Performance Tuning 1 Performance Tuning

1 PerformanceTuning

29 Jan 2004 1

1.1 Description

1.1 Description|

An exhaustive list of various techniques you might want to use to get the most performance possible out of
your mod_perl server: configuration, coding, memory use and more.

1.2 [The Big Picture

To make the user’s Web browsing experience as painless as possible, every effort must be made to wring
the last drop of performance from the server. There are many factors which affect Web site usability, but
speed is one of the most important. This applies to any webserver, not just Apache, so it is very important
that you understand it.

How do we measure the speed of a server? Since the user (and not the computer) is the one that interacts
with the Web site, one good speed measurement is the time elapsed between the moment when she clicks
on alink or presses a Submit button to the moment when the resulting page is fully rendered.

The requests and replies are broken into packets. A request may be made up of several packets, a reply
may be many thousands. Each packet has to make its own way from one machine to another, perhaps
passing through many interconnection nodes. We must measure the time starting from when the first
packet of the request leaves our user’s machine to when the last packet of the reply arrives back there.

A webserver is only one of the entities the packets see along their way. If we follow them from browser to
server and back again, they may travel by different routes through many different entities. Before they are
processed by your server the packets might have to go through proxy (accelerator) servers and if the
request contains more than one packet, packets might arrive to the server by different routes with different
arrival times, therefore it’s possible that some packets that arrive earlier will have to wait for other packets
before they could be reassembled into a chunk of the request message that will be then read by the server.
Then the whole process is repeated in reverse.

Y ou could work hard to fine tune your webserver's performance, but a slow Network Interface Card (NIC)
or aslow network connection from your server might defeat it all. That’s why it'simportant to think about
the Big Picture and to be aware of possible bottlenecks between the server and the Web.

Of course thereis little that you can do if the user has a dow connection. Y ou might tune your scripts and
webserver to process incoming requests ultra quickly, so you will need only a small number of working
servers, but you might find that the server processes are al busy waiting for slow clients to accept their
responses.

But there are techniques to cope with this. For example you can deliver the respond after it was
compressed. If you are delivering a pure text respond--gzip compression will sometimes reduce the size of
the respond by 10 times.

Y ou should analyze al the involved components when you try to create the best service for your users,
and not the web server or the code that the web server executes. A Web serviceis like a car, if one of the
parts or mechanisms is broken the car may not go smoothly and it can even stop dead if pushed too far
without first fixing it.

2 29 Jan 2004

Performance Tuning 1.3 System Analysis

And let me stress it again--if you want to have a success in the web dmurgivessyou should start
worrying about the client'®rowsng expaienceandnot only how good your codbenchmarksare.

1.3 |System AnalysiS

Before we try to solve a problem we needdertify it. In our case we want to get the bpstfomance
we can with as littlenondary and timeinvesmentaspossble.

1.3.1|Software Requirement$

Covered in the sectidiChoos$ng anOpeiating Systent.

1.3.2 [Hardware Requirements

(META: Only partialanaysis Please submit more points. Many pointssr@eredaround thedocument
and should bgathteredhere, taepresentthe whole picture. It also should be merged with the alten#)

You need to analyze all of the problerdisnersions There are several things that need todsicered
e How long does it take to process eaghuest?
® How many requests can you procsssultaneously?
e How manysimultaneousrequests are ygulaming to get?
® At what rate are yoaxpecing to receiverequests?

The first one igrobably the easiest toptimize. Following the perfomanceoptimization tips in this and
otherdocumentsallows a perl (mod_perfjrogranmerto exercisetheir code and improvie

The second one isfanction of RAM. How much RAM is in each box, how many boxes do you have, and
how much RAM does each mod_perl process ideftiply the first two and divide by the third. Ask
yourself whether it is better to switch to anothpossbly just asinefficientlanguage or whether that will
actually cost more thathrowing anothempoweiful machine into theack.

Also askyourself whetherswitching to another language will even help. In scapelications, for example
to link Oracle runtime libraries, a huge chunk of memory is needed so you would save nothing even if you
switched from Perl t€.

The last two arémportant You need aealstic estimate Are you reallyexpecing 8 million hits per day?
What is the expected peak load, and what kind of response time do you geaditiee? Remenier that
these numbers might chandeagically when you apply code changes and your site becomes popular.
Remenberthat when you get a very high hit rate, the resoteqairenentsdon’t grow linearly buexpo
nertially!

29 Jan 2004 3

1.4 Essential Tools

More coverage is provided in the section "Choosing Hardware".

1.4 [Essential Tools

In order to improve performance we need measurement tools. The main tool categories are benchmarking
and code profiling.

It's important to understand that in a major number of the benchmarking tests that we will execute we will
not look at the absolute result numbers but the relation between the two and more result sets, since in most
cases we would try to show which coding approach is preferable and the you shouldn’t try to compare the
absolute results collected while running the same benchmarks on your machine, since you won’t have the
exact hardware and software setup anyway. So this kind of comparison would be misleading. Compare the
relative results from the tests running on your machine, don’t compare your absolute results with those in
this Guide.

1.4.1 Benchmarking Applicationg

How much faster is mod_perl than mod_cgi (aka plain perl/CGI)? There are many ways to benchmark the
two. I'll present a few examples and numbers below. Check out the benchmar k directory of the
mod_perl distribution for more examples.

If you are going to write your own benchmarking utility, use the Benchmar k module for heavy scripts
and the Ti me: : H Res module for very fast scripts (faster than 1 sec) where you will need better time
precision.

There is no need to write a special benchmark though. If you want to impress your boss or colleagues, just
take some heavy CGI script you have (e.g. a script that crunches some data and prints the results to
STDOUT), open 2 xterms and call the same script in mod_perl mode in one xterm and in mod_cgi mode
in the other. You can use | wp- get from the LWP package to emulate the browser. The benchmar k
directory of the mod_perl distribution includes such an example.

See also two tools for benchmarking: |ApacheBench| and|crashme test|

1.4.1.1 Benchmarking Perl Codd

If you are going to write your own benchmarking utility, use the Benchmar k module and the
Ti me: : Hi Res module where you need better time precision (<10msec).

An example of the Benchmar k. pmmodule usage:
benchnar k. pl

use Benchmark;

timethis (1_000,

sub {
my $x = 100;
ny $y = log ($x ** 100) for (0..10000);

1)

4 29 Jan 2004

Performance Tuning 1.4.1 Benchmarking Applications

% per| benchnmar k. pl
tinmethis 1000: 25 wallclock secs (24.93 usr + 0.00 sys = 24.93 CPU)

If you want to get the benchmark results in micro-seconds you will have to use the Ti ne: : Hi Res
module, its usageissimilar to Benchnar k’s.

use Tine::H Res gw(getti neofday tv_interval);

ny $start_tinme = [gettineofday];

sub_that _takes_a_teeny_bit_of _tinme();

ny $end_time = [gettinmeofday];

nmy $el apsed = tv_interval ($start _tine, $end_tine);
print "The sub took $el apsed seconds."

See also thefcrashme tesl]
1.4.1.2 Benchmarking a Graphic Hits Counter with Persistent DB Connectiong

Here are the numbers from Michael Parker’s mod perl presentation at the Perl Conference (Aug, 98).
(Sorry, there used to be links here to the source, but they went dead one day, so | removed them). The
script is astandard hits counter, but it logs the counts into amysqgl relational DataBase:

Benchmark: timng 100 iterations of cgi, perl... [rate 1:28]
cgi: 56 secs (0.33 usr 0.28 sys = 0.61 cpu)
perl: 2 secs (0.31 usr 0.27 sys = 0.58 cpu)
Benchmark: timng 1000 iterations of cgi,perl... [rate 1:21]
cgi: 567 secs (3.27 usr 2.83 sys = 6.10 cpu)
perl: 26 secs (3.11 usr 2.53 sys = 5.64 cpu)

Benchmark: timng 10000 iterations of cgi, perl [rate 1:21]

cgi: 6494 secs (34.87 usr 26.68 sys
perl: 299 secs (32.51 usr 23.98 sys

61. 55 cpu)
56.49 cpu)

We don’t know what server configurations were used for these tests, but | guess the nhumbers speak for
themselves.

The source code of the script was available at [http://www.realtime.net/~parkerm/perl/conf98/sld006.htm{
It's now adead link. If you know its new location, please let me know.

1.4.1.3 Benchmarking Response Timeg

In the next sections we will talk about tools that allow us to benchmark response times.

1.4.1.3.1 |ApacheBench|

ApacheBench (ab) is atool for benchmarking your Apache HTTP server. It is designed to give you an
idea of the performance that your current Apache installation can give. In particular, it shows you how
many requests per second your Apache server is capable of serving. The ab tool comes bundled with the
Apache source distribution.

29 Jan 2004 5

http://www.realtime.net/~parkerm/perl/conf98/sld006.htm

1.4.1 Benchmarking Applications

Let's try it. We will simulate 10 wusers concurrently requesting a very light script at
www. exanpl e. cont perl /test. pl.Eachsimulated user makes 10 requests.

% ./ab -n 100 -¢c 10 www. exanpl e.conlperl/test.p

The results are:

Docunent Pat h: /perl/test.pl
Docunent Lengt h: 319 bytes
Concurrency Level : 10

Time taken for tests: 0. 715 seconds
Conpl et e requests: 100

Fai |l ed requests: 0

Total transferred: 60700 bytes

HTM. transferred: 31900 bytes
Requests per second: 139. 86

Transfer rate: 84.90 kb/s received

Connection Tines (mns)
mn avg max

Connect : 0 0 3
Processi ng: 13 67 71
Tot al : 13 67 74

We can see that under load of ten concurrent users our server is capable of processing 140 requests per
second. Of course this benchmark is correct only when the script under test is used. We can also learn
about the average processing time, which in this case was 67 milli-seconds. Other numbers reported by ab
may or may not be of interest to you.

For example if we believe that the script perl/test.pl is not efficient we will try to improve it and run the
benchmark again, to see whether we have any improve in performance.

HTTPD: : Bench: : ApacheBench, available from CPAN, provides a Perl interface for ab.

1.4.1.3.2 |nttperf

httperf is a utility written by David Mosberger. Just like ApacheBench, it measures the performance of the
webserver.

A sample command line is shown below:

httperf --server hostname --port 80 --uri /test.htm \
--rate 150 --numconn 27000 --numcall 1 --tineout 5

This command causes httperf to use the web server on the host with |P name hostname, running at port 80.
The web page being retrieved is /test.html and, in this simple test, the same page is retrieved repeatedly.
The rate at which requests are issued is 150 per second. The test involves initiating a total of 27,000 TCP
connections and on each connection one HTTP call is performed. A call consists of sending a request and
receiving areply.

6 29 Jan 2004

Performance Tuning 1.4.1 Benchmarking Applications

The timeout option defines the number of seconds that the client is willing to wait to hear back from the
server. If this timeout expires, the tool considers the corresponding call to have failed. Note that with a
total of 27,000 connections and a rate of 150 per second, the total test duration will be approximately 180
seconds (27,000/150), independently of what load the server can actually sustain. Here is a result that one
might get:

Total : connections 27000 requests 26701 replies 26701 test-duration 179.996 s

Connection rate: 150.0 conn/s (6.7 ns/conn, <=47 concurrent connections)
Connection tine [nms]: mn 1.1 avg 5.0 nax 315.0 nedian 2.5 stddev 13.0
Connection tinme [ns]: connect 0.3

Request rate: 148.3 req/s (6.7 ns/req)
Request size [B]: 72.0

Reply rate [replies/s]: mn 139.8 avg 148.3 nmax 150. 3 stddev 2.7 (36 sanples)
Reply tinme [ns]: response 4.6 transfer 0.0

Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)

Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

CPU tinme [s]: user 55.31 system 124.41 (user 30.7% system 69. 1% total 99.8%
Net 1/O 190.9 KB/s (1.6*10"6 bps)

Errors: total 299 client-tinp 299 socket-tim O connrefused 0 connreset O
Errors: fd-unavail 0O addrunavail 0 ftab-full O other 0

httperf download

14133

htt p_| oad is yet another utility that does webserver load testing. It can simulate 33.6kbps modem
connection (-throttle) and allows you to provide afile with alist of URLS, which we be fetched randomly.
Y ou can specify how many parallel connections to run using the -parallel N option, or you can specify the
number of requests to generate per second with -rate N option. Finally you can tell the utility when to stop
by specifying either the test time length (-seconds N) or the total number of fetches (-fetches N).

A sample run with the file urls including:

http://ww. exanpl e. coni f oo/
http://ww. exanpl e. coni bar/

We ask to generate three requests per second and run for only two seconds. Here is the generated output:

% ./http_load -rate 3 -seconds 2 urls

http://ww. exanpl e. coni foo/: check-connect SUCCEEDED, i gnoring
http://ww. exanpl e. coni bar/: check-connect SUCCEEDED, i gnoring
http://ww. exanpl e. coni bar/: check-connect SUCCEEDED, i gnoring
http://ww. exanpl e. coni bar/: check-connect SUCCEEDED, i gnoring
http://ww. exanpl e. coni foo/: check-connect SUCCEEDED, i gnoring
5 fetches, 3 nax parallel, 96870 bytes, in 2.00258 seconds
19374 mean byt es/connection

2.49678 fetches/sec, 48372.7 bytes/sec

msecs/ connect: 1.805 nean, 5.24 max, 0.79 min
nsecs/first-response: 291.289 nean, 560.338 max, 34.349 nin

29 Jan 2004 7

1.4.1 Benchmarking Applications

So you can see that it has reported 2.5 requests per second. Of course for the real test you will want to load
the server heavily and run the test for a longer time to get ralgbleresults.

Note that when you provide a file with a list of URLs make sure that you don’'t have empty lines in it. If
you do -- the utility won't worlcomplainng:

./http_l oad: unknown protocol -

http_loaddowrload

1.4.1.3.4 the crashme Script]

This is another crashme suiteriginally written by Michael Schilli (and was located at
[http://www.linux-magazin.dsite, but now the link has gone). | made a fawadificaions mostly adding
my() opektors. | also allowed it to accept more than one url to test, siooetimesyou want to test more
than onescript.

The tool provides the same resultsashsabove but it also allows you to set the timeout value, so requests
will fail if not served within the time out period. You also get valuesLfatrency (seconds per request)
andThroughput (requests per second). It can do a comietelation of your favorite Netscape browser

;) and give you a bettgicture.

| have noticed while running these tlwenchmarking suites, thatb gave me results from two and a half
to three times better. Both suites were run on the same machine, with the same load andghesame
ters but theimplementationsweredifferent

Sampleoutput:

URL(S): http://ww. exanpl e. conl perl/access/ access. cgi
Total Requests: 100
Paral | el Agents: 10

Succeeded: 100 (100.00%
Errors: NONE

Total Time: 9. 39 secs

Thr oughput : 10. 65 Requests/sec
Lat ency: 0. 85 secs/ Request

And thecode:

The LWP::Paralel::UseAgentbencimark code/lwp-bench.pl:
#! [usr/bin/perl -w

use LWpP: : Parallel:: UserAgent;
use Time:: H Res qw(gettimeofday tv_interval);

use strict;

#Hit#

Configuration
#itH

nmy $nof _paral |l el _connections = 10;

8 29 Jan 2004

http://www.linux-magazin.de/

Performance Tuning 1.4.1 Benchmarking Applications

nmy $nof _requests_total = 100;
ny $tinmeout = 10;
my @rls = (
"http://ww. exanpl e. com 81/ perl /faq_manager/faq_nanager. pl’
"http://ww. exanpl e. com 81/ perl /access/ access. cgi’

);

HU I R
Derived Class for latency timng
HAR R HHHH PR R HH T

package MyParal | el Agent;
@4 Parall el Agent::1SA = qw(LWP: : Paral | el : : User Agent) ;

use strict;

Hi#H

|s called when connection is opened
Ha#

sub on_connect {

ny ($self, $request, $response, $entry) = @;

$sel f->{ start_tines}->{$entry} = [Tine:: H Res::gettinmeofday];
}

#Hit#
Are called when connection is closed
it
sub on_return {
ny ($self, $request, $response, $entry) = @;
ny $start = $self->{_ start_tines}->{Sentry};
$sel f->{_latency_total} += Tine::H Res::tv_interval ($start);

}

sub on_failure {
on_return(@); # Sane procedure

}

Hit
Access function for new instance var
#Hitt
sub get _latency_total {
return shift->{__latency_total};

}

B R I A A
package nain

R R R B R I
Hit#H

Init parallel user agent

Hit#

ny $ua = MyParal | el Agent - >new();

$ua- >agent (" pounder/1.0");

$ua- >max_r eq($nof _paral | el _connecti ons);

$ua->redirect(0); # No redirects
Hit#

Register all requests

i

29 Jan 2004 9

1.4.1 Benchmarking Applications

foreach (1..%nof _requests_total) {
foreach ny $url (@irls) {
ny $request = HITP:: Request->new(’ CET ,
$ua- >r egi st er ($r equest) ;
}
}

Hit#

Launch processes and check tinme

#HH#

ny $start_time = [gettineofday];

ny $results = $ua->wait ($tineout);

nmy $total tine = tv_interval ($start_tine);

#it#
Requests all done, check results
Hit#

ny $succeeded = 0;
nmy Y%errors = ();

foreach ny $entry (val ues %bresults) {
ny $response = $entry->response();
i f ($response->is_success()) {

$Surl);

$succeeded++; # Another satisfied custoner

} else {
Error, save the nessage

$r esponse- >nessage(" TI MEQUT") unl ess $response->code();

$errors{$response- >message} ++;
}
}

i
Format errors if any from%rrors
HitH

my $errors =join(’,’, map "$_ (Serrors{$_})", keys %rrors);
$errors = "NONE" unl ess $errors;

Hit#

Format results

Hit#

#@urls = map {($_,".")} @irls;

$succeeded * 100 / ($nof _requests_total

ny @ = (
"URL(s)" => join("\n\t\t ", @irls),
"Total Requests" => $nof _requests_total * @irls,
"Parall el Agents" => $nof_parallel_connections,
" Succeeded" => sprintf("$succeeded (% 2f %89\ n",
“Errors" => S$errors,
"Total Tine" => sprintf("%2f secs\n", $total _time),
" Thr oughput " => sprintf("% 2f Requests/sec\n",
($nof _requests_total
"Lat ency" => sprintf("% 2f secs/Request",

($ua->get latency total () ||
($nof _requests_total *

)

10

@irls

0)
)

/
)

*@rls)),

*@rls) / $total _tine),

29 Jan 2004

Performance Tuning 1.4.1 Benchmarking Applications

ny ($left, $right);

#H

Print out statistics
#it

format STDOUT =
<< @
"$left:", $ri ght

while(($left, $right) = splice(@, 0, 2)) {
wite;
}

1.4.1.4 Benchmarking PerlHandlerg

The Apache: : Ti mei t module doe$er | Handl er Benchmarking. With the help of this module you
can log the time taken to process the request, just like you'd uBetlvdynmar k module tobenchmark a
regular Perl script. Of course you can extend this module to perform more adymocedig like
putting the results into a database for a lptecesisg. But all it takes is adding thisonfiguration direc
tive insidehttpd.conf:

Per | Fi xupHandl er Apache:: Tineit

Since scripts running undépache: : Regi st ry are running inside thBerHardler these ardench
markedaswell.

An example of the lines which show up in #neor_log file:

timng request for /perl/setupenvoff.pl:
0 wal I cl ock secs (0.04 usr + 0.01 sys

timng request for /perl/setupenvoff.npl:
0 wal I cl ock secs (0.03 usr + 0.00 sys = 0.03 CPU)

0.05 CPU)

The Apache: : Ti nei t package is a part of thispache-Perl-contrib files colledion available from
CPAN.

1.4.1.5 [Other Benchmarking Toolg

Other tools you may want to take a lcaitk
e HTTP: : WebTest

HTTP: : WebTest module runs tests on remote URLs or local web filesntainng
Perl/JSP/HTML/JavaScript/etc. agdneatesa detailed teseport.

It's availablefrom CPAN.
e HITP: : Monkeywr ench

HTTP: : Monkeyw ench is a test-harnesgpplicaion to test the integrity of a user’s path through a
website.

29 Jan 2004 11

1.4.2 Code Profiling Techniques

It's available from CPAN.
® Apache: : Recorder and HTTP: : Recor dedSessi on

Apache::Recorder isamod_perl handler that records an HTTP session and stores it on the web
server’s file system. HTTP::Record edSession reads the recorded session from the file system,
and formats it for playback using HTTP::WebTest or HTTP::Monkey wrench . This is useful
when writing acceptance and regression tests.

It's available from CPAN.

1.4.2 |Code Profiling Techniqueq

The profiling process helps you to determine which subroutines or just snippets of code take the longest
time to execute and which subroutines are called most often. Probably you will want to optimize those.

When do you need to profile your code? You do that when you suspect that some part of your code is
called very often and may be there is a need to optimize it to significantly improve the overall perfor-
mance.

For example if you have ever used the diag nostics pragma, which extends the terse diagnostics
normally emitted by both the Perl compiler and the Perl interpreter, augmenting them with the more
verbose and endearing descriptions found in the perl diag manpage. You know that it might tremen-
dously slow you code down, so let’ sfirst provethat it is correct.

We will run a benchmark, once with diagnostics enabled and once disabled, on a subroutine called
test_code.

The code inside the subroutine does an arithmetic and a numeric comparison of two strings. It assigns one
string to another if the condition tests true but the condition always tests false. To demonstrate the diag -
nostics overhead the comparison operator is intentionally wrong. It should be a string comparison, not
anumeric one.

use Benchmark;
use diagnostics;
use strict;

my $count = 50000;

disable diagnostics;
my $t1 = timeit($count,\&test_code);

enable diagnostics;
my $t2 = timeit($count,\&test_code);

print "Off: " timestr($t1),"\n";
print "On : " timestr($t2),"\n";

sub test_code{

my ($a,$b) = qw(foo bar);
my $c;

12 29 Jan 2004

Performance Tuning 1.4.2 Code Profiling Techniques

if ($a == $b) {
$c = 3a;
}
}

For only afew lines of code we get:

Of: 1 wallclock secs (0.81 usr + 0.00 sys
On : 13 wallclock secs (12.54 usr + 0.01 sys

= 0.81 CPY

= 12.55 CPY)

With di agnhosti cs enabled, the subroutine test_code() is 16 times slower, than with di agnosti cs
disabled!

Now let’s fix the comparison the way it should be, by replacing == with eq, so we get:

ny (%$a, $b) = gw(foo bar);
ny $c;
if ($a eq $b) {
$c = $a;
}

and run the same benchmark again:

Of: 1 wallclock secs (0.57 usr + 0.00 sys
On: 1 wallclock secs (0.56 usr + 0.00 sys

0.57 CPU)
0.56 CPU)

Now thereis no overhead at al. The di aghost i cs pragma slows things down only when warnings are
generated.

After we have verified that using the di agnosti cs pragma might adds a big overhead to execution
runtime, let's use the code profiling to understand why this happens. We are going to use
Devel : : DProf to profile the code. Let’s use this code:

di agnosti cs. pl
use di agnosti cs;
print "Content-type:text/htm\n\n";
test _code();
sub test_code{
ny ($a, $b) = gw(foo bar);
ny $c;
if ($a == $b) {
$c = $a;
}
}

Run it with the profiler enabled, and then create the profiling stastics with the help of dprofpp:

% per| -d: DProf diagnostics.pl
% dpr of pp

0. 342236 Seconds
0. 335420 Seconds

Total El apsed Tine
User +System Ti ne
Excl usi ve Ti mes

29 Jan 2004 13

1.4.2 Code Profiling Techniques

odi me Excl Sec Cumul S #Calls sec/call Csec/c

92.1
14.9
. 98
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

[eNeoNeoNoNoNeoNoNoNolNoNoNoll b

. 309
050
010
000
000
000
000
000
000
000
000
000
000
000
000

©C00000000000000

0.

0.

0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.

358
039
010
000
000
000
000
000
000
000
000
000
000
000
000

1
3161
2

©C00000000000000

NNNNNEFEPRPRPNPEPRPRPDNDN

. 3089 0.3578
. 0000 0. 0000
. 0050 0. 0050

0000 -
0000 -
0000 -
0000 -
0000 -
0000 -
0000 -
0000 -
0000 -
0000 -
0000 -

. 0000 -

Name

mai n: : BEG N
di agnosti cs:
di agnosti cs:

unescape
:BEG N

Exporter::inport
Exporter::export
Config::BEG N
Config:: Tl EHASH
Config:: FETCH

di agnosti cs:

Jinport

mai n: : test _code

di agnosti cs:
di agnostics::
di agnostics::
di agnostics::
di agnostics::

swarn_trap

splainthis
transno
shorten

aut odescri be

It's not easy to see what is responsible for this enormous overhead, even if mai n: : BEG N seems to be
running most of the time. To get the full picture we must see the OPs tree, which shows us who calls
whom, so we run:

% dprofpp -T

and the output is:

mai n: : BEG N
di agnostics:: BEG N
Exporter::inport
Exporter::export
di agnostics:: BEG N
Config::BEG N
Confi g:: TI EHASH
Exporter::inport
Exporter::export
Config:: FETCH
Config:: FETCH
di agnosti cs: : unescape

di agnosti cs: : unescape

di agnostics: :inport
di agnostics::warn_trap

di agnostics::splainthis
transmo

di agnostics::

di agnostics::

di agnostics::
mai n: : test _code

sho
aut

rten
odescri be

di agnostics::warn_trap

di agnostics::splainthis
di agnosti cs:
di agnosti cs:
di agnosti cs:
di agnostics::warn_trap

14

t ransno
shorten
aut odescri be

29 Jan 2004

Performance Tuning 1.4.2 Code Profiling Techniques

diagnostics::splainthis
diagnostics::transmo
diagnostics::shorten
diagnostics::autodescribe

So we see that two executions of diag nostics ::BEGIN and 3161 of diag nostics ::unescape
are responsible for most of the running overhead.

If we comment out thediag nostics module, we get:

Total Elapsed Time = 0.079974 Seconds
User+System Time = 0.059974 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name
0.00 0.000-0.000 1 0.0000 - main:test_code

It is possible to profile code running under mod_perl with the Devel::DProf module, available on
CPAN. However, you must have apache version 1.3b3 or higher and the PerIChildEx itHandler
enabled during the httpd build process. When the server is started, Devel::DProf installs an ENDblock
to write the tmon.out file. This block will be called at server shutdown. Here is how to start and stop a
server with the profiler enabled:

% setenv PERL50OPT -d:DProf

% httpd -X -d ‘pwd‘ &

... make some requests to the server here ...
% kill ‘cat logs/httpd.pid*

% unsetenv PERL50PT

% dprofpp

The Devel::DProf package is a Perl code profiler. It will collect information on the execution time of
a Perl script and of the subs in that script (remember that print() and map() arejust like any other
subroutines you write, but they come bundled with Perl!)

Another approach is to use Apache::DProf , which hooks Devel::DProf into mod_perl. The
Apache::DProf = module will run a Devel::DProf profiler inside each child server and write the
tmon.out file in the directory $Server Root /logs/dprof/$$ when the child is shutdown (where $$
is the number of the child process). All it takesis to add to httpd.conf:

PerlModule Apache::DProf

Remember that any PerlHandler that was pulled in before Apache::DProf in the httpd.conf or
startup.pl, will not have its code debugging information inserted. To run dprofpp , chdir to $Server -
Root /logs/dprof/$$ and run;

% dprofpp

(Lookup the Server Root directive’ svalue in httpd.conf to figure out what’s your $Server Root .)

