Developer’s guide Table of Contents:

Developer’s guide

This guide is aimed for mod_perl 2.0 core and 3rd party
modulesdevebpers

Lastmodified Thu Jan 29 08:37:12 20@&MT

29 Jan 2004 1

Table of Contents:

Part |: mod_perl 2.0 Core Development

P [1. mod perl 2.0 Source Colgplained
This docunentexplains how taavigatethe mod_perl source code, modify and rebuildekising
code and mosmportant how to add neviunctionality .

k[2. mod perintemals Apache 2.0ntegration|
This documentshould help taindestandtheinitialization, requesiprocessig andshutiown process
of the mod_perl module. Thisnowledgeis essetial for a less-painfuldebuging expeience It
should also help to know where a new code should be added when a new feature is added.

» [3. mod perintemals mod_perl-specifiduncionality flow|
This document attempts to helpndestandthe code flow for certain features. This should help to
debugprodemsand add new features.

k[4. MPMs -Multi-Processig Model Module$
Discover what are thavailableMPMs and how they work with mod_ perl.

k| 5. mod perl Coding Styl6uide
Thisdocunentexplains the coding style used in the core mod gerébpmentand which should be
followed by all coredevebpers

Part I1: 3rd party modules Development with mod_perl 2.0

k| 6. Porting Apache:: XS Modules from mod perl 1.Q
This documenttalks mainly about porting modules using XS code. It's also helpful to those who start
devebping mod_perl 2.(packages

Part I11: Core Performance | ssues

b [7. Measure sizeof() of Perl’s §trudure$
This documentdescribes theizeof variousstrudures asdeteminedby util/sizeof.pl. Thesemeasure
mentsare mainly for research purposes into making Perl things smaller, or rather, how to use less
Perl things.

k| 8. Which Codinglechiqueis Faster
Thisdocumenttries to show morefficientcoding styles bypencimarkng various styles.

Part 1V: Debugging

k| 9. Porting Apache:: XS Modules from mod perl 1.@ @
This documenttalks mainly about porting modules using XS code. It's also helpful to those who start
devebping mod_perl 2.(packages

k[10.Debuaying mod perl Perintemals
This docunentexplains how to debug Perl code under mod_ perl.

2 29 Jan 2004

Developer’s guide Table of Contents:

k| 11. Debugging mod perl C Internalq
This document explains how to debug C code under mod_perl, including mod_perl core itself.

Part V: Help

k| 12. Getting Help with mod perl 2.0 Core Devel opment]
This document covers the resources available to the mod_perl 2.0 core developer. Please notice that
you probably want to read the user’s help documentation if you have problems using mod_perl 2.0.

29 Jan 2004 3

1 mod_perl 2.0 Source Code Explained

1 mod_perl 2.0 Source Code Explained

4 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.1 Description

1.1 Description|

This documentexplains how taavigatethe mod_perl source code, modify and rebuildgkising code
and mostmportant how to add neviunctionality.

1.2 |Project’s Filesystem L ayout

In its pristine state the project is comprised of fo#owing diredories and filesresidng at the rootirec
tory of theproject:

Apache- Test/ - test kit for nod_perl and Apache::* nodul es
ModPer| - Regi stry/ - ModPerl:: Registry sub-project

bui | d/ - utilities used during project build
docs/ - documentation

lib/ - Perl nodul es

src/ - C code that builds |ibnmodperl.so

t/ - nod_perl tests

t odo/ - things to be done

util/ - useful utilities for devel opers

xs/ - source xs code and maps

Changes - Changes file

LI CENSE - ASF LI CENSE docunent

Makefile. PL - generates all the needed Makefiles

After building the project, théollowing rootdiredoriesand files gegeneated

Makefil e - Makefile
W apXs/ - autogenerated XS code
bl i b/ - ready to install version of the package

1.3 |Directory src

1.3.1 [Directory src/modules/per]|/

Thediredory src/modules/per| includes the C source files needed to builditreodper| library.
Notice that several files in thdiredory areautayereratedduring theperl Makefile stage.

When adding new source files to thiiseaory you should add their names to 1@ _sr ¢c_nanes vari-
ablein lib/ModPerl/Code.pm, so they will be picked up by tleeitayereratedMakefile.

1.4 |Directory X9/

Apache/ Apache specific XS code
APR/ - APR specific XS code
ModPer | / ModPer| specific XS code
maps/ -

tabl es/ -

Makefile. PL -

29 Jan 2004 5

1.4.1 xs/Apache, xAPR and xsModPerl

nodper| _xs_sv_convert.h -
nodper | _xs_typedefs. h -
nmodper| _xs_util.h -
typenmap -

1.4.1 xs/Apache, xYAPR and xs/M odPer ||

The xs/Apache, xAPR and xs'ModPer!| directories include .h files which have C and XS code in them.
They al have the .h extension because they are aways #i ncl ude- d, never compiled into their own
object file. and only the file that #i ncl ude-s an .h file from these directories should be able to see
what’ s in there. Anything else belongs in a src/modul es/perl/foo.c public API.

1.4.2

The xs/maps directory includes mapping files which describe how Apache Perl API should be constructed
and various X S typemapping.

These files get modified whenever:

e anew function is added or the API of the existing one is modified.

® anew struct isadded or the existing one is modified

® anew C datatype or Perl typemap is added or an existing one is modified.
The execution of:

% make source_scan
or:

% per| buil d/ source_scan. pl

converts these map files into their Perl table representation in the xs/tables/current/ directory. This Perl
representation is then used during per | Makefi | e. PL to generate the XS code in the ./WrapX¥ direc-
tory by the xs_generate() function. This XS code is combined of the Apache API Perl glue and mod_perl
specific extensions.

NOTE: source_scan requires C::Scan 0.75, which at the moment is unreleased, there is a working copy
here: |http://perl.apache.org/~dougm/Scan.pm|

If you need to skip certain unwanted C defines from being picked by the source scanning you can add
themto the array $Apache: : Par seSour ce: : def i nes_unwant ed in lib/Apache/ParseSource.pm.

Notice that source_scan target is normally not run during the project build process, since the source scan-
ning is not stable yet, therefore everytime the map files change, make sour ce_scan should be run
manually and the updated files ending up in the xg/tables/current/ directory should be committed to the
Cvs repository.

6 29 Jan 2004

http://perl.apache.org/~dougm/Scan.pm

mod_perl 2.0 Source Code Explained

1.4.2 xgdmaps

The source_scan make target is actually to run build/source scan.pl, which can be run directly without

needing to create Makefile first.
There are three different types of map filesin the xs/maps/ directory:

® Functions Mapping
apache_functi ons. map

nmodper | _functi ons. map
apr _functions. map

® Structures Mapping

apache_struct ures. map
apr_structures. map

e TypesMapping
apache_t ypes. nap

apr_types. map
nodper | _types. nap

The following sections describe the syntax of the files in each group

1.4.2.1 [Functions M appingd

The functions mapping file is comprised of groups of function definitions. Each group starts with a header

similar to XS syntax:

MODULE=. .. PACKAGE=... PREFIX=... BOOT=... |SA=...
where:

e MODULE

the module name where the functions should be put. eg. MODULE Apache: : Connecti on will

place the functions into WrapXSApache/Connection.{pm,xs}.

® PACKAGE

the package name functions belong to, defaults to MODULE. The value of guessindicates that package
name should be guessed based on first argument found that maps to a Perl class. If the value is not
defined and the function’s name starts with ap_ the Apache package will be used, if it starts with

apr__then the APR packageis used.

® PREFI X

prefix string to be stripped from the function name. If not specified it defaults to PACKAGE,
converted to C name convention, eg. APR. : Base64 makes the prefix: apr_base64 . If the

converted prefix does not match, defaultsto ap_or apr_.

29 Jan 2004

1.4.2 xgdmaps

e BOOT

The BOOT directive tells the XS generator, whether to add the boot function to the autogenerated XS
file or not. If the value of BOOT is not true or it's simply not declared, the boot function won't be
added.

If the value is true, a boot function will be added to the XS file. Note, that this function is not
declared in the map file.

The boot function name must be constructed from three parts:
'npxs_’ . MODULE . ’ _BOOT
where MODULE is the one declared with MODULE= in the map file.

For example if we want to have an XS boot function for aclass APR: : | O we create this function in
x5APR/IO/APR__10O.h:

static void npxs_APR__| O BOOT(pTHX)
{

}

/* boot code here */

and now we add the BOOT=1 declaration to the xsmaps/modper|_functions.map file:
MODULE=APR: : | O PACKAGE=APR : | O BOOT=1
Notice that the PACKAGE= declaration is a must.

When make xs generate is run (after running make source scan), it autogenerates
Wrap/APR/10/10.xs and amongst other things will include:

BOOT:
npxs_APR__| O BOOT(aTHXo) ;

® | SA
META: complete

Every function definition is declared on a separate line (use\ if the line is too long), using the following
format:

C function nane | Dispatch function name | Argspec | Perl alias
where:
e C function name

The name of thereal C function.

8 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.4.2 xgmaps

Function names that do not begin with /™\w are skipped. For details see
%vbdPer| :: MapUtil:: disabl ed _map.

The return type can be specified before the C function name. It defaults to return type in
{ Apache, ModPer| }:: FunctionTabl e.

META: DEFINE nuances
® Dispatch function name

Dispatch function name defaults to C function name. If the dispatch name is just a prefix (mpxs_,
MPXS) the C function name is appended to it.

See the explanation about function naming and arguments passing.
® Argspec

The argspec defaults to argumentsin { Apache, ModPer | }: : Funct i onTabl e. Argument types
can be specified to override those in the Funct i onTabl e. Default values can be specified, e.g.
ar g=def aul t _val ue. Argspec of ... indicates passthru, caling the function with (aTHX
132 itens, SP **sp, SV **MARK).

® Perl alias

the Perl alias will be created in the current PACKAGE.

1.4.2.2 (Structures M apping

META: complete

1.4.2.3 [Types Mapping

META: complete

1.4.2.4 Modifying Mapg

As explained in the beginning of this section, whenever the map file is modified you need first to run:

% make source_scan

Next check that the conversion to Perl tables is properly done by verifying the resulting corresponding file
in xgtables/current. For example xdmaps/modper] _functionsmap is converted into
xs/tables/current/ModPer|/FunctionTable.pm.

If you want to do avisual check on how XS code will be generated, run:

% nake xs_generate

29 Jan 2004 9

1.5 Gluing Existing APIs

and verify that the autogenerated XS code under the directory ./WrapXSis correct. Notice that for func-
tions, whose arguments or return types can’t be resolved, the XS glue won't be generated and a warning
will be printed. If that's the case add the missing type's typemap to the types map file as explained in
[Adding Typemaps for new C Data Typegand run the XS generation stage again.

Y ou can aso build the project normally:

% per|l Makefile.PL ..

which runs the XS generation stage.

1.4.3 [XS generation procesy

As mentioned before XS code is generated in the WrapXS directory either during per| Makefil e. PL
viaxs_generate() if MP_CGENERATE_XS=1 isused (which isthe default) or explicitly via

% nmake xs_generate

In addition it creates a number of filesin the xs/ directory:

nmodper| _xs_sv_convert.h
nmodper| _xs_typedefs. h

1.5 |Gluing Existing API S

If you have an API that you simply want to provide the Perl interface without writing any code...

META: complete

WrapXS alows you to adjust some arguments and supply default values for function arguments without
writing any code

META: complete
MPXS_ functions are final XSUBs and aways accept:
aTHX_ 132 items, SP **sp, SV **MARK

as their arguments. Whereas npxs__ functions are either intermediate thin wrappers for the existing C
functions or functions that do something by themselves. MPXS __ functions also can be used for writing thin
wrappers for C macros.

1.6 |Adding Wrappersfor existing APlIsand Creating New
API S

10 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.1 Functions Returning a Single Vaue (or Nothing)

In certain cases the existing APIs need to be adjusted. There are afew reasons for doing this.

First, is to make the given C APl more Perlish. For example C functions cannot return more than one
value, and the pass by reference technique is used. Thisis not Perlish. Perl has no problem returning alist
of value, and passing by reference is used only when an array or a hash in addition to any other variables
need to be passes or returned from the function. Therefore we may want to adjust the C API to return alist
rather than passing a reference to areturn value, which is not intuitive for Perl programmers.

Second, is to adjust the functionality, i.e. we till use the C API but may want to adjust its arguments
before calling the origina function, or do something with return values. And of course optionally adding
some new code.

Third, isto create completely new APIs. It’s quite possible that we need more functionality built on top of
the existing API. In that case we simply create new APIs.

The following sections discuss various techniques for retrieving function arguments and returning values
to the caller. They range from using usual C argument passing and returning to more complex Perl argu-
ments’ stack manipulation. Once you know how to retrieve the arguments in various situations and how to
put the return values on the stack, the rest is usually norma C programming potentially involving using
Perl APIs.

Let’ slook at various ways we can declare functions and what options various declarions provide to us:

1.6.1 [Functions Returning a Single Value (or Nothing)|

If its know deterministically what the function returns and there is only a single return value (or nothing is
returned == void), we are on the C playground and we don't need to manipulate the returning stack.
However if the function may return a single value or nothing at all, depending on the inputs and the code,
we have to manually manipulate the stack and therefore this section doesn’t apply.

Let's look at various requirements and implement these using simple examples. The following testing
code exercises the interfaces we are about to develop, so refer to this code to see how the functions are
invoked from Perl and what is returned:

file:t/response/ Test Apache/ cor edenp. pm

package Test Apache: : cor edeno;

use strict;
use warni ngs FATAL => "al |’

use Apache:: Const -conpile => 'K

use Apache: : Test;
use Apache:: Test Uil

use Apache: : Cor eDenv;

sub handl er {
ny $r = shift;

29 Jan 2004 11

1.6.1 Functions Returning a Single Value (or Nothing)

plan $r, tests => 7;

ny ($add, $subst)

$add = Apache:: CoreDeno: : print($a, $b);
t _debug "print";
ok ! $add;

$add = Apache: : CoreDenp: : add($a, $b);
ok t_cmp(%$a + $b, $add, "add");

$add = Apache:: CoreDeno: : add_sv(%$a, $b);
ok t_cmp(%$a + $b, $add, "add: return sv");

$add = Apache:: CoreDeno: : add_sv_sv($a, $b);
ok t_cmp($a + $b, $add, "add: pass/return svs");

($add, $subst) = @ Apache:: CoreDenp:: add_subst ($a, $b) };
ok t_cmp($a + $b, $add, "add_subst: add");
ok t_cmp($a - $b, $subst, "add_subst: subst");

$subst = Apache: : CoreDeno: : subst _sp($a, $b);
ok t_cnp($a - $b, $subst, "subst via SP")

Apache: : OK;
}

1;

The first case is the simplest: pass two integer arguments, print these to the STDERR stream and return
nothing:

file:xs/ Apache/ Cor eDeno/ Apache__ Cor eDeno. h

static MP_I NLI NE
voi d npxs_Apache__CoreDeno_print(int a, int b)
{

}

fprintf(stderr, "%, %l\n", a, b);

file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_pri nt

Now let's say that the b argument is optional and in case it wasn’t provided, we want to use a default
value, e.g. 0. In that case we don’t need to change the code, but simply adjust the map file to be:

file:xs/ maps/ nodper| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__CoreDenmo_print | | a, b=0

12 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.1 Functions Returning a Single Vaue (or Nothing)

In the previous example, we didn’t list the arguments in the map file since they were automatically
retrieved from the source code. In this example we tell WrapXS to assign avalue of 0 to the argument b, if
it wasn't supplied by the caller. All the arguments must be listed and in the same order as they are defined
in the function.

You may add an extratest that test teh default val ue assignment:

$add = Apache: : Cor eDeno: : add($a) ;
ok t_cmp(%$a + 0, $add, "add (b=0 default)");

The second case: pass two integer arguments and return their sum:

file:xs/ Apache/ Cor eDeno/ Apache__Cor eDenp. h

static MP_I NLI NE
i nt nmpxs_Apache__CoreDeno_add(int a, int b)
{

}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_add

return a + b;

Thethird case is similar to the previous one, but we return the sum as as a Perl scalar. Though in C we say
SV*, in the Perl space we will get anormal scalar:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

static MP_I NLI NE
SV *npxs_Apache__CoreDenp_add_sv(pTHX_int a, int b)
{

}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_add_sv

return newSViv(a + b);

In the second example the XSUB function was converting the returned int value to a Perl scalar behind the
scenes. In this example we return the scalar ourselves. Thisis of course to demonstrate that you can return
a Perl scalar, which can be a reference to a complex Perl datastructure, which we will see in the fifth
example.

The forth case demonstrates that you can pass Perl variables to your functions without needing XSUB to
do the conversion. In all previous examples XSUB was automatically converting Perl scalars in the argu-
ment list to the corresponding C variables, using the typemap definitions.

29 Jan 2004 13

1.6.1 Functions Returning a Single Value (or Nothing)

file: xs/ Apache/ Cor eDeno/ Apache__Cor eDenp. h

static MP_I NLINE
SV *npxs_Apache__CoreDenp_add_sv_sv(pTHX_ SV *a_sv, SV *b_sv)

{
int a = (int)SvlV(a_sv);
int b = (int)SvliV(b_sv);
return newSviv(a + b);

}

file:xs/ maps/ nodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenp_add_sv_sv

So this example is the same simple case of addition, though we manually convert the Perl variables to C
variables, perform the addition operation, convert the result to a Perl Scalar of kind IV (Integer Value) and
return it directly to the caller.

In case where more than one value needs to be returned, we can still implement this without directly
manipulating the stack before a function returns. The fifth case demonstrates a function that returns the
result of addition and substruction operations on its arguments:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

static MP_I NLI NE
SV *nmpxs_Apache__CoreDenp_add_subst (pTHX_ int a, int b)

{
AV *av = newAV();
av_push(av, newSViv(a + b));
av_push(av, newSViv(a - b));
return newRV_noi nc((SV*)av);
}

file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDeno_add_subst

If you look at the corresponding testing code:

($add, $subst) = @ Apache:: CoreDenp:: add_subst ($a, $b) };
ok t_cmp($a + $b, $add, "add_subst: add");
ok t_cmp($a - $b, $subst, "add_subst: subst");

you can see that this technique comes at a price of needing to dereference the return value to turn it into a
list. The actual code is very similar to the Apache: : Cor eDenp: : add_sv function which was doing
only the addition operation and returning a Perl scalar. Here we perform the addition and the substraction
operation and push the two results into a previously created AV* data structure, which represents an array.
Since only the SV datastructures are allowed to be put on stack, we take a reference RV (which is of an SV
kind) to the existing AV and return it.

14 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.2 Functions Returning Variable Number of Values

The sixth case demonstrates a situation where the number of arguments or their types may vary and aren’t
known at compile time. Though notice that we still know that we are returning at compile time (zero or
one arguments), int in this example:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

static MP_I NLI NE
i nt npxs_Apache__CoreDenp_subst _sp(pTHX_ 132 itenms, SV **MARK, SV **SP)

{

int a, b;

if (items !'= 2) {

Per| _croak(aTHX_"usage: ...");
}
a = np_xs_sv2_int (*MARK);
b = nmp_xs_sv2_int(*(MARK+1));

return a - b;

}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache: : Cor eDenp
npxs_Apache__Cor eDenpo_subst _sp | |

In the map file we use a specia token . . . which tells the XSUB constructor to passi t ens, MARK and
SP arguments to the function. The macro MARK points to the first argument passed by the caller in the Perl
namespace. For example to access the second argument to retrieve the value of b we use * (MARK+1) ,
which if you remember represented as an SV variable, which nees to be converted to the corresponding C

type.

In this example we use the macro mp_xs sv2_int, automatically generated based on the data from the
xgtypemap and xs/maps/*_types.map files, and placed into the xs/modperl_xs sv_convert.h file. In the
case of int C type the macrois:

#define np_xs_sv2_int(sv) (int)SvlV(sv)
which simply converts the SV variable on the stack and generates an int value.

While in this example you have an access to the stack, you cannot manipulate the return values, because
the XSUB wrapper expects a single return value of type int, so even if you put something on the stack it
will be ignored.

1.6.2 [Functions Returning Variable Number of Valueg

We saw earlier that if we want to return an array one of the ways to go is to return a reference to an array
as asingle return value, which fits the C paradigm. So we simply declare the return value as SV* .

29 Jan 2004 15

1.6.2 Functions Returning Variable Number of VValues

This section talks about cases where it’s unknown at compile time how many return values will be or it's
known that there will be more than one return value--something that C cannot handle via its return mecha-
nism.

Let’'s rewrite the function npxs_Apache__ Cor eDenp_add_subst from the earlier section to return
two results instead of areferenceto alist:

file:xs/ Apache/ Cor eDenn/ Apache__Cor eDenp. h
static XS(MPXS_Apache__CoreDenpo_add_subst _sp)
{

dXSARGS;

int a, b;

if (itens !'= 2) {

Perl _croak(aTHX_ "usage: Apache:: CoreDenp:: add_subst _sp($a, $b)");
}
a
b

np_xs_sv2_int (ST(0));
np_xs_sv2_int(ST(1));

SP -= itens;

if (G@ME == G ARRAY) {

EXTEND(sp, 2);

PUSHs(sv_2nortal (newSViv(a + b)

PUSHs(sv_2nortal (newSViv(a - b)
}
el se {

XPUSHs(sv_2nortal (newSViv(a + b)));

}

PUTBACK;

)
)

}
Before explaining the function here is the prototype we add to the map file:
file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
DEFI NE_add_subst _sp | MPXS_Apache__Cor eDenp_add_subst _sp |

The nmpxs__ functions declare in the third column the arguments that they expect to receive (and optionally
the default values). The MPXS functions are the real XSUBs and therefore they always accept:

aTHX_ 132 itenms, SP **sp, SV **NMARK

as their arguments. Thefore it doesn’t matter what is placed in this column when the MPXS_ function is
declared. Usually for documentation the Perl side arguments are listed. For example you can say:

DEFI NE_add_subst _sp | MPXS_Apache__CoreDenpo_add_subst _sp | x, ¥y

In this function we manually manipulate the stack to retrieve the arguments passed on the Perl side and put
the results back onto the stack. Therefore the first thing we do is to initialize a few special variables using
the dXSARGS macro defined in XSUB.h, which in fact calls a bunch of other macros. These variables help

16 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.6.2 Functions Returning Variable Number of Values

to manipulate the stack. dSP is one of these macros and it declares and initial- izes alocal copy of the Perl
stack pointer sp which . Thislocal copy should always be accessed as SP.

We retrieve the original function arguments using the ST() macros. ST(0) and ST(1) point to the first
and the second argument on the stack, respectively. But first we check that we have exactly two arguments
on the stack, and if not we abort the function. Thei t ens variable is the function argument.

Once we have retrieved al the arguments from the stack we set the local stack pointer SP to point to the
bottom of the stack (like there are no items on the stack):

SP -=itens;

Now we can do whatever processing is needed and put the results back on the stack. In our example we
return the results of addition and substraction operations if the function is called in the list context. In the
scalar context the function returns only the result of the addition operation. We use the G MVE macro
which tells us the context.

In the list context we make sure that we have two spare sots on the stack since we are going to push two
items, and then we push them using the PUSHs macro:

EXTEND(sp, 2);

PUSHs(sv_2nortal (newSViv(a + b)
PUSHs(sv_2nortal (newSViv(a - b)

));
));
Alternatively we could use:

XPUSHs(sv_2mortal (newsSViv(a + b)));
XPUSHs(sv_2mortal (newsSViv(a - b)));

The XPUSHs macro eXtends the stack before pushing the item into it if needed. If we plan to push more
than a single item onto the stack, it’s more efficient to extend the stack in one call.

In the scalar context we push only one item, so here we use the XPUSHs macro:

XPUSHs(sv_2nortal (newsSViv(a + b)));

The last command we call is:

PUTBACK;

which makes the local stack pointer global. Thisis amust call if the state of the stack was changed when
the function is about to return. The stack changes if something was popped from or pushed to it, or both
and changed the number of items on the stack.

In our example we don't need to call PUTBACK if the function is called in the list context. Because in this
case we return two variables, the same as two function arguments, the count didn’t change. Though in the
scalar context we push onto the stack only one argument, so the function won't return what is expected.
The simplest way to avoid errors here isto always call PUTBACK when the stack is changed.

29 Jan 2004 17

1.6.3 Wrappers Functions for C Macros

For more information refer to the perlcall manpage which explains the stack manipulation processin great
details.

Finally we test the function in the list and scalar contexts:

file:t/response/ Test Apache/ coredenn. pm

ny $a =
rry$b=

ny ($add, $subst)

list context

($add, $subst) = Apache:: CoreDeno: : add_subst _sp($a, $b);

ok t_cmp($a + $b, $add, "add_subst _sp list context: add");
ok t_cnmp($a - $b, $subst, "add_subst_sp list context: subst");

scal ar context
$add = Apache: : Cor eDenp: : add_subst _sp($a, $b);
ok t_cmp($a + $b, $add, "add_subs_spt scal ar context: add");

1.6.3 Wrappers Functionsfor C Macros

Let's say you have a C macro which you want to provide a Perl interface for. For example let's take a
simple macro which performs the power of function:

file:xs/ Apache/ Cor eDenn/ Apache__ Cor eDenp. h

#defi ne npxs_Apache__CoreDeno_power (X, y) pow x, V)

To create the XS glue code we use the following entry in the map file:

file:xs/ maps/ modper!| _functions. map

MODULE=Apache: : Cor eDenp
doubl e: DEFI NE_power | | double:x, double:y

This works very similar to the MPXS_Apache__ Cor eDenp_add_subst _sp function presented
earlier. But since this is a macro the XS wrapper needs to know the types of the arguments and the return
type, so these are added. The return type is added just before the function name and separated from it by
the colon (:), the argument types are specified in the third column. The type is always separated from the
name of the variable by the colon (:).

And of course finally we need to test that the function worksin Perl:

18 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.7 Wrappers for modperl_, apr_and ap_ APls

file:t/response/ Test Apache/ cor edenp. pm

ny $a
nmy $b 3;

ny $power = Apache: : Cor eDeno: : power ($a, $b);
ok t_cmp(%$a ** $b, $power, "power macro");

1.7 Wrappersfor modperl ,apr andap APIg

If you already have a C function whose name starts from modper|_, apr_ or ap_ and you want to do some-
thing before calling the real C function, you can write a XS wrapper using the same method as in the
[MPXS Apache CoreDemo_add subst_sp] The only differenceis that it'll be clearly seen in the map file
that thisis awrapper for an existing C API.

Let’s say that we have an existing C function apr_power(), thisis how we declare its wrapper:
file:xs/ maps/apr_functions. map
MODULE=APR: : Foo
apr_power | MPXS_ | x, Yy

The first column specifies the existing function’s name, the second tells that the XS wrapper will use the
MPXS_ prefix, which means that the wrapper must be called MPXS_apr _power . The third column spec-
ifies the argument names, but for MPXS_ no matter what you specify therethe. . . will be passed:

aTHX_ 132 items, SP **sp, SV **MARK

S0 you can leave that column empty, but here we use x and y to remind us that these two arguments are
passed from Perl.

If the forth column is empty this function will be called APR: : Foo: : power in the Perl namespace. But
you can use that column to give a different Perl name, e.g with:

apr_power | MPXS_ | x, y | pow
Thisfunction will be available from Perl as APR: : Foo: : pow.

Similarly you can write a MPXS_nodper | _power wrapper for a mrodper | _power () function but
here you have to explicitly give the Perl function’s name in the forth column:

file:xs/ maps/apr_functions. map

MODULE=Apache: : Cor eDenp
nodper| _power | MPXS_ | x, y | nypower

and the Perl function will be called Apache: : Cor eDeno: : mypower .

29 Jan 2004 19

1.8 MP_INLINE vs C Macros vs Normal Functions

The MPXS_ wrapper’simplementation is similar to[MPXS Apache CoreDemo add subst spl

1.8 MP INLINE vs C Macrosvs Normal Functions

To make the code maintainable and reusable functions and macros are used in when programming in C
(and other languages :).

When function is marked as inlined it's merely a hint to the compiler to replace the call to a function with
the code inside this function (i.e. inlined). Not every function can be inlined. Some typical reasons why
inlining is sometimes not done include:

e thefunction callsitself, that is, is recursive
e thefunction containsloopssuch asf or (; ;) orwhil e()
e thefunction sizeistoo large

Most of the advantage of inline functions comes from avoiding the overhead of calling an actual function.
Such overhead includes saving registers, setting up stack frames, etc. But with large functions the over-
head becomes less important.

Use the MP_I NLI NE keyword in the declaration of the functions that are to be inlined. The functions
should be inlined when:

® Only ever called once (the wrappers that are called from .xs files), no matter what the size of codeis.

® Short bodies of code called in a hot code (like modperl_env_hv_store, which is called many times
inside of aloop), where it is cleaner to see the code in function form rather than macro with lots of
\ ’s. Remember that an inline function takes much more space than a normal functions if called from
many placesin the code.

Of course C macros are a bit faster then inlined functions, since there is not even short jump to be made,
the codeisliteraly copied into the placeit’s called from. However using macros comes at a price:

® Also unlike macros, in functions argument types are checked, and necessary conversions are
performed correctly. With macros it's possible that weird things will happen if the caller has passed
arguments of the wrong type when calling a macro.

® One should be careful to pass only absolute values as "arguments' to macros. Consider a macro that
returns an absol ute value of the passed argument:

#define ABS(v) ((v) >=0 2 (v) : -(v))
In our exampleif you happen to pass afunction it will be called twice:

abs_val = ABS(f());

20 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.9 Adding New Interfaces

Sinceit’'ll be extended as:
abs_val =f() >=07?f() : -f();

Y ou cannot do simple operation like increment--in our example it will be called twice:
abs_val = ABS(i++);

Because it becomes:
abs val = i++ >= 0 ? i++ : -i++4

® |t's dangerous to use the if() condition without enclosing the code in {}, since the macro may be
called from inside another if-else condition, which may cause the else part called if the if() part from
the macro fails.

But we dwaysuse{} for the codeinside the if-else condition, so it's hot a problem here.

® A multi-line macro can cause problems if someone uses the macro in a context that demands a single
statement.

while (foo) MYMACRO(bar);
But again, we always enclose any code in conditional with{}, soit’s not a problem for us.

e [nline functions present a problem for debuggers and profilers, because the function is expanded at
the point of call and losesits identity. This makes the debugging process a nightmare.

A compiler will typically have some option available to disable inlining.

In all other cases use normal functions.

1.9 |Adding New I nterfaces

1.9.1 |Adding Typemaps for new C Data Typeq

Sometimes when a new interface is added it may include C data types for which we don't have corre-
sponding X S typemaps yet. In such a case, the first thing to do is to provide the required typemaps.

Let's add a prototype for the typedef structscoréboard data type defined in httpd-2.0/include/score
boardh.

First we include the relevant header filesin src/modules/perl/modperl_apache_includes.h

#i ncl ude "scoreboard. h"

If you want to specify your own type and don’'t have a header file for it (e.g. if you extend some existing
datatype within mod_perl) you may add the typedefto src/modules/perl/modperl_types.h

29 Jan 2004 21

1.9.2 Importing Constants and Enumsinto Perl API

After deciding that Apache: : Scor eboar d isthe Perl classwill be used for manipulating C scoreboard
data structures, we map the scoreboard data structure to the Apache: : Scor eboar d class. Therefore
we add to xsmaps/apache_types.map:

struct scoreboard | Apache: : Scor eboard

Since we want the scoreboard data structure to be an opaque object on the perl side, we ssimply let
mod_perl use the default T_PTROBJ typemap. After running meke xs_gener at e you can check the
assigned typemap in the autogenerated WrapXS'typemap file.

If you need to do some special handling while converting from C to Perl and back, you need to add the
conversion functions to the xs/'typemap file. For example the Apache: : Request Rec abjects need
special handling, so you can see the special | NPUT and OUTPUT typemappings for the corresponding
T_APACHEQOBJ object type.

Now werunmake Xxs_gener at e and find the following definitions in the autogenerated files:

file:xs/nodperl _xs_typedefs.h

typedef scoreboard * Apache__Scoreboard;

file:xs/nodperl _xs_sv_convert.h

#defi ne np_xs_sv2_Apache__Scoreboard(sv) \

((SVROK(sv) && (SvVTYPE(SVRV(sv)) == SVt _PVM3) \

|| (Perl _croak(aTHX_ "argument is not a bl essed reference \
(expecting an Apache:: Scoreboard derived object)"),0) 2\
(scoreboard *)SvlV((SV*)SvRV(sv)) : (scoreboard *) NULL)

#defi ne np_xs_Apache__Scoreboard_2obj (ptr) \
sv_setref _pv(sv_newnortal (), "Apache:: Scoreboard", (void*)ptr)

The file xs/modperl_xs typedefs.h declares the typemapping from C to Perl and equivalent to the
TYPEMAP section of the XS's typemap file. The second file xs/modper|_xs sv_convert.h generates two
macros. The first macro is used to convert from Perl to C datatype and equivalent to the typemap file's
| NPUT section. The second macro is used to convert from C to Perl datatype and equivalent to the
typemap’s OUTPUT section.

Now proceed on adding the glue code for the new interface.

1.9.2 [[mporting Constants and Enums into Per| API|

To import httpd and APR constants and enums into Perl API, edit lib/Apache/ParseSource.pm. To add a
new type of DEFI NE constants adjust the %lefi nes_want ed variable, for enunms modify
%enuns_want ed.

For example to import all DEFI NEs starting with APR_FLOCK _ add:

22 29 Jan 2004

mod_perl 2.0 Source Code Explained 1.10 Maintainers

nmy %lefines_wanted = (
APR => {

f1 ock => [qw{ APR_FLOCK }],

)

When deciding which constants are to be exported, the regular expression will be used, so in our example
all matches/ *"APR_FLOCK / will beimported into the Perl API.

For exampleto import an read_type eenumfor APR, add:

my %enuns_wanted = (
APR =>{ map { $_, 1 } gw(apr_read_type) },
E

Notice that _e part at the end of the enum name has gone.

After adding/modifying the datastructures make sure to run make source_scan or perl
bui | d/ source_scan. pl and verify that the wanted constant or enum were picked by the source
scanning process. Simply grep xs/tables/current for the wanted string. For example after adding
apr_read type e enum we can check:

% nor e xs/tabl es/current/Apache/ Const ant sTabl e. pm

‘read_type’ => |

" APR_BLOCK_READ

" APR_NONBLOCK _READ
1,

Of course the newly added constant or enum’'s typemap should be declared in the appropriate
xs/maps*_types.map files, so the XS conversion of arguments will be performed correctly. For example
apr_read typeisan APR enum so it’' s declared in xs/maps/apr_types.map:

apr _read_type | 1V

| Visused as atypemap, Since enum isjust an integer. In more complex cases the typemap can be differ-
ent. (META: examples)

1.10 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

29 Jan 2004 23

1.11 Authors

1.11

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

24

Authorg

29 Jan 2004

mod_perl internals: Apache 2.0 Integration 2 mod_perl internals: Apache 2.0 Integration

2 mod_perl internals: Apache 2.0 Integration

29 Jan 2004 25

2.1 Description

2.1 |Description|

This document should help to understand the initialization, request processing and shutdown process of
the mod_perl module. This knowledge is essential for a less-painful debugging experience. It should also
help to know where a new code should be added when a new feature is added.

Internals of mod_perl-specific features are discussed injmod_perl internals. mod_perl-specific functional |

Make sure to read also: |Debugging mod perl C Internalg

2.2 |Startup

Apache starts itself and immediately restart itself. The following sections discuss what happens to
mod_perl during this period.

2.2.1 [The Link Between mod per| and httpd

mod_perl.c includes a special data structure:

nmodul e AP_MODULE_DECLARE_DATA perl _nodul e = {
STANDARD20_MODULE_STUFF,
nmodper| _config_dir_create, /* dir config creater */
nmodper| _config dir_merge, /* dir nerger --- default is to override */
nmodper| _config_srv_create, /* server config */
nmodper| _config_srv_merge, /* nerge server config */
nmodper | _cnds, /* table of config file commands */
nmodper | _regi st er _hooks, /* register hooks */

H

Apache uses this structure to hook mod_perl in, and it specifies six custom callbacks which Apache will
call at various stages that will be explained later.

STANDARD20_ MODULE _STUFF is a standard macro defined in httpd-2.0/include/http_config.h.
Currently its main use is for attaching Apache version magic numbers, so the previously compiled module
won't be attempted to be used with newer Apache versions, whose APl may have changed.

nodper | _cnds is a struct, that defines the mod_perl configuration directives and the callbacks to be
invoked for each of these.

2.3 |Configuration Tree Building

Attheap_r ead_confi g stage the configuration file is parsed and stored in a parsed configuration tree
is created. Some sections are stored unmodified in the parsed configuration tree to be processed after the
pre_confi g hooks were run. Other sections are processed right away (e.g., the | ncl ude directive
includes extra configuration and has to include it as soon as it was seen) and they may or may not add a
subtree to the configuration tree.

26 29 Jan 2004

mod_perl internals: Apache 2.0 Integration 2.3.1 Enabling the mod_perl Module and Installing its Callbacks

ap_build_config feeds the configuration file lines from to ap_build_config_sub , Which
tokenizes the input, and uses the first token as a potential directive (command). It then calls
ap_find_command_in_modules() to find a module that has registered that command (remember

mod_perl has registered the directives in the modperl_cmds command_rec array, which was passed
to ap_add_module inside the perl_module struct?). If that command is found and it has the
EXEC_ON_REARag set initsreq _override field, the callback for that command is invoked. Depending
on the command, it may perform some action and return (e.g., User foo), or it may continue reading
from the configuration file and recursively execute other nested commands till it's done (e.g., <Loca -
tion ...>). If the command is found but the EXEC_ON_REAMag is not set or the command is not
found, the current node gets added to the configuration tree and will be processed during the
ap_process_config_tree() stage, after the pre_config stage will be over.

If the command needs to be executed at this stage as it was just explained, execute_now() invokesthe
corresponding callback with invoke_cmd .

Since Load Module directive has the EXEC_ON_REABag set, that directive is executed as soon asit’s
seen and the modules its supposed to load get loaded right away.

For mod_perl loaded as a DSO object, thisis when mod_perl startsits game.

2.3.1 [Enabling the mod perl Module and I nstalling its Callbackg

mod_perl can be loaded as a DSO object at startup time, or be prelinked at compile time.

For staticaly linked mod_perl, Apache enables mod perl by calling ap_add_module() , which
happens during the ap_setup_prelinked_modules() stage. The latter is happening before the
configuration file is parsed.

When mod_perl isloaded as DSO:

<IfModule !'mod_perl.c>
LoadModule perl_module "modules/mod_perl.so"
</IfModule>

mod _dso’'s load_module first loads the shared mod perl object, and then immediately calls
ap_add_loaded _module() which callsap_add_module() toenable mod perl.

ap_add_module() adds the perl_module structure to the top of chained module list and calls
ap_regis ter _hooks() which callsthe modperl_regis ter _hooks() calback. Thisisthe very
first mod_perl hook that’s called by Apache.

modperl_regis ter _hooks() registers all the hooks that it wants to be called by Apache when the
appropriate time comes. That includes configuration hooks, filter, connection and http protocol hooks.
From now on most of the relationship between httpd and mod_perl is done via these hooks. Remember
that in addition to these hooks, there are four hooks that were registered with ap_add_module() , and
there are: modperl_config_srv_create , modperl_config_srv_merge :
modperl_config_dir_create and modperl_config_dir_merge

29 Jan 2004 27

2.4 The pre_config Phase

Finally after the hooks were registered, ap_single_module_config ure () (caled from mod dso's
load_module in case of DSO) runs the configuration process for the module. First it cals the
modperl_config_srv_create calback for the man server, followed by the
modperl_config_dir_create callback to create a directory structure for the main server. Notice
that it passes NULL for the directory path, since we at the very top level.

If you need to do something as early as possible at mod perl’s startup, the modperl_regis -
ter _hooks() is the right place to do that. For example we add a MODPERL2define to the
ap_server_config_defines here:

*(char **)apr_array_push(ap_server_config_defines) =
apr_pstrdup(p, "MODPERL2");

so the following code will work under mod_perl 2.0 enabled Apache without explicitly passing -DMOD
PERL2 at the server startup:

<IfDefine MODPERL2>
2.0 configuration
PerlSwitches -wT
</IfDefine>

This section, of course, will see the define only if inserted after the Load Module perl_module N
because that’s when modperl_regis ter _hooks iscalled.

One inconvenience with using that hook, is that the server object is not among its arguments, so if you
need to access that object, the next earliest function is modperl_config_srv_create() . However
remember that it’ll be called once for the main server and one more time for each virtual host, that has
something to do with mod_perl. So if you need to invoke it only for the main server, you can use a
s->is_virtual conditional. For example we need to enable the debug tracing as early as possible, but
we need the server object in order to do that, so we peform this setting in
modperl_config_srv_create()

if (Is->is_virtual) {
modperl_trace_level_set(s, NULL);

}

2.4 [Thepre confi g Phase

After Apache processes its command line arguments, creates various pools and reads the configuration file
in, it runs the registered pre_config hooks by caling ap_run_pre_config() . That's when
modperl_hook_pre_config iscalled. And it does nothing.

2.4.1 |Configuration Tree Processing

ap_process_config_tree calls ap_walk_config , which scans through all directives in the
parsed configuration tree, and executes each one by calling ap_walk _config_sub . Thisisarecursive
process with many twists.

28 29 Jan 2004

mod_perl internals: Apache 2.0 Integration 2.4.2 Virtua Hosts Fixup

Similar to ap_bui | d_confi g _sub for each command (directive) in the configuration tree, it calls
ap_find_conmand_i n_nodul es to find a module that registered that command. If the command is
not found the server dies. Otherwise the callback for that command is invoked with i nvoke_cnd, after
fetching the current directory configuration:

i nvoke_cnd(cnd, parns, dir_config, current->args);

The i nvoke_cnd command is the one that invokes mod_perl’s directives callbacks, which reside in
modper|_cmd.c. i nvoke_cnd knows how the arguments should be passed to the callbacks, based on the
information in the nodper | _cnds array that we have just mentioned.

Notice that before i nvoke_cnd isinvoked, ap_set _confi g_vectors() is caled which sets the
current server and section configuration objects for the module in which the directive has been found. If
these objects were't created yet, it calls the registered callbacks as create_dir_config and
creat e_server_confi g,whicharenodper!| _config_dir_create and

nmodper| _confi g_srv_creat e for the mod_perl module. (If you write your custom module in Perl,
these correspond to the DI R_CREATE and SERVER_CREATE Perl subroutines.)

The command callback won't be invoked if it has the EXEC_ON_READ flag set, because it was already
invoked earlier when the configuration tree was parsed. ap_set _confi g_vect ors() iscaledinany
case, because it wasn’t called during theap_bui | d_confi g.

So we have nodper| _config srv_create and nodperl _config_dir_create both caled
once for the main server (at the end of processing the LoadMbdul e perl nodul e ... directive),
and one more time for each virtual host in which at least one mod_perl directive is encountered. In addi-
tion nodper| _config dir_create is caled for every section and subsection that includes
mod_perl directives (META: or inherits from such a section even though specifies no mod_perl directives
init?).

2.4.2 Virtual Hosts Fixup

After the configuration tree is processed, ap_f i xup_vi rtual _host s() iscalled. One of the respon-
sibilities of this function is to merge the virtual hosts configuration objects with the base server’s object. If
there are virtua hosts, mer ge_server _configs() calsnodperl _config_srv_nerge() and
nmodper| _confi g_dir_nerge() for each virtua host, to perform this merge for mod_perl configu-
ration objects.

META: is that’s the place where everything restarts? it doesn’'t restart under debugger since we run with
NODETACH | believe.

2.4.3 [The open logs Phaseg

After Apache processes the configuration it's time for the open_logs phase, executed by
ap_run_open_Il ogs() . mod_perl hasregistered the nodper | _hook_i ni t () hook to be called for
this phase.

29 Jan 2004 29

2.5 Request Processing

META: complete what happens at this stage in mod_perl

META: why is it called modperl_hook_init and not open_logs? is it because it can be called from other
functions?

2.4.4 [The post config Phasg

Immediately after open logs, the post_config phase follows. Here ap_run_post _confi g() cals
nodper| _hook _post config()

2.5 |Request Processing

META: need to write

2.6 [Shutdown

META: need to write

2.7 IMaintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

2.8 |Authorg

Only the mgjor authors are listed above. For contributors see the Changesfile.

30 29 Jan 2004

mod_perl internals: mod_perl-specific functionality flow 3 mod_perl internals: mod_perl-specific functionality flow

3 mod_perl internals. mod_perl-specific functionality
flow

29 Jan 2004 31

3.1 Description

3.1 |Description|

This document attempts to help understand the code flow for certain features. This should help to debug
problems and add new features.

This document auguments|mod_perl internals. Apache 2.0 Integration and discusses the internals of the
mod_perl-specific features.

Make sure to read also: |Debugging mod perl C Internalg

META: these notes are a bit out of sync with the latest cvs, but will be updated once the innovation dust
settles down.

3.2 |Perl Interpreters

How and when Perl interpreters are created:

1. modperl_hook _init is invoked by one of two paths: Either normally, during the open_logs phase, or
during the configuration parsing if a directive needs perl at the early stage (e.g. PerlLoadModule).

ap_hook_open_Il ogs() -> # normal nod_perl startup
| oad_nodul e() -> nodperl _run() -> # early startup caused by Perl| LoadModul e

2. modperl_hook_init() -> modperl_init():

o nodper| _startup()
- parent perl is created and started ("-e0"),
- top level PerlRequire and Perl Module are run

o nodper| _interp_init()
- nodper| _tipool _new() # create/init tipool
- nodperl _interp_new() # no new perls are created at this stage

o nodperl _init_vhost() # vhosts are booted, for each vhost run:
i f +Parent
- nodper| _startup() # vhost gets its own parent perl (not perl_clone()!)
el se
- vhost’s Perl Modul e/ Perl Require directives are run if any
if +(Parent]|d one)
- nodperl _interp_init() (new tipool, no new perls created)

3. Next the post_config hook is run. It immediately returns for non-threaded mpms. Otherwise that's
where all the first clones are created (and later their are created on demand when there aren’t enough
in the pool and more are needed).

32 29 Jan 2004

mod_perl internals: mod_perl-specific functionality flow 3.3 Filters

o nodper| _init_clones() creates pools of clones
- nodper| _tipool _init() (clones the Perl Startlnterp nunber of perls)
- interp_pool _grow)
- nodper!| _i nterp_new()
~ this time perl_clone() is called
~ PL_ptr_table is scratched
nodper | _xs_dl _handl es_cl ear

3.3 [Filters

Apache filters work in the following way. First of all, afilter must be registered by its name, in addition
providing a pointer to a function that should be executed when the filter is called and the type of resources
it should be called on (e.g., only request’s body, the headers, both and others). Once registered, the filter
can be inserted into a chain of filtersto be executed at run time.

For example in the pre_connection phase we can add connection phase filters, and using the
ap_hook_insert_filter we can call functions that add the current request’s filters. The filters are added
using their registered name and a special context variable, which is typed to (void *) so modules can store
anything they want there. Y ou can add more than one filter with the same name to the same filter chain.

Here is how mod_perl usesthisinfrastructure:

There can be many filters inserted viamod_perl, but they all seen by Apache by four filter names:

MODPERL_REQUEST OUTPUT
MODPERL_REQUEST | NPUT
MODPERL_CONNECTI ON_OUTPUT
MODPERL_CONNECTI ON_| NPUT

XXX: which actually seems to be lowercased by Apache (saw it in gdb), (it handles these in the case
insensitive manner?). how does then modperl_filter_add request works, as it compares *fname with M.

These four filter names are registered in modperl_register _hooks():

ap_register_output _filter(MP_FI LTER REQUEST_QUTPUT_NAME,
MP_FI LTER_HANDLER(nodper| _out put _filter_handl er),
AP_FTYPE_RESOURCE) ;

ap_register_input_filter(MP_FI LTER_REQUEST_| NPUT_NANME,
MP_FI LTER_HANDLER(nodper | _i nput _filter_handl er),
AP_FTYPE_RESOURCE) ;

ap_register_output_filter(MP_FI LTER CONNECTI ON_OUTPUT_NAME,
MP_FI LTER_HANDLER(nodper| _out put _filter_handl er),
AP_FTYPE_CONNECTI ON) ;

ap_register_input _filter(MP_FILTER CONNECTI ON_| NPUT_NAME,

MP_FI LTER_HANDLER(nmodper | _i nput _filter_handl er),
AP_FTYPE_CONNECTI ON) ;

29 Jan 2004 33

3.3 Filters

At run time input filter handlers are aways called by modperl_input_filter_handler() and output filter
handler by modperl_output_filter_handler(). For example if there are three MODPERL_CONNEC-
TION_INPUT filtersin the filters chain, modperl_input_filter_handler() will be called three times.

The read Perl filter handler (callback) is stored in ctx->handler, which is retrieved by
modperl_{ output|input} filter_handler and run as a normal Perl handler by modperl_run filter() via
modperl_callback():

retrieve ctx->handl er
nmodper| _output _filter_handl er -> nmodperl_run_filter -> nodperl _call back

This trick allows to have more than one filter handler in the filters chain using the same Apache filter
name (the red filter’s nameis stored in ctx->handler->name.

Now the only missing piece in the puzzle is how and when mod_perl filter handlers are inserted into the
filter chain. It happensin three stages.

1. When the configuration file is parsed, every time a PerlInputFilterHandler or a PerlOutputFilterHan-
dler directive is encountered, its argument (filter handler) isinserted into dcfg->handlers per_dir[idx]
by modperl_cmd input_filter_handlers() and modperl_cmd_output_filter_handlers(). idx is either
MP_INPUT_FILTER_HANDLER or MP_OUTPUT_FILTER_HANDLER. Since they are stored in
the dcfg struct, normal merging of parent and child directories applies.

2. Next, modperl_hook_post _config calls modperl_mgv_hash_handlers which works through
dcfg->handlers per_dir[idx] and resolves the handlers (via modperl_mgv_resolve), so they are
resolved by the time filter handlers are added to the chain in the next step (e.g. the attributes are set if
any).

3. Now dl isleft isto add the filters to the appropriate chains at the appropriate time.

modper]_register_hooks() adds a pre_connection hook modperl_hook_pre_connection() which inserts
connection filtersvia

nodper | _i nput _filter_add_connection();
nodper | _output _filter_add_connection();

modperl_hook_pre_connection() is called during the pre_connection phase.

modperl_register_hooks() directly registers the request filters viaap_hook_insert_filter():

nodper | _out put _filter_add_request
nodper| _i nput _filter_add_request

functions registered with ap_hook_insert filter(), will be called when the request record is created
and they are supposed to insert request filtersif any.

All four functions perform a similar thing: loop through dcfg->handlers per_dir[idx], where idx is
per filter type: MP_{INPUT|OUTPUT}_FILTER_HANDLER, pick the filters of the appropriate type
and insert them to filter chain using one of the two Apache functions that add filters. Since we have
connection and request filters there are four different combinations:

34 29 Jan 2004

mod_perl internals: mod_perl-specific functionality flow 3.4 Maintainers

ap_add_i nput _filter(name, (void*)ctx, NULL, c);
ap_add_out put _filter(name, (void*)ctx, NULL, c);
ap_add_input _filter(name, (void*)ctx, r, r->connection);
ap_add_out put _filter(name, (void*)ctx, r, r->connection);

Here the nanme is one of:
MODPERL_ REQUEST _OQUTPUT
MODPERL_REQUEST _| NPUT

MODPERL_CONNECTI ON_OUTPUT
MODPERL_CONNECTI ON_| NPUT

ctx, storing three things:
SV *dat a;

nmodper| _handl er _t *handl er;
PerlInterpreter *perl;

we have mentioned ctx->handler already, that’s where the real Perl filter handler is stored. ctx->perl
stores the current perl interpreter (used only in the threaded environment).

the last two arguments are the request and connection records.

notice that dcfg->handlers per_dir[idx] stores connection and request filters in the same array, so we
have only two arrays, one for input and one for output filters. We know to distinguish between
connection and request filters by looking at ctx->handler->attrs record, which is derived from the
handler subroutine’s attributes. Remember that we can have:

sub Foo : FilterRequestHandler {}

and:

sub Bar : FilterConnectionHandl er {}

For example we can figure out what kind of handler isthat via:

if (ctx->handler->attrs & MP_FI LTER_CONNECTI ON_HANDLER)) ({
/* Connection handler */

else if (ctx->handler->attrs & MP_FI LTER REQUEST_HANDLER)) ({
/* Request handler */

}
el se {

/* Unknown */
}

3.4 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

29 Jan 2004 35

3.5 Authors

Stas Bekman <stas (at) stason.org>

3.5 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

36 29 Jan 2004

MPMs - Multi-Processing Model Modules 4 MPMs - Multi-Processing Model Modules

4 MPMs- Multi-Processing Model Modules

29 Jan 2004 37

4.1 Description

4.1 Description|

Discover what are the available MPMs and how they work with mod_perl.

META: Thisdoc is under construction. Owners are wanted.

4.2 MPMs Overview,

4.3 TheWorker MPM

META: incomplete

Y ou can test whether running under threaded env via: ?

#i f def USE_| THREADS
/* whatever */
#endi f

When the server is running under the threaded mpm scf g- >t hr eaded__npmis set to true.
Cavests:

All per-server data is shared between threads, regardless of locking, changing the value of something like
ap_document_root changesit for al threads. Not just the current process/request, the way it wasin 1.3. So
we can't really support modification of things like ap_document_root at request time, unless the mpm is
prefork. we could support modification of modperl per-server data by using r->request_config in the same
way push_handlers et al isimplemented. But it is not possible to use this approach for anything outside of
modperl (ap_document_root for example).

4.4 ThePrefork MPM

META: incomplete

4.5 Maintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

4.6 |Authors

® Stas Bekman <stas (at) stason.org>

38 29 Jan 2004

MPMs - Multi-Processing Model Modules 4.6 Authors

Only the magjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 39

5 mod_perl Coding Style Guide

5 mod_perl Coding Style Guide

40 29 Jan 2004

mod_perl Coding Style Guide 5.1 Description

5.1 |Description|

This document explains the coding style used in the core mod_perl development and which should be
followed by all core developers.

5.2 |Coding Style Guide

We try hard to code mod_perl using an identical style. Because everyone in the team should be able to
read and understand the code as quickly and easily as possible. Some will have to adjust their habits for
the benefit of al.

® C code

mod_perl’s C code follows the Apache style guide: [http://dev.apache.org/styleguide.html|

® XScode
C code inside XS modules also follows the Apache style guide.
® Perl code

mod_perl’s Perl code aso follows the Apache style guide, in terms of indentation, braces, etc. Style
issues not covered by Apache style of guide should be looked up in the perlstyle manpage.

Here are the rough guidelines with more stress on the Perl coding style.
® |ndentation and Tabs
Do use 4 characters indentation.
Do NOT use tabs.
Hereis how to setup your editor to do the right thing:

O x?emacs: cperl-mode

. xemacs/ custom el :

(custom set -vari abl es
"(cperl-indent-1|evel 4)
"(cperl -continued-statenent-offset 4)
"(cperl -tab-al ways-i ndent t)
" (i ndent -t abs-node nil)

)

O vim

29 Jan 2004 41

http://dev.apache.org/styleguide.html

5.2 Coding Style Guide

set expandtab " replaces any tab keypress with the appropriate nunber of spaces
set tabstop=4 " sets tabs to 4 spaces

® Block Braces

Do use astyle similar to K&R style, not the same. The following example is the best guide:

Do:
sub foo {
my($sel f, $cond, $baz, $taz) = @;
if ($cond) {
bar ();
}
el se {
$sel f->foo("one", 2, "...");
}
return $sel f;
}
Don't:
sub foo
{
my ($sel f, $bar, $baz, $taz) =@ ;
if($cond)
{
&bar () ;
} else { $self->foo ("one",2,"..."); }
return $sel f;
}

e |istsand Arrays

Whenever you create a list or an array, always add a comma after the last item. The reason for doing
thisisthat it's highly probable that new items will be appended to the end of the list in the future. If
the commais missing and thisisn’t noticed, there will be an error.

Do:
my @ist = (
"iteml",
"itemR",
"itenB",
)
Don't:

42 29 Jan 2004

mod_perl Coding Style Guide 5.3 Function and Variable Prefixes Convention

my @ist = (
"iteml",
"itenR",
"iteng"
)

® | ast Statement in the Block

The same goes for ; in the last statement of the block. Almost always add it even if it’s not required,
so when you add a new statement you don’t have to remember to add ; on apreviousline.

Do:
sub foo {
statenment 1;
st at enent 2;
st at enent 3;
}
Don't:
sub foo {
st atenent 1;
st at enent 2;
statenment 3
}

5.3 [Function and Variable Pr efixes Convention|

® modperl_
The prefix for mod_perl C API functions.
e MP_
The prefix for mod_perl C macros.
® MpXs_
The prefix for mod_perl XS utility functions.
® mp_Xxs_
The prefix for mod_perl generated XS utility functions.
o MPXS_

The prefix for mod_perl XSUBs with an XS() prototype.

29 Jan 2004 43

5.4 Coding Guidelines

5.4 |Coding Guidelines

The following are the Perl coding guidelines:

5.4.1 (Global Variableq

e avoid globalsin general
e avoid$&,9%, %

See Devel : : SawAnper sand’s README that explains the evilness. Under mod_perl everybody
suffers when one is seen anywhere since the interpreter is never shutdown.

5.4.2

® Exporting/Importing
Avoid too much exporting/importing (glob aliases eat up memory)

When you do wish to import from amodule try to use an explicit list or tag whenever possible, e.g.:

use PCSI X gw(strftine);

When you do not wish to import from amodule, always use an empty list to avoid any import, e.g.:

use 1O :File ();

(explain how to use Apache:: Status to find imported/exported functions)

5.4.3

e indirect vsdirect method calls
Avoid indirect method calls, e.g.
Do:

CG : : Cooki e- >new
Don't:

new Cd : : Cooki e

5.4.4 [nheritanceg

® Avoid inheriting from certain modules

44 29 Jan 2004

mod_perl Coding Style Guide 5.4.5 Symbol tables

Exporter. To avoid inheriting AutoL oader::AUTOLOAD
Do:

*inmport = \&Exporter::inport;
Don't:

@wd ass:: 1 SA = gw(Exporter);

5.4.5 [Symbol tabled

® %main::

stay away from mai n: : to avoid namespace clashes

5.4.6 Useof $ inloops

Avoid using $_ in loops unless it’s a short loop and you don’t call any subs from within the loop. If the
loop started as short and then started to grow make sure to remove theuse of $_:

Do:
for my $idx (1..100) {
....nmore than few lines...
f oo($i dx);
}
Don't:
for (1..100) {
....nmore than a few statenents. ..
foo();
}
Because foo() might change $__ if foo()’ s author didn’t localize $_.
ThisisOK:
for (1..100) {

.... afewstatenents with no subs called
do something with $_

29 Jan 2004 45

5.5 Maintainers

5.5

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas *at* stason.org>

5.6

® Doug MacEachern<dougm (at) covalent.net>
® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

46

Maintainer s

Authorg

29 Jan 2004

Porting Apache:: XS Modules from mod_perl 1.0to 2.0 6 Porting Apache:: XS Modules from mod_perl 1.0to 2.0

6 Porting Apache:: XSModulesfrom mod_perl 1.0to
2.0

29 Jan 2004 47

6.1 Description

6.1 |[Description|

This document talks mainly about porting modules using XS code. It's also helpful to those who start
developing mod_perl 2.0 packages.

Also make sure to first read about porting Apache:: Perl modules.

6.2 [Porting M akefile.PL

It's only an issueif it was using Apache: : src. A new configuration system is in works. So watch this
space for updates on thisissue.

ModPerl::MM isthe new replacement of Apache::src.

6.3 [Porting XS Code

If your modul€’' s XS code relies on the Apache and mod_perl C APIs, it'svery likely that you will have to
adjust the XS code to the Apache 2.0 and mod_perl 2.0 C API.

The C API has changed a lot, so chances are that you are much better off not to mix the two APIs in the
same XS file. However if you do want to mix the two you will have to use something like the following:

#i ncl ude ap_nmm. h

[* ... %]

#i f AP_MODULE _MAGQ C_AT_LEAST(20020903, 3)
[* 2.0 code */

#el se
/* 1.0 code */

#endi f

The 20020903, 3 isthe value of the magic version number matching Apache 2.0.46, the earliest Apache
version supported by mod_perl 2.0.

6.4 [Thread Safety|

META: to be written

#i f def MP_THREADED
/* threads specific code goes here */
#endi f

For now see: |http://httpd.apache.org/docs-2.0/devel oper/thread safety.html|

48 29 Jan 2004

http://httpd.apache.org/docs-2.0/developer/thread_safety.html

Porting Apache:: XS Modules from mod_perl 1.0to 2.0 6.5 PerllO

6.5 PerllQ

Perl10 layer has become usable only in perl 5.8.0, so if you plan on working with Perll O, you can use the
PERLI O LAYERS constant. e.g.:

#i f def PERLI O_LAYERS
#i ncl ude "perliol.h"

#el se

#i ncl ude "iperlsys.h"
#endi f

6.6 [maketest’ Suiteg

The Apache: : Test testing framework that comes together with mod_perl 2.0 works with 1.0 and 2.0
mod_perl versions. Therefore you should consider porting your test suite to use the Apache::Test Frame-
work.

6.7 |Apache C Code Specific Notes

Most of the documentation covering migration to Apache 20 can be found at:
|http://httpd.apache.org/docs-2.0/devel oper]

The Apache 2.0 API documentation now resides in the C header files, which can be conveniently browsed
vialhttp://docx.webperf.org/l

The APR APl documentation can be found here|http://apr.apache.org/l

The new Apache and APR APIs include many new functions. Though certain functions have been
preserved, either as is or with a changed prototype (for example to work with pools), others have been
renamed. So if you are porting your code and the function that you've used doesn’t seem to exist in
Apache 20, first refer to the "compat" header files, such as. include/ap compat.h,
srclib/apr/include/apr_compat.h, and srclib/apr-util/include/apu_compat.h, which list functions whose
names have changed but which are otherwise the same. If thisfails, proceed to look in other headers files
in the following directories:

e ap functionsininclude/

® apr_ functionsin srclib/apr/include/ and srclib/apr-util/include/

6.7.1 [ap soft timeout(), ap reset timeout(), ap hard timeout() and]|
lap kill timeout()

If the C part of the module in 1.0 includes ap_soft _tinmeout(), ap_reset _timeout(),
ap_hard_tineout () andap_kill _tinmeout () functionssimply remove thesein 2.0. There is no
replacement for these functions because Apache 2.0 uses non-blocking 1/0. As a side-effect of this
change, Apache 2.0 no longer uses SI GALRM which has caused conflictsin mod_perl 1.0.

29 Jan 2004 49

http://httpd.apache.org/docs-2.0/developer/
http://docx.webperf.org/
http://apr.apache.org/

6.8 Maintainers

6.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

6.9 |Authorg

® Stas Bekman <stas (at) stason.org>

® Doug MacEachern <dougm (at) covalent.net>

Only the mgjor authors are listed above. For contributors see the Changesfile.

50 29 Jan 2004

Measure sizeof () of Perl’s C Structures 7 Measure sizeof() of Perl’s C Structures

7 Measure sizeof() of Perl’s C Structures

29 Jan 2004 51

7.1 Description

7.1 |Description|

This document describes the sizeof various structures, as determined by util/sizeof.pl. These measurements
are mainly for research purposes into making Perl things smaller, or rather, how to use less Perl things.

7.2 |Perl Structureg

Structures diagrams are courtesy gdb (print pretty) and a bit of hand crafting.

® CV - 229 minimum, 254 minimum w/ symbol table entry

cv = {

sv_any = { /1 XPVCV *
Xpv_pv = 0x0, // char *
xpv_cur =0, // STRLEN
xpv_len =0, // STRLEN
xof _off =0, // IV
xnv_nv = 0, /1 NV
xng_magic = 0x0, // MAGC *
xng_stash = 0x0, // HV *
xcv_stash = 0x0, // HV *
Xcv_start = 0x0, // OP *

Xcv_root = 0x0, [/ OP *
xcv_xsub = 0x0, // void (*)(register Perllnterpreter *, CV *)
XCV_Xxsubany { Il ANY
any_ptr 0x0,
any i 32 0,
any iv =
any_|l ong
any_dptr
any_dxptr

non o

0,
0

=0
H
xcev_gv = { /] GV *
sv_any = { // void *
Xpv_pv = 0x0, // char *

xpv_cur =0, // STRLEN
xpv_len =0, // STRLEN
xiv_iv =0, /1 1V
xnv_nv = 0, /1 NV

xmg_magic = { // MAGC *
ng_noremagi c = 0x0, // MAG C *

ng_virtual = 0x0, /1 MGVTBL *
ng_private = 0, /1 Ul6
nmy_type = O, /1 char
ng_flags = 0O, /1 U8
ng_obj = 0xO0, /1l SV *
mg_ptr = 0xO, /1 char *
ng_len = 0, /1 132

}s
xng_stash = 0x0, // HV *

xgv_gp ={ /] GP*

52 29 Jan 2004

Measure sizeof() of Perl’s C Structures

gp_sv ={ // SV *

sv_any = 0x0, // void *
sv_refcnt =0, // U32
sv_flags = 0 /1 U32
H
gp_refcnt =0, // U32
gp_i o = 0xO, /1 struct io *
gp_form= 0x0, // CV *
gp_av = 0xO, [l AV *
gp_hv = 0xO, /[l HV *
gp_egv = 0x0, [/ GV *
gp_cv = 0xO, /1 CV *
gp_cvgen = 0, // U32
gp_flags = 0, [/ U32
gp_line =0, /1 line_t
gp_file = 0x0, // char *
H
Xgv_name = 0x0, // char *
xgv_namelen = 0, // STRLEN
xgv_stash = 0x0, // void *
xgv_flags = 0, /1 U8
H
sv_refcnt =0, // U32
sv_flags = 0, [/ U32
H
xcv_file = 0x0, // char *
xcv_depth = 0, // long
xcv_padlist = 0x0, // AV *
Xcv_outside = 0x0, // CV *

xcv_flags =
}
sv_refcnt = 0,
sv_flags = 0,

I

0, // cv_flags_t

/1 U3z
/1 U3z

In addition to the minimum bytes:

O O O

O CvROOT(cv) optr
® HV -60minmum

hv = {

ee

sv_any = { // SV *

xhv_array =
xhv _fill =
xhv_max = 0
xhv_keys =
xnv_nv = 0
Xng_magi ¢
xng_st ash
xhv_riter
xhv_eiter
xhv_pnr oot

29 Jan 2004

0x0, // char *
0, /! STRLEN
/! STRLEN
, /1 1V
[l NV
ox0, // MAGC *
0ox0, [// HV *
0, /1 132
0ox0, [// HE *
= 0x0, // PMOP *

o~

name of the subroutine: GYNAMELEN(CvGV (cv))+1
symbol table entry: HVENTRY (25 + GUNAMEL EN(CvGV (cv))+1)
minimum sizeof (AV) * 3: xcv_padlist if ICvXSUB(cv)

7.2 Perl Structures

53

7.2 Perl Structures

xhv_name = 0x0 /1 char *

b,

sv_refcnt =0, // U32

sv_flags = 0, [/ U32
}s

Each entry adds si zeof (HVENTRY) , minimum of 7 (initial xhv_rmax). Note that keys of the same
value share si zeof (HEK) , across all hashes.

e HVENTRY - 25+ HeKLEN+1

sizeof (HE *) + sizeof (HE) + sizeof (HEK)

e HE-12
he = {
hent _next = 0x0, // HE *
hent _hek = 0x0, // HEK *
hent_val = 0x0 // SV *

b
e HEK -9+ hek len

hek = {
hek_hash = 0, // U32
hek len =0, [/ 132
hek_key = 0, // char
b
e AV -53
av = {

sv_any = { /] SV *
xav_array = 0x0, // char *

xav_fill =0, /1 size_t
xav_max = 0, /Il size_t
xof _off =0, Il 1V
xnv_nv = 0, Il NV
xng_magic = 0x0, // MAG C *
xng_stash = 0x0, // HV *
xav_alloc = 0x0, [/ SV **

xav_arylen = 0x0, // SV *
xav_flags = 0, /] U8
b,
sv_refent = 0, // U32
sv_flags = 0 /1 U32
b
In addition to the minimum bytes:

O AVFILL (av) * sizeof(SV *)

54 29 Jan 2004

Measure sizeof() of Perl’s C Structures 7.3 SEEALSO

7.3 [SEE ALSO|

perlguts(3), B::Size(3),

|http://gisle.aas.no/perl/illguts]

7.4 IMaintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Doug MacEachern <dougm (at) covalent.net>

7.5 |Authorg

® Doug MacEachern <dougm (at) covalent.net>

29 Jan 2004 55

http://gisle.aas.no/perl/illguts/

8 Which Coding Technique is Faster

8 Which Coding Techniqueis Faster

56 29 Jan 2004

Which Coding Technique is Faster 8.1 Description

8.1 |Description|

This document tries to show more efficient coding styles by benchmarking various styles.
WARNING: Thisdoc is under construction

META: for now these are just unprocessed snippets from the mailing list. Please help me to make these
into useful essays.

