port 80 is the default port for the http
service. Later on, we will behangng the configuration of theht t pd_docs server to make it listen to
port81.

This section will attempt to convince you that you realgnt to deploy a proxy server in the htpceéer-
ator mode. This is a special mode thatahdiion to providing the normal cachinghectanism, accekrates
your CGIl and mod_pescripts.

Theadvartagesof using the proxy server tonjundion with mod_perlare:

e Certainly thebendits of the usual use of the proxy server which allows serving of static objects from
the proxy’s cache. You get less l&@tivity reading static objects from the disk (proxy serves the
most "popular" objects from RAM -- of course you benefit more if you allow the proxy server to
consume more RAM). Since you do not wait for the 1/0 to be completed, you are able to serve static
objects muctiaster.

e And the extrdunctionality provided by thénttp-accedration mode, which makes the proxy server act
as a sort of output buffer for the dynamic content. The mod_perl server sends the entire response to
the proxy and is then free to deal with other requests. The proxy sergspassible for sending the
response to the browser. So if thhander is over a slow link, the mod_perl server is not waiting

29 Jan 2004 7

http://www.fenrus.demon.nl/
http://www.boa.org/
http://www.example.com/images/test.gif
http://www.example.com:8080/perl/test.pl
http://www.example.com:80/

1.5 Adding a Proxy Server in http Accelerator Mode

around for the data tmove.

Using numbers is always momonvindng than just words. So we are going to show a simple
example from the reavorld.

First let's explain th@bbresiation used in thenetworkng world. If someone claims to have a 56 kbps
connedtion -- it means that theonnetion is of 56 kilo-bits per second (~56000 bits/sec). It's not 56
kilo-bytes per second, but 7 kilo-bytes per second, because 1 byte equals to 8 bits. So don't let the
merchants fool you--your modem gives you 7 kilo-bytes per secondetion at most and not 56
kilo-bytes per second as one migink.

Anotherconvertion used in computditerature is that if you see 10Kb it usually means 10 kilo-bits
and 10KB is 10 kilo-bytes. So if you see upper dasiegeneslly refers to bytes, and lower cds¢o
bits (andK of course means kilo and equals to 1024 or to Ha@néhg on the field it's used in).
Rementer that the lattecconvertion is not followedeverywhere so use thiknowledgewith care.
This documentis following this convertion.

So here is the real world example. Let's look at the typical scenario with a user connected to your site
with 56Kbps modem. It means that the speed of the user’s link is 56/8 = 7KBytes per sec. Let's assume an
averagegeneated HTML page to be of 42KB and an average mod_perl scriptgbaéatesthis
response in 0.5 second. How many responses this script could produce during the time it took for the
output to bedeliveredto user? A simplealcuation reveals pretty scamyumbers:

42KB / (0.5s * 7KB/s) = 12

12 other dynamic requests could be served at the same time, if we could put mod_perl to do only
what it's best atgeneating responses.

This very simple example shows us that we need only one twelfth the numtigldoén running,
which means that we will need only one twelfth of the memory (not quite true because some parts of
the code arshared).

But you know thahowadaysscripts often return pages which are blown up with JavaScript code and
similar, which can make them 100kb size anddivrioadtime will be of the order of... (Thisalcu
lation is left to you as amxecise:)

Moreover many users like to open many browser windows and do many things afdoma#oad
files and browsgraphcally heavy sites). So in the speed of 7KB/sec we have assumed before, may
in reality be 5-10 timeslower.

e Thistechiqueallows us to hide the details of the servarplemenrtation. Users will never see ports
in the URLs (more on that topic later). You can have a few boxes serving the requests, and only one
serving as a front end, which spreads the jobs between the servers in a way that you can control. You
canactually shut down a server, without the user eweticing, because the front end server will
dispatch the jobs to other servers. (This is cdlleatl Balancing and it's a pretty big issue which will
take a book on its own to cover atherdore will not be discussed here. There is a plentnfarma
tion availableat thelntemetthough. For morenformation se€’High-Avail ability Linux Project)