29 Jan 2004 15

1.4.3 Measuring the Memory of the Process

1.4.3 [Measuring the Memory of the Process

Very important aspect of performance tuning is to make sure that your applications don’t use much
memory, since if they do you cannot run many servers and therefore in most cases under a heavy load the
overall performance degrades.

In addition the code may not be clean and leak memory, which is even worse, since if the same process
serves many requests and after each request more memory is used, after awhile all RAM will be used and
machine will start swapping (use the swap partition) which isavery undesirable event, sinceit may lead to
amachine crash.

The simplest way to figure out how big the processes are and see whether they grow is to watch the output
of top(1) or ps(1) utilities.

For example the output of top(1):

8:5lam up 66 days, 1:44, 1 user, |oad average: 1.09, 2.27, 2.61
95 processes: 92 sleeping, 3 running, O zonbie, O stopped
CPU states: 54.0%user, 9.4%system 1.7%nice, 34.7%idle
Mem 387664K av, 309692K used, 77972K free, 111092K shrd, 70944K buff

Swap: 128484K av, 11176K used, 117308K free 170824K cached
PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %WEM Tl ME COMVAND

29225 nobody 0 0 9760 9760 7132 S 0 12.5 2.5 0: 00 httpd_perl
29220 nobody 0 0 9540 9540 7136 S 0 9.0 2.4 0: 00 httpd_perl
29215 nobody 1 0 9672 9672 6884 S 0 46 2.4 0: 01 httpd_perl
29255 root 7 0 1036 1036 824 R 0 3.2 0.2 0:01 top

376 squid O 0 15920 14M 556 S 0 1.1 3.8 209:12 squid
29227 nysgql 5 5 1892 1892 956 S N 0 1.1 0.4 0: 00 nysqld
29223 nysgql 5 5 1892 1892 956 S N 0 0.9 0.4 0: 00 nysqld
29234 nysgql 5 5 1892 1892 956 S N 0 0.9 0.4 0: 00 nysqld

Which starts with overall information of the system and then displays the most active processes at the
given moment. So for example if we look at the ht t pd_per | processes we can see the size of the resi-
dent (RSS) and shared (SHARE) memory segments. This sample was taken on the production server
running linux.

But of course we want to see all the apache/mod_perl processes, and that’ s where ps(1) comesto help. The
options of this utility vary from one Unix flavor to another, and some flavors provide their own tools.
Let’s check the information about mod_per| processes:

% ps -0 pid,user,rss,vsize, %pu, %rem ucomm - C htt pd_per

PI D USER RSS VSZ %CPU %EM COMVAND
29213 root 8584 10264 0.0 2.2 httpd_per
29215 nobody 9740 11316 1.0 2.5 httpd_perl
29216 nobody 9668 11252 0.7 2.4 httpd_perl
29217 nobody 9824 11408 0.6 2.5 httpd_perl
29218 nobody 9712 11292 0.6 2.5 httpd_perl
29219 nobody 8860 10528 0.0 2.2 httpd_perl
29220 nobody 9616 11200 0.5 2.4 httpd_perl
29221 nobody 8860 10528 0.0 2.2 httpd_perl

16 29 Jan 2004

Performance Tuning 1.4.3 Measuring the Memory of the Process

29222 nobody 8860 10528 0.0 2.2 httpd_perl
29224 nobody 8860 10528 0.0 2.2 httpd_perl
29225 nobody 9760 11340 0.7 2.5 httpd_perl
29235 nobody 9524 11104 0.4 2.4 httpd_perl

Now you can see the resident (RSS) and virtual (VSZ) memory segments (and shared memory segment if
you ask for it) of al mod_perl processes. Please refer to the top(1) and ps(1) man pages for more informa-
tion.

You probably agree that using top(1) and ps(1) is cumbersome if we want to use memory size sampling
during the benchmark test. We want to have away to print memory sizes during the program execution at
desired places. If you have GTop modules installed, which is a perl glue to the | i bgt op library, it's
exactly what we need.

Note: GTop requiresthel i bgt op library but is not available for al platforms. See the docs in the source
at [ftp://ftp.gnome.org/pub/GNOM E/stable/sources/gtop/] to check whether your platform/flavor is
supported.

GTop provides an API for retrieval of information about processes and the whole system. We are inter-
ested only in memory sampling APl methods. To print all the process related memory information we can
execute the following code:

use Grlop;
ny $gtop = Glop->new,
ny $proc_nem = $gt op- >proc_nen($3) ;
for (gwW size vsize share rss)) {
printf " % => 9%d\n", $_, $proc_mem>$ ();
}

When executed we see the following output (in bytes):

size => 1900544
vsi ze => 3108864
share => 1392640

rss => 1900544

So if we are interested in to print the process resident memory segment before and after some event we
just do it: For example if we want to see how much extra memory was allocated after a variable creation
we can write the following code:

use GTop;

ny $gtop = Glop- >new,

ny $before = $gt op->proc_men($$) - >rss;

ny $x = 'a’ x 10000;

ny $after = $gtop->proc_men($$) - >rss;
print "diff: ", $after-$before, " bytes\n";

and the output

di ff: 20480 bytes

29 Jan 2004 17

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/

1.4.4 Measuring the Memory Usage of Subroutines

So we can see that Perl has allocated extra 20480 bytes to create $x (of course the creation of af t er
needed afew bytes aswell, but it’sinsignificant compared to a size of $x)

The Apache: : V\bni t or module with help of the GTop module alows you to watch al your system
information using your favorite browser from anywhere in the world without a need to telnet to your
machine. If you are looking at what information you can retrieve with GTop, you should look at
Apache: : VMoni t or asit deploysabig part of the APl GTop provides.

If you are running a true BSD system, you may use BSD: : Resour ce: : get r usage instead of GTop.
For example:

print "used menmory = ".(BSD:: Resource::getrusage)[2]."\n"

For more information refer to the BSD: : Resour ce manpage.

1.4.4 Measuring the Memory Usage of Subroutines|

With help of Apache: : St at us you can find out the size of each and every subroutine.
1. Build and install mod_perl as you always do, make sure it’sversion 1.22 or higher.

2. Configure /perl-statusif you haven't already:

<Location /perl-status>
Set Handl er perl -scri pt
Per | Handl er Apache: : St at us
order deny, al | ow
#deny from all
#allow from. ..
</ Locati on>

3. Add to httpd.conf
Per| Set Var StatusOptionsAll On
Per| Set Var StatusTerse On
Per| Set Var StatusTerseSi ze On
Per| Set Var St atusTerseSi zeMai nSurmary On

Per| Modul e B:: TerseSi ze

4. Start the server (best in httpd -X mode)

5. From your favorite browser fetchihttp://localhost/perl-statug

6. Click on’Loaded Modules' or ' Compiled Registry Scripts

7. Click on the module or script of your choice (you might need to run some script/handler before you
will seeit here unless it was preloaded)

18 29 Jan 2004

http://localhost/perl-status

Performance Tuning

8. Click on’Memory Usage' at the bottom

9. You should see al the subroutines and their respective sizes.

1.4.4 Measuring the Memory Usage of Subroutines

Now you can start to optimize your code. Or test which of the several implementationsis of the least size.

For examplelet's compare CA . pnis OO vs. procedural interfaces:

As you will see below the first OO script uses about 2k bytes while the second script (procedural inter-

face) uses about 5k.

Here are the code examples and the numbers:

1.
cgi _oo0.p
use Cd ();
ny $q = CAd - >new,
print $q->header;
print $g->b("Hello");
2.

use CAd gw header b);

print header();
print b("Hello");

After executing each script in single server mode (-X) the results are:

1.
Total s: 1966 bytes
handl er 1514 bytes
exit 116 bytes
2.

Total s: 4710 bytes

handl er 1117 bytes
basefont 120 bytes
frameset 120 bytes
caption 119 bytes
appl et 118 bytes
scri pt 118 bytes
ilayer 118 bytes
header 118 bytes
strike 118 bytes

| ayer 117 bytes
tabl e 117 bytes
frame 117 bytes
style 117 bytes

29 Jan 2004

[eNeoNeoNoNoNeoNoNoNoNoNelNolleo)

27 OPs

27 OPs
0 OPs

19 OPs

19

1.4.4 Measuring the Memory Usage of Subroutines

Par am 117 bytes | 0 OPs
smal | 117 bytes | 0 OPs
enbed 117 bytes | 0 OPs
font 116 bytes | 0 OPs
span 116 bytes | 0 OPs
exit 116 bytes | 0 OPs
big 115 bytes | 0 OPs
div 115 bytes | 0 OPs
sup 115 bytes | 0 OPs
Sub 115 bytes | 0 OPs
TR 114 bytes | 0 OPs
td 114 bytes | 0 OPs
Tr 114 bytes | 0 OPs
th 114 bytes | 0 OPs
b 113 bytes | 0 OPs

Note, that the above is correct if you didn’t precompile all CA . prris methods at server startup. Since if
you did, the procedura interface in the second test will take up to 18k and not 5k as we saw. That's
because the whole of CA . pris namespace is inherited and it already has all its methods compiled, so it
doesn't really matter whether you attempt to import only the symbols that you need. So if you have:

use CAd gw-conpile :all);
in the server startup script. Having:
use CA gw header);
or

use CA gw:all);

is essentially the same. Y ou will have al the symbols precompiled at startup imported even if you ask for
only one symbol. It seemsto me like a bug, but probably that's how CA . pmworks.

BTW, you can check the number of opcodes in the code by a simple command line run. For example
comparing 'my %hash’ vs. "my %hash = ().
% perl -MO=Terse -e 'ny Y%ash’ | we -|
-e syntax K
4
% perl -MO=Terse -e 'ny %ash = ()’ | we -1

-e syntax K
10

Thefirst one has less opcodes.

Note that you shouldn't use Apache: : St at us module on production server as it adds quite a bit of
overhead for each request.

20 29 Jan 2004

Performance Tuning 1.5 Know Y our Operating System

1.5 [Know Your Operating System

In order to get the best performance it helps to get intimately familiar with the Operating System (OS) the
web server is running on. There are many OS specific things that you may be able to optimize which will
improve your web server’s speed, reliability and security.

The following sections will reveal some of the most important details you should know about your OS.

1.5.1 [Sharing Memor}

The sharing of memory is one very important factor. If your OS supports it (and most sane systems do),
you might save memory by sharing it between child processes. This is only possible when you preload
code at server startup. However, during a child process' life its memory pages tend to become unshared.

There is no way we can make Perl allocate memory so that (dynamic) variables land on different memory
pages from constants, so the copy-on-write effect (we will explain thisin a moment) will hit you aimost at
random.

If you are pre-loading many modules you might be able to trade off the memory that stays shared against
the time for an occasiona fork by tuning MaxRequest sPer Chi | d. Each time a child reaches this
upper limit and dies it should release its unshared pages. The new child which replaces it will share its
fresh pages until it scribbles on them.

Theideal is a point where your processes usually restart before too much memory becomes unshared. Y ou
should take some measurements to see if it makes a real difference, and to find the range of reasonable
values. If you have success with this tuning the value of MaxRequest sPer Chi | d will probably be
peculiar to your situation and may change with changing circumstances.

It is very important to understand that your goal is not to have MaxRequest sPer Chi | d to be 10000.
Having a child serving 300 requests on precompiled code is aready a huge overall speedup, so if it is 100
or 10000 it probably does not really matter if you can save RAM by using alower value.

Do not forget that if you preload most of your code at server startup, the newly forked child gets ready
very fast, because it inherits most of the preloaded code and the perl interpreter from the parent process.

During the life of the child its memory pages (which aren’t really its own to start with, it uses the parent’s
pages) gradually get ‘dirty’ - variables which were originally inherited and shared are updated or modified
-- and the copy-on-write happens. This reduces the number of shared memory pages, thus increasing the
memory requirement. Killing the child and spawning a new one alows the new child to get back to the
pristine shared memory of the parent process.

The recommendation is that MaxRequest sPer Chi | d should not be too large, otherwise you lose some
of the benefit of sharing memory.

See|Choosing MaxReguestsPerChild for more about tuning the Max Request sPer Chi | d parameter.

29 Jan 2004 21

1.5.1 Sharing Memory

1.5.1.1 [How Shared IsMy Memory?

You've probably noticed that the word shared is repeated many times in relation to mod_perl. Indeed,
shared memory might save you alot of money, since with sharing in place you can run many more servers
than without it. Seelthe Formula and the numberg

How much shared memory do you have? You can see it by either using the memory utility that comes
with your system or you can deploy the GTop module:

use Glop ();
print "Shared nenory of the current process: "
GTop- >new >pr oc_nmem 3) - >share, "\ n";

print "Total shared nenory: "
GTlop- >new >mem >share, "\ n";

When you watch the output of the t op utility, don’t confuse the RES (or RSS) columns with the SHARE
column. RES is RESident memory, which is the size of pages currently swapped in.

1.5.1.2 [Calculating Real Memory Usage

| have shown how to measure the size of the process shared memory, but we still want to know what the
real memory usage is. Obviously this cannot be calculated ssmply by adding up the memory size of each
process because that wouldn’t account for the shared memory.

On the other hand we cannot just subtract the shared memory size from the total size to get the real
memory usage numbers, because in redlity each process has a different history of processed requests,
therefore the shared memory is not the same for all processes.

So how do we measure the real memory size used by the server we run? It’ s probably too difficult to give
the exact number, but I've found a way to get a fair approximation which was verified in the following
way. | have calculated the real memory used, by the technique you will see in the moment, and then have
stopped the Apache server and saw that the memory usage report indicated that the total used memory
went down by amost the same number I've calculated. Note that some OSs do smart memory pages
caching so you may not see the memory usage decrease as soon as it actually happens when you quit the
application.

Thisisatechnique I’ ve used:

1. For each process sum up the difference between shared and system memory. To calculate a differ-
ence for asingle process use:

use GTop;
ny $proc_mem = GTop->new >proc_nmen($$) ;
ny $diff = $proc_nmem >si ze - $proc_nem >share;

print "Difference is $diff bytes\n";

2. Now if we add the shared memory size of the process with maximum shared memory, we will get all
the memory that actually is being used by all httpd processes, except for the parent process.

22 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

3. Finally, add the size of the parent process.
Please note that this might be incorrect for your system, so you use this number on your own risk.

I’ve used this technique to display real memory usage in the module Apache::VMonitor, so instead of
trying to manually calculate this number you can use this module to do it automatically. In fact in the
calculations used in this module there is no separation between the parent and child processes, they are all
counted indifferently using the following code:

use Glop ();
ny $gtop = Glop- >new,
ny $total _real = 0;
ny $mex_shared = 0;
@mod_perl _pids is initialized by Apache:: Scoreboard, irrelevant here
my @od_perl _pids = sonme_code();
for my $pid (@rod_perl _pids)
ny $proc_nem = $gt op- >proc_nmen($pi d);

ny $size = $proc_nem >si ze($pi d);

ny $share = $proc_nmem >shar e($pi d) ;

$total _real += $size - $share;

$max_shared = $share if $max_shared < $share;

}

ny $total real += $nmax_shared;
So as you see we that we accumul ate the difference between the shared and reported memory:
$total _real += $size-S$share;
and at the end add the biggest shared process size:
ny $total _real += $max_shared,

So now $t ot al _r eal contains approximately the really used memory.

1.5.1.3 [Are My Variables Shared?

How do you find out if the code you write is shared between the processes or not? The code should be
shared, except where it is on a memory page with variables that change. Some variables are read-only in
usage and never change. For example, if you have some variables that use a lot of memory and you want
them to be read-only. Asyou know the variable becomes unshared when the process modifiesits value.

So imagine that you have this 10Mb in-memory database that resides in a single variable, you perform
various operations on it and want to make sure that the variable is still shared. For example if you do some
matching regular expression (regex) processing on this variable and want to use the pos() function, will it
make the variable unshared or not?

The Apache: : Peek module comes to rescue. Let’s write a module called MyShared.pm which we
preload at server startup, so all the variables of this module are initially shared by all children.

29 Jan 2004 23

1.5.1 Sharing Memory

MyShar ed. pm

package M Shar ed;
use Apache: : Peek;

ny $readonly = "Chris";

sub mat ch { $readonly =~ /\w g;

sub print_pos{ print "pos: ", pos($readonly),”\n";}
sub dunp { Dunp($readonly);

1;

This module declares the package My Shar ed, loads the Apache: : Peek module and defines the lexi-
cally scoped $r eadonl y variable which is supposed to be a variable of large size (think about a huge
hash data structure), but we will use a small oneto simplify this example.

The module also defines three subroutines: match() that does a ssmple character matching, print_pos() that
prints the current position of the matching engine inside the string that was last matched and finally the
dump() subroutine that calls the Apache: : Peek module’'s Dump() function to dump a raw Perl
data-type of the $r eadonl y variable.

Now we write the script that prints the process ID (PID) and calls al three functions. The goal is to check
whether pos() makes the variable dirty and therefore unshared.

share_test. pl

use MyShared;

print "Content-type: text/plain\r\n\r\n";
print "PID: $$\n";

My Shar ed: : mat ch() ;

MyShar ed: : print _pos();

My Shar ed: : dunmp() ;

Before you restart the server, in httpd.conf set:

MaxClients 2

for easier tracking. You need at least two servers to compare the print outs of the test program. Having
more than two can make the comparison process harder.

Now open two browser windows and issue the request for this script several times in both windows, so
you get different processes PIDs reported in the two windows and each process has processed a different
number of requests to the share_test.pl script.

In the first window you will see something like that:

PI D 27040

pos: 1

SV = PVMZ 0x853db20) at 0x8250e8c
REFCNT = 3
FLAGS = (PADBUSY, PADMY, SMG, PCK, pPOK)
V=20
NV =0

24 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

PV = 0x8271af0 "Chris"\0
CR = 5
LEN = 6
MAG C = 0x853dd80
MG VI RTUAL = &t bl _ngl ob
MG TYPE = ' ¢’
MG LEN = 1

And in the second window:

PID. 27041
pos: 2
SV = PVMX 0x853db20) at 0x8250e8c
REFCNT = 3
FLAGS = (PADBUSY, PADMY, SMG, POK, pPOK)
V=0
NV =0
PV = 0x8271af0 "Chris"\0
CR = 5
LEN = 6
MAG C = 0x853dd80
MG VI RTUAL = &tbl _ngl ob
MG TYPE = ' ¢’
MG LEN = 2

We see that all the addresses of the supposedly big structure are the same (0x8250e8c and
0x8271af 0), therefore the variable data structure is amost completely shared. The only differenceisin
SV. MAG C. MG_LENrecord, which is not shared.

So given that the $r eadonl y variable is a big one, its value is still shared between the processes, while
part of the variable data structure is non-shared. But it's almost insignificant because it takes a very little
memory space.

Now if you need to compare more than variable, doing it by hand can be quite time consuming and error
prune. Therefore it's better to correct the testing script to dump the Perl data-types into files (e.g
/tmp/dump.$$, where $$ is the PID of the process) and then using diff(1) utility to see whether there is
some difference.

So correcting the dump() function to write the info to the file will do the job. Notice that we use
Devel : : Peek and not Apache: : Peek. The both are amost the same, but Apache: : Peek printsit
output directly to the opened socket so we cannot intercept and redirect the result to the file. Since
Devel : : Peek dumps results to the STDERR stream we can use the old trick of saving away the default
STDERR handler, and open a new filehandler using the STDERR. In our example when Devel : : Peek
now printsto STDERR it actually prints to our file. When we are done, we make sure to restore the origi-
nal STDERR filehandler.

So thisisthe resulting code:

MyShar ed2. pm

package MyShared2;
use Devel : : Peek;

29 Jan 2004 25

1.5.1 Sharing Memory

ny $readonly = "Chris";

sub mat ch { $readonly =~ /\w g;
sub print_pos{ print "pos: ", pos($readonly),”\n";}
sub dump{
ny $dunp_file = "/tnp/dunp. $$";
print “Dunping the data into $dunp_file\n";
open OLDERR, ">&STDERR';
open STDERR, ">".$dunmp_file or die "Can’'t open $dump_file: $!";
Dunp($r eadonl y) ;
cl ose STDERR ;
open STDERR, ">&OLDERR';

}
1

When if we modify the code to use the modified module;

share_t est 2. pl

use MyShared?;

print "Content-type: text/plain\r\n\r\n";
print "PID. $$\n";

MyShar ed2: : mat ch();

MyShar ed2: : print _pos();

My Shar ed2: : dunp() ;

And run it as before (with MaxClients 2), two dump files will be created in the directory /tmp. In our test
these were created as /tmp/dump.1224 and /tmp/dump.1225. When we run diff(1):

% di ff /tnp/dunp. 1224 /tnp/ dunp. 1225

12¢12
< MG LEN = 1
> MG LEN = 2

We see that the two padlists (of the variable r eadonl y) are different, as we have observed before when
we did amanual comparison.

In fact we if we think about these results again, we get to a conclusion that there is no need for two
processes to find out whether the variable gets modified (and therefore unshared). It's enough to check the
datastructure before the script was executed and after that. You can modify the My Shar ed2 module to
dump the padlistsinto a different file after each invocation and than to run the diff(1) on the two files.

If you want to watch whether some lexically scoped (with my()) variablesin your Apache: : Regi stry
script inside the same process get changed between invocations you can use the
Apache: : Regi st ryLex| nf o module instead. Since it does exactly this: it makes a snapshot of the
padlist before and after the code execution and shows the difference between the two. This specific
module was written to work with Apache: : Regi st ry scripts so it won't work for loaded modules. Use
the technique we have described above for any type of variables in modules and scripts.

26 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

Surely another way of ensuring that a scalar is readonly and therefore sharable is to either use the
const ant pragmaor r eadonl y pragma. But then you won't be able to make calls that alter the vari-
able even a little, like in the example that we just showed, because it will be a true constant variable and
you will get compile time error if you try this:

MyConst ant . pm

package MyConst ant;
use constant readonly => "Chris";

sub match { readonly =~ /\wW g;
sub print_pos{ print "pos: ", pos(readonly),"\n";}
1;

% perl -c MyConstant.pm

Can’t nodify constant itemin match position at MyConstant.pmline
5, near "readonly)"
MyConst ant . pm had conpil ati on errors.

However this code isjust right:

MyConst ant 1. pm

package MyConst ant 1;
use constant readonly => "Chris";

sub match { readonly =~ /\w g; }
1

1.5.1.4 [Preloading Perl Modules at Server Startup|

You can use the Per | Requi r e and Per | Modul e directives to load commonly used modules such as
Cd . pm DBI and etc., when the server is started. On most systems, server children will be able to share
the code space used by these modules. Just add the following directives into httpd.conf:

Per | Modul e Cd
Per | Modul e DBI

But an even better approach is to create a separate startup file (where you code in plain perl) and put there
things like:

use DBl ();
use Carp ();

Don’t forget to prevent importing of the symbols exported by default by the module you are going to
preload, by placing empty parentheses () after a module’s name. Unless you need some of these in the
startup file, which isunlikely. Thiswill save you afew more memory bits.

Then you r equi r e() this startup file in httpd.conf with the Per | Requi r e directive, placing it before
the rest of the mod_perl configuration directives:

29 Jan 2004 27

1.5.1 Sharing Memory

Perl Require /path/to/start-up.pl

Cd . pmisaspecia case. Ordinarily CA . pmautoloads most of its functions on an as-needed basis. This
speeds up the loading time by deferring the compilation phase. When you use mod_perl, FastCGI or
another system that uses a persistent Perl interpreter, you will want to precompile the functions at initial-
ization time. To accomplish this, call the package function compile() like this:

use CAd ();
C4 ->compile(’:all’);

The argumentsto conpi | e() are alist of method names or sets, and are identical to those accepted by
theuse() andi nport () operators. Note that in most cases you will want to replace’ : al |’ with the
tag names that you actually use in your code, since generally you only use a subset of them.

Let’s conduct a memory usage test to prove that prel oading, reduces memory requirements.

In order to have an easy measurement we will use only one child process, therefore we will use this
setting:

M nSpareServers 1
MaxSpar eServers 1
StartServers 1
MaxClients 1
MaxRequest sPer Chi | d 100

We are going to use the Apache: : Regi st ry script memuse.pl which consists of two parts. the first one
preloads a bunch of modules (that most of them aren’t going to be used), the second part reports the
memory size and the shared memory size used by the single child process that we start. and of course it
prints the difference between the two sizes.

use DB File ();

use LWP:: User Agent ();
use Storable ();

use DBI ();

use Glop ();

ny $r = shift;

$r->send_http_header (' text/plain');

ny $proc_mem = GTop- >new >pr oc_nmem $3) ;

ny $size $proc_nmem >si ze;

ny $share = $proc_mem >share;

ny $diff = $size - $share;

printf "%0s %40s %0s\n", qw(Si ze Shared Difference);
printf "940d %10d %40d (bytes)\n", $si ze, $share, $di ff;

First we restart the server and execute this CGI script when none of the above modules preloaded. Here is
the result:

28 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

Si ze Shar ed Diff
4706304 2134016 2572288 (bytes)

Now we take all the modules:

use strict;

use CAd ();

use DB File ();

use LWP:: User Agent ();
use Storable ();

use DBI ();

use Glop ();

and copy them into the startup script, so they will get preloaded. The script remains unchanged. We restart
the server and execute it again. We get the following.

Si ze Shar ed Dff
4710400 3997696 712704 (bytes)

Let’s put the two results into one table:

Pr el oadi ng Si ze Shar ed Diff
Yes 4710400 3997696 712704 (bytes)
No 4706304 2134016 2572288 (bytes)

Difference 4096 1863680 -1859584

You can clearly see that when the modules weren’t prel oaded the shared memory pages size, were about
1864Kb smaller relative to the case where the modul es were prel oaded.

Assuming that you have had 256M dedicated to the web server, if you didn't preload the modules, you
could have:

268435456 = X * 2572288 + 2134016
X = (268435456 - 2134016) / 2572288 = 103
103 servers.
Now let’s calculate the same thing with modul es prel oaded:
268435456 = X * 712704 + 3997696
X = (268435456 - 3997696) / 712704 = 371
Y ou can have almost 4 times more servers!!!

Remember that we have mentioned before that memory pages gets dirty and the size of the shared memory
gets smaller with time? So we have presented the ideal case where the shared memory stays intact. There-
fore the real numberswill be alittle bit different, but not far from the numbers in our example.

29 Jan 2004 29

1.5.1 Sharing Memory

Also it's obvious that in your case it's possible that the process size will be bigger and the shared memory
will be smaller, since you will use different modules and a different code, so you won't get this fantastic
ratio, but this example is certainly helpsto feel the difference.

1.5.1.5 |Preloading Registry Scripts at Server Startup|

What happensif you find yourself stuck with Perl CGI scripts and you cannot or don’t want to move most
of the stuff into modules to benefit from modules preloading, so the code will be shared by the children.
Luckily you can preload scripts as well. Thistime the Apache: : Regi st ryLoader modules comes to
aid. Apache: : Regi st ryLoader compilesApache: : Regi stry scriptsat server startup.

For example to preload the script /perl/test.pl which isin fact the file /home/httpd/perl/test.pl you would
do the following:

use Apache:: Regi strylLoader ();
Apache: : Regi stryLoader - >new >handl er ("/ perl/test.pl",
"/ home/ httpd/perl/test.pl");

Y ou should put this code either into <Per | > sections or into a startup script.

But what if you have a bunch of scripts located under the same directory and you don’t want to list them
one by one. Take the benefit of Perl modules and put them to agood use. The Fi | e: : Fi nd module will
do most of the work for you.

The following code walks the directory tree under which all Apache: : Regi st ry scripts are located.
For each encountered file with extension .pl, it calls the Apache: : Regi st ryLoader: : handl er ()
method to preload the script in the parent server, before pre-forking the child processes:

use File::Find gwfinddepth);

use Apache:: Regi stryLoader ();

{
my $scripts_root_dir = "/hone/httpd/perl/";
nmy $rl = Apache: : Regi strylLoader - >new,

finddepth
(
sub {
return unless /\.pl$/;
ny $url = "$File::Find::dir/$_";
$url =~ s|$scripts_root _dir/?|/];

warn "pre-loading $url\n";
prel oad $url
ny $status = $rl->handler($url);
unl ess($status == 200) {
warn "pre-load of ‘$url’ failed, status=$status\n”;

}
b

$scripts_root_dir);

}

Note that we didn’'t use the second argument to handl er () here, asin the first example. To make the
loader smarter about the URI to filename translation, you might need to provide at r ans() function to
trandate the URI to filename. URI to filename trandation normally doesn’t happen until HTTP request

30 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

time, so the module is forced to roll its own trandation. If filename is omitted and at r ans() function
was not defined, the loader will try using the URI relative to Server Root.

A simple trans() function can be something like that:
sub nytrans {
my $uri = shift;
$uri =~ s| ™ perl/|/hone/httpd/perl/|;
return $uri;

}

You can easily derive the right trandation by looking at the Al i as directive. The above mytrans() func-
tionis matching our Al i as:

Alias /perl/ [home/httpd/ perl/

After defining the URI to filename translation function you should pass it during the creation of the
Apache: : Regi stryLoader object:

nmy $rl = Apache:: Regi strylLoader->new(trans => \ &ytrans);
I won’t show any benchmarks here, since the effect is absolutely the same as with preloading modules.

See dso BEGIN blocks

1.5.1.6 [Modules Initializing at Server Startup]

We have just learned that it’s important to preload the modules and scripts at the server startup. It turns out
that it’s not enough for some modules and you have to prerun their initialization code to get more memory
pages shared. Basically you will find an information about specific modules in their respective manpages.
We will present afew examples of widely used modules where the code can be initialized.

1.5.1.6.1 |Initializing DBI.pm|

Thefirst example isthe DBl maodule. Asyou know DBl works with many database drivers falling into the
DBD: : category, e.g. DBD: : mysql . It's not enough to preload DBI , you should initialize DBl with
driver(s) that you are going to use (usualy a single driver is used), if you want to minimize memory use
after forking the child processes. Note that you want to do this under mod_perl and other environments
where the shared memory is very important. Otherwise you shouldn't initialize drivers.

You probably know already that under mod_perl you should use the Apache: : DBI module to get the
connection persistence, unless you open a separate connection for each user--in this case you should not
use this module. Apache: : DBl automatically loads DBl and overrides some of its methods, so you
should continue coding like thereis only a DBl module.

Just as with modules preloading our god is to find the startup environment that will lead to the smallest
"difference" between the shared and norma memory reported, therefore a smaller total memory usage.

29 Jan 2004 31

1.5.1 Sharing Memory

And again in order to have an easy measurement we will use only one child process, therefore we will use
this setting in httpd.conf:

MinSpareServers 1

MaxSpareServers 1

StartServers 1

MaxClients 1
MaxRequestsPerChild 100

We aways preload these modules:

use Gtop();
use Apache::DBI(); # preloads DBI as well

We are going to run memory benchmarks on five different versions of the startup.pl file.
® option 1
Leave the file unmodified.
® option 2
Install MySQL driver (we will use MySQL RDBMS for our test):
DBI->install_driver("mysql");
It's safe to use this method, since just like with use() , if it can't beinstalled it’ll die().
® option 3
Preload MySQL driver module;
use DBD:mysq;
® option4

Tell Apache::DBI to connect to the database when the child process starts (Chil -
dinitHandler), nodriver is preload before the child gets spawned!

Apache::DBI->connect_on_init(DBIl:mysql:test::localhost’,

{

PrintError => 1, # warn() on errors
RaiseError => 0, # don’t die on error
AutoCommit => 1, # commit executes
immediately

}

)

or die "Cannot connect to database: $DBI::errstr";

® option 5

32 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

Options 2 and 4: using connect_on_init() and install_driver().
Hereisthe Apache: : Regi st ry test script that we have used:

pr el oad_dbi . pl
use strict;
use Glop ();
use DBI ();

my $dbh = DBI ->connect ("DBIl: nysql :test:: | ocal host",

{
PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commt executes
imediately
}

)

or die "Cannot connect to database: $DBl::errstr”;

my $r = shift;
$r->send_http_header (' text/plain);

ny $do_sqgl = "show tabl es";

ny $sth = $dbh->prepare($do_sql);

$st h- >execut e() ;

ny @ata = ();

while (ny @ow = $sth->fetchrow array){
push @lata, @ ow,

}

print "Data: @lata\n";

$dbh->di sconnect (); # NOP under Apache:: DBI

ny $proc_nem = GTop->new >proc_nen($3) ;

nmy $size = $proc_nmem >size;

nmy $share $proc_nmem >shar e;

my $diff = $size - $share;

printf "9%8s %8s 9Bs\n", gw Size Shared Diff);
printf "98d 98d ¥8d (bytes)\n", $size, $share, $di ff;

The script opens a opens a connection to the database "test’ and issues a query to learn what tables the
databases has. When the data is collected and printed the connection would be closed in the regular case,
but Apache: : DBI overridesit with empty method. When the data is processed a familiar to you already
code to print the memory usage follows.

The server was restarted before each new test.
S0 here are the results of the five tests that were conducted, sorted by the Diff column:

1. After thefirst request:

29 Jan 2004 33

1.5.1 Sharing Memory

Test type Size Shared Diff

install _driver (2) 3465216 2621440 843776
install _driver & connect_on_init (5) 3461120 2609152 851968
prel oad driver (3) 3465216 2605056 860160
not hi ng added (1) 3461120 2494464 966656
connect_on_init (4) 3461120 2482176 978944

2. After the second request (all the subsequent request showed the same results):

Test type Si ze Shar ed Diff

install _driver (2) 3469312 2609152 860160
install _driver & connect_on_init (5) 3481600 2605056 876544
preload driver (3) 3469312 2588672 880640
not hi ng added (1) 3477504 2482176 995328
connect_on_init (4) 3481600 2469888 1011712

Now what do we conclude from looking at these numbers. First we see that only after a second reload we
get the final memory footprint for a specific request in question (if you pass different arguments the
memory usage might and will be different).

But both tables show the same pattern of memory usage. We can clearly see that the real winner is the
startup.pl file's version where the MySQL driver was installed (2). Since we want to have a connection
ready for the first request made to the freshly spawned child process, we generally use the version (5)
which uses somewhat more memory, but has amost the same number of shared memory pages. The
version (3) only preloads the driver which results in smaller shared memory. The last two versions having
nothing initialized (1) and having only the connect_on_init() method used (4). The former is a little bit
better than the latter, but both significantly worse than the first two versions.

To remind you why do we look for the smallest value in the column diff, recall the real memory usage
formula:

RAM dedi cated_to_mod_perl = diff * nunber_of _processes
+ the_processes_wi th_| argest _shared_nenory

Notice that the smaller the diff is, the bigger the number of processes you can have using the same amount
of RAM. Therefore every 100K difference counts, when you multiply it by the number of processes. If we
take the number from the version (2) vs. (4) and assume that we have 256M of memory dedicated to
mod_perl processes we will get the following numbers using the formula derived from the above formula:

RAM - | argest _shared_si ze

N of Procs = --------mmmmmmmm i -
Diff
268435456 - 2609152
(ver 2) N= -----mmmiiemaa o = 309
860160
268435456 - 2469888
(ver 4) N = ----ommmimmiea e = 262

1011712

34 29 Jan 2004

Performance Tuning 1.5.1 Sharing Memory

So you can tell the difference (17% more child processesin the first version).

1.5.1.6.2 [Initializiing CGI.pm|

Cd . pmis a big module that by default postpones the compilation of its methods until they are actualy
needed, thus making it possible to use it under a slow mod_cgi handler without adding a big overhead.
That’s not what we want under mod_perl and if you use CA . pmyou should precompile the methods that
you are going to use at the server startup in addition to preloading the module. Use the compile method for
that:

use Cd,;
C4E ->compile(’:all’);

where you should replace the tag group : al | with the real tags and group tags that you are going to use if
you want to optimize the memory usage.

We are going to compare the shared memory foot print by using the script which is back compatible with
mod_cgi. You will see that you can improve performance of this kind of scripts as well, but if you really
want a fast code think about porting it to use Apache: : Request for CGI interface and some other
module for HTML generation.

So hereisthe Apache: : Regi st ry script that we are going to use to make the comparison:

prel oad_cgi _pm pl
use strict;
use Cd ();
use Glop ();

my $g = new C43;

print $g->header(’'text/plain’);

print join "\n", map {"$_ => ".$qg->paranm($_) } $qg->param
print "\n";

ny $proc_nem = GTop->new >proc_nen($3) ;

nmy $size = $proc_nmem >size;

nmy $share = $proc_mem >share;

my $diff = $size - $share;

printf "9%8s %8s 9Bs\n", gwm Size Shared Diff);
printf "98d 98d ¥8d (bytes)\n", $size, $share, $di ff;

The script initializes the CA object, sends HTTP header and then print all the arguments and values that
were passed to the script if at all. At the end as usual we print the memory usage.

As usual we are going to use a single child process, therefore we will use this setting in httpd.conf:

M nSpareServers 1
MaxSpareServers 1
StartServers 1
MaxClients 1
MaxRequest sPer Chi | d 100

29 Jan 2004 35

1.5.1 Sharing Memory

We are going to run memory benchmarks on three different versions of the startup.pl file. We aways
preload this module:

use Gop();
® option 1

Leave the file unmodified.
® option 2

Preload Cd . pm

use Cd ();

® option 3

Preload CAE . pmand pre-compile the methods that we are going to use in the script:

use Cd ();
Cd - >conpi | e(gM header paran));

The server was restarted before each new test.
So here are the results of the five tests that were conducted, sorted by the Diff column:

1. After thefirst request:

Ver si on Si ze Shar ed Di ff Test type

1 3321856 2146304 1175552 not prel oaded
2 3321856 2326528 995328 prel oaded
3 3244032 2465792 778240 prel oaded & nethods+conpil ed

2. After the second request (all the subsequent request showed the same results):

Ver si on Si ze Shar ed Diff Test type

1 3325952 2134016 1191936 not prel oaded
2 3325952 2314240 1011712 prel oaded
3 3248128 2445312 802816 prel oaded & net hods+conpil ed

The first version shows the results of the script execution when CA . pmwasn't preloaded. The second
version with module preloaded. The third when it's both preloaded and the methods that are going to be
used are precompiled at the server startup.

By looking at the version one of the second table we can conclude that, preloading adds about 20K of
shared size. As we have mention at the beginning of this section that’s how CA . pmwas implemented--to
reduce the load overhead. Which means that preloading CGI is aimost hardly change a thing. But if we
compare the second and the third versions we will see a very significant difference of 207K
(1011712-802816), and we have used only a few methods (the header method loads a few more method
transparently for a user). Imagine how much memory we are going to save if we are going to precompile

36 29 Jan 2004

Performance Tuning 1.5.2 Increasing Shared Memory With mergemem

all the methods that we are using in other scripts that use CA . pmand do a little bit more than the script
that we have used in the test.

But even in our very simple case using the same formula, what do we see? (assuming that we have 256M B
dedicated for mod_perl)

RAM - | argest _shared_si ze

N of Procs = ---------mmmmmmi oo
Diff
268435456 - 2134016
(ver 1) N= ----mmmmmmiimaaa oo = 223
1191936
268435456 - 2445312
(ver 3) N= ----ommmmiiimaaa oo = 331

802816

If we preload CA . pmand precompile a few methods that we use in the test script, we can have 50%
more child processes than when we don't preload and precompile the methods that we are going to use.

META: I've heard that the 3.x generation will be less bloated, so probably I'll have to rerun this using the
new version.

1.5.2 [ncreasing Shared Memory With mergemem

nmer genem is an experimental utility for linux, which looks very interesting for us mod_perl users:
[http://mwww.compl ang.tuwien.ac.at/ulrich/mergemem|

It looks like it could be run periodically on your server to find and merge duplicate pages. It won't halt
your httpds during the merge, this aspect has been taken into consideration already during the design of
mergemem: Merging is not performed with one big systemcall. Instead most operation is in userspace,
making alot of small systemcalls.

Therefore blocking of the system should not happen. And, if it really should turn out to take too much time
you can reduce the priority of the process.

The worst case that can happen is this: mer genmem merges two pages and immediately afterwards they
will be split. The split costs about the same as the time consumed by merging.

This software comes with a utility called mentnp to tell you how much you might save.

1.5.3 |[Forking and Executing Subprocesses from mod perl|

It's desirable to avoid forking under mod_perl. Since when you do, you are forking the entire Apache
server, lock, stock and barrel. Not only is your Perl code and Perl interpreter being duplicated, but so is
mod_ssl, mod_rewrite, mod_log, mod_proxy, mod_speling (it's not a typo!) or whatever modules you
have used in your server, al the core routines, etc.

29 Jan 2004 37

http://www.complang.tuwien.ac.at/ulrich/mergemem/

1.5.3 Forking and Executing Subprocesses from mod_perl

Modern Operating Systems come with a very light version of fork which adds a little overhead when
called, since it was optimized to do the absolute minimum of memory pages duplications. The
copy-on-write technique is the one that allows to do so. The gist of this technique is as follows: the parent
process memory pages aren’t immediately copied to the child’ s space on fork(), but thisis done only when
the child or the parent modifies the data in some memory pages. Before the pages get modified they get
marked as dirty and the child has no choice but to copy the pages that are to be modified since they cannot
be shared any more.

If you need to call a Perl program from your mod_perl code, it's better to try to covert the program into a
module and call it a function without spawning a special process to do that. Of course if you cannot do that
or the program is not written in Perl, you have to call via system() or is equivalent, which spawn a new
process. If the program written in C, you may try to write a Perl glue code with help of XS or SWIG archi-
tectures, and then the program will be executed as a perl subroutine.

Also by trying to spawn a sub-process, you might be trying to do the "wrong thing". If what you really
want is to send information to the browser and then do some post-processing, look into the Perl -
CleanupHan dler directive. The latter alows you to tell the child process after request has been
processed and user has received the response. This doesn’t release the mod_perl process to serve other
regquests, but it allows to send the response to the client faster. If thisis the situation and you need to run
some cleanup code, you may want to register this code during the request processing via:

my $r = shift;
$r->register_cleanup(\&do_cleanup);
sub do_cleanup{ #some clean-up code here }

But when along term process needs to be spawned, there is not much choice, but to use fork(). We cannot
just run this long term process within Apache process, since it'll first keep the Apache process busy,
instead of letting it do the job it was designed for. And second, if Apache will be stopped the long term
process might be terminated as well, unless coded properly to detach from Apache processes group.

In the following sections we are going to discuss how to properly spawn new processes under mod_perl.

1.5.3.1 [Forking a New Procesq

Thisisatypical way to call fork() under mod_perl:

defined (my $kid = fork) or die "Cannot fork: $!\n";
if (Bkid) {
Parent runs this block
}else {
Child runs this block
some code comes here
CORE::exit(0);
}

possibly more code here usually run by the parent

When using fork(), you should check its return value, since if it returns undef it means that the call was
unsuccessful and no process was spawned. Something that can happen when the system is running too
many processes and cannot spawn new Ones.

38 29 Jan 2004

Performance Tuning 1.5.3 Forking and Executing Subprocesses from mod_perl

When the process is successfully forked--the parent receives the PID of the newly spawned child as a
returned value of the fork() call and the child receives 0. Now the program splits into two. In the above
example the code inside the first block after if will be executed by the parent and the code inside the first
block after else will be executed by the child process.

It's important not to forget to explicitly call exit() at the end of the child code when forking. Since if you
don’'t and there is some code outside the if/else block, the child process will execute it as well. But under
mod_perl there is another nuance--you must use CORE: : exi t () and not exi t (), which would be
automatically overridden by Apache: : exi t () if used in conjunction with Apache: : Regi st ry and
similar modules. And we want the spawned process to quit when its work is done, otherwise it’ll just stay
alive use resources and do nothing.

The parent process usually completes its execution path and enters the pool of free servers to wait for a
new assignment. If the execution path is to be aborted earlier for some reason one should use
Apache::exit() or dig(), in the case of Apache: : Regi st ry or Apache: : Per | Run handlers a simple
exit() will do the right thing.

The child shares with parent its memory pages until it has to modify some of them, which triggers a
copy-on-write process which copies these pages to the child’'s domain before the child is alowed to
modify them. But this all happens afterwards. At the moment the fork() call executed, the only work to be
done before the child process goes on its separate way is setting up the page tables for the virtual memory,
which imposes ailmost no delay at all.

1.5.3.2 [Freeing the Parent Procesg

In the child code you must also close al the pipes to the connection socket that were opened by the parent
process (i.e. STDI N and STDOUT) and inherited by the child, so the parent will be able to complete the
request and free itself for serving other requests. If you need the STDI N and/or STDOUT streams you
should re-open them. Y ou may need to close or re-open the STDERR filehandle. 1t’s opened to append to
theerror_log file asinherited from its parent, so chances are that you will want to leave it untouched.

Under mod_perl, the spawned process also inherits the file descriptor that's tied to the socket through
which al the communications between the server and the client happen. Therefore we need to free this
stream in the forked process. If we don’t do that, the server cannot be restarted while the spawned process
istill running. If an attempt is made to restart the server you will get the following error:

[Mon Dec 11 19:04:13 2000] [crit]
(98) Address already in use: nake_sock:
could not bind to address 127.0.0.1 port 8000

Apache: : SubPr ocess comes to help and provides a method cleanup_for_exec() which takes care of
closing thisfile descriptor.

So the simplest way is to freeing the parent process is to close all three STD* streams if we don’t need
them and untie the Apache socket. In addition you may want to change process current directory to / so
the forked process won't keep the mounted partition busy, if this is to be unmounted at a later time. To
summarize al thisissues, hereis an example of the fork that takes care of freeing the parent process.

29 Jan 2004 39

1.5.3 Forking and Executing Subprocesses from mod_perl

use Apache: : SubProcess;
defined (ny $kid = fork) or die "Cannot fork: $!'\n";
if ($kid) {
Parent runs this block
} else {
Child runs this bl ock
$r->cl eanup_for_exec(); # untie the socket
chdir /" or die "Can’t chdir to /: $!"
cl ose STDI N
cl ose STDOUT;
cl ose STDERR

sonme code cones here
CORE: : exi t (0);
}

possibly nore code here usually run by the parent

Of course between the freeing the parent code and child process termination the real code isto be placed.

1.5.3.3 |Detaching the Forked Procesq

Now what happens if the forked process is running and we decided that we need to restart the web-server?
This forked process will be aborted, since when parent process will die during the restart it’Il kill its child
processes as well. In order to avoid this we need to detach the process from its parent session, by opening
anew session with help of setsid() system call, provided by the POSI X module:

use PCSI X 'setsid’

defined (nmy $kid = fork) or die "Cannot fork: $!'\n";
if ($kid) {
Parent runs this bl ock
} else {
Child runs this block
setsid or die "Can't start a new session: $!";

}

Now the spawned child process has alife of its own, and it doesn’t depend on the parent anymore.

1.5.3.4 [Avoiding Zombie Processeq

Now let’stalk about zombie processes.

Normally, every process hasits parent. Many processes are children of thei ni t process, whose Pl Dis 1.
When you fork a process you must wait() or waitpid() for it to finish. If you don’t wait() for it, it becomes
azombie.

A zombie is a process that doesn’'t have a parent. When the child quits, it reports the termination to its
parent. If no parent wait()s to collect the exit status of the child, it gets "confused” and becomes a ghost
process, that can be seen as a process, but not killed. 1t will be killed only when you stop the parent
process that spawned it!

40 29 Jan 2004

Performance Tuning 1.5.3 Forking and Executing Subprocesses from mod_perl

Generally the ps(1) utility displays these processes with the <def unc> tag, and you will see the zombies
counter increment when doing top(). These zombie processes can take up system resources and are gener-
ally undesirable.

So the proper way to do afork is:

ny $r = shift;
$r->send_http_header (' text/plain);

defined (nmy $kid = fork) or die "Cannot fork: $!";
if ($kid) {
wai t pi d($ki d, 0);
print "Parent has finished\n";
} else {
do sonet hi ng
CORE: : exi t(0);
}

In most cases the only reason you would want to fork is when you need to spawn a process that will take a
long time to complete. So if the Apache process that spawns this new child process has to wait for it to
finish, you have gained nothing. Y ou can neither wait for its completion (because you don’'t have the time
to), nor continue because you will get yet another zombie process. Thisis called a blocking call, since the
processis blocked to do anything else before this call gets completed.

The simplest solution isto ignore your dead children. Just add this line before the fork() call:
$SI G{CHLD} = ' | GNORE ;

When you set the CHLD (SI GCHLDin C) signal handler to’ | GNORE' , all the processes will be collected
by thei ni t process and are therefore prevented from becoming zombies. This doesn’t work everywhere,
however. It proved to work at least on Linux OS.

Note that you cannot localize this setting with | ocal () . If you do, it won't have the desired effect.
[META: Can anyone explain why localization doesn’t work?]

So now the code would look like this;

my $r = shift;
$r->send_http_header (' text/plain');
$SI G CHLD} = ' | GNORE ;
defined (nmy $kid = fork) or die "Cannot fork: $!'\n";
if ($kid) {

print "Parent has finished\n";
} else {

do sonething time-consuni ng
CORE: : exi t (0);

29 Jan 2004 41

1.5.3 Forking and Executing Subprocesses from mod_perl

Note that waitpid() call has gone. The $SIG{ CHLD} ='IGNORE’; statement protects us from zombies, as
explained above.

Another, more portable, but dightly more expensive solution is to use a double fork approach.

ny $r = shift;
$r->send_http_header (' text/plain);

defined (ny $kid = fork) or die "Cannot fork: $!'\n";
if ($kid) {
wai t pi d($ki d, 0) ;
} else {
defined (nmy $grandkid = fork) or die "Kid cannot fork: $!\n";
if ($grandkid) {
CORE: : exi t(0);
} else {
code here
do sonething long |asting
CORE: : exi t(0);
}
}

Grandkid becomes a"child of init", i.e. the child of the processwhose PID is 1.

Note that the previous two solutions do allow you to know the exit status of the process, but in our
example we didn’t care about it.

Another solution isto use adifferent SGCHLD handler:

use POSI X ' WNCHANG ;
$SI G CHLD} = sub { while(waitpid(-1, WOHANG >0) {} };

Which is useful when you fork() more than one process. The handler could call wait() as well, but for a
variety of reasons involving the handling of stopped processes and the rare event in which two children
exit at nearly the same moment, the best technique is to call waitpid() in atight loop with a first argument
of - 1 and a second argument of WNOHANG. Together these arguments tell waitpid() to reap the next child
that’s available, and prevent the call from blocking if there happens to be no child ready for reaping. The
handler will loop until waitpid() returns a negative number or zero, indicating that no more reapable chil-
dren remain.

While you test and debug your code that uses one of the above examples, Y ou might want to write some
debug information to the error_log file so you know what happens.

Read perlipc manpage for more information about signal handlers.

1.5.3.5 |A Complete Fork Exampl€g

Now let’s put al the bits of code together and show a well written fork code that solves all the problems
discussed so far. We will usean Apache: : Regi st ry script for this purpose:

42 29 Jan 2004

Performance Tuning 1.5.3 Forking and Executing Subprocesses from mod_perl

proper _forkl. pl

use strict;

use PCSI X "setsid;

use Apache: : SubProcess;

ny $r = shift;
$r->send_http_header ("text/plain");
$SI G{CHLD} = ' | GNORE ;
defined (ny $kid = fork) or die "Cannot fork: $!'\n";
if ($kid) {
print "Parent 3 has finished, kid's PID: $kid\n";
} else {
$r->cl eanup_for_exec(); # untie the socket
chdir '/’ or die "Can't chdir to /: $'";
open STDIN, '/dev/null’ or die "Can't read /dev/null: $'"
open STDQUT, ' >/dev/null’
or die "Can’t wite to /dev/null: $!"

open STDERR, '>/tnp/log’ or die "Can't wite to /tnmp/log: $!"
setsid or die "Can't start a new session: $!";

ny $ol dfh = sel ect STDERR;
local $| = 1;

sel ect $ol df h;

warn "started\n";

do sonething tinme-consum ng
sleep 1, warn "$_\n" for 1..20;
warn "conpl et ed\ n";

CORE: :exit(0); # terminate the process
}

The script starts with the usual declaration of the strict mode, loading the POSI X and
Apache: : SubPr ocess modules and importing of the setsid() symbol from the POSI X package.

The HTTP header is sent next, with the Content-type of text/plain. The parent process gets ready to ignore
the child, to avoid zombies and the fork is called.

The program gets its personality split after fork and the if conditional evaluates to a true value for the
parent process, and to a false value for the child process, therefore the first block is executed by the parent
and the second by the child.

The parent process announces his PID and the PID of the spawned process and finishes its block. If there
will be any code outside it will be executed by the parent as well.

The child process starts its code by disconnecting from the socket, changing its current directory to / ,
opening the STDIN and STDOUT streams to /dev/null, which in effect closes them both before opening.
In fact in this example we don’t need neither of these, so we could just close() both. The child process
completes its disengagement from the parent process by opening the STDERR stream to /tmp/log, so it
could write there, and creating a new session with help of setsid(). Now the child process has nothing to do
with the parent process and can do the actual processing that it has to do. In our example it performs a
simple series of warnings, which are logged into /tmp/log:

29 Jan 2004 43

1.5.3 Forking and Executing Subprocesses from mod_perl

ny $ol dfh = sel ect STDERR;
local $| = 1;

sel ect $ol df h;

warn "started\n";

do sonething tinme-consum ng
sleep 1, warn "$_\n" for 1..20;
warn "conpl et ed\ n";

The localized setting of $| =1 unbuffers the STDERR stream, so we can immediately see the debug output
generated by the program. In fact this setting is not required when the output is generated by warn().

Finally the child process terminates by calling:
CORE: : exi t(0);
which make sure that it won't get out of the block and run some code that it’s not supposed to run.