8.2 backticksvs XS

META: unprocessed yet.

compare the difference of caling an xsub that does nothing_ vs. a backticked program that does
nothing.

/* file:test.c */
int main(int argc, char **argv, char **env)

{
}

/* file:TickTest.xs */
#i ncl ude "EXTERN. h"

#i ncl ude "perl.h"

#i ncl ude "XSUB. h"

return 1;

MODULE = Ti ckTest PACKAGE = Ti ckTest

voi d
foo()

CODE

file:test.pl
use blib;
use TickTest ();

use Benchmark;

ti met hese(100_000, ({
backtick => sub { ‘./test’ },
xs => sub { TickTest::foo() },

1)

Results:;

Benchmark: timng 100000 iterations of backtick, xs...
backtick: 292 wallclock secs (18.68 usr 43.93 sys + 142.43 cusr 84.00 csys = 289.04 CPU) @ 1597.19/s (n=100000)
xs: -1 wallclock secs (0.25 usr + 0.00 sys = 0.25 CPU) @ 400000.00/s (n=100000)
(warning: too fewiterations for a reliable count)

29 Jan 2004 57

8.3 sv_catpvn vs. fprintf

8.3 |sv_catpvn vs. fprintf

META: unprocessed yet.

and what i’m trying to say is that if both the xs code and external program are doing the same thing, xs
will be heaps faster than backticking a program. your xsub and external program are not doing the same
thing.

i’m guessing part of the difference in your code is due to fprintf having a pre-alocated buffer, whereas the
SV’s SYPV X has not been pre-allocated and gets realloc-ed each time you call sv_catpv. have alook at the
code below, fprintf is faster than sv_catpvn, but if the SYPV X is preallocated, sv_catpvn becomes faster
than fprintf:

timet hese(1_000, {
fprintf => sub { TickTest::fprintf() },
svcat => sub { TickTest::svcat() },
svcat _pre => sub { TickTest::svcat_pre() },

1)

Benchmark: timing 1000 iterations of fprintf, svcat, svcat_pre...
fprintf: 9 wallclock secs (8.72 usr + 0.00 sys 8.72 CPU) @114.68/s (n=1000)
svcat: 13 wallclock secs (12.82 usr + 0.00 sys 12.82 CPU) @ 78.00/s (n=1000)
svcat _pre: 2 wallclock secs (2.75 usr + 0.00 sys 2.75 CPU) @ 363.64/s (n=1000)

#i ncl ude "EXTERN. h"
#i ncl ude "perl.h"
#i ncl ude " XSUB. h"

static FILE *devnull;

MODULE = Ti ckTest PACKAGE = Ti ckTest
BOOT:
devnull = fopen("/dev/null", "w');
voi d
fprintf()

CODE:

{

int i;

char buffer[8292];
for (i=0; i<sizeof(buffer); i++) {

fprintf(devnull, "a");
}

voi d
svcat ()

58 29 Jan 2004

Which Coding Technique is Faster

int i;
char buffer[8292];
SV *sv = newSV(0);

for (i=0; i<sizeof(buffer); i++) {
sv_cat pvn(sv, "a", 1)
}

SVREFCNT _dec(sv);
}

voi d
svcat _pre()

CCDE!
{ . .
int i;
char buffer[8292];
SV *sv = newSV(si zeof (buffer)+1);

for (i=0; i<sizeof(buffer); i++) {
sv_cat pvn(sv, "a", 1)
}

SVREFCNT _dec(sv);

8.4 Maintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

8.5 |Authors

® Stas Bekman <stas (at) stason.org>

® Doug MacEachern <dougm (at) covalent.net>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004

8.4 Maintainers

59

9 Porting Apache:: XS Modules from mod_perl 1.0to 2.0

9 Porting Apache:: XSModulesfrom mod_perl 1.0to
2.0

60 29 Jan 2004

Porting Apache:: XS Modules from mod_perl 1.0to 2.0 9.1 Description

9.1 |Description|

This document talks mainly about porting modules using XS code. It's also helpful to those who start
developing mod_perl 2.0 packages.

Also make sure to first read about porting Apache:: Perl modules.

9.2 [Porting M akefile.PL

It's only an issueif it was using Apache: : src. A new configuration system is in works. So watch this
space for updates on thisissue.

ModPerl::MM isthe new replacement of Apache::src.

9.3 |Porting XS Code

If your modul€’' s XS code relies on the Apache and mod_perl C APIs, it'svery likely that you will have to
adjust the XS code to the Apache 2.0 and mod_perl 2.0 C API.

The C API has changed a lot, so chances are that you are much better off not to mix the two APIs in the
same XS file. However if you do want to mix the two you will have to use something like the following:

#i ncl ude ap_nmm. h

[* ... %]

#i f AP_MODULE _MAGQ C_AT_LEAST(20020903, 3)
[* 2.0 code */

#el se
/* 1.0 code */

#endi f

The 20020903, 3 isthe value of the magic version number matching Apache 2.0.46, the earliest Apache
version supported by mod_perl 2.0.

9.4 [Thread Safety

META: to be written

#i f def MP_THREADED
/* threads specific code goes here */
#endi f

For now see: |http://httpd.apache.org/docs-2.0/devel oper/thread safety.html|

29 Jan 2004 61

http://httpd.apache.org/docs-2.0/developer/thread_safety.html

9.5 PerllO

9.5 PerllQ

Perl10 layer has become usable only in perl 5.8.0, so if you plan on working with Perll O, you can use the
PERLI O LAYERS constant. e.g.:

#i f def PERLI O_LAYERS
#i ncl ude "perliol.h"

#el se

#i ncl ude "iperlsys.h"
#endi f

9.6 'maketest’ Suite

The Apache: : Test testing framework that comes together with mod_perl 2.0 works with 1.0 and 2.0
mod_perl versions. Therefore you should consider porting your test suite to use the Apache::Test Frame-
work.

9.7 |Apache C Code Specific Notes

Most of the documentation covering migration to Apache 20 can be found at:
|http://httpd.apache.org/docs-2.0/devel oper]

The Apache 2.0 API documentation now resides in the C header files, which can be conveniently browsed
vialhttp://docx.webperf.org/l

The APR APl documentation can be found here|http://apr.apache.org/l

The new Apache and APR APIs include many new functions. Though certain functions have been
preserved, either as is or with a changed prototype (for example to work with pools), others have been
renamed. So if you are porting your code and the function that you've used doesn’t seem to exist in
Apache 20, first refer to the "compat" header files, such as. include/ap compat.h,
srclib/apr/include/apr_compat.h, and srclib/apr-util/include/apu_compat.h, which list functions whose
names have changed but which are otherwise the same. If thisfails, proceed to look in other headers files
in the following directories:

e ap functionsininclude/

® apr_ functionsin srclib/apr/include/ and srclib/apr-util/include/

9.7.1 |[ap soft timeout(), ap reset timeout(), ap hard timeout() and]|
lap kill timeout()

If the C part of the module in 1.0 includes ap_soft _tinmeout(), ap_reset _timeout(),
ap_hard_tineout () andap_kill _tinmeout () functionssimply remove thesein 2.0. There is no
replacement for these functions because Apache 2.0 uses non-blocking 1/0. As a side-effect of this
change, Apache 2.0 no longer uses SI GALRM which has caused conflictsin mod_perl 1.0.

62 29 Jan 2004

http://httpd.apache.org/docs-2.0/developer/
http://docx.webperf.org/
http://apr.apache.org/

Porting Apache:: XS Modules from mod_perl 1.0to 2.0 9.8 Maintainers

9.8 M aintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

9.9 |Authors

® Stas Bekman <stas (at) stason.org>

® Doug MacEachern <dougm (at) covalent.net>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 63

10 Debugging mod_perl Perl Internals

10 Debugging mod_perl Perl Internals

64 29 Jan 2004

Debugging mod_perl Perl Internals

10.1

This document explains how to debug Perl code under mod_perl.

10.2

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

10.3

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004

Description|

Maintainer s

Authors

10.1 Description

65

11 Debugging mod_perl C Internals

11 Debugging mod_perl C Internals

66 29 Jan 2004

Debugging mod_perl C Internals 11.1 Description

11.1 |Description|

This document explains how to debug C code under mod_perl, including mod_perl core itself.

For certain debugging purposes you may find useful to read first the following notes on mod_perl inter-
nals; |Apache 2.0 Integrationlandjmod perl-specific functionality flow]

11.2 |Debug noteg

META: needs more organization

META: there is a new directive CoreDumpDirectory in 2.0.45, need to check whether we should mention
it.

META: there is a new compile-time option in perl-5.9.0+; -DDEBUG_LEAKING_SCALARS, which
prints out the addresses of leaked SVs and new_SV() can be used to discover where those SVs were allo-
cated. (see perlhack.pod for more info)

META: httpd has quite alot of useful debug info: [http://httpd.apache.org/dev/debugging.html| (need to add
thislink to mp1 docs as well)

META: profiling: need a new entry of profiling. + running mod_perl under gprof: Defining GPROF when
compiling uses the moncontrol() function to disable gprof profiling in the parent, and enable it only for
regquest processing in children (or in one_process mode).

META: Jeff Trawick wrote a few useful debug modules, for httpd-2.1: mod_backtrace (similar to bt in
gdb, but doesn't require the core file) and mod_whatkilledus (gives the info about the request that caused
the segfault). |http://httpd.apache.org/~trawick/exception _hook.html|

11.2.1 |Setting gdb breakpoints with mod per| built as DSO

If mod_perl is built as a DSO module, you cannot set the breakpoint in the mod_perl source files when the
httpd program gets loaded into the debugger. The reason is simple: At this moment httpd has no idea about
mod_perl module yet. After the configuration file is processed and the mod_perl DSO module is loaded
then the breakpointsin the source of mod_perl itself can be set.

Thetrick isto break at apr_dso_load, let it load libmodperl.so, then you can set breakpoints anywhere in
the modper! code:

% gdb httpd

(gdb) b apr_dso_| oad

(gdb) run - DONE_PROCESS

[New Thread 1024 (LWP 1600)]
[Switching to Thread 1024 (LW, 1600)]

29 Jan 2004 67

http://httpd.apache.org/dev/debugging.html
http://httpd.apache.org/~trawick/exception_hook.html

11.2.2 Starting the Server Fast under gdb

Breakpoint 1, apr_dso_l oad (res_handl e=0xbf f f b48c, pat h=0x81lladcc
"/ hone/ st as/ apache. or g/ modper | - per | nodul e/ src/ nodul es/ perl/1i bnodperl . so"
pool =0x80ela3c) at dso.c: 138

141 void *os_handl e = dl open(path, RTLD NOW| RTLD GLOBAL);

(gdb) finish

Value returned is $1 = 0

(gdb) b nodperl _hook_init
(gdb) continue

This example shows how to set a breakpoint at modper|_hook init.

To automate things you can put those in the .gdb-jump-to-init file:

b apr_dso_I oad
run -DONE_PROCESS -d ‘pwd‘'/t -f ‘pwd'/t/conf/httpd. conf

finish
b rodper| _hook_init
continue

and then start the debugger with:

% gdb / hone/ stas/ httpd-2.0/bin/httpd -conmand \
“pwd' /t/.gdb-junmp-to-init

11.2.2 [Starting the Server Fast under gdb

When the server is started under gdb, it first loads the symbol tables of the dynamic libraries that it sees
going to be used. Some versions of gdb may take ages to complete this task, which makes the debugging
very irritating if you have to restart the server all the time and it doesn’t happen immediately.

Thetrick isto set theaut o- sol i b- add flagto O:

set auto-solib-add O
as early as possible in ~/.gdbinit file.

With this setting in effect, you can load only the needed dynamic libraries with sharedlibrary gdb
command. Remember that in order to set a breakpoint and step through the code inside a certain dynamic
library you haveto load it first. For example consider this gdb commandsfile:

. gdb- commands

file ~/httpd/ prefork/bin/httpd

handl e Sl GPI PE pass

handl e S| GPl PE nost op

set auto-solib-add O

b ap_run_pre_config

run -d ‘pwd‘'/t -f ‘pwd‘'/t/conf/httpd. conf \
- DONE_PROCESS - DAPACHE2 - DPERL_USEI THREADS
sharedl i brary nod_perl

b rodper| _hook_init

start: nodperl _hook_init

68 29 Jan 2004

Debugging mod_perl C Internals 11.2.2 Starting the Server Fast under gdb

continue
restart: ap_run_pre_config
continue
restart: nodperl _hook_init
continue
b apr_pol
continue

| oad APR/ Perl 1 O Perll QO so
sharedlibrary Perll O
b Perl| | GAPR_open

which can be used as:

% gdb - cormmand=. gdb- comrands

This script stops in modper!_hook _init(), so you can step through the mod_perl startup. We had to use the
ap_run_pre_config so we can load the libmodperl.so library as explained earlier. Since httpd restarts on
the start, we have to continue until we hit modperl_hook_init second time, where we can set the breakpoint
at apr_poll, the very point where httpd polls for new request and run again continue so it'll stop at
apr_poll. This particular script passes over modperl_hook_init(), since we run the cont i nue command a
few times to reach the apr_poll breakpoint. See the [Precooked gdb Startup Scriptg section for standalone
script examples.

When gdb stops at the function apr_poll it's a time to start the client, that will issue a request that will
exercise the server execution path we want to debug. For example to debug the implementation of
APR: : Pool we may run:

%t/ TEST -run apr/ poo

which will trigger the run of a handler in t/response/TestAPR/pool.pm which in turn tests the APR: : Pool
code.

But before that if we want to debug the server response we need to set breakpoints in the libraries we want
to debug. For example if we want to debug the function Per| | QAPR open which resides in
APR/Per|10/Perl10.s0 we first load it and then we can set a breakpoint in it. Notice that gdb may not be
ableto load alibrary if it wasn’t referenced by any of the code. In this case we have to load this library at
the server startup. In our example we load:

Per | Modul e APR: : Perl | O

in httpd.conf. To check which libraries’ symbol tables can be loaded in gdb, run (when the server has been
started):

gdb> info sharedlibrary
which also shows which libraries are |loaded already.

Also notice that you don’t have to type the full path of the library when trying to load them, even a partial
name will suffice. In our commands file example we have used shar edl i brary nod_per| instead
of sayingshar edl i brary nod_perl . so.

29 Jan 2004 69

11.2.2 Starting the Server Fast under gdb

If you want to set breakpoints and step through the code in the Perl and APR core libraries you should
load their appropriate libraries:

gdb> sharedlibrary |ibperl
gdb> sharedlibrary |ibapr
gdb> sharedlibrary l|ibaprutil

Setting auto-solib-add to 0 makes the debugging process unusual, since originally gdb was loading the
dynamic libraries automatically, whereas now it doesn’t. Thisis the price one has to pay to get the debug-
ger starting the program very fast. Hopefully the future versions of gdb will improve.

Just remember that if you try to step-in and debugger doesn’'t do anything, that means that the library the
function is located in wasn't loaded. The solution is to create a commands file as explained in the begin-
ning of this section and craft the startup script the way you need to avoid extra typing and mistakes when
repeating the same debugging process again and again.

Under threaded mpms (e.g. worker), it's possible that you won’'t be able to debug unless you tell gdb to
load the symbols from the threads library. So for example if on your OS that library is called libpthread.so
make sure to run:

sharedlibrary |ibpthread

somewhere after the program has started. See the|Precooked gdb Startup Scriptd section for examples.

Another important thing is that whenever you want to be able to see the source code for the code you are
stepping through, the library or the executable you are in must have the debug symbols present. That
means that the code has to be compiled with -g option for the gcc compiler. For example if | want to set a
breakpoint in /lib/libc.so, | can do that by loading:

gdb> sharedlibrary /1ib/libc.so

But most likely that this library has the debug symbols stripped off, so while gdb will be able to break at
the breakpoint set inside this library, you won't be able to step through the code. In order to do so, recom-
pile the library to add the debug symbols.

If debug code in response handler you usualy start the client after the server was started, when doing this
alot you may find it annoying to need to wait before the client can be started. Therefore you can use afew
tricks to do it in one command. If the server starts fast you can use sleep():

% ddd - conmand=. debug- modperl-init & ; \
sleep 2 ; t/TEST -verbose -run apr/ pool

or the Apache: : Test framework’s- pi ng=bl ock option:

% ddd - conmand=. debug- nmodperl-init & ; \
t/ TEST -verbose -run -ping=bl ock apr/pool

which will block till the server starts responding, and only then will try to run the test.

70 29 Jan 2004

Debugging mod_perl C Internals

11.2.3

IPrecooked gdb Startup Scriptq

11.2.3 Precooked gdb Startup Scripts

Here are afew startup scripts you can use with gdb to accomplish one of the common debugging tasks. To
execute the startup script, simply run:

% gdb - command=. debug-script-fil ename

They can be run under gdb and any of the gdb front-ends. For example to run the scripts under ddd substi-
tute gdb with ddd:

% ddd - conmand=. debug-script-fil ename

® Debugging mod_perl Initialization

The code/.debug-modper|-init:

HoHHH R HH

This gdb startup script breaks at the nodperl _hook_init() function
which is useful for debug things at the nodperl init phase

I nvoke as:
gdb - command=. debug- nodper| -init

see ADJUST notes for things that nmay need to be adjusted

ADJUST: the path to the httpd executable if needed
file ~/httpd/ worker/bin/httpd

handl e Sl GPI PE nost op

handl e S| GPI PE pass

set

defi

end

defi

end

defi

end

defi

29 Jan 2004

auto-solib-add 0

ne nyrun
tbreak main

break ap_run_pre_config

ADIJUST: the httpd.conf file's path if needed

ADJUST: add - DPERL_USEI THREADS t o debug threaded npns

run -d ‘“pwd‘'/t -f ‘pwd'/t/conf/httpd. conf - DONE_PROCESS - DAPACHE2
continue

ne nodperl _init
sharedlibrary nod_perl
b nodperl _hook_init
continue

ne sharedap

ADJUST: uncoment next line to debug threaded npns
#sharedl i brary |ibpthread

sharedlibrary apr

sharedlibrary apruti

#sharedl i brary nod_ssl. so

continue

ne sharedperl

71

11.2.3 Precooked gdb Startup Scripts

72

sharedlibrary |ibper
end

start the server and run till nodperl_hook_init on start

nmyrun
nodper| _init

ADJUST: uncomment to reach nodperl _hook_init on restart
#conti nue
#conti nue

ADJUST: unconmment if you need to step through the code in apr |ibs
#shar edap

ADJUST: uncomment if you need to step through the code in perlib
#shar edper |

startup script breaks at the modper | _hook _i ni t () function, which is useful for debugging code
at the modper!’ sinitialization phase.

Debugging mod_per|’s Hooks Register ation With httpd

Similar to the previous startup script, the code/.debug-modper|-register:

This gdb startup script allows to break at the very first invocation
of nod_perl initialization, just after it was | oaded. Wen the

perl _nodule is | oaded, and its pointer struct is added via
ap_add_nodul e(), the first hook that will be called is

nodper | _regi ster_hooks().

I nvoke as:
gdb - command=. debug- nodper| -regi ster

HoH R H R HHHFHH

see ADJUST notes for things that may need to be adjusted

defi ne sharedap
sharedlibrary apr
sharedlibrary apruti
#sharedl i brary nod_ssl. so
end

defi ne sharedper
sharedlibrary |ibper
end
#H# Run ###
ADJUST: the path to the httpd executable if needed
file ~/httpd/ prefork/bin/httpd
handl e Sl GPlI PE nost op
handl e Sl GPl PE pass
set auto-solib-add O
tbreak main

assuming that nod_dso is conpiled in

29 Jan 2004

Debugging mod_perl C Internals 11.2.3 Precooked gdb Startup Scripts

b | oad_nodul e

ADJUST: the httpd.conf file's path if needed

ADJUST: add - DPERL_USEI THREADS to debug threaded npns
run -d ‘pwd‘/t -f ‘pwd'/t/conf/httpd.conf \

- DONE_PROCESS - DNO_DETACH - DAPACHE2

skip over 'threak main’

conti nue

In order to set the breakpoint in nod_perl.so, we need to get to
the point where it’s | oaded.

#

Wth static nod_perl, the bp can be set right away

#

Wth DSO nod_perl, nmbd_dso’s | oad_nodul e() | oads the nod_perl.so
object and it inmmediately calls ap_add_nodul e(), which calls
nodper| _regi ster_hooks(). So if we want to bp at the latter, we need
to stop at |oad_nodul e(), set the ’'bp nodperl _register_hooks’ and
then continue

HH R H R

Assumi ng that ' LoadModul e perl _nodule’ is the first LoadModul e
directive in httpd.conf, you need just one 'continue after
"ap_add_module’. If it’s not the first one, you need to add as nany
"continue’ conmmands as the nunber of 'LoadMbdul e foo' before

perl _nodul e, but before setting the 'ap_add_nodul e’ bp.

If mod_perl is conpiled statically, everything is already prel oaded
so you can set nodperl_* the breakpoints right away

HH R HHHFHH

b ap_add_nodul e
conti nue

sharedlibrary nod_perl
b nodper!| _regi ster_hooks
continue

#b nodper!| _hook_init

#b nodperl| _config_srv_create

#b nodperl| _startup

#b nodper! _i nit _vhost

#b nodper!| _dir_config

#b nodper!| _cnd_| oad_nodul e
#nodper| _confi g_appl y_Per | Modul e

ADJUST: uncomment next |ine to debug threaded npns
#sharedli brary |ibpthread

ADJUST: unconmment if you need to step through the code in apr |ibs
#shar edap

ADJUST: uncomment if you need to step through the code in perlib
#shar edper|

29 Jan 2004 73

11.2.3 Precooked gdb Startup Scripts

74

startup script breaks at the modper | _r egi st er _hooks(), which isthe very first hook called in
the mod_perl land. Therefore use this one if you need to start debugging at an even earlier entry point
into mod_perl.

Refer to the notes inside the script to adjust it for a specific httpd.conf file.
Debugging mod_per| XS Extensions

The code/.debug-modper|-xs:

This gdb startup script breaks at the npxs_Apache__Filter_print()
function fromthe XS code, as an exanpl e how you can debug the code
in XS extensions.

I nvoke as:

gdb - command=. debug- nodper| - xs

and then run:

t/ TEST -v -run -ping=block filter/api

HoHHEH R HHFHFHH

see ADJUST notes for things that nmay need to be adjusted

ADJUST: the path to the httpd executable if needed
file /hone/stas/httpd/ worker/bin/httpd

handl e Sl GPI PE nost op

handl e S| GPI PE pass

set auto-solib-add O

define nmyrun
tbreak main
break ap_run_pre_config
ADJUST: the httpd.conf file's path if needed
ADJUST: add - DPERL_USEI THREADS to debug threaded npns
run -d ‘“pwd‘'/t -f ‘pwd'/t/conf/httpd. conf \
- DONE_PROCESS - DNO_DETACH - DAPACHE2
continue
end

defi ne sharedap
ADJUST: uncoment next line to debug threaded npns
#sharedl i brary |ibpthread
sharedlibrary apr
sharedlibrary apruti
#sharedl i brary nod_ssl. so
continue
end

defi ne sharedper
sharedlibrary Iibper
end

defi ne gopol

b apr_poll
conti nue

29 Jan 2004

Debugging mod_perl C Internals 11.2.3 Precooked gdb Startup Scripts

conti nue
end

define mybp
| oad Apache/Filter.so
sharedlibrary Filter
b npxs_Apache__Filter_print
no | onger needed and they just nake debuggi ng harder under threads
di sable 2
di sable 3
continue
end

nmyrun
gopol |
nybp

ADJUST: uncomment if you need to step through the code in apr |ibs
#shar edap

ADJUST: uncormment if you need to step through the code in perlib
#shar edper|

startup script breaks at the npxs_Apache__Filter_print() function implemented in
xs/Apache/Filter/Apache__Filter.h. Thisis an example of debugging code in XS Extensions. For this
particular example the complete test caseis:

% ddd - conmand=. debug- nodper| -xs & \
t/ TEST -v -run -ping=block filter/api

When filter/api test is running it calls mpxs Apache Filter_print() which is when the breakpoint is
reached.

e Debugging codein shared objectscreated by I nl i ne. pm

Thisis not strictly related to mod_perl, but sometimes when trying to reproduce a problem (e.g. for a
p5p bug-report) outside mod_perl, the code has to be written in C. And in certain cases, Inline can be
just the right tool to do it quickly. However if you want to interactively debug the library that it
creates, it might get tricky. So similar to the previous sections, hereis a gdb code/.debug-inline:

save this file as .debug and execute this as:

gdb - conmand=. debug

or if you prefer gui

ddd - command=. debug

#

NOTE: Adjust the path to the perl executable

also this perl should be built with debug enabl ed

file [usr/bin/perl

If you need to debug with gdb a live script and not a library, you
are going to have a hard time to set any breakpoint in the C code
the workaround is force Inline to conpile and load .so, by putting
all the code in the BEA N {} block and call Inline->init fromthere
#

you al so need to prevent fromlInline deleting autogenerated .xs so

29 Jan 2004 75

11.3 Analyzing Dumped Core Files

you can step through the C source code, and of course you need to
add '-g’ so .so won't be stripped of debug info

here is a sanple perl script that can be used with this gdb script

use strict;
use war ni ngs;

BEG N {
use Inline Config =>
#FORCE_BUI LD => 1,
CLEAN_AFTER BUI LD => 0;

use Inline C => Config =>
OPTIM ZE => ' -¢g';

use Inline C => <init;

ny_bp();

HFHFHFIFHFIFHFEHFFHFHEHFEHFHFEHFHHFHHHTRHR

tb main
NOTE: adjust the name of the script that you run
run test.p

when Perl _runops_debug breakpoint is hit Inline will already |oad
the autogenerated .so, so we can set the bpin it (that’s only if
you have run 'Inline->init’ inside the BEG N {} block

b S run_body

conti nue

b Perl| _runops_debug
conti nue

here you set your breakpoints

b ny_bp
conti nue

startup script that will save you alot of time. All the details and a sample perl script are inside the
gdb script.

11.3 JAnalyzing Dumped Core Fileg

META: need to review (unfinished)

When your application dies with the Segmentation fault error (which generates a SI GSEGV signal) and
optionally generates a core file you can use gdb or a similar debugger to find out what caused the
Segmentation fault (or segfault as we often call it).

76 29 Jan 2004

Debugging mod_perl C Internals 11.3.1 Getting Ready to Debug

11.3.1 |Getting Ready to Debug)

In order to debug the core file we may need to recompile Perl and mod_perl with debugging symbols
inside. Usually you have to recompile only mod_perl, but if the core dump happens in the libmodperl.so
library and you want to see the whole backtrace, you probably want to recompile Perl aswell.

Recompile Perl with -DDEBUGGING during the ./Configure stage (or even better with -Doptimize="-g"
which in addition to adding the - DDEBUGA NG option, adds the -g options which allows you to debug the
Perl interpreter itself).

After recompiling Perl, recompile mod_perl with MP_DEBUG=1 during the Makefile.PL stage.
Building mod_perl with PERL_ DEBUG=1 will:

1. add‘-g to EXTRA_CFLAGS

2. turn on MP_TRACE (tracing)

3. Set PERL_DESTRUCT_LEVEL=2

4. Link against | i bper | d if -e $Config{ archlibexp}/CORE/libperld$Config{lib_ext}

If you build a static mod_perl, remember that during make install Apache strips all the debugging
symbols. To prevent this you should use the Apache --without-execstrip . / conf i gur e option. Soif you
configure Apache viamod_perl, you should do:

pani c% per|l Makefile.PL USE_APACI =1 \
APACI _ARGS=' - -wi t hout -execstrip’ [other options]

Alternatively you can copy the unstripped binary manually. For example we did this to give us an Apache
binary caled ht t pd_per | which contains debugging symbols:

pani c# cp httpd-2.x/httpd /hone/ httpd/ httpd_perl/bin/httpd_perl

Now the software is ready for a proper debug.

11.3.2 |Creating a Faulty Packagg

META: no longer need to create the package, use Debug: : DunpCor e from CPAN. Need to adjust the
rest of the document to useit.

Next stage is to create a package that aborts abnormally with the Segmentation fault error. We will write
faulty code on purpose, so you will be able to reproduce the problem and exercise the debugging tech-
nique explained here. Of course in areal case you will have some real bug to debug, so in that case you
may want to skip this stage of writing a program with a deliberate bug.

We will use the | nl i ne. pmmodule to embed some code written in C into our Perl script. The faulty
function that we will add isthis:

29 Jan 2004 7

11.3.2 Creating a Faulty Package

void segv() {
int *p;
p = NULL;
printf("od", *p); /* cause a segfault */

}

For those of you not familiar with C programming, p is a pointer to a segment of memory. Setting it to
NULL ensures that we try to read from a segment of memory to which the operating system does not allow
us access, so of course dereferencing NULL pointer causes a segmentation fault. And that’s what we want.

So let’s create the Bad: : Segv package. The name Segv comes from the SI GSEGV (segmentation viola-
tion signal) that is generated when the Segmentation fault occurs.

First we create the installation sources:

pani c% h2xs -n Bad::Segv -A -0 -X
Witing Bad/ Segv/ Segv. pm

Witing Bad/ Segv/ Makefile. PL
Witing Bad/ Segv/test.p

Witing Bad/ Segv/ Changes

Witing Bad/ Segv/ MANI FEST

Now we modify the Segv.pm file to include the C code. Afterwards it looks like this:
package Bad: : Segv;
use strict;

BEG N {
$Bad: : Segv: : VERSION = ' 0. 01’
}

use Inline C => <<’ END_OF _C CODE'
void segv() {
int *p;
p = NULL;
printf("od", *p); /* cause a segfault */

}
END_OF C_CODE
1
Finally we modify test.pl:
use Inline SITE I NSTALL;
BEGN{ $ =1; print "1..1\n"; }
END {print "not ok 1\n" unless $l oaded;}

use Bad:: Segv;

$l oaded = 1;
print "ok 1\n";

78 29 Jan 2004

Debugging mod_perl C Internals 11.3.3 Getting the core File Dumped

Note that we don't test Bad::Segv::segv() in test.pl, since this will abort the make test stage abnormally,
and we don’t want this.

Now we build and install the package:

pani c% per| Makefile.PL
pani c% make && make test
pani c% su

pani c# make install

Running make test is essential for | nl i ne. pmto prepare the binary object for the installation during
make install.

META: stopped here!

Now we can test the package:

panic%ulimt -c unlimted

pani c% per| -MBad:: Segv -e 'Bad:: Segv::segv()’
Segrment ation fault (core dunped)

panic%ls -1 core

STW---- - 1 stas stas 1359872 Feb 6 14:08 core

Indeed, we can see that the core file was dumped, which will be used to present the debug techniques.

11.3.3 |Getting the core File Dumped

Now let’s get the core file dumped from within the mod_perl server. Sometimes the program aborts abnor-
mally viathe SIGSEGV signal (Segmentation Fault), but no core file is dumped. And without the corefile
it's hard to find the cause of the problem, unless you run the program inside gdb or another debugger in
first place. In order to get the corefile, the application hasto:

® have the effective UID the same as real UID (the same goes for GID). Which is the case of mod_perl
unless you modify these settings in the program.

® De running from a directory which at the moment of the Segmentation fault is writable by the process.
Notice that the program might change its current directory during its run, so it’s possible that the core
file will need to be dumped in a different directory from the one the program was started from. For
example when mod_perl runs an Apache: : Regi st ry script it changes its directory to the one in
which the script source is located.

® be started from a shell process with sufficient resource allocations for the core file to be dumped.
You can override the default setting from within a shell script if the process is not started manually.
In addition you can use BSD: : Resour ce to manipulate the setting from within the code as well.

Youcanuseul i mt forbashand!limt for csh to check and adjust the resource alocation. For
exampleinside bash, you may set the core file size to unlimited:

29 Jan 2004 79

11.3.3 Getting the core File Dumped

panic%ulimt -c unlinmted
or for csh:

pani c% |l imt coredunpsize unlimted

For example you can set an upper limit on the corefile size to 8MB with:

panic%ulinmt -c 8388608
So if the corefile is bigger than 8MB it will be not created.

e Of course you have to make sure that you have enough disk space to create a big core file (mod_perl
corefilestend to be of afew MB in size).

Note that when you are running the program under a debugger like gdb, which traps the SI GSEGV signal,
the core file will not be dumped. Instead it allows you to examine the program stack and other things
without having the corefile.

So let’ swrite asimple script that uses Bad: : Segv:

core_dunp. p

use strict;
use Bad:: Segv ();
use Owd()

ny $r = shift;
$r->content _type('text/plain');

ny $dir = getcwd,
$r->print("The core should be found at $dir/core\n");
Bad: : Segv: : segv();

In this script we load the Bad: : Segv and Cwd modules. After that we acquire the request object and
send the HTTP header. Now we come to the real part--we get the current working directory, print out the
location of the core file that we are about to dump and finally we call Bad::Segv::segv() which dumps the
corefile.