8 29 Jan 2004

Choosing the Right Strategy 1.5 Adding aProxy Server in http Accelerator Mode

® [or security reasons, using any httpd accelerator (or a proxy in httpd accelerator mode) is essential
because you do not let your internal server get directly attacked by arbitrary packets from whomever.
The httpd accelerator and internal server communicate in expected HTTP requests. This allows for
only your public "bastion" accelerating www server to get hosed in a successful attack, while leaving
your internal data safe.

Thisistrueif your server runs on your localhost (127.0.0.1) which makes it impossible to connect to
you back end machine from the outside. But you don’t need to connect from the outside anymore. Y ou
will see why when you proceed to this techniques’ implementation notes.

The disadvantages are:

e Of course there are drawbacks. Luckily, these are not functionality drawbacks, but they are more
administration hassle. You have another daemon to worry about, and while proxies are generally
stable, you have to make sure to prepare proper startup and shutdown scripts, which are run at boot
and reboot as appropriate. This is something that you do once and never come back to this issue
again. Also, you might want to set up the crontab to run a watchdog script that will make sure that the
proxying server is running and restart it if it detects a problem, reporting the problem to the adminis-
trator on the way.

® Proxy servers can be configured to be light or heavy. The administrator must decide what gives the
highest performance for his application. A proxy server like squid is light in the sense of having only
one process serving al requests. But it can consume a lot of memory when it loads objects into
memory for faster service.

® |f you use the default logging mechanism for al requests on the front- and back-end servers the
reguests that will be forwarded to the back-end server will be logged twice, which makes it tricky to
merge the two logdfiles, should you want to.

One solution is to tell the heavy Apache not to bother logging requests that seem to come from the
light Apache's machine. Y ou might do this by installing a custom Per | LogHandl| er or just piping
to access log via grep -v (match all but this pattern) for the requests coming from the light
Apache server. In this scenario, the access log written by the light Apache is the file you should
work with. But you need to look for any direct accesses to the heavy server in case the proxy server is
sometimes bypassed, which can be eliminated if the server is listening only to the localhost
(127.0.0.1).

If you still decide to log proxied requests at the back-end server they will be useless since instead of
real remote IP of the user, you will get always the same IP of the front-end server. Later in this
Chapter on page XXX (mod_proxy_add_forward) we present a solution for this problem.

Have | succeeded in convincing you that you want a proxy server?

Of course if you are on a very fast local area network (LAN) (which means that al your users are
connected from this LAN and not from the outside), then the big benefit of the proxy buffering the output
and feeding a dlow client is gone. You are probably better off sticking with a straight mod_perl server in
this case.

29 Jan 2004 9

1.6 Implementations of Proxy Servers

1.6

| mplementations of Proxy Servers

As of this writing, two proxy implementations are known to be widely used with mod_perl, the squid

proxy server and mod_proxy which is apart of the Apache server. Let's compare them.

1.6.1 [The Squid Server|

The Advantages:

® Caching of static objects. These are served much faster, assuming that your cache size is big enough
to keep the most frequently requested objectsin the cache.

e Buffering of dynamic content, by taking the burden of returning the content generated by mod_perl
servers to slow clients, thus freeing mod_perl servers from waiting for the slow clients to download
the data. Freed servers immediately switch to serve other requests, thus your number of required
servers goes down dramatically.

® Non-linear URL space / server setup. You can use Squid to play some tricks with the URL space
and/or domain based virtual server support.

The Disadvantages:

® Proxying dynamic content is not going to help much if al the clients are on a fast local net. Also, by
default squid only buffersin 16KB chunks so it would not allow mod_perl to complete immediately
if the output is larger. (READ_AHEAD GAP which is 16KB by default, can be enlarged in defines.h if
your OS alows that).

Speed. Squid is not very fast today when compared with the plain file based web servers available.

Only if you are using a lot of dynamic features such as mod_perl or similar is there a reason to use

Squid, and then only if the application and the server are designed with caching in mind.

e Memory usage. Squid uses quite a bit of memory. In fact, it caches a good part of its content in
memory, to be able to serve it directly from RAM, a technique which is a lot quicker than serving
from disk. However, as you aready have your mod_perl server caching its code in RAM, you might
not want another RAM-hogging beast taking up your precious memory (see the Squid FAQ for refer-
ence: |http://www.squid-cache.org/Doc/FA Q/FAQ-8.html]).

HTTP protocol level. Squid is pretty much a HTTP/ 1. O server, which seriously limits the deploy-
ment of HTTP/ 1. 1 features, such asKeep- Al i ve requests.

HTTP headers, dates and freshness. The squid server might give out stale pages, confusing down-

stream/client caches. (Y ou update some documents on the site, but squid will still serve the old ones.)

10

Stability. Compared to plain web servers, Squid is not the most stable.

29 Jan 2004

http://www.squid-cache.org/Doc/FAQ/FAQ-8.html

Choosing the Right Strategy 1.6.2 Apache'smod_proxy

The pros and cons presented above lead to the idea that you might want to use squid for its dynamic
content buffering features, but only if your server serves mostly dynamic requests. So in this situation,
when performance is the godl, it is better to have a plain Apache server serving static objects, and squid
proxying the mod_perl enabled server only.

For implementation details, see the sections Running One Webserver and Squid in httpd Accelerator Mode
and Running Two Webservers and Squid in httpd Accelerator Mode in the implementations chapter.

1.6.2 |Apache’ s mod proxy

| do not think the difference in speed between Apache’ s mod_proxy and squid is relevant for most sites,
since the real value of what they do is buffering for slow client connections. However, squid runs as a
single process and probably consumes fewer system resources.

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the site across different back
end servers, while mod_proxy knows how to fix up redirects containing the back-end server’'s idea of the
location. With squid you can run a redirector process to proxy to more than one back end, but there is a
problem in fixing redirects in a way that keeps the client’s view of both server names and port numbersin
all cases.

The difficult case is where you have DNS aliases that map to the same IP address and you want the redi-
rect to port 80 and the server is on a different port and you want to keep the specific name the browser has
aready sent, so that it does not change in the client’s L ocation window.

The Advantages:

® No additional server is needed. We keep the one plain plus one mod_perl enabled Apache servers.
All you need is to enable nod_pr oxy in the httpd_docs server and add a few lines to
ht t pd. conf file.

® The ProxyPass and Pr oxyPassRever se directives allow you to hide the internal redirects, so
if [(ttp://exanpl e. com nodperl /] is actualy |http://1 ocal host: 81/ nodperl /] it
will be absolutely transparent to the user. Pr oxyPass redirects the request to the mod_perl server,
and when it gets the response, Pr oxy PassRever se rewritesthe URL back to the original one, e.g:

ProxyPass / modper|/ http://1ocal host: 81/ nodperl/
ProxyPassReverse / nmodperl/ http://1ocal host: 81/ nodperl/

e |t doesmod perl output buffering like squid does. See the Using mod_proxy notes for more details.

® |t even does caching. You have to produce correct Cont ent - Lengt h, Last - Modi fi ed and
Expi r es http headers for it to work. If some of your dynamic content does not change frequently,
you can dramatically increase performance by caching it with mod_proxy.

® ProxyPass happens before the authentication phase, so you do not have to worry about authenticat-
ing twice.

29 Jan 2004 11

http://example.com/modperl/
http://localhost:81/modperl/

1.7 When One Machine is not Enough for RDBM S Database and mod_per|

® Apache is able to accelerate secure HTTP requests completely, while also doing accelerated HTTP.
With Squid you have to use an external redirection program for that.

e Thelatest (Apache 1.3.6 and later) Apache proxy accelerated module is reported to be very stable.

For implementation see the "Using mod_proxy" section in the implementation chapter.

1.6.3 [Closing Lingering Connections with Lingerd

Because of some technical complicationsin TCP/IP, at the end of each client connection, it is not enough
for Apache to close the socket and forget about it; instead, it needs to spend about one second lingering on
the client. (More details can be found at |http://httpd.apache.org/docs/misc/fin_wait 2.html)

Lingerd is a daemon (service) designed to take over the job of properly closing network connections from
an http server like Apache and immediately freeing it to handle a new connection.

I i nger d can only do an effective job if HTTP Keep- Al i ves are turned off; since Keep- Al i vesare
useful for images, the recommended setup is to have | i nger d serving mod_perl enabled Apache and
plain Apache for images and other static objects.

With al i nger d setup, you don't have the proxy, so the buffering chain we have presented before for the
proxy setup is much shorter here:

FIGURE:
| Apache Kernel |TCP/IP ‘0o
| [rmod_perl]=>[sendbuf] |======> /]|\
| | I\

Hence in this setup it becomes more important to have a big enough kernel send buffer.

With lingerd, a big enough kernel send buffer, and keep-alives off, the job of spoonfeeding the datato a
dow client is done by the OS kernel in the background. As aresult, | i nger d makes it possible to serve
the same load using considerably fewer Apache processes. This tranglates into a reduced load on the
server. It can be used as an alternative to the proxy setups we have seen so far.

For more information about | i nger d see: |http://www.iagora.com/about/software/lingerd/|

1.7 When One Machineis not Enough for RDBM S Database
and mod perl|

Imagine a scenario where you start your business as a small service providing web-site. After awhile your
business becomes very popular and at some point you understand that it has outgrown the capacity of your
machine. Therefore you decide to upgrade your current machine with lots of memory, the cutting edge
super expensive CPU and an ultra-fast hard disk. As a result the load goes back to normal but not for a
long, as the demand for your services keeps on growing and just a little time after you’ ve upgraded your
machine, once again it cannot cope the load. Should you buy an even stronger and very expensive machine

12 29 Jan 2004

http://httpd.apache.org/docs/misc/fin_wait_2.html
http://www.iagora.com/about/software/lingerd/

Choosing the Right Strategy 1.7.1 Servers’ Requirements

or start looking for another solution? Let’s explore the possible solution for this problem.
A typical web service consists of two main software components, the database server and the web server.

A typical user-server interaction consists of accepting the query parameters entered into an HTML form
and submitted to the web server by a user, converting these parameters into a database query, sending it to
the database server, accepting the results of the executed query, formatting them into a nice HTML page,
and sending it to auser’s Internet browser or another application that created the request (e.g. WAP).

Thisfigure depicts the above description:
1 2
[] =_—===> [] =_—===> []
[dient] [Apache Server] [Database Server]
[] <====] <====]
4 3

This schemais known as a 3-tier architecture in the computing world.

A 3-tier architecture means splitting up several processes of your computing solution between different
machines.

e Tier 1l

The client, who will see the data on its screen and can give instructions to modify or process the data.
In our case, an Internet browser.

® Tier 2

The application server, which does the actual processing of the data and sends it back to the client. In
our case, amod_perl enabled Apache server.

® Tier 3
The database server, which stores and retrieves all the data for the application server.

We are interested only in the second and the third tiers; we don’t specify user machine requirements, since
mod_perl is all about server side programming. The only thing the client should be able to do is to render
the generated HTML from the response, which any simple browser will do. Of course I'm not talking
about the case where you return some heavy Java applets, but that movie is screened in another theater.

1.7.1 |[Servers Requirementg

Let’'s first understand what kind of software the web and database servers are, what they need to run fast
and what implications they have on the rest of the system software.

The three important machine components are the hard disk, the amount of RAM and the CPU type.

29 Jan 2004 13

1.7.2 The Problem

Typicaly the mod_perl server is mostly RAM hungry, while the SQL database server mostly needs a very
fast hard-disk. Of course if your mod_perl process reads a lot from the disk (which is a quite infrequent
phenomenon) you will need a fast disk too. And if your database server has to do a lot of sorting of big
tables and do lots of hig table joins, you will need alot of RAM too.

If we would specify average "virtua" requirements for each machine, that’s what we' d get:

An "ideal” mod_perl machine:

* HD: lowend (no real IO nostly | ogging)
* RAM the nore the better
* CPU. nmediumto high (according to needs)

An"ideal" database server machine:

* HD: high-end

* RAM | arge amounts (big joins, sorting of many records)
smal | amounts (ot herw se)

* CPU. mediumto high (according to needs)

1.7.2 [The Problem|

With the database and the httpd on the same machine, you have conflicting interests.

During peak loads, Apache will spawn more processes and use RAM that the database server might have
been using, or that the kernel was using on its behalf in the form of cache. You will starve your database
of resources at the time when it needs those resources the most.

Disk 1/O contention is the higgest time issue. Adding another disk wouldn’t cut 1/0 times because the
database is the only one who does I/O - since mod_perl processes have all their code loaded in memory.
(I'm talking about code that does pure perl and SQL processing) so it's clear that the DB is /O and CPU
bounded (RAM only if there are big joins to make) and mod_perl CPU and mostly RAM bounded.

The problem exists, but it doesn’t mean that you cannot run the application and the web servers on the
same machine. There is avery high degree of paralelism in modern PC architecture. The I/O hardware is
helpful here. The machine can do many things while a SCSI subsystem is processing a command, or the
network hardware iswriting a buffer over the wire.

If aprocessis not runnable (that is, it is blocked waiting for 1/0 or similar), it is not using significant CPU
time. The only CPU time that will be required to maintain a blocked process is the time it takes for the
operating system’s scheduler to look at the process, decide that it is still not runnable, and move on to the
next process in thelist. Thisis hardly any time at all. If there are two processes and one of them is blocked
on 1/0 and the other is CPU bound, the blocked process is getting 0% CPU time, the runnable process is
getting 99.9% CPU time, and the kernel scheduler is using the remainder.

14 29 Jan 2004

Choosing the Right Strategy 1.7.3 The Solution

1.7.3 [The Solution|

Adding another machine, which alows a set-up where both the database and the web servers run on their
own dedicated machines.

1.7.3.1

® Hardware Requirements

That allows you to scale two requirements independently.

If your httpd processes are heavily weighted with respect to RAM consumption, you can easily add
another machine to accommodate more httpd processes, without changing your database machine.

If your database is CPU intensive, but your httpd doesn’t need much CPU time, you can get low end
machines for the httpd and a high end machine with a very fast CPU for the database server.

e Scalability

Since your web server is not depending on the database server location any more, you can add more
web servers hitting the same database server, using the existing infrastructure.

® Database Security

Once you have multiple web server boxes the backend database becomes a single point of failure so
it'sagood ideato shield it from direct Internet access, something you couldn’t do when you had both
servers on the same machine.

17.32

® Network latency

A database request from a webserver to a database server running on the same machine uses UNIX
sockets, compared to the TCP/IP sockets used when the client submits the query from another
machine. UNIX sockets are very fast since al the communications happens within the same box,
eliminating network delays. TCP/IP sockets communication totally depends on the quality and the
speed of the network the two machines are connected with.

Basicaly, you can have amost the same client-server speed if you install a very fast and dedicated
network between the two machines. It might impose a cost of additional NICs but it's probably
insignificant compared to the speed up you gain.

But even the normal network that you have would probably fit as well, because the networks delays
are probably much smaller than the time it takes to execute the query. In contrast to the previous
paragraph, you really want to test the added overhead, since the network can be quite slow especially
at the peak hours.

29 Jan 2004 15

1.8 Running More than One mod_perl Server on the Same Machine.

How do you know what overhead is a significant one? All you have to measure is the average time
spent in the web server and the database server. If any of the two numbersis at least 20 times bigger than
the added overhead of the network you are all set.

To give you some numbers -- if your query takes about 20 milliseconds to process and only 1
millisecond to deliver the results, it's good. If the delivery takes about half of the time the processing
takes you should start considering switching to afaster and/or dedicated network.

The consequences of a slow network can be quite bad. If the network is slow mod_perl processes
remain open waiting for data from the database server and eat even more RAM as new child processes pop
up to handle new requests. So the overall machine performance can be worse than it was originally
when you had just a single machine for both servers.

1.7.4 [Three Machines Model|

Since we are talking about using a dedicated machine for each server, you might consider adding a third
machine to do the proxy work; this will make your setup even more flexible since it will enable you to
proxy-pass all request to not just one mod_perl running box, but to many of them. It will enable you to do
load balancing if and when you need it.

Generadly the proxy machine can be very light when it serves just alittle traffic and mainly proxy-passes
to the mod_perl processes. Of course you can use this machine to serve the static content and then the
hardware requirement will depend on the number of objects you will have to serve and the rate at which
they are requested.

1.8 |Running Morethan Onemod perl Server on the Same
M achine.

Let’s assume that you have two different sets of code which have little or nothing in common--different
Perl modules, no code sharing. Typical numbers can be four megabytes of unshared and four megabytes of
shared memory for each code set, plus three megabytes of shared basic mod_per| stuff. Which makes each
process 17MB in size when the two code sets are loaded. (3MB (server core shared) + 4MB (shared 1st
code set) + 4MB (unshared 1st code set) + 4MB (shared 2nd code set) + 4AMB (unshared 2nd code set).
Under this scenario:

Shared_RAM per _Child : 11MB

Max_Process_Si ze . 17MB
Total _RAM . 251MB

We assume that four megabytes is the size of each code sets unshared memory. Thisis a pretty typical size
of unshared memory, especially when connecting to databases, as the database connections cannot be
shared. Databases like Oracle can take even more RAM per connection on top of this.

Let’s assume that we have 251 megabytes of RAM dedicated to the webserver.

16 29 Jan 2004

Choosing the Right Strategy 1.8 Running More than One mod_perl Server on the Same Machine.

According to the equation developed in the section: "Choosing MaxClients':

Total _RAM - Shared_RAM per_Child
MaXCl i ents = ------mmmmm oo
Max_Process_Size - Shared_RAM per_Child

MaxCients = (251 - 11)/(17-11) = 40
We see that we can run 40 processes, using the given memory and the two code sets in the same server.

Now consider this practical decision. Since we have recognized that the code sets are very distinct in
nature and there is no significant memory sharing in place, the wise thing to do isto split the two code sets
between two mod_perl servers (a single mod_perl server actually is a set of the parent process and a
number of the child processes). So instead of running everything on one server, now we move the second
code set onto another mod_perl server. At this point we are talking about a single machine.

Let’slook at the figures again. After the split we will have 20 servers of eleven megabytes (4MB unshared
+ 7mb shared) and another 20 more of the same kind.

How much memory do we need now? From the above equation we derive:

Total _RAM = MaxC ients * (Max_Process_Si ze - Shared_RAM per _Chil d)
+ Shared_RAM per_Child

And using the numbers (the total of 40 servers):
Total _RAM = 2 * (20*(11-7)+7) = 174

A total of 174MB of memory required. But, hey, we have 251MB of memory. We've got 77/MB of
memory freed up. If we recalculate again the MaxCl i ent s we will see that we can run almost 60
servers:

MaxClients = (251 - 7%2)/(11-7) = 59

So we can run about 19 more servers using the same memory size. Almost 30 servers for each code set
instead of 20 originally. We have enlarged the servers pool by half without changing the machine’s hard-
ware.

