Non-web use for Apache/mod_perl: SMS app 1 Non-web use for Apache/mod_perl: SMS app

1 Non-web use for Apache/mod_perl: SMS app

29 Jan 2004 1

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

o Date: Fri, 22 Mar 2002 14:01:28 +0100

Pr ef ace

This is a story about how about |’'ve used a conbinati on of perl

Apache and nod_perl to create a conponent-based service architecture
that inplenments a platformfor building SM5 applications. By reusing
capabilities offered by Apache/nmod_perl | saved a lot of tine

devel opi ng the system The strong OO features of perl that | used
enabled ne to build a very flexible systemas well to cope with future
requirements. We had the platformin place in about 6 weeks, starting
with absolutely nothing: no hardware, no devel opment environment, no

t echnol ogy choi ces nmade beforehand

I ntroduction

The purpose of the systemto be devel oped was to provide a server
platformon top of which arbitrary SM5 (Short Message Service)
applications can be devel oped quickly. It should be built using a
stabl e and scal abl e architecture with roomfor future enhancenents
such as integrated billing and reporting options

An SMS application can be characterized by subscribers sending
text - based commands to the platformand have the platformdispatch to
the right application instance. The application instance handl es the
command, executing whatever application-logic defined by that
particul ar application, and usually generate one or nore responses. It
shoul d al so be possible that the platforminitiates nmessages to
subscribers as a result of a request sent by another subscriber as
well as be able to generate nessages based on tiners

There also was a requirenment to have the framework publish
application-specific data in XM. to allow custonmers to display this
data on other nedia channels such as a website.

Connecting the platformto external entities for the transm ssion and
reception of SMS nessages such as SMSC's (SMS Centers distribute SMB
nmessages to and from nobil e subscribers) and SMS Gateways (snmart
front-end to one or nore SMSC s unifying the nmethod to reach
subscribers fromnultiple tel ecomoperators) should be flexible enough
to be able to "plug-in" different protocols such as

HTTP/ SMIP/ Cl MDY SMPP as needed.

Conponent architecture

Early on in the project | decided to go for a distributed conponent
architecture. |ndividual conponents should be depl oyable on multiple
physi cal machines. This offers the required scalability and the
ability to define a convenient security schene by running conponents
on segnments of a network with differing outside visibility
requirements.

As | started nodelling this "world", |I ended up with the follow ng

2 29 Jan 2004

Non-web use for Apache/mod_perl: SMS app 1.1 BasA.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

conponent s:

1. Application server

Wthin this application server, nultiple instances of nultiple SMS
application instances should be running. The actual application-logic
is running within this conmponent. This conponent provides two externa
servi ces:

- handl eMessage(ConmandRequest)

This service takes an instance of a CommandRequest object and runs the
command in the appropriate application instance.

- handl eTi ner (Ti mer)

This services handles expiry of a timer set by the application-logic
of an SMS application

- getView

This service allows a client to retrieve application-defined views in
XML

2. Tiner service

A persistent service that maintains tiners set by application
i nstances within the game application server and invokes the

handl eTi mer service of the gane application services upon expiry of a
tinmer.

External service offered

- setTimer(Tiner)

3. Virtual SMs gateway (VSMsC)

Thi s conponent handl es comuni cation with the outside world (the
external entities such as SMSC s and SMS gateways). This conponent is
split up in 2 subconponents, one that handles input fromnobile
subscri bers and one that handl es output to nobile subscribers. Each
subconponent provi des one service:

- handl eMessage(Message)

The i nput conponent receives requests fromthe outside world using
pl uggabl e subconponents that handl e protocol details, the output
conponent transnmits requests to the outside world using pluggabl e
subconponents that handl e protocol details.

4, XM. Views service

Thi s conponent offers an HTTP interface to retrieve

29 Jan 2004 3

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

application-specific views in XM.. It uses custoner-specific XSLT

styl esheets to transformthe XML data. This conponent is |argely based
on Matt Sergeant’s AxKit. AxKit allow the source of your "docunment" to
be delivered by your own provider class by subclassing of f of
AxKit::Provider. My provider class talks to the application server’s
getView service while AxKit perforns its mracles with all kinds of
transfornation options.

Conponents Figure 1 System conponents

Apache/ nod_perl as a conponent contai ner

When thinki ng about how to inplenent all this | was tenpted to | ook
into doing it with some J2EE-thingy. However, there was this
tinme-constraint as well as a constraint on avail abl e progranmer-hands:
I had one freelance programer for 20 days and | had to arrange the
whol e physical part (get the hardware, a co-location site etc.). Then
it struck ne that this application server really looked like a vanilla
regul ar nod_perl web application: receive request fromuser, process
send back reply. No html though, but Message objects that could be
serialized/ deserialized fromtext strings. There were of course sone
differences: the reply is not sent back inline (i.e. upon reception of
a request via SMS, you can’t "reply"; you have to create a new nessage
and send that to the originator of the request) and there also was the
tinmer service: | can’'t make Apache/ nod_perl do work wi thout having it
received a user-initiated request.