This code example will allow you to verify that indeed the spawned child process has its own life, and its
parent is free aswell. Simply issue a request that will run this script, watch that the warnings are started to
be written into the /tmp/log file and issue a complete server stop and start. If everything is correct, the
server will successfully restart and the long term process will still be running. Y ou will know that it’s still
running, if the warnings will still be printed into the /tmp/log file. You may need to raise the number of
warnings to do above 20, to make sure that you don’t miss the end of the run.

If there are only 5 warnings to be printed, you should see the following output in thisfile:

started
1
2
3
4
5
c

ompl et ed

1.5.3.6 [Starting a L ong Running Exter nal Progr am|

But what happens if we cannot just run a Perl code from the spawned process and we have a compiled
utility, i.e. a program written in C. Or we have a Perl program which cannot be easily converted into a
module, and thus called as a function. Of course in this case we have to use system(), exec(), gx() or * *
(back ticks) to start it.

When using any of these methods and when the Taint mode is enabled, we must at least add the following
code to untaint the PATH environment variable and delete a few other insecure environment variables.
This information can be found in the perlsec manpage.

SENV{' PATH } = '/bin:/usr/bin;
delete @GNV{' I FS', 'CDPATH , 'ENV', ’'BASH ENV };

Now all we have to do is to reuse the code from the previous section.

44 29 Jan 2004

Performance Tuning 1.5.3 Forking and Executing Subprocesses from mod_perl

First we move the core program into the external.pl file, add the shebang first line so the program will be
executed by Perl, tell the program to run under Taint mode (-T) and possibly enable the warnings mode
(-w) and make it executable:

external . pl

#!/usr/bin/perl -Tw

open STDIN, ’/dev/null’ or die "Can't read /dev/null: $!'"
open STDOUT, ' >/dev/null’
or die "Can't wite to /dev/null: $!'"

open STDERR, '>/tnp/log’ or die "Can't wite to /tnp/log: $'";

ny $ol dfh = sel ect STDERR
local $| = 1;

sel ect $ol df h;

warn "started\n";

do sonething tinme-consuni ng
sleep 1, warn "$_\n" for 1..20;
warn "conpl eted\n";

Now we replace the code that moved into the external program with exec() to call it:

proper _fork_exec. pl

use strict;

use POSI X 'setsid;

use Apache:: SubProcess;

$ENV{’ PATH } = ’'/bin:/usr/bin’;
delete @GNV{' I FS', 'CDPATH , 'ENV', 'BASH ENV' };

ny $r = shift;
$r->send_http_header("text/htnl");
$SI G CHLD} = ' | GNORE' ;
defined (nmy $kid = fork) or die "Cannot fork: $!'\n";
if ($kid) {
print "Parent has finished, kid s PID $kid\n";
} else {
$r->cl eanup_for_exec(); # untie the socket
chdir '/’ or die "Can’t chdir to /: $'";
open STDIN, '/dev/null’ or die "Can't read /dev/null: $!'";
open STDQUT, ' >/dev/null’
or die "Can't wite to /dev/null: $!'";

open STDERR, ' >&STDOUT’ or die "Can’t dup stdout: $!";
setsid or die "Can't start a new session: $!";

exec "/home/httpd/ perl/external.pl" or die "Cannot execute exec: $!";

}

Notice that exec() never returns unless it fails to start the process. Therefore you shouldn’t put any code
after exec()--it will be not executed in the case of success. Use system() or back-ticks instead if you want
to continue doing other things in the process. But then you probably will want to terminate the process

29 Jan 2004 45

1.5.3 Forking and Executing Subprocesses from mod_perl

after the program has finished. So you will have to write:

system "/ hone/ httpd/ perl/external.pl" or die "Cannot execute system $!";
CORE: : exi t(0);

Another important nuance is that we have to close all STD* stream in the forked process, even if the
called program does that.

If the external program is written in Perl you may pass complicated data structures to it using one of the
methods to seridlize Perl data and then to restore it. The St or abl e and Fr eezeThaw modules come
handy. Let’s say that we have program master.pl calling program slave.pl:

mast er . pl

we are within the nod_perl code

use Storable ();

my @arans = (foo => 1, bar => 2);

ny $parans = Storable::freeze(\ @arans);

exec "./slave.pl", $paranms or die "Cannot execute exec: $!";

sl ave. pl

#!/usr/bin/perl -w
use Storable ();

ny @arans = @GARGY ? @ Storable::thaw(shift)||[] } : ();

do sonet hing

As you can see, master.pl serializes the @ar ans data structure with St or abl e: : f r eeze and passes
it to dave.pl as a single argument. slave.pl restores the it with St or abl e: : t haw, by shifting the first
value of the ARGV array if available. The Fr eezeThaw module does avery similar thing.

1.5.3.7 [Starting a Short Running External Program)|

Sometimes you need to call an external program and you cannot continue before this program completes
its run and optionally returns some result. In this case the fork solution doesn’t help. But we have a few
ways to execute this program. First using system():

system "perl -e 'print 5+5 "

We believe that you will never call the perl interperter for doing this simple calculation, but for the sake of
asimple example it’s good enough.

The problem with this approach is that we cannot get the results printed to STDOUT, and that’s where
back-ticks or gx() come to help. If you use either:

ny $result = ‘perl -e '"print 5+5°;

or:

46 29 Jan 2004

Performance Tuning 1.6 Performance Tuning by Tweaking Apache Configuration

ny $result = gx{perl -e 'print 5+5'};
the whole output of the external program will be stored inthe $r esul t variable.

Of course you can use other solutions, like opening apipe (| to the program) if you need to submit many
arguments and more evolved solutions provided by other Perl modules like | PC: : Open2 which alows
to open a process for both reading and writing.

1.5.3.8|Executing system() or exec() in the Righ¥Vay|

The exec() and system() system calls behave identically in the way they spawn a program. For example
let’ s use system() as an example. Consider the following code:

systen("echo","H ");

Perl will use the first argument as a program to execute, find / bi n/ echo along the search path, invoke it
directly and pass the Hi string as an argument.

Perl’s system() is not the syst em(3) call [C-library]. This is how the arguments to system() get inter-
preted. When there is a single argument to system(), it'll be checked for having shell metacharacters first
(like *,?), and if there are any--Perl interpreter invokes a real shell program (/bin/sh -c on Unix plat-
forms). If you pass a list of arguments to system(), they will be not checked for metacharacters, but split
into words if required and passed directly to the C-level execvp() system call, which is more efficient.
That's a very nice optimization. In other words, only if you do:

system "sh -c 'echo *'"

will the operating system actually exec() a copy of / bi n/ sh to parse your command. But even then since
shisamost certainly already running somewhere, the system will notice that (viathe disk inode reference)
and replace your virtual memory page table with one pointing to the existing program code plus your data
space, thus will not create this overhead.

1.5.4 |0S Specific Parameters for Proxying|

Most of the mod_perl enabled servers use a proxy front-end server. Thisis done in order to avoid serving
static objects, and also so that generated output which might be received by slow clients does not cause the
heavy but very fast mod_perl serversfrom idly waiting.

There are very important OS parameters that you might want to change in order to improve the server
performance. Thistopic is discussed in the section: Setting the Buffering Limits on Various OSes

1.6 |PerformanceTuning by Tweaking ApacheConfigura-
tion

Correct configuration of the M nSpareServers, MaxSpareServers, Start Servers,
Maxd i ent s, and MaxRequest sPer Chi | d parameters is very important. There are no defaults. If
they are too low, you will under-use the system’s capabilities. If they are too high, the chances are that the

29 Jan 2004 47

1.6.1 Configuration Tuning with ApacheBench

server will bring the machine to its knees.

All the above parameters should be specified on the basis of the resources you have. With a plain apache
server, it's no big deal if you run many servers since the processes are about 1Mb and don’'t eat a lot of
your RAM. Generally the numbers are even smaller with memory sharing. The situation is different with
mod_perl. | have seen mod_perl processes of 20Mb and more. Now if you have MaxCl i ent s set to 50:
50x20Mb = 1Gb. Do you have 1Gb of RAM? Maybe not. So how do you tune the parameters? Generally
by trying different combinations and benchmarking the server. Again mod_perl processes can be of much
smaller size with memory sharing.

Before you start this task you should be armed with the proper weapon. You need the crashme utility,
which will load your server with the mod_perl scripts you possess. You need it to have the ability to
emulate a multiuser environment and to emulate the behavior of multiple clients caling the mod_perl
scripts on your server simultaneously. While there are commercia solutions, you can get away with free
ones which do the same job. You can use the [ApacheBench ab utility which comes with the Apache
distribution, the[crashme scrip which uses LWP: : Par al | el : : User Agent , [httperf]or [ttp_Toad

It isimportant to make sure that you run the load generator (the client which generates the test requests) on
a system that is more powerful than the system being tested. After all we are trying to simulate Internet
users, where many users are trying to reach your service at once. Since the number of concurrent users can
be quite large, your testing machine must be very powerful and capable of generating a heavy load. Of
course you should not run the clients and the server on the same machine. If you do, your test results
would be invalid. Clientswill eat CPU and memory that should be dedicated to the server, and vice versa.

1.6.1 |Configuration Tuning with ApacheBench|

We are going to use ApacheBench (ab) utility to tune our server’s configuration. We will simulate 10
users concurrently requesting avery light script at

lhtt p: // www. exanpl e. coml perl /access/ access. cqgi| Each smulated user makes 10
requests.

% ./ab -n 100 -c 10 http://ww. exanpl e. conl perl/access/ access. cgi

The results are;

Document Pat h: / perl/access/ access. cgi
Docunent Lengt h: 16 bytes

Concurrency Level: 10

Tinme taken for tests: 1. 683 seconds

Conpl et e requests: 100

Fai |l ed requests: 0

Total transferred: 16100 bytes

HTM. transferred: 1600 bytes

Requests per second: 59.42

Transfer rate: 9.57 kb/s received

Connnection Tinmes (1ms)

48 29 Jan 2004

http://www.example.com/perl/access/access.cgi

Performance Tuning 1.6.1 Configuration Tuning with ApacheBench

mn avg max

Connect : 0 29 101
Pr ocessi ng: 77 124 1259
Total : 77 153 1360

The only numbers we really care about are:

Conpl et e requests: 100
Fai | ed requests: 0
Requests per second: 59. 42

Let’ sraise the request load to 100 x 10 (10 users, each makes 100 requests):

% ./ab -n 1000 -c 10 http://ww. exanpl e. con perl/access/ access. cgi
Concurrency Level: 10

Conpl et e requests: 1000
Fai |l ed requests: 0
Requests per second: 139.76

As expected, nothing changes -- we have the same 10 concurrent users. Now let’s raise the number of
concurrent users to 50:

% ./ab -n 1000 -c 50 http://ww.exanpl e.conl perl/access/access. cgi
Conpl et e requests: 1000

Fai |l ed requests: 0

Requests per second: 133.01

We see that the server is capable of serving 50 concurrent users at 133 requests per second! Let’s find the
upper limit. Using-n 10000 -c 1000 failed to get results (Broken Pipe?). Using -n 10000 -c
500 resulted in 94.82 requests per second. The server’s performance went down with the high load.

The above tests were performed with the following configuration:

M nSpar eServers 8
MaxSpar eServers 6
StartServers 10

MaxCl i ents 50

MaxRequest sPer Chi | d 1500

Now let’skill each child after it serves a single request. We will use the following configuration:
M nSpar eServers 8
MaxSpar eServers 6
Start Servers 10

MaxCl i ents 100
MaxRequestsPerChild 1

Simulate 50 users each generating a total of 20 requests:

% ./ab -n 1000 -c 50 http://ww. exanpl e. com perl/access/ access. cgi

29 Jan 2004 49

1.6.1 Configuration Tuning with ApacheBench

The benchmark timed out with the above configuration.... | watched the output of ps as| ran it, the parent
process just wasn't capable of respawning the killed children at that rate. When | raised the MaxRe
guestsPer Child to 10, | got 8.34 requests per second. Very bad - 18 times slower! You can't bench-
mark the importance of the MinS pare Servers , MaxSpare Servers and Start Servers with this
kind of test.

Now let's reset MaxRequestsPer Child to 1500, but reduce MaxClients to 10 and run the same
test:

MinSpareServers 8
MaxSpareServers 6
StartServers 10

MaxClients 10
MaxRequestsPerChild 1500

| got 27.12 requests per second, which is better but still 4-5 times slower. (I got 133 with MaxClients
set to 50.)

Summary: | have tested a few combinations of the server configuration variables (MinS pare Servers
MaxSpare Servers , Start Servers , MaxClients and MaxRequestsPer Child). The results |
got are asfollows:

MinSpare Servers , MaxSpare Servers and Start Servers are only important for user response
times. Sometimes users will have to wait a bit.

The important parameters are MaxClients and MaxRequestsPer Child . MaxClients should be
not too hig, so it will not abuse your machine’ s memory resources, and not too small, for if it is your users
will be forced to wait for the children to become free to serve them. MaxRequestsPer Child should be
as large as possible, to get the full benefit of mod_perl, but watch your server at the beginning to make
sure your scripts are not leaking memory, thereby causing your server (and your service) to die very fast.

Also it isimportant to understand that we didn’t test the response timesin the tests above, but the ability of
the server to respond under a heavy load of requests. If the test script was heavier, the numbers would be
different but the conclusions very similar.

The benchmarks were run with:

HW: RS6000, 1Gb RAM

SW: AIX 4.1.5 . mod_perl 1.16, apache 1.3.3

Machine running only mysq|, httpd docs and mod_perl servers.
Machine was _completely_ unloaded during the benchmarking.

After each server restart when | changed the server’s configuration, | made sure that the scripts were
preloaded by fetching a script at least once for every child.

It is important to notice that none of the requests timed out, even if it was kept in the server’s queue for
more than aminute! That is the way ab works, which is OK for testing purposes but will be unacceptable
in the real world - users will not wait for more than five to ten seconds for a request to complete, and the
client (i.e. the browser) will time out in afew minutes.

50 29 Jan 2004

Performance Tuning 1.6.1 Configuration Tuning with ApacheBench

Now let’s take alook at some real code whose execution time is more than afew milliseconds. We will do
some real testing and collect the datainto tables for easier viewing.

| will use the following abbreviations:

NR = Total Nunber of Request
NC = Concurrency

MC = Maxd i ents

MRPC = MaxRequestsPerChild
RPS = Requests per second

Running a mod_perl script with lots of mysgl queries (the script under test is mysgld limited)
(http://www.example.com/perl/access/access.cgi?do_sub=query form)), with the configuration:

M nSpar eSer vers 8
MaxSpar eSer vers 16
Start Servers 10
MaxCl i ent s 50

MaxRequest sPer Chi | d 5000

givesus.

NR NC RPS comment

10 10 3.33 # not a reliable figure
100 10 3.94

1000 10 4.62

1000 50 4.09

Conclusions. Here | wanted to show that when the application is slow (not due to perl loading, code
compilation and execution, but limited by some external operation) it almost does not matter what load we
place on the server. The RPS (Requests per second) is ailmost the same. Given that all the requests have
been served, you have the ability to queue the clients, but be aware that anything that goes into the queue
means awaiting client and a client (browser) that might time out!

Now we will benchmark the same script without using the mysgl (code limited by perl only):
(http://www.exampl e.com/perl/access/access.cgi)), it's the same script but it just returns the HTML form,
without making SQL queries.

M nSpar eServers 8
MaxSpar eSer vers 16
Start Servers 10
Maxd i ent's 50

MaxRequest sPer Chi | d 5000

10 10 26. 95 # not a reliable figure
100 10 30. 88
1000 10 29.31
1000 50 28.01
1000 100 29.74
10000 200 24,92
100000 400 24.95

29 Jan 2004 51

http://www.example.com/perl/access/access.cgi?do_sub=query_form
http://www.example.com/perl/access/access.cgi

1.6.1 Configuration Tuning with ApacheBench

Conclusions: This time the script we executed was pure perl (not limited by 1/0 or mysgl), so we see that
the server serves the requests much faster. Y ou can see the number of requests per second is amost the
same for any load, but goes lower when the number of concurrent clients goes beyond Maxd i ent s.
With 25 RPS, the machine simulating aload of 400 concurrent clients will be served in 16 seconds. To be
more realistic, assuming a maximum of 100 concurrent clients and 30 requests per second, the client will
be served in 3.5 seconds. Pretty good for a highly loaded server.

Now we will use the server to its full capacity, by keeping all MaxCl i ent s clients dive al the time and
having abig MaxRequest sPer Chi | d, so that no child will be killed during the benchmarking.

M nSpar eServers 50
MaxSpar eSer vers 50
Start Servers 50
Maxd i ent's 50
MaxRequest sPer Chi | d 5000

1000 50 33. 17
1000 100 31.72
10000 200 31. 60

Conclusion: In this scenario there is no overhead involving the parent server loading new children, al the
servers are available, and the only bottleneck is contention for the CPU.

Now we will change MaxC i ent s and watch the results: Let’sreduce MaxCl i ent s to 10.

M nSpar eSer ver s 8
MaxSpar eSer ver s 10
Start Servers 10
MaxCl i ent s 10

MaxRequest sPer Chi | d 5000

10 10 23.87 # not a reliable figure
100 10 32.64

1000 10 32.82

1000 50 30. 43

1000 100 25. 68

1000 500 26. 95

2000 500 32.53

Conclusions: Very little difference! Ten servers were able to serve almost with the same throughput as 50
servers. Why? My guess is because of CPU throttling. It seems that 10 servers were serving requests 5
times faster than when we worked with 50 servers. In that case, each child received its CPU time slice five
times less frequently. So having abig value for MaxCl i ent s, doesn’t mean that the performance will be
better. Y ou have just seen the numbers!

52 29 Jan 2004

Performance Tuning 1.6.2 Choosing MaxClients

Now we will start drastically to reduce MaxRequest sPer Chi | d:

M nSpar eSer ver s 8
MaxSpar eSer vers 16
Start Servers 10
Maxd i ent's 50
NR NC MRPC RPS coment
100 10 10 5.77
100 10 5 3.32
1000 50 20 8.92
1000 50 10 5.47
1000 50 5 2.83
1000 100 10 6.51

Conclusions: When we drastically reduce MaxRequest sPer Chi | d, the performance starts to become
closer to plain mod_cgi.

Here are the numbers of this run with mod_cgi, for comparison:

M nSpar eSer vers 8
MaxSpar eSer vers 16
Start Servers 10
MaxCl i ent s 50

NR NC RPS conment

1000 100 1.13

Conclusion: mod_cgi is much slower. :) In the first test, when NR/NC was 100/10, mod_cgi was capable
of 1.12 requests per second. In the same circumstances, mod_perl was capable of 32 requests per second,
nearly 30 times faster! In the first test each client waited about 100 seconds to be served. In the second and
third tests they waited 1000 seconds!

1.6.2 [Choosing MaxClientg

The MaxCl i ent s directive sets the limit on the number of simultaneous requests that can be supported.
No more than this number of child server processes will be created. To configure more than 256 clients,
you must edit the HARD SERVER LI M T entry in htt pd. h and recompile. In our case we want this
variable to be as small as possible, because in this way we can limit the resources used by the server chil-
dren. Since we can restrict each child’s process size (see[Preventing Y our Processes from Growing), the
calculation of MaxCl i ent s is pretty straightforward:

Total RAM Dedi cated to the Webserver

MaXCients = --------mommmi oo
MAX child s process size

29 Jan 2004 53

1.6.2 Choosing MaxClients

So if | have 400Mb left for the webserver to run with, | can set MaxCl i ent s to be of 40 if | know that
each child islimited to 10Mb of memory (e.g. with|Apache: : Si zeLi m t].

You will be wondering what will happen to your server if there are more concurrent users than
MaxCl i ents at any time This situation is signified by the following warning message in the
error_| og:

[Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
consider raising the MaxClients setting

There is no problem -- any connection attempts over the MaxC i ent s limit will normally be queued, up
to a number based on the Li st enBackl og directive. When a child process is freed at the end of a
different request, the connection will be served.

Itisan error because clients are being put in the queue rather than getting served immediately, despite the
fact that they do not get an error response. The error can be allowed to persist to balance available system
resources and response time, but sooner or later you will need to get more RAM so you can start more
child processes. The best approach is to try not to have this condition reached at all, and if you reach it
often you should start to worry about it.

It's important to understand how much real memory a child occupies. Your children can share memory
between them when the OS supports that. You must take action to allow the sharing to happen - See
[Preload Perl modules at server startupl If you do this, the chances are that your MaxCl i ent s can be even
higher. But it seems that it's not so simple to calculate the absolute number. If you come up with a solu-
tion please let us know! If the shared memory was of the same size throughout the child’s life, we could
derive a much better formula:

Total _RAM + Shared_RAM per _Child * (Maxdients - 1)

MAXC i Nt S = - - - oo o m o m oo oo oo oo e
Max_Process_Si ze
whichis:
Total _RAM - Shared_RAM per_Child
MAXCl i Nt S = - - - e m oo oo

Max_Process_Si ze - Shared_RAM per_Child

Let’sroll some calculations:

Tot al _RAM = 500M

Max_Process_Si ze = 10Mo

Shared_RAM per _Child = 4Mo
500 - 4

MaxClients = --------- = 82
10 - 4

With no sharing in place

54 29 Jan 2004

Performance Tuning 1.6.3 Choosing MaxRequestsPerChild

500
MaxClients = --------- =50
10

With sharing in place you can have 64% more servers without buying more RAM.
If you improve sharing and keep the sharing level, let’s say:
Total_RAM = 500Mb
Max_Process_Size = 10Mb
Shared_RAM_per_Child = 8Mb
500 - 8
MaxClients = --------- =246
10-8

392% more servers! Now you can feel the importance of having as much shared memory as possible.

1.6.3 |Choosing MaxRequestsPer Child

The MaxReguestsPer Child directive sets the limit on the number of requests that an individual child
server process will handle. After MaxRequestsPer Child requests, the child process will die. If
MaxRequestsPer Child is0, then the process will live forever.

Setting MaxReguestsPer Child to a non-zero limit solves some memory leakage problems caused by
sloppy programming practices, whereas a child process consumes more memory after each request.

If left unbounded, then after a certain number of requests the children will use up all the available memory
and leave the server to die from memory starvation. Note that sometimes standard system libraries leak
memory too, especially on OSes with bad memory management (e.g. Solaris 2.5 on x86 arch).

If thisis your case you can set MaxRequestsPer Child to asmall number. Thiswill allow the system
to reclaim the memory that a greedy child process consumed, when it exits after MaxRequestsPer -
Child requests.

But beware -- if you set this number too low, you will lose some of the speed bonus you get from
mod_perl. Consider using Apache::PerlRun if thisisthe case.

Another approach is to use the |Apache::SizeLimit or Apache::GTopLimit) modules. By using either of
these modules you should be able to discontinue using the MaxRequest Per Child , although for some
developers, using both in combination does the job. In addition these modules alow you to kill httpd
processes whose shared memory size drops below a specified limit or unshared memory size crosses a
specified threshold.

See also|Preload Perl modules at server startup|and[Sharing Memoryl

29 Jan 2004 55

1.6.4 Choosing MinSpareServers, MaxSpareServers and StartServers

1.6.4 |Choosing MinSpareServers, MaxSpareServers and StartServerg

With mod_perl enabled, it might take as much as 20 seconds from the time you start the server until it is
ready to serve incoming requests. This delay depends on the OS, the number of preloaded modules and the
process load of the machine. It'sbest to set St art Server s and M nSpar eSer ver s to high numbers,
so that if you get a high load just after the server has been restarted the fresh servers will be ready to serve
requests immediately. With mod_perl, it's usually agood ideato raise all 3 variables higher than normal.

In order to maximize the benefits of mod_perl, you don't want to kill servers when they are idle, rather
you want them to stay up and available to handle new requests immediately. | think an ideal configuration
istoset M nSpar eSer ver s and MaxSpar eSer ver s to similar values, maybe even the same. Having
the MaxSpareServers close to MaxClients will completely use all of your resources (if
Maxd i ent s has been chosen to take the full advantage of the resources), but it’'ll make sure that at any
given moment your system will be capable of responding to requests with the maximum speed (assuming
that number of concurrent requestsis not higher than MaxCl i ent s).

Let’'s try some numbers. For a heavily loaded web site and a dedicated machine | would think of (note
400Mb isjust for example):

Avai l abl e to webserver RAM 400M>
Child' s menory size bounded: 10M

MaxC i ent s: 400/ 10 = 40 (larger with mem shari ng)
Start Servers: 20
M nSpar eSer vers: 20
MaxSpar eSer ver s: 35

However if | want to use the server for many other tasks, but make it capable of handling a high load, I’d
think of:

Avai l abl e to webserver RAM 400M
Child' s nmenory size bounded: 10Mo

Maxd i ents: 400/ 10 = 40
Start Servers: 5

M nSpar eSer vers: 5

MaxSpar eSer vers: 10

These numbers are taken off the top of my head, and shouldn’t be used as arule, but rather as examplesto
show you some possible scenarios. Use this information with caution!

1.6.5 [Summary of Benchmarking to tune all 5 parameterg

OK, we've run various benchmarks -- let’s summarize the conclusions:
® MaxRequestsPer Child
If your scripts are clean and don’t leak memory, set this variable to a number as large as possible

(100007?). If you use Apache: : Si zeLi m t or Apache: : GTopLi m t, you can set this parame-
ter to O (treated as infinity).

56 29 Jan 2004

Performance Tuning 1.6.5 Summary of Benchmarking to tune all 5 parameters

® StartServers

If you keep a small number of servers active most of the time, keep this number low. Keep it low
especialy if MaxSpar eServers is aso low, as if there is no load Apache will kill its children
before they have been utilized at all. If your service is heavily loaded, make this number close to
Maxd i ent s, and keep MaxSpar eSer ver s equal to Maxd i ent s.

MinSpareServers

If your server performs other work besides web serving, make thislow so the memory of unused chil-
dren will be freed when the load is light. If your server’'sload varies (you get loads in bursts) and you
want fast response for all clients at any time, you will want to make it high, so that new children will
be respawned in advance and are waiting to handle bursts of requests.

® MaxSpareServers

Thelogicisthe sameasfor M nSpar eSer ver s - low if you need the machine for other tasks, high
if it's a dedicated web host and you want a minimal delay between the request and the response.

MaxClients

Not too low, so you don’'t get into a situation where clients are waiting for the server to start serving
them (they might wait, but not for very long). However, do not set it too high. With a high MaxClients, if
you get a high load the server will try to serve al requests immediately. Y our CPU will have a hard
time keeping up, and if the child size * number of running children is larger than the total available
RAM vyour server will start swapping. This will slow down everything, which in turn will make
things even sower, until eventually your machine will die. It's important that you take pains to
ensure that swapping does not normally happen. Swap space is an emergency pool, not a resource to
be used routinely. If you are low on memory and you badly need it, buy it. Memory is cheap.

But based on the test | conducted above, even if you have plenty of memory like | have (1Gb),
increasing MaxCl i ent s sometimes will give you no improvement in performance. The more clients
are running, the more CPU time will be required, the less CPU time slices each process will receive. The
response latency (the time to respond to a request) will grow, so you won't see the expected improve-
ment. The best approach is to find the minimum requirement for your kind of service and the
maximum capability of your machine. Then start at the minimum and test like | did, successively
raising this parameter until you find the region on the curve of the graph of latency and/or throughput
against MaxClients where the improvement starts to diminish. Stop there and use it. When you make
the measurements on a production server you will have the ability to tune them more precisely, since
you will see the real numbers.

Don't forget that if you add more scripts, or even just modify the existing ones, the processes will
grow in size as you compile in more code. Probably the parameters will need to be recalcul ated.

29 Jan 2004 57

1.6.6 KeepAlive

166

If your mod_perl server’s httpd.conf includes the following directives:

KeepAlive On
MaxKeepAl i veRequests 100
KeepAl i veTi meout 15

you have a real performance penalty, since after completing the processing for each request, the process
will wait for KeepAl i veTi meout seconds before closing the connection and will therefore not be
serving other requests during this time. With this configuration you will need many more concurrent
processes on a server with high traffic.

If you use some server status reporting tools, you will see the process in K status when it's in
KeepAl i ve status.

The chances are that you don’t want this feature enabled. Set it Off with:

KeepAlive Of
the other two directives don’'t matter if KeepAl i ve isOF f .

You might want to consider enabling this option if the client’s browser needs to request more than one
object from your server for a single HTML page. If this is the situation the by setting KeepAl i ve On
then for each page you save the HT TP connection overhead for al requests but the first one.

For example if you have a page with 10 ad banners, which is not uncommon today, you server will work
more effectively if a single process serves them al during a single connection. However, your client will
see a dightly slower response, since banners will be brought one at a time and not concurrently as is the
case if each | MGtag opens a separate connection.

Since keepalive connections will not incur the additional three-way TCP handshake they are kinder to the
network.

SSL connections benefit the most from KeepAl i ve in case you didn’'t configure the server to cache
session ids.

Y ou have probably followed the advice to send al the requests for static objects to a plain Apache server.
Since most pages include more than one unique static image, you should keep the default KeepAl i ve
setting of the non-mod_perl server, i.e. keep it On. It will probably be a good idea aso to reduce the
timeout alittle.

One option would be for the proxy/accelerator to keep the connection open to the client but make individ-
ual connections to the server, read the response, buffer it for sending to the client and close the server
connection. Obviously you would make new connections to the server as required by the client’s requests.

58 29 Jan 2004

Performance Tuning 1.6.7 PerlSetupEnv Off

1.6.7 [PerlSetupEnv Off|

Per| Set upEnv O f isanother optimization you might consider. This directive requires mod_perl 1.25
or later.

When this option is enabled, mod_per! fiddles with the environment to make it appear as if the code is
caled under the mod_cgi handler. For example, the $ENV{ QUERY_STRI NG environment variable is
initialized with the contents of Apache::args(), and the value returned by Apache::server_hostname() is
put into SENV{ SERVER_NAME} .

But “ENV population is expensive. Those who have moved to the Perl Apache API no longer need this
extra YENV population, and can gain by turning it Of f . Scripts using the CA . pm module require
Per | Set upEnv On because that module relies on a properly populated CGI environment table.

By default it isturned On.

Note that you can still set enviroment variables when Per | Set upEnv isturned O f . For example when
you use the following configuration:

Per| Set upEnv O f
Per | Modul e Apache: : Regi st ryNG
<Location /perl>
Per| Set Env TEST hi
Set Handl er perl -script
Per | Handl er Apache: : Regi stryNG
Opti ons +ExecCd
</ Locati on>

and you issue arequest for this script:

set upenvof f . pl

use Dat a: : Dunper;

ny $r = Apache->request ();
$r->send_http_header (' text/plain);
print Dunper (\ YENV) ;

you should see something like this:

$VARL = {
" GATEVWAY_| NTERFACE => 'Cd -Perl /1.1,
"MOD_PERL’ => 'nod_perl/1.25",
"PATH => "Jusr/lib/perl5/5.00503:... snipped ...’
"TEST => 'hi’
b

Note that we got the value of the TEST environment variable we set in httpd.conf.

29 Jan 2004 59

1.6.8 Reducing the Number of stat() Calls Made by Apache

1.6.8 [Reducing the Number of stat() Calls Made by Apachg

If you watch the system calls that your server makes (using truss or strace while processing a request, you
will notice that afew stat() calls are made. For example when | fetchihttp://localhost/perl-statug and | have
my DocRoot set to /home/httpd/docs | see:

[snip]
stat("/home/httpd/docs/perl-status"”, Oxbffff8cc) = -1
ENOENT (No such file or directory)
stat("/home/httpd/docs”, {st_mode=S_IFDIR|0755,
st_size=1024, ..}) =0
[snip]

If you have some dynamic content and your virtual relative URI is something like
/news/perl/mod_perl/summary (i.e., there is no such directory on the web server, the path components are
only used for requesting a specific report), this will generate five(!) stat() calls, before the Documen -
Root isfound. You will see something like this:

stat("/home/httpd/docs/news/perl/mod_perl/summary”, Oxbffff744) = -1
ENOENT (No such file or directory)
stat("/home/httpd/docs/news/perl/mod_perl", Oxbffff744) = -1
ENOENT (No such file or directory)
stat("/home/httpd/docs/news/perl", Oxbffff744) = -1
ENOENT (No such file or directory)
stat("/home/httpd/docs/news", Oxbffff744) = -1
ENOENT (No such file or directory)
stat("/home/httpd/docs”,
{st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

How expensive those calls are? Let’ s use the Time::HiRes module to find out.
stat_call_sample.pl

use Time::HiRes gw(gettimeofday tv_interval);
my $calls = 1_000_000;

my $start_time = [gettimeofday];

stat "/foo" for 1..$calls;

my $end_time = [gettimeofday J;

my $elapsed = tv_interval($start_time,$end_time) / $calls;

print "The average execution time: $elapsed seconds\n";

This script takes atime sample at the beginnig, then does 1 000 000 stat() callsto a non-existing file,
samples the time at the end and prints the average time it took to make a single stat() cal. I'm
sampling a 1M stats, so I'd get a correct average result.

Before we actually run the script one should distinguish between two different situation. When the server
isidle the time between the first and the last system call will be much shorter than the same time measured
on the loaded system. That is because on the idle system, a process can use CPU very often, and on the

60 29 Jan 2004

http://localhost/perl-status

Performance Tuning 1.6.8 Reducing the Number of stat() Calls Made by Apache

loaded system lots of processes compete over it and each process has to wait for a longer time to get the
same amount of CPU time.

So first we run the above code on the unloaded system:

% perl stat_call_sample.pl
The average execution time: 4.209645e-06 seconds

So it takes about 4 microseconds to execute a stat() call. Now let start a CPU intensive process in one
console. The following code keeps CPU busy all the time.

% perl -e '1**1 while 1’
And now run the stat_call_sample.pl script in the other console.

% perl stat_call_sample.pl
The average execution time: 8.777301e-06 seconds

You can see that the average time has doubled (about 8 microseconds). And this is obvious, since there
were two processes competing over CPU. Now if run 4 occurrences of the above code:

% perl -e '1**1 while 1’ &
% perl -e '1**1 while 1’ &
% perl -e '1**1 while 1’ &
% perl -e '1**1 while 1’ &

And when running our script in parallel with these processes, we get:

% perl stat_call_sample.pl
2.0853558e-05 seconds

about 20 microseconds. So the average stat() system call is 5 times longer now. Now if you have 50
mod_perl processes that keep the CPU busy al the time, the stat() call will be 50 times slower and it’ll
take 0.2 milliseconds to complete a series of call. If you have five redundant calls as in the strace example
above, they adds up to one millisecond. If you have more processes constantly consuming CPU, this time
adds up. Now multiply this time by the number of processes that you have and you get a few seconds lost.
Asusual, for some servicesthislossisinsignificant, while for others avery significant one.

So why Apache does all these redundant stat() calls? Y ou can blame the default installed Tran sHan-
dler for thisinefficiency. Of course you could supply your own, which will be smart enough not to look
for this virtual path and immediately return OK But in cases where you have a virtual host that serves only
dynamically generated documents, you can override the default Perl Tran sHandler with thisone:

PerlIModule Apache::Constants
<VirtualHost 10.10.10.10:80>

PerlTransHandler Apache::Constants::OK

</VirtualHost>

29 Jan 2004 61

1.6.8 Reducing the Number of stat() Calls Made by Apache

Asyou seeit affects only this specific virtual host.

This has the effect of short circuiting the normal Tr ansHandl er processing of trying to find a filesys-
tem component that matches the given URI -- no more ' stat’ gl

Watching your server under strace/truss can often reveal more performance hits than trying to optimize the
code itself!

For example unless configured correctly, Apache might look for the .htaccess file in many places, if you
don’t have one and add many open() calls.

Let’s start with this ssmple configuration, and will try to reduce the number of irrelevant system calls.

Docunent Root "/ hone/ htt pd/ docs”
<Location /foo/test>

Set Handl er perl-script

Per | Handl er Apache: : Foo
</ Locat i on>

The above configuration allows us to make a request to /foo/test and the Perl handler() defined in
Apache: : Foo will be executed. Notice that in the test setup there is no file to be executed (like in
Apache: : Regi st ry). Thereisno .htaccessfile aswell.

Thisisatypical generated trace.

stat ("/hone/ httpd/ docs/foo/test", Oxbffff8fc)
(No such file or directory)
stat ("/hone/ httpd/ docs/ foo", Oxbf fff8fc)
(No such file or directory)
stat ("/honme/ htt pd/ docs",
{st_nmode=S_I| FDI R| 0755, st_size=1024, ...})
open("/.htaccess", O_RDONLY)
(No such file or directory)
open("/hone/. htaccess", O _RDONLY)
(No such file or directory)
open("/hone/ httpd/. htaccess", O _RDONLY)
(No such file or directory)
open("/hone/ httpd/ docs/. htaccess", O_RDONLY)
(No such file or directory)
stat ("/honme/ httpd/ docs/test", Oxbffff774)
(No such file or directory)
stat ("/honme/ httpd/ docs",
{st_nmode=S_I| FDI R| 0755, st_size=1024, ...})

-1 ENCENT

-1 ENCENT

-1 ENCENT

1
'
[EnY

ENOCENT

1
'
[EnY

ENOCENT

1
'
[EnY

ENOCENT

1
'
[EnY

ENOCENT

1
o

Now we modify the <Di r ect ory> entry and add AllowOverride None, which among other things
disables .htaccess files and will not try to open them.

<Directory />

Al |l onOverri de None
</Directory>

62 29 Jan 2004

Performance Tuning 1.6.8 Reducing the Number of stat() Calls Made by Apache

We see that the four open() calls for .htaccess have gone.

stat ("/hone/ httpd/ docs/foo/test”, Oxbffff8fc) = -1 ENCENT
(No such file or directory)

stat ("/hone/ httpd/ docs/ foo", Oxbffff8fc) = -1 ENCENT
(No such file or directory)

stat ("/home/ htt pd/ docs",
{st_nmode=S_| FDI R 0755, st_size=1024, ...}) =0

stat ("/honme/ httpd/ docs/test", Oxbffff774) = -1 ENCENT
(No such file or directory)

stat ("/honme/ htt pd/ docs",
{st_nmode=S_| FDI R 0755, st_size=1024, ...}) =0

Let’ stry to shortcut the foo location with:
Alias /foo [/

Which makes Apache to look for the file in the / directory and not under /home/httpd/docs/foo. Let’s run
it:

stat("//test", Oxbffff8fc) = -1 ENOENT (No such file or directory)
Wow, we've got only one stat call |eft!

Let’'sremovethelast Al i as setting and use:

Per | Modul e Apache: : Constants
Per| TransHandl er Apache:: Constants:: K

as explained above. When we issue the request, we see no stat() calls. But thisis possible only if you serve
only dynamically generated documents, i.e. no CGI scripts. Otherwise you will have to write your own
PerlTransHandler to handle requests as desired.

For example this PerlTransHandler will not lookup the file on the filesystem if the URI starts with /foo,
but will use the default PerlTransHandler otherwise:

Per| TransHandl er "sub { return shift->uri() =~ m ~/foo| \
? Apache: : Constants:: OK \
Apache: : Const ant s: : DECLI NED; }’

Let’s see the same configuration using the <Per | > section and a dedicated package:

<Per| >
package My:: Trans;
use Apache:: Constants gw: conmon);
sub handl er{
ny $r = shift;
return &K if $r->uri() =~ nj~/fool;
return DECLI NED,

29 Jan 2004 63

1.7 TMTOWTDI: Convenience and Habit vs. Performance

package Apache:: ReadConfi g;
$Per| TransHandl er = "My::Trans";
</ Perl >

As you see we have defined the My: : Tr ans package and implemented the handler() function. Then we
have assigned this handler to the Per | Tr ansHandl er .

Of course you can move the code in the module into an external file, (e.g. My/Trans.pm) and configure the
Per | TransHandl er with

Per| TransHandl er My:: Trans
in the normal way (no <Per | > section required).

There is an even simpler way to save that last st at () call. Instead of using Per | Tr ansHandl er
combined with:

Alias /foo /
we Ccan use:

Aliasvatch ~/foo /

which in the current implementation (at least in apache-1.3.28) doesn’t incur the st at () call. Using the
regex instead of prefix matching might slow things a bit, but is probably till faster than the st at () call.

1.7 TMTOWTDI: Convenience and Habit vs. Performance

TMTOWTDI (sometimes pronounced "tim toady"), or "There's More Than One Way To Do It" is the
main motto of Perl. In other words, you can gain the same goal by coding in many different styles, using
different modules and deploying the same modules in different ways.

Unfortunately when you come to the point where performance is the goal, you might have to learn what's
more efficient and what’s not. Of course it might mean that you will have to use something that you don’t
really like, it might be less convenient or it might be just a matter of habit that one should change.

So this section is about performance trade-offs. For aimost each comparison we will provide the theoreti-
cal difference and then run benchmarks to support the theory, since however good the theory its the
numbers we get in practice that matter.

"Premature optimizations are evil", the saying goes. | believe that knowing how to write an efficient code
in first place, where it doesn’t make the quality and clarity suffer saves time in the long run. That's what
this section is mostly about.

In the following benchmarks, unlesstold different the following Apache configuration has been used:

64 29 Jan 2004

Performance Tuning 1.7.1 Apache::Registry PerlHandler vs. Custom PerlHandler

M nSpar eServers 10
MaxSpar eServers 20
StartServers 10

MaxCl i ents 20

MaxRequest sPer Chi | d 10000

1.7.1 |Apache::Registry Perl[Handler vs. Custom PerlHandler|

At some point you have to decide whether to use Apache: : Regi st ry and similar handlers and stick to
writing scripts for the content generation or to write pure Perl handlers.

Apache: : Regi st ry maps a request to a file and generates a subroutine to run the code contained in
that file. If you use a PerlHandler My::Handler instead of Apache: : Regi stry, you have a direct
mapping from request to subroutine, without the stepsin between. These stepsinclude:

1. run the stat() on the script’s filename ($r->filename)

2. check that the file exists and is executable

3. generate a Perl package name based on the request’s URI ($r->uri)

4. go to the directory the script residesin (chdir basename $r->filename)

5. compare the file's and stored in memory compiled subrouting’ s last modified time (if it was compiled
aready)

6. if modified or not compiled, compile the subroutine
7. go back to the previous directory (chdir $old_cwd)

If you cut out those steps, you cut out some overhead, plain and simple. Do you need to cut out that over-
head? May be yes, may be not. Y our requirements determine that.

Y ou should take alook at the sister Apache: : Regi st ry modules (e.g. Apache: : Regi st ryNGand
Apache: : Regi st r yBB) that don’t perform al these steps, so you can still choose to stick to using
scripts to generate the content. The greatest added value of scripts is that you don’'t have to modify the
configuration file to add the handler configuration and restarting the server for each newly written content
handler.

Now let’s run benchmarks and compare.

We want to see the overhead that Apache: : Regi st ry adds compared to the custom handler and
whether it becomes insignificant when used for the heavy and time consuming code. In order to do that we
will run two benchmarks sets: the first so called alight set will use an almost empty script, that only sends
a basic header and one word as content; the second will be a heavy set which will add some time consum-
ing operation to the script’s and the handler’ s code.

29 Jan 2004 65

1.7.1 Apache::Registry PerlHandler vs. Custom PerlHandler

For the light set we are going to use the registry.pl script running under Apache: : Regi stry:

benchmar ks/ regi stry. pl

use strict;
print "Content-type: text/plain\r\n\ir\n";
print "Hello";

And the following content generation handler:

Benchmar k/ Handl er . pm

package Benchnark: : Handl er;
use Apache:: Constants gw : conmon);

sub handl er {
$r = shift;
$r->send_http_header (' text/htnl’);
$r->print("Hello");
return &
}
1

We will add this settings to httpd.conf:

Per | Modul e Benchmar k: : Handl er
<Location /benchmar k_handl er >
Set Handl er perl-script
Per | Handl er Benchnar k: : Handl er
</ Locati on>

The first directive worries to preload and compile the Benchmar k: : Handl er module. The rest of the
lines tell Apache to execute the subroutine Benchmar k: : Handl er : : handl er when a request with
relative URI /benchmark_handler is made.

We will use the usual configuration for Apache: : Regi stry scripts, where all the URIs starting with
[perl are remapped to the files residing under /home/httpd/perl/ directory.

Alias /perl/ [hone/httpd/ perl/
<Location /perl>
Set Handl er perl-script
Per | Handl er +Apache: : Regi stry
Opti ons ExecCd
Per | SendHeader On
</ Locati on>

We will use the Apache: : Regi strylLoader to preload and compile the script at the server startup as
well, so the benchmark will be fair through the benchmark and only the processing time will be measured.
To accomplish the prel oading we add the following code to the startup.pl file:

use Apache:: Regi strylLoader ();
Apache: : Regi stryLoader - >new >handl er (
"/ perl/benchmarks/registry.pl",
"/ hore/ htt pd/ per!|/benchmarks/registry.pl");

66 29 Jan 2004

Performance Tuning 1.7.1 Apache::Registry PerlHandler vs. Custom PerlHandler

To create the heavy benchmark set let’s leave the above code examples unmodified but add some CPU
intensive processing operation (it can be also an |O operation or a database query.)

100;
log ($x ** 100) for (0..10000);

nmy $x
my $y

This code does lots of mathematical processing and therefore very CPU intensive.

Now we are ready to proceed with the benchmark. We will generate 5000 requests with 15 as a concur-
rency level using the Apache: : Benchmar k module.

Here are the reported results:

nane | avtinme rps
I'i ght handl er | 15 911
light registry | 21 680
heavy handl er | 183 81
heavy registry | 191 77

Let'slook at the results and answer the previously asked questions.

First let's compare the results from the light set. We can see that the average overhead added by
Apache: : Regi st ry (compared to the custom handler) is about:

21 - 15 = 6 mlliseconds
per request.

Thus the difference in speed is about 40% (15 vs. 21). Note that this doesn’t mean that the difference in
the real world applicationsis such big. And the results of the heavy set confirm that.

In the heavy set the average processing time is amost the same for the Apache: : Regi st ry and the
custom handler. You can clearly see that the difference between the two is amost the same one that we
have seen in the light set’s results. It has grown from 6 milliseconds to 8 milliseconds (191-183). Which
means that the identical heavy code that has been added was running for about 168 milliseconds (183-15).
It doesn’t mean that the added code itself has been running for 168 milliseconds. It means that it took 168
milliseconds for this code to be completed in a multi-process environment where each process gets atime
dlice to use the CPU. The more processes are running the more time the process will have to wait to get
the next time slice when it can use the CPU.

We have the second question answered as well. Y ou can see that when the code is not just the hello script,
the overhead of the extra operations done but the Apache: : Regi st ry module, is dmost insignificant.
It's a non zero though, so it depends on your requirements, and if another 5-10 millisecons overhead are
quite tolerable, you may choose to use Apache: : Regi stry.

29 Jan 2004 67

1.7.2 "Bloatware" modules

The interesting thing is that when the server under test runs on a very slow machine the results are
completely different. I'll present them here for comparison:

name | avtine rps
I'i ght handl er | 50 196
light registry | 160 61
heavy handl er | 149 67
heavy registry | 822 12

First of al the difference of 6 milliseconds in the average processing time we have seen on the fast
machine when running the light set, now has grown to 110 milliseconds. Which means that a few extra
operations, that Apache: : Regi st ry does, turn to be very expensive on the slow machine.

Second, you can see that when the heavy set is used, there is no preservation of the 110 milliseconds as we
have seen on the fast machine, which we obviously would expect to see, since the code that was added
should take the same time to execute in the handler and the script. But instead we see a difference of 673
milliseconds (822-149).

The explanation lies in fact that the difference between the machines isn’t merely in the CPU speed. It's
possible that there are many other things that are different. For example the size of the processor cache. If
one machine has a processor cache large enough to hold the whole handler and the other doesn’t this can
be very significant, given that in our heavy benchmark set, 99.9% of the CPU activity was dedicated to
running the calculation code.

But this also shows you again, that none of the results and conclusion made here should be taken for
granted. Certainly, most chances are that you will see a similar behavior on your machine, but only after
you have run the benchmarks and analyzed the received results, you can be sure what is the best for you
using the setup under test. If you later you happen to use a different machine, make sure to run the tests
again, as they can lead to complete different decision as we have just seen when we have tried the same
benchmark on a different machine.

1.7.2 [Bloatware" moduleg

Perl modules like 10:: are very convenient, but let's see what it costs us to use them. (perl5.6.0 over
OpenBSD)

%we ‘perl -MO-e "print join("\n", sort values ANC, "")"*
124 696 4166 /usr/local/lib/perl5/5.6.0/Carp. pm
580 2465 17661 /usr/local/lib/perl5/5.6.0/C ass/Struct.pm
400 1495 10455 /usr/local/lib/perl5/5.6.0/ Cd. pm
313 1589 10377 /usr/local/lib/perl5/5.6.0/ Exporter.pm
225 784 5651 /usr/local/lib/perl5/5.6.0/Exporter/Heavy. pm

92 339 2813 /usr/local/lib/perl5/5.6.0/FilelSpec. pm

442 1574 10276 /usr/local/lib/perl5/5.6.0/FilelSpec/Unix.pm
115 398 2806 /usr/local/lib/perl5/5.6.0/Filel/stat.pm
406 1350 10265 /usr/local/lib/perl5/5.6.0/1Q Socket /| NET. pm
143 429 3075 /usr/local/lib/perl5/5.6.0/1Q Socket/UN X. pm

68 29 Jan 2004

Performance Tuning

7168
230
222

47
239
169
594
252

77
428
452
127

52
139
161
109

79
318

30

13733

24137
1052
725
101
769
549
2180
755
235
1419
1401
473
161
541
609
390
370
1124
85
48195

178650
5995
5216

669
5005
3956

14772
5375
1709
10219
10554
3554
1050
3754
4081
2479
2589
11975

722

349869

/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.
/usr/local/lib/perl5/5.

t ot al

DO OO OO,

1.7.2 "Bloatware" modules

. 0/ OpenBSD. i 386- openbsd/ Confi g. pm

. 0/ OpenBSD. i 386- openbsd/ Errno. pm

. 0/ OpenBSD. i 386- openbsd/ Fcntl . pm

. 0/ OpenBSD. i 386- openbsd/ |1 O. pm

. 0/ OpenBSD. i 386-openbsd/ 1 Q' Dir. pm

. 0/ OpenBSD. i 386-openbsd/ 1O Fi |l e. pm

. 0/ OpenBSD. i 386- openbsd/ | O Handl e. pm

. 0/ OpenBSD. i 386- openbsd/ | O Pi pe. pm

. 0/ OpenBSD. i 386- openbsd/ | O Seekabl e. pm
. 0/ OpenBSD. i 386- openbsd/ | O Socket . pm

. 0/ OpenBSD. i 386- openbsd/ Socket. pm

. 0/ OpenBSD. i 386- openbsd/ XSLoader . pm

. 0/ Sel ect Saver. pm

. 0/ Synbol . pm

.0/ Ti e/ Hash. pm
.0/strict.pm

.0/ vars. pm

. 0/ war ni ngs. pm

. 0/ war ni ngs/ regi ster. pm

Moreover, that requires 116 happy trips through the kernel’s namei(). It syscalls open() a remarkable 57
times, 17 of which failed but leaving 38 that were successful. It also syscalled read() a curiously identical
57 times, ingesting a total of 180,265 plump bytes. To top it off, this increases your resident set size by
two megabytes!

Happy mallocking...

It seemsthat CA . pmsuffers from the same disease:

% we ‘ perl
1368 6920
6481

7849

- MCE

-le "print for values % NC *

43710 /usr/local/lib/perl5/5.6.0/overl oad. pm
26122 200840 /usr/local/lib/perl5/5.6.0/CAE.pm
33042 244550 total

Y ou have 16 trips through namei, 7 successful opens, 2 unsuccessful ones, and 213k of dataread in.

This is a perlbloat.pl that shows how much memory is acquired by Perl when you run some. So we can
easily test the overhead of loading some modules.

#!/ usr/ bi n/ perl

use Glop ();

ny $gtop = Glop- >new,

ny $before =

-W

$gt op- >pr oc_nmem $$) - >si ze;

for (@RGV) {

if (eval

eval

I

el se {

29 Jan 2004

eval

"require $_") {

{

$_->import;

$_,

69

1.7.3 Apache::args vs. Apache::Request::param vs. CGl::param

die $@if $@
}

ny $after = $gtop->proc_nen(3) - >si ze;
printf "@ARGY added ¥%s\n", Grlop::size_string($after - $before);

Now let's try to load | O, which loads | O : Handl e, 1 O : Seekable, IO :File, 1O Pipe,
| O : Socket andl O :Dir:

% ./perlbloat.pl "use IO’
use IO added 1.5M

"Only" 1.5 MB overhead. Now let’sload CGI (v2.74) and compile all its methods:

% ./perlbloat.pl "use CE; CdA->conpile(":all")’
use CA; CE->conpile(":all") added 1.8M

Almost 2MB extra memory. Let’'s compare CA . pmwith its younger sister, whose internals are imple-
mented in C.

% /perlbloat.pl 'use Apache:: Request’
use Apache: : Request added 48k

48KB. A significant differenceisn’'t it?

The following numbers show memory sizesin KB (virtual and resident) for v5.6.0 of Perl on four different
operating systems, The three calls each are without any modules, with just -MCGI, and with -M10O (never
with both):

OpenBSD Fr eeBSD Redhat Li nux Sol ari s
Vsz rss VSZ rSs VSZ rSS vsz rss
Raw Per | 736 772 832 1208 2412 980 2928 2272
w Cd 1220 1464 1308 1828 2972 1768 3616 3232
w |0 2292 2580 2456 3016 4080 2868 5384 4976

Anybody who'’ s thinking of choosing one of these might do well to digest these numbers first.

1.7.3 |Apache::args vs. Apache: :Request::param vs. CGI ::param|

Apache: : ar gs, Apache: : Request : : paramand Cd : : par amare the three most common ways
to process input arguments in mod_perl handlers and scripts. Let’s write three Apache: : Regi stry
scripts that use Apache: : args, Apache: : Request:: param and Cd :: param to process a
form's input and print it out. Notice that Apache::args is considered identical to
Apache: : Request : : par amonly when you have single valued keys. In the case of multi-valued keys
(e.g. when using check-box groups) you will have to write some extra code: If you do asimple:

ny Y%arans = $r->args;

70 29 Jan 2004

Performance Tuning 1.7.3 Apache::args vs. Apache::Request::param vs. CGl::param

only the last value will be stored and the rest will collapse, because that’s what happens when you turn a
list into a hash. Assuming that you have the following list:

(rules => '"Apache’, rules => "Perl’, rules => 'nod_perl’)

and assign it to a hash, the following happens:

$hash{rul es} = ' Apache’

$hash{rul es} = 'Perl’

$hash{rul es} = 'nod_perl’
So at the end only the:

rul es => ' nod_perl

pair will get stored. With CA . pmor Apache: : Request you can solve this by extracting the whole list
by its key:

ny @alues = $qg->parans(’rules’);

In addition Apache: : Request and CA . pmhave many more functions that ease input processing, like
handling file uploads. However Apache: : Request is much faster since its guts are implemented in C,
glued to Perl using XS code.

Assuming that the only functionality you need is the parsing of key-value pairs, and assuming that every
key has a single value, we will compare the following ailmost identical scripts, by trying to pass various
query strings.

Here' sthe code:

file:processing_wth_apache_args. pl

use strict;

ny $r = shift;

$r->send_http_header (' text/plain');

ny Yargs = $r->args;

print join "\n", map {"$_ => ".$%args{$_} } keys %args;

file:processing_wth_apache_request. pl

use strict;

use Apache:: Request ();

ny $r = shift;

ny $g = Apache: : Request - >new($r) ;
$r->send_http_header (' text/plain');

ny %args = map {$_ => $g->paran($_) } $g->param

print join "\n", map {"$_ => ".$args{$_} } keys %args;

29 Jan 2004 71

1.7.3 Apache::args vs. Apache::Request::param vs. CGl::param

file:processing_wth_cgi_pmpl

use strict;

use Cd ;

ny $r = shift;

$r->send_http_header (' text/plain');

ny $g = new C4d;

ny %rgs = map {$_ => $qg->param($_) } $q->param

print join "\n", map {"$_ => ".$args{$_} } keys %rgs;

All three scripts are preloaded at server startup:

<Per| >
use Apache:: Regi strylLoader ();
Apache: : Regi stryLoader - >new >handl er (
"/ perl/processing_wth_cgi _pmpl",
"/ hone/ httpd/ perl/processing_w th_cgi _pmpl"
)
Apache: : Regi stryLoader - >new >handl er (
"/ perl/processing_wth_apache_request.pl",
"/ hone/ httpd/ perl/processi ng_w th_apache_request.pl"
)
Apache: : Regi stryLoader - >new >handl er (
"/ perl/processing_wth_apache_args.pl",
"/ hone/ httpd/ perl/processi ng_w th_apache_args. pl"
)

</ Perl >

We use four different query strings, generated by:

my @ueries = (
join("&, map {"$ =" . 'e x 10} ('a..’b)),
join("&, map {"$ =" . 'e x 50} ('a..’b)),
join("&, map {"$_=' e’ x5} (ta..'z)),
join("&, map {"$_=' e’ x 10} ('a'..'z")),
)

Thefirst string is:

a—eeeeeeeeee&b=eeeeeeeeee

which is 25 characters in length and consists of two key/value pairs. The second string is also made of two
key/value pairs, but the value is 50 characters long (total 105 characters). The third and the forth strings
are made from 26 key/value pairs, with the value lengths of 5 and 10 characters respectively, with total
lengths of 207 and 337 characters respectively. The query_| en column in the report table is one of
these four total lengths.

We conduct the benchmark with concurrency level of 50 and generate 5000 requests for each test.

And the results are;

72 29 Jan 2004

Performance Tuning 1.7.4 Using $|=1 Under mod_perl and Better print() Techniques.

apreq 50 2 105 [53 907
r_args 50 2 105 [53 906
r_args 10 2 25 [53 899
apreq 5 26 207 [64 754
apreq 10 26 337 [65 742
r_args 5 26 207 [73 665
r_args 10 26 337 [74 657
cgi _pm 50 2 105 [85 573
cgi _pm 10 2 25 [87 559
cgi _pm 5 26 207 | 188 263
cgi _pm 10 26 337 | 188 262

Where apr eq standsfor Apache: : Request : : param(),r_args standsfor Apache: : args() or
$r->args() andcgi _pmstandsfor C3 : : paran() .

You can seethat Apache: : Request : : par amand Apache: : ar gs have similar performance with a
few key/value pairs, but the former is faster with many key/value pairs. CdA : : par amis significantly
slower than the other two methods.

1.7.4 |Using $|=1 Under mod perl and Better print() Techniques)

As you know, | ocal $|=1; disables the buffering of the currently selected file handle (default is
STDOUT). If you enableit,ap_r fl ush() iscaled after each pri nt (), unbuffering Apache's 0.

If you are using multiple pri nt () cals (_bad style in generating output) or if you just have too many
of them, then you will experience a degradation in performance. The severity depends on the number of
print() calls that you make.

Many old CGlI scripts were written like this:

print "<BODY BGCOLOR=\"bl ack\" TEXT=\"white\">";
print "<H1>";

print "Hello";

print "</HL>";

print " foo </ A>";

print "</ BODY>";

This example has multiple pri nt () calls, which will cause performance degradation with $| =1. It also
uses too many backsashes. This makes the code less readable, and it is also more difficult to format the
HTML so that it is easily readable as the script’ s output. The code below solves the problems:

print qqf
<BODY BGCOLOR="bl ack" TEXT="white">
<H1>
Hel l o
</ H1>
 foo </ A>
</ BODY>

b

29 Jan 2004 73

1.7.4 Using $|=1 Under mod_perl and Better print() Techniques.

| guess you see the difference. Be careful though, when printing a <HTM.> tag. The correct way is:

print qq{ <HTM.>
<HEAD></ HEAD>
<BODY>

}
If you try the following:

print qq{
<HTM_>
<HEAD></ HEAD>
<BODY>

}

Some older browsers expect the first characters after the headers and empty line to be <HTM_> with no
spaces before the opening left angle-bracket. If there are any other characters, they might not accept the
output as HTML and print it as a plain text. Even if it works with your browser, it might not work for
others.

One other approach isto use ‘here’ documents, e.g.:

print <<ECT;
<HTM_>
<HEAD></ HEAD>
<BODY>

EOT

Now let’s go back to the $| =1 topic. | till disable buffering, for two reasons:

e | userelatively few pri nt () calls. | achievethisby arranging for my pri nt () statementsto
print multilineHTML, and not oneline per pri nt () statement.

® | want my usersto see the output immediately. Soif | am about to produce the results of a DB
query which might take some time to complete, | want users to get some text while they are
waiting. Thisimproves the usability of my site. Ask yourself which you like better: getting the
output a bit sower, but steadily from the moment you’ ve pressed the Submit button, or having
to watch the " falling stars" for a while and then get the whole output at once, even if it's a few
milliseconds faster - assuming the browser didn’t time out during the wait.

An even better solution is to keep buffering enabled, and use a Perl API rfl ush() call to flush the
buffers when needed. This way you can place the first part of the page that you are going to send to the
user in the buffer, and flush it a moment before you are going to do some lengthy operation, like a DB
guery. So you Kill two birds with one stone: you show some of the data to the user immediately, so she
will feel that something is actually happening, and you have no performance hit from disabled buffering.

use CAd ();

ny $r = shift;

ny $q = new CQd;

print $g->header('text/htnm");

print $g->start_htnl;

print $g->p("Searching...Please wait");
$r->rflush;

74 29 Jan 2004

Performance Tuning 1.7.5 Global vs. Fully Qualified Variables

imtate a |l engthy operation
for (1..5) {
sl eep 1;

}
print $g->p("Done!");

Conclusion: Do not blindly follow suggestions, but think what is best for you in each case.

Note: It might happen that some browsers do not render the page before they have received a significant
amount. This is especially true if you insert <l i nk< or <scri pt > tags in your HTML header that
require the browser to load a separate file. In that case, the user won'’t be able to see the content at once, no
matter if you flush the buffers or not.

A workaround for this might be to use an output filter that replaces these tags with the files they refer to.

1.7.5 |Global vs. Fully Qualified Variableg

It's always a good idea to avoid using global variables where it's possible. Some variables must be either
global, such as @ SA or else fully qualified such as @4/ Modul e: : | SA, so that Perl can see them from
different packages.

A combination of st ri ct and var s pragmas keeps modules clean and reduces a bit of noise. However,
the var s pragma also creates aiases, as does Expor t er , which eat up more memory. When possible,
try to use fully qualified namesinstead of use vars.

For example write:

package MyPackagel,;

use strict;

use vars; # added only for fair conparison
@V Packagel:: I SA = g Cd);

$MyPackagel: : VERSION = "1.00";

1

instead of

package MyPackage2;

use strict;

use vars gw @ SA $VERSI QN) ;
@SA = gwm(Cd);

$VERSION = " 1. 00";

1;

Note that we have added the var s pragma in the package that doesn't use it so the memory comparison
will be fair.

Here are the numbers under Perl version 5.6.0

% perl -MGTop - MWPackagel -1e ’'print Glop->new >proc_nen(3) - >si ze’
2023424

% perl -MGTop - MWPackage2 -1e ’'print Glop->new >proc_mnen(3) - >si ze’
2031616

29 Jan 2004 75

1.7.6 Object Methods Callsvs. Function Calls

We have a difference of 8192 bytes. So every few global variables declared with var s pragma add about
8KB overhead.

Note that Perl 5.6.0 introduced a new our() pragma which works like my() scope-wise, but declares global
variables.

package MyPackages3;

use strict;

use vars; # not needed, added only for fair conparison
our @SA = gwm(Cd);

our $VERSION = "1.00";

1;

which uses the same amount of memory as afully qualified global variable:

% perl -MGTop - MWPackage3 -1e ’'print Glop->new >proc_nen(3) - >si ze’
2023424

Imported symbols act just like global variables, they can add up quick:

% per| bl oat. pl "use PCSI X ()’
use POSI X () added 316k

% per | bl oat. pl 'use PCSI X
use POSI X added 696k

That's 380k worth of aliases. Now let’'s say 6 different Apache: : Regi st ry scripts’ use POSI X;
for stritime() or some other function: 6 * 380k = 2.3Mb

One could save 2.3Mb per single processwith’ use POSI X ();’ and using fully qualifying POSI X: :
function calls.

1.7.6 |Object Methods Calls vs. Function Callg

Which subroutine calling form is more efficient: Object methods or functions?

1.7.6.1 [The Overhead with Light Subroutineq

Let’s do some benchmarking. We will start doing it using empty methods, which will alow us to measure
thereal difference in the overhead each kind of call introduces. We will use this code:

bench_cal | 1. pl

package Foo;

use strict;
use Benchmark;

sub bar { };

76 29 Jan 2004

Performance Tuning 1.7.6 Object Methods Callsvs. Function Calls

ti met hese(50_000, {

net hod => sub { Foo->bar () },
function => sub { Foo::bar(’ Foo');},
s

The two calls are equivalent, since both pass the class name as their first parameter; function does this
explicitly, while method does this transparently.

The benchmarking result:

Benchmar k: timing 50000 iterations of function, nethod
function: 0 wallclock secs (0.80 usr + 0.05 sys
method: 1 wallclock secs (1.51 usr + 0.08 sys

= 0.85 CPU)
= 1.59 CPY

We are interested in the "total CPU times and not the "wallclock seconds'. It's possible that the load on
the system was different for the two tests while benchmarking, so the wallclock times give us no useful
information.

We see that the method calling type is aimost twice as slow as the function call, 0.85 CPU compared to
1.59 CPU rea execution time. Why does this happen? Because the difference between functions and
methods is the time taken to resolve the pointer from the object, to find the module it belongs to and then
the actual method. The function form has one parameter less to pass, less stack operations, less time to get
to the guts of the subroutine.

perl5.6+ does better method caching, Foo- >net hod() is a little bit faster (some constant folding
magic), but not Foo- >$net hod() . And the improvement does not address the @ SA lookup that still
happensin either case.

1.7.6.2 [The Over head with Heavy Subroutineg

But that doesn't mean that you shouldn’t use methods. Generaly your functions do something, and the
more they do the less significant is the time to perform the call, because the calling time is effectively
fixed and is probably a very small overhead in comparison to the execution time of the method or function
itself. Therefore the longer execution time of the function the smaller the relative overhead of the method
call. The next benchmark proves this point:

bench_call 2. p

package Foo

use strict;
use Benchmark;

sub bar {
ny $class = shift;

nmy ($x,$y) = (100, 100);

$y = log ($x ** 10) for (0..20);
3

29 Jan 2004 7

1.7.6 Object Methods Callsvs. Function Calls

ti met hese(50_000, {

net hod => sub { Foo->bar () },
function => sub { Foo::bar(’ Foo');},
s

We get avery close benchmarks!

function: 33 wallclock secs (15.81 usr + 1.12 sys
met hod: 32 wall cl ock secs (18.02 usr + 1.34 sys

16. 93 CPU)
19.36 CPU)

Let’s make the subroutine bar even slower:

sub bar {
ny $class = shift;

my ($x,$y) = (100, 100);

$y = log ($x ** 10) for (0..40);
H
And the result is amazing, the method call convention was faster than function:

function: 81 wallclock secs (25.63 usr + 1.84 sys
nmet hod: 61 wall cl ock secs (19.69 usr + 1.49 sys

27.47 CPU)
21.18 CPU)

In case your functions do very little, like the functions that generate HTML tagsin CA . pm the overhead
might become a significant one. If your goal is speed you might consider using the function form, but if
you write a big and complicated application, it's much better to use the method form, as it will make your
code easier to develop, maintain and debug, saving programmer time which, over the life of a project may
turn out to be the most significant cost factor.

1.7.6.3 [Are All Methods Slower than Functions?

Some modules APl is misleading, for example CG . pmallows you to execute its subroutines as func-
tions or as methods. As you will see in a moment its function form of the calls is slower than the method
form because it does some voodoo work when the function form call is used.

use C4d ;

nmy $q = new CA;
$q->paran(’ x’, 5);

ny $x = $qg->paran(’'x’);

VS
use CAd gw :standard);
paran(’x',5);
ny $x = paran(’x’);

As usual, let's benchmark some very light calls and compare. Ideally we would expect the methods to be
slower than functions based on the previous benchmarks:

78 29 Jan 2004

Performance Tuning 1.7.7 Imported Symbols and Memory Usage

bench_cal | 3. pl

use Benchmark;

use CAd gw :standard);
$CA : : NO DEBUG = 1;
ny $q = new Cd;

my $x;
ti met hese
(20000, {
nethod => sub {$g->paran(’x’,5); $x = $g->paran(’x’); 1},
function => sub { param(’'x',5); $x = paran(’x'); },

O

The benchmark is written is such away that all the initializations are done at the beginning, so that we get
as accurate performance figures as possible. Let's do it:

% ./ bench_cal | 3. pl

function: 51 wallclock secs (28.16 usr + 2.58 sys
met hod: 39 wall cl ock secs (21.88 usr + 1.74 sys

30. 74 CPU)
23.62 CPU)

As we can see methods are faster than functions, which seems to be wrong. The explanation lays in the
way CA . pmis implemented. CA . pmuses some fancy tricks to make the same routine act both as a
method and a plain function. The overhead of checking whether the arguments list looks like a method
invocation or not, will mask the slight difference in time for the way the function was called.

If you are intrigued and want to investigate further by yourself the subroutine you want to exploreis called
self_or_default. The first line of this function short-circuits if you are using the object methods, but the
whole function is called if you are using the functional forms. Therefore, the functional form should be
dlightly slower than the object form.

1.7.7 I mported Symbols and Memory Usagg

There is a real memory hit when you import all of the functions into your process memory. This can
significantly enlarge memory requirements, particularly when there are many child processes.

In addition to polluting the namespace, when a process imports symbols from any module or any script it
grows by the size of the space allocated for those symbols. The more you import (e.g. qw(:standard) vs
gw(:al)) the more memory will be used. Let's say the overhead is of size X. Now take the number of
scripts in which you deploy the function method interface, let’s call that Y. Finally let’s say that you have
anumber of processes equal to Z.

You will need X*Y*Z size of additiona memory, taking X=10k, Y=10, Z=30, we get 10k*10*30 =
3Mb!!! Now you understand the difference.

Let’sbenchmark CA . pmusing GTop. pm First we will try it with no exporting at all.

29 Jan 2004 79

1.7.7 Imported Symbols and Memory Usage

use Glop ();

use CAd ();

print GTop->new >proc_nen(3) - >si ze;
1, 949, 696

Now exporting afew dozens symbols:
use Glop ();
use CA gw:standard);
print GTop->new >proc_nen($$) - >si ze;
1, 966, 080

And finally exporting al the symbols (about 130)
use Glop ();
use CA gw:all);
print GTop->new >proc_nen(3) - >si ze;
1,970, 176

Results:

i mport synbols size(bytes) delta(bytes) relative to ()

0 1949696 0
gw(: st andar d) 1966080 16384
gw(: all) 1970176 20480

So in my example above X=20k => 20K*10*30 = 6Mb. Y ou will need 6Mb more when importing al the
CA . pmissymbolsthan when you import none at all.

Generally you use more than one script, run more than one process and probably import more symbols
from the additional modules that you deploy. So the real numbers are much bigger.

The function method is faster in the general case, because of the time overhead to resolve the pointer from
the object.

If you are looking for performance improvements, you will have to face the fact that having to type
My: : Modul e: : my_net hod might save you a good chunk of memory if the above call must not be
called with areference to an object, but even then it can be passed by value.

| strongly endorse Apache::Request (libapreq) - Generic Apache Request Library. Its core is written in C,

giving it a significant memory and performance benefit. It has al the functionality of C3 . pmexcept the
HTML generation functions.

80 29 Jan 2004

Performance Tuning 1.7.8 Interpolation, Concatenation or List

1.7.8 [Interpolation, Concatenation or List|

Somewhat overlapping with the previous section we want to revisit the various approaches of mungling
with strings, and compare the speed of using lists of strings compared to interpolation. We will add a
string concatenation angle as well.

When the strings are small, it almost doesn’t matter whether interpolation or alist is used. Here is a bench-
mark:

use Benchmark;

use Synbol ;
ny $fh = gensym
open $fh, ">/dev/null" or die;

ny($one, $two, $three, $four) = ("a .. 'd);

ti met hese(1_000_000,
{
interp => sub {
print $fh "$one$t wost hr ee$f our";
b,
list => sub {
print $fh $one, $two, $three, $four;
b,
conc => sub {
print $fh $one. $t wo. $t hr ee. $f our;

H
1)
Benchmar k: timng 1000000 iterations of conc, interp, list...
conc: 3 wallclock secs (3.38 usr + 0.00 sys = 3.38 CPU)
interp: 3 wallclock secs (3.45 usr + -0.01 sys = 3.44 CPY
list: 2 wallclock secs (2.58 usr + 0.00 sys = 2.58 CPU)

The concatenation technique is very similar to interpolation. The list technigque is a little bit faster than
interpolation. But when the strings are large, lists are significantly faster. We have seen this in the previ-
ous section and here is another benchmark to increase our confidence in our conclusion. This time we use
1000 character long strings:

use Benchmark;

use Synbol ;
ny $fh = gensym
open $fh, ">/dev/null" or die;

ny($one, $two, $three, $four) = map { $_ x 1000 } ("a' ..'d);

ti met hese(500_000,
{

interp => sub {
print $fh "$one$t wo$t hr ee$f our”;
},
list => sub {
print $fh $one, $two, $three, $four;
},

29 Jan 2004 81

1.7.9 Using Perl stat() Call’s Cached Results

conc => sub {
print $fh $one. $t wo. $t hr ee. $f our;

H
1
Benchmark: timng 500000 iterations of interp, list...
conc: 5 wallclock secs (4.47 usr + 0.27 sys = 4.74 CPU)
interp: 4 wallclock secs (4.25 usr + 0.26 sys = 4.51 CPU)
list: 4 wallclock secs (2.87 usr + 0.16 sys = 3.03 CPU)

In this case using a list is about 30% faster than interpolation. Concatenation is a little bit slower than
interpolation.

Let'slook at this code:

$title =My Web Page’;

print "<hl>$title</hl>"; # I nterpolation (slow)
print '<hl> . $title . "</hl>; # Concatenation (sl ow)
print '<hl>', $title, '</hl>"; # List (fast for long strings)

When you use "<h1>$title</h1>" Perl does interpolation (since " " is an operator in Perl), which must
parse the contents of the string and replace any variables or expressions it finds with their respective
values. This uses more memory and is slower than using alist. Of course if there are no variables to inter-
polate it makes no difference whether touse” stri ng” or’ string’ .

Concatenation is also potentially slow since Perl might create a temporary string which it then prints.

Lists are fast because Perl can simply deal with each element in turn. Thisistrueif you don't run join() on
the list at the end to create a single string from the elements of list. This operation might be slower than
direct append to the string whenever a new string springs into existence.

[ReaderMETA]: Please send more mod_perl relevant Perl performance hints

1.7.9 [Using Perl stat() Call’s Cached Resultg

When you do a stat() (or its variations - M -- last modification time, - A -- last access time, - C -- last
inode-change time, etc), the returned information is cached internaly. If you need to make an additional
check for the same file, use the _ magic variable and save the overhead of an unnecessary stat() call. For
example when testing for existence and read permissions you might use:

nmy $filename = "./test";
three stat() calls
print "OKA\n" if -e $filename and -r $fil enane;
ny $nod_time = (-M $filenane) * 24 * 60 * 60;
print "$filename was nodified $nod_time seconds before startup\n”;

or the more efficient:

82 29 Jan 2004

Performance Tuning 1.8 Apache::Registry and Derivatives Specific Notes

ny $filename = "./test";
one stat() call
print "OK\n" if -e $filename and -r _
ny $nod_tinme = (-M_) * 24 * 60 * 60;
print "$filename was nodified $nod_tine seconds before startup\n”;

Two stat() calls were saved!

1.7.10 [Optimizing Codg

Here are some other resources that explain how to optimize your code, which are usually applied when
you profile your code and need to optimize it but in many cases are useful to know when you develop the
code.

® |nteresting C code optimization notes, most applying to Perl code as wdl:
|http://www . utsc.utoronto.ca/~harper/cscb09/l ecturel 1. html#codd

[ReaderMETA]: please send me similar resourcesif you know of such.

1.8 |Apache::Registry and Derivatives Specific Noteg

These are the sections that deal solely with Apache: : Regi stry and derived modules, like
Apache: : Per| Run and Apache: : Regi st r yBB. No Perl handlers code is discussed here, so if you
don’'t use these modules, feel freeto skip this section.

1.8.1 |Be Careful with Symbolic Linkg

Asyou know Apache: : Regi st ry caches the scripts in the packages whose names are constructed by
scripts’ URI. If you have the same script that can be reached by different URIs, which is possible if you
have used symbolic links, you will get the same script stored twice in the memory.

For example:

%I n -s /home/ httpd/ perl/news/news. pl /hone/httpd/ perl/news. pl

Now the script can be reached through the both URIs /news/news.pl and /news.pl. It doesn't really matter
until you advertise the two URIs, and users reach the same script from both of them.

So let’ s assume that you have issued the requests to the both URIs:

http://1ocal host/ perl/ news/ news. pl
http://1ocal host/ perl/news. pl

To spot the duplication you should use the Apache: : St at us module. Amongst other things, it shows
all the compiled Apache: : Regi st ry scripts (using their respective packages):

29 Jan 2004 83

http://www.utsc.utoronto.ca/~harper/cscb09/lecture11.html#code

1.9 Improving Performance by Prevention

If you are using the default configuration directives you should either use this URI:
http://1ocal host/ perl -status?rgysubs

or just go to the main menu at:
http://1 ocal host/perl-status

And click on Conpi | ed Regi stry Scri pts menuitem.

META: we need a screen snapshot herel!!

If you the script was accessed through the URI that was remapped to the real file and through the URI that
was remapped to the symbalic link, you will see the following output:

Apache: : ROOT: : perl :: news: : news_2epl
Apache: : ROOT: : perl :: news_2epl

Y ou should run the server in the single mode, to see it immediately. If you test it in the normal mode--it's
possible that some child processes would show only one entry or none at al, since they might not serve
the same requests as the others. For more hints see the section "Run the server in single mode".

1.9 [mproving Perfor mance by Prevention|

There are two ways to improve performance: one is by tuning to squeeze the most out of your hardware
and software; and the other is preventing certain bad things from happening, like impolite robots that
crawl your site without pausing between requests, memory leakages, getting the memory unshared,
making sure that some processes won't take up all the CPU etc.

In the following sections we are going to discuss about the tools and programming techniques that would
help you to keep your service in order, even if you are not around.

1.9.1 Memory leakageg

Scripts under mod_perl can very easily leak memory! Global variables stay around indefinitely, lexically
scoped variables (declared with my ()) are destroyed when they go out of scope, provided there are no
references to them from outside that scope.

Perl doesn’t return the memory it acquired from the kernel. It does reuse it though!

1.9.1.1 [Reading In A Whole Fild

open IN, $file or die $!;

local $/ = undef; # will read the whole file in
$content = <|I N>;

close IN,

84 29 Jan 2004

Performance Tuning 1.9.1 Memory leakage

If your file is 5Mb, the child which served that script will grow by exactly that size. Now if you have 20
children, and all of them will serve this CGlI, they will consume 20*5M = 100M of RAM in total! If that's
the case, try to use other approaches to processing the file, if possible. Try to process aline at atime and
print it back to thefile. If you need to modify the file itself, use atemporary file. When finished, overwrite
the source file. Make sure you use alocking mechanism!

1.9.1.2 |Copying Variables Between Functiong

Now let’s talk about passing variables by value. Let’ s use the example above, assuming we have no choice
but to read the whole file before any data processing takes place. Now you have some imaginary
process() subroutine that processes the data and returns it. What happens if you pass the $cont ent
by value? You have just copied another 5M and the child has grown in size by another 5M. Watch your
swap space! Now multiply it again by factor of 20 you have 200M of wasted RAM, which will apparently
be reused, but it's a waste! Whenever you think the variable can grow bigger than a few Kb, pass it by
reference!

Once | wrote a script that passed the contents of alittle flat file database to a function that processed it by
value -- it worked and it was fast, but after a time the database became bigger, so passing it by value was
expensive. | had to make the decision whether to buy more memory or to rewrite the code. It's obvious
that adding more memory will be merely a temporary solution. So it’s better to plan ahead and pass vari-
ables by reference, if a variable you are going to pass might eventually become bigger than you envisage
at the time you code the program. There are a few approaches you can use to pass and use variables passed
by reference. For example:

ny $content = qq{foobarfoobar};
process(\$content);
sub process{
nmy $r_var = shift;
$$r_var =~ s/fool bar/gs;
nothing returned - the variable $content outside has already
been nodified

}
If you work with arrays or hashes it’s:

@$var _Ir} dereferences an array
9% $var_hr} dereferences a hash

We can till access individual elements of arrays and hashes that we have a reference to without derefer-
encing them:

$var_Ir->[$index] get $index'th element of an array via a ref
$var _hr->{$key} get $key' th elenment of a hash via a ref

For more information seeper | doc perlref.