Moreover this new setup allows us to fine tune the two code sets, since in reality the smaller in size code
base might have a higher hit rate, so we can benefit even more.

Let’s assume that based on the usage statistics we know that the first code set is called in 70% of requests
and the other 30% are used by the second set. Now we assume that the first code set requires only 5SMB of
RAM (3MB shared plus 2MB unshared) over the basic mod_perl server size, and the second set needs
11MBytes (7MB shared and 4MB unshared).

Lets compare this new requirement with our original 50:50 setup (here we have assigned the same number
of clientsfor each code set).

29 Jan 2004 17

1.9 SSL functionality and amod_perl Server

So now the first mod_perl server running the first code set will have all its processes using 8VIB (SMB
(server shared) + 3MB (code shared) + 2MB (code unshared), and the second 14MB (3+7+4). Given that
we have a 70:30 hits relation and that we have 251MB of available memory, we have to solve these two
equations:

XY =73
X*(8-6) + 6 + Y*(14-10) + 10 = 251

where X isthe total number of the processes the first code set can use and Y the second. The first equation
reflect the 70:30 hits relation, and the second uses the equation for the total memory requirements for the
given number of servers and the shared and unshared memory sizes.

When we solve these equations, we find that X equals 63 and Y equals 27. So we have a total of 90
servers -- two and a half times the number of servers running compared to the original setup using the
same memory size.

The hits rate optimized solution and the fact that the code sets can be different in their memory require-
ments, allowed us to run 30 more servers in total and gave us 33 more servers (63 versus 30) for the most
wanted code base, relative to the simple 50:50 split as in the first example.

Of course if you identify more than two distinct sets of code based on your hit rate statistics, more compli-
cated solutions may be required. You could make even more splits and run three or more mod_perl
servers.

Remember that having too many running processes doesn’t necessarily mean better performance because
all of them will contend for CPU time dlices. The more processes that are running the less CPU time each
gets and the slower overall performance will be. Therefore after hitting a certain load you might want to
start spreading servers over different machines.

In addition to the obvious memory saving you gain the power to troubleshoot problems that occur more
easily when you have different components running on different servers. It's quite possible that a small
change in the server configuration to fix or improve something for one code set, might completely break
the second code set. For example if you upgrade the first code set and it requires an update of some
modules that both code bases rely on. But there is a chance that the second code set won't work with a
new version of amodule it was relying on.

1.9 |SSL functionality and a mod per| Server

If you need SSL functionality, you can get it by adding the mod_ssl or equivalent Apache_sdl to the light
front-end server (httpd_docs) or the heavy back-end mod_perl server (httpd_perl). (The configuration and
installation instructions are located here.)

The question is: Is it a good idea to add mod_ssl into the back-end mod_perl enabled server? Given that
your internal network is secured, or if both the front and back end servers are running on the same
machine and you can ensure a safe communication between the processes, there is no need for an
encrypted traffic between them.

18 29 Jan 2004

Choosing the Right Strategy 1.10 Maintainers

If thisisthe situation you don’'t have to put mod_sdl into the already too heavy mod_perl server. You will
have the external traffic encrypted by the front-end server, which will proxy-pass the unencrypted request
and response data internally.

Another important point is if you put the mod_ssl on the back-end, you have to tunnel back your imagesto
it (i.e. have the back-end serve the images) defeating the whole purpose of having the front-end
lightweight server.

Y ou cannot serve a secure page which includes non-secured information. If you fetch an html page over
SSL and have an <l Ma> tag that fetches the image from the non-secure server, the image is shown
broken. Thisistrue for any other non-secured objects as well. Of course if the generated response doesn’t
include any embedded objects, like images -- thisis not a problem.