Before we run the script we make sure that the shell sets the core file size to be unlimited, start the server
in single server mode as a hon-root user and generate a request to the script:

pani c% cd /hone/ httpd/ httpd_perl/bin
panic% | imt coredunpsize unlimted
pani c% ./ httpd_perl -X

issue a request here
Segrment ation fault (core dunped)

Our browser prints out:

80 29 Jan 2004

Debugging mod_perl C Internals 11.3.4 Analyzing the core File

The core should be found at /hone/httpd/perl/core

And indeed the core file appears where we were told it will (remember that Apache: : Regi st ry scripts
change their directory to the location of the script source):

panic%ls -1 /hone/httpd/perl/core
SPW--- - - - 1 stas httpd 3227648 Feb 7 18:53 /home/ httpd/ perl/core

As you can see it's a 3MB core file. Notice that mod_perl was started as user stas, which had write
permission for directory /home/httpd/perl.

11.3.4 |Analyzing the core Filg

First we start gdb:

pani c% gdb / hone/ httpd/ httpd_perl/bin/httpd_perl /home/httpd/perl/core
with the location of the mod_perl executable and the core file as the arguments.

To see the backtrace you run the where or the bt command:

(gdb) where
#0 0x4025ea08 in XS_Apache__Segv_segv ()

from/usr/lib/perl5/site_perl/5.6.0/i386-1inux/auto/Bad/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. so
#1 0x40136528 in PL_curcopdb ()

from/usr/lib/perl5/5.6.0/i386-1inux/CORE/ Ilibperl.so

WEell, you can see the last commands, but our perl and mod_perl are probably without the debug symbols.
So we recompile Perl and mod_perl with debug symbols as explained earlier in this chapter.

Now when we repeat the process of starting the server, issuing a request and getting the core file, after
which we run gdb again against the executable and the dumped corefile.

pani c% gdb /home/ httpd/ httpd_perl/bin/httpd_perl /hone/httpd/perl/core

Now we can see the whole backtrace:

(gdb) bt
#0 0x40323a30 in segv () at Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. xs: 9
#1 0x40323af8 in XS _Apache__Segv_segv (cv=0x85f2b28)
at Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. xs: 24
#2 0x400fcbda in Perl _pp_entersub () at pp_hot.c: 2615
#3 0x400f2c56 in Perl _runops_debug () at run.c:53
#4 0x4008b088 in S call_body (myop=0xbffff788, is_eval=0) at perl.c:1796
#5 0x4008ac4f in perl_call_sv (sv=0x82fc2e4, flags=4) at perl.c:1714
#6 0x807350e in perl_call_handler ()
#7 0x80729cd in perl_run_stacked_handl ers ()
#8 0x80701b4 in perl_handler ()
#9 0x809f409 in ap_i nvoke_handl er ()
#10 0x80b3e8f in ap_sone_auth_required ()
#11 0x80b3efa in ap_process_request ()
#12 0x80aae60 in ap_child_termnate ()
#13 0x80ab021 in ap_child_termnate ()

5D 53 53 53 3 5 S

29 Jan 2004 81

11.3.4 Analyzing the core File

#14 0x80abl1l9c in ap_child_term nate ()

#15 0x80ab80c in ap_child_term nate ()

#16 0x80ac03c in main ()

#17 0x401b8chbe in __libc_start_main () from/lib/libc.so.6

Reading the trace from bottom to top, we can see that it starts with Apache calls, followed by Perl syscalls.
At the top we can see the segv() call which was the one that caused the Segmentation fault, we can also
see that the faulty code was at line 9 of Segv.xs file (with MD5 signature of the code in the name of the
file, because of theway | nl i ne. pmworks). It's alittle bit tricky with | nl i ne. pmsince we have never
created any .xs files ourselves, (I nl i ne. pmdoes it behind the scenes). The solution in this caseisto tell
I nl i ne. pmnot to cleanup the build directory, so we can see the created .xsfile.

We go back to the directory with the source of Bad: : Segv and force the recompilation, while telling
I nl i ne. pmnot to cleanup after the build and to print alot of other useful info:

pani c# cd Bad/ Segv
pani c# perl -M nline=FORCE, NOCLEAN, | NFO Segv. pm
I nformation about the processing of your Inline C code:

Your nodule is already conpiled. It is |ocated at:
/' home/ ht t pd/ per | / Bad/ Segv/ _I nli ne/|i b/ aut o/ Bad/ Segv_C_0_01_e6b5959d800f 515de36a7e7eeab28hb39/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28b39. so

But the FORCE_BUILD option is set, so your code will be reconpiled.
1"l use this build directory:
/ hone/ ht t pd/ per | / Bad/ Segv/ _I nl i ne/ bui | d/ Bad/ Segv_C 0_01_e6b5959d800f 515de36a7e7eeab28h39/

and I'll install the executable as:
/' hone/ ht t pd/ per| / Bad/ Segv/ _I nli ne/li b/ aut o/ Bad/ Segv_C_0_01_e6b5959d800f 515de36a7e7eeab28b39/ Segv_C_0_01_e6b5959d800f 515de36a7e7eeab28b39. so

The following Inline C function(s) have been successfully bound to Perl:
voi d segv()

It tells us that the code was already compiled, but since we have forced it to recompile we can look at the
files after the build. So we go into the build directory reported by | nl i ne. pmand find the .xs file there,
where on line 9 we indeed find the faulty code:

9: printf("%l",*p); // cause a segfault

Notice that in our example we knew what script has caused the Segmentation fault. In a real world the
chances are that you will find the core file without any clue to which of handler or script has triggered it.
The special curinfo gdb macro comes to help:

pani c% gdb / home/ httpd/ httpd_perl/bin/httpd_perl /hone/httpd/perl/core
(gdb) source nod_perl -x.xx/.gdbinit

(gdb) curinfo

9: / hone/ htt pd/ perl/ core_dunp. pl

We start the gdb debugger as before. .gdbinit, the file with various useful gdb macros is located in the
source tree of mod_perl. We use the gdb source() function to load these macros, and when we run the
curinfo macro we learn that the core was dumped when /home/httpd/perl/core_dump.pl was executing the
code at line 9.

These are the hits of information that are important in order to reproduce and resolve a problem: the file-
name and line where the faulty function was called (the faulty function is Bad::Segv::segv() in our case)
and the actual line where the Segementation fault occured (the printf("%d",*p) cal in XS code). The
former is important for problem reproducing, it's possible that if the same function was called from a
different script the problem won’t show up (not the case in our example, where the using of a value deref-
erenced from the NULL pointer will always cause the Segmentation fault).

82 29 Jan 2004

Debugging mod_perl C Internals 11.3.5 Obtaining core Files under Solaris

11.3.5 |Obtaining core Files under Solarig

There are two ways to get core files under Solaris. The first is by configuring the system to alow core
dumps, the second is by stopping the process when it receives the SIGSEGV signal and "manually"
obtaining the corefile.

11.3.5.1 |Configuring Solaristo Allow core Dumps

By default, Solaris 8 won't allow a setuid process to write a core file to the file system. Since apache starts
as root and spawns children as "nobody’, core dumps won't produce core files unless you modify the
system settings.

To see the current settings, run the coreadm command with no parameters and you'll see:

% cor eadm
gl obal core file pattern:
init core file pattern: core

gl obal core dunps: disabl ed
per-process core dunps: enabl ed
gl obal setid core dunps: disabled
per-process setid core dunps: disabled
gl obal core dunp | oggi ng: disabled

These settings are stored in the /etc/coreadm.conf file, but you should set them with the coreadm utility.
As super-user, you can run coreadm with -g to set the pattern and path for core files (you can use a few
variables here) and -e to enable some of the disabled items. After setting a new pattern, enabling global,
global-setid, and log, and rebooting the system (reboot is required), the new settings look like:

% cor eadm
gl obal core file pattern: /usr/local/apache/cores/core. % .%
init core file pattern: core
gl obal core dunps: enabl ed
per-process core dunps: enabl ed
gl obal setid core dunps: enabled
per-process setid core dunps: disabled
gl obal core dunp | oggi ng: enabl ed

Now you'll start to see core files in the designated cores directory and they will look like core.httpd.2222
where httpd is the name of the executable and the 2222 is the process id. The new core files will be
read/write for root only to maintain some security, and you should probably do this on development
systems only.

11.3.5.2 [Manually Obtaining core Dumpd

On Solaris the following method can be used to generate a corefile.

1. Usetruss(1) asroot to stop a process on a segfaullt:

29 Jan 2004 83

11.3.5 Obtaining core Files under Solaris

panic%truss -f -1 -t \lall -s \!SIGALRM -S S| GSEGV -p <pi d>
or, to monitor all httpd processes (from bash):
panic% for pidin ‘ps -eaf -o pid,comm| fgrep httpd | cut -d' /' -f1°;
do truss -f -1 -t \lall -s \!SIGALRM -S SIGSEGV -p $pid 2>&1 &
done
The used truss(1) options are:
e -f -follow forks.
® -| - (that’san€) includesthe thread-id and the pid (the pid is what we want).

® -t - gpecifiesthe syscallsto trace,

lal - turns off the tracing of syscalls specified by - t

- s - gpecifies signals to trace and the ! SI GALRM turns off the numerous alarms Apache
creates.

® - S- gpecifies signals that stop the process.
® - -isused to specify the pid.
Instead of attaching to the process, you can start it under truss(1):

panic%truss -f -1 -t \lall -s \!SIGALRM -S S| GSEGV \
/usr/local/bin/httpd -f httpd.conf 2>&1 &

2. Watch the error_log file for reaped processes, as when they get SISSEGV signals. When the process
isreaped it's stopped but not killed.

3. Use gcore(l) to get acore of stopped process or attach to it with gdb(1). For example if the processid
is 662

%pani c gcore 662
gcore: core. 662 dunped

Now you can load this corefile in gdb(1).

4, ki ll -9 the stopped process. Kill the truss(1) processes as well, if you don’'t need to trap other
segfaults.

Obvioudly, this isn't great to be doing on a production system since truss(1) stops the process after it
dumps core and prevents Apache from reaping it. So, you could hit the clients/threads limit if you segfault
alot.

84 29 Jan 2004

Debugging mod_perl C Internals 11.4 Debugging Threaded MPMs

11.4 Debugging Threaded M PM s
11.4.1 |Useful Information from gdb Manual|

Debugging programs with multiple threads: |http://sources.redhat.com/gdb/current/online|
[docg/gdb 5.ntmlI#SEC25

Stopping and starting multi-thread programs: |http://sources.redhat.com/gdb/current/online|
[docg/gdb 6.htmlI#SEC4Q

11.4.2

when using:

set auto-solib-add 0
make sure to:
sharedlibrary |ibpthread

(or whatever the shared library is used on your OS) without which you may have problems to debug the
threaded mpm mod_perl.

11.5 |Defining and Using Custom gdb M acr os

GDB provides two ways to store sequences of commands for execution as a unit: user-defined commands
and command files. See: |http://sources.redhat.com/gdb/current/onlinedocs/gdb 21.html|

Apache 2.0 source comes with a nice pack of macros and can be found in httpd-2.0/.gdbinit. To use it
issue:

gdb> source /wherever/httpd-2.0/.gdbinit

Now if for example you want to dump the contents of the bucket brigade, you can do:
gdb> dunp_bri gade my_bri gade

whereny_br i gade isthe pointer to the bucket brigade that you want to debug.

mod_perl 1.0 has a similar file (modperl/.gdbinit) mainly including handy macros for dumping Perl datas-
tructures, however it works only with non-threaded Perls. But otherwise it’s useful in debugging mod_perl
2.0 aswell.

29 Jan 2004 85

http://sources.redhat.com/gdb/current/onlinedocs/gdb_5.html#SEC25
http://sources.redhat.com/gdb/current/onlinedocs/gdb_5.html#SEC25
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html#SEC40
http://sources.redhat.com/gdb/current/onlinedocs/gdb_6.html#SEC40
http://sources.redhat.com/gdb/current/onlinedocs/gdb_21.html

11.6 Expanding C Macros

11.6 |[Expanding C M acr o9

Perl, mod_perl and httpd C code makes an extensive use of C macros, which sometimes use many other
macros in their definitions, so it becomes quite a task to figure out how to figure out what a certain macro
expands to, especialy when the macro expands to different values in differnt environments. Luckily there
are ways to automate the expansion process.

11.6.1 [Expanding C Macros with nake|

The mod_perl Makefile' s include a rule for macro expansions which you can find by looking for thec. i .
rule. To expand all macros in a certain C file, you should run make fil enane. i, which will create
filename.i with al macros expanded in it. For example to create apr_perlio.i with all macros used in
apr_perlio.c:

% cd nodper| -2. 0/ xs/ APR/ Perl | O
% make apr_perlio.i

the apr_perlio.i file now lists all the macros:

% | ess apr_perlio.i

1 "apr_perlio.c"

1 "<built-in>"

#define __VERSION__ "3.1.1 (Mandrake Linux 8.3 3.1.1-0. 4ndk)"

11.6.2 [Expanding C Macros with gdb|

With gcc-3.1 or higher and gdb-5.2-dev or higher you can expand macros in gdb, when you step through
the code. e.g.:

(gdb) nmacro expand pTHX_

expands to: PerllInterpreter *my_perl __attribute__((unused)),
(gdb) macro expand PL_dirty

expands to: (*Perl _Tdirty_ptr(my_perl))

For each library that you want to use this feature with you have to compile it with:
CFLAGS="-gdwarf-2 -g3"
or whatever is appropriate for your system, refer to the gcc manpage for more info.

To compile perl with this debug feature, pass - Dopti m ze=" -gdwarf-2 -g3' to./ Confi gure.
For Apache run:

CFLAGS="-gdwarf-2 -g3" ./configure [...]
for mod_perl you don’t have to do anything, asit’ll pick the $Conf i g{ opti m ze} Perl flags automati-

caly, if Perl is compiled with - DDEBUGAE NG (which is implied on most systems, if you use - Dopt i -
m ze="-g’ orsmilar.)

86 29 Jan 2004

Debugging mod_perl C Internals 11.7 Maintainers

Notice that this will make your libraries huge! e.g. on Linux 2.4 Perl 5.8.0's normal libperl.so is about
0.8MB on linux, compiled with -Doptinize="-g about 27MB and with -Dopti -
mze="-gdwarf-2 -g3 125MB. htt pd is aso becomes about 10 times bigger with this feature
enabled. mod_perl.so instead of 0.2k becomes 11MB. Y ou get the idea. Of course since you may want this
only during the development/debugging, that shouldn’t be a problem.

The complete details are at: |http://sources.redhat.com/gdb/current/onlinedocs/gdb _10.htmI#SECE9

11.7 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

11.8 |Authors

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

29 Jan 2004 87

http://sources.redhat.com/gdb/current/onlinedocs/gdb_10.html#SEC69

12 Getting Help with mod_perl 2.0 Core Devel opment

12 Getting Help with mod_perl 2.0 Core Development

88 29 Jan 2004

Getting Help with mod_perl 2.0 Core Development 12.1 Description

12.1 |Description|

This document covers the resources available to the mod_perl 2.0 core developer. Please notice that you
probably want to read the user’ s help documentation if you have problems using mod_perl 2.0.

The following mailing lists and resources can be of amajor interest to the mod_perl 2.0 devel opers.

12.2 Imod perl|

12.2.1 |[Submitting Patcheg

If you submit patches the Porting/patching.pod manpage can be very useful. You can find it
perl-5.7.0/Porting/patching.pod or similar or read it online at |http://sunsite.ualberta.ca’Documenta|
[tion/Misc/perl-5.6.1/Porting/patching.html]

Note that we prefer the patches inlined into an email. This makes easier to comment on them. If your
email client mangles the spacing and wraps lines, then send them as MIME attachments.

12.2.2 jmod perl 2.0 Core Development Discussion List

This list is used by the mod_perl 2.0 core developers to discuss design issues, solve problems, munch on
patches and exchange ideas.

® mailing list subscription: mailto:dev-subscribe@perl.apache.org

e archive: [http://marc.thea msgroup.com/?=apache-modper|-dev& r=1& w=2#apache-modper|-dev]

When reporting problems, be sure to include the output of:

% per| buil d/config.pl
which generates the output from:

e perl -V
e httpd -V
e MakefilePL options

Please use the output generated by t/REPORT utility.

If you get segmentation faults please send the stack backtrace to the modperl developerslist.

12.2.3 jmod perl 2.0 Core Development CVS Commits Lisf]

Thislist’straffic is comprised of solely cvs commits, so thisisthe place to be if you want to see mod_perl
2.0 evolve before your eyes.

29 Jan 2004 89

http://sunsite.ualberta.ca/Documentation/Misc/perl-5.6.1/Porting/patching.html
http://sunsite.ualberta.ca/Documentation/Misc/perl-5.6.1/Porting/patching.html
http://marc.theaimsgroup.com/?l=apache-modperl-dev&r=1&w=2#apache-modperl-dev

12.3 Apache

mailing list subscription: mailto:modperl-cvs-subscribe@perl.apache.org

archive: |nttp://marc.theai msgroup.com/? =apache-modper|-cvs& r=1& w=2#apache-modper|-cvy

12.2.4 |Apache-Ted

The Apache- Test project, originally developed as a part of mod_perl 2.0, is now a part of the Apache
htt pd-t est project. You get this repository automatically when checking out the mod _perl-2.0 cvs
repository.