Another approach would be to usethe @_array directly. This has the effect of passing by reference:

29 Jan 2004 85

1.9.1 Memory leakage

process($content);
sub process{
$ [0] =~ s/foolbar/gs;
nothing returned - the variable $content outside has been
al ready nodified

}
Fromper| doc perl sub:

The array @ is a local array, but its elements are aliases for
the actual scalar paraneters. |n particular, if an el enment

$ [0] is updated, the corresponding argunent is updated (or an
error occurs if it is not possible to update)..

Be careful when you write this kind of subroutine, since it can confuse a potential user. It's not obvious
that cal like process($cont ent); modifies the passed variable. Programmers (the users of your
library in this case) are used to subroutines that either modify variables passed by reference or expressly
return aresult (e.g. $cont ent =pr ocess($cont ent) ;).

1.9.1.3 Work With Databaseq

If you do some DB processing, you will often encounter the need to read lots of records into your
program, and then print them to the browser after they are formatted. | won’'t even mention the horrible
case where programmers read in the whole DB and then use Perl to processit!!! Use arelational DB and
let the SQL do the job, so you get only the records you need!

We will use DBI for this (assume that we are already connected to the DB--refer to per | doc DBI for a
complete reference to the DBl module):

$st h- >execut e;
while(@ow ary = $sth->fetchrow array) {
do DB accunul ation into sone variable

}

print the output using the data returned fromthe DB

In the example above the httpd_process will grow by the size of the variables that have been allocated for
the records that matched the query. Again remember to multiply it by the number of the children your
server runs!

A better approach is not to accumulate the records, but rather to print them as they are fetched from the
DB. Moreover, we will use the bi nd_col () and $sth->fetchrow arrayref () (diased to
$st h- >f et ch()) methods, to fetch the data in the fastest possible way. The example below prints an
HTML table with matched data, the only memory that is being used isa @ol s array to hold temporary
row values. The table will be rendered by the client browser only when the whole table will be out though.

my @elect _fields = gmMa b c);
create a list of cols values
my @ols = ();
@ol s[0. . $#tsel ect _fields] = ();
$sth = $dbh->prepare($do_sql);
$st h- >execut e;
Bind perl variables to col ums.

86 29 Jan 2004

Performance Tuning 1.9.1 Memory leakage

$st h- >bi nd_col ums(undef,\ (@ol s));
print "<TABLE>";
whi | e($st h->fetch) {
print "<TR>",
map("<TD>$_</ TD>", @ols),
"</ TR

}
print "</ TABLE>";

Note: the above method doesn't allow you to know how many records have been matched. The
workaround is to run an identical query before the code above where you use SELECT count (*) .
instead of ' SELECT * ..., to get the number of matched records. It should be much faster, since you
can remove any SORTBY and similar attributes.

For those who think that $sth->rows will do the job, here is the quote from the DBl manpage:
rows();
$rv = $st h->rows;

Returns the nunber of rows affected by the | ast database altering
command, or -1 if not known or not available. GCenerally you can
only rely on a row count after a do or non-sel ect execute (for sone
specific operations |ike update and delete) or after fetching all
the rows of a select statenent.

For select statenents it is generally not possible to know how many
rows will be returned except by fetching themall. Some drivers
will return the nunmber of rows the application has fetched so far
but others may return -1 until all rows have been fetched. So use of
the rows nethod with select statements is not reconmended.

As abonus, | wanted to write a single sub that flexibly processes any query. It would accept conditions, a
call-back closure sub, select fields and restrictions.

Usage:
$0->dunp(\ %ondi tions,\&cal | back_cl osure,\ @el ect _fields, @estrictions);
#
sub dunp{
ny $self = shift;
ny %aram = % +shift}; # dereference hash
my $rsub = shift;
nmy @elect _fields = @+shift}; # dereference Iist

L]

ny @estrict = shift || ;

create a list of cols val ues

ny @ols = ();
@ol s[0. . $#sel ect _fields] = ();

[

ny $do_sql = ;
my @where = ();

make a @where |ist
map { push @here, "$_=\"$paran{$_}\'" if $param{$_};} keys %param

29 Jan 2004 87

1.9.1 Memory leakage

prepare the sql statenent

$do_sql = "SELECT “;

$do_sqgl .= join(" ", @estrict) if @estrict; # append restriction |ist
$do_sql .= " " .join(",", @elect_fields) ; # append select |ist
$do_sql .= " FROM $DBConfi g{ TABLE} "; # fromtable

we will not add the WHERE cl ause if @where is enpty
$do_sqgl .= " WHERE " . join " AND ", @where if @here;

print "SQ.: $do_sqgl \n" if $debug;

$dbh- >{ Rai seError} = 1; # do this, or check every call for errors
$sth = $dbh->prepare($do_sql);
$st h- >execut e;
Bind perl variables to colums.
$st h- >bi nd_col ums(undef,\ (@ol s));
whi | e($st h->fetch) {
&$rsub(@ol s);
}

print the tail or "no records found" nessage

according to the previous calls
&$rsub();

} # end of sub dunp

Now a callback closure sub can do lots of things. We need a closure to know what stage are we in: header,

body or tail. For example, we want a callback closure for formatting the rows to print:

ny $rsub = eval {
make a copy of @ields list, since it mght go
out of scope when this closure is called

my @ields = @ields;

my @uery_fields = gw(user dir tool act); # no date field!!!
ny $header = O;

ny S$tail = 0;

ny $counter = O;

nmy %ols = (); # col ums nanme=> val ue hash
Closure with the follow ng behavior:

1. Header’'s code will be executed on the first call only and
if @ was set

2. Row s printing code will be executed on every call with @ set
3. Tail's code will be executed only if Header’'s code was

printed and @ isn't set

4. "No record found" code will be executed if Header’s code
wasn’'t execut ed

sub {

Header
if (@ and !$header){
print "<TABLE>\n";
print $g->Tr(map{ $q->td($_) } @ields);
$header = 1;
}

Body

88

29 Jan 2004

Performance Tuning 1.9.2 Preventing Y our Processes from Growing

if (@) {
print $g->Tr(map{$g->td($)} @);
$count er ++;
return;

}

Tail, will be printed only at the end
if ($header and !($tail or @)){
print "</ TABLE>\n $counter records found"
$tail = 1;
return;

}

No record found
unl ess ($header) {
print $g->p($g9->center($g->b("“No record was found!'\n")));

}

} # end of sub {}
}; # end of ny $rsub = eval {

You might also want to check the section |Preventing Y our Processes from Growing and [Limiting Other|
|[Resources Used by Apache Child Processed

1.9.2 [Preventing Your Processes from Growing

If you have aready worked with mod_perl, you have probably noticed that it can be difficult to keep your
mod_perl processes from using a lot of memory. The less memory you have, the fewer processes you can
run and the worse your server will perform, especially under a heavy load. This chapter presents severa
common situations which can lead to unnecessary consumption of RAM, together with preventive
measures.

When you need to control the size of your httpd processes, use one of the two modules
Apache: : GTopLi nmit and Apache: : Si zeLi ni t which kill Apache httpd processes when the latter
grow too large or lose a big chunk of their shared memory. The two modules differ in methods for finding
out the memory usage. Apache: : GTopLi m t relies on the libgtop library to perform this task, there-
fore if this library can be built on your platform you can use this module. Apache: : Si zeLinit
includes different methods for different platforms, you will have to check the modules' manpage to figure
out which platforms are supported.

1.9.2.1 [Defining the Minimum Shared Memory Size Thr eshold|

Aswe have already discussed, when it isfirst created an Apache child process usually has alarge fraction
of it memory shared with its parent. During the child process’ life some of its data structures are modified
and a part of its memory becomes unshared (pages become "dirty"), leading to an increase in memory
consumption. Y ou will remember that the MaxRequest sPer Chi | d directive allows you to specify the
number of requests a child process should serve before it is killed. One way to limit the memory consump-
tion of aprocessisto kill it and let Apache replace it with a newly started process, which again will have
al its memory shared with the Apache parent. The new child process serves requests and eventually the
cycleisrepeated.

29 Jan 2004 89

1.9.2 Preventing Y our Processes from Growing

This is a fairly crude means of limiting unshared memory and you will probably need to tune MaxRe
guestsPer Child , eventualy finding an optimum value. If, as is likely, your service is undergoing
constant changes then thisis an inconvenient solution. Y ou have to re-tune this number again and again to
adapt to the ever changing code base.

You realy want to set some guardian to watch the shared size and kill the process if it goes below some
limit. Thisway, processes will not be killed unnecessarily.

To set a shared memory lower limit of 4MB using Apache::GTopLimit add the following code into
the startup.pl file:

use Apache::GTopLimit;
$Apache::GTopLimit::MIN_PROCESS_SHARED_SIZE = 4096;

and in httpd.conf:

PerlFixupHandler Apache::GTopLimit
don't forget to restart the server for the changes to take effect.

This has the effect that as soon as the child process shares less than 4MB, (the corollary being that it must
therefore be occupying a lot of memory with its unique pages), it will be killed after completing to serve
the last request, and, as a consequence, a new child will take its place.

If you use Apache::Size Limit you can accomplish the same with the adding to startup.pl:

use Apache::SizeLimit;
$Apache::SizeLimit::MIN_SHARE_SIZE = 4096;

and in httpd.conf:

PerlFixupHandler Apache::SizeLimit

If you only want to set this limit for some requests (presumably the ones which you think are likely to
cause memory to become unshared) then you can register a post-processing check using the
set_ min_shared size() function. For example:

use Apache::GTopLimit;
if ($need_to_limit) {
make sure that at least 4MB are shared
Apache::GTopLimit->set_min_shared_size(4096);
}

or for Apache::Size Limit

use Apache::SizeLimit;

if ($need_to_limit) {
make sure that at least 4MB are shared
Apache::SizeLimit->setmin(4096);

}

90 29 Jan 2004

Performance Tuning 1.9.2 Preventing Y our Processes from Growing

Since accessing the process information adds a little overhead, you may want to only check the process
size every N times. In this case set the $Apache: : GTopLi m t:: CHECK_EVERY_N_REQUESTS
variable. For example to test the size every other time, put in your startup.pl:

$Apache: : GTopLi mi t:: CHECK_EVERY_N_REQUESTS = 2;
or for Apache: : Si zeLimi t:
$Apache: : Si zeLi mi t: : CHECK_EVERY_N_REQUESTS = 2;

You can run the Apache: : GTopLi nmi t modulein the debug mode by setting:

Per | Set Var Apache: : GTopLi m t: : DEBUG 1

in httpd.conf. It's important that this setting should happen before the Apache: : GTopLi mi t moduleis
loaded.

When debug mode is turned on the module reports in the error_log file the memory usage of the current
process and also when it detects that at least one of the thresholds was crosses and the process is going to
be killed.

Apache: : Si zeLi m t controlsthe debug level via$Apache: : Si zeLi nmi t : : DEBUGvariable:
$Apache: : Si zeLimi t:: DEBUG = 1;

which can be modified any time, even after the module was loaded.

1.9.2.2 [Potential Drawbacks of Memory Sharing Restriction|

It's very important that the system won’t be heavily engaged in swapping process. Some systems do swap
in and out every so often even if they have plenty of real memory available and it's OK. The following
applies to conditions when there is hardly any free memory available.

So if the system uses amost al of its real memory (including the cache), there is a danger of parent’s
process memory pages being swapped out (written to a swap device). If this happens the memory usage
reporting tools will report all those swapped out pages as non-shared, even though in reality these pages
are till shared on most OSs. When these pages are getting swapped in, the sharing will be reported back
to normal after a certain amount of time. If a big chunk of the memory shared with child processes is
swapped out, it's most likely that Apache: : Si zeLi mi t or Apache: : GTopLi m t will notice that
the shared memory floor threshold was crossed and as a result kill those processes. If many of the parent
process pages are swapped out, and the newly created child process is already starting with shared
memory below the limit, it'll be killed immediately after serving a single request (assuming that we the
$CHECK_EVERY_N_REQUESTS is set to one). Thisis avery bad situation which will eventualy lead to
a state where the system won't respond at al, asit’ll be heavily engaged in swapping process.

This effect may be less or more severe depending on the memory manager’s implementation and it
certainly varies from OS to OS, and different kernel versions. Therefore you should be aware of this
potential problem and simply try to avoid situations where the system needs to swap at all, by adding more
memory, reducing the number of child servers or spreading the load across more machines, if reducing the

29 Jan 2004 91

1.9.2 Preventing Y our Processes from Growing

number of child serversis not an options because of the request rate demands.

1.9.2.3 IDefining the Maximum Memory Size Threshold|

Not less important than maximizing shared memory is restricting the absolute size of the processes. If the
processes grow after each request, and if nothing restricts them from growing, you can easily run out of
memory.

Again you can set the MaxRequest Per Chi | d directive to kill the processes after a few requests have
been served. But as we have explained in the previous section this solution is not as good as one which
monitors the process size and killsit only when some limit is reached.

If you have Apache: : GTopLi ni t (described in the previous section) you can limit process memory
usage by setting the $Apache: : GTopLi mi t : : MAX_PROCESS_SI ZE directive. For example if you
want the processes to be killed when they reach 10MB you should put the following in your startup.pl file:

$Apache: : GTopLi mi t:: MAX_PROCESS_SI ZE = 10240;

Just as when limiting shared memory, you can set a limit for the current process using the set_max_size()
method in your code:

use Apache:: GlopLim t;
Apache: : GTopLi m t->set _max_si ze(10000) ;

For Apache: : Si zeLi m t theequivalentsare:

use Apache:: SizeLimt;
$Apache: : Si zeLi m t:: MAX_PROCESS_SI ZE = 10240;

and:

use Apache:: SizeLimt;
Apache: : Si zeLi m t - >set max(10240) ;

1.9.2.4 [Defining the Maximum Unshared Memory Size Thr eshold|

Instead of setting the shared and total memory usage thresholds, you can set a single threshold which
measures the amount of unshared memory, by subtracting the shared memory size from the total memory
size.

Both modules alow you to set the thresholds in similar ways. With Apache: : GTopLi i t you can set
the unshared memory threshold server-wide with:

$Apache: : GTopLi mi t : : MAX_PROCESS_UNSHARED S| ZE = 6144;
and locally for a handler with:

Apache: : GTopLi mi t - >set _max_unshared_si ze(6144);

92 29 Jan 2004

Performance Tuning 1.9.3 Limiting Other Resources Used by Apache Child Processes

If you are using Apache: : Si zeLi ni t the corresponding settings would be:
$Apache: : Si zeLi mi t:: MAX_UNSHARED S| ZE = 6144;

and:

Apache: : Si zeLi m t - >set max_unshar ed(6144) ;

1.9.3 [Limiting Other Resources Used by Apache Child Processes

In addition to the absolute and shared memory sizes limiting, you might need to prevent the processes
from excessive consumption of the system resources. Like limiting the CPU usage, the number of files
that can be opened, or memory segment usage and more.

The Apache: : Resour ce module allows thisal by deploying the BSD: : Resour ce module, whichin
turn usesthe C functionset r 1 i mi t () to set limits on system resources.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the CPU time or file size is exceeded), but it will be allowed to continue
execution until it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to
specify the hard and soft limits on a resource. (See the manpage for setrlimit for your OS specific informa-
tion.)

If the value of the variable is of theform S: H, S is treated as the soft limit, and His the hard limit. If itis
just a single number, it is used for both soft and hard limits. So if you set 10: 20, the soft limit is 10 and
the hard limit is 20. If you set just 10--both the soft and the hard limits are set to 20.

The mostly spread usage of this module is to limit the CPU usage. The environment variable
PERL RLI M T_CPU defines the maximum amount of CPU time the process can use. If it runs for longer
than this, it gets killed, no matter what it does, either processing a new request or just waiting. Thisisvery
useful when you have a code with a bug and the process starts to spin in an infinite loop or alike using a
lot of CPU and never completing the request.

META: verify this.

The value is measured in seconds. The following example sets the soft limit of the CPU usage to 120
seconds (the default is 360).

Per | Mbdul e Apache: : Resource
Per| Set Env PERL_RLIM T_CPU 120

Of course you should tell mod_perl to use this module, which is done by adding the following directive to
httpd.conf:

Per | Chi | dl ni t Handl er Apache: : Resour ce

There are other resources that you might want to limit. For example you can limit the memory data and
stack segment sizes (PERL_RLI M T_DATA and PERL_RLI M T_STACK), the maximum process file
size (PERL_RLI M T_FSI ZE), the core file size (PERL_RLI M T_CORE), the address space (virtual

29 Jan 2004 93

1.9.3 Limiting Other Resources Used by Apache Child Processes

memory) limit (PERL_RLI M T_AS), etc. Refer to the setrlimit(2) man page on your OS for other possi-
ble resources. Remember to prepend PERL _ before the resource types you will see in the man page.

If you configure Apache: : St at us, it will let you review the resources set in this way. Remember that
Apache: : St at us must be loaded before Apache: : Resour ce in order to enable the resources
display menu.

If you want to set the debug mode set the $Apache: : Resour ce: : Debug before loading the module,
for example by using the Perl sectionsin httpd.conf.

<Per| >
$Apache: : Resour ce: : Debug = 1;
requi re Apache:: Resource;
</ Perl >
Per | Chi | dl ni t Handl er Apache: : Resour ce

Now open in the error_log file using tell and watch the debug messages showing up, when the requests
are served.

1.9.3.1 (OS Specific noteq

Note that under Linux malloc() uses mmap() instead of brk(). This is done to conserve virtual memory -
that is, when you malloc alarge block of memory, it isn’t actually given to your program until you initial-
ize it. The old-style brk() system call obeyed resource limits on data segment size as set in setrlimit() -
mmap() doesn’t.

Apache: : Resour ce’sdefaults put caps on data size and stack size. Linux’s current memory allocation
scheme doesn’t honor these limits, so if you just do

Per| Set Env PERL_RLI M T_DEFAULTS On

Per | Modul e Apache: : Resource
Per | Chi | dl ni t Handl er Apache: : Resource

Y our Apache processes are still free to use as much memory asthey like.

However, BSD: : Resour ce also hasalimit called RLI M T_AS (Address Space) which limits the total
number of bytes of virtual memory assigned to a process. Happily, Linux’s memory manager does honor
this limit.

Therefore, you can limit memory usage under Linux with Apache: : Resour ce -- simply add aline to
httpd.conf:

Perl Set Env PERL_RLIM T_AS 67108864
This example sets a hard and soft limit of 64MB of total address space.

Refer to the Apache: : Resource andsetr | i mt (2) manpagesfor more information.

94 29 Jan 2004

Performance Tuning 1.9.4 Limiting the Number of Processes Serving the Same Resource

1.9.4 [Limiting the Number of Processes Serving the Same Resourcg

If you want to limit number of Apache children that could simultaneously be serving the (nearly) same
resource, you should take alook at thenod_t hrott | e_access module.

It solves the problem of too many concurrent request accessing the same URI, if for example the handler
that serves this URI uses some resource that has a limitation on the maximum number of possible users or
the handlers code is very CPU intensive and you cannot afford more than a certain number of concurrent
requests to this specific URI.

Imagine that your service provides the three following URIs:

/ perl/ news/
/ perl| /webmail /
/ per | / mor phi ng/

Thefirst two URIs are response critical as people want to read news and their email. The third URI is very
CPU and RAM intensive image morphing service, provided as a bonus to your users. Since you don't
want users to abuse this service, you have to set some limits on the number of concurrent requests for this
resource, since if you don’t--the other two critical resources can be hurt.

When you compile in and enable the Apache mod_throttle access module, the MaxConcur r ent Reqs
directive becomes available. For example, the following setting:

<Location "/perl/norphing">
<Limt PUT CGET PCST>
MaxConcurrent Regs 10
</[Limt>
</ Locati on>

will alow only 10 concurrent PUT, GET or POST requests under the URI /perl/morphing to be processed
at onetime. The other two URIs remain unlimited.

1.9.5 [Limiting the Request Rate Speed (Robot Blocking)|

A limitation of using pattern matching to identify robots is that it only catches the robots that you know
about, and then only those that identify themselves by name. A few devious robots masquerade as users by
using user agent strings that identify themselves as conventional browsers. To catch such robots, you'll
have to be more sophisticated.

Apache: : SpeedLi m t comesto your aid, see:

|http://imwww.modper].com/chapters/che.html#Blocking Greedy Clientg

29 Jan 2004 95

http://www.modperl.com/chapters/ch6.html#Blocking_Greedy_Clients

1.10 Perl Modules for Performance Improvement

1.10 |Perl Modulesfor Performance | mprovement

These sections are about Perl modules that improve performance without requiring changes to your code.
Mostly you just need to tweak the configuration file to plug these modulesin.

1.10.1 {Sending Plain HTML as Compressed Output]

See Apache::GzipChain - compress HTML (or anything) in the OutputChain

1.10.2 (Caching Components with HTML ::Mason|

META: complete the full description

HTM.: : Mason isasystem that makes use of components to build HTML pages.

If most of your output is generated dynamically, but each finished page can be separated into different
components, HTML: : Mason can cache those components. This can really improve the performance of
your service and reduce the load on the system.

Say for example that you have a page consisting of five components, each generated by a different SQL
query, but for four of the five components it’s the same four queries for each user so you don’'t have to
rerun them again and again. Only one component is generated by a unique query and will not use the
cache.

META: HTML::Mason docs (v 8.0) said Mason was 2-3 times slower than pure mod_perl, implying that
the power & convenience made up for this.

META: Should aso mention Embper| (especialy sinceits C + XYS)

1.11 |[Efficient Work with Databases under mod per|

Most of the mod_perl enabled servers work with database engines, so in this section we will learn about
two things. how mod_perl makes working with databases faster and a few tips for a more efficient DBI
coding in Perl. (DBI provides an identical Perl interface to many database implementations.)

1.11.1 [Persistent DB Connectiong

Another popular use of mod_perl is to take advantage of its ability to maintain persistent open database
connections.

Y ou want to have a persistent database connection because the most expensive part of a network transac-
tion for most databases is the business of building and tearing down connections.

Of course the persistence doesn’t help with the latency problems during the actual use of the database
connections. Oracle is notoriously latency-sensitive which in most cases generates a network transaction
per row returned which slows things down if the query execution matches many rows. You may want to

96 29 Jan 2004

Performance Tuning 1.11.1 Persistent DB Connections

read the Tim Bunce's Advanced DBI tak at |http://dbi.perl.org/doc/conferences/tim 1999/index.html|
which coversalot of technigues to reduce latency.

So hereis the basic approach of making the connection persistent:

Apache:: Registry script

use strict;
use vars gw $dbh);

$dbh || = SomeDbPackage- >connect (...);

Since $dbh isaglobal variable for the child, once the child has opened the connection it will use it over
and over again, unlessyou performdi sconnect ().

Be careful to use different names for handlersif you open connectionsto different databases!

Apache: : DBl alows you to make a persistent database connection. With this module enabled, every
connect () request to the plain DBI module will be forwarded to the Apache: : DBI module. This
looks to see whether a database handle from a previous connect () request has already been opened,
and if this handle is still valid using the ping method. If these two conditions are fulfilled it just returns the
database handle. If there is no appropriate database handle or if the ping method fails, a new connection is
established and the handle is stored for later re-use. There is no need to delete the di sconnect ()
statements from your code. They will not do anything, the Apache: : DBI module overloads the
di sconnect () method with a NOP. When a child exits there is no explicit disconnect, the child dies
and so does the database connection. You may leavetheuse DBI ; statement inside the scripts as well.

The usage is simple -- add to httpd.conf:

Per | Modul e Apache: : DB

It isimportant to load this module before any other DBI , DBD: : * and ApacheDBI * modules!

db. pl
use DBI ();
use strict;

ny $dbh = DBI->connect('DBI:nysql:database’, "user’, 'password’
{ autocommit => 0 }
) || die $DBI::errstr;

...rest of the program

1.11.1.1 |Preopening Connections at the Child Process’ Fork Timdg

If you use DBI for DB connections, and you use Apache: : DBl to make them persistent, it also allows
you to preopen connections to the DB for each child with the connect _on_ini t () method, thus
saving a connection overhead on the very first request of every child.

29 Jan 2004 97

http://dbi.perl.org/doc/conferences/tim_1999/index.html

1.11.2 mod_perl Database Performance Improving

use Apache:: DBl ();

Apache: : DBl - >connect _on_init("DBl:nmysql :test"”,
"l ogi n",
"passwd”,
{

Rai seError => 1,
PrintError => 0,
Aut oCommit => 1

}
)

Thisis a simple way to have Apache children establish connections on server startup. This call should be
in astartup filer equi re() d by Per | Requi r e or inside a <Perl> section. It will establish a connec-
tion when a child is started in that child process. See the Apache: : DBl manpage for the requirements
for this method.

1.11.1.2 (Caching prepar &) Statementq

Y ou can aso benefit from persistent connections by replacing prepare() with prepare_cached(). That way
you will always be sure that you have a good statement handle and you will get some caching benefit. The
downside is that you are going to pay for DBI to parse your SQL and do a cache lookup every time you
call prepare_cached().

Be warned that some databases (e.g PostgreSQL and Sybase) don’t support caches of prepared plans. With
Sybase you could open multiple connections to achieve the same result, athough this is at the risk of
getting deadl ocks depending on what you are trying to do!

1.11.2 [mod perl Database Performance | mproving

1.11.2.1 |Analysis of the Problem|

A common web application architecture is one or more application servers which handle requests from
client browsers by consulting one or more database servers and performing a transform on the data. When
an application must consult the database on every request, the interaction with the database server
becomes the central performance issue. Spending a bit of time optimizing your database access can result
in significant application performance improvements. In this analysis, a system using Apache, mod_perl,
DBI , and Oracle will be considered. The application server uses Apache and mod perl to service client
requests, and DBI to communicate with a remote Oracle database.

In the course of servicing atypical client request, the application server must retrieve some data from the
database and execute a stored procedure. There are several steps that need to be performed to complete the
request:

98 29 Jan 2004

Performance Tuning 1.11.2 mod_perl Database Performance Improving

1: Connect to the database server

2: Prepare a SQL SELECT st at enent

3: Execute the SELECT st at enent

4. Retrieve the results of the SELECT statenent
5. Rel ease the SELECT statenent handl e

6: Prepare a PL/SQL stored procedure call

7: Execute the stored procedure

8: Rel ease the stored procedure statenment handle
9: Commit or rollback

10: Di sconnect fromthe database server

In this document, an application will be described which achieves maximum performance by eliminating
some of the steps above and optimizing others.

1.11.2.2 |Optimizing Database Connectiong

A naive implementation would perform steps 1 through 10 from above on every request. A portion of the
source code might look like this:

...
ny $d
|l

h = DBI - >connect (' dbi : Oracl e: host’, ’user’, ’'pass’)

b
die $DBl::errstr;

ny $baz = $r->paran(’ baz’);

eval {
ny $sth = $dbh->prepare(qq{
SELECT f oo
FROM bar
WHERE baz = $baz
1)

$st h- >execut e;

while (my @ow = $sth->fetchrow array) {
do HTML stuff
}

$st h->fi ni sh;

ny $sph = $dbh->prepare(qq{
BEG N
my_pr ocedur e(
arg_in => $bhaz
)
END,
1)
$sph- >execut e;
$sph- >fi ni sh;

$dbh->comi t ;
H
if (3@ {
$dbh->rol | back;

29 Jan 2004 99

1.11.2 mod_perl Database Performance Improving

}

$dbh- >di sconnect;
...