The good thing was |’ve been doi ng Apache/ nod_perl for sonme years now
so | knew beforehand | could create a schedul e acceptable fromthe
busi ness point of view that was al so feasi bl e based on experience with
the technol ogy.

So, for each conponent except the timer service, | defined separate
Apache/ nod_per| instances, one for the application server, one for the
SMS out put conponent, one for the SMS i nput conponent and one for the
XM. Vi ews conponent.

Each i nstance defines a URL for each service that the conponent
running in the instance provides.

Conponent comuni cati on

I took a shortcut here. | wanted to go for SOAP here as it seens a
natural fit. It will allow ne to nove conponents to other |anguages
(managenment and nmarketing still seens hung up on java) fairly easy. My

personal experiences with SOAP on earlier projects weren't too good
and | just couldn't fit playing with SOAP into ny schedule. So | took
my old friends LWP:: User Agent, HTTP:: Request and Storable to handle
this part (perl object instance -> Storable freeze -> HITP post ->
Storabl e thaw -> perl object instance).

4 29 Jan 2004

Non-web use for Apache/mod_perl: SMS app 1.1 BasA.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

The good thing is that this actually is a mnor part of the whole
systemand | know | can put SOAP in easily when the need arises

"Breaki ng the chain”

I did make one nmistake in the beginning: all service calls were
synchronous. The initial HTTP request would not return until after the
whol e chain of execution was done. Wth possibly |long running actions
in the server conponent, this was not good. | had to find a way to
execute the actual code *after* closing the connection to the

client. Luckily, Apache/nod_perl came to the rescue. It allows you to
set a call back that executes after the HTTP responses are sent back to
the client and after it closes the TCP/IP connection.

Resul t

W had the platformin place in about 6 weeks, starting with

absol utely nothing: no hardware, no devel opnent environnent, no
technol ogy choi ces made beforehand. Based on former experience, the
decision to go with a LAWP architecture (Linux, Apache, MySQ., Perl)
running on fairly cheap intel boxen was made quickly. MySQL was, and
is, not on nmy wishlist, but the whole battle of moving Oracle in would
have been both a tinme as well as a noney killer, either of which we
didn’t have a lot of at the tine.

Asi de from having one production SMS application (a nobile SM5 gane),
I’ve done a prototype SMsS application on this platformto check if it
really is easy to create new apps. It took ne about 4 hours to

i mpl enent a "SMS uni x conmmandl i ne" application: | can login to the
application server using SM5, send Uni x commands with ny nobile phone
and receive their output (nmake sure your conmand doesn’t generate nore
than 160 characters though). The application also maintains state such
as the working directory I’'min at any given tine.

Performance is 'good enough’ with the platformrunning on 2 fairly
cheap Intel boxen, it handles 40 to 60 incom ng request per second. As
I haven’'t spent one second on optimzation yet (anyone know the
command to create an index in MySQ.?), that nunber is fine for ne.

did put 1 gigabyte in each machi ne though as the Apache child

processes eat up quite some nenory.

Fut ure enhancenents and consi derati ons
SOAP

I really want SOAP. It just seens to nake sense to do so: it was
invented for doing stuff like this and | like the concept of WBDL. It
allows you to define the interface in an XM. file so clients "know'
what type of paraneters the service needs as well as the return

par aneter types

SQAP wi Il also allow new conponents that are not perl. SOAP is

available in a lot of |anguages and integration of the various SOAP
implenentations is getting better every day (see here)

29 Jan 2004 5

1.1 Bas A.Schulte <bschulte (at) zeelandnet.nl> exclaimed:

Framewor k for service-based architecture

I1"d like to extract the code that handl es the communi cati on between
the conmponents in the current systemand create a generic franmework
that allows one to easily create an Apache/ nod_perl - based conponents
container. The avail abl e services would be registered in httpd. conf
and there shoud be a service-discovery nechanism On the client side
I"mthinking about sonething that nmakes it easy to create client-side
stubs. Stay tuned..

Apache/ mod_perl 2.0

This | ooks very promsing to create generic conponents containers. It
is very easy to create non-HTTP based services with Apache 2.0 with
nmod_perl’s 2.0 support for witing protocol nbdules in perl. A so, the
various nulti-process nodels (npbst notably threading) available in
Apache 2.0 should result in better performance or at |east nore
choices as far as the process nodel is concerned.

Lanp

I"'mstill alittle unsure about LAMP. Can we nove to relatively cheap
hardware and a free OS when we were used to (very) expensive HP, Sun
or | BM hardware and get away with it? Personal experience and what
I"ve read fromothers seens to indicate we can. Experience will tell
and if it breaks, nmoving the platformto either of the above three
should be a no-brainer. We live in interesting tines.

6 29 Jan 2004

Non-web use for Apache/mod_perl: SMS app

Table of Contents:

1 | Non-web use for Apache/mod perl: SMSapp]| .
1.1 [Bas A.Schulte <bschulte (at) zeelandnet.nl> exclalmed |

29 Jan 2004

Table of Contents:

=

	1€€Non-web use for Apache/mod_perl: SMS app
	1.1€€Bas A.Schulte <bschulte †at‡ zeelandnet.nl> exclaimed:

