

1 Input and Output Filters

129 Jan 2004

1 Input and Output FiltersInput and Output Filters

1.1 Description
This chapter discusses mod_perl’s input and output filter handlers.

If all you need is to lookup the filtering API proceed directly to the Apache::Filter and
Apache::FilterRec manpages.

1.2 Your First Filter
You certainly already know how filters work. That’s because you encounter filters so often in real life. If
you are unfortunate to live in smog-filled cities like Saigon or Bangkok you are probably used to wear a
dust filter mask:

If you are smoker, chances are that you smoke cigarettes with filters:

If you are a coffee gourmand, you have certainly tried a filter coffee:

29 Jan 20042

1.1 Description

The shower that you use, may have a water filter:

When the sun is too bright, you protect your eyes by wearing sun goggles with UV filter:

If are a photographer you can’t go a step without using filter lenses:

329 Jan 2004

1.2 Your First FilterInput and Output Filters

If you love music, you might be unaware of it, but your super-modern audio system is literally loaded with
various electronic filters:

There are many more places in our lives where filters are used. The purpose of all filters is to apply some
transformation to what’s coming into the filter, letting something different out of the filter. Certainly in
some cases it’s possible to modify the source itself, but that makes things unflexible, and but most of the
time we have no control over the source. The advantage of using filters to modify something is that they
can be replaced when requirements change Filters also can be stacked, which allows us to make each filter
do simple transformations. For example by combining several different filters, we can apply multiple
transformations. In certain situations combining several filters of the same kind let’s us achieve a better
quality output.

The mod_perl filters are not any different, they receive some data, modify it and send it out. In the case of
filtering the output of the response handler, we could certainly change the response handler’s logic to do
something different, since we control the response handler. But this may make the code unnecessary
complex. If we can apply transformations to the response handler’s output, it certainly gives us more flexi-
bility and simplifies things. For example if a response needs to be compressed before sent out, it’d be very
inconvenient and inefficient to code in the response handler itself. Using a filter for that purpose is a
perfect solution. Similarly, in certain cases, using an input filter to transform the incoming request data is
the most wise solution. Think of the same example of having the incoming data coming compressed.

Just like with real life filters, you can pipe several filters to modify each other’s output. You can also
customize a selection of different filters at run time.

Without much further ado, let’s write a simple but useful obfuscation filter for our HTML documents.

We are going to use a very simple obfuscation -- turn an HTML document into a one liner, which will
make it harder to read its source without a special processing. To accomplish that we are going to remove
characters \012 (\n) and \015 (\r), which depending on the platform alone or as a combination represent
the end of line and a carriage return.

And here is the filter handler code:

 #file:MyApache/FilterObfuscate.pm
 #--------------------------------
 package MyApache::FilterObfuscate;

 use strict;
 use warnings;

29 Jan 20044

1.2 Your First Filter

 use Apache::Filter ();
 use Apache::RequestRec ();
 use APR::Table ();

 use Apache::Const -compile => qw(OK);

 use constant BUFF_LEN => 1024;

 sub handler {
 my $f = shift;

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer =~ s/[\r\n]//g;
 $f->print($buffer);
 }

 return Apache::OK;
 }
 1;

Next we configure Apache to apply the MyApache::FilterObfuscate filter to all requests that get
mapped to files with an ".html" extension:

 <Files ~ "\.html">
 PerlOutputFilterHandler MyApache::FilterObfuscate
 </Files>

Filter handlers are similar to HTTP handlers, they are expected to return Apache::OK or
Apache::DECLINED, but instead of receiving $r (the request object) as the first argument, they receive
$f (the filter object).

The filter starts by unsetting of the Content-Length response header, because it modifies the length of
the response body (shrinks it). If the response handler had set the Content-Length header and the
filter hasn’t unset it, the client may have problems receiving the response since it’d expect more data than
it was sent.

The core of this filter is a read-modify-print expression in a while loop. The logic is very simple: read at
most BUFF_LEN characters of data into $buffer, apply the regex to remove any occurences of \n and
\r in it, and print the resulting data out. The input data may come from a response handler, or from an
upstream filter. The output data goes to the next filter in the output chain. Even though in this example we
haven’t configured any more filters, internally Apache by itself uses several core filters to manipulate the
data and send it out to the client.

As we are going to explain in great detail in the next sections, the same filter may be called many times
during a single request, every time receiving a chunk of data. For example if the POSTed request data is
64k long, an input filter could be invoked 8 times, each time receiving 8k of data. The same may happen
during response phase, where an upstream filter may split 64k output in 8 8k chunks. The while loop that

529 Jan 2004

1.2 Your First FilterInput and Output Filters

we just saw is going to read each of these 8k in 8 calls, since it requests 1k on every read() call.

Since it’s enough to unset the Content-Length header when the filter is called the first time, we need
to have some flag telling us whether we have done the job. The method ctx() provides this functional-
ity:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

the unset() call will be made only on the first filter call for each request. Of course you can store any
kind of a Perl data structure in $f->ctx and retrieve it later in subsequent filter invocations of the same
request. We will show plenty of examples using this method in the following sections.

Of course the MyApache::FilterObfuscate filter logic should take into account situations where
removing new line characters will break the correct rendering, as is the case if there are multi-line
<pre>...</pre> entries, but since it escalates the complexity of the filter, we will disregard this require-
ment for now.

A positive side effect of this obfuscation algorithm is in shortening the amount of the data sent to the
client. If you want to look at the production ready implementation, which takes into account the HTML
markup specifics, the Apache::Clean module, available from CPAN, does just that.

mod_perl I/O filtering follows the Perl’s principle of making simple things easy and diffi cult things possi-
ble. You have seen that it’s trivial to write simple filters. As you read through this tutorial you will see that
much more diffi cult things are possible, even though a more elaborated code will be needed.

1.3 I/O Filtering Concepts
Before introducing the APIs, mod_perl provides for Apache Filtering, there are several important concepts
to understand.

1.3.1 Two Methods for Manipulating Data

Apache 2.0 considers all incoming and outgoing data as chunks of information, disregarding their kind and
source or storage methods. These data chunks are stored in buckets, which form bucket brigades. Input and
output filters massage the data in bucket brigades. Response and protocol handlers also receive and send
data using bucket brigades, though in most cases this is hidden behind wrappers, such as read() and
print().

mod_perl 2.0 filters can directly manipulate the bucket brigades or use the simplified streaming interface
where the filter object acts similar to a filehandle, which can be read from and printed to.

Even though you don’t use bucket brigades directly when you use the streaming filter interface (which
works on bucket brigades behind the scenes), it’s still important to understand bucket brigades. For
example you need to know that an output filter will be invoked as many times as the number of bucket
brigades sent from an upstream filter or a content handler. Or you need to know that the end of stream

29 Jan 20046

1.3 I/O Filtering Concepts

indicator (EOS) is sometimes sent in a separate bucket brigade, so it shouldn’t be a surprise that the filter
was invoked even though no real data went through. As we delve into the filter details you will see that
understanding bucket brigades, will help to understand how filters work.

Moreover you will need to understand bucket brigades if you plan to implement protocol modules.

1.3.2 HTTP Request Versus Connection Filters

HTTP request filters are applied when Apache serves an HTTP request.

HTTP request input filters get invoked on the body of the HTTP request only if the body is consumed by
the content handler. HTTP request headers are not passed through the HTTP request input filters.

HTTP response output filters get invoked on the body of the HTTP response if the content handler has
generated one. HTTP response headers are not passed through the HTTP response output filters.

Connection level filters are applied at the connection level.

A connection may be configured to serve one or more HTTP requests, or handle other protocols. Connec-
tion filters see all the incoming and outgoing data. If an HTTP request is served, connection filters can
modify the HTTP headers and the body of request and response. If a different protocol is served over
connection (e.g. IMAP), the data could have a completely different pattern, than the HTTP protocol
(headers + body).

Apache supports several other filter types, which mod_perl 2.0 may support in the future.

1.3.3 Multiple Invocations of Filter Handlers

Unlike other Apache handlers, filter handlers may get invoked more than once during the same request.
Filters get invoked as many times as the number of bucket brigades sent from an upstream filter or a
content provider.

For example if a content generation handler sends a string, and then forces a flush, following by more
data:

 # assuming buffered STDOUT ($|==0)
 $r->print("foo");
 $r->rflush;
 $r->print("bar");

Apache will generate one bucket brigade with two buckets (there are several types of buckets which
contain data, one of them is transient):

 bucket type data

 1st transient foo
 2nd flush

729 Jan 2004

1.3.2 HTTP Request Versus Connection FiltersInput and Output Filters

and send it to the filter chain. Then assuming that no more data was sent after print("bar"), it will
create a last bucket brigade containing data:

 bucket type data

 1st transient bar

and send it to the filter chain. Finally it’ll send yet another bucket brigade with the EOS bucket indicating
that there will be no more data sent:

 bucket type data

 1st eos

Notice that the EOS bucket may come attached to the last bucket brigade with data, instead of coming in
its its own bucket brigade. Filters should never make an assumption that the EOS bucket is arriving alone
in a bucket brigade. Therefore the first output filter will be invoked two or three times (three times if EOS
is coming in its own brigade), depending on the number of bucket brigades sent by the response handler.

A user may install an upstream filter, and that filter may decide to insert extra bucket brigades or collect
all the data in all bucket brigades passing through it and send it all down in one brigade. What’s important
to remember is when coding a filter, one should never assume that the filter is always going to be invoked
once, or a fixed number of times. Neither one can make assumptions on the way the data is going to come
in. Therefore a typical filter handler may need to split its logic in three parts.

Jumping ahead we will show some pseudo-code that represents all three parts. This is how a typical
stream-oriented filter handler looks like:

 sub handler {
 my $f = shift;

 # runs on first invocation
 unless ($f->ctx) {
 init($f);
 $f->ctx(1);
 }

 # runs on all invocations
 process($f);

 # runs on the last invocation
 if ($f->seen_eos) {
 finalize($f);
 }

 return Apache::OK;
 }
 sub init { ... }
 sub process { ... }
 sub finalize { ... }

29 Jan 20048

1.3.3 Multiple Invocations of Filter Handlers

The following diagram depicts all three parts:

Let’s explain each part using this pseudo-filter.

1. Initialization

During the initialization, the filter runs all the code that should be performed only once across multi-
ple invocations of the filter (this is during a single request). The filter context is used to accomplish
that task. For each new request the filter context is created before the filter is called for the first time
and its destroyed at the end of the request.

 unless ($f->ctx) {
 init($f);
 $f->ctx(1);
 }

When the filter is invoked for the first time $f->ctx returns undef and the custom function init()
is called. This function could, for example, retrieve some configuration data, set in httpd.conf or
initialize some datastructure to its default value.

To make sure that init() won’t be called on the following invocations, we must set the filter context
before the first invocation is completed:

 $f->ctx(1);

929 Jan 2004

1.3.3 Multiple Invocations of Filter HandlersInput and Output Filters

In practice, the context is not just served as a flag, but used to store real data. For example the follow-
ing filter handler counts the number of times it was invoked during a single request:

 sub handler {
 my $f = shift;

 my $ctx = $f->ctx;
 $ctx->{invoked}++;
 $f->ctx($ctx);
 warn "filter was invoked $ctx->{invoked} times\n";

 return Apache::DECLINED;
 }

Since this filter handler doesn’t consume the data from the upstream filter, it’s important that this
handler returns Apache::DECLINED, in which case mod_perl passes the current bucket brigade to
the next filter. If this handler returns Apache::OK, the data will be simply lost. And if that data
included a special EOS token, this may wreck havoc.

Unsetting the Content-Length header for filters that modify the response body length is a good
example of the code to be used in the initialization phase:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

We will see more of initialization examples later in this chapter.

2. Processing

The next part:

 process($f);

is unconditionally invoked on every filter invocation. That’s where the incoming data is read, modi-
fied and sent out to the next filter in the filter chain. Here is an example that lowers the case of the
characters passing through:

 use constant READ_SIZE => 1024;
 sub process {
 my $f = shift;
 while ($f->read(my $data, READ_SIZE)) {
 $f->print(lc $data);
 }
 }

Here the filter operates only on a single bucket brigade. Since it manipulates every character sepa-
rately the logic is really simple.

29 Jan 200410

1.3.3 Multiple Invocations of Filter Handlers

In more complicated filters the filters may need to buffer data first before the transformation can be
applied. For example if the filter operates on html tokens (e.g., ’’), it’s possible
that one brigade will include the beginning of the token (’<img ’) and the remainder of the token
(’src="me.jpg">’) will come in the next bucket brigade (on the next filter invocation). In certain cases
it may involve more than two bucket brigades to get the whole token. In such a case the filter will have to
store the remainder of unprocessed data in the filter context and then reuse it on the next invocation.
Another good example is a filter that performs data compression (compression is usually effective
only when applied to relatively big chunks of data), so if a single bucket brigade doesn’t contain
enough data, the filter may need to buffer the data in the filter context till it collects enough of it.

We will see the implementation examples in this chapter.

3. Finalization

Finally, some filters need to know when they are invoked for the last time, in order to perform
various cleanups and/or flush any remaining data. As mentioned earlier, Apache indicates this event
by a special end of stream "token", represented by a bucket of type EOS. If the filter is using the
streaming interface, rather than manipulating the bucket brigades directly, and it was calling read() in
a while loop, it can check whether this is the last time it’s invoked, using the $f->seen_eos
method:

 if ($f->seen_eos) {
 finalize($f);
 }

This check should be done at the end of the filter handler, because sometimes the EOS "token" comes
attached to the tail of data (the last invocation gets both the data and EOS) and sometimes it comes all
alone (the last invocation gets only EOS). So if this test is performed at the beginning of the handler
and the EOS bucket was sent in together with the data, the EOS event may be missed and filter won’t
function properly.

Jumping ahead, filters, directly manipulating bucket brigades, have to look for a bucket whose type is
EOS to accomplish this. We will see examples later in the chapter.

Some filters may need to deploy all three parts of the described logic, others will need to do only initial-
ization and processing, or processing and finalization, while the simplest filters might perform only the
normal processing (as we saw in the example of the filter handler that lowers the case of the characters
going through it).

1.3.4 Blocking Calls

All filters (excluding the core filter that reads from the network and the core filter that writes to it) block at
least once when invoked. Depending on whether this is an input or an output filter, the blocking happens
when the bucket brigade is requested from the upstream filter or when the bucket brigade is passed to the
downstream filter.

1129 Jan 2004

1.3.4 Blocking CallsInput and Output Filters

First of all, the input and output filters differ in the ways they acquire the bucket brigades (which includes
the data that they filter). Even though when a streaming API is used the difference can’t be seen, it’s
important to understand how things work underneath. Therefore we are going to show examples of trans-
parent filters, which pass data through them unmodified. Instead of reading the data in and printing it out
the bucket brigades are now passed as is.

Here is a code for a transparent input filter:

 #file:MyApache/FilterTransparent.pm (first part)
 #---
 package MyApache::FilterTransparent;

 use Apache::Const -compile => qw(OK);
 use APR::Const -compile => ’:common’;

 sub in {
 my ($f, $bb, $mode, $block, $readbytes) = @_;

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 return Apache::OK;
 }

When the input filter in() is invoked, it first asks the upstream filter for the next bucket brigade (using the
get_brigade() call). That upstream filter is in turn going to ask for the bucket brigade from the next
upstream filter in chain, etc., till the last filter (called core_in), that reads from the network is reached.
The core_in filter reads, using a socket, a portion of the incoming data from the network, processes it
and sends it to its downstream filter, which will process the data and send it to its downstream filter, etc.,
till it reaches the very first filter who has asked for the data. (In reality some other handler triggers the
request for the bucket brigade, e.g., an HTTP response handler, or a protocol module, but for our discus-
sion it’s good enough to assume that it’s the first filter that issues the get_brigade() call.)

The following diagram depicts a typical input filters chain data flow in addition to the program control
flow.

29 Jan 200412

1.3.4 Blocking Calls

The black- and white-headed arrows show when the control is switched from one filter to another. In addi-
tion the black-headed arrows show the actual data flow. The diagram includes some pseudo-code, both for
in Perl for the mod_perl filters and in C for the internal Apache filters. You don’t have to understand C to
understand this diagram. What’s important to understand is that when input filters are invoked they first
call each other via the get_brigade() call and then block (notice the brick wall on the diagram),
waiting for the call to return. When this call returns all upstream filters have already completed finishing
their filtering task.

As mentioned earlier, the streaming interface hides these details, however the first $f->read() call will
block, as underneath it performs the get_brigade() call.

The diagram shows a part of the actual input filter chain for an HTTP request, the ... shows that there
are more filters in between the mod_perl filter and http_in.

Now let’s look at what happens in the output filters chain. Here the first filter acquires the bucket brigades
containing the response data, from the content handler (or another protocol handler if we aren’t talking
HTTP), it then may apply some modification and pass the data to the next filter (using the
pass_brigade() call), which in turn applies its modifications and sends the bucket brigade to the next
filter, etc., all the way down to the last filter (called core) which writes the data to the network, via the
socket the client is listening to. Even though the output filters don’t have to wait to acquire the bucket
brigade (since the upstream filter passes it to them as an argument), they still block in a similar fashion to
input filters, since they have to wait for the pass_brigade() call to return.

Here is an example of a transparent output filter:

1329 Jan 2004

1.3.4 Blocking CallsInput and Output Filters

 #file:MyApache/FilterTransparent.pm (continued)
 #---
 sub out {
 my ($f, $bb) = @_;

 my $rv = $f->next->pass_brigade($bb);
 return $rv unless $rv == APR::SUCCESS;

 return Apache::OK;
 }
 1;

The out() filter passes $bb to the downstream filter unmodified and if you add debug prints before and
after the pass_brigade() call and configure the same filter twice, the debug print will show the block-
ing call.

The following diagram depicts a typical output filters chain data flow in addition to the program control
flow:

Similar to the input filters chain diagram, the arrows show the program control flow and in addition the
black-headed arrows show the data flow. Again, it uses a Perl pseudo-code for the mod_perl filter and C
pseudo-code for the Apache filters, similarly the brick walls represent the waiting. And again, the diagram
shows a part of the real HTTP response filters chain, where ... stands for the omitted filters.

1.4 mod_perl Filters Declaration and Configuration
Now let’s see how mod_perl filters are declared and configured.

29 Jan 200414

1.4 mod_perl Filters Declaration and Configuration

1.4.1 Filter Priority Types

When Apache filters are configured they are inserted into the filters chain according to their priority/type.
In most cases when using one or two filters things will just work, however if you find that the order of
filter invocation is wrong, the filter priority type should be consulted. Unfortunately this information is
available only by consulting the source code, unless it’s documented in the module man pages. Numerical
definitions of priority types, such as AP_FTYPE_CONTENT_SET, AP_FTYPE_RESOURCE, can be
found in include/util_filter.h.

As of this writing Apache comes with two core filters: DEFLATE and INCLUDES. For example in the
following configuration:

 SetOutputFilter DEFLATE
 SetOutputFilter INCLUDES

the DEFLATE filter will be inserted in the filters chain after the INCLUDES filter, even though it was
configured before it. This is because the DEFLATE filter is of type AP_FTYPE_CONTENT_SET (20),
whereas the INCLUDES filter is of type AP_FTYPE_RESOURCE (10).

As of this writing mod_perl provides two kind of filters with fixed priority type:

 Handler Priority Value

 FilterRequestHandler AP_FTYPE_RESOURCE 10
 FilterConnectionHandler AP_FTYPE_PROTOCOL 30

Therefore FilterRequestHandler filters (10) will be always invoked before the DEFLATE filter
(20), whereas FilterConnectionHandler filters (30) after it. The INCLUDES filter (10) has the
same priority as FilterRequestHandler filters (10), and therefore it’ll be inserted according to the
configuration order, when PerlSetOutputFilter or PerlSetInputFilter is used.

1.4.2 PerlInputFilterHandler

The PerlInputFilterHandler directive registers a filter, and inserts it into the relevant input filters
chain.

This handler is of type VOID.

The handler’s configuration scope is DIR.

The following sections include several examples that use the PerlInputFilterHandler handler.

1.4.3 PerlOutputFilterHandler

The PerlOutputFilterHandler directive registers a filter, and inserts it into the relevant output
filters chain.

1529 Jan 2004

1.4.1 Filter Priority TypesInput and Output Filters

This handler is of type VOID.

The handler’s configuration scope is DIR .

The following sections include several examples that use the PerlOut put Fil ter Handler handler.

1.4.4 PerlSetInputFilter

The SetInput Fil ter directive, documented at
http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter sets the filter or filters which will process
client requests and POST input when they are received by the server (in addition to any filters configured
earlier).

To mix mod_perl and non-mod_perl input filters of the same priority nothing special should be done. For
example if we have an imaginary Apache filter FILTER_FOO and mod_perl filter
MyApache::Filter In put Foo , this configuration:

 SetInputFilter FILTER_FOO
 PerlInputFilterHandler MyApache::FilterInputFoo

will add both filters, however the order of their invocation might be not the one that you’ve expected. To
make the invocation order the same as the insertion order replace SetInput Fil ter with PerlSet -
Input Fil ter , like so:

 PerlSetInputFilter FILTER_FOO
 PerlInputFilterHandler MyApache::FilterInputFoo

now FILTER_FOO filter will be always executed before the MyApache::Filter In put Foo filter,
since it was configured before MyApache::Filter In put Foo (i.e., it’ll apply its transformations on
the incoming data last). Here is a diagram input filters chain and the data flow from the network to the
response handler for the presented configuration:

 response handler
 /\
 ||
 FILTER_FOO
 /\
 ||
 MyApache::FilterInputFoo
 /\
 ||
 core input filters
 /\
 ||
 network

As explained in the section Filter Priority Types this directive won’t affect filters of different priority. For
example assuming that MyApache::Filter In put Foo is a Filter RequestHandler filter, the
configurations:

29 Jan 200416

1.4.4 PerlSetInputFilter

http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter

 PerlInputFilterHandler MyApache::FilterInputFoo
 PerlSetInputFilter DEFLATE

and

 PerlSetInputFilter DEFLATE
 PerlInputFilterHandler MyApache::FilterInputFoo

are equivalent, because mod_deflate’s DEFLATE filter has a higher priority than MyApache::Filter -
In put Foo , thefore it’ll always be inserted into the filter chain after MyApache::Filter In put Foo ,
(i.e. the DEFLATE filter will apply its transformations on the incoming data first). Here is a diagram input
filters chain and the data flow from the network to the response handler for the presented configuration:

 response handler
 /\
 ||
 MyApache::FilterInputFoo
 /\
 ||
 DEFLATE
 /\
 ||
 core input filters
 /\
 ||
 network

SetInput Fil ter ’s ; semantics are supported as well. For example, in the following configuration:

 PerlInputFilterHandler MyApache::FilterInputFoo
 PerlSetInputFilter FILTER_FOO;FILTER_BAR

MyApache::Filter Out put Foo will be executed first, followed by FILTER_FOO and finally by
FILTER_BAR (again, assuming that all three filters have the same priority).

The PerlSet Input Fil ter directives’s configuration scope is DIR .

1.4.5 PerlSetOutputFilter

The SetOut put Fil ter directive, documented at
http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter sets the filters which will process
responses from the server before they are sent to the client (in addition to any filters configured earlier).

To mix mod_perl and non-mod_perl output filters of the same priority nothing special should be done.
This configuration:

 SetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

will add all two filters to the filter chain, however the order of their invocation might be not the one that
you’ve expected. To preserve the insertion order replace SetOut put Fil ter with PerlSetOut put -
Fil ter , like so:

1729 Jan 2004

1.4.5 PerlSetOutputFilterInput and Output Filters

http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter

 PerlSetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

now mod_include’s INCLUDES filter will be always executed before the MyApache::FilterOut-
putFoo filter. Here is a diagram input filters chain and the data flow from the response handler to the
network for the presented configuration:

 response handler
 ||
 \/
 INCLUDES
 ||
 \/
 MyApache::FilterOutputFoo
 ||
 \/
 core output filters
 ||
 \/
 network

SetOutputFilter’s ; semantics are supported as well. For example, in the following configuration:

 PerlOutputFilterHandler MyApache::FilterOutputFoo
 PerlSetOutputFilter INCLUDES;FILTER_FOO

MyApache::FilterOutputFoo will be executed first, followed by INCLUDES and finally by
FILTER_FOO (again, assuming that all three filters have the same priority).

Just as explained in the PerlSetInputFilter section, if filters have different priorities, the insertion
order might be different. For example in the following configuration:

 PerlSetOutputFilter DEFLATE
 PerlSetOutputFilter INCLUDES
 PerlOutputFilterHandler MyApache::FilterOutputFoo

mod_include’s INCLUDES filter will be always executed before the MyApache::FilterOutputFoo
filter. The latter will be followed by mod_deflate’s DEFLATE filter, even though it was configured before
the other two filters. This is because it has a higher priority. And the corresponding diagram looks like so:

 response handler
 ||
 \/
 INCLUDES
 ||
 \/
 MyApache::FilterOutputFoo
 ||
 \/
 DEFLATE
 ||
 \/

29 Jan 200418

1.4.5 PerlSetOutputFilter

 core output filters
 ||
 \/
 network

The PerlSetOutputFilter directives’s configuration scope is DIR.

1.4.6 HTTP Request vs. Connection Filters

mod_perl 2.0 supports connection and HTTP request filtering. mod_perl filter handlers specify the type of
the filter using the method attributes.

HTTP request filter handlers are declared using the FilterRequestHandler attribute. Consider the
following request input and output filters skeleton:

 package MyApache::FilterRequestFoo;
 use base qw(Apache::Filter);

 sub input : FilterRequestHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 #...
 }

 sub output : FilterRequestHandler {
 my($f, $bb) = @_;
 #...
 }

 1;

If the attribute is not specified, the default FilterRequestHandler attribute is assumed. Filters spec-
ifying subroutine attributes must subclass Apache::Filter, others only need to:

 use Apache::Filter ();

The request filters are usually configured in the <Location> or equivalent sections:

 PerlModule MyApache::FilterRequestFoo
 PerlModule MyApache::NiceResponse
 <Location /filter_foo>
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 PerlInputFilterHandler MyApache::FilterRequestFoo::input
 PerlOutputFilterHandler MyApache::FilterRequestFoo::output
 </Location>

Now we have the request input and output filters configured.

The connection filter handler uses the FilterConnectionHandler attribute. Here is a similar
example for the connection input and output filters.

1929 Jan 2004

1.4.6 HTTP Request vs. Connection FiltersInput and Output Filters

 package MyApache::FilterConnectionBar;
 use base qw(Apache::Filter);

 sub input : FilterConnectionHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 #...
 }

 sub output : FilterConnectionHandler {
 my($f, $bb) = @_;
 #...
 }

 1;

This time the configuration must be done outside the <Location> or equivalent sections, usually within
the <VirtualHost> or the global server configuration:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlModule MyApache::FilterConnectionBar
 PerlModule MyApache::NiceResponse

 PerlInputFilterHandler MyApache::FilterConnectionBar::input
 PerlOutputFilterHandler MyApache::FilterConnectionBar::output
 <Location />
 SetHandler modperl
 PerlResponseHandler MyApache::NiceResponse
 </Location>

 </VirtualHost>

This accomplishes the configuration of the connection input and output filters.

Notice that for HTTP requests the only difference between connection filters and request filters is that the
former see everything: the headers and the body, whereas the latter see only the body.

mod_perl provides two interfaces to filtering: a direct bucket brigades manipulation interface and a
simpler, stream-oriented interface. The examples in the following sections will help you to understand the
difference between the two interfaces.

1.4.7 Filter Initialization Phase

Like in any cool application, there is a hidden door, that let’s you do cool things. mod_perl is not an
exception.

where you can plug yet another callback. This init callback runs immediately after the filter handler is
inserted into the filter chain, before it was invoked for the first time. Here is a skeleton of an init handler:

29 Jan 200420

1.4.7 Filter Initialization Phase

 sub init : FilterInitHandler {
 my $f = shift;
 #...
 return Apache::OK;
 }

The attribute FilterInitHandler marks the Perl function suitable to be used as a filter initialization
callback, which is called immediately after a filter is inserted to the filter chain and before it’s actually
called.

For example you may decide to dynamically remove a filter before it had a chance to run, if some condi-
tion is true:

 sub init : FilterInitHandler {
 my $f = shift;
 $f->remove() if should_remove_filter();
 return Apache::OK;
 }

Not all Apache::Filter methods can be used in the init handler, because it’s not a filter. Hence you
can use methods that operate on the filter itself, such as remove() and ctx() or retrieve request infor-
mation, such as r() and c(). But not methods that operate on data, such as read() and print().

In order to hook an init filter handler, the real filter has to assign this callback using the Filter-
HasInitHandler which accepts a reference to the callback function, similar to push_handlers().
The used callback function has to have the FilterInitHandler attribute. For example:

 package MyApache::FilterBar;
 use base qw(Apache::Filter);
 sub init : FilterInitHandler { ... }
 sub filter : FilterRequestHandler FilterHasInitHandler(\&init) {
 my ($f, $bb) = @_;
 # ...
 return Apache::OK;
 }

While attributes are parsed during the code compilation (it’s really a sort of source filter), the argument to
the FilterHasInitHandler() attribute is compiled at a later stage once the module is compiled.

The argument to FilterHasInitHandler() can be any Perl code which when eval()’ed returns a
code reference. For example:

 package MyApache::OtherFilter;
 use base qw(Apache::Filter);
 sub init : FilterInitHandler { ... }

 package MyApache::FilterBar;
 use MyApache::OtherFilter;
 use base qw(Apache::Filter);
 sub get_pre_handler { \&MyApache::OtherFilter::init }
 sub filter : FilterHasInitHandler(get_pre_handler()) { ... }

2129 Jan 2004

1.4.7 Filter Initialization PhaseInput and Output Filters

Here the MyApache::FilterBar::filter handler is configured to run the MyApache::Other-
Filter::init init handler.

Notice that the argument to FilterHasInitHandler() is always eval()’ed in the package of the
real filter handler (not the init handler). So the above code leads to the following evaluation:

 $init_sub = eval "package MyApache::FilterBar; get_pre_handler()";

though, this is done in C, using the eval_pv() C call.

META: currently only one initialization callback can be registered per filter handler. If the need to register
more than one arises it should be very easy to extend the functionality.

1.5 All-in-One Filter
Before we delve into the details of how to write filters that do something with the data, lets first write a
simple filter that does nothing but snooping on the data that goes through it. We are going to develop the
MyApache::FilterSnoop handler which can snoop on request and connection filters, in input and
output modes.

But first let’s develop a simple response handler that simply dumps the request’s args and content as
strings:

 file:MyApache/Dump.pm

 package MyApache::Dump;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();
 use APR::Table ();

 use Apache::Const -compile => qw(OK M_POST);

 sub handler {
 my $r = shift;
 $r->content_type(’text/plain’);

 $r->print("args:\n", $r->args, "\n");

 if ($r->method_number == Apache::M_POST) {
 my $data = content($r);
 $r->print("content:\n$data\n");
 }

 return Apache::OK;
 }

 sub content {
 my $r = shift;

29 Jan 200422

1.5 All-in-One Filter

 $r->setup_client_block;

 return ’’ unless $r->should_client_block;

 my $len = $r->headers_in->get(’content-length’);
 my $buf;
 $r->get_client_block($buf, $len);

 return $buf;
 }

 1;

which is configured as:

 PerlModule MyApache::Dump
 <Location /dump>
 SetHandler modperl
 PerlResponseHandler MyApache::Dump
 </Location>

If we issue the following request:

 % echo "mod_perl rules" | POST ’http://localhost:8002/dump?foo=1&bar=2’

the response will be:

 args:
 foo=1&bar=2
 content:
 mod_perl rules

As you can see it simply dumped the query string and the posted data.

Now let’s write the snooping filter:

 file:MyApache/FilterSnoop.pm

 package MyApache::FilterSnoop;

 use strict;
 use warnings;

 use base qw(Apache::Filter);
 use Apache::FilterRec ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’:common’;

 sub connection : FilterConnectionHandler { snoop("connection", @_) }
 sub request : FilterRequestHandler { snoop("request", @_) }

 sub snoop {

2329 Jan 2004

1.5 All-in-One FilterInput and Output Filters

 my $type = shift;
 my($f, $bb, $mode, $block, $readbytes) = @_; # filter args

 # $mode, $block, $readbytes are passed only for input filters
 my $stream = defined $mode ? "input" : "output";

 # read the data and pass-through the bucket brigades unchanged
 if (defined $mode) {
 # input filter
 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;
 bb_dump($type, $stream, $bb);
 }
 else {
 # output filter
 bb_dump($type, $stream, $bb);
 my $rv = $f->next->pass_brigade($bb);
 return $rv unless $rv == APR::SUCCESS;
 }

 return Apache::OK;

 }

 sub bb_dump {
 my($type, $stream, $bb) = @_;

 my @data;
 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 $b->read(my $bdata);
 $bdata = ’’ unless defined $bdata;
 push @data, $b->type->name, $bdata;
 }

 # send the sniffed info to STDERR so not to interfere with normal
 # output
 my $direction = $stream eq ’output’ ? ">>>" : "<<<";
 print STDERR "\n$direction $type $stream filter\n";

 my $c = 1;
 while (my($btype, $data) = splice @data, 0, 2) {
 print STDERR " o bucket $c: $btype\n";
 print STDERR "[$data]\n";
 $c++;
 }
 }
 1;

This package provides two filter handlers, one for connection and another for request filtering:

 sub connection : FilterConnectionHandler { snoop("connection", @_) }
 sub request : FilterRequestHandler { snoop("request", @_) }

Both handlers forward their arguments to the snoop() function that does the real job. We needed to add
these two subroutines in order to assign the two different attributes. Plus the functions pass the filter type
to snoop() as the first argument, which gets shifted off @_ and the rest of the @_ are the arguments that

29 Jan 200424

1.5 All-in-One Filter

were originally passed to the filter handler.

It’s easy to know whether a filter handler is running in the input or the output mode. The arguments $f
and $bb are always passed, whereas the arguments $mode, $block, and $readbytes are passed only
to input filter handlers.

If we are in the input mode, in the same call we retrieve the bucket brigade from the previous filter on the
input filters stack and immediately link it to the $bb variable which makes the bucket brigade available to
the next input filter when the filter handler returns. If we forget to perform this linking our filter will
become a black hole in which data simply disappears. Next we call bb_dump() which dumps the type of
the filter and the contents of the bucket brigade to STDERR, without influencing the normal data flow.

If we are in the output mode, the $bb variable already points to the current bucket brigade. Therefore we
can read the contents of the brigade right away. After that we pass the brigade to the next filter.

Let’s snoop on connection and request filter levels in both directions by applying the following configura-
tion:

 Listen 8008
 <VirtualHost _default_:8008>
 PerlModule MyApache::FilterSnoop
 PerlModule MyApache::Dump

 # Connection filters
 PerlInputFilterHandler MyApache::FilterSnoop::connection
 PerlOutputFilterHandler MyApache::FilterSnoop::connection

 <Location /dump>
 SetHandler modperl
 PerlResponseHandler MyApache::Dump
 # Request filters
 PerlInputFilterHandler MyApache::FilterSnoop::request
 PerlOutputFilterHandler MyApache::FilterSnoop::request
 </Location>

 </VirtualHost>

Notice that we use a virtual host because we want to install connection filters.

If we issue the following request:

 % echo "mod_perl rules" | POST ’http://localhost:8008/dump?foo=1&bar=2’

We get the same response, when using MyApache::FilterSnoop, because our snooping filter didn’t
change anything. Though there was a lot of output printed to error_log. We present it all here, since it
helps a lot to understand how filters work.

First we can see the connection input filter at work, as it processes the HTTP headers. We can see that for
this request each header is put into a separate brigade with a single bucket. The data is conveniently
enclosed by [] so you can see the new line characters as well.

2529 Jan 2004

1.5 All-in-One FilterInput and Output Filters

 <<< connection input filter
 o bucket 1: HEAP
 [POST /dump?foo=1&bar=2 HTTP/1.1
]

 <<< connection input filter
 o bucket 1: HEAP
 [TE: deflate,gzip;q=0.3
]

 <<< connection input filter
 o bucket 1: HEAP
 [Connection: TE, close
]

 <<< connection input filter
 o bucket 1: HEAP
 [Host: localhost:8008
]

 <<< connection input filter
 o bucket 1: HEAP
 [User-Agent: lwp-request/2.01
]

 <<< connection input filter
 o bucket 1: HEAP
 [Content-Length: 14
]

 <<< connection input filter
 o bucket 1: HEAP
 [Content-Type: application/x-www-form-urlencoded
]

 <<< connection input filter
 o bucket 1: HEAP
 [
]

Here the HTTP header has been terminated by a double new line. So far all the buckets were of the HEAP
type, meaning that they were allocated from the heap memory. Notice that the HTTP request input filters
will never see the bucket brigades with HTTP headers, as it has been consumed by the last core connection
filter.

The following two entries are generated when MyApache::Dump::handler reads the POSTed
content:

29 Jan 200426

1.5 All-in-One Filter

 <<< connection input filter
 o bucket 1: HEAP
 [mod_perl rules]

 <<< request input filter
 o bucket 1: HEAP
 [mod_perl rules]
 o bucket 2: EOS
 []

as we saw earlier on the diagram, the connection input filter is run before the request input filter. Since our
connection input filter was passing the data through unmodified and no other custom connection input
filter was configured, the request input filter sees the same data. The last bucket in the brigade received by
the request input filter is of type EOS, meaning that all the input data from the current request has been
received.

Next we can see that MyApache::Dump::handler has generated its response. However we can see
that only the request output filter gets run at this point:

 >>> request output filter
 o bucket 1: TRANSIENT
 [args:
 foo=1&bar=2
 content:
 mod_perl rules
]

This happens because Apache hasn’t sent yet the response HTTP headers to the client. The request filter
sees a bucket brigade with a single bucket of type TRANSIENT which is allocated from the stack memory.

The moment the first bucket brigade of the response body has entered the connection output filters,
Apache injects a bucket brigade with the HTTP headers. Therefore we can see that the connection output
filter is filtering the brigade with HTTP headers (notice that the request output filters don’t see it):

 >>> connection output filter
 o bucket 1: HEAP
 [HTTP/1.1 200 OK
 Date: Tue, 19 Nov 2002 15:59:32 GMT
 Server: Apache/2.0.44-dev (Unix) mod_perl/1.99_08-dev
 Perl/v5.8.0 mod_ssl/2.0.44-dev OpenSSL/0.9.6d DAV/2
 Connection: close
 Transfer-Encoding: chunked
 Content-Type: text/plain; charset=ISO-8859-1

]

and followed by the first response body’s brigade:

 >>> connection output filter
 o bucket 1: TRANSIENT
 [2b
]
 o bucket 2: TRANSIENT
 [args:

2729 Jan 2004

1.5 All-in-One FilterInput and Output Filters

 foo=1&bar=2
 content:
 mod_perl rules

]
 o bucket 3: IMMORTAL
 [
]

If the response is large, the request and connection filters will filter chunks of the response one by one.

META: what’s the size of the chunks? 8k?

Finally, Apache sends a series of the bucket brigades to finish off the response, including the end of
stream meta-bucket to tell filters that they shouldn’t expect any more data, and flush buckets to flush the
data, to make sure that any buffered output is sent to the client:

 >>> connection output filter
 o bucket 1: IMMORTAL
 [0

]
 o bucket 2: EOS
 []

 >>> connection output filter
 o bucket 1: FLUSH
 []

 >>> connection output filter
 o bucket 1: FLUSH
 []

This module helps to understand that each filter handler can be called many time during each request and
connection. It’s called for each bucket brigade.

Also it’s important to mention that HTTP request input filters are invoked only if there is some POSTed
data to read and it’s consumed by a content handler.

1.6 Input Filters
mod_perl supports Connection and HTTP Request input filters:

1.6.1 Connection Input Filters

Let’s say that we want to test how our handlers behave when they are requested as HEAD requests, rather
than GET. We can alter the request headers at the incoming connection level transparently to all handlers.

This example’s filter handler looks for data like:

29 Jan 200428

1.6 Input Filters

 GET /perl/test.pl HTTP/1.1

and turns it into:

 HEAD /perl/test.pl HTTP/1.1

The following input filter handler does that by directly manipulating the bucket brigades:

 file:MyApache/InputFilterGET2HEAD.pm

 package MyApache::InputFilterGET2HEAD;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterConnectionHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 return Apache::DECLINED if $f->ctx;

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 my $data;
 my $status = $b->read($data);
 return $status unless $status == APR::SUCCESS;
 warn("data: $data\n");

 if ($data and $data =~ s|^GET|HEAD|) {
 my $bn = APR::Bucket->new($data);
 $b->insert_after($bn);
 $b->remove; # no longer needed
 $f->ctx(1); # flag that that we have done the job
 last;
 }
 }

 Apache::OK;
 }

 1;

The filter handler is called for each bucket brigade, which in turn includes buckets with data. The gist of
any input filter handler is to request the bucket brigade from the upstream filter, and return it downstream
filter using the second argument $bb. It’s important to remember that you can call methods on this argu-
ment, but you shouldn’t assign to this argument, or the chain will be broken. You have two techniques to

2929 Jan 2004

1.6.1 Connection Input FiltersInput and Output Filters

choose from to retrieve-modify-return bucket brigades:

1. Create a new empty bucket brigade $ctx_bb, pass it to the upstream filter via get_brigade()
and wait for this call to return. When it returns, $ctx_bb is populated with buckets. Now the filter
should move the bucket from $ctx_bb to $bb, on the way modifying the buckets if needed. Once
the buckets are moved, and the filter returns, the downstream filter will receive the populated bucket
brigade.

2. Pass $bb to get_brigade() to the upstream filter, so it will be populated with buckets. Once
get_brigade() returns, the filter can go through the buckets and modify them in place, or it can
do nothing and just return (in which case, the downstream filter will receive the bucket brigade
unmodified).

Both techniques allow addition and removal of buckets. Though the second technique is more efficient
since it doesn’t have the overhead of create the new brigade and moving the bucket from one brigade to
another. In this example we have chosen to use the second technique, in the next example we will see the
first technique.

Our filter has to perform the substitution of only one HTTP header (which normally resides in one
bucket), so we have to make sure that no other data gets mangled (e.g. there could be POSTED data and it
may match /^GET/ in one of the buckets). We use $f->ctx as a flag here. When it’s undefined the
filter knows that it hasn’t done the required substitution, though once it completes the job it sets the
context to 1.

To optimize the speed, the filter immediately returns Apache::DECLINED when it’s invoked after the
substitution job has been done:

 return Apache::DECLINED if $f->ctx;

In that case mod_perl will call get_brigade() internally which will pass the bucket brigade to the
downstream filter. Alternatively the filter could do:

 my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;
 return Apache::OK if $f->ctx;

but this is a bit less efficient.

[META: the most efficient thing to do is to remove the filter itself once the job is done, so it won’t be even
invoked after the job has been done.

 if ($f->ctx) {
 $f->remove;
 return Apache::DECLINED;
 }

However, this can’t be used with Apache 2.0.46 and lower, since it has a bug when trying to remove the
edge connection filter (it doesn’t remove it). Don’t know if it’s going to be fixed in 2.0.47]

29 Jan 200430

1.6.1 Connection Input Filters

If the job wasn’t done yet, the filter calls get_brigade, which populates the $bb bucket brigade. Next,
the filter steps through the buckets looking for the bucket that matches the regex: /^GET/. If that
happens, a new bucket is created with the modified data (s/^GET/HEAD/. Now it has to be inserted in
place of the old bucket. In our example we insert the new bucket after the bucket that we have just modi-
fied and immediately remove that bucket that we don’t need anymore:

 $b->insert_after($bn);
 $b->remove; # no longer needed

Finally we set the context to 1, so we know not to apply the substitution on the following data and break
from the for loop.

The handler returns Apache::OK indicating that everything was fine. The downstream filter will receive
the bucket brigade with one bucket modified.

Now let’s check that the handler works properly. For example, consider the following response handler:

 file:MyApache/RequestType.pm

 package MyApache::RequestType;

 use strict;
 use warnings;

 use Apache::RequestIO ();
 use Apache::RequestRec ();
 use Apache::Response ();

 use Apache::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $response = "the request type was " . $r->method;
 $r->set_content_length(length $response);
 $r->print($response);

 Apache::OK;
 }

 1;

which returns to the client the request type it has issued. In the case of the HEAD request Apache will
discard the response body, but it’ll will still set the correct Content-Length header, which will be 24
in case of the GET request and 25 for HEAD. Therefore if this response handler is configured as:

 Listen 8005
 <VirtualHost _default_:8005>
 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

3129 Jan 2004

1.6.1 Connection Input FiltersInput and Output Filters

and a GET request is issued to /:

 panic% perl -MLWP::UserAgent -le \
 ’$r = LWP::UserAgent->new()->get("http://localhost:8005/"); \
 print $r->headers->content_length . ": ". $r->content’
 24: the request type was GET

where the response’s body is:

 the request type was GET

And the Content-Length header is set to 24.

However if we enable the MyApache::InputFilterGET2HEAD input connection filter:

 Listen 8005
 <VirtualHost _default_:8005>
 PerlInputFilterHandler +MyApache::InputFilterGET2HEAD

 <Location />
 SetHandler modperl
 PerlResponseHandler +MyApache::RequestType
 </Location>
 </VirtualHost>

And issue the same GET request, we get only:

 25:

which means that the body was discarded by Apache, because our filter turned the GET request into a
HEAD request and if Apache wasn’t discarding the body on HEAD, the response would be:

 the request type was HEAD

that’s why the content length is reported as 25 and not 24 as in the real GET request.

1.6.2 HTTP Request Input Filters

Request filters are really non-different from connection filters, other than that they are working on request
and response bodies and have an access to a request object.

1.6.3 Bucket Brigade-based Input Filters

Let’s look at the request input filter that lowers the case of the request’s body: MyApache::InputRe-
questFilterLC:

 file:MyApache/InputRequestFilterLC.pm

 package MyApache::InputRequestFilterLC;

 use strict;
 use warnings;

29 Jan 200432

1.6.2 HTTP Request Input Filters

 use base qw(Apache::Filter);

 use Apache::Connection ();
 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterRequestHandler {
 my($f, $bb, $mode, $block, $readbytes) = @_;

 my $c = $f->c;
 my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);
 my $rv = $f->next->get_brigade($bb_ctx, $mode, $block, $readbytes);
 return $rv unless $rv == APR::SUCCESS;

 while (!$bb_ctx->empty) {
 my $b = $bb_ctx->first;

 $b->remove;

 if ($b->is_eos) {
 $bb->insert_tail($b);
 last;
 }

 my $data;
 my $status = $b->read($data);
 return $status unless $status == APR::SUCCESS;

 $b = APR::Bucket->new(lc $data) if $data;

 $bb->insert_tail($b);
 }

 Apache::OK;
 }

 1;

As promised, in this filter handler we have used the first technique of bucket brigade modification. The
handler creates a temporary bucket brigade (ctx_bb), populates it with data using get_brigade(),
and then moves buckets from it to the bucket brigade $bb, which is then retrieved by the downstream
filter when our handler returns.

This filter doesn’t need to know whether it was invoked for the first time or whether it has already done
something. It’s state-less handler, since it has to lower case everything that passes through it. Notice that
this filter can’t be used as the connection filter for HTTP requests, since it will invalidate the incoming
request headers; for example the first header line:

3329 Jan 2004

1.6.3 Bucket Brigade-based Input FiltersInput and Output Filters

 GET /perl/TEST.pl HTTP/1.1

will become:

 get /perl/test.pl http/1.1

which messes up the request method, the URL and the protocol.

Now if we use the MyApache::Dump response handler, we have developed before in this chapter, which
dumps the query string and the content body as a response, and configure the server as follows:

 <Location /lc_input>
 SetHandler modperl
 PerlResponseHandler +MyApache::Dump
 PerlInputFilterHandler +MyApache::InputRequestFilterLC
 </Location>

When issuing a POST request:

 % echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/lc_input?FoO=1&BAR=2’

we get a response:

 args:
 FoO=1&BAR=2
 content:
 mod_perl rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
You can see that the query string wasn’t changed.

1.6.4 Stream-oriented Input Filters

Let’s now look at the same filter implemented using the stream-oriented API.

 file:MyApache/InputRequestFilterLC2.pm

 package MyApache::InputRequestFilterLC2;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Const -compile => ’OK’;

 use constant BUFF_LEN => 1024;

 sub handler : FilterRequestHandler {
 my $f = shift;

 while ($f->read(my $buffer, BUFF_LEN)) {
 $f->print(lc $buffer);
 }

29 Jan 200434

1.6.4 Stream-oriented Input Filters

 Apache::OK;
 }
 1;

Now you probably ask yourself why did we have to go through the bucket brigades filters when this all
can be done so much simpler. The reason is that we wanted you to understand how the filters work under-
neath, which will assist a lot when you will need to debug filters or optimize their speed. In certain cases a
bucket brigade filter may be more efficient than the stream-oriented. For example if the filter applies trans-
formation to selected buckets, certain buckets may contain open filehandles or pipes, rather than real data.
And when you call read() the buckets will be forced to read that data in. But if you didn’t want to modify
these buckets you could pass them as they are and let Apache do faster techniques for sending data from
the file handles or pipes.

The logic is very simple here, the filter reads in loop, and prints the modified data, which at some point
will be sent to the next filter. This point happens every time the internal mod_perl buffer is full or when
the filter returns.

read() populates $buffer to a maximum of BUFF_LEN characters (1024 in our example). Assuming
that the current bucket brigade contains 2050 chars, read() will get the first 1024 characters, then 1024
characters more and finally the remaining 2 characters. Notice that even though the response handler may
have sent more than 2050 characters, every filter invocation operates on a single bucket brigade so you
have to wait for the next invocation to get more input. In one of the earlier examples we have shown that
you can force the generation of several bucket brigades in the content handler by using rflush(). For
example:

 $r->print("string");
 $r->rflush();
 $r->print("another string");

It’s only possible to get more than one bucket brigade from the same filter handler invocation if the filter
is not using the streaming interface and by simply calling get_brigade() as many times as needed or
till EOS is received.

The configuration section is pretty much identical:

 <Location /lc_input2>
 SetHandler modperl
 PerlResponseHandler +MyApache::Dump
 PerlInputFilterHandler +MyApache::InputRequestFilterLC2
 </Location>

When issuing a POST request:

 % echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/lc_input2?FoO=1&BAR=2’

we get a response:

3529 Jan 2004

1.6.4 Stream-oriented Input FiltersInput and Output Filters

 args:
 FoO=1&BAR=2
 content:
 mod_perl rules

indeed we can see that our filter has lowercased the POSTed body, before the content handler received it.
You can see that the query string wasn’t changed.

1.7 Output Filters
mod_perl supports Connection and HTTP Request output filters:

1.7.1 Connection Output Filters

Connection filters filter all the data that is going through the server. Therefore if the connection is of
HTTP request type, connection output filters see the headers and the body of the response, whereas
request output filters see only the response body.

META: for now see the request output filter explanations and examples, connection output filter examples
will be added soon. Interesting ideas for such filters are welcome (possible ideas: mangling output headers
for HTTP requests, pretty much anything for protocol modules).

1.7.2 HTTP Request Output Filters

As mentioned earlier output filters can be written using the bucket brigades manipulation or the simplified
stream-oriented interface.

First let’s develop a response handler that sends two lines of output: numerals 1234567890 and the
English alphabet in a single string:

 file:MyApache/SendAlphaNum.pm

 package MyApache::SendAlphaNum;

 use strict;
 use warnings;

 use Apache::RequestRec ();
 use Apache::RequestIO ();

 use Apache::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);

 $r->print(1..9, "0\n");
 $r->print(’a’..’z’, "\n");

29 Jan 200436

1.7 Output Filters

 Apache::OK;
 }
 1;

The purpose of our filter handler is to reverse every line of the response body, preserving the new line
characters in their places. Since we want to reverse characters only in the response body, without breaking
the HTTP headers, we will use the HTTP request output filter.

1.7.2.1 Stream-oriented Output Filters

The first filter implementation is using the stream-oriented filtering API:

 file:MyApache/FilterReverse1.pm

 package MyApache::FilterReverse1;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use Apache::Const -compile => qw(OK);

 use constant BUFF_LEN => 1024;

 sub handler : FilterRequestHandler {
 my $f = shift;

 while ($f->read(my $buffer, BUFF_LEN)) {
 for (split "\n", $buffer) {
 $f->print(scalar reverse $_);
 $f->print("\n");
 }
 }

 Apache::OK;
 }
 1;

Next, we add the following configuration to httpd.conf:

 PerlModule MyApache::FilterReverse1
 PerlModule MyApache::SendAlphaNum
 <Location /reverse1>
 SetHandler modperl
 PerlResponseHandler MyApache::SendAlphaNum
 PerlOutputFilterHandler MyApache::FilterReverse1
 </Location>

Now when a request to /reverse1 is made, the response handler MyApache::SendAl-
phaNum::handler() sends:

3729 Jan 2004

1.7.2 HTTP Request Output FiltersInput and Output Filters

 1234567890
 abcdefghijklmnopqrstuvwxyz

as a response and the output filter handler MyApache::FilterReverse1::handler reverses the
lines, so the client gets:

 0987654321
 zyxwvutsrqponmlkjihgfedcba

The Apache::Filter module loads the read() and print() methods which encapsulate the
stream-oriented filtering interface.

The reversing filter is quite simple: in the loop it reads the data in the readline() mode in chunks up to the
buffer length (1024 in our example), and then prints each line reversed while preserving the new line
control characters at the end of each line. Behind the scenes $f->read() retrieves the incoming brigade
and gets the data from it, and $f->print() appends to the new brigade which is then sent to the next
filter in the stack. read() breaks the while loop, when the brigade is emptied or the end of stream is
received.

In order not to distract the reader from the purpose of the example the used code is oversimplified and
won’t handle correctly input lines which are longer than 1024 characters and possibly using a different
line termination token (could be "\n", "\r" or "\r\n" depending on a platform). Moreover a single line may
be split between across two or even more bucket brigades, so we have to store the unprocessed string in
the filter context, so it can be used on the following invocations. So here is an example of a more complete
handler, which does takes care of these issues:

 sub handler {
 my $f = shift;

 my $leftover = $f->ctx;
 while ($f->read(my $buffer, BUFF_LEN)) {
 $buffer = $leftover . $buffer if defined $leftover;
 $leftover = undef;
 while ($buffer =~ /([^\r\n]*)([\r\n]*)/g) {
 $leftover = $1, last unless $2;
 $f->print(scalar(reverse $1), $2);
 }
 }

 if ($f->seen_eos) {
 $f->print(scalar reverse $leftover) if defined $leftover;
 }
 else {
 $f->ctx($leftover) if defined $leftover;
 }

 return Apache::OK;
 }

The handler uses the $leftover variable to store unprocessed data as long as it fails to assemble a
complete line or there is an incomplete line following the new line token. On the next handler invocation
this data is then prepended to the next chunk that is read. When the filter is invoked on the last time, it

29 Jan 200438

1.7.2 HTTP Request Output Filters

unconditionally reverses and flushes any remaining data.

1.7.2.2 Bucket Brigade-based Output Filters

The following filter implementation is using the bucket brigades API to accomplish exactly the same task
as the first filter.

 file:MyApache/FilterReverse2.pm

 package MyApache::FilterReverse2;

 use strict;
 use warnings;

 use base qw(Apache::Filter);

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache::Const -compile => ’OK’;
 use APR::Const -compile => ’:common’;

 sub handler : FilterRequestHandler {
 my($f, $bb) = @_;

 my $c = $f->c;
 my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);

 while (!$bb->empty) {
 my $bucket = $bb->first;

 $bucket->remove;

 if ($bucket->is_eos) {
 $bb_ctx->insert_tail($bucket);
 last;
 }

 my $data;
 my $status = $bucket->read($data);
 return $status unless $status == APR::SUCCESS;

 if ($data) {
 $data = join "",
 map {scalar(reverse $_), "\n"} split "\n", $data;
 $bucket = APR::Bucket->new($data);
 }

3929 Jan 2004

1.7.2 HTTP Request Output FiltersInput and Output Filters

 $bb_ctx->insert_tail($bucket);
 }

 my $rv = $f->next->pass_brigade($bb_ctx);
 return $rv unless $rv == APR::SUCCESS;

 Apache::OK;
 }
 1;

and the corresponding configuration:

 PerlModule MyApache::FilterReverse2
 PerlModule MyApache::SendAlphaNum
 <Location /reverse2>
 SetHandler modperl
 PerlResponseHandler MyApache::SendAlphaNum
 PerlOutputFilterHandler MyApache::FilterReverse2
 </Location>

Now when a request to /reverse2 is made, the client gets:

 0987654321
 zyxwvutsrqponmlkjihgfedcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the stream-oriented one. The
handler receives the incoming bucket brigade $bb as its second argument. Since when the handler is
completed it must pass a brigade to the next filter in the stack, we create a new bucket brigade into which
we are going to put the modified buckets and which eventually we pass to the next filter.

The core of the handler is in removing buckets from the head of the bucket brigade $bb while there are
some, reading the data from the buckets, reversing and putting it into a newly created bucket which is
inserted to the end of the new bucket brigade. If we see a bucket which designates the end of stream, we
insert that bucket to the tail of the new bucket brigade and break the loop. Finally we pass the created
brigade with modified data to the next filter and return.

Similarly to the original version of MyApache::FilterReverse1::handler, this filter is not
smart enough to handle incomplete lines. However the exercise of making the filter foolproof should be
trivial by porting a better matching rule and using the $leftover buffer from the previous section is
trivial and left as an exercise to the reader.

1.8 Filter Applications
The following sections provide various filter applications and their implementation.

29 Jan 200440

1.8 Filter Applications

1.8.1 Handling Data Underruns

Sometimes filters need to read at least N bytes before they can apply their transformation. It’s quite possi-
ble that reading one bucket brigade is not enough. But two or more are needed. This situation is sometimes
referred to as an underrun.

Let’s take an input filter as an example. When the filter realizes that it doesn’t have enough data in the
current bucket brigade, it can store the read data in the filter context, and wait for the next invocation of
itself, which may or may not satisfy its needs. Meanwhile it must return an empty bb to the upstream input
filter. This is not the most efficient technique to resolve underruns.

Instead of returning an empty bb, the input filter can initiate the retrieval of extra bucket brigades, until the
underrun condition gets resolved. Notice that this solution is absolutely transparent to any filters before or
after the current filter.

Consider this HTTP request:

 % perl -MLWP::UserAgent -le ’ \
 $r = LWP::UserAgent->new()->post("http://localhost:8011/", \
 [content => "x" x (40 * 1024 + 7)]); \
 print $r->is_success ? $r->content : "failed: " . $r->code’
 read 40975 chars

This client POSTs just a little bit more than 40kb of data to the server. Normally Apache splits incoming
POSTed data into 8kb chunks, putting each chunk into a separate bucket brigade. Therefore we expect to
get 5 brigades of 8kb, and one brigade with just a few bytes (a total of 6 bucket brigades).

Now let’s say that the filter needs to have 1024*16 + 5 bytes to have a complete token and then it can start
its processing. The extra 5 bytes are just so we don’t perfectly fit into 8bk bucket brigades, making the
example closer to real situations. Having 40975 bytes of input and a token size of 16389 bytes, we will
have 2 full tokens and 8197 remainder.

Jumping ahead let’s look at the filter debug output:

 filter called
 asking for a bb
 asking for a bb
 asking for a bb
 storing the remainder: 7611 bytes

 filter called
 asking for a bb
 asking for a bb
 storing the remainder: 7222 bytes

 filter called
 asking for a bb
 seen eos, flushing the remaining: 8197 bytes

4129 Jan 2004

1.8.1 Handling Data UnderrunsInput and Output Filters

So we can see that the filter was invoked three times. The first time it has consumed three bucket brigades,
collecting one full token of 16389 bytes and has a remainder of 7611 bytes to be processed on the next
invocation. The second time it needed only two more bucket brigades and this time after completing the
second token, 7222 bytes have remained. Finally on the third invocation it has consumed the last bucket
brigade (total of six, just as we have expected), however it didn’t have enough for the third token and since
EOS has been seen (no more data expected), it has flushed the remaining 8197 bytes as we have calculated
earlier.

It is clear from the debugging output that the filter was invoked only three times, instead of six times
(there were six bucket brigades). Notice that the upstread input filter (if any) wasn’t aware that there were
six bucket brigades, since it saw only three. Our example filter didn’t do much with those tokens, so it has
only repackaged data from 8kb per bucket brigade, to 16389 bytes per bucket brigade. But of course in
real world some transformation is applied on these tokens.

Now you understand what did we want from the filter, it’s time for the implementation details. First let’s
look at the response() handler (the first part of the module):

 #file:MyApache/Underrun.pm
 #-------------------------
 package MyApache::Underrun;

 use strict;
 use warnings;

 use constant IOBUFSIZE => 8192;

 use Apache::Const -compile => qw(MODE_READBYTES OK M_POST);
 use APR::Const -compile => qw(SUCCESS BLOCK_READ);

 sub response {
 my $r = shift;

 $r->content_type(’text/plain’);

 if ($r->method_number == Apache::M_POST) {
 my $data = read_post($r);
 #warn "HANDLER READ: $data\n";
 my $length = length $data;
 $r->print("read $length chars");
 }

 return Apache::OK;
 }

 sub read_post {
 my $r = shift;
 my $debug = shift || 0;

 my @data = ();
 my $seen_eos = 0;
 my $filters = $r->input_filters();
 my $ba = $r->connection->bucket_alloc;
 my $bb = APR::Brigade->new($r->pool, $ba);

29 Jan 200442

1.8.1 Handling Data Underruns

 do {
 my $rv = $filters->get_brigade($bb,
 Apache::MODE_READBYTES, APR::BLOCK_READ, IOBUFSIZE);

 if ($rv != APR::SUCCESS) {
 return $rv;
 }

 while (!$bb->empty) {
 my $buf;
 my $b = $bb->first;

 $b->remove;

 if ($b->is_eos) {
 warn "EOS bucket:\n" if $debug;
 $seen_eos++;
 last;
 }

 my $status = $b->read($buf);
 warn "DATA bucket: [$buf]\n" if $debug;
 if ($status != APR::SUCCESS) {
 return $status;
 }
 push @data, $buf;
 }

 $bb->destroy;

 } while (!$seen_eos);

 return join ’’, @data;
 }

The response() handler is trivial -- it reads the POSTed data and prints how many bytes it has read.
read_post() sucks all POSTed data without parsing it.

Now comes the filter (which lives in the same package):

 #file:MyApache/Underrun.pm (continued)
 #-------------------------------------
 use Apache::Filter ();

 use Apache::Const -compile => qw(OK M_POST);

 use constant TOKEN_SIZE => 1024*16 + 5; # ~16k

 sub filter {
 my($f, $bb, $mode, $block, $readbytes) = @_;
 my $ba = $f->r->connection->bucket_alloc;
 my $ctx = $f->ctx;
 my $buffer = defined $ctx ? $ctx : ’’;
 $ctx = ’’; # reset
 my $seen_eos = 0;

4329 Jan 2004

1.8.1 Handling Data UnderrunsInput and Output Filters

 my $data;
 warn "\nfilter called\n";

 # fetch and consume bucket brigades untill we have at least TOKEN_SIZE
 # bytes to work with
 do {
 my $tbb = APR::Brigade->new($f->r->pool, $ba);
 my $rv = $f->next->get_brigade($tbb, $mode, $block, $readbytes);
 warn "asking for a bb\n";
 ($data, $seen_eos) = flatten_bb($tbb);
 $tbb->destroy;
 $buffer .= $data;
 } while (!$seen_eos && length($buffer) < TOKEN_SIZE);

 # now create a bucket per chunk of TOKEN_SIZE size and put the remainder
 # in ctx
 for (split_buffer($buffer)) {
 if (length($_) == TOKEN_SIZE) {
 $bb->insert_tail(APR::Bucket->new($_));
 }
 else {
 $ctx .= $_;
 }
 }

 my $len = length($ctx);
 if ($seen_eos) {
 # flush the remainder
 $bb->insert_tail(APR::Bucket->new($ctx));
 $bb->insert_tail(APR::Bucket::eos_create($ba));
 warn "seen eos, flushing the remaining: $len bytes\n";
 }
 else {
 # will re-use the remainder on the next invocation
 $f->ctx($ctx);
 warn "storing the remainder: $len bytes\n";
 }

 return Apache::OK;
 }

 # split a string into tokens of TOKEN_SIZE bytes and a remainder
 sub split_buffer {
 my $buffer = shift;
 if ($] < 5.007) {
 my @tokens = $buffer =~ /(.{@{[TOKEN_SIZE]}}|.+)/g;
 return @tokens;
 }
 else {
 # available only since 5.7.x+
 return unpack "(A" . TOKEN_SIZE . ")*", $buffer;
 }
 }

 sub flatten_bb {
 my ($bb) = shift;

29 Jan 200444

1.8.1 Handling Data Underruns

 my $seen_eos = 0;

 my @data;
 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 $seen_eos++, last if $b->is_eos;
 $b->read(my $bdata);
 $bdata = ’’ unless defined $bdata;
 push @data, $bdata;

 }
 return (join(’’, @data), $seen_eos);
 }

 1;

The filter calls get_brigade() in a do-while loop till it reads enough data or sees EOS. Notice that it
may get underruns for several times, and then suddenly receive a lot of data at once, which will be enough
for more than one minimal size token, so we have to take care this into an account. Once the underrun
condition is satisfied (we have at least one complete token) the tokens are put into a bucket brigade and
returned to the upstream filter for processing, keeping any remainders in the filter context, for the next
invocations or flushing all the remaining data if EOS has been seen.

Notice that this won’t be possible with streaming filters where every invocation gives the filter exactly one
bucket brigade to work with and provides not facilities to fetch extra brigades. (META: however this can
be fixed, by providing a method which will fetch the next bucket brigade, so the read in a while loop can
be repeated)

And here is the configuration for this setup:

 PerlModule MyApache::Underrun
 <Location />
 PerlInputFilterHandler MyApache::Underrun::filter
 SetHandler modperl
 PerlResponseHandler MyApache::Underrun::response
 </Location>

1.9 Filter Tips and Tricks
Various tips to use in filters.

1.9.1 Altering the Content-Type Response Header

Let’s say that you want to modify the Content-Type header in the request output filter:

 sub handler : FilterRequestHandler {
 my $f = shift;
 ...
 $f->r->content_type("text/html; charset=$charset");
 ...

4529 Jan 2004

1.9 Filter Tips and TricksInput and Output Filters

Request filters have an access to the request object, so we simply modify it.

1.10 Writing Well-Behaving Filters
Filter writers must follow the following rules:

1.10.1 Adjusting HTTP Headers

The following information is relevant for HTTP filters

Unsetting the Content-Length header

HTTP response filters modifying the length of the body they process must unset the
Content-Length header. For example, a compression filter modifies the body length, whereas a
lowercasing filter doesn’t; therefore the former has to unset the header, and the latter doesn’t have to.

The header must be unset before any output is sent from the filter. If this rule is not followed, an
HTTP response header with incorrect Content-Length value might be sent.

Since you want to run this code once during the multiple filter invocations, use the ctx() method to
set the flag:

 unless ($f->ctx) {
 $f->r->headers_out->unset(’Content-Length’);
 $f->ctx(1);
 }

META: Same goes for last-modified/etags, which may need to be unset, "vary" might need to be
added if you want caching to work properly (depending on what your filter does.

1.10.2 Other issues

META: to be written. Meanwhile collecting important inputs from various sources.

[

This one will be expanded by Geoff at some point:

HTTP output filter developers are ought to handle conditional GETs properly... (mostly for the reason of
efficiency?)

]

[

talk about issues like not losing meta-buckets. e.g. if the filter runs a switch statement and propagates
buckets types that were known at the time of writing, it may drop buckets of new types which may be
added later, so it’s important to ensure that there is a default cause where the bucket is passed as is.

29 Jan 200446

1.10 Writing Well-Behaving Filters

of course mention the fact where things like EOS buckets must be passed, or the whole chain will be
broken. Or if some filter decides to inject an EOS bucket by itself, it should probably consume and destroy
the rest of the incoming bb. need to check on this issue.

]

[

Need to document somewhere (concepts?) that the buckets should never be modified directly, because the
filter can’t know ho else could be referencing it at the same time. (shared mem/cache/memory mapped
files are examples on where you don’t want to modify the data). Instead the data should be moved into a
new bucket.

Also it looks like we need to $b->destroy (need to add the API) in addition to $b->remove. Which can be
done in one stroke using $b->delete (need to add the API).

]

[

Mention mod_bucketeer as filter debugging tool (in addition to FilterSnoop)

]

1.11 Writing Efficient Filters
META: to be written

[

As of this writing the network input filter reads in 8000B chunks (not 8192B!), and making each bucket
8000B in size, so it seems that the most efficient reading technique is:

 use constant BUFF_LEN => 8000;
 while ($f->read(my $buffer, BUFF_LEN)) {
 # manip $buffer
 $f->print($buffer);
 }

however if there is some filter in between, it may change the size of the buckets. Also this number may
change in the future.

Hmm, I’ve also seen it read in 7819 chunks. I suppose this is not very reliable. But it’s probably a good
idea to ask at least 8k, so if a bucket brigade has < 8k, nothing will need to be stored in the internal buffer.
i.e. read() will return less than asked for.

]

4729 Jan 2004

1.11 Writing Efficient FiltersInput and Output Filters

[

Bucket Brigades are used to make the data flow between filters and handlers more efficient. e.g. a file
handle can be put in a bucket and the read from the file can be postponed to the very moment when the
data is sent to the client, thus saving a lot of memory and CPU cycles. though filters writers should be
aware that if they call $bucket->read(), or any other operation that internally forces the bucket to read the
information into the memory (like the length() op) and thus making the data handling inefficient. therefore
a care should be taken so not to read the data in, unless it’s really necessary.

]

1.12 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman <stas (at) stason.org>

1.13 Authors

Only the major authors are listed above. For contributors see the Changes file.

29 Jan 200448

1.12 Maintainers

Table of Contents:
................ 11 Input and Output Filters
................... 21.1 Description
................. 21.2 Your First Filter
................ 61.3 I/O Filtering Concepts
............ 61.3.1 Two Methods for Manipulating Data
........... 71.3.2 HTTP Request Versus Connection Filters
........... 71.3.3 Multiple Invocations of Filter Handlers
................. 111.3.4 Blocking Calls
.......... 141.4 mod_perl Filters Declaration and Configuration
................ 151.4.1 Filter Priority Types
............. 151.4.2 PerlInputFilterHandler
............ 151.4.3 PerlOutputFilterHandler
.............. 161.4.4 PerlSetInputFilter
.............. 171.4.5 PerlSetOutputFilter
............ 191.4.6 HTTP Request vs. Connection Filters
............... 201.4.7 Filter Initialization Phase
................. 221.5 All-in-One Filter
.................. 281.6 Input Filters
............... 281.6.1 Connection Input Filters
.............. 321.6.2 HTTP Request Input Filters
............ 321.6.3 Bucket Brigade-based Input Filters
.............. 341.6.4 Stream-oriented Input Filters
.................. 361.7 Output Filters
.............. 361.7.1 Connection Output Filters
.............. 361.7.2 HTTP Request Output Filters
............ 371.7.2.1 Stream-oriented Output Filters
........... 391.7.2.2 Bucket Brigade-based Output Filters
................. 401.8 Filter Applications
.............. 411.8.1 Handling Data Underruns
................ 451.9 Filter Tips and Tricks
.......... 451.9.1 Altering the Content-Type Response Header
.............. 461.10 Writing Well-Behaving Filters
.............. 461.10.1 Adjusting HTTP Headers
................. 461.10.2 Other issues
............... 471.11 Writing Efficient Filters
.................. 481.12 Maintainers
................... 481.13 Authors

i29 Jan 2004

Table of Contents:Input and Output Filters

	1€€Input and Output Filters
	1.1€€Description
	1.2€€Your First Filter
	1.3€€I/O Filtering Concepts
	1.3.1€€Two Methods for Manipulating Data
	1.3.2€€HTTP Request Versus Connection Filters
	1.3.3€€Multiple Invocations of Filter Handlers
	1.3.4€€Blocking Calls

	1.4€€mod_perl Filters Declaration and Configuration
	1.4.1€€Filter Priority Types
	1.4.2€€PerlInputFilterHandler
	1.4.3€€PerlOutputFilterHandler
	1.4.4€€PerlSetInputFilter
	1.4.5€€PerlSetOutputFilter
	1.4.6€€HTTP Request vs. Connection Filters
	1.4.7€€Filter Initialization Phase

	1.5€€All-in-One Filter
	1.6€€Input Filters
	1.6.1€€Connection Input Filters
	1.6.2€€HTTP Request Input Filters
	1.6.3€€Bucket Brigade-based Input Filters
	1.6.4€€Stream-oriented Input Filters

	1.7€€Output Filters
	1.7.1€€Connection Output Filters
	1.7.2€€HTTP Request Output Filters
	1.7.2.1€€Stream-oriented Output Filters
	1.7.2.2€€Bucket Brigade-based Output Filters

	1.8€€Filter Applications
	1.8.1€€Handling Data Underruns

	1.9€€Filter Tips and Tricks
	1.9.1€€Altering the Content-Type Response Header

	1.10€€Writing Well-Behaving Filters
	1.10.1€€Adjusting HTTP Headers
	1.10.2€€Other issues

	1.11€€Writing Efficient Filters
	1.12€€Maintainers
	1.13€€Authors