In practice, such an implementation would have hideous performance problems. The magjority of the
execution time of this program would likely be spent connecting to the database. An examination shows
that step 1 is comprised of many smaller steps:

1: Connect to the database server

la: Build client-side data structures for an Oracle connection
1b: Look up the server’'s alias in a file

1c: Look up the server’s hostnane

1d: Build a socket to the server

le: Build server-side data structures for this connection

The naive implementation waits for al of these steps to happen, and then throws away the database
connection when it is done! This is obviously wasteful, and easily rectified. The best solution is to hoist
the database connection step out of the per-request lifecycle so that more than one request can use the
same database connection. This can be done by connecting to the database server once, and then not
disconnecting until the Apache child process exits. The Apache: : DBI module does this transparently
and automatically with little effort on the part of the programmer.

Apache: : DBl intercepts callsto DBI ’'s connect and disconnect methods and replaces them with its own.
Apache: : DBl caches database connections when they are first opened, and it ignores disconnect
commands. When an application tries to connect to the same database, Apache: : DBl returns a cached
connection, thus saving the significant time penalty of repeatedly connecting to the database. Y ou will find
afull treatment of Apache: : DBl at[Persistent DB Connectiong

When Apache: : DBl isin use, none of the code in the example needs to change. The code is upgraded
from naive to respectable with the use of a ssmple module! The first and biggest database performance
problem is quickly dispensed with.

1.11.2.3 |Utilizing the Database Server’s Cachg

Most database servers, including Oracle, utilize a cache to improve the performance of recently seen
gueries. The cache is keyed on the SQL statement. If a statement is identical to a previously seen state-
ment, the execution plan for the previous statement is reused. This can be a considerable improvement
over building a new statement execution plan.

Our respectable implementation from the last section is hot making use of this caching ability. It is prepar-
ing the statement:

SELECT foo FROM bar WHERE baz = $baz

The problem is that $baz is being read from an HTML form, and is therefore likely to change on every
request. When the database server sees this statement, it isgoing to look like:

100 29 Jan 2004

Performance Tuning 1.11.2 mod_perl Database Performance Improving

SELECT foo FROM bar WHERE baz = 1

and on the next request, the SQL will be:

SELECT foo FROM bar WHERE baz = 42

Since the statements are different, the database server will not be able to reuse its execution plan, and will
proceed to make another one. This defeats the purpose of the SQL statement cache.

The application server needs to make sure that SQL statements which are the same look the same. The
way to achieve this is to use placeholders and bound parameters. The placeholder is a blank in the SQL
statement, which tells the database server that the value will be filled in later. The bound parameter is the
value which isinserted into the blank before the statement is executed.

With placeholders, the SQL statement looks like:

SELECT foo FROM bar WHERE baz = :baz

Regardless of whether baz is 1 or 42, the SQL always looks the same, and the database server can reuse
its cached execution plan for this statement. This technique has eliminated the execution plan generation
penalty from the per-request runtime. The potential performance improvement from this optimization
could range from modest to very significant.

Hereis the updated code fragment which employs this optimization:

$dbh = DBI - >connect (' dbi : Oracl e: host’, 'user’, ’'pass’)
|| die $DBl::errstr;

ny $baz = $r->paran(’ baz');

eval {
ny $sth = $dbh- >prepare(qq{
SELECT f oo
FROM bar
WHERE baz = :baz
1)

$st h- >bi nd_paran(’ : baz’, $baz);
$st h- >execut e;

while (nmy @ow = $sth->fetchrow array) {
do HTML stuff
}

$st h->fini sh;

ny $sph = $dbh- >prepare(qq{
BEG N
my_pr ocedur e(
arg_in => :baz
)

END;

1)
$sph->bi nd_paran(’ : baz’, $baz);

29 Jan 2004 101

1.11.2 mod_perl Database Performance Improving

$sph- >execut e;
$sph->fini sh;

$dbh->commi t ;

}s
if (3@ {
$dbh->r ol | back;

}
#o.

1.11.2.4 [Eliminating SQL Statement Parsing|

The example program has certainly come a long way and the performance is now probably much better
than that of the first revision. However, there is still more speed that can be wrung out of this server archi-
tecture. The last bottleneck is in SQL statement parsing. Every time DBI ’s prepare() method is called,
DBI parsesthe SQL command looking for placeholder strings, and does some housekeeping work. Worse,
a context has to be built on the client and server sides of the connection which the database will use to
refer to the statement. These things take time, and by eliminating these steps the time can be saved.

To get rid of the statement handle construction and statement parsing penalties, we could use DBl 's
prepare_cached() method. This method compares the SQL statement to others that have already been
executed. If there is a match, the cached statement handle is returned. But the application server is still
spending time calling an object method (very expensive in Perl), and doing a hash lookup. Both of these
steps are unnecessary, since the SQL is very likely to be static and known at compile time. The smart
programmer can take advantage of these two attributes to gain better database performance. In this
example, the database statements will be prepared immediately after the connection to the database is
made, and they will be cached in package scalars to eliminate the method call.

What is needed is a routine that will connect to the database and prepare the statements. Since the state-
ments are dependent upon the connection, the integrity of the connection needs to be checked before using
the statements, and a reconnection should be attempted if needed. Since the routine presented here does
everything that Apache: : DBl does, it does not use Apache: : DBl and therefore has the added benefit
of eliminating a cache lookup on the connection.

Hereis an example of such a package:
package M: : DB;

use strict;
use DBI ();

sub connect {
if (defined $My::DB::conn) ({

eval {

$My: : DB: : conn- >pi ng;
H
if (%@ {

return $My:: DB:: conn;
}
}

$My:: DB: : conn = DBl - >connect (

102 29 Jan 2004

Performance Tuning 1.11.2 mod_perl Database Performance Improving

"dbi: Oracl e:server’, 'user’, 'pass’, {
PrintError => 1,
Rai seError => 1,
Aut oCommit => 0

}
) || die $DBl::errstr; #Assume application handles this
$My: : DB::sel ect = $My:: DB:: conn->prepare(q{
SELECT foo
FROM bar
VWHERE baz = :baz
1)
$My: : DB:: procedure = $My:: DB:: conn->prepare(q{
BEG N
my_procedur e(
arg_in => :baz
)
END,
1)
return $My:: DB:: conn;
}
1;

Now the example program needs to be modified to use this package.

...

ny $dbh = My:: DB->connect;
ny $baz = $r->paran(’ baz');
eval {

ny $sth = $My:: DB: : sel ect;
$st h- >bi nd_paran(’ : baz’, $baz);
$st h- >execut e;

while (nmy @ow = $sth->fetchrow array) {
do HTML stuff

}

ny $sph = $My:: DB:: procedure;
$sph- >bi nd_paran(’ : baz’, $baz);
$sph- >execut e;

$dbh->commi t ;
I
if (3@ {
$dbh- >r ol | back;

}
...

Notice that severa improvements have been made. Since the statement handles have alonger life than the
request, there is no need for each request to prepare the statement, and no need to call the statement
handle’s finish method. Since Apache: : DBl and the prepare_cached() method are not used, no cache

29 Jan 2004 103

1.12 Using 3rd Party Applications

lookups are needed.
11125

The number of steps needed to service the request in the example system has been reduced significantly.
In addition, the hidden cost of building and tearing down statement handles and of creating query execu-
tion plansis removed. Compare the new sequence with the original:

Check connection to database

Bi nd parameter to SQL SELECT st atenent
Execut e SELECT st at enent

Fetch rows

Bi nd paranmeters to PL/SQ stored procedure
Execute PL/SQ. stored procedure

Conmmit or rollback

Nouorwhe

It is probably possible to optimize this example even further, but | have not tried. It is very likely that the
time could be better spent improving your database indexing scheme or web server buffering and load
balancing.

1.12 |Using 3rd Party Applications

It's been said that no one can do everything well, but one can do something specific extremely well. This
seems to be true for many software applications, when you don't try to do everything but instead concen-
trate on something specific you can do it really well.

Based on the above introduction, while the mod_perl server can do many many things, there are other
applications (or Apache server modules) that can do some specific operations faster or do areally great job
for the mod_perl server by unloading it when doing some operations by themselves.

Let'stake alook at afew of these.

1.12.1 [Proxying the mod perl Server|

Proxy gives you a great performance increase in most cases. It's discussed in the section Adding a Proxy
Server in http Accelerator Mode.

1.13 |Upload and Download of Big Fileg

You don’'t want to tie up your precious mod_perl backend server children doing something as long and
simple as transferring a file, especially a big one. The overhead saved by mod_perl is typically under one
second, which is an enormous saving for the scripts whose run time is under one second. The user won't
really see any important performance benefits from mod_perl, since the upload may take up to severa
minutes.

104 29 Jan 2004

Performance Tuning 1.14 Apache/mod_perl Build Options

If some particular script’s main functionality is the uploading or downloading of big files, you probably
want it to be executed on a plain apache server under mod cgi (i.e. performing this operation on the
front-end server, if you use adual-server setup.

This of course assumes that the script requires none of the functionality of the mod_perl server, such as
custom authentication handlers.

1.14 |Apache/mod per| Build Options

It's important how you build mod_perl enabled Apache. It influences the size of the httpd executable,
some irrelevant modules might slow the performance.

[ReaderMETA: Any other building time things that influence performance?]

1.14.1 [mod perl Process Size as a Function of Compiled in C Moduleq
land mod per| Featureq

Y ou might wonder whether it's better to compile in only the required modules and mod_perl hooks, or it
doesn’t really matter. To answer on this question lets first make a few compilation and compare the
results.

So we are going to build mod_perl starting with:

% per| Makefile.PL APACHE SRC=../apache_x.x.x/src \
DO HTTPD=1 USE_APACI =1

and followed by one of these option groups:
1. Default
no arguments

2. Minimum

APACI _ARGS=' - - di sabl e- nodul e=env, \
- - di sabl e- modul e=negotiation, \
- -di sabl e- nodul e=st atus, \
- -di sabl e- nodul e=i nfo, \
- - di sabl e- nodul e=i ncl ude, \
- - di sabl e- nodul e=aut oi ndex, \
- -di sabl e-nodul e=dir, \
- - di sabl e- modul e=cgi, \
- -di sabl e- nodul e=asi s, \
- - di sabl e- modul e=i map, \
- -di sabl e- nodul e=userdir, \
- -di sabl e- nodul e=access, \
- -di sabl e- nodul e=aut h’

3. Everything

29 Jan 2004 105

1.15 Perl Build Options

EVERYTHI NG=1
4. Everything + Debug
EVERYTHI NG=1 PERL_DEBUG=1
After re-compiling with arguments of each of these groups, we can summarize the results:

Bui | d group httpd size (bytes) Difference

M ni mum 892928 + 0
Def aul t 994316 +101388
Ever yt hi ng 1044432 +151504
Ever yt hi ng+Debug 1162100 +269172

Indeed when you strip most of the default things, the server size is simmer. But the savings are insignifi-
cant since you don’t multiply the added size by the number of child processes if your OS supports sharing
memory. The parent processes is alittle bigger, but it shares these memory pages with its child processes.
Of course not everything will be shared, if some module you add does some process memory modification
particular to the process, but the most will.

And of course this was just an example to show the difference is size. It doesn’t mean that you can every-
thing away, since there will be Apache modules and mod_perl options that you won't be able to work
without.

But as a good system administrator’s rule says. "Run the absolute minimum of the applications. If you
don’'t know or need something, disable it". Following this rule to decide on the required Apache compo-
nents and disabling the unneeded default components, makes you a good Apache administrator.

1.15 |Per| Build Options

The Perl interpreter lays in the brain of the mod_perl server and if we can optimize perl into doing things
faster under mod_perl we make the whole server faster. Generally, optimizing the Perl interpreter means
enabling or disabling some command line options. Let’s see afew important ones.

1.15.1 FDTWO_POT_OPTIMIZE and -DPACK_MALLOC Perl Build]

Newer Perl versions aso have build time options to reduce runtime memory consumption. These options
might shrink the size of your httpd by about 150k -- quite a big number if you remember to multiply it by
the number of children you use.

The - DTWD_POT_OPTI M ZE macro improves allocations of data with size close to a power of two; but
this works for big allocations (starting with 16K by default). Such allocations are typical for big hashes
and special-purpose scripts, especially image processing.

106 29 Jan 2004

Performance Tuning 1.16 Architecture Specific Compile Options

Perl memory allocation is by bucket with sizes close to powers of two. Because of these the malloc() over-
head may be big, especialy for data of size exactly a power of two. If PACK_MALLCC is defined, perl
uses a dlightly different algorithm for small allocations (up to 64 bytes long), which makes it possible to
have overhead down to 1 byte for allocations which are powers of two (and appear quite often).

Expected memory savings (with 8-byte alignment in al i gnbyt es) is about 20% for typical Perl usage.
Expected slowdown due to additional malloc() overhead is in fractions of a percent and hard to measure,
because of the effect of saved memory on speed.

Y ou will find these and other memory improvement detailsin per | 5004del t a. pod.

Important: both options are On by default in perl versions 5.005 and higher.

1.15.2 [-Dusemymalloc Perl Build Option|

Y ou have a choice to use the native or Perl’s own malloc() implementation. The choice depends on your
Operating System. Unless you know which of the two is better on yours, you better try both and compare
the benchmarks.

To build without Perl’s malloc(), you can use the Configure command:
% sh Configure -Uusenymal | oc"

Note that:

-U == undefine usenynal | oc (use system nall oc)
-D == define usenynal | oc (use Perl’s nmalloc)

It seems that Linux still defaults to system malloc so you might want to configure Perl with -Dusemymal-
loc. Perl’s malloc is not much of awin under linux, but makes a huge difference under Solaris.

1.16 |Architectur e Specific Compile Options

When you build Apache and Perl you can optimize the compiled applications to take the benefits of your
machine’ s architecture.

Everything depends on the kind of compiler that you use, the kind of CPU and
For exampleif you use gcc(1) you might want to use:
® -march=pentiumif you have a pentium CPU
e -march=pentiumpro for pentiumpro and above (but the binary won't run on i386)

e -fomit-frame-pointer makes extra register available but disables debugging

29 Jan 2004 107

1.17 Maintainers

® you can try these options were reported to improve the performance: -ffast-math, -malign-double,
-funroll-all-loops, -fno-rtti, -fno-exceptions.

see the gee(1) manpage for the details about these

e and of course you may want to change the usualy default - 02 flag with a higher number like -O3.
-OX (where X is a number between 1 and 6) defines a collection of various optimization flags, the
higher the number the more flags are bundled. The gcc man page will tell you what flags are used for each
number.

Test your applications thoroughly when you change the default optimization flags, especially when you go
beyond - 02. It's possible that the optimization will make the code work incorrectly and/or cause segmen-
tation faults.

See your preferred compiler’s man page for detailed information about optimization.

1.17 Maintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

1.18 [Authorg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

108 29 Jan 2004

Performance Tuning

Table of Contents:

1 | Performance Tuning|

1.1 Description .
1.2 [The Big Picture

1.3 [System Analysid .
1.3.1 |Software Requi rementsl
1.3.2 |Hardware Requirementq
1.4 [Essential Toold
1.4.1 |Benchmarking Applicati onsi
1.4.1.1 [Benchmarking Perl Codd .
1.4.1.2 [Benchmarking a Graphic Hits Counter W|th Persaent DB Connectl onsl
1.4.1.3 [Benchmarking Response Timeq .

1.4.1.3.1.
1.4.1.3.2 ttperf] .
1.4.1.3.3 [http Toad]

14.1.34 Ithe crashme e pﬂ
1.4.1.4 Benchmarking Perl[Handlerq .
1.4.1.5 [Other Benchmarking Toolg .
1.4.2 |Code Profiling Technique§y . .
1.4.3 |Measuring the Memory of the Procesﬁ
1.4.4 M easuring the Memory Usage of Subrouti nesI
1.5 [Know Y our Operating System|
1.5.1 |Sharing Memory|
1.5.1.1 [How Shared IsMy Memory’/]
1.5.1.2 [Calculating Real Memory Usags .
15.1.3 [Are My Variables Sharedq] . .
1.5.1.4 [Preloading Perl Modules at Server Startupl
1.5.1.5 [Preloading Registry Scripts at Server Startup| .
1.5.1.6 [Modules Initializing at Server Startup|
1.5.1.6.1 [Initializing DBI.pm|.
1.5.1.6.2 [Initializing CGl.pm|.
1.5.2 |{Increasing Shared Memory With merqemerd .
1.5.3 |Forking and Executing Subprocesses from mod perl|
1.5.3.1 [Forking a New Procesy .
1.5.3.2 [Freeing the Parent Procesd .
1.5.3.3 [Detaching the Forked Procesy
1.5.3.4 [Avoiding Zombie Processeq .
1.5.3.5 [A Complete Fork Examplg . .
1.5.3.6 [Starting a Long Running External Proqran1
1.5.3.7 [Starting a Short Running External Program|
1.5.3.8 [Executing system() or exec() in the Right Way|
1.5.4 |OS Specific Parameters for Proxying .
1.6 [Performance Tuning by Tweaking Apache Conflquratlod
1.6.1 |Configuration Tuning with ApacheBench| .
1.6.2 |Choosing MaxClientd

29 Jan 2004

Table of Contents:

el o
PRPONOUUURADRMDMNWWWNNER

(62 A BB DBDBWWWWWWWWNNNDNNNERPE

Table of Contents:

1.6.3 |Choosing MaxRequestsPerChild . . .
1.6.4 |Choosi n§ Mm@areServers Max@areServers and StartServerQ
165 Summarz of Benchmarklnﬁ totuneal 5 Earameterg L
166 [KeepAlivd
16.7 PerlSetupEnv Off] . .
1.6.8 [Reducing the Number of stai() Calls Made by Apache
1.7 TMTOWTDI: Convenience and Hahit vs. Performance
L 7 1 [Apache::Regisiry PerlHandler vs. Custom PerfHandlef
1.7.2 '"Bloatwar modulg

1.7.3 |[Apache::args vs. Apache::R uest aram vs. CGI
1.7.4 [Using $|=1 Under mod perl and Better print() Techniques.
1.7.5 |Global vs. Fulli §§ualified Variab@ .
1.7.6 [Object Methods Cals vs. Function Cald .
1761 :
1.7.6.2 I he Overhead with Heavi Subrouti ng .
1.7.6.3 [Are All Methods Slower than Functions?
1.7.7 Imported Symbols and Memory Usagd . .
1.7.8 Inter@olati on, Concatenation or Liﬁ] .
1.7.9 [Using Perl stat() Call’s Cached Resultg.
1.7.10 |O§t|m| Zi n§ Code
18 E@ache R@lstri and Derlvatlves @ecmc Notg
1.8.1 [Be Careful with Symbolic Linkg . :
1.9 | m@rovinﬁ Performance bz Preventioﬂ .
19.1 |M emorz Ieak@e .
19.11 R mgInAWhoIeFlIQ

1.9.1.2 [Copying Variables Between Function
1.9.1.3 Work With Databased .
19.2 |Prevent| ng Y our Processes from Gr0W| ng]

1.9.2.1 [Defining the Minimum Shared Memory Size Threshold

1.9.2.2 |Potential Drawbacks of M emori Shari nﬁ Restricti oﬂ)

1.9.2.3 [Defining the Maximum Memory Size Threshold
19.24 |Def|n|n§ the M aximum Unshared Memori Size Thresholg

1.9.3 |Limiting Other Resources Used by Apache Child Processeq
1.9.3.1 [OS Specific noteg

1.9.4 |Limiti n§ the Number of Processes Servi n§ the Same Resourc§
1.9.5 [Limiti n§ the REuest Rate @eed ZRobot Block|n§§] . .
1.10 [Perl Modules for Performance Improvemen . . .
1.10.1 [Sending Plain HTML as Compressed Outpu
1.10.2 |Caching Components with HTML::Mason
111 |Efficient Work with Databas&s under mod_per |
1.11.1 [Persistent DB Connections :
111 1 1 [Preopening Connections at the Child Process’ Fork Time
11112 |C achm (Caching prepare() Statements .
1.11.2 |mod Eerl Database Performancelm@row ng
11121 nalissof the Probl@ .
1.11.2.2 [Optimizing Database Connect|0n§ .
1.11.2.3 [Utilizing the Database Server’s Cachd

55
56
56
58
59
60

65
68
70
73
5
76
76
4
8
79
81
82
83
83

GRERXREB

86
89
89
91
92
92
93

95
95
96
96
96
96
96
97
98
98
98
99
100

29 Jan 2004

Performance Tuning

112

1.11.2.4 [Eliminating SQL Statement Parsing|
1.11.2.5 |Concl usoﬂ .
|US| nﬁ 3rd Party Agg'llcatlong

1.12.1 |Proxying the mod perl Server

1.13
114

1.15

[Upload and Downioad of Big Fil
[Apache/mod_perl Build Optiong .

1.14.1 |mod_perl Process Size as a Function of Compiled in C Modules and mod_perl Featureq

[Perl Build Optiong .

1.15.1 [DTWO POT OPTIMIZE and DPACK MALLOC Perl Bqu Optlonﬂ
1.15.2 |-Dusemymalloc Perl Build Option|

1.16
117
1.18

|Erch|tecture @ecmc Com@ le OEtl on§
fM anta ner§ .
[Authorg

29 Jan 2004

Table of Contents:

102
104
104
104
104
105
105
106
106
107
107
108
108

	1€€Performance Tuning
	1.1€€Description
	1.2€€The Big Picture
	1.3€€System Analysis
	1.3.1€€Software Requirements
	1.3.2€€Hardware Requirements

	1.4€€Essential Tools
	1.4.1€€Benchmarking Applications
	1.4.1.1€€Benchmarking Perl Code
	1.4.1.2€€Benchmarking a Graphic Hits Counter with Persistent DB Connections
	1.4.1.3€€Benchmarking Response Times
	1.4.1.3.1€€ApacheBench
	1.4.1.3.2€€httperf
	1.4.1.3.3€€http_load
	1.4.1.3.4€€the crashme Script

	1.4.1.4€€Benchmarking PerlHandlers
	1.4.1.5€€Other Benchmarking Tools

	1.4.2€€Code Profiling Techniques
	1.4.3€€Measuring the Memory of the Process
	1.4.4€€Measuring the Memory Usage of Subroutines

	1.5€€Know Your Operating System
	1.5.1€€Sharing Memory
	1.5.1.1€€How Shared Is My Memory?
	1.5.1.2€€Calculating Real Memory Usage
	1.5.1.3€€Are My Variables Shared?
	1.5.1.4€€Preloading Perl Modules at Server Startup
	1.5.1.5€€Preloading Registry Scripts at Server Startup
	1.5.1.6€€Modules Initializing at Server Startup
	1.5.1.6.1€€Initializing DBI.pm
	1.5.1.6.2€€Initializing CGI.pm

	1.5.2€€Increasing Shared Memory With mergemem
	1.5.3€€Forking and Executing Subprocesses from mod_perl
	1.5.3.1€€Forking a New Process
	1.5.3.2€€Freeing the Parent Process
	1.5.3.3€€Detaching the Forked Process
	1.5.3.4€€Avoiding Zombie Processes
	1.5.3.5€€A Complete Fork Example
	1.5.3.6€€Starting a Long Running External Program
	1.5.3.7€€Starting a Short Running External Program
	1.5.3.8€€Executing system†‡ or exec†‡ in the Right Way

	1.5.4€€OS Specific Parameters for Proxying

	1.6€€Performance Tuning by Tweaking Apache Configuration
	1.6.1€€Configuration Tuning with ApacheBench
	1.6.2€€Choosing MaxClients
	1.6.3€€Choosing MaxRequestsPerChild
	1.6.4€€Choosing MinSpareServers, MaxSpareServers and StartServers
	1.6.5€€Summary of Benchmarking to tune all 5 parameters
	1.6.6€€KeepAlive
	1.6.7€€PerlSetupEnv Off
	1.6.8€€Reducing the Number of stat†‡ Calls Made by Apache

	1.7€€TMTOWTDI: Convenience and Habit vs. Performance
	1.7.1€€Apache::Registry PerlHandler vs. Custom PerlHandler
	1.7.2€€"Bloatware" modules
	1.7.3€€Apache::args vs. Apache::Request::param vs. CGI::param
	1.7.4€€Using $|=1 Under mod_perl and Better print†‡ Techniques.
	1.7.5€€Global vs. Fully Qualified Variables
	1.7.6€€Object Methods Calls vs. Function Calls
	1.7.6.1€€The Overhead with Light Subroutines
	1.7.6.2€€The Overhead with Heavy Subroutines
	1.7.6.3€€Are All Methods Slower than Functions?

	1.7.7€€Imported Symbols and Memory Usage
	1.7.8€€Interpolation, Concatenation or List
	1.7.9€€Using Perl stat†‡ Call's Cached Results
	1.7.10€€Optimizing Code

	1.8€€Apache::Registry and Derivatives Specific Notes
	1.8.1€€Be Careful with Symbolic Links

	1.9€€Improving Performance by Prevention
	1.9.1€€Memory leakage
	1.9.1.1€€Reading In A Whole File
	1.9.1.2€€Copying Variables Between Functions
	1.9.1.3€€Work With Databases

	1.9.2€€Preventing Your Processes from Growing
	1.9.2.1€€Defining the Minimum Shared Memory Size Threshold
	1.9.2.2€€Potential Drawbacks of Memory Sharing Restriction
	1.9.2.3€€Defining the Maximum Memory Size Threshold
	1.9.2.4€€Defining the Maximum Unshared Memory Size Threshold

	1.9.3€€Limiting Other Resources Used by Apache Child Processes
	1.9.3.1€€OS Specific notes

	1.9.4€€Limiting the Number of Processes Serving the Same Resource
	1.9.5€€Limiting the Request Rate Speed †Robot Blocking‡

	1.10€€Perl Modules for Performance Improvement
	1.10.1€€Sending Plain HTML as Compressed Output
	1.10.2€€Caching Components with HTML::Mason

	1.11€€Efficient Work with Databases under mod_perl
	1.11.1€€Persistent DB Connections
	1.11.1.1€€Preopening Connections at the Child Process' Fork Time
	1.11.1.2€€Caching prepare†‡ Statements

	1.11.2€€mod_perl Database Performance Improving
	1.11.2.1€€Analysis of the Problem
	1.11.2.2€€Optimizing Database Connections
	1.11.2.3€€Utilizing the Database Server's Cache
	1.11.2.4€€Eliminating SQL Statement Parsing
	1.11.2.5€€Conclusion

	1.12€€Using 3rd Party Applications
	1.12.1€€Proxying the mod_perl Server

	1.13€€Upload and Download of Big Files
	1.14€€Apache/mod_perl Build Options
	1.14.1€€mod_perl Process Size as a Function of Compiled in C Modules and mod_perl Features

	1.15€€Perl Build Options
	1.15.1€€-DTWO_POT_OPTIMIZE and -DPACK_MALLOC Perl Build Options
	1.15.2€€-Dusemymalloc Perl Build Option

	1.16€€Architecture Specific Compile Options
	1.17€€Maintainers
	1.18€€Authors