Choosing the front-end machine to have an SSL functionality also simplifies configuration of mod_perl by
eliminating VirtualHost duplication for SSL. mod_perl configuration files can be plenty difficult without
the mod_ssl overhead.

Also assuming that you have front-end machines under-worked anyway, especialy if you run a
high-volume web service deploying a cluster of machines to serve regquests, you save some CPU asit’'s
known that SSL connections are about 100 times more CPU intensive than non-SSL connections.

Of course caching session keys so you don’t have to set up a new symmetric key for every single connec-
tion, improves the situation. If you use the shared memory session caching mechanism that mod sdl
supports, then the overhead is actually rather small except for the initial connection.

But then on the other hand, why even bother to run a full scale mod_sd in front? You might as well just
choose a small tunnel/port forwarding application like Stunnel or one of the many other mentioned at
[http://mwww.opensd.org/rel ated/apps.html| .

Of course if you do heavy SSL processing ideally you should really be offloading it to a dedicated cryp-
tography server. But this advice can be misleading based on the current status of the crypto hardware. If
you use hardware you get extra speed now, but you' re locked into a proprietary solution; in 6 months/one
year software will have caught up with whatever hardware you' re using and because software is easier to
adapt you'll have more freedom to change what software you' re using and more control of things. So the
choiceisin your hand.

1.10 M aintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

29 Jan 2004 19

http://www.openssl.org/related/apps.html

1.11 Authors

1.11

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

20

Authorg

29 Jan 2004

Choosing the Right Strategy Table of Contents:

Table of Contents:

1 [Choos nq the Right Strateqgy | 1
1.1 [Descriptiod. . 2
12|D0|tI|keId0|t"4 2
1.3 Imod perl Deployment Overwevvl 2
1.4 |Alternative architectures for running one and two serversl 3

1.4.1 |Standalone mod perl Enabled Apache Server]| 4
1.4.2 |One Plain Apache and One mod perl-enabled Apache Serversl 5
1.4.3 |One light non-Apache and One mod perl enabled Apache Serverg 6
1.5 |Adding a Proxy Server in http Accelerator Modg 7
1.6 Implementations of Proxy Serverg 10
1.6.1 [The Squid Server| 10
1.6.2 |Apache smod proxy| . 11
1.6.3 |Closing Lingering Connections W|th Li nqerol . 12
1.7 [When One Machine is not Enough for RDBM S Database and mod jall 12
1.7.1 |Servers Requirementy 13
1.7.2 14
1.7.3 15
1.7.31[Prod . 15
1.7.3.2 [Cond 15
174 |Three Machines Modell 16
1.8 |Running More than One mod perl Server on the Same Machl neI 16
1.9 |SSL functionality and amod perl Server] 18
1.10 19
111 20

29 Jan 2004 i

	1€€Choosing the Right Strategy
	1.1€€Description
	1.2€€Do it like I do it!?
	1.3€€mod_perl Deployment Overview
	1.4€€Alternative architectures for running one and two servers
	1.4.1€€Standalone mod_perl Enabled Apache Server
	1.4.2€€One Plain Apache and One mod_perl-enabled Apache Servers
	1.4.3€€One light non-Apache and One mod_perl enabled Apache Servers

	1.5€€Adding a Proxy Server in http Accelerator Mode
	1.6€€Implementations of Proxy Servers
	1.6.1€€The Squid Server
	1.6.2€€Apache's mod_proxy
	1.6.3€€Closing Lingering Connections with Lingerd

	1.7€€When One Machine is not Enough for RDBMS Database and mod_perl
	1.7.1€€Servers' Requirements
	1.7.2€€The Problem
	1.7.3€€The Solution
	1.7.3.1€€Pros
	1.7.3.2€€Cons

	1.7.4€€Three Machines Model

	1.8€€Running More than One mod_perl Server on the Same Machine.
	1.9€€SSL functionality and a mod_perl Server
	1.10€€Maintainers
	1.11€€Authors