To retrieve the whol e httpd-test project, run:

cvs co httpd-test

12.3 |Apache

discussion/problemsreport:

mailing list subscription: mailto:test-dev-subscribe@httpd.apache.org
archive: META: ?7?2?

cvs commits

mailing list subscription: mailto:test-cvs-subscribe@httpd.apache.org

archive: META: ?7?7?

1231

90

discussion/problemsreport:

mailing list subscription: mailto:dev-subscribe@httpd.apache.org

archive: |nttp://marc.theai msgroup.com/?=apache-new-httpd& r=1& w=|

cvs commits

mailing list subscription: mailto:httpd-2.0-cvs-subscribe@perl.apache.org

archive: [http://marc.theaimsgroup.com/? =apache-cvs& r=1& w=2|

Apache source code cross-reference (LXR): |http://Ixr.webperf.org/]

Apache source code through Doxygen documentation system:

29 Jan 2004

http://marc.theaimsgroup.com/?l=apache-modperl-cvs&r=1&w=2#apache-modperl-cvs
http://marc.theaimsgroup.com/?l=apache-new-httpd&r=1&w=
http://marc.theaimsgroup.com/?l=apache-cvs&r=1&w=2
http://lxr.webperf.org/

Getting Help with mod_perl 2.0 Core Development 12.3.2 Apache Portable Runtime (APR)

|http://docx.webperf.org/|

12.3.2 |Apache Portable Runtime (APR)

The Apache Portable Run-time libraries have been designed to provide a common interface to low level
routines across any platform. mod_perl comes with a partial Perl APR API.

e discussion/problemsreport:

mailing list subscription: mailto:apr-dev-subscribe@perl.apache.org

archive: [http://marc.theaimsgroup.com/? =apr-dev& r=1& w=2|

® cvscommits

mailing list subscription: mailto:apr-cvs-subscribe@perl.apache.org

archive: |nttp://marc.theai msgroup.com/? =apr-cvs& r=1& w=2|

1233

Currently mod_perl 2.0 requires perl 5.6.1 and higher.

If you think you have found a bug in perl 5 report it to the perl5-porters mailing list. Otherwise please
choose the appropriate list from the extensive perl related lists: |http://lists.perl.org}

e discussion/problemsreports:

mailing list subscription: mailto: perl5-porters-subscribe@perl.org

archive: [http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters| and [http://archive.devel
|ooper.com/perl5-porters@perl.org/|

news gateway: [news:.//news.perl.com/perl.porters-gw/|

® Perl Dev Resources

|http://dev.perl.orgl|

e perforce

Perl uses per f or ce for its source revision control, see Porting/repository.pod manpage coming
with Perl for more information.

the perforce repository: |http://public.activestate.com/gsar/APC/l or [ftp://ftp.linux.actives |
[tate.com/pub/staff/gsar/ APCI|

29 Jan 2004 91

http://docx.webperf.org/
http://marc.theaimsgroup.com/?l=apr-dev&r=1&w=2
http://marc.theaimsgroup.com/?l=apr-cvs&r=1&w=2
http://lists.perl.org/
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/
http://archive.develooper.com/perl5-porters@perl.org/
http://archive.develooper.com/perl5-porters@perl.org/
news://news.perl.com/perl.porters-gw/
http://dev.perl.org/
http://public.activestate.com/gsar/APC/
ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/
ftp://ftp.linux.activestate.com/pub/staff/gsar/APC/

12.4 More Help

the Perl Repository Browser: |http://public.activestate.com/cgi-bin/perlbrowsd

the Perl cross-reference: [http://pxr.perl.ora/sourcel|

mailing list subscription: perl5-changes-subscribe@perl.org

archive: |nttp://archive.devel ooper.com/perl5-changes@perl.org/|

12.4 MoreHelp

Thereisaparallel help document in the user documentation set which covers mod_perl user’ sissues.

12.5 M aintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

12.6 |[Authorg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

92 29 Jan 2004

http://public.activestate.com/cgi-bin/perlbrowse
http://pxr.perl.org/source/
http://archive.develooper.com/perl5-changes@perl.org/

Getting Help with mod_perl 2.0 Core Development

Table of Contents:

|[Developer’s quidg
Imod perl 2.0 Source Code Explalnedl
1 |mod JJGH 2. O Source Code Explained| .

1.1 [Description

1.2 |Pr01 ect’s Fllesyaem Layoutl

1.3 [Directory sid

131 |D|rectory src/modules/perl/l

1.4 [Directory xs] .

1.4.1 [x5Apache, xs/APR and xs/M odPerII
1.4.2 [xs/maps .

1421 IFunctlons Mappl nq

1.4.2.2 [Structures Mapping|

1423

1.4.2.4 (Modifying Mapg .
1.4.3 XS generation procesy .

1.5 |Gluing Existing APl .

1.6 |Adding Wrappers for existing APIs and Creatl ng New APIsI
1.6.1 |Functions Returning a Single Value (or Nothing)| .
1.6.2 |Functions Returning Variable Number of Valuey .
1.6.3 |Wrappers Functions for C Macrog

1.7 \Wrappers for modperl , apr andap APIg

1.8 [MP INLINE vs C Macros vs Normal Functiond .

1.9 |JAdding New Interfaceg
1.9.1 |Adding Typemaps for new C DataTypeﬂ
1.9.2 [Importing Constants and Enums into Perl API|

1.10 [Maintainerg .

1.11 [Authorg

[mod perl inter nals Apache 2. O Inteqratlonl
2 |mod J)erl internas; Apache 2.0 Integration| .

2.1 [Description

2.2 [Sartug o
221 |The L|nk Between mod jal and httpd

2.3 [Configuration Tree Building|

2.3.1 [Enabling the mod perl Module and Installlnq its Callbacksl

24 [Thepre confi g Phasqd . .
2.4.1 |Configuration Tree Processing .
2.4.2 |Virtua Hosts Fixup|
2.4.3 [The open logs Phasd .

2.4.4 [The post config Phasg.

2.5 |Request Processing

2.6 :

2.7 :

2.8)

29 Jan 2004

Table of Contents:

WWWWWNDNDNDNNDNDNDNDNNNNNNNNNNRPRPRERPRPERERE
QO OO0 WWOWWONOCDOOOOUTUTARWNRPPOOOUIPOOODOVWOWO~NOOOOUGIOIOTIOUIOL N AP

Table of Contents:

[mod_perl internals: mod_perl-specific functionality flooy 31
3 [mod_perl internals. mod_perl-specific functionality rowI - 1
31 | escription 32

32 Pallntepréterd3

33 e X

3.4 fMaintai ner§ - 151

35 uthor§ .. - 5]

|M PMs Multi- -Processing Model Modulg e 14
| MPMs - Multi-Processing Model Modules| 37
4.1 - -

4.2 . 8

43 TheWorke MPMl. 38

4.4 ThePrdotk MPM]. 38

45 fMaintai ner§ . 1

4.6 uthor§ .. e <
|mod Eerl Codlnﬁ Stile GU|d§ i
5 | mod Eerl Cod|n§ Style Gui de| 40
51 | I‘IE’[IOI’] . 41

5.2 |C0d| nﬁ Sti e GU|d§ . 41

5.3 | unction and Variable Preflx&s Conventl oﬂ 43

5.4 [Coding Guidelineg 44
541 |GIobaI Vanab@ 44

542 |M oduled . . 44

5.4.3 [Methody . 44

544 nhentanc§ . 44

545 @mbol tablg. . 45

5.4.6 Useof $_inloopq . 45

5.5 [Maintainerd - 46

5.6 [Authord . . 46
[Porting Apache:: XSModuI%from mod Qerl 10t02§] 60
6 [Porting Apache:: XS Modules from mod perl 1.0 to 2. OI 47
6.1 | escription| 48

6.2 |Port| nﬁ Makeflle PL| 48

6.3 [Porting XS Codd 48

6.4 [Thread Saiety _ L 8
65Pell

6.6 [maketest Suitd 4

6.7 [Apache C Code SpecificNoted 49

6.7. I i i il ti .. 49

6.8 fMaintai ner§ - 0

6.9 uthor§ .. S - 0

|M easureszeof{} of Perl’ sC Structurg .
7 | Measureszeof) of Perl’sC Structur%| .
7.1 [Description U -

7.2 | Perl Structur§ e - 4
73BEEALSD=

7.4 - =

ii 29 Jan 2004

Getting Help with mod_perl 2.0 Core Development Table of Contents:

7.5 |Authorg . 1o
[Which Codlng Technlguels Faster| S - o]
8 | Which Coding TechniqueisFastex|. 56
8.1 Descri@ti oﬂ N - Y £
8.2 packticksvsX§ 57
8.3 [sv_catpvnvs. fprint] 58
84fMaintainer§ - ¢ |
85 [Authord . . -
[Porting Apache:: XSModuI&from mod Qerl 10t02§] 60
9 [Porting Apache:: XS Modules from mod perl 1.0 to 2. OI 60
9.1 | escription| 61
9.2 |Port| nﬁ Makefl Ie PL| oy

93 PoringXsCodd el
9.4 [Thread Safely _ et
o5Pell L8
9.6 [maketest Suitd 8
9.7 [Apache C Code SpecificNoted 82
9.7. I i i il ti . . 62
98}Maintainer§ e -
9.9 uthor§ 63
|Debu§§|n§ mod Eerl Per| Interna@ 64
0 [Debugging mod perl Perl Internals 64
10.1 T -
10.2 fMaintainerQ e &
10.3 | uthor§ . e o 19)
Debugging mod perl C Internal e o]
1 Debum mod perl CInternds| 66
111 Description et
11.2 |Debu§ not@ . N - Y4
11.21 |Sett| ng gdb break90| nts Wlth mod Qerl bth as Dg] N Y4
11.2.2 [Starting the Server Fast under gdb 68
11.2.3 [Precooked gdb Startup Scriptd. 17
11.3 Enalyzi n§ Dum@ed Core Filg ' o}
11.3.1 [Getting R toDebug1
11.3.2 [Creati nﬁ a Faultz Pack@ﬂ e 44
11.3.3 [Getting thecoreFileDumped 19
11.3.4 [AndyzingthecoreFild 81
11.35 [Obtaining core Filesunder Solarid .~ 83
11.35.1 83
11.35.2 Manudly ObtainingcoreDumpd 83

11.4 |Debugg| ng Threaded MPM§g e =<
11.4.1 [Useful Tnformation from de Manual| e =<
11.4.2 I|b§thr@ 8
11.5 |Def|n| n§ and Us n§ Custom ﬁdb Macrog e =<
11.6 [Expanding C Macrod . . - >
11. 6 1 [Expanding C Macroswithmake] 8
11.6.2 IExpandlng C Macros with gdb | - &

29 Jan 2004 iii

Table of Contents:

etting H

11.7 fMaintainerQ .
11.8 [Authord.
|G § elﬁ with mod Eerl 2.0Core Develoﬁment| .

2 | Getting Help with mod perl 2.0 Core Devel opment

12.1 Descri@ti oﬂ .

12.2 [mod perl

12.2.1]
12.2.2 |
12.2.3]
12.2.4 |

Submitting Paiched

mod perl 2.0 Core Development Discussion Li

mod perl 2.0 Core Development CV'S Commits

7]

AEacheT@] .

12.3 [Apachd .

12.31]

hitpd2.0 . .

12.3.2 [Apache Portable Runtime (APR)]
1233Peld

12.4 MoreHelg .

12.5 [Maintainerg .

12.6 [Authord .

87
87
88
88
89
89
89
89
89
90
90
90
91
91
92
92
92

29 Jan 2004

	1€€mod_perl 2.0 Source Code Explained
	1.1€€Description
	1.2€€Project's Filesystem Layout
	1.3€€Directory src
	1.3.1€€Directory src/modules/perl/

	1.4€€Directory xs/
	1.4.1€€xs/Apache, xs/APR and xs/ModPerl
	1.4.2€€xs/maps
	1.4.2.1€€Functions Mapping
	1.4.2.2€€Structures Mapping
	1.4.2.3€€Types Mapping
	1.4.2.4€€Modifying Maps

	1.4.3€€XS generation process

	1.5€€Gluing Existing APIs
	1.6€€Adding Wrappers for existing APIs and Creating New APIs
	1.6.1€€Functions Returning a Single Value †or Nothing‡
	1.6.2€€Functions Returning Variable Number of Values
	1.6.3€€Wrappers Functions for C Macros

	1.7€€Wrappers for modperl_, apr_ and ap_ APIs
	1.8€€MP_INLINE vs C Macros vs Normal Functions
	1.9€€Adding New Interfaces
	1.9.1€€Adding Typemaps for new C Data Types
	1.9.2€€Importing Constants and Enums into Perl API

	1.10€€Maintainers
	1.11€€Authors

	2€€mod_perl internals: Apache 2.0 Integration
	2.1€€Description
	2.2€€Startup
	2.2.1€€The Link Between mod_perl and httpd

	2.3€€Configuration Tree Building
	2.3.1€€Enabling the mod_perl Module and Installing its Callbacks

	2.4€€The pre_config Phase
	2.4.1€€Configuration Tree Processing
	2.4.2€€Virtual Hosts Fixup
	2.4.3€€The open_logs Phase
	2.4.4€€The post_config Phase

	2.5€€Request Processing
	2.6€€Shutdown
	2.7€€Maintainers
	2.8€€Authors

	3€€mod_perl internals: mod_perl-specific functionality flow
	3.1€€Description
	3.2€€Perl Interpreters
	3.3€€Filters
	3.4€€Maintainers
	3.5€€Authors

	4€€MPMs - Multi-Processing Model Modules
	4.1€€Description
	4.2€€MPMs Overview
	4.3€€The Worker MPM
	4.4€€The Prefork MPM
	4.5€€Maintainers
	4.6€€Authors

	5€€mod_perl Coding Style Guide
	5.1€€Description
	5.2€€Coding Style Guide
	5.3€€Function and Variable Prefixes Convention
	5.4€€Coding Guidelines
	5.4.1€€Global Variables
	5.4.2€€Modules
	5.4.3€€Methods
	5.4.4€€Inheritance
	5.4.5€€Symbol tables
	5.4.6€€Use of $_ in loops

	5.5€€Maintainers
	5.6€€Authors

	6€€Porting Apache:: XS Modules from mod_perl 1.0 to 2.0
	6.1€€Description
	6.2€€Porting Makefile.PL
	6.3€€Porting XS Code
	6.4€€Thread Safety
	6.5€€PerlIO
	6.6€€'make test' Suite
	6.7€€Apache C Code Specific Notes
	6.7.1€€ap_soft_timeout†‡, ap_reset_timeout†‡, ap_hard_timeout†‡ and ap_kill_timeout†‡

	6.8€€Maintainers
	6.9€€Authors

	7€€Measure sizeof†‡ of Perl's C Structures
	7.1€€Description
	7.2€€Perl Structures
	7.3€€SEE ALSO
	7.4€€Maintainers
	7.5€€Authors

	8€€Which Coding Technique is Faster
	8.1€€Description
	8.2€€backticks vs XS
	8.3€€sv_catpvn vs. fprintf
	8.4€€Maintainers
	8.5€€Authors

	9€€Porting Apache:: XS Modules from mod_perl 1.0 to 2.0
	9.1€€Description
	9.2€€Porting Makefile.PL
	9.3€€Porting XS Code
	9.4€€Thread Safety
	9.5€€PerlIO
	9.6€€'make test' Suite
	9.7€€Apache C Code Specific Notes
	9.7.1€€ap_soft_timeout†‡, ap_reset_timeout†‡, ap_hard_timeout†‡ and ap_kill_timeout†‡

	9.8€€Maintainers
	9.9€€Authors

	10€€Debugging mod_perl Perl Internals
	10.1€€Description
	10.2€€Maintainers
	10.3€€Authors

	11€€Debugging mod_perl C Internals
	11.1€€Description
	11.2€€Debug notes
	11.2.1€€Setting gdb breakpoints with mod_perl built as DSO
	11.2.2€€Starting the Server Fast under gdb
	11.2.3€€Precooked gdb Startup Scripts

	11.3€€Analyzing Dumped Core Files
	11.3.1€€Getting Ready to Debug
	11.3.2€€Creating a Faulty Package
	11.3.3€€Getting the core File Dumped
	11.3.4€€Analyzing the core File
	11.3.5€€Obtaining core Files under Solaris
	11.3.5.1€€Configuring Solaris to Allow core Dumps
	11.3.5.2€€Manually Obtaining core Dumps

	11.4€€Debugging Threaded MPMs
	11.4.1€€Useful Information from gdb Manual
	11.4.2€€libpthread

	11.5€€Defining and Using Custom gdb Macros
	11.6€€Expanding C Macros
	11.6.1€€Expanding C Macros with make
	11.6.2€€Expanding C Macros with gdb

	11.7€€Maintainers
	11.8€€Authors

	12€€Getting Help with mod_perl 2.0 Core Development
	12.1€€Description
	12.2€€mod_perl
	12.2.1€€Submitting Patches
	12.2.2€€mod_perl 2.0 Core Development Discussion List
	12.2.3€€mod_perl 2.0 Core Development CVS Commits List
	12.2.4€€Apache-Test

	12.3€€Apache
	12.3.1€€httpd 2.0
	12.3.2€€Apache Portable Runtime †APR‡
	12.3.3€€Perl 5

	12.4€€More Help
	12.5€€Maintainers
	12.6€€Authors

